
51

Sortal Grammars for Urban Design

Rudi Stouffs

© Springer Science+Business Media Dordrecht 2015
J. S. Gero (ed.), Studying Visual and Spatial Reasoning for Design Creativity,
DOI 10.1007/978-94-017-9297-4_4

R. Stouffs ()
Delft University of Technology, Delft, The Netherlands
e-mail: r.m.f.stouffs@tudelft.nl

Introduction

Grammar formalisms have been around for over 50 years and have found applica-
tion in a wide variety of disciplines and domains, to name a few, natural language,
architectural design, mechanical design, and syntactic pattern recognition. Gram-
mar formalisms come in a large variety (e.g., [1–5]), requiring different representa-
tions of the objects being generated, and different interpretative mechanisms for this
generation. Altering the representation may necessitate a rewrite of the interpreta-
tive mechanism, resulting in a redevelopment of the entire system. At the same
time, all grammars share certain definitions and characteristics. Grammars are de-
fined over an algebra of objects, U, that is closed under the operations of addition,
+, and subtraction, −, and a set of transformations, F. In other words, if u and v are
members of U, so too are u + f( v) and u− f( v) where f is a member of F. In addition,
a match relation, ≤ , on the algebra governs when an object occurs in another object
under some transformation, that is, f( u) ≤ v whenever u occurs in v for some member
f of F, if u and v are members of U.

Building on these commonalities, we consider a component-based approach for
building grammar systems, utilizing a uniform characterization of grammars, but
allowing for a variety of algebras, and match relations (or interpretative mecha-
nisms) [6]. Sortal representations constitute the components for this approach. They
implement a model for representations, termed sorts, that defines formal operations
on sorts and recognizes formal relationships between sorts [7]. Each sort defines
an algebra over its elements; formal compositions of sorts derive their algebraic
properties from their component sorts. This algebraic framework makes sortal rep-
resentations particularly suited for defining grammar formalisms. Provided a large
variety of primitive sorts are defined, sortal representations can be conceived and
built corresponding to almost any grammar formalisms.

52 R. Stouffs

The need for varying grammar formalisms using varying representations is quite
apparent in urban design. CAD systems are very powerful drawing tools and fit
for design practice, also in urban design. On the other hand, GIS systems are very
powerful systems for accessing large-scale urban data; hence they play an impor-
tant role in urban planning as analytical tools. However, these tools were conceived
as interactive maps and so they lack capacities for designing. Therefore, in urban
design, the linking of GIS to CAD tools and representations becomes an important
goal to allow designing directly on the GIS data.

For urban design and simulation, sortal grammars may include, among others,
descriptive grammars, GIS-based set grammars, shape grammars and any combina-
tion thereof.

Sortal Representations

Stouffs [7] describes a semi-constructive algebraic formalism for design representa-
tions, termed sorts, that provides support for varying grammar formalisms. It pres-
ents a uniform approach for dealing with and manipulating data constructs and en-
ables representations to be compared with respect to scope and coverage, and data
to be converted automatically, accordingly. Sorts can be considered as hierarchical
structures of properties, where each property specifies a data type; properties can be
collected and a collection of one or more properties can be assigned as an attribute
to another property. Sorts can also be considered as class structures, specifying ei-
ther a single data type or a composition of other class structures.

Each sort has a behavioral specification assigned, governing how data entities
combine and intersect, and what the result is of subtracting one data entity from
another or from a collection of entities from the same sort. This behavioral specifi-
cation is a prerequisite for the uniform handling of different and a priori unknown
data structures and the effective exchange of data between various representations.
The behavioral specification of a sort is based on a part relationship on the entities
of this sort, with the sortal operations of addition, subtraction, and product defined
in accordance to this part relationship. As such, a behavioral specification expli-
cates the match relation (or interpretative mechanism) underlying a sortal algebra
and grammar. The behavioral specification of a primitive sort forms part of the
predefined template of this sort; composite sorts derive their behavioral specifica-
tion from the component sorts in conformity with the compositional operation. In
addition, a functional sort allows the specification of data (analysis) functions that
automatically apply to sortal structures through tree traversal.

53Sortal Grammars for Urban Design

A Simple Example

Consider the following example: given a public transportation network, where the
transportation nodes represent stations or stops and the edges represent transporta-
tion lines, how can we derive a transportation lines connectivity graph, where the
nodes represent transportation lines and the edges exchanges between these lines?
Basically, we are interested in knowing how many lines there are, which stations
or stops are on which line, which lines connect to one another, etc., such that we
can take into account the number of exchanges that might be necessary to get from
one point to another. We assume that stations and stops have attribute information
specifying the lines that stop here.

From a programming point of view, the derivation of a line connectivity graph
from a transportation network or stop connectivity graph is not all that complex, but
without proper programming knowledge, the task can still be very challenging. We
show how one might approach this problem using sortal structures. First, we need
to define the representational structure we will use as a starting point.

Figure 1 illustrates the data that may be present in the stop connectivity graph.
We ignore the format in which the data may be provided, and instead consider the
basic data entities that are required. Firstly, we need to represent the stops them-
selves, e.g., “s1”, “s2”, “s3” and “s4”. We can do so by their name, a string. We
define a primitive sort with Label as sortal template:

sort stops : [Label];
form $stops = stops: { "s1", "s2", "s3", "s4"};

The first line defines the sort stops, with template Label. The second line defines
an exemplary data form of sort stops and referenced by the sortal variable $stops.
It defines a collection of stops or, more specifically, stop labels “s1” through “s4”.
Similarly, we can represent the transportation lines that use a stop also as strings
with sortal template Label:

sort lines : [Label];
form $lines = lines: { “l1”, “l2” };

Fig. 1  A simple transporta-
tion network consisting of
two lines and four stops

54 R. Stouffs

Finally, we need to represent the connectivity relations. For this, we use the Prop-
erty template. Unlike other templates, the Property template requires two primitive
sorts as arguments, and defines not one but two new primitive sorts:

sort (connections, rev_connections) : [Property]
(stops, stops);

The two arguments define the representational structure for the tails and heads of
the connectivity relationship. Since the Property template applies to directional re-
lationships, we consider two resulting sorts: connections and rev_connections (re-
verse connections). An example is given below.

A complex representational structure is defined as a composition of primitive
representational structures. Sortal structures offer us two compositional operators:
an attribute operator, ^, specifying a subordinate, conjunctive relationship between
sortal data, and a sum operator, + , specifying a co-ordinate, disjunctive relation-
ship. Considering the room adjacency graph, we can define a corresponding sortal
structure as follows:

sort input : stops ^ (lines + connections +
rev_connections);

Stops have lines, connectivity relationships and reverse connectivity relationships
as attributes. A corresponding data form would be defined as:

form $input = input:
{ #me-stops-1 "s1"
 { (lines): { "l1" },
 (connections): { me-stops-2, me-stops-4 } },
 #me-rooms-2 "r2"
 { (lines): { "l1" },
 (connections): { me-stops-3 } },
 #me-rooms-3 "r3"
 { (lines): { "l1", "l2" },
 (connections): { me-stops-4 } },
 #me-rooms-4 "r4"
 { (lines): { "l2" } } };

Of course, this data form may be generated from the original data format, rather
then specified in textual form. Especially, the connectivity relationships may be
generated automatically from a sequentially-ordered list of stops on a transportation

55Sortal Grammars for Urban Design

line. #me-stops-1 is a reference ID for “s1” that can be used later, in the form me-
stops-1, to reference “s1” in an connectivity relationship from a different stop. The
specification of reverse connectivity relationships is optional; the sortal interpreter
will automatically generate these.

Similarly, we can define a representational structure for the output we need to
produce. Consider the goal to group stops on the same line. For this, we can con-
sider lines with stops as attributes; the stops themselves may still have (reverse)
connectivity relationships as attributes:

sort output : lines ^ stops ^ (connections +
rev_connections);
form $output = output: $input;

The second line defines a variable of sort output with $input as data. Since $input
is defined of sort input, the data must be converted to the new sort. This conversion
is done automatically based on rules of semantic identity and syntactic similarity.
The result is:

form $output = output:
{ "l1"
 { #me-stops-1 "s1"
 { (connections): { me-stops-2, me-stops-4 } },
 #me-stops-2 "s2"
 { (connections): { me-stops-3 },
 (rev_connections): { me-stops-1 } } },
 #me-stops-3 "s3"
 { (connections): { me-stops-4 },
 (rev_connections): { me-stops-2 } } },
"l2"

 { #me-stops-1 "s1"
 { (connections): { me-stops-2, me-stops-4 } },

#me-stops-3 "s3"
 { (connections): { me-stops-4 },
 (rev_connections): { me-stops-2 } },
 #me-stops-4 "s4"

{ (rev_connections): { me-stops-1, me-stops-3 } }
} };

This is a collection of transportation lines, with for each line a list of stops (ordered
alphabetically, rather than sequentially), with stop connectivity relationships (and
reverse relationships). It does not yet constitute a transportation lines connectivity
graph. For this, we need to define relationships (and reverse relationships) between
transportation lines:

56 R. Stouffs

sort (exchanges, rev_exchanges) : [Property] (lines,
lines);

We can now consider lines with exchange relationships (and reverse relationships);
the lines may still have stops as attributes but for the automatic conversion of the
relationships to take place, we must omit the stop connectivity relationships.

sort graph : lines ^ (stops + exchanges +
rev_exchanges);
form $graph = graph: $ouput;

The result will be:

form $graph = graph:
{ #me-lines-1 "l1"
 { (stops): { "s1", "s2", "s3" },

 (exchanges): { me-lines-1, me-lines-2 },
 (rev_exchanges): { me-lines-1 } },
 #me-lines-2 "l2"
 { (stops): { "s1", "s3", "s4" },

(exchanges): { me-lines-2 },
 (rev_exchanges): { me-lines-1, me-lines-2 } } };

Using functional entities integrated in the representational structures, we can also
calculate the number of lines, the number of stops per line, etc. For this, we define
a new primitive sort with Function as sortal template, and define a representational
structure of counting functions with lines as attribute, where the lines themselves
have stops as attributes, though we ignore any relationships:

sort counts : [Function];
sort number_of_lines: counts ^ lines ^ stops;
// func count(x) = c : {c(0) = 0, c(+1) = c + 1};
ind $count = number_of_lines: count(lines.length)

$output;

The last line defines a data form as an individual (a single data entity, not a collec-
tion of data entities or individuals) contained in the variable $count of sort num-
ber_of_lines. This individual consists of the count function applied to the length

57Sortal Grammars for Urban Design

property of the sort lines. The function count is pre-defined in the sortal interpreter
but, otherwise, could be specified as shown in the comment (preceded by ‘//’). A
function always applies to the property of a sort. In this case, the exact property
doesn’t matter as its value is not actually used in the calculation of the result of the
count function. The length property of a sort with Label as sortal template specifies
the length—the number of characters—of the corresponding label. The result is:

ind $count = number_of_lines: count(lines.length) =
2.0
{ "l1"
 { #me-stops-1 "s1",
 #me-stops-2 "s2",
 #me-stops-3 "s3" },
"l2"

 { #me-stops-1 "s1",
#me-stops-3 "s3",

 #me-stops-4 "s4" } };

Similarly, in order to calculate the number of stops per line, we can apply the func-
tion count to the length property of the sort stops. We reuse the sort number_of_
lines for now.

ind $count = number_of_lines: count(stops.length)
$output;

However, the result will be incorrect as stops belonging to multiple lines will be
counted as many times. In order to correct the result, we need to alter the location
of the count function in the representational structure to be an attribute of the sort
lines. We can achieve this simply by creating a new sort and relying on the auto-
matic conversion of one data form (or individual) into another.

sort number_of_stops: lines ^ counts ^ stops;
form $stops_per_line = number_of_stops: $count;

The result is:

58 R. Stouffs

form $stops_per_line = number_of_stops:
{ "l1"
 { 3.0
 { #me-stops-1 "s1",
 #me-stops-2 "s2",
 #me-stops-3 "s3" } },
"l2"

 { 3.0
 { #me-stops-1 "s1",

#me-stops-3 "s3",
 #me-stops-4 "s4" } } };

Sortal Grammars

Grammars are formal devices for specifying languages. A grammar defines a lan-
guage as the set of all objects generated by the grammar, where each generation
starts with an initial object and uses rules to achieve an object that contains only
elements from a terminal vocabulary. A rewriting rule has the form lhs	→	rhs; lhs
specifies the similar object to be recognized, rhs specifies the manipulation lead-
ing to the resulting object. A rule applies to a particular object if the lhs of the rule
‘matches’ a part of the object under some allowable transformation. Rule applica-
tion consists of replacing the matching part by the rhs of the rule under the same
transformation. In other words, when applying a rule a	→	b to an object s under
a transformation f such that f( a)	≤	s, rule application replaces f( a) in s by f( b) and
produces the shape s—f( a) + f( b). The set F of valid transformations is dependent
on the object type. In the case of geometric entities, the set of valid transformations,
commonly, is the set of all Euclidean transformations, which comprise translations,
rotations and reflections, augmented with uniform scaling. In the case of textual en-
tities, or labels, case transformations of the constituent letters may constitute valid
transformations.

The central problem in implementing grammars is the matching problem, that
of determining the transformation under which the match relation holds for the lhs.
Clearly, this problem depends on the representation of the elements of the algebra.
Sorts offer a representational flexibility where each sort additionally specifies its
own match relation as a part of its behavior. For a given sort, a rule can be speci-
fied as a composition of two data forms, a lhs and a rhs. This rule applies to any
particular data form if the lhs of a rule is a part of the data form under any applicable
transformation f, corresponding to the behavioral specification of the data form’s
sort. Rule application results in the subtraction of f( lhs) from the data form, fol-
lowed by the addition of f( rhs) to the result. Both operations are defined as part of
the behavioral specification of a sort.

As composite sorts derive their behavior from their component sorts, the tech-
nical difficulties of implementing the matching problem only apply once for each

59Sortal Grammars for Urban Design

primitive sort. As the part relationship can be applied to all kinds of data types,
recognition algorithms can easily be extended to deal with arbitrary data represen-
tations, considering a proper definition of what constitutes a transformation. Cor-
respondingly, primitive sorts can be developed, distributed, and adopted by users
without any need for reconfiguring the system. At the same time, the appropri-
ateness of a given grammar formalism for a given problem can easily be tested,
the formalism correspondingly adapted, and existing grammar formalisms can be
modified to cater for changing requirements or preferences.

The specification of spatial rules and grammars leads naturally to the generation
and exploration of possible designs; spatial elements emerging under a part rela-
tion is highly enticing to design search [8, 9]. However, the concept of search is
more fundamental to design than its generational form alone might imply. In fact,
any mutation of an object into another, or parts thereof, can constitute an action of
search. As such, a rule can be considered to specify a particular compound opera-
tion or mutation, that is, a composition of operations and/or transformations that is
recognized as a new, single, operation and applied as such. Similarly, the creation of
a grammar is merely a tool that allows a structuring of a collection of rules or opera-
tions that has proven its applicability to the creation of a certain set (or language)
of designs.

Sortal Behaviors

The simplest specification of a part relationship corresponds to the subset relation-
ship in mathematical sets. Such a part relationship applies to points and labels, e.g.,
a point is part of another point only if they are identical, and a label is a part of a
collection of labels only if it is identical to one of the labels in the collection. Here,
sortal operations of addition, subtraction, and product correspond to set union, dif-
ference, and intersection, respectively. In other words, if x and y denote two data
forms of a sort of points (or labels), and X and Y denote the corresponding sets of
data	elements,	i.e.,	sets	of	points	(or	labels),	then	( x: X specifies X as a representa-
tion of x)

An alternative behavior applies to weights (e.g., line thicknesses or surface tones)
as is apparent from drawings on paper—a single line drawn multiple times, each
time with a different thickness, appears as if it were drawn once with the largest
thickness, even though it assumes the same line with other thicknesses (see also

: :

:

: /

:

x X y Y x y X Y

x y X Y

x y X Y

x y X Y

                        
                        
                         

∧ ⇒ ′′ ⇔ ⊆
+
−
⋅

∪

∩

60 R. Stouffs

[11]). When using numeric values to represent weights, the part relation on weights
corresponds to the less-than-or-equal relation on numeric values;

Thus, weights combine into a single weight, with its value as the least upper bound
of the respective individual weights, i.e., their maximum value. Similarly, the com-
mon value (intersection) of a collection of weights is the greatest lower bound of the
individual weights, i.e., their minimum value. The result of subtracting one weight
from another depends on their relative values and is either the first weight, if it is
greater that the second weight, or zero (i.e., no weight).

Another kind of part relationship corresponds to interval behavior. Consider, for
example, the specification of a part relationship on line segments. A line segment
may be considered as an interval on an infinite line (or carrier); in general, one-
dimensional quantities, such as time, can be treated as intervals. An interval is a part
of another interval if it is embedded in the latter; intervals on the same carrier that
are adjacent or overlap combine into a single interval. Specifically, a behavior for
intervals can be expressed in terms of the behavior of the boundaries of intervals.
Let B[x] denote the boundary of a data form x of intervals and, given two data forms
x and y let Ix denote the collection of boundaries of x that lie within y, Ox denote the
collection of boundaries of x that lie outside of y, M the collection of boundaries of
both x and y where the respective intervals lie on the same side of the boundary, and
N the collection of boundaries of both x and y where the respective intervals lie on
opposite sides of the boundary (Fig. 2) [12]. Then,

This behavior applies to indefinite intervals too, providing that there is an appro-
priate representation of both (infinite) ends of its carrier. Likewise, behaviors can
be specified for area intervals (plane segments) and volume intervals (polyhedral

:{ } :{ }

:{max(,)}

:{} ,else{ }

:{min(,)}

x m y n x y m n

x y m n

x y if m n m

x y m n

                             
                             
                            

∧ ⇒ ′′ ⇔ ′′
+
− ′′
⋅

: [] y : [] 0 0 0

: []

: B[x y]

: [x]

x y

x y

x y

x y

x B x B y x y I O N

x y B x y O O M

x y O I N

x y B y I I M

∧ ⇒ ′′ ⇔ = ∧ = ∧ =

+ + = + +

− − = + +

⋅ ⋅ = + +

Fig. 2  The specification of
the boundary collections Ix,
Ox, Iy, Oy, M and N, given
two data forms of intervals x
( above) and y	( below)

61Sortal Grammars for Urban Design

segments). The equations above still apply though the construction of Ix, Ox, Iy, Oy,
M, and N is more complex [12].

Exemplar Grammar Systems

A uniform characterization for a variety of grammar systems is given in [1]. Krish-
namurti and Stouffs [13] survey a variety of spatial grammar formalisms from an
implementation standpoint. Here, we consider the specification of some of these
examples using sorts.

Structure Grammars

Structure grammar is an example of a set grammar. “A structure is a symbolic rep-
resentation of parts and their relationships in a configuration” [3]. A structure is
represented as a set of pairs, each consisting of a symbol, e.g., a spatial icon, and
a transformation. The resulting algebra corresponds to the Cartesian product of the
respective algebras for the set of symbols and the group of transformations. Both
symbols and transformations define sorts with discrete behavior, i.e., respective sets
match under the subset relationship. These combine into a composite sort under the
attribute relationship; each symbol in a set may have one or more transformations
assigned as an attribute.

sort symbols : [ImageUrl];
sort transformations : [Transformation];
sort structures : symbols ^ transformations;

The sort symbols is specified to use the sortal template ImageUrl, a variant on the
template Label that allows the label to be treated as a URL pointing towards an im-
age that can be downloaded and displayed.

Tartan Worlds

Tartan Worlds [14] is a spatial grammar formalism that bestrides string and set
grammars. We consider a simplified string grammar version of the Tartan Worlds:
each symbol in a string corresponds to a geometrical entity represented as a graphi-
cal icon and located on a grid. A rule in these simplified Tartan Worlds [13] consists
of one symbol on the lhs and symbols on the rhs given in their spatial relation. An
equivalent sortal grammar may be defined over a sort composed over a grid of a

62 R. Stouffs

sort of graphical icons. On a fixed-sized grid, the behavior of the composite sort
breaks down into the behavior of the sort of graphical icons, e.g., ordinal or discrete,
over each grid cell. The matching relation is defined in the same way.

sort icons : [ImageUrl];
sort tartan_worlds : icons {30, 20};

Again, the sort icons is specified to use the sortal template ImageUrl, The sort
tartan_worlds is defined as a composition of the sort icons over a fixed-size grid,
similar to a two-dimensional array, of 30 by 20.

Augmented Shape Grammars

A shape [1] is defined as a finite arrangement of spatial elements from among
points, lines, planes, or volumes, of limited but non-zero measure. A shape is a part
of another shape if it is embedded in the other shape as a smaller or equal element;
shapes adhere to the maximal element representation [15, 16]. Shapes of the same
dimensionality belong to the same algebra; these define a sort. A shape consisting of
more than one type of spatial elements belongs to the algebra given by the Cartesian
product of the algebras of its spatial element types. The respective sorts combine
under the operation of sum, as a disjunctive composition.

A shape can be augmented by distinguishing spatial elements, e.g., by labeling,
weighting, or coloring these elements. Augmented shapes also specify an algebra
as a Cartesian product of the respective shape algebra and the algebra of the distin-
guishing attributes. However, the resulting behavior can better be expressed with a
sort that is a subordinate composition of the respective sorts, i.e., combined under
the attribute operator. A sort of labels may adhere to a discrete behavior, a sort of
weights to an ordinal behavior; a weight matches another weight if it has a smaller
or equal value.

Most shape grammars only allow for line segments and labeled points:

sort line_segments : [LineSegment];
sort labeled_points : (points : [Point]) ^ (labels :

[Label]);
sort shapes : line_segments + labeled_points;

63Sortal Grammars for Urban Design

Sortal Rules

When considering a simple sortal grammar, the grammar rules can all be specified
within the same sort as defined for the grammar formalism. In the case of more
complex sortal grammars, or when the grammar formalism may change or develop
over time, it may be worthwhile to consider grammar rules that are specified within
a different sort, for example, a simpler sort or a previously adopted sort, without
having to rewrite these to the sortal formalism currently adopted. Sortal grammar
formalisms support this through the subsumption relationship over sorts. This sub-
sumption relationship underlies the ability to compare sortal representations. and
assess data loss when exchanging data from one sort to another. When a representa-
tion subsumes another, the entities represented by the latter can also be represented
by the former representation, without any data loss.

Under the disjunctive operation of sum, any entity of the resulting sort is nec-
essarily an entity of one of the constituent sorts. Sortal disjunction consequently
defines a subsumption relationship on sorts	(denoted	‘	≤	’),	as	follows:

a disjunctive sort subsumes each constituent sort.
Most logic-based formalisms link subsumption directly to information speci-

ficity, that is, a structure is subsumed by another, if this structure contains strictly
more information than the other. The subsumption relationship on sorts can also be
considered in terms of information specificity, however, there is a distinction to be
drawn in the way in which subsumption is treated in sorts and in first-order logic
based representational formalisms. First-order logic formalisms generally consider
a relation of inclusion (hyponymy relation), commonly denoted as an is-a relation-
ship. Sorts, on the other hand, consider a part-of relationship (meronymy relation).

Two simple examples illustrate this distinction. Consider a disjunction of a sort
of points and a sort of line segments; this allows for the representation of both
points and line segments. We can say that the sort of points forms part of the sort of
points and line segments—note the part-of relationship. In first-order logic, this cor-
responds to the union of points and line segments. We can say that both are bounded
geometrical entities of zero or one dimensions—note the is-a relationship.

This distinction becomes even more important when we consider an extension of
sortal subsumption to the attribute operator. Consider a sort cost_types as a compo-
sition under the attribute relationship of a sort types with template Label and a sort
costs with template Weight:

sort cost_types : (types : [Label]) ^ (costs :
[Weight])

a b a b b≤ ⇔ + = ;

64 R. Stouffs

For example, these cost values may be specified per unit length or surface area for
building components. If we lessen the conjunctive character of the attribute operator
by making the cost attribute entity optional, then, we can consider a type label to be
a cost type without an associated cost value or, preferably, a type label to be part of
a cost type, that is, the sort of types is part of the sort of cost types. Vice versa, the
sort of cost types subsumes the sort of types or, in general:

In logic formalisms, a relational construct is used to represent such associations. For
example, in description logic [17], roles are defined as binary relationships between
concepts. Consider a concept Label and a concept Color; the concept of colored
labels	can	then	be	represented	as	Label	∩	∃ hasAttribute.Color, denoting
those	labels	that	have	an	attribute	that	is	a	color.	Here,	∩	denotes	intersection	and	
∃R.C denotes full existential quantification with respect to role R and concept C.
It follows then that Label	∩	∃ hasAttribute.Color ⊆ Label; that is, the
concept of labels subsumes the concept of colored labels—this is quite the reverse
of how it is considered in sorts.

As such, a shape rule specified for a sort of line segments and labeled points
remains applicable if we extend the formalism to include plane segments or even
volumes (if all considered in three dimensions). Similarly, the shape rule would still
apply if we adapt the formalism to consider colored labels as attributes to the points,
or line segments for that matter.

Another important distinction is that first order logic-based representations gen-
erally make for an open world assumption—that is, nothing is excluded unless it is
done so explicitly. For example, shapes may have a color assigned. When looking
for a yellow square, logically, every square is considered a potential solution—
unless, it has an explicitly specified color, or it is otherwise known not to have
the yellow color. The fact that a color is not specified does not exclude an object
from potentially being yellow. As such, logic-based representations are automati-
cally considered to be incomplete. Sorts, on the other hand, hold to a closed world
assumption. That is, we work with just the data we have. A shape has a color only
if one is explicitly assigned: when looking for a yellow square, any square will not
do; it has to have the yellow color assigned. This restriction is used to constrain the
application of grammar rules, as in the use of labeled points to constrain the appli-
cation of shape grammar rules. Another way of looking at this distinction between
the open or closed world assumptions is to consider their applicability to knowl-
edge representation. To reiterate, logic-based representations essentially represent
knowledge; sorts, on the other hand, are intended to represent data—any reasoning
is based purely on present (or emergent) data.

a a b≤ ∧

65Sortal Grammars for Urban Design

Urban Design Grammars

Beirão, Duarte and Stouffs [18] present components of an urban design grammar
inferred from an extension plan for the city of Praia in Cabo Verde (Fig. 3). The
development of the urban grammar forms part of a large research project called City
Induction aiming at integrating an urban program formulation model [19], a design
generation model [20] and an evaluation model [21] in an ‘urban design tool’. The
central idea to the project is to read data from the site context on a GIS platform,
generate program descriptions according to the context conditions, and from that
program generate alternative design solutions guided by evaluation processes in
order to obtain satisfactory design solutions. The generation part considers urban
grammars in an extension of the discursive grammar schema developed by Duarte
[22] and adapted for urban design. The generation of urban designs is led by the se-
lection and application of urban patterns (denoted Urban Induction Patterns), each
formalized as a discursive grammar. The application of an urban pattern—or discur-
sive grammar—involves the application of urban design rules codified in a spatial
grammar according to the requirements of the urban program codified in a descrip-
tion grammar [23]. The spatial grammar may manifest itself as an augmented shape
grammar, allowing for various attribute data to be associated with the graphical ele-
ments, but may also include a raster-based string or set grammar, in order to allow
rule-based operations on both vectorized and rasterized GIS data.

Acknowledgments The author wishes to thank Ramesh Krishnamurti for his contributions to the
sortal research, and José Beirão and José Duarte for their collaboration on urban design grammars.

References

1. Stiny G (1980) Introduction to shape and shape grammars. Environ Plan B: Plan Des 7:343–
351

2. Stiny G (1981) A note on the description of designs. Environ Plan B: Plan Des 8:257–267
3. Carlson C, McKelvey R, Woodbury RF (1991) An introduction to structure and structure gram-

mars. Environ Plan B: Plan Des 18:417–426
4. Duarte JP, Correia R (2006) Implementing a description grammar: generating housing pro-

grams online. Constr Innov: Inf Process Manag 6(4):203–216
5. Duarte JP (2005) A discursive grammar for customizing mass housing: the case of Siza’s hous-

es at Malagueira. Autom Constr 14:265–275
6. Stouffs R, Krishnamurti R (2001) Sortal grammars as a framework for exploring grammar

formalisms. In: Burry M, Datta S, Dawson A et al. (eds) Mathematics and design 2001. The
School of Architecture & Building, Deakin University, Geelong, pp 261–269

7. Stouffs R (2008) Constructing design representations using a sortal approach. Adv Eng Infor-
matics 22(1):71–89

8. Mitchell WJ (1993) A computational view of design creativity. In: Gero JS, Mahel ML (eds)
Modeling creativity and knowledge-based creative design. Erlbaum, Hillsdale

9. Stiny G (1993) Emergence and continuity in shape grammars. In: Flemming U, Van Wyk S
(eds) CAAD futures 1993. North-Holland, Amsterdam, pp 37–54

66 R. Stouffs

10. Gips J, Stiny G (1980) Production systems and grammars: a uniform characterization. Envi-
ron Plan B: Plan Des 7: 399–408

11. Stiny G (1992) Weights. Environ Plan B: Plan Des 19: 413–430
12. Krishnamurti R, Stouffs R (2004) The boundary of a shape and its classification. J Design

Res 4(1)
13. Krishnamurti R, Stouffs R (1993) Spatial grammars: motivation, comparison and new re-

sults. In: Flemming U, Van Wyk S (eds) CAAD Futures ’93. North-Holland, Amsterdam,
pp 57–74

14. Woodbury RF, Radford AD, Taplin PN et al. (1992) Tartan worlds: a generative symbol
grammar system. In: Noble D, Kensek K (eds) ACADIA ’92

15. Krishnamurti R (1992) The maximal representation of a shape. Environ Plan B: Plan Des
19:585–603

16. Stouffs R (1994) The algebra of shapes. Ph.D. dissertation. Department of Architecture,
Carnegie Mellon University, Pittsburgh

17. Baader F, Calvanese D, McGuinness D et al (2003) The description logic handbook: theory,
implementation and applications. Cambridge University, Cambridge

18. Beirão J, Duarte J, Stouffs R (2009) An urban grammar for Praia: towards generic shape
grammars for urban design. In: Computation: The new realm of architectural design. Istanbul
Technical University, Istanbul, pp 575–584.

19. Montenegro NC, Duarte JP (2008) Towards a computational description of urban patterns.
In: Muylle M (ed) Architecture ‘in computro’, integrating methods and techniques. eCAADe
and Artesis Hogeschool Antwerpen, Antwerp, pp 239–248

20. Beirão J, Duarte J, Stouffs R (2008) Structuring a generative model for urban design: linking
GIS to shape grammars. In: Muylle M (ed) Architecture ‘in computro’, integrating methods
and techniques. eCAADe and Artesis Hogeschool Antwerpen, Antwerp, pp 929–938

21. Gil J, Duarte JP (2008) Towards an urban design evaluation framework. In: Muylle M (ed)
Architecture ‘in computro’, integrating methods and techniques. eCAADe and Artesis Hoge-
school Antwerpen, Antwerp, pp 257–264

22. Duarte JP (2005) A discursive grammar for customizing mass housing: the case of Siza’s
houses at Malagueira. Autom Constr 14(2):265–275

23. Stiny G (1981) A note on the description of designs. Environ Plan B: Plan Des 8(3):257–267

	Part I
	Design Science-State-of-the-Art
	Sortal Grammars for Urban Design
	Introduction
	Sortal Representations
	A Simple Example
	Sortal Grammars
	Sortal Behaviors
	Exemplar Grammar Systems
	Structure Grammars
	Tartan Worlds
	Augmented Shape Grammars

	Sortal Rules
	Urban Design Grammars
	References

