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Introduction

Information systems exist in a space based on connection: Weightless data stream 
through wires and float through air. Some parts of the system are visible—proces-
sors, routers, disks. But the things that flow move so fast they can’t be seen.

In system design, there is no site plan, no elevation, no perspective drawing, and 
so one might expect little visualization and spatial reasoning to supplement symbol-
ic language. But while information systems designers speak words and write code, 
they also make use of many of the techniques that originate in other design domains 
[1, 2], first and foremost diagramming [3–6]. What do and what should information 
systems designers visualize? In order to address this question in manageable parts 
and discover areas for future research, we will describe the practice of design as an 
interaction with a set of increasingly abstract spaces.

First, the geographic space that we inhabit. Designers can locate parts of a sys-
tem using GPS coordinates. But only a little is learned about a system from the 
geographic locations of the components. Instead, systems are commonly described 
in network space, which shows the structural and temporal connections between 
components. Stepping up a level of abstraction, the design process itself is a net-
work, each design the product of a series of linked decisions. Designs are imagined 
as points in design space, the space of all possible designs. While design space is a 
place in designers generate alternatives, these alternatives need to be judged in eval-
uation space. The dimensions in this space are design objectives. Creativity involves 
a shuttling between points in the design space and evaluation space: alternatives are 
compared against objectives, and new designs are generated by making new deci-
sions that fill out desirable regions of the evaluation space. The designs themselves 
are often represented as networks, which are mapped into representations on the 
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page, a part of geographic space. Hence the designer reasons in a variety of different 
spaces. The movement between spaces in the design process is seldom predeter-
mined, but instead a result of situation, contingency, expertise, and style.

In the rest of the paper, we will discuss each space in more detail. We will point 
out places where research on visualization and spatial reasoning might further our 
understanding of design activity.

Geographic Space

When information systems are represented in geographic space, it is usually in or-
der to show the location of particular components of a system: the network routers, 
the wires, the computers. Such locations are unimportant in many design situations. 
That is, even after installation, computers and network components can usually be 
moved without affecting the functions of the system. This movement affects the 
speed-of-light communication so little that differences in speed are undetectable.

There are, however, some situations in which geography is important. In the 
design of computer circuit boards, physical distance between wires can affect tim-
ing, heat dissipation, and the amount of radio interference. At a higher level, plans 
for wireless networks often show access points, and indicate with a circle the radio 
range within which other computers can connect.

Representation of systems in geographic space is usually straightforward, as the 
components can be placed on maps. An example of a design sketch that incorporates 
geography is shown in Fig. 1: the designer is showing how a bookstore might pro-
vide prospective customers electronic discount coupons. This example illustrates 
a broader phenomenon: wireless communication is giving renewed importance to 

Fig. 1  A novice designer 
sketch for a system to 
distribute electronic coupons 
for a local bookstore. The 
geographic information at 
the bottom of the diagram 
is linked to the topological 
information at the top of the 
diagram
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location. The visualization conventions for wireless networks are still evolving, and 
present opportunities for research on both the production and understanding of dia-
grams addressing mobility.

Network Space

In contrast to geographic space, network space has no coordinates. Instead, a thing 
is described solely in terms of its connections. These very abstract structures can be 
used to describe many different phenomena, and with respect to information sys-
tems, there are a wide range of network descriptions, both standard ones taught to 
practitioners [7] and informal ones invented and reinvented to fit particular purpos-
es [8]. These descriptions can be roughly classified into those that describe struc-
ture—what connects to what—and those that describe dynamics—the connecting 
order. Table 1 lists some of the many types of networks used to describe information 
systems.

Structural networks have as nodes people, computers, and software applications. 
These nodes have identifiers, and can be located in relation to neighbors, but there 
are seldom fixed locations. Figure 2 shows a typical sketch: the components are 
connected by lines that indicate interaction.

Other networks are constructed to indicate dynamics. In such networks, links 
often indicate the flow of a particular message from place to place. For example 
sequence diagrams, shown in Fig. 3a, show messages and the order of messages 
flowing from actor to actor in a system.

The vertical dimension of the diagram in Fig. 3a indicates time, whereas the 
horizontal dimension shows an instantaneous event, a message being passed. From 
traces of such messages, it is possible to specify the interfaces of an actor in the sys-
tem. That is, just as one can specify many of the duties of managers in companies by 
watching their interactions, the interactions of software components the messages 
provide guidance on how they should be built. Software tools can help automate 
this process, and it is normal for design tools to facilitate this. But current tools are 

Table 1  Different forms of networks used in designing information systems. The last column, 
S/D, indicates if the network is meant to represent structure or dynamics
Nodes Link basis Representation S/D
Computers Wired or wireless network 

connections
Network diagram S

People Frequency of communication Social network S
Documents, people Approval process Workflow diagram D
Software components Calling structure Call trees D
Software objects Inheritance Class diagram S
States of objects Events State diagram D
Actors Messages Sequence diagram D
Software, hardware Software installed on hardware Deployment diagram S
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less useful in the next phase, when designers decide how to structure the connec-
tions between components. To what extent can the optimal structure of a network 
can be automatically inferred from the intended interactions shown in a diagram? 
One exploratory approach uses techniques from the psychological similarity litera-
ture [9]: Fig. 3b shows such an inference [10].

Time can also be combined in a single diagram, as shown in Fig. 4. These dia-
grams are effective at making inferences about how long a sequence of overlapping 
tasks will take, as the positions of the nodes in the tree correspond to elapsed time 
[11]. Are such combined diagrams easier or harder to infer from than a set of dia-
grams, such as those shown in Fig. 3? On the one hand, multiple diagrams demand 
designers perform a difficult integration task in the mind, but on the other hand, 
they avoid confounding structural and temporal aspects of a problem. This issue 
is important because increasingly computer systems rely on multiple processors 

a b

Fig. 3  On the left, a a sequence diagram: arrows indicate messages running between the actors of 
the system, A, B, C, D and E. On the right, b shows a network that is consistent with the sequence 
diagram, derived automatically using a technique discussed in [9]

 

Fig. 2  Another example 
of the bookstore coupon 
problem, drawn by a different 
designer as a network
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running tasks in parallel. Designers need to decide which tasks can be run in such a 
way, and which must be run sequentially, and these decisions can have large effects 
on the performance and reliability of a system.

How do we reason about abstract networks? Network diagrams assume design-
ers are capable of disregarding spatial information to focus on only on topological 
information, but this assumption may be optimistic. Studies of interactions with 
network diagrams have shown that distance along a line in the diagram is perceived 
more readily than topological distance [12]. Moreover, errors in enumerating paths 
on a network correlate with distance [13]. And even the positions of nodes in a 
network, information that should be arbitrary, are often uniform, based on cultural 
associations: for example, most designers will show, as in Fig. 1, a network provider 
above a store [6]. Consequently, we wonder the extent to which Euclidean bias 
leads to inferior decision making in the design and diagnosis of systems. It may be 
that training focused on topology will improve design and comprehension of sys-
tems, or it may be that we need different representations for systems that take into 
account our cognitive apparatus.

The tools created in order to facilitate systems design, Computer Aided Software 
Engineering tools, are not used very much in practice [14]. Programmers stick with 
a process of informal diagram sketching followed by coding in word processors. 
Are their tools that are less proscriptive, that can help a programmer without impos-
ing onerous restrictions? Some think that tools that encourage reflective practice 
[15] will outdo existing tools by providing a gentler kind of guidance [16].

Even as software engineers struggle to find better ways of representing existing 
systems, emerging technologies present opportunities for new kinds of visualiza-
tion that combine network and geographic space. For example, roads today can be 
mapped, using sensor data, to show the average speed on a particular portion of the 
road. Roads can also be mapped according to their connectivity to wireless access 
points or cell phone towers. It becomes possible to reason about how to traverse a 
road system while maintaining connection [17, 18].

Fig. 4  A representation 
of a calling tree, in which 
the locations of the nodes 
indicate the elapsed time of 
the calls
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Design Space

Design involves a progressive series of decisions [19]. Understanding the decision 
tree can be important for two reasons: it can aid in the generation of new designs, 
and it can help record design decisions, which can be useful for joining members 
of a design team.

How, then, should the decision tree be imagined? Brooks recommends what he 
calls a design tree, in which design questions are represented as nodes. Nodes send 
out either independent edges or mutually exclusive edges. All independent edges 
need to be followed. Mutually exclusive edges force a choice: only one of these 
several edges should be followed to create a design [3].

For example, imagine creating a design for a new word processor. The problem 
can be broken up into how to design the program, and how to design the storage of 
files. The program might reside locally, on the cloud, or both. Likewise, the data 
may reside locally, on the cloud, or be replicated in both locations. Figure 5 shows 
the decision tree.

Fig. 5  A design tree for a system (for example a word processing application) that might have 
both local and cloud components. The tree is based on Brooks [3]: Solid lines indicate independent 
questions that all must be answered, and dotted lines indicate a mutually exclusive choice: only 
one path can be followed
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The tree becomes a way of exploring the space and documenting decisions: each 
design is constituted by the nodes traversed from the root on the left to the leaves 
on the right. Thus, the entire design space, all possible designs, is a tree of trees. 
That is, there are a finite number of choices that can made in the above tree—there 
are four ways program can be deployed, and independently four ways data can be 
deployed, and thus there are 16 possible design alternatives. The tree might be a 
useful discovery aid in enumerating possible designs.

There are other ways of thinking about exploring the total design space For ex-
ample, consider all the variations that have already been made. We might be able 
to explore the space by looking at the relative differences between the alternative 
designs of an individual designer, or better yet, the designs of a crowd of designers 
working independently. If a design can be expressed as a network, then the distance 
between two designs is just the graph edit distance [20]: the number of edges that 
would need to be either added or subtracted from the set [6]. Then, such a set of dis-
tances can be visualized using multidimensional scaling [21]. We show an example 
of this process in Fig. 6.

The above figure is derived from the designs of a crowd: that is, designers work-
ing independently. Each had created three variations, and the graph can be used to 
see how much individuals vary among themselves, and where the designs seem to 
converge.

Often design is done collaboratively, with developers modifying other’s work. 
For example, the website Scratch [22, 23] provides a way for children to remix, 
that is modify, each other’s programs, and thereby teach each other programming in 

Fig. 6  A set of design alternatives: each individual generated three alternatives: for example, 
7.1, 7.2, 7.3. The designs were compared based on their component connections, and the points 
mapped into the figure using multi-dimensional scaling. More detail on the method is discussed 
in [6]
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the process of creating animations and games. In order to encourage remixing, the 
developers of Scratch have added a visualization, based on the history of remixes. 
Clicking on a node recenters the graph and emphasizes the local neighborhood of 
remixes [24]: the result is shown in Fig. 7. This diagram also gives a sense of both 
the design tree for a project, and the overall design space, by which variations have 
led to. One can imagine combining the methods shown in Figs. 6 and 7, by showing 
not only who modified a project, but how much the project was modified.

Evaluation Space

Designs not only need to be generated, they also need to be evaluated. There are 
often both a set of requirements with a design activity, and an overall set of criteria 
that create a space in which each design can be evaluated. For example, a word 

Fig. 7  A visualization showing the chain of programmers that have modified each other’s code 
for a particular set of linked projects on the website Scratch: http://scratch.mit.edu/projects/Sprite-
Master/1054710, as of 5/17/2010

 



Showing Connection 31

processor will be required to fulfill a long list of requirement relating to editing, 
file saving, and formatting. Assuming these can be fulfilled, there are set of general 
criteria that often determine the overall effectiveness of the system. For instance, 
the 16 designs that can be generated from Fig. 5 each can be evaluated in relation to 
performance and flexibility; Fig. 8a shows several designs mapped into this evalu-
ation space.

The graph shows there is a tradeoff: local systems will perform better, but are 
less flexible. They are less flexible because users can’t reach over the network and 
retrieve a file the same way they can with a cloud-based application. The designs 
shown as gray dots are relatively worse, because they perform no better along any 
dimension than the systems shown as black dots. In particular, a remote program 
that works off of a file on my local workstation is worse with respect to both perfor-
mance and flexibility than an all local system or a hybrid system, in which both data 
and programming are distributed onto local and remote machines.

Designers fight over the criteria to be used in evaluation [25]. Someone who has 
learned from past experience that simplicity is an important systems virtue might 
substitute this criteria for flexibility, and would then choose a local solution, as 
shown in Fig. 8b. Furthermore, Brooks [3] points out that sometimes new criteria 
are discovered as part of the design process, and so there is often a shuttling back 
and forth between evaluation and generation, as ideas are generated, evaluated, and 
new solutions are sought that fill out parts of the design space. Criteria are some-
times added: for example, a team of programmers may decide that performance, 
flexibility and simplicity are all important. The designers then alternate between 
exploring the design space by making different choices in the tree shown in Fig. 5, 
and evaluating the solution in a three dimensional evaluation space, the two projec-
tions of which are shown in Fig. 8.

Not all designers work so rationally, and it is an open question how expert de-
signers who claim they work intuitively successfully find designs that satisfy design 
criteria. There is, however, a class of designers that are by definition systematic: 

Fig. 8  On the left, a an evaluation of four designs from the design space of Fig. 5, based on the 
criteria of Performance and Flexibility. On the right, b these same designs evaluated on Perfor-
mance and Simplicity
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machines. In fields from architecture to engineering [26], automated systems ex-
plore design spaces, seeking optimal solutions: The output of such systems can 
look remarkably creative [27]. A range of techniques often used to explore design 
space are called meta-heuristic multi-objective optimization techniques [28]; for 
example, genetic algorithms combine solutions to create new ones, and these so-
lutions are then considered in a multi-dimensional evaluation space so that a full 
range of alternatives are found. Such techniques are sometimes applied to computer 
programs themselves: that is, new software programs are generated automatically 
that fulfill specific design objectives [29]. Genetic algorithm techniques have also 
been applied to software architecture [30]. Figure 9 shows such a technique ap-
plied to a sensor network problem. The two criteria were: first, to minimize the cost 

Fig. 9  A genetic algorithms exploration of a sensor network design space. Each cell is a point in 
the Pareto-Optimal set. The shape that optimizes the material used, in the bottom right corner, is 
an example of an H-Tree, re-discovered by the algorithm, but previously used in several areas, 
including VLSI design [31]
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of the network, as measured by the total amount of material used, and second, to 
maximize the amount of coverage. The 100 solutions shown in Fig. 9 are all opti-
mal, meaning that there are no other solutions in the design space better than them, 
assuming all weights of the two criteria are equally valid.

When problems have a spatial aspect, then the chances of a correspondence be-
tween design space and evaluation space are increased. That is, a small change in 
the design space will generally result in a small change in evaluation space, and 
finding this correspondence can provide insights into the design process [32]. But 
in the case of an information systems design that involves a network, small changes 
in the network will often break the topology. Thus, a more indirect way of encoding 
the system is needed: for example, mapping each potential network onto a permu-
tation [33]. Such indirect ways are useful in that they guarantee that any network 
considered will fulfill the systems requirements. However, our ability to reason 
spatially about the process becomes difficult or impossible, and the exploration of 
a permutation space may require large amounts of computational power. An open 
question is whether or not the intuitions of an expert design might suggest other 
ways of encoding and traversing the highly abstract topological spaces of informa-
tion systems, perhaps through spatial reasoning. Such reasoning may exist even 
in the design of abstract systems, because simple spatial structures underlie many 
common cognitive tasks [34].

There is a non-automated approach that is showing promise. Crowdsourcing 
marketplaces (for example, [35]) make it possible to divide design tasks into small 
parts and allow thousands of human participants to engage in design activity. Can 
groups of independent designers tackle scale design problems? We saw before that 
humans can be used to generate individual alternatives that together may traverse a 
swath of the design space [6]. The crowd can also be used at a higher level to estab-
lish a correspondence between common situations and common technical mecha-
nisms that are useful in such situations. Figure 10 shows the consensus of 30 design-
ers about which technical mechanisms apply to a set of common situations [36].

When is the crowd better than an automated approach? When is close-knit team 
of designers better than a crowd? These are areas for exploration. It is possible that 
difficult problems may yield to a combination of traditional and new approaches to 
design; for example, close-knit team processes augmented by computational meth-
ods that perform evaluation, or crowd-based processes feeding unfinished ideas to 
expert designers for evaluation and refinement.

Concluding Thoughts

Design of information systems involves grappling with a set of abstract spaces. 
There is little visible in an information system, and much of the system is dynamic, 
transient. So the designer needs ways to get a handle on the system. Geography is 
important in few a situations, but in most situations connections are much more 
revealing. Therefore designers spend most of their time constructing networks that 
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together can describe the behavior of the system so that it can be constructed. Deci-
sions are made, and the end result of the decisions are alternative designs. These 
many designs together form a design space, and variations in this space can be gen-
erated intuitively, or systematically by making different decisions in a design tree. 
But these choices need to be evaluated: once evaluated, the designer often moves 
back into generation mode, trying to find new solutions that explore a desirable part 
of the design space.

The design process is not always systematic, nor is it always conscious. Simon’s 
rational decision approach [37] was critiqued by Winograd and Cross, among oth-
ers [5, 38]. Still, much of what Simon said still underlies the current conversations 
about design science [39–41]. What has been tempered in current conversation is 
the belief in universal approaches and solutions. Domains are distinct, situations are 
different, and the design process itself is political [42]. We have dampened our en-
thusiasm for a proscriptive sequence of design activity, because we know that new 
requirements will be uncovered as the process proceeds [3, 43]. Yet Simon pointed 
out the importance of visualization, and we are even more convinced today of its 
importance in design [1, 2]. Fixed diagrammatic conventions, as in [7], are useful 
because they allow common communication, but we don’t fully understanding how 

Fig. 10  The consensus evaluation of a set of designers asked to match technical mechanisms to 
common situations
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well these representations are understood by practitioners, whether alternative ones 
would be better, and how completely these representations cover the many abstract 
spaces that that need visual expression.

We know information systems design is both visual and verbal, and that abstrac-
tion is an important prerequisite to the production of novelty—generally, and in 
information systems design [44]. We know it is easy for novice designers to become 
confused by even simple abstract diagrams [11–12]. We also know that design-
ers are inventive, creating hybrid representations to apply to particular situations 
[6, 8]. As a field, we are still in the process of learning how to guide the novice, 
and augment the expert, by providing appropriate tools and techniques. Looking to 
the future, new programming languages geared toward children are helping create 
communities of computationally fluent youngsters [22]. The children’s collective 
community emulates the adult open source community, and both are examples of 
the growth of peer production in many facets of creative work [45]. Alongside this 
growth in human capacity is the growth of machine capacity, in clusters, desktops, 
laptops, tablets, and phones. Thus we anticipate fast increase in our collective cog-
nitive and computational capacity to design information systems. Representations 
that integrate individual, team, crowd, and machine may be the levers of distributed 
cognition.
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