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    Chapter 12   
 Intravital Microscopy for Molecular 
Imaging in Cancer Research 

             Hongmei     Yu     and     Sanjiv     Sam     Gambhir    

    Abstract     Molecular imaging is an important tool in life sciences research and for 
clinical diagnosis and treatment. Among numerous imaging modalities, intravital 
microscopy (IVM) provides the best imaging spatial resolution in vivo and allows 
visualization of cellular and subcellular structures and functions. Because of its 
high resolution and the large number of available imaging agents, IVM has been 
used increasingly for the study of in vivo processes in many different fi elds. The 
application of IVM in cancer research and cancer treatment response assessment 
has been particularly fruitful. These IVM studies have disclosed that the cellular 
and subcellular dynamics during tumor progression and drug treatment in vivo are 
very different from those under  in vitro  conditions. Since the fi ndings from IVM 
studies are obtained directly from intact living organisms, they may provide much 
more relevant information helpful to drug discovery and evaluation in clinics. In 
this chapter, we will briefl y introduce the concepts of molecular imaging and the 
unique features of IVM. We will then highlight the most current IVM research in 
cancer biology and cancer drug response at the tissue, cellular and subcellular 
levels. We will end this chapter by outlining the future directions of IVM research.  

  Keywords     Intravital imaging   •   Molecular imaging   •   Cancer   •   Drug delivery   •   Drug 
response   •   Imaging agents   •   Tumor microenvironment   •   Tumor stroma   •   Tumor 
circulation   •   Hypoxia   •   Tumor PO 2    •   Tumor pH   •   Tumor extracellular matrix   • 
  Tumor cell heterogeneity   •   Cell tracking  
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    18 F-FDG    Fluorodeoxyglucose   
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  CCL1    Chemokine (C-C motif) ligand 1   
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  CT    Computed tomography   
  DEVD    Aspartic acid-glutamic acid-valine-aspartic acid   
  ECM    Extracellular matrix   
  FAD    Flavin adenine dinucleotide   
  FCS    Fluorescence Correlation Spectroscopy   
  FLIM    Fluorescence-lifetime imaging microscopy   
  FRAP    Fluorescence recovery after photobleaching   
  FRET    Förster resonance energy transfer   
  GFP    Green fl uorescent protein   
  IR/NIR    Infrared/ Near-infrared   
  IVM    Intravital microscopy   
  mKO2    Monomeric Kusabira-Orange 2   
  MMP    Metalloproteinase   
  MRI    Magnetic resonance imaging   
  NADH    Nicotinamide adenine dinucleotide   
  OFDI    Optical frequency domain imaging   
  PARP-1    Poly(ADP-ribose) polymerase-1   
  PARPi    Poly(ADP-ribose) polymerase-1 inhibitor   
  PET    Positron emission tomography   
  RFP    Red fl uorescent protein   
  ROCK    Rho-associated protein kinase   
  scVEGF    Single-chain vascular endothelial growth factor   
  SERS    Surface enhanced Raman scattering   
  SHG    Second harmonic generation   
  SNR    Signal-to-noise ratio   
  SPECT    Single-photon emission computed tomography   
  TGF-β    Transforming growth factor beta   
  VEGF    Vascular endothelial growth factor   
  YFP    Yellow fl uorescent protein   

12.1           Introduction to Molecular Imaging 

12.1.1     Defi nition 

 Modern molecular imaging is defi ned as the noninvasive, real-time visualization of 
biochemical events at the tissue, cellular and molecular level in living organisms 
(James and Gambhir  2012 ). This makes molecular imaging fundamentally different 
from traditional clinical imaging in which mostly anatomic information is obtained. 
The rich information from modern molecular imaging is greatly improving the early 
detection, treatment selection, treatment management, and prognostication of many 
diseases. These achievements are mainly attributed to the rapid advancement of the 
two essential components of modern molecular imaging - imaging modalities and 
imaging agents.  

H. Yu and S.S. Gambhir



235

12.1.2     Molecular Imaging Instrumentation 

 There are many imaging modalities. The classical ones include PET, SPECT, 
MRI, CT, ultrasound and optical imaging modalities. Many are often used in both 
clinical and preclinical settings. Other novel imaging modalities include fl uores-
cence optical microscopy, bioluminescence optical imaging, photoacoustic imag-
ing, and Raman spectroscopy. This latter group is used primarily for preclinical 
studies at the current time. Each of the above imaging modalities has its own 
strengths and limitations in terms of imaging depth, sensitivity, costs, and spatial 
and temporal resolution (James and Gambhir  2012 ). These properties largely 
determine the specifi c applications of each modality. For instance, intravital 
microscopy (IVM) gives the highest spatial resolution (1–10 μm or even sub-
micrometer) and great fl exibility for multiplexed imaging (monitoring multiple 
events simultaneously). The two properties are especially desired in studying cel-
lular and subcellular events in living subjects. In the case of cancer, there exist 
large cellular and subcellular heterogeneities; each tumor and tumor cell can have 
very different pathological characteristics, activities and drug responses. 
Characterization of these heterogeneous elements and the underlying molecular 
mechanisms in vivo is the key to understanding the behavior of various cancers 
and designing effective treatments. These pressing needs demand high resolution 
imaging systems, such as IVM. In Part 2, we will discuss the current status of IVM 
in detail.  

12.1.3     Molecular Imaging Agents 

 Molecular imaging agents (contrast agents or probes) are special classes of mole-
cules and particles which bind or otherwise interact with their biological targets and 
enable non-invasive visualization of the targeted events. Every imaging agent needs 
to have suffi cient specifi city, sensitivity, and optimal pharmacokinetic properties 
for a specifi ed in vivo imaging application. In order to comply with these require-
ments, these agents are designed to have at least two functional groups: one for the 
specifi c binding or reacting with the targets (e.g., small molecules, peptides, aptam-
ers, antibodies or antibody fragments) and the other for providing signal(s) for its 
detection (e.g., radioisotopes, fl uorophores, optical absorbers, inelastic light scat-
tering materials). These imaging agents can be classifi ed as non-targeted and tar-
geted imaging agents (Fig.  12.1 ). Non-targeted imaging agents, such as fl uorescent 
beads or particles, emit signal continuously independent of their binding states 
(Fig.  12.1a ). The specifi city of these agents is largely determined by their preferen-
tial accumulation into specifi c tissues. Targeted agents are designed to specifi cally 
bind to or interact with their targets. The targeting mechanism can involve specifi c 
antibodies for antigens, substrates for enzymes, ligands, agonists or antagonists for 
receptors, etc. (Fig.  12.1b ) In particular, smart imaging agents can activate or switch 
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signals exclusively in the presence of their intended  target , which minimizes back-
ground signals and increases sensitivity (Fig.  12.1c ). Reporter genes can be used to 
measure the location and levels of expression of specifi c genes of interest 
(Fig.  12.1d ). Therefore, targeted imaging agents have increased specifi city. Lastly, 
multimodality imaging agents are under rapid development (Fig.  12.1e ). These 
agents contain in their backbone two or more of radioisotopes, fl uorescent mole-
cules, or nanoparticles that enable simultaneous PET, MRI, CT and/or optical 
imaging. Thus far, there are approximately 1,170 agents listed in the NCBI 
Molecular Imaging and Contrast Agents Database (MICAD). In this database, 
41 % are PET imaging agents, 30 % are PET/CT imaging agents, 12 % are optical 
imaging agents, 9 % are MRI imaging agents, 3 % are multimodality imaging 
agents, 2 % are ultrasound imaging agents, and 1 % are x-ray/CT imaging agents. 
This variety of imaging agents makes it possible to visualize multiple biological 
targets and processes  in vivo .

a b

d e

c

  Fig. 12.1    Major types of molecular imaging agents ( a ) Non-targeted imaging agents, such as fl uo-
rescent dyes, nanoparticles ( b ) Targeted imaging agents, such as fl uorescent molecule conjugated 
antibodies; ( c ) smart imaging agents, such as fl uorescence resonance energy transfer ( FRET ) cas-
pase sensitive imaging agent. This caspase imaging agent is constructed by linking the cyan fl uo-
rescent protein ( CFP ) and yellow fl uorescent protein ( YFP ) with a caspase-specifi c substrate 
( DEVD ). Cleavage of DEVD by activated caspases results in the loss of fl uorescence resonance 
energy transfer from CFP to YFP, thus reduced FRET signal. ( d ) Reporter genes, such as fusion 
reporter genes ( top ) and IRES-mediated bi-cistronic reporter genes ( bottom ). The fusion gene 
produces one single transcript and one polypeptide, whereas IRES-mediated bi-cistronic reporter 
gene produces one single transcript but two different polypeptides. ( e ) Multimodality imaging 
agents, such as a nanoparticle with an iron oxide core, a polymeric coating, and antibody and fl uo-
rescent dye conjugates for targeted MRI and optical imaging       
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12.2         Basics of Intravital Microscopy (IVM) 

 Intravital Microscopy (IVM) is a unique molecular imaging modality that enables 
live animal imaging at microscopic spatial resolution. In this section, we discuss 
why IVM is such a unique modality in molecular imaging, and the requirements for 
conducting IVM work. 

12.2.1     Benefi ts of IVM in Molecular Imaging 

 The key strength of IVM over other modalities is its high spatial resolution. 
Imaging resolution critically affects early detection, diagnosis, and therapy moni-
toring. However, most molecular imaging modalities, such as CT, MRI, PET, 
SPECT and ultrasound, provide images with limited resolution (>1.0 mm). In 
contrast, IVM provides a spatial resolution of 1–10 μm which is critically required 
to resolve cellular and subcellular structures. Another key feature of IVM is that 
IVM studies focus on  in vivo  processes, which can sometimes be readily trans-
lated into the clinic. The other major advantage of IVM is the diversity of avail-
able imaging agents, which are mainly fl uorescence imaging agents. This means 
that many cellular and subcellular processes and their molecular mechanisms can 
be studied  in vivo  with IVM. These benefi ts allow us to study critical biological 
questions, in a way that was previously impossible, to understand the develop-
ment of many diseases. For example, in oncology, we can study the spatial and 
temporal relation between different tumor cells and stromal cells, their dynamic 
interactions, and the response of tumor cells to certain treatments. As much cur-
rent cancer research efforts focus on cellular and subcellular structures and func-
tions, IVM work can serve as an important tool for studying these processes 
within the context of the entire intact microenvironment. Therefore, IVM is a 
unique and essential molecular imaging modality. In summary, the key strengths 
of IVM are:

    1.    Relatively high spatial resolution (1–10 μm)   
   2.    A wide array of imaging agents   
   3.    Multiplexed imaging capability    

12.2.2       IVM Instrumentation 

 Using appropriate IVM instrumentation, imaging techniques, and agents are critical 
for successful IVM studies (Fig.  12.2 ). IVM instrumentation can include linear 
(e.g., single-photon confocal) and nonlinear microscopies (e.g., two-photon and 
other multiphoton systems), coherent anti-stokes raman scattering (CARS), fl uores-
cence lifetime imaging microscopy (FLIM), optical frequency domain imaging 
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  Fig. 12.2    Typical workfl ow for IVM imaging:  Step 1 , set up imaging stations, such as two photon, 
and confocal microscopes with the appropriate objectives, light guides, heating pat and anesthesia 
system.  Step 2 , prepare animals for IVM imaging with the dorsal skin-fold window chamber model 
( left ), skin fl aps ( middle ), and ear model ( right ). In the dorsal skin-fold window chamber model 
and the ear model, special metal or glass supports are used to position the window chamber and the 
ear.  Step 3 , inject imaging agents into animals (e.g., intravenously, intradermally).  Step 4 , acquire 
images with the control software. An image acquired through a dorsal skin-fold window chamber 
with an IVM100 confocal system shows that RGD-Single walled nano-tubes bind to tumor blood 
vasculature (scale bar, 50 μm) ( bottom left ) (Smith et al.  2013 ) (Copyright 2013 Elsevier). The 
image acquired from an exposed mammary tumor with an IVM100 confocal system shows tumor 
angiogenesis (scale bar, 500 μm) ( bottom middle ). The image acquired through ears with an 
IVM100 confocal system shows RGD-Qdots bind to SKOV-3 tumor blood vessels (scale bar, 
50 μm) ( bottom right ) (Smith et al.  2010 ) (Reprinted by permission from John Wiley & Sons)       
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(OFDI), etc. Among these, confocal microscopy and two-photon microscopy are 
the most commonly used IVM instrumentation types. Both systems enable imaging 
of cellular and subcellular events in living systems, but imaging principles and sys-
tem setups are different between the two.

   Two-photon systems (2P) offer many benefi ts for  in vivo  imaging, including: 
(1) relatively deep tissue imaging due to decreased tissue absorption of longer 
wavelength light; and (2) less out-of-focus light due to the reduced two-photon 
excitation outside of the focal volume. 2P often requires objectives with high 
numerical aperture (NA) and high laser power to collect suffi cient signal and 
obtain high Z-resolution. In practice, objectives with high NA have smaller 
working distances, which make imaging beyond 300 μm hard to achieve. 
Additionally, a high powered IR laser can overheat tissue and also saturate the 
detectors; consequently, infrared light blockers are often installed to protect sys-
tems from IR damage. This poses a signifi cant problem considering the great 
interest and rapid progress in developing infrared and near infrared (IR/NIR) 
fl uorophores for  in vivo  imaging. Compared with the 2P system, 1P systems 
offer comparable or better spatial resolutions but decreased imaging depth. 
Additional benefi ts with 1P are that there are many well- characterized imaging 
agents, options for lasers, objectives and built-in functionalities (Förster reso-
nance energy transfer FRET, Fluorescence recovery after photobleaching 
FRAP). Therefore, the confocal microscope is a good choice for imaging thin 
tissues. The major differences between confocal and 2P systems are listed in 
Table  12.1 .

   Table 12.1    Comparison of one-photon confocal and two-photon systems   

 One-photon confocal  Two-photon 

 Removal of 
out-of-focus light 

 Pin-hole-based  Simultaneous absorption of two 
photons 

 Light source  Gas laser, UV and visible  Solid state laser 
 Continuous laser  Pulsed laser (e.g., Ti:S resonator) 

 Excitation light and 
power 

 Fixed or tunable wavelength 
(405, 488, 648 nm, 0.01–0.1 W) 

 Tunable wavelength (690–1,200 nm, 
0.4–2.5 W) 

 Detection mode  Photon multiplier tube (PMT) or 
CCD 

 PMT 

 Photo-toxicity, 
photo-bleaching 

 High  Low 

 Imaging depth  ~100 μm  300–600 μm 
 Spatial resolution  Good  Good 
 Temporal resolution  Conventional: ~4 frames/s (fps)  Conventional: 4–30 fps 

 Resonant Scan: 30 fps  Similar scanning techniques as in 
confocal are under development  Swept fi led: 100–1,000 fps 

 Spinning disk: 2,000 fps 
 Cost  $50,000–$100,000  $100,000–$250,000 
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12.2.3        IVM Imaging Techniques 

 Using the appropriate imaging technique is another key for successful IVM studies 
(Fig.  12.2 ). IVM requires the excitation and emission lights to be delivered and col-
lected in a narrow optical path, which is very different from other whole body imag-
ing modalities such as PET, CT and MRI. Furthermore, motions from heart-beat 
and respiration can have deleterious effects on high resolution IVM imaging. 
Therefore, tissues/organs to be imaged with IVM need to be effectively prepared to: 
(1) allow access of the optical components; (2) minimize motion artifacts; and (3) 
minimize perturbation of organ functions. To achieve these goals, three types of tis-
sue preparations have been developed: window chambers, exposed tissue prepara-
tions, and in situ preparations (Fig.  12.2 ). In Table  12.2 , we summarize these 
techniques and compare their strengths and limitations. For additional technique 
details, please refer to the review in (Jain et al.  2011 ) and other chapters (IVM: 
Principles and Technology).

12.2.4        IVM Imaging Agents 

 The third key requirement for IVM studies is the imaging agent (Figs.  12.1  and  12.2 ). 
In IVM studies, imaging agents critically help to increase the optical contrast or 
signal-to-noise ratio (SNR): the difference in intensity (or other measures) between 
the objects of interest and the adjacent background. Without suffi cient optical con-
trast or SNR, it is diffi cult to obtain high resolution images, particularly under  in 
vivo  conditions where many endogenous molecules can give strong auto- fl uorescence 
background (e.g., nicotinamide adenine dinucleotide NADH, fl avin adenine dinu-
cleotide FAD, collagen). Some endogenous contrast molecules can be used for IVM 
work. For examples, collagen produces a unique second harmonic generation (SHG) 
signal; lipids generate strong Raman signal, etc. But these applications are limited. 
For most applications, exogenous contrast agents are needed in order to image many 
different cell populations, cellular, and subcellular components. For IVM work, 
exogenous contrast agents can be either non-targeted or targeted optical imaging 
agents (Fig.  12.1 ). The targeted exogenous IVM imaging agents usually have one 
fl uorescent functional component and another functional component for specifi c 
interaction with the target(s) of interest. Both functional components help to obtain 
high optical contrast. With higher molar extinction coeffi cients and quantum yields, 
the fl uorescent components provide much higher fl uorescence signal than the tissue 
autofl uorescence background. (Molar extinction coeffi cient is a measurement of 
how strongly an imaging agent absorbs light at a given wavelength. Fluorescence 
quantum yield is the ratio of photons absorbed to photons emitted through fl uores-
cence). Quantum dots, in particular, have extinction coeffi cients 10–50 times larger 
than fl uorescent dyes and thus generate very high optical contrast for IVM work. IR/
NIR fl uorescent molecules (600–1,000 nm) are also very useful as the absorption 
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and autofl uorescence of endogenous biomolecules in the UV/Vis region are high 
(Weissleder and Ntziachristos  2003 ). IR/NIR fl uorescent molecules are less prone 
to interfering absorption and fl uorescence from tissues, have reduced scattering, and 
enable enhanced tissue penetration. These properties can greatly help to overcome 
some limitations of IVM. However there are relatively few NIR fl uorescent agents 
currently available. Besides phthalocyanines, cyanine and squaraine dyes (Escobedo 
et al.  2010 ), there are only a few NIR fl uorescent proteins with bacterial phyto-
chrome-based NIR fl uorescent proteins being only recently reported (Filonov et al. 
 2011 ). Additional functional components for targeting can be antibodies or anti-
body fragments, peptides or molecular substrates. These groups enable the imaging 
agents to preferentially localize to their targets rather than the background and 
therefore enhance the contrast. Other functional units (e.g., polyethylene glycol) 
that increase the circulation half-life and uptake of the agents can further improve 
the imaging contrast. 

 Many exogenous IVM imaging agents are available for high contrast IVM imag-
ing of specifi c tissues, cellular, and subcellular events. New probes are continuously 
being developed. It is expected that IVM studies will be greatly empowered by 
future probes with: (1) IR and NIR spectrum; (2) photo-conversion capability; (3) 
smart detection; (4) self-amplifi cation; (5) multimodality imaging and clinical 
translation potential. In the next sections, we will discuss specifi c applications of 
these IVM tools in cancer research.   

12.3     IVM Applications 

 IVM has been applied in many research areas, including immunology, developmen-
tal biology, neuroscience, and cancer biology. These IVM studies have greatly 
improved our understanding of various human diseases and have helped build the 
IVM toolbox. In subsequent discussions, we will focus on IVM studies in the cancer 
fi eld. We will highlight some novel imaging agents and techniques being developed, 
and elaborate on how they are applied in studying cancer biology and cancer drug 
response at the tissue level and at the cellular and subcellular levels. 

12.3.1     Imaging Tumors at the Tissue Level 

 Tumors are abnormal organs with multiple cell populations co-evolving with their 
microenvironment (Hanahan and Weinberg  2011 ; Egeblad et al.  2010 ). This notion 
highlights the complicated composition, organization and development of many 
solid tumors. Indeed, tumors often have multiple tumor cell subpopulations and 
non-tumor stromal cell types, non-cellular components (e.g., soluble growth fac-
tors, cytokines; extracellular matrix ECM), and functional units (blood vessels and 
lymphatics). These components interact with each other, and together they create a 
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tumor microenvironment of complicated circulatory systems, pH and oxygen pro-
fi les, ECM structure and other chemo-mechanical factors. Mapping and character-
izing these factors is the fi rst step in understanding the roles of the tumor 
microenvironment in tumor development and treatment response. 

12.3.1.1     Circulatory System 

 Solid tumors often have abnormal circulation and this abnormal circulation is criti-
cal to tumor hypoxia, acidosis, high interstitial pressure, lymphangiogenesis, tumor 
progression and metastasis. IVM has become a major tool for high resolution analy-
sis of the distribution, structure and functions of tumor circulation. Common imag-
ing agents used for these assays are fl uorescently labeled macromolecules (e.g., 
IgG, albumin, dextran, and fl uorescent beads and polymers). These imaging agents 
are either intravenously injected to analyze the blood vessel functions or subcutane-
ously (or intradermally) injected to image the lymphatic functions (Padera et al. 
 2002 ; Hoshida et al.  2006 ; Isaka et al.  2004 ). For example, in IVM tail models 
(Padera et al.  2002 ), ear models (Hoshida et al.  2006 ), skinfold window chamber 
models (Isaka et al.  2004 ), it has been clearly shown that tumor vasculatures are 
tortuous and rich in fenestrations, vesicles and vesico-vacuolar channels. These 
tumor vessels lack the normal basement membrane and perivascular coverage. The 
inter-endothelial junctions are loose (100 nm–2 μm) whereas the leukocyte- 
endothelial interactions are strong. Therefore most tumor vessels are highly perme-
able (Fukumura et al.  2010 ). Similarly, tumor lymphatic vessels are often collapsed 
in the center of tumors but enlarged at the tumor periphery. This leads to reduced 
clearance of excess interstitial fl uid from tumors (Padera et al.  2002 ; Leu et al. 
 2000 ). The defects in blood vessels and lymph systems together contribute to the 
high interstitial pressure, diffusion-dominant transport, and increased tumor lym-
phatic metastasis (Hoshida et al.  2006 ; Al-Rawi and Jiang  2011 ). 

 In the above work, fl uorescently labeled macromolecules and particles with dif-
ferent sizes are particularly useful. In particular, dextran with size ranging from 2.36 
to 27 nm, and fl uorescent microspheres with sizes ranging from 20 nm to 5 μm, have 
been quite convenient to pinpoint the pore cut-off size in tumor vessels. Additionally, 
these imaging agents allow for the simulation of macromolecule transport in the 
tumor interstitial space. Combining IVM with FRAP and Fluorescence Correlation 
Spectroscopy (FCS) techniques allows for the quantifi cation of the intratumoral dif-
fusion, convection, and binding (Jain et al.  2011 ). These studies have assisted the 
rational design and selection of effective anti-tumor drugs based on their size, shape, 
charge and the diffusion distance in tumors. Besides these “inert” imaging agents, 
novel targeted imaging agents have been developed, such as αvβ3 integrin targeted 
imaging agents (Snoeks et al.  2010 ), VivoTag-680 conjugated αvβ3 integrin antago-
nist imaging agent (Kossodo et al.  2010 ), and Cy5.5 conjugated scVEGF (single- 
chain vascular endothelial growth factor) imaging agent (Backer et al.  2007 ). These 
novel imaging agents can provide further opportunities to image and study specifi c 
molecular events in tumor angiogenesis.  

12 Intravital Microscopy for Molecular Imaging in Cancer Research



244

12.3.1.2     Hypoxia and pH 

 Many solid tumors have a hypoxic and acidic tumor microenvironment. Tumor 
hypoxia and acidosis can cause a landscape change in tumor genomics, proteomics, 
metabolic and signaling networks, and can also promote tumor invasion, metastasis 
and drug resistance (Parks et al.  2013 ; Harris  2002 ; Wilson and Hay  2011 ). It has 
been postulated that the loss of balance between tumor growth and poor oxygen 
delivery is the cause of tumor hypoxia and acidosis. This idea is supported by the 
facts that about 70 % of human cancers have a high uptake of  18 F-FDG in clinical 
PET imaging (Parks et al.  2013 ) and that tumors have decreased blood and oxygen 
supply (Vaupel et al.  1989 ). However PET imaging and electrode based measure-
ments do not have suffi cient resolution for spatial correlation between the two. In 
order to fully understand the relation between tumor blood and oxygen delivery, and 
tumor hypoxia and acidosis, high resolution mapping of the spatial and temporal 
relationship of tumor pH, partial pressure of oxygen (PO 2 ) and blood vessels is 
needed. IVM, together with other molecular imaging modalities, such as NMR, pro-
vides a fresh view of the causes of and relation between the changes in tumor PO 2 , 
pH, blood supply and metabolism. In such IVM studies, the PO 2  profi les in tumors 
are derived from phosphorescence quenching imaging of oxygen sensitive porphy-
rine and the pH profi les are generated from fl uorescence ratiometric imaging of pH 
sensitive seminaphthorhodafl uors (SNARFs) (Martin and Jain  1994 ; Helmlinger 
et al.  1997 ; Dellian et al.  1996 ). It has been found that the pH and PO 2  profi les in 
tumors are highly heterogeneous: hypoxic areas co-exist with oxygenated areas; 
acidic regions co-exist with relatively basic regions; highly glycolytic cancer cells 
(lower pH) can locate in oxygen-rich environments. Importantly, the pH and PO 2  
profi les in a tumor do not necessarily correlate with each other or blood supply; both 
pH and PO 2  can independently control VEGF expression in tumors (Fukumura et al. 
 2001 ). These early imaging-based results have been confi rmed and explained by 
recent biochemical analysis of tumor tissue: indeed, oncogene activation alone can 
cause tumor glycolysis and acidosis (Elstrom et al.  2004 ); and hypoxia can increase 
acidosis through hypoxia-inducible factor (HIF)-dependent pH-regulating systems 
(Wilson and Hay  2011 ). Furthermore, imaging mixed tumor populations expressing 
wild type HIF1α and HIF1α−/− mutant through a skinfold window chamber has 
shown that HIF1α−/− cells remain alive at regions distal to blood vessels (Brown 
et al.  2001 ). This stimulating result suggests HIF1α is necessary for some tumor cells 
to migrate but not to survive, which echoes recent research on the multiple functions 
of HIF1α in tumor pathology. Interestingly, recent IVM studies have also shown that 
the acidic peritumoral region is associated with the up- regulation of glucose trans-
porter-1 (GLu-1) and this acidic extracellular pH is necessary for tumor cell migra-
tion and invasion (Estrella et al.  2013 ). It is not clear if HIF1α is involved in GLu-1 
over-expression in this case. It will be very interesting to conduct imaging correlation 
work and mechanistic studies to see if these observations are related. These examples 
highlight the contributions of IVM to the research of tumor hypoxia and acidosis. 

 Specialized imaging agents are critical to the above IVM work. Accurate quanti-
fi cation of PO 2  and pH  in vivo  is often diffi cult due to variability within tissues, 
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cells, and the distribution and photo-bleaching effects of imaging agents. Because 
of these issues, great effort has been put into developing better imaging agents in 
recent years. Among those, ratiometric imaging agents, which include a reference 
dye or use emission wavelength shifts, allow better estimation of PO 2  and pH in liv-
ing subjects. For ratiometric imaging of oxygen, oxygen-sensitive fl uorescent 
agents (e.g., Phosphor oxyphor G2, iridium complex BTP), or bioreductive fl uores-
cent agents using O 2  as a substrate (e.g., nitroimidazole and indolequinone based 
imaging agents), are linked with oxygen-insensitive reference fl uorophores (e.g., 
NIR dyes Cy) (Apte et al.  2011 ). For ratiometric imaging of pH, small molecule- 
based imaging agents which can shift their emission spectrum under specifi c pH are 
commonly used. These imaging agents include fl uorescein based imaging agents 
(e.g., BCECF), benzoxanthene dyes (e.g., SNARFs), BODIPY and cyanine-based 
pH indicators (Han and Burgess  2010 ). Conjugation of these pH sensitive molecules 
with nanoparticles, peptides and proteins, has shown improved signal, sensitivity, 
pharmacokinetics and tissue specifi city. Furthermore, targeted molecular imaging 
agents have also been developed as the molecular mediators in hypoxia and acidosis 
are identifi ed. Examples include HypoxiSense 680 [PerkinElmer] and fl uorescence 
antibody targeting carbonic anhydrase IX (Bao et al.  2012 ), peptides with the 
oxygen- dependent degradation domain of HIF-1 α (Kuchimaru et al.  2010 ). These 
targeted imaging agents can help to dissect the molecular networks involved in 
tumor hypoxia and will likely eventually impact strategies for cancer diagnosis and 
therapy. 

 In summary, IVM studies have been able to provide high resolution mapping of 
tumor PO 2  and pH  in vivo . This imaging based research has demonstrated that tumor 
hypoxia and acidosis are spatially and temporally heterogeneous and are controlled 
by interrelated regulation networks.  

12.3.1.3     Extracellular Matrix Composition and Remodeling 

 The extracellular matrix (ECM) is an important component of the tumor microenvi-
ronment. Tumor cells and stromal cells can deposit, degrade and dynamically 
remodel ECM at different tumor development stages. The tumor ECM, in turn, 
regulates a broad range of tumor cell activities from promoting tumor cell growth to 
building up metastatic foci. These roles of tumor ECM are closely related to their 
biochemical properties, and biophysical properties (Yu et al.  2011 ). IVM studies 
have greatly helped the characterization of ECM composition, structure and 
dynamic process and the understanding of ECM functions in tumor development. 

 IVM has been widely used to characterize type I collagen (Col I) in many tumor 
models due to the unique and robust SHG signals associated with Col I (Williams 
et al.  2005 ). These SHG signals arise from the highly noncentrosymmetric triple- 
helix structure of Col I. By combing Col I SHG and cell labeling techniques, it has 
been found that tumors have increased collagen density; the changes of stiffness, 
distribution and orientation of Col I are often associated with tumor progression (Yu 
et al.  2011 ; Provenzano et al.  2008 ; Provenzano et al.  2006 ; Levental et al.  2009 ). In 
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particular, increased Col I density promotes mammary tumor initiation and progres-
sion. The reorganized Col I at the tumor-stromal interface facilitates local invasion. 
Most interestingly, increased collagen crosslinking and stiffening can force tumor 
malignant transformation (Provenzano et al.  2008 ; Provenzano et al.  2006 ; Levental 
et al.  2009 ). On the other hand, IVM at the single cell level has shown that both 
fi broblasts and macrophages can interact with and remodel collagen. Activated 
fi broblast can deposit Col I. Migrating fi broblasts can drag, push, and degrade col-
lagen fi bers in a β1 integrin and matrix metalloproteinase (MMPs) dependent man-
ner (Perentes et al.  2009 ). Macrophages can also degrade collagen intra-cellularly or 
extra-cellularly (via MMPs). Thus, remodeled Col I, tumor cells and tumor stromal 
cells form an interactive network promoting tumor progression. Besides collagen, 
there are many other important ECM components, such as fi bronectin, tenascin, 
decorin, fi bromodulin, hyaluronic acid, SPARC, lumican, and osteopontin. The pre-
cise roles of these proteins in tumor progression are not yet clear (Frantz et al.  2010 ). 
Imaging these ECM components  in vivo  requires novel imaging agents for specifi c 
ECM proteins and specifi c function of interest. These imaging agents are still very 
limited and require further development and validation. For example, fi bronectin 
FRET imaging agents have been used in cell culture work but not yet  in vivo  (Smith 
et al.  2007 ). Quantum dots-conjugated hyaluronic acid has been tried for  in vivo  real-
time imaging but the imaging properties are to be improved (Bhang et al.  2009 ). It is 
expected that many new imaging agents for these ECM components will be devel-
oped in the future and imaging these ECM proteins  in vivo  will likely be possible. 

 Secreted proteases and enzymes play key roles in ECM remodeling and tumor 
progression. MMPs, cathepsins, urokinase-type plasminogen activator (uPA) are 
some of the well known proteases involved in tumor development. Because of their 
important roles, there has been great interest in developing optical imaging agents 
to visualize the distribution and activity of these proteases in tumors. Activity- 
based imaging agents are the most often used to detect these proteases as they give 
high signal-to-background ratio  in vivo  and enable differentiation of active and 
inactive proteases (Blum et al.  2005 ). For example, a fusion reporter of a collagen 
binding peptide and Renilla luciferase has been conjugated with a quencher dabcyl 
and MMP-2/9 substrate peptide to map MMP2/9 activity in tumors  in vivo  (Xia 
et al.  2011 ). The absorption spectrum of dabcyl overlaps with the emission spec-
trum of Renilla luciferase such that removing the quenchers by MMP-2 restores the 
bioluminescent emission. A similar imaging agent composed of Cy5.5, MMP sub-
strate, a BHQ-3 fl uorescence quencher and an RGD targeting sequence has been 
shown to have great tumor specifi city and stability  in vivo  (Zhu et al.  2011 ). 
Additionally, nanoparticles are also used as quenchers to generate activatable fl uo-
rescent imaging agents for MMPs (Lee et al.  2009 ). Activity-based imaging agents 
are also available for the cathepsin families (Mahmood and Weissleder  2003 ), 
thrombin (Pinto and Schanze  2004 ), etc. Although these imaging agents can give 
high tumor-specifi c fl uorescence signals  in vivo , they still suffer from the non- 
specifi c cleavage by other enzymes and the low stability in serum. Currently, most 
of these imaging agents are used in whole body imaging, histology, or cell culture 
studies. It is expected that their applications in IVM will increase in the future.  
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12.3.1.4     Implications in Imaging Drug Distribution 

 Any drug has to reach its target tissues and cells before being effective. To reach its 
targets, a drug needs to leave the bloodstream, diffuse into the interstitial space and 
enter the target organs and tissues. It is known that the distribution of many anti- 
cancer drugs is insuffi cient and heterogeneous, but it is often unclear what causes 
this poor drug distribution and how to address it. IVM has been a powerful tool in 
providing insights into these questions. Careful studies with IVM have revealed that 
besides the size, charge, and hydrophobicity of the drugs, the tumor vasculature, 
interstitial pressure, pH, oxygenation and ECM all critically affect drug distribution 
(Goel et al.  2012 ; Amornphimoltham et al.  2010 ). The leaky and chaotic tumor 
circulation results in poor perfusion and reduced drug distribution in tumors. The 
high interstitial pressure and poor drainage, due to high solid stress and abnormal 
lymphatic function, further increase blood fl ow resistance and reduce the convective 
transport of drugs. Additionally, the dense ECM network with reduced pore size 
forms a barrier that limits drug diffusion in the interstitial space (Tufto et al.  2007 ; 
Erikson et al.  2008 ). Acidic and hypoxic conditions in tumors affect the physico- 
chemical properties of drugs (e.g., charge), the expression of drug transporters on 
cells, and drug activity (e.g., doxorubicin uses oxygen to generate free radicals and 
damage DNA) (Trédan et al.  2007 ). These fi ndings suggest that drug distribution in 
tumors can be improved by increasing tumor blood fl ow, increasing vessel perme-
ability, reducing interstitial fl uid pressure (IFP), modifying tumor ECM and target-
ing tumor hypoxia and acidity. Indeed, therapeutic effects have been improved 
using these strategies (Fig.  12.3a ) (Goel et al.  2012 ).

   The value of IVM for cancer treatment studies can be exemplifi ed from research 
on anti-angiogenic therapy. Anti-angiogenic therapy in clinical cancer therapy 
remains a puzzle. It has been shown in the pre-clinical setting that anti-angiogenic 
drugs could cut off tumor blood supply and thus starve and shrink tumors. However, 
many anti-angiogenic agents showed modest effects in clinical trials and sometimes 
resulted in more aggressive tumors (Bergers and Hanahan  2008 ). Multiple mecha-
nisms could contribute to this drug resistance but remain to be tested (Bergers and 
Hanahan  2008 ). Thus far, some IVM studies showed that the up-regulation of 
 alternative pro-angiogenic signaling pathways (e.g., FGF) and reduction in VEGF 
signals are the major reasons for anti-VEGF drug resistance (Fukumura et al.  2010 ). 
On the other hand, other studies revealed that alternative factors can infl uence drug 
delivery (Tada et al.  2007 ; Smith et al.  2008 ). Reduced vascular permeability by 
anti-angiogenesis therapy can also hinder the extravasation of many drugs (Bhirde 
et al.  2009 ; Mikhail and Allen  2010 ; Pink et al.  2012 ) and lead to hypoxia and 
increase cancer stem cells and tumor metastasis (Gaustad et al.  2012 ; Rapisarda and 
Melillo  2012 ; Conley et al.  2012 ). Additionally, tumor vasculature is very heteroge-
neous; VEGF-dependent and -independent vascular zones coexist and interconvert 
dynamically (Manning et al.  2013 ). Tumor cells can also enter the blood stream 
when they are close to a structured tumor-associated vessel (Beerling et al.  2011 ). 
These diverse fi ndings from IVM studies demonstrate that many factors can contrib-
ute to the lack of effi cacy of anti-angiogenic therapy, and suggest that anti- angiogenic 
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reagents should be applied to specifi c cancer types in a controlled manner (e.g., 
timing, location, and combination therapy). These results and potential therapeutic 
strategies need to be further tested for extrapolation to the clinical setting. 

 Tumor ECM can impact drug effects by direct infl uence on the diffusion and 
distribution of drugs in the tumor interstitium and by indirectly affecting the 
response of tumor cells to drugs. Two-photon FRAP work has shown that increased 
collagen content in tumors is associated with slow diffusion of molecules, and treat-
ing tumors with collagenase can improve the diffusion of drugs (Alexandrakis et al. 
 2004 ; Magzoub et al.  2008 ). Interestingly, hyaluronidase (HA) treatment does not 

a

b

  Fig. 12.3    Examples of IVM imaging at the tissue level ( a ) Optical frequency domain images show 
the response to anti-angiogenic VEGFR-2 by mouse mammary tumor cells (MCaIV) grown in a 
dorsal skin-fold window chamber. Antiangiogenic VEGFR-2 treatment leads to reduced density, 
length and diameters of intratumor vessels compared to those in the control tumors .  The lymphatic 
vascular network is in blue (scale bar, 500 μm) (Vakoc et al.  2009 ) (Reprinted by permission from 
Macmillan Publishers Ltd:  Nature Medicine , copyright 2009). ( b ) Two-photon images show that 
hyaluronidase treatment increased the perfusion of tumor blood vessels ( top ) and the delivery of 
doxorubicin ( bottom ) in a pancreatic ductal adenocarcinoma of transgenic mice (scale bar, 50 μm). 
The autofl uorescence of doxorubicin allows for the imaging of its distribution ( left ).  ac  acini,  d  
duct.  Asterisks  highlight the large, functional lectin-positive vessels loaded with doxorubicin. 
 Arrows  in the top panels indicate well-perfused functional vessels. In the bottom panel,  arrows  in 
left image show thin-walled vessel and  arrowheads  point out the ductal epithelium;  arrows  in the 
middle and right images show the regions magnifi ed in respective insert boxes;  small arrows  in the 
inserts show the distribution of doxorubicin in the nuclear ( green ) and extracellular space 
(Provenzano et al.  2012 ) (Reprinted by permission from Elsevier, copyright 2012)       
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improve molecular diffusion in tumors. But treating pancreatic ductal adenocarci-
nomas with HA reduced the interstitial fl uid pressure, opened the microvasculature, 
and improved effi cacy of chemotherapeutic drugs (Fig.  12.3b ) (Eikenes et al.  2005 ; 
Provenzano et al.  2012 ). Indirectly targeting fi broblast-mediated ECM remodeling 
with TGF-β inhibitors also improved the distribution and effi cacy of therapeutics in 
breast carcinoma (Liu et al.  2012 ; Salnikov et al.  2005 ). 

 These studies suggest that targeting ECM processing and remodeling might be a 
useful strategy to improve cancer therapy. However, improving drug distribution by 
targeting ECM is often not straightforward. Just like anti-angiogenesis therapy, 
inhibitors for MMP showed promising results in preclinical studies but failed in 
clinical trials. ECM proteins and their related proteases and factors have more com-
plicated functions than expected (Yu et al.  2011 ; Mueller and Fusenig  2004 ). Some 
MMPs have ECM-independent functions and can have protective roles (Folgueras 
et al.  2004 ). Tumor cells can switch from mysenchymal, amoeboidal and collective 
modes of migration and invasion depending on tumor ECM, proteases and signal-
ing. Thus, inhibitions of MMPs, TGF-β and other factors can often lead to adverse 
effects (Matise et al.  2012 ; Meulmeester and Ten Dijke  2011 ). Considering that 
some of these studies are based on a snap-shot of tumor progression and that ECM 
remodeling is a highly dynamic process, further real-time IVM imaging is neces-
sary to better understand how to target ECM in cancer therapy. 

 In summary, IVM has been a useful tool in understanding drug delivery and 
distribution in tumors. The results from this research have helped in designing 
new drugs, developing novel therapeutic strategies and elucidating mechanisms of 
drug effects. However, drug effi cacy does not only depend on drug distribution at 
the tissue level. Recent IVM imaging of single cell and subcellular pharmacoki-
netics showed that the proteomic heterogeneity in individual cells can be a major 
reason for limited drug action when tumor cells are exposed to suffi cient drugs  in 
vivo  (Thurber et al.  2013 ). Therefore, imaging the structure and composition of 
tumors at the cellular and subcellular levels is another important direction leading 
to the understanding of drug resistance and response. In the next section, we will 
discuss IVM work at the cellular and subcellular levels and related work on drug 
response.   

12.3.2     Imaging Tumors at the Cellular and Subcellular Levels 

12.3.2.1     Cell Tracking 

 Tumors are heterogeneous and can have multiple tumor cell subpopulations and 
stromal cell populations within a single tumor (Marusyk et al.  2012 ; Pietras and 
Ostman  2010 ). These various populations can have different cellular states, spatial- 
temporal distributions, cell-cell interactions, as well as different functions during 
tumor development. Identifying the roles of each cell population in tumor develop-
ment is always a critical task in cancer research and clinics. IVM, with its high 
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resolution at the cellular level and diverse imaging agents, is an ideal tool for track-
ing cells and cell activities in their native  in vivo  environment. 

 Tracking cells requires specifi c labeling of cells of interest. There are three basic 
cell labeling methods: ex  vivo  labeling, direct  in vivo  labeling, and transgenic meth-
ods. For  ex vivo  labeling, specifi c cell populations are isolated and labeled with 
imaging agents  in vitro  and injected back into the hosts. Since cell specifi city is 
achieved in the cell isolation and purifi cation steps, a wide range of imaging agents 
can be used, such as fl uorescent reporter genes, fl uorescent molecules and particles. 
For short-term cell labeling and imaging experiments, CFSE (Carboxyfl uorescein 
succinimidyl ester), Dil (1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine 
perchlorate), quantum dots, etc. are often used. This transient cell labeling tech-
nique allows, for example, the visualization of T cell dynamics in lymph nodes, and 
tumor cell extravasation during metastasis (Stoll et al.  2002 ; Bajénoff et al.  2006 ; 
Voura et al.  2004 ). Because of the problems of dye retention, transfer, dilution and 
toxicity, reporter genes are preferred for long-term cell labeling (Hulit et al.  2012 ). 
By tracking cancer cells stably expressing GFP, CFP, RFP (green, cyan, red fl uores-
cent proteins), etc., it has been found that tumor cells move much faster  in vivo  than 
 in vitro  (Condeelis and Segall  2003 ). Tumor cells are able to utilize collective, 
amoeboidal or mensenchymal migration strategies (Friedl and Alexander  2011 ), 
and take active or passive approaches for intravasation and extravasation (Kedrin 
et al.  2008 ). IVM in combination with whole body bioluminescence imaging has 
demonstrated that intravenously injected lymphoma cells home to spleen and bone 
marrow fi rst and then disseminate to lymph nodes only a few days after (Ito et al. 
 2012 ). Furthermore, the reporter gene approach allows studying the molecular 
mechanisms involved in these processes. For example, by expressing mutant pro-
teins or using inhibitors, it has been found that the migration speed and modes of 
tumor cells  in vivo  are regulated by signaling networks involved in actin polymer-
ization, actomyosin contraction and cell adhesion, such as Arp2/3-cofi lin-mena 
pathways, Rho family small GTPase, Integrin and focal adhesion kinase pathways 
(Philippar et al.  2008 ; Olson and Sahai  2009 ; McGhee et al.  2011 ; Timpson et al. 
 2011 ). Although simple and fast, the  ex vivo  labeling method has major drawbacks: 
the isolation and  in vitro  labeling can alter cell properties, and the implantation sites 
are often not the native environments. 

 In the direct  in vivo  labeling, imaging agents are systemically administered and 
taken up by a specifi c cell population. Systemic delivery of imaging agents is fast. 
Many imaging agents ranging from small molecules to antibody conjugated parti-
cles can be administrated  in vivo  to label cells for short-term imaging. But some 
major problems of these imaging agents include: high background signal, low spec-
ifi city and stability  in vivo . For example, dextran, DiR, etc. can be injected  in vivo  
to label macrophages, but many other cells such as dendritic cells and cancer cells 
can also take up these dyes. Cell type-specifi c imaging agents, such as those based 
on unique surface ligands, receptors, antigens, or subcellular molecules, can have 
better specifi city (Fig.  12.1b ) (Kobayashi and Choyke  2011 ). However, creating 
such highly specifi c markers is not easy and remains an important research area in 
molecular imaging. 
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 Transgenic reporter animal approaches allow for tracking of cells in their native 
environment for prolonged periods. This approach is extremely valuable when 
studying the tumor associated stromal cells, including immune cells, fi broblasts, 
mesenchymal cells, endothelial cells, and recruited bone marrow cells (Fig.  12.1d ). 
Experiments with direct  in vivo  cell labeling and transgenic mice expressing GFP, 
YFP and RFP have shown that dendritic like cells, myeloid cells and carcinoma- 
associated fi broblasts migrate faster at the tumor periphery than within the tumor, 
whereas the regulatory T-cells (Tregs) mainly migrate near blood vessels (Egeblad 
et al.  2008 ). As these tumor stromal cells are involved in tumor lymphangiogenesis, 
immune surveillance, hypoxia response, ECM remodeling, tumor progression and 
metastasis (Mueller and Fusenig  2004 ; Tlsty and Coussens  2006 ; McMillin et al. 
 2013 ), these IVM studies can really help in understanding the dynamic interactions 
between stromal and tumor cells. The transgenic animal approach is also extremely 
useful in lineage tracing of heterogeneous tumor cells. As tumor cell heterogeneity 
can arise from genetic, epigenetic clonal evolution, environmental effects, or cancer 
stem cell differentiation (Magee et al.  2012 ), it is necessary to label a few tumor 
cells in their native environment and follow their fate for prolonged periods  in vivo . 
It has not been until recently, that the technology breakthroughs in lineage tracing, 
transgenic mouse models and imaging techniques have made it possible to perform 
such long-term cell fate tracking experiments  in vivo  (Livet et al.  2007 ). With 
“Brainbow” mosaic expressing multicolor fl uorescent proteins in individual cells 
and tracing their fates in the native environment (Fig.  12.4a ), it has become evident 

a b

  Fig. 12.4    Reporter genes ( a ) an example of the brainbow CRE/loxP site-specifi c recombination 
systems. In this brainbow system, DNA transcriptional STOP cassette and fl uorescent reporter genes 
(e.g.,  RFP ,  YFP ,  CFP ) are fl anked by pairs of mutually incompatible lox variants (three lox pairs 
here). The introduction of CRE results in random recombination between these loxP pairs. Each of 
these recombinations leads to the expression of a distinct XFP, such as RFP, YFP or CFP. This strat-
egy is extremely useful in long-term cell-lineage tracing experiments ( b ) an example of the inducible 
reporter gene systems. In this tetracycline (Tet)-or doxycycline (Dox)-inducible system, the tran-
scription of the gene of interest and the fl uorescent protein genes is under the control of Tet response 
element ( TRE ). In the presence of doxycycline, the reversed tetracycline transactivator ( rtTA ) binds 
to TRE and turns on the transcription of TRE-controlled genes. In the absence of doxycycline, rtTA 
can not bind to TRE and thereby prevents the transcription of TRE- controlled genes       
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that stem-cell-like cells that are long-lived and able to self-renew or divide to pro-
duce new progenitors do exist in papillomas, intestinal cancer, and glioblastoma 
models (Driessens et al.  2012 ; Schepers et al.  2012 ; Chen et al.  2012 ). These multi-
potent stem cells maintain human adenomas and the pattern of clonal expansion in 
tumor evolution (Humphries et al.  2013 ) and can also propagate glioblastoma 
growth after chemotherapy (Chen et al.  2012 ). These studies, for the fi rst time, pro-
vide solid data supporting the idea that a small subset of cells drives tumor growth, 
and that it is necessary to target these cells in cancer therapy.

12.3.2.2        Subcellular Components and Processes 

 Microscopy has been an essential tool to study the dynamics of molecular localiza-
tion, interaction and function of subcellular components during cell division, apop-
tosis, migration, metabolism, transcription and translation in vitro. Imaging 
subcellular processes  in vivo  is still very challenging due to the motion artifacts 
from live animals and the low signal to noise ratio  in vivo . However with recent 
technical advancement in minimizing motion effects and the availability of better 
imaging agents, subcellular IVM imaging has become possible. 

 IVM has been used to image cell division  in vivo . One of the classic methods for 
imaging cell division is to use GFP-tagged human histone H2B (H2B-GFP) to visu-
alize chromatin structure and nuclear dynamics (Fig.  12.1d ) (Hadjantonakis and 
Papaioannou  2004 ; Yamamoto et al.  2004 ; Orth et al.  2011 ; Janssen et al.  2013 ). 
This reporter gene can be further modifi ed to include a tetracycline regulatory ele-
ment such that H2B-GFP is only expressed when doxycycline is added (Fig.  12.4b ). 
With this inducible H2B-GFP reporter, the cell cycling time of stem cells and their 
progenitors, the repopulation potential of stem cells, and the interactions between 
stem cells within their niches have been studied  in vivo  (Foudi et al.  2009 ; Wilson 
et al.  2008 ). One of the drawbacks of these H2B-GFP reporter systems is the 
requirement for high resolution images to analyze the morphology of H2B-GFP 
tagged chromatin for accurate cell cycle staging. This is a great challenge for  in 
vitro  and  in vivo  work. Therefore, a more elegant cell cycle reporter system is to 
directly color code each G1, S, or G2/M phase. For example, the Fucci reporter uses 
the cell-cycle-dependent proteolysis of Cdt1 and Geminin to control the expression 
of mKO2 and Azami green, such that the nuclei of cells appear in different color 
when cells cycle though G1/S/G2/M phase (Sakaue-Sawano et al.  2008 ). This 
reporter gene makes it very convenient to track the cell-cycle stages in real-time  in 
vivo . 

 IVM and reporter genes have also been used to visualize the intracellular signal-
ing pathways involved in cancer cell migration, invasion, and metastasis. In these 
studies, tumors cells are engineered to express fusion proteins composed of proteins 
of interest with fl uorescent proteins, and injected into animals and tracked with 
IVM. Using these approaches, it has been found that ROCK regulates the phos-
phorylation and organization of myosin light chain and thus cancer cell motility  in 
vivo  (Wyckoff et al.  2006 ). Rac and Rho-kinase signaling control the switch between 
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the mesenchymal and amoeboid movement of cancer cells  in vivo  (Sanz-Moreno 
et al.  2008 ) whereas TGFβ signaling is associated with single cell movement 
(Giampieri et al.  2009 ; Kardash et al.  2010 ). Similar work has revealed a series of 
important proteins regulating tumor invasion and migration  in vivo , which is impos-
sible to be studied in isolated cells. 

 Imaging caspase activity and apoptosis is another important area of IVM 
research. Some of this research takes advantage of genetically-encoded FRET 
imaging agents to report caspase activity under  in vivo  conditions. In these cases, 
the caspase sensor is constructed to have CFP and GFP linked by a caspase-3 cleav-
age sequence DEVD (Fig.  12.1c ). Tumor cells are engineered to express this reporter 
gene construct and then injected into animals. The non-apoptotic cells give FRET 
signals, but the apoptotic cells lose FRET signals as activated caspase-3 cleaves 
DEVD (Keese et al.  2010 ; Breart et al.  2008 ). Other studies use systemically admin-
istered imaging agents, such as near-infrared FLIVO™ and caspase-triggered nano-
aggregation imaging agent, to study apoptosis. The FLIVO™ imaging agent is a 
small molecule fl uorescent inhibitor for active caspases and can give red fl uores-
cence in apoptotic cells with little background (Tsai et al.  2007 ). Caspase-triggered 
nanoaggregation imaging agent has a DEVD caspase cleavage peptide linked with 
a polymeric fl uorescence backbone which can aggregate and self-amplify signal 
upon caspase cleavage (Shen et al.  2013 ). These imaging agents can be a good alter-
native when the introduction of reporter genes into cells is not feasible, and when 
FRET signals are diffi cult to quantify  in vivo . 

 FRAP, FLIM, photoswitching, etc. techniques have also been incorporated for 
IVM imaging of subcellular processes. For example, FRAP IVM imaging has 
shown that the immobile fraction of E-cadherin in cell-cell junctions is fi ve times 
more  in vivo  than  in vitro  and E-cadherin mobility correlates with cell migration 
(Serrels et al.  2009 ). FLIM has also been combined with IVM to study the meta-
bolic products in tumor cells  in vivo . For examples, NADH and FAD have very 
different two-photon fl uorescence life times depending on their bound states and 
can serve as reporters for mitochondrial activity. Mapping these endogenous NADH 
and FAD with FLIM-IVM within live cells has shown a stepwise change of intracel-
lular metabolic states during cancer development (Skala et al.  2007 ; Provenzano 
et al.  2009 ).  

12.3.2.3     Implications in Monitoring Drug Response 

 Currently, 70 % of oncology drugs that enter Phase 2 clinical trials fail to enter 
Phase 3. Among those drugs that do enter Phase 3 trials, 59 % fail (Kola and Landis 
 2004 ). This high failure rate is mainly due to the lack of drug effi cacy in the clinic, 
the lack of predictive animal models and the lack of understanding of drug mecha-
nisms  in vivo . IVM might be a valuable tool to address these issues. 

 One area of IVM research is in cancer immunotherapy. These IVM studies have 
disclosed that the infi ltration of cytotoxic T cells (CTL) in tumors is very heteroge-
neous and their tumor-elimination activities are limited by access to tumor cells 
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(Boissonnas et al.  2007 ). Additionally, CD44 has been found to mediate cell migra-
tion and stable interactions between killer cells and tumor cells (Mrass et al.  2008 ). 
Such IVM based work greatly contributed to the discovery of novel anti-tumor 
immune therapies. Another important area of study is the stroma mediated drug 
sensitivity and resistance in chemotherapies (McMillin et al.  2013 ). Many drugs, 
such as dexamethasone, doxorubicin, vemurafenib, ruxolitinib, can be affected by 
the tumor stroma. But the mechanisms are not clear. Recently, Nakasone et al. 
addressed the question with IVM and transgenic mouse models for breast cancer 
(Nakasone et al.  2012 ). Their imaging results have shown that the sensitivity to 
doxorubicin changes with tumor stage. This stage dependent drug sensitivity was 
found to be related to the leakiness of blood vessels and the recruitment of CCR2+ 
myeloid cells but not the intrinsic properties of tumor cells (Fig.  12.5a ). Further 

a

b

  Fig. 12.5    Example   s of IVM imaging at the cellular and subcellular levels ( a ) Spinning disk confo-
cal images show doxorubicin-induced cell death in exposed mammary tumors in real-time. 
Reporter mice are generated by crossing MMTV-PyMT and ACTB-ECFP and c-fms-EGFP mouse 
strains such that tumor cells express ECFP and stromal macrophage express EGFP ( left ). The death 
of tumor cells ( red arrow ) and stromal cells induced by doxorubicin is visualized by propidium 
iodide (PI) administered intraperitoneally. Doxorubicin also induces the infi ltration of stromal cells 
( white arrow ) (scale bar, 10 μm) (Nakasone et al.  2012 ) (Reprinted by permission from Elsevier, 
copyright 2012). ( b ) IVM images show PARP inhibitors ( PARPi ) distribution in a HT-1080 tumor 
implanted in a dorsal skin-fold window chamber. Proliferating tumor cells are labeled with H2B-
Apple, tumor associated macrophages ( TAM ) are labeled with Clio-680 nanoparticles, PARPi is 
synthesized with a fl uorescent group attached to the PARP1 targeted group ( left ). The PARPi is 
accumulated in most tumor cells and some TAMs (Thurber et al.  2013 ) (Reprinted by permission 
from Macmillan Publishers Ltd, copyright 2013)       
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studies have shown that infi ltrated CD11b + GR1+ myeloid precursors can also 
mediate the anti-VEGF resistance in colorectal cancer (Shojaei et al.  2007 ). 
However, the roles of myeloid cells in tumor drug response can be drug and tumor 
type specifi c (Germano et al.  2013 ). Therefore, more IVM studies are still needed in 
this area.

   Subcellular mechanisms are also important in drug sensitivity and resistance of 
tumor. Janssen et al. set out to understand the mechanisms of docetaxel-induced 
tumor cell death  in vivo  (Janssen et al.  2013 ). They expressed H2B tagged photo- 
switchable Dendra2 and FRET caspase-3 biosensor simultaneously in tumor cells to 
track the mitotic progression and the onset of apoptosis within tumors. They showed, 
in contrast to the in vitro conditions, that docetaxel-induced apoptosis was indepen-
dent of mitosis  in vivo  but rather dependent on the heterogeneous microenviron-
ment. This hypothesis was tested in a related IVM study with Src-inhibitor applied 
to a subcutaneously grafted p53-mutant pancreatic tumor (Nobis et al.  2013 ). With 
a FLIM-FRET Src sensor, dasatinib-inhibition of Src activity was found to be lim-
ited within 50–100 μm from the vasculature. Cyclopamine was then administered to 
modify ECM structure for enhancing dasatinib effects. Although dasatinib effi cacy 
was improved, it was mainly localized to the peri-vascular region (25–50 μm away 
from vessels) and the spatial limit remained similar as in the controls. This result 
suggests that tumor ECM may not be a limiting factor for dasatinib, which is in 
agreement with the recent fi nding from another group (Thurber et al.  2013 ). Imaging 
the intracellular kinetics of the PARP-1 inhibitor (PARPi) distribution in real time 
in live animals showed that the responses of tumor cells to PARPi are heterogeneous 
regardless of effi cient drug delivery and suffi cient nuclei accumulation of PARPi 
(Fig.  12.5b ) (Thurber et al.  2013 ). This result suggests PARPi effi cacy may be 
linked to both the intrinsic heterogeneity of individual cells and the stromal cells. 
These few cases together demonstrate that drug response  in vivo  is complicated and 
no single mechanism can explain all observations. In order to identify the exact 
mechanisms of drug response  in vivo , more thorough IVM work will be required. 

 In summary, using different models, drugs, and methods, these IVM studies all 
demonstrate that drug sensitivity and responses are strongly affected by the  in vivo  
environment and the cellular and subcellular heterogeneity. These initial studies 
have shown the great potential of IVM in these areas of investigation. With the 
advancement of imaging instrumentation, improved imaging techniques and imag-
ing agents, IVM will undoubtedly impact the development of anti-cancer therapy 
and ultimately assist in clinical cancer management.    

12.4     Future Directions 

 Although IVM has provided signifi cant gains in our understanding of basic in vivo 
biology, there are still many potential advances in instrumentation and imaging 
probes that may allow further insight and the full realization of IVM strategies. 
Improving imaging depth and increasing multiplexing capability is a major goal in 

12 Intravital Microscopy for Molecular Imaging in Cancer Research



256

IVM work. Improvements in instrumentation are covered elsewhere in this book 
(See Chapter IVM: Principles and Technology). It will be important to expand our 
current library of IVM imaging agents, particularly IR and NIR fl uorescent imaging 
agents, because of their apparent benefi ts in deep tissue imaging. The ability to use 
multiple imaging agents, each one specifi c for a given process of interest, will be 
highly important. This will require a team science approach in which biologists, 
chemists, molecular pharmacologists, and IVM specialists work hand-in-hand to 
develop a larger library of well validated agents. It will be important to show that 
such developed agents actually measure specifi c processes of interest through care-
ful validation studies. In addition, it will be important to continue to make IVM more 
quantitative so that images obtained using specifi c imaging probes can be quantifi ed 
to show the levels of underlying molecular targets or processes of interest. 

 Another important future direction is multimodality imaging. In multimodality 
imaging, a single imaging agent is often used for imaging with different imaging 
modalities to maximize the information from complementary methods (James and 
Gambhir  2012 ; Gambhir  2013 ). The limited fi eld of view and imaging depth in IVM 
restrict its abilities to study the traffi c of tumor cells and tumor metastasis. Combining 
IVM and other whole-body imaging modalities can often overcome such limita-
tions. For these purposes, fusion reporter genes and reporter mice for luciferase-
GFP and for PET-luciferase-RFP are available (Cao et al.  2004 ; Ray et al.  2004 ; Yan 
et al.  2013 ) and some multimodality imaging agents have also been developed 
(Tsourkas et al.  2005 ). It is expected that there will be many more important appli-
cations of multimodality imaging in the future (Cherry  2006 ; Culver et al.  2008 ). 

 The development of novel endomicroscopy (e.g., Raman, confocal), microcath-
eters, etc. instrumentation is another exciting direction. These types of instruments 
will likely allow new ways of imaging mouse models in which different tissue com-
partments (e.g., gastrointestinal tract) can be accessed. By allowing microscopes 
that go into the body one may be able to open up entirely new ways to study molecu-
lar and cellular events that are currently quite diffi cult to perform. 

 In summary, many important questions in cancer pathology and drug response 
remain to be answered. IVM based imaging research has already shown its power in 
addressing some of these questions. We can foresee that IVM will continue to make 
even more signifi cant contributions in these research areas which hopefully will 
lead to a greater understanding of fundamental biology and for potential transla-
tional benefi t.     
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