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2.1  Introduction

Metamaterial is not a well-defined terminology. In fact, this terminology does not 
mean any specific material, but instead a new way of thinking. Usually this term 
means carefully engineered material structures composed of carefully designed 
inclusions that can exhibit unusual electromagnetic properties not inherent in the 
individual constituent components [1]. These properties include, for example, arti-
ficial magnetism [2], negative permeability [3], negative index of refraction [4], 
and hyperbolic dispersion [5, 6]. These properties lead to many fascinating phe-
nomena such as negative refraction of light [7], sub-wavelength imaging [8], field 
enhancement [9], and evanescent-to-propagating wave mode conversion [5, 6], etc. 
Novel devices such as superlens [8–10], hyperlens [5, 6], invisibility cloak [11, 
12], and plasmonic waveguide [13] based on these ideas have been designed, fab-
ricated, and tested in the last decade.

The original purpose of initiating metamaterials research might be to con-
struct artificial structures that can respond to electromagnetic waves intensively 
at any frequency we desire [2]. After this goal had been achieved, researchers 
then made a metallic periodic structure which behaves like an effective medium 
for EM waves having both negative permittivity [14] and negative permeability 
[3], and hence has a negative refractive index [4], realizing the ‘bending light to 
the wrong way’ phenomena predicted by V. G. Veselago more than 4 decades ago 
[7]. Furthermore, Pendry pointed out that a slab of negative refraction medium 
having appropriate negative permittivity and permeability not only cancels the 
phase accumulation of propagating waves but also amplifies the evanescent 
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waves, thus can focus the light from a tiny source into a spot narrower than one 
wavelength, overcoming the diffraction limit [8, 9]. This ‘supelensing effect’ 
stems from the coupling between the source’s near fields (evanescent waves) and 
the surface plasmon-polariton (SPP) waves propagating along the slab bounda-
ries. Pendry also argued that even if the relative permeability is nonnegative 
(close to 1), subwavelength imaging can still occur if the ‘quasi-static condition’ 
is satisfied [10].

After these concepts and predictions had been studied at the early stage, a 
tremendous amount of theoretical/numerical works have been done and a lot of 
experimental tests have been implemented. These developments finally helped to 
confirm the reality of negative refraction and subwavelength imaging phenomena 
[7–9] in the microwave frequency regimes. Recent studies further convinced that 
these notions still hold for optical waves [15]. However, some subtleties of meta-
materials unnoticed before have been revealed [16–18]. For example, although a 
superlens can focus the light of a tiny source into a subwavelength spot; the image 
is located at the near filed zone and cannot be further processed by conventional 
optical devices. The efforts to resolve this problem then led to the development of 
hyperlens [5, 6].

In addition to the above mentioned developments, there are many related 
research works, which include: negative refraction and subwavelength imaging of 
EM and acoustic waves by photonic crystal slab [19–28] and sonic crystal slab 
[29–32], negative refraction and subwavelength imaging of water waves [33, 34], 
acoustic metamaterials [35–37] and acoustic cloaking devices [38, 39], matter 
wave cloaks [40, 41], and plasmonic devices [42].

In this chapter we introduce some important topics in the metamaterials 
research and explain the essential physics related to them. However, we are not 
able to discuss all topics of this research area because it covers phenomena of too 
wide range and is evolving too fast. We provide very detailed discussions about 
wire array and split-ring resonator array structures in this chapter and derive the 
effective permittivity and permeability formulas for them, which might be helpful 
to a beginner.

2.2  Negative Refraction, Flat Lens, and Perfect Lens

A. Negative refraction and left handed media
Now we discuss the refraction behavior of a beam of light incident from an empty 
space to a left-handed medium (LHM) or double-negative medium (DNM). By DNM 
we mean the medium’s permittivity ε as well as its permeability µ are negative. In 
Fig. 2.1, the medium above the interface (which is represented by a black horizon-
tal line) is an LHM, and the medium below the interface is an empty space. The red 
arrows, white cross circles, and the orange colored arrows indicate the directions of 
the electric field E, magnetic field H, and Poynting vector S = E×H. For simplicity 
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we assume that ε ≈ −ε0 and µ ≈ −µ0 so that the impedance of the LHM is matched 
to that of the empty space, and the reflected waves can thus be neglected. According 
to Maxwell’s equations, four boundary conditions (not all of them independent) 
should be satisfied at the interface, they are: the continuity of the normal components 
of the electric displacement field (Dn) and magnetic induction (Bn); and the continuity 
of the tangential components of the electric field (Et) and magnetic field (Ht).

Set the orientations of the x, y, z axes to be along the rightward, upward, and 
outward directions of the page respectively, and choose the polarizations of the 
E and H fields as that shown in the empty space region of Fig. 2.1 (TM polari-
zation), then the incident light has Einc

x > 0, Dinc
y = ε0E

inc
y > 0, Hinc

z < 0,  
and Sincx < 0, Sincy > 0. Using the boundary conditions for Dn, Bn, Et and Ht,  
we conclude that the refracted light has Eref

x = Einc
x > 0, Dref

y = Dinc
y > 0, and 

H
ref
z = Hinc

z < 0. However, since the LHM has ε < 0, so Dref
y = Dinc

y > 0 implies 
E
ref
y = D

ref
y /ε < 0, and thus Srefx > 0, S

ref
y > 0, as indicating in the LHM region 

of Fig. 2.1. Now, if we apply the Snell’s law to the incident and refracted beams, 
a negative refractive index (n < 0) must be assigned to the LHM because the 
refracted beam bends to the ‘wrong way’. This argument explains why a DNM 
is a negative index medium (NIM), and similar argument can be applied to the 
TE polarization case. Furthermore, since the wave phase at the interface must be 
continuously connected, the wave front (the phase front) in the LHM region must 
propagate towards the interface, that is, the wave vector k is antiparallel to the 
Poynting vector S. Remember that in a usual medium with positive permittivity 
and positive permeability the E, H, and k triplet forms a right-handed coordinate 
system. However, the same triplet in a DNM forms a left-handed coordinate sys-
tem. This explains why a DNM is called a LHM [7].

B. LHM and metamaterials
Experimentally the LHM can be realized by fabricating artificial structures called 
metamaterials (see Fig. 2.2). In general metamaterils are not naturally exsiting 
materials or their simple mixtures or chemical products, instead, they are carefully 
designed structures such like thin metallic wires array, split-ring resonators (SRR) 
array, metal-dielectric multilayers [5, 6], fishnet structures [43], and helical metal-
lic resonators array [44] etc. We will discuss in this chapter about how to realize 
negative permittivity and permeability by using wires and SRR arrays, and how to 
realize hyperbolic metamaterial [45] or indefinite medium [46] using metal-dielec-
tric multilayers.

Fig. 2.1  Negative refraction. 
Above the black line is the 
left-handed medium with 
ε < 0 and µ < 0
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In general metamaterials are dispersive media, which means the response of a 
metamaterial medium to the applied fields is frequency dependent. Usually they 
are also lossy or absorptive, which will degrade the NIM properties seriously. In 
fact, in the early stage of metamaterial research some researchers argued that due 
to the dispersive and absorptive properties, the negative refraction phenomenon in 
a metamaterial violates causality because it implies the possibility of superlumi-
nal propagation of signals. Besides, they even claimed that although the continu-
ous waves of single frequency can deflect negatively, wave packet or beats always 
propagate positively [47]. However, after more careful analysis finally these argu-
ments were found to be incorrect and thus these claims have been denied [48–50].

A simulation about beam propagation through a slab of LHM is shown in 
Fig. 2.3. The field strengths at 6 different times are revealed in the subplot (a) to 
(f), respectively. Comparing (b) with (c) or (e) with (f), one can find that the beam 

Fig. 2.2  Two typical metamaterials consisting of metallic structures, both have negative 
refractive index in a certain frequency range. The metallic wires or rods provide the negative  
permittivity and the split-ring resonators provide the negative permeability. (Images: Physics 
Today, May 2000, 17; Science Vol. 292: 77, 2001)

Fig. 2.3  A Gaussian beam penertrates through an LHM slab that has a refractive index close to 
−1 (n ≈ −1). a–f are the results of 6 successive times
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propagating direction changes a little during the time interval between two succes-
sive instants. This fact implies that the LHM is a dispersive medium so the beam 
cannot keep its propagation direction unchanged.

C. Electromagnetic energy density in metamaterials
There is another interesting issue concerning the LHM, that is, the electromagnetic 
energy density inside the metamaterials. We learned in the electrodynamics course 
that the electromagnetic energy density of time varying electromagnetic fields in a 
nondispersive medium is written as [51] 

Here E2 and H2 are the square of the instantaneouse E and H fields. Now if the 
permittivity and permeability become negative, what will be the expression of 
energy density? The above formula seems to imply the energy density becomes 
negative in such a medium, however, this is incorrect. In fact, for a dispersive 
medium without loss, Brillouin [52] and Landau [53] have already provided 
the following formula for the time average of the energy density (here E and 
H are the complex vector representation of the electric and magnetic field, 
respectively)

which, if substituted the effective (relative) permittivity and permeability of the 
wire-SRR medium (referring to (2.12) and (2.26)), assuming the loss has been 
turned off, we get a positive result. For the cases with finite loss and the spe-
cific expressions for the electric and magnetic dipoles inside the medium are 
given, instantaneous energy density can also be derived, which is always posi-
tive and include three parts: the pure EM energy, the electric dipole energy, and 
the magnetic dipole energy [54]. In the latter two parts, the dipole energies may 
contain both the electric energy stored in the capacitors as well as magnetic 
energy stored in the inductances of the resonators that consist the medium.

D. Flat lens and perfect lens
A very interesting consequence of negative refraction is that a slab of NIM is in fact 
a flat lens (see Fig. 2.4), which can focus the light emanating from a point source to 
two images, one inside and one outside of the slab, if the slab is thick enough [7]. 
This phenomenon can be understood in two ways, based on the languages of geo-
metrical optics or wave optics. For simplicity we assume the refractive indices for 
the lens and the medium outside are −1 and 1, respectively. According to geometrical 
optics, light rays refract negatively across the interface between the positive and neg-
ative index materials. Since the flat lens has two interfaces, negative refraction hap-
pens twice, and the intersection points of different rays yield the two images. On the 
other hand, a focal point according to wave optics is a point having stationary wave 
phase. Since the regions inside and outside the slab lens have refractive indices −1 
and 1, the two image points are just the two points having the same phase as that of 
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the source point. Light propagating outside the slab accumulates positive phase incre-
ment along the propagation direction, while negative phase difference is accumulated 
inside. The two images locate at the two points where the positive and negative phase 
accumulations cancel with each other completely.

Although the possibility of making a flat lens from a NIM had already been 
found by Veselogo in 1967, people did not know before Pendry claimed that such 
a flat lens is a ‘perfect lens’, and it can be used to break the diffraction limit [8]. 
According to the traditional concepts of optics, light can be focued into a small 
spot, but the spot size (spot width) cannot be made much smaller than the wave-
length. Such a restriction comes from the wave nature of light, and is sometimes 
called ‘diffraction limit’. In 2000, Pendry studied the EM properties of a slab made 
of a LHM having εr = µr = −1, and found that such a slab has n = −1 and it not 
only can cancel the phases of propagating waves, but also can amplify the ampli-
tudes of evanescent waves. Here εr = ε/ε0 and µr = µ/µ0 are the relative permit-
tivity and relative permeability. This finding is astonishing because it implies that it 
is possible to achieve perfect imaging using such a flat lens. According to Pendry’s 
analysis, diffraction limit is mainly due to the fact that the information encoded in 
the evanescent waves of the light source is lost in the imaging process because of 
its exponential decay characteristic. However, the evanescent waves from the source 
can be amplified by the slab so they can contribute to the image. If the propagating 
and evanescent waves can be added properly at the image plane without lossing any 
information, which Pendry claimed an n = εr = µr = −1 slab in an empty space 
can do, then perfect imaging will happen. Notice that the choice of εr = µr is for 
the purpose of impedance matching so there would be no reflection and no informa-
tion can be lost, whereas n = −1 is for perfect phase cancellation of the propagating 
waves and perfect amplitude compensation of the evanescent waves.

The amplification of evanescent waves is relying on the mechanism of exciting 
the surface plasmon polaritons (SPPs). The condition εr ≈ µr ≈ −1 in fact implies 
that the effective surface plasmon-polaritons (SPP) corresponding to both the electric 

Fig. 2.4  Flat lens made of a 
slab of LHM. It can focus the 
light from a point source
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polarization resonance and the magnetization resonance have been excited efficiently 
by the evanescent fields from the source. Pendry further argued that even if the perme-
ability is nonnegative, if εr ≈ −1 is satisfied, subwavelength imaging can still occur if 
the slab thickness is much smaller than the wavelength (quasi-static condition). This 
kind of flat lens using only negative permittivity has already been fabricated and tested 
[10]. A flat lens having the ability of focusing light into a subwavelength spot no matter 
it uses perfect LHM or not is now called a ‘superlens’ [55].

The physics of surface plasmon can be understood as follows. In a metallic 
material of high conductivity such as silver or gold the conduction electrons or free 
electrons inside the material can move a long distance without being scattered. If 
we apply sinusoidally varying (harmonic) electromagnetic fields to the material, the 
free electrons would oscillate with the applied fields and move freely before being 
scattered by the phonons, disloacations, and defects, etc. However, if these electrons 
were moving close to the boundary of the metal, they would not be able to move 
outside far from the boundary and escape from the metal if they have no enough 
energy to overcome the ‘work function’. Note that inside the metal these electrons can 
move freely because the attractive forces due to the positive ions form all directions 
cancel with each other. However, once an electron move to the boundary, the positive 
ions appear only on one side (the interior side) so a net ‘restoring force’ acts on it, 
forbiding the escaping of the electron from the metal. Note that the restoring forces 
acting on these electrons work just like many springs connected with them, which 
provide a resonance mechanism for forming SPPs. In the case of LHM slab the metal 
is replaced by a metamaterial having negative permittivity and negative permeability, 
and the true plasmon waves are replaced by the effective plasmon waves caused by 
the resonances of electric polarization and magnetization resonance of the medium.

No matter how great a perfect lens sounds like, any realization of such an ideal 
lens suffers from a number of restrictions due to the materials used or the struc-
tures being chosen. The first limitation comes from loss. A real material must 
absorb a part of the light energy, this effect limits the amplification of the evanes-
cent waves, degrades the coherence of the light, and distortes the field distribution. 
All of them restrict the possibility of further reducing the spot size of the image. 
Another restriction is from the space period or lattice constant of the metamate-
rial. Such a characteristic length plays the role of cutoff length, and which implies 
that it is impossible to make an image narrower than the lattice constant [17]. In 
fact, in the early stage of perfect lens study, some researchers argued that the ide-
alest perfect lens operating at the condition of ε = µ = −1 is physically impos-
sible because the energy stored in such a lens would be infinite, or some boundary 
conditions such as the continuity condition of wave phase would not be possible to 
satisfy [16]. This kind of controversies have never stopped but all of them are not 
directly related to the practical issues concerning applications [18]. Now we know 
that in practice the not-so-perfect negative refaction and subwavelength imaging 
are indeed realizable when properly designed metamaterials are used in making 
the lens (see Fig. 2.5).

Besides the above mentioned restrictions, people also found that the origi-
nal designs of metamaterials which work well in the microwave frequency regime 
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cannot do as well in the much higher frequency regime because the original circuit 
models for deriving the effective permittivity and permeability should be modified. 
For example, the resonance effect of SRRs becomes weaker at higher frequency due 
to electron’s nonzero inertial mass, so that the desired negative permeability property 
becomes more difficult to achieve [56]. Thus for realizing negative refraction at opti-
cal or visible frequency regime some different structures must be used [57].

2.3  Photonic Crystals and Subwavelength Imaging

Negative refraction and subwavelength imaging can also be observed in photonic 
crystals (PhCs) made of nondispersive dielectric materials (see Fig. 2.6). The 
beam propagation direction inside a PhC is determined from the equal-frequency-
surface (EFS) or constant frequency curve of the PhC [19–28]. The group velocity 
of the beam is along the direction normal to the constant frequency curve.

There are two kinds of slightly different mechanisms being used to achieve 
the unusual refraction/deflection and subwavelegth imaging phenomena. The first 

Fig. 2.5  Field strengths (|E|) and images made by a LHM flat lens. a1–a3 show the case that 
the image size is within the diffraction limit, whereas b1–b3 show the case of subwavelength  
imaging. The two boundaries of the lens are parallel to the x (vertical) axis, and the horizontal  
axis is the z axis. a2 and b2 are the (normalized) field strengths at the image plane. a3 and b3 are  
the (normalized) field strengths at the YZ plane
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is the negative group index usually happening in the PhC with triangular lattice 
structures, the other is called all-angle negative refraction or canalization effect 
commonly encountered in the PhC with square lattice structures [20]. Deep sub-
wavelength imaging is more easily to be achieved by using the canalization effect 
but the image always appears at the near field zone close to the PhC surface (see 
Fig. 2.7). However, negative refraction phenomenon is more easily to be observed 
using the negative group index mechanism [21]. Interested readers can learn the 
detailed knowledge from the textbook by Joannopoulos et al. [58].

2.4  Resonance, Constraints, and Metamaterials

The first experimental realization of DNM is a metallic structure consisted of 
periodically arranged metallic wires and split-ring resonators (SRRs) [3, 4]. In 
1996, Pendry et al. [14] found that an array of thin wires behaves like an artificial 

Fig. 2.6  A Gaussian beam penertrates through an slab of photonic crystal which has a negative 
effective refractive index. a–d are the results of 4 successive times

Fig. 2.7  Subwavelength 
imaging using photonic 
crystal slab
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plasma, which yields a negative effective permittivity under the influence of an 
incident wave, if the frequency of the wave is appropriately chosen. This find-
ing opened the doors of constructing these artificial media called ‘metamaterials’ 
using carefully designed metallic structures. In 1999, these researchers further 
showed theoretically that the periodically arranged Swiss roll structures or SRR 
array provide negative effective permeability in a range of frequency [2]. In the 
following two subsections we will give simple explanation about why a wire-array 
is an effective plasma medium, and then in the next subsection we will further 
argue why an SRR array can provide negative effective permeability in a certain 
range of frequency.

A. Realization of negative permittivity
We first review briefly the concept of plasma medium. For simplicity we define 
plasma medium as the medium containing a lot number of charges that can move 
long distances without scattering. Many metals (for example, gold and silver) 
can be treated as plasma media at appropriate frequencies. The simplest model 
for describing the electromagnetic behaviors of plasma is the Drude model. 
According to this model, the free charges (electrons) are accelerated by the applied 
external (electric) field and move freely until being scattered by the defects, 
dislocations, and phonons etc. inside the medium (the metal). The scattering 
causes the relaxation of the kinetic energy of these charges, and the generation of 
heat. In Drude model, every free charge is assumed to be moving independently, 
and the energy relaxation process is described effectively by including a 
phenomenological damping force in the equation of motion.

For simplicity, we assume the applied electric field is along the x axis, and each 
charge is q. The equation of motion is written as

Here v = dx
dt

 is the velocity of the charge, −bv is the damping force, x is the dis-
placement of the charge. Under the condition of harmonic (single frequency) 
applied field, we adopt the complex representation (phasor representation) of the 
physical quantities and assume the time factor being eiω t, that is, x = x0e

iωt and 
E = E0e

iωt, we can find the solution

where Ŵ = b/m is a dissipation coefficient, corresponding to the damping force.
We now derive the relative permittivity ε(ω). The constitutive relation between 

the E and D fields is

were P is the polarization field. For the sake of simplicity, here we have dropped 
the subscript r of the relative permittivity notation. Assume that the concentration 

(2.3)m
dv

dt
+ bv = qE

(2.4)x = −
qE

m

(

1

ω2 − iŴω

)

(2.5)D = ε0E + P = ε0ε(ω)E



452 Metamaterials and Transformation Optics

of the free charge is N, we get P = Nqx, here qx is the electric dipole of a single 
charge. From (2.4) and (2.5) we find

where ωp is the plasma frequency, defined by

When Ŵ is negligible, we have ε(ω) < 0 if ω < ωp. That is, for electromagnetic 
wave with ω < ωp, the plasma medium has negative permittivity.

Now we turn to the discussion of wires array medium. For simplicity we con-
sider only the two dimensional case. We assume the wires are located at the lattice 
points of a square lattice, and the applied field is parallel to the wires (along the 
direction of the z axis). Denote the lattice constant as a, the radius of the wires 
as r, and assume the charge concentration inside the wires is N. The array is in 
fact a metallic photonic crystal (MPC), thus the electromagnetic behaviors of this 
structure can be understood from the results of its photonic band structure (PBS). 
However, in 1996, Pendry et al. found that if the wavelength of the applied field 
is much longer than the lattice constant, then an effective medium theory for 
this MPC can be constructed without referring to the PBS. Here we show how 
to derive the relative permittivity of this effective medium. Before we derive this 
result, first note the following differences between the ‘true plasma medium’ and 
the wire array structure: 1. The charges are confined inside the wires, and the 
current caused by the charge motion can only flow along the z direction, 2. The 
cross section area πr2 of each wire is much smaller than the unit cell area a2 of 
the lattice, thus the effective concentration Neff = πr2N/a2 is also much smaller 
than the true concentration N inside the wires, 3. Every wire has a non-negligible 
self-inductance because there is an azimuthal directed magnetic field around the 
wire, and this magnetic field is not appearing in the original Drude model. Pendry 
argued in [14] that the vector potential of this magnetic field provides a modifica-
tion to the charge’s canonical momentum, and if we treat the canonical momen-
tum as a kinetic momentum without vector potential, than the effective mass of the 
electron should be redefined as a function of a and r. Here we provide an alterna-
tive derivation of Pendry’s result as follows.

Consider a segment of a wire, which has length l, self-inductance L, and resist-
ance R. Apply the harmonic E field to the wire, than the potential drop along this 
segment is V = El. Suppose the current in the wire is I, than we have the circuit 
equation

(2.6)ε(ω) = 1+
P

ε0E
= 1−

ω2
p

ω(ω − iŴ)

(2.7)ωp =

√

Nq2

mε0
.

(2.8)L
dI

dt
+ RI = El.
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Simple observation indicates that the (2.8) can be cast into the same form as (2.3)

provided that we define the effective mass meff  and damping coefficient beff  as

The drift velocity v of the charges is related to the current I through I = πr2(Nqv), so

From (2.9) we find the formula of relative permittivity

where the plasma frequency ωp and dissipation coefficient Ŵ are given by

The permittivity formula in (2.12) is indeed the same form as that of the plasma 
media in (2.6). We can further calculate approximately the self-inductance 
L = �/I of the wire and rewrite the effective mass meff  and plasma frequency ωp 
using geometric parameters. To estimate the magnetic flux � around a wire, we 
ignore the contribution from neighboring wires and that inside the wire, and calcu-
late the magnetic flux through the rectangle defined by the conditions (using cylin-
drical coordinates): z = 0 to z = l and R = r to R = a

According to (2.11), this leads to

These results are the same as those obtained in [14].
In fact, from (2.8) and (2.9) the following energy relations can be derived by 

multiplying them with I and v, respectively
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Note that the magnetic energy LI2/2 is stored in the magnetic field around a wire, 
and its value is the same as Nπr2lmeff v

2/2, which is the effective kinetic energy 
of the charges inside the volume of a unit cell la2:

This equality implies that in the effective theory of wire-array medium the mag-
netic energy around the wire is identified with the kinetic energy carried by the 
massive charged particles in the corresponding Drude model (see (2.9)). This 
identification transforms the wire array structure to the effective plasma medium 
described by the equations of motion in the Drude model (see (2.3) and (2.9)).

B. Realization of negative permeability
We have shown in the previous subsection that the free moving charges inside the 
metal provide a means to realize the negative permittivity of the medium effec-
tively. However, such a mechanism is not possible for realizing negative perme-
ability because there has no magnetic monopole been found yet. One thus should 
use different method to make the effective permeability negative. From the consti-
tutive relation

which relates the B field (magnetic induction), H field (magnetic field) and M field 
(magnetization), one can imagine that if resonance effect can be used to make 
µ0M > B, then the directions of B and H become opposite to each other, and the 
desired µ(ω) < 0 result can be realized. Since magnetization M is defined as the mag-
netic dipole moment per unit volume, and a magnetic dipole is physically a current 
loop, thus negative permeability can be realized in principle by an array of resonant 
current loops. The array of split-ring resonators (SRR array) is the most studied struc-
ture for realizing the negative permeability experimentally [3, 4]. If a harmonic H field 
perpendicular to the ring plane is applied to the SRR array, alternating current can be 
induced in each ring if the frequency is properly chosen. For each ring the split gaps 
of the ring stop the currents and help to accumulate the positive and negative charges 
on the two sides of each gap, thus they provide the capacitance C, whereas the cur-
rents circulating in the ring generate magnetic field and hence provide the inductance 
L [2]. Therefore, each SRR is an LC resonator having resonance frequency ω0 = 1√

LC
. 

When the frequency ω of the applied H field approaches the resonance frequency ω0, 
the resonance of currents occurs, and the condition µ0M > B can be satisfied. This 
leads to the negative effective permeability.

We now derive the effective relative permeability µ(ω)[2]. The details may 
refer to [59]. Consider the SRR structures shown in Fig. 2.8. A number of SRRs 
are piled up in the y direction to form an SRR stack, which can be viewed as a 
solenoid. These SRR stacks are periodically arranged in the xz plane at a square 
lattice of lattice constant a. The y spacing between two successive SRRs in one 
stack is l. This array structure can be viewed as solenoids array.

(2.17)Nπr2l
meff v

2

2
=

LI2

2

(2.18)B = µ0(H+M) = µ0µ(ω)H
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Now we apply an external harmonic H field of y direction, strength H0 to this 
SRR-stacks array. According to Faraday’s Law, a current I is induced in each ring, 
thus a ring acquires a magnetic dipole moment m = Iπr2, here r is the radius of 
the ring. In a real structure, the number of rings in a stack is finite. Thus the field 
lines of the induced magnetic field which relate to the induced currents of the 
these rings ‘spill out’ from the terminals of the SRR stacks, contributing to the 
‘depolarization field’. If the wavelength of the incident H0 field is much longer 
than the lattice constant a and the y-spacing l, we can approximate the magnetic 
fields inside and outside the solenoid as two homogeneous fields Hin and Hout, 
respectively. According to Ampere’s Law, the difference of them is given by

Approximately assume that the depolarization flux is homogeneously distributed 
in the entire xz plane, and remember that the total flux caused by the induced cur-
rents is zero (because each of these magnetic field lines is closed), we get

where F = πr2/a2 is the area filling fraction of a stack in a unit cell of the xz 
plane.

From (2.19) and (2.20) we find

The magnetic induction B is defined as magnetic flux per unit area, therefore 
B = µ0H0. Besides, from (2.18) and the meaning of magnetization we have

where M is the magnetization and la2 is the volume occupied by a ring. 
Comparing (2.21) with (2.22), one can make the identification: H = Hout. That is, 

(2.19)Hin − Hout =
I

l
.

(2.20)FHin + (1− F)Hout = H0,

(2.21)Hin = H0 + (1− F)
I

l
, Hout = H0 − F

I

l
.

(2.22)H0 = H +M, M =
m

la2
= F

I

l

Fig. 2.8  Array of split-ring resonators (SRRs). a A single SRR in a unit cell. b Array of SRR 
stacks. c An SRR stack formed by several SRRs arranged along the y direction
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the magnetic field H in the effective medium is just the average magnetic field 
Hout in the ‘connected region’ outside the SRR stacks [2].

Now we calculate the magnetization M and derive the explicit expression of 
µ(ω). The self-inductance L = µ0Fa

2/l of an SRR in a chosen SRR-stack can 
be derived from the formula L = Φs/I, where Φs = πr2µ0I/l is the flux through 
the SRR. In addition to L, the SRR also has a resistance R, a capacitance C, and 
a mutual inductance M = −FL due to the depolarization fields spilled out from 
all the other SRR stacks in the array [2, 54, 59]. Under the influence of the H0 
field, the current I in the SRR satisfies (note that the charges stored in the capaci-
tance of the SRR is q =

∫

I dt)

Using the relation LI = µ0Ma2 and (2.22), (2.23) becomes

where the dissipation coefficient γ and the resonance frequency ω0 are defined as

Since the applied field is a harmonic field with frequency ω, every dynamical 
quantity acquires the same time factor eiω t. Thus from (2.18) and (2.24) we get the 
relative permeability:

This result is the relative permeability of the SRR medium. If γ is ignorable, µ(ω) 
becomes negative in the frequency range ω0 < ω <

ω0√
1−F

. Note that in this deriva-
tion we did not use the specific expression of the capacitance C [2, 59].

2.5  Indefinite Media/Hyperbolic Metamaterials 
and Hyperlens

We have shown before that negative permittivity and negative permeability can 
be realized by using periodically arranged wires and SRRs, respectively. Simple 
observation tells us that these structures do not provide isotropic permittivity 
and permeability automatically if we do not arrange the orientations of these 
inclusions properly. For example, if in the 2D wire array all the wires are paral-
lel to the z axis, than the standard effective plasma behavior will appear only 
when the electric field is also parallel to the z axis. In fact, if the wires are really 
thin enough, and we apply an E field perpendicular to them, then the structure 

(2.23)(1− F)L
dI

dt
+ RI +

q

C
= −

d

dt

(

Fa2µ0H0

)

,

(2.24)
dM

dt
+ γM + ω2

0

∫

Mdt = −F
dH

dt
,

(2.25)γ =
R

L
, ω0 =

1
√
LC

.

(2.26)µ(ω) = 1−
Fω2

ω2 − ω2
0 − iγ ω

.
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responds to the incident field just like the background medium (i.e., the empty 
space without these wires) does. Based on this consideration, it is not difficult 
to predict that the effective permittivity tensor for the array consisting of merely 
z-oriented wires has two different eigenvalues: εz = ε� and εx = εy = ε⊥, so the 
z-oriented wires array is an uniaxial anisotropic medium. In this medium ε⊥ 
is in general positive but ε‖ takes negative value if the frequency is lower than 
the effective plasma frequency (see (2.12)). When the permittivity tensor of a 
uniaxial medium gives negative determinant, this medium is called ‘indefinite 
medium’ or ‘hyperbolic medium’. Metamaterials behave like hyperbolic media 
are called hyperbolic metamaterials. A multilayer structure made of one-dimen-
sional photonic-crystal which contains one dielectric layer and one metal layer 
in one unit cell (one space period) also belongs to this category if the operating 
frequency is correctly chosen.  In this chapter we will derive the effective per-
mittivity of this structure and introduce the most important application of hyper-
bolic metamaterials: the hyperlens.

We have learned in the previous sections that a LHM has negative permittiv-
ity (ε < 0) and negative permeability (µ < 0), leading to the negative refraction 
phenomena. Here we show that indefinite media or hyperbolic metamaterials with 
ε⊥ < 0 can also bend the light beam to the ‘wrong way’ and gives an apparent 
negative refractive index referring to Snell’s law.

We refer to Fig. 2.1 again and consider TM polarized light, but now we replace 
the LHM region by an indefinite medium with ε‖ > 0 and ε⊥ < 0. Here ε‖ and ε⊥ 
are the permittivity along the directions parallel and perpendicular to the interface, 
respectively. When this TM beam penetrates through the indefinite medium, the 
horizontal components of the E and H fields do not change. The vertical compo-
nent of the D field does not change too. However, since we have ε⊥ < 0, so the 
vertical component of the E field changes sign just like that in the LHM case. We 
thus conclude that the Poynting vector S (the light beam) bends negatively. Notice 
that in this argument the key point is the sign change of the vertical component of 
the E field, and this happens only in the TM wave case (Ez = Hx = Hy = 0) and 
does not apply to the TE wave case (Hz = Ex = Ey = 0). Furthermore, we stress 
here that the phase propagation direction (i.e., the direction of the k vector) in 
general is not along the direction of the beam direction (i.e., the direction of the 
Poynting vector S), so indefinite media are not LHM.

Now we derive the effective permittivity of the multilayer structure. Suppose 
the period of the structure is along the x direction, so the interface between the 
empty space and the structure is the yz plane. Consider a TM wave (P wave) inci-
dent from the empty space, and we choose the plane of incidence to be the xy 
plane, so the H field is parallel to the z axis. Let the permittivities of the metal and 
dielectric layers to be εm and εd, and their thicknesses are am and ad, respectively, 
so the period or lattice constant is a = am + ad. To satisfy the continuity condi-
tion of the wave phase, ky must be the same in each layer. We denote the kx in the 
two layers as km and kd, and use K to represent the Bloch wave number. When the 
wavelength of the incident wave is much longer than the lattice constant, ωa/c, 
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kmam, kdad and Ka take very small values. Under this condition, starting from the 
dispersion relation of one-dimensional photonic crystals [60] 

and expand the cosine and sine terms up to second order, we get the effective dis-
persion relation

where

Now define k� = ky, k⊥ = K, ε� = �ε�, and 1/ε⊥ = �1/ε�, we get the dispersion 
relation for this anisotropic effective medium

Choosing the filling fraction of the metal layer f = am/a and frequency (remem-
ber that εm = εm(ω)) properly, we can make ε� > 0, ε⊥ = −|ε⊥| < 0, and thus 
the dispersion relation in (2.30) becomes the hyperbolic form

This dispersion relation implies that both the propagating waves with |k�| ≤ ω/c

and the evanescent waves with |k�| > ω/c in an empty space can excite the propa-
gating waves inside this indefinite medium, because for a finite ω/c, k‖ and k⊥ can 
take arbitrary large values.

We have explained in the previous sections that a slab of negative permittivity 
material such as a silver thin film behaves like a superlens, which means it can 
make a subwavelength image of a tiny light source. However, since the imaging 
mechanism of a slab lens relies on the evanescent waves, the image can appear 
only in the near field zone. Besides, the subwavelength image cannot be processed 
by conventional optical devices easily, thus a device that can make amplified image 
at the far field zone is desired. Hyperlens is indeed this kind of device to fulfill 
this requirement. A hyperlens is in fact a cylindrical device formed by curling up 
the multilayered structure of the dielectric-metal 1D photonic crystal (see Fig. 2.9). 
In a hyperlens, the ε‖, ε⊥, k‖, and k⊥ are replaced by εθ, εr, kθ, and kr, so we have 

εθ > 0, εr < 0, and the dispersion relation (2.31) becomes k2r
εθ

− k2θ
|εr | =

ω2

c2
.

(2.27)cosKa = cos kmam cos kdad −
1

2

(

kmεd

kdεm
+

kdεm

kmεd

)

sin kmam sin kdad

(2.28)
K2

�ε�
+

〈

1

ε

〉

k2y =
ω2

c2

(2.29)�ε� =
amεm + adεd

a
,

〈

1

ε

〉

=
am/εm + ad/εd

a

(2.30)
k2⊥
ε�

+
k2�
ε⊥

=
ω2

c2

(2.31)
k2⊥
ε�

−
k2�
|ε⊥|

=
ω2

c2
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A small light source close to the inner surface of the hyperlens if emitting TM 
polarized light, then its evanescent waves can be coupled into the hyperlens and 
transformed into propagating waves inside. However, unlike in the flat lens case, the 
propagating modes inside this cylindrical structure are the products of Bessel function 
Jm(kr) and Neuman function Nm(kr) with the phase factor eimθ, where m is the order 
of the Bessel/Neuman function and k = ω

c
n is the wavenumber. The azimuthal com-

ponent of the wave vector kθ = 2π
�θ

= 2π
(2πr/m)

∼ m/r reduces as the radius increases.

If the outer radius is large enough so that kθ (R) = m/R < ω/c, then the image 
would be made of propagating waves and can appear in the far field zone [5, 6].

2.6  Invisibility Cloak and Transformation Optics

Now we introduce the concept of invisibility cloak and transformation optics [11, 
12]. An invisibility cloak by definition is a shell made of carefully designed mate-
rials, and an object hidden inside as well as the shell itself would not be observed 
from outside. Light incident upon the cloak would not be scattered, and it can 
only propagate along the shell and goes back to the free space without penetrat-
ing through the cavity region enclosed by the shell. After leaving the cloak the 
light would propagate along the same direction as the original incident light, and 
no shadow will be formed (see Fig. 2.10). Since light does not penetrate into the 

Fig. 2.9  Hyperlens and 
imaging through it. (Images 
courtesy of Zhang group, UC 
Berkeley)
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cavity region, the objects hidden inside would not have any electromagnetic inter-
action with the outside world.

In optics we know that the refractive indice of media can influence the propa-
gating direction of light. If the refractive index of a medium can be made a smooth 
function of position, then in principle a carefully arranged distribution of refractive 
index can guide light around a finite cavity region just like the desired invisibility 
cloak can do. However, this guiding would never be perfect and light scattering 
caused by internal reflection would make the cloak visible.

Is this fate unavoidable? To answer this question, remember that according to 
the electromagnetic theory of light, the refraction and reflaction behaviors of light 
are in fact influenced by the relative permittivity εr = ε/ε0 and relative permea-
bility µr = µ/µ0, or equivalently by the refractive index n = √

εrµr  and relative 
impedance Zr =

√

µr

εr
. For usual optical media the magnetic response is weak 

so we can assume µr = 1 and get n = √
εr = 1

Zr
. This reduces the independ-

ent material parameters from two to one and restricts the optical behaviors of the 
medium. In fact, the interface reflection of EM wave is caused by the impedance 
change, and not by the refractive index change. Thus if both the permittivity and 
permeability can be used, then it would be possible to guide light around an object 
without internal reflection.

To realize an invisibility cloak, John Pendry et al. proposed in 2006 a physi-
cally plausible scheme based on the idea of coordinate transformation [11]. In fact, 
it is known that the form of Maxwell’s equations is invariant under a continuous 
and smooth coordinate transformation, although the expressions of the permittivity 
and permeability tensors after this transformation become anisotropic and inhomo-
geneous. That is, they are not simple constants or scalars but tensor densities [61]. 
After this early development, the same idea has been generalized to design other 
novel devices for controlling the light flows. Such kinds of researches are now cat-
egorized as ‘transformation optics’(TO) [62, 63].

Fig. 2.10  Electromagnetic 
waves propagating around 
an invisibility cloak. The 
white arrows indicate the 
direction and magnitude of 
the Poynting vectors. The 
triangle represents the object 
being hidden inside the cavity 
region
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Now we explain why coordinate transformation can tell us how to design an 
invisibility cloak or other TO devices. We first choose a ‘target virtual space’ and 
define a coordinate transformation between the original space and this virtual 
one. The electromagnetic fields, light trajectories, and the media parameters 
(permittivity and permeability) would get their new expressions, directions, and 
values in this virtual space after the coordinate transformation. We then can treat 
the transformed media parameters as the true medium parameters in the original 
space and thus the transformed trajectories become the true trajectories of light in 
this original space if filled with the transformed medium. If the original space is 
empty, and we transform the space points inside a sphere of radius b to the shell 
region between a and b (a < b) without changing the points outside the sphere, 
then a light ray originally goes straight through the sphere would become curved 
inside the shell and around the cavity r < a, and goes back to its original direction 
after leaving the shell. Thus the shell filled with the transformed medium is 
nothing but the desired invisibility cloak (see Fig. 2.11).

Now we derive the material parameters for the spherical cloak. First note that in 
the inner region r < b, the empty space has material parameters ε = µ = 1. Here 
ε and µ represent the relative permittivity and relative permeability, respectively. 
Now transform every point inside the sphere from (r, θ ,ϕ) to 

(

r′, θ ′,ϕ′) using the 
transformation:

A cavity of radius a is thus created, which corresponds the central point of the 
sphere. The shell region a < r′ < b is from the whole interior region inside the 
sphere, except the central point. The new material parameters can be calculated 
according to the formula [64] 

(2.32)r
′ =

(

b− a

b

)

r + a, θ ′ = θ , ϕ′ = ϕ

(2.33)ε′ =
JεJT

det J
, µ′ =

JµJT

det J

(a) (b) (c) 

Fig. 2.11  Invisibility cloak, the ray trajectories, and the phase of the electromagnetic waves.  
a A spherical region of empty space. b and c represent the effect of a invisibility cloak designed 
according to coordinate transformation. The curves with arrow heads are the ray trajectories, and 
the white and black colors in c represent the wave crests and wave troughs. (Images a, b: Science 
313, 1399 (2006))
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which yields

These arbitray material parameters in principle can be realized by using 
metamaterials. We have learned in the previous sections that in the long wavelength 
limit, periodic structures consisted of arrays of small electric and magnetic 
resonantors such like wires and SRRs can work like a homogeneous medium 
having certain unusual permittivity and permeability, no matter it takes positive, 
negative, close to zero, or very large values. We can replace the smooth TO devices 
by an artificial structure consisted of a large amount of ‘metamaterial elements’ and 
approximate the material parameters as continuous functions if the changes of these 
parameters from an element to its neighboring element are really small enough.

Experimental realization of a 2D cylindrical cloak was first demonstrated in 
2006 by David R. Smith’s group at Duke University [12]. They designed the 2D 
cloak for cloaking microwaves about 10 GHz, and their experiments confirmed 
that the cloak, though not perfect, can reduce the scattered wave dramatically. 
However, the parameters they used were not referring to the theoretical values 
directly from the coordinate transformation. The theoretical parameters were 
replaced by a set of reduced parameters, in which only the permeability tersor 
is varied along the radial direction, and the permittivity is a constant. A light ray 
propagating inside the shell region (now replaced by a ring region) would have 
the same trajectory as in the perfect cloak. However, reduced parameters do not 
satisfy the impedance matching conditions at the outer surface of the ring, so the 
scattered waves cannot be eliminated completely and thus the cloak is not perfect. 
In fact, designing transformation optics devices using metallic metamaterials 
with resonance property has some disadventages. First, resonance implies the 
loss. As we have mentioned before, the energy loss of the electromagnetic wave 
causes the modification of the strength and phase of the wave, and they lead to 
the degration of the device function such as the invisibility. Besides, resonance 
implies narrowband, so an invisibility cloak based on resonance mechanism can 
only work in a very narrow bandwidth, which is undesireable. Finally, it is difficult 
to fabricate metamaterials from nanostructures of resonant type, and as mentioned 
before, their resonance property are usually not good enough.

In order to avoid the above mentioned disadvantages, new designs of cloaking 
devices often use the idea of gradient index and they are built with common die-
lectric materials. One of them is the carpet cloak [65–67]. When covers this kind 
of cloak on an object lying on a table, the cloak can cancel the scattered light from 
the object completely, changing the table optically equivalent to a flat surface.

In addition to the various cloaking devices for controlling the electromagnetic 
waves, recently the similar ideas have been utilized and generalized for designing 

(2.34)εr′ = µr′ =
b

b− a

(

r′ − a

r′

)2

(2.35)εθ ′ = µθ ′ =
b

b− a
= εϕ′ = µϕ′
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devices for cloaking other kinds of waves. To build an acoustic cloak, we have to 
fabricate the acoustic metamaterials having the required effective mass density and 
bulk modulus or Lame’s constants. Such kind of cloaks have already been built 
and tested [38, 39]. People have also designed a cylindrical shaped water wave 
cloak for cloaking water waves by varying the water depth gradually along the 
radial direction around the cavity region [68]. This kind of cloaks may someday 
be used for protecting coastlines from tsunamis by making the land invisible to 
the incoming waves. Quantum wave cloaks or matter wave cloaks have also been 
considered, which guides the propagation of matter waves around a cloaked 
region by designing the effective mass and potential functions in the Schrodinger 
equation [40, 41]. A very interesting novel device called time cloak has also been 
proposed recently [69]. The fundamental concept of the previously mentioned 
cloaking devices is this: creating a hole in the space, and guide the waves around 
the hole by using properly designed artificial materials. The basic idea of time 
cloak is instead creating a gap in the time, and cheat the prob wave, making it 
unable to detect the event happening in the time gap. This description also explains 
why such a device is also called ‘history editor’ [70]. Reader may refer to the 
original papers and review articles for understanding these new developments [71].

2.7  Summary

In this chapter we have reviewed some topics in metamaterials research, which 
include: negative refraction, left-handed media, perfect lens or superlens and their 
relation with subwavelength imaging, the energy density problem, wire array and 
negative permittivity, SRR array and negative permeability, indefinite media or 
hyperbolic metamaterials and hyperlens, invisibility cloak and other transforma-
tion optics devices.

Metamaterials is in fact not materials but is a new way of thinking. With this new 
way of thinking people try every possible method to design structures for applica-
tion and use them as materials. The most used mechanisms in designing metama-
terials include resonance (SRR array), constraints for current flows (wire array), 
and high anisotropies (hyperbolic metamaterials). The effective media theories are 
useful but only accurate enough at the long wavelength limit. If the wavelength is 
not long enough we must treat metamaterials as what they really are, for example, 
 photonic crystals consisting of periodic arranged metallic wires and split-rings. 
In that situation we must know the band structures or dispersion relations before 
we can make any predictions about the wave propagation properties inside these 
structures. Another very important issue is how to design broadband metamaterial 
devices which can work in a wide rage of frequency. We are not able to discuss all 
the topics in this research area in only one section because it covers phenomena 
of too wide range and is evolving too fast. However, readers may find the materi-
als provided in this chapter are essential and useful which can help them to pass 
through the main obstacles of understanding metamaterials.
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