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This book is dedicated to
my dear family and friends,
Staff Scientists of ICASE,1 NIA
and NASA as well as
my friends in academia and industry.

1 Our team of ICASE Staff Scientists has received the 2002 NASA Public Service Group
Achievement Award for outstanding research. ICASE has also helped to form a new National
Institute of Aerospace (Hampton, VA).



Foreword

Nanoscale mechanics is an exciting new field of fundamental sciences that
encompasses Nanomechanics, Mechanics of Nanocomposites, relevant areas of
Micromechanics as well as other disciplines (e.g., Molecular Mechanics, Molecular
Dynamics, Design of MEMS/NEMS, Multiphysics, and Biomechanics). This
approach defines a broad scope of related disciplines that contribute to a coherent
conceptual framework for the analysis of mechanical aspects in the behavior of
nanoscale material systems. This book is written for graduate and undergraduate
students, Post Docs, and other researchers in academia and industry. In this
volume, leading experts in their respective fields share own perspectives and the
most recent research concerning the still emerging nanoscale sciences. This edited
volume consists of two parts dedicated to Nanoscale Mechanics and Molecular
Dynamics reviewed in three chapters and an editorial review as well as Modeling
and Analysis of Nanocomposites, Graphene, and Biomedical Problems, which are
also described in three chapters and an editorial review.

Research on Nanomechanics of nanostructures is represented by Professor Boris
I. Yakobson of Rice University and his student, Professor Trajan Dumitrica of
University of Minnesota, as well as Dr. Vasyl Harik of Nanodesigns Consulting
(Wilmington, Delaware) and two researchers from Taiwan, Dr. W.H. Chen and Dr.
H.C. Cheng. The state-of-the-art research on nanocomposite materials is repre-
sented by Professor Catalin Picu of Rensselaer Polytechnic Institute. This edited
volume includes six chapters, two editorial reviews of recent research and a short
review of trends in recent publications on nanoscale mechanics.

The first three chapters introduce various models and new effects in the still
emerging field of Mechanics of Carbon Nanotubes starting with an editorial review
and classification of carbon nanotubes into four classes (i.e.,thin and thick lattice
shells, long high-aspect-ratio nanotubes, and beam-like carbon nanotube crystals
of small radii). In Chapter “Mechanics of Carbon Nanotubes,” a nanoscale analog
of Newton’s friction law and the effect of spatial exclusion of electrons (ESEE) at
nanoscale interfaces are also presented. Chapter “Mechanics of Carbon Nanotubes”
reviews numerous results of molecular dynamics simulations of carbon nanotubes
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and other nanostructures. The third chapter addresses the mechanical behavior of
carbon nanotubes and the dislocation dynamics in graphite lattice.

The three chapters on Mechanics of Carbon Nanotubes are seamlessly followed
by two chapters on nanostructured materials: graphene and nanocomposites. After
an editorial review of various nanostructures, chapter “Nanomechanics of Graphene
Sheets: Registry Matrix Analysis and Interfacial Sliding” presents new Registry
Matrix Analysis for interfacial sliding of graphene sheets in layered stacking as well
as planar cases of the SEE effect and the nanoscale analog of Newton’s friction law.
In chapter “Molecular Mechanics of Polymer Nanocomposites,” Dr. Picu shows
how to deduce elastic properties of nanocomposites directly from their molecular
structure. He addresses intriguing aspects of the recent breakthroughs in under-
standing the behavior of nanostructures and nanostructured materials as well as how
to enhance macroscopic properties of nanocomposites.

Nanostructured materials exhibit extraordinary properties suitable for traditional
and novel applications. However, nanotechnology of carbon nanotubes and their
safety have not been fully examined to ensure stable and safe nanotechnology
development (see chapter “Carbon Nanotubes and Safety: Classification of Carbon
Nanotubes, SizeEffects andPotential Toxicity of theHigh-Aspect RatioNanotubes”).
While many questions in the fundamental science of nanostructured materials are
being answered, the numerous mysteries of nanoscale effects remain unsolved. Safety
of nanotechnology is one of the key challenges.

In summary, the volume of invited papers covers a wide range of issues pertinent
to the development of a fundamental understanding of nanoscale effects in the
mechanical behavior of nanoscale material systems. Particular attention has been
given to the emerging trends in mechanics of carbon nanotubes, nanocomposites, as
well as nanoscale analysis of biological systems. A broad selection of topics and
methods has been provided to highlight Molecular Dynamics, Molecular
Mechanics,Monte Carlo methods, length-scale analyses and multiscale approaches.

Wilmington, Delaware V.M. Harik
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Preface

This volume on Mechanics of Carbon Nanotubes, mechanics of graphene and
nanocomposites, molecular dynamics simulations of carbon nanotubes and low-
dimensional carbon allotropes grew out of the state-of-the-art research carried out at
several research laboratories in the United States and Taiwan. A recent discovery of
a nanoscale analog of the Pauli principle involving an effect of the spatial
exclusion of π-electrons or the so-called SEE effect has prompted Nanodesigns
Consulting staff to share the new research findings of our technical reports with the
wider scientific community. Another recent development of the new Matrix
Registry Analysis for modeling and analysis of nanoscale interfacial sliding along
the atomic scale registry potentials and the energetically favorable atomic lattice
paths has allowed the Nanodesigns Consulting staff to analyze the nanoscale
controllability of graphene-based configurations for nanoscale electronic applica-
tions. These new developments should stimulate further scientific research and
discovery involving nanoscale sciences.

This edited volume follows the first volume of Trends in Nanoscale Mechanics
(2003), which grew out of discussions held at the NASA Langley Research Center
(LaRC), talks and events shared by many researchers. A team of NASA and NASA
contract scientists of the ICASE Institute was at the forefront of these scientific
activities as the new NASA programs in Nanotechnology, Nanostructured Mate-
rials, and Multifunctional Materials and Structures were being established. The goal
of these interactions was to foster collaborations between academic researchers and
a university-based ICASE institute, which has pioneered world-class computa-
tional, theoretical, and experimental research in disciplines that are important to
NASA. In 2002, a team of ICASE staff scientists and supporting staff have received
the NASA Public Service Group Achievement Award for their outstanding work.

Nanodesigns Consulting itself is a 2004 NASA spin-off from the NASA Langley
Research Center. It was formed to serve the research needs of the new NASA
founded URETI Institute (http://bimat.org), which was based at Princeton Uni-
versity. This URETI Institute still provides new publications that are available to
the public. The American Society of Mechanical Engineers (ASME) has invited the
editor of this volume to present a short course on new and novel research at its
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Annual Congress in 2012. This volume highlights some material from the 2012
ASME Short Course entitled New Trends in Nanoscale Mechanics. This new short
course is based on the technical reports published by Nanodesigns Press
(Wilmington, Delaware) of Nanodesigns Consulting. The editor has also authored a
2011 monograph entitled Mechanics of Carbon Nanotubes. New results from the
technical reports concerning nanoscale mechanics of graphene sheets, nanotech-
nology of carbon nanotubes and safety, as well as mechanics of nanodesigns are
briefly reviewed in this volume. Results of our technical reports on Nanodesign
Standards are beyond the scope of this volume except the well-known nanoscale
homogenization criterion and classification of carbon nanotubes. This volume also
presents new research results of world-class researchers from Rensselaer Poly-
technic Institute, Rice University and Taiwan.

The editor gratefully acknowledges resources of Nanodesigns Consulting along
with the help and support of Springer staff and Nanodesigns Press.

Wilmington, Delaware Vasyl Harik
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Part I
Nanoscale Mechanics

and Molecular Dynamics



New Trends in Nanoscale Mechanics
of Carbon Nanotubes

Editor’s Notes

Vasyl Harik

Abstract Editor’s notes provide a few examples of the nanoscale modeling and
novel applications of carbon nanotubes in nanotechnology, e.g., the carbon nanotube
based AFM probes, nanodevices and nanocomposites in order to introduce and
motivate reviews presented in chapters “Mechanics of Carbon Nanotubes,”
“Molecular Modeling and Simulation of Physical Properties and Behavior of
Low-Dimensional Carbon Allotropes” and “Nanomechanics: Physics Between
Engineering and Chemistry” on the still emerging field of nanomechanics.

Introduction

Advances in the development of conceptual framework of nanomechanics are
illustrated in this volume starting with chapter on Mechanics of Carbon Nanotubes
by reviewing and re-evaluating some of the key models and the associated concepts,
which are discussed in chapters “Mechanics of Carbon Nanotubes,” “Molecular
Modeling and Simulation of Physical Properties and Behavior of Low-Dimensional

An erratum for this chapter can be found at DOI 10.1007/978-94-017-9263-9_10.

Dr. V. Harik, Scientist at Nanodesigns Consulting, a former ICASE Staff Scientist at the NASA
Langley Research Center (Hampton, VA), author of a monograph and a short course entitled
“Mechanics of Carbon Nanotubes” © (2001) presented at the ASME Annual Congress (2001
and 2004) and a co-editor of two Kluwer volumes: “Trends in Nanoscale Mechanics” (2003)
and “Micromechanics and Nanoscale Effects” (2004).

Nanodesigns Consulting is a 2004 spin-off from the NASA Langley Research Center, Hampton,
Virginia. Its Staff consulted for the Princeton-based NASA-funded URETI Institute for
Nanostructured Bio-inspired Materials (http://bimat.org), National Institute of Aerospace
(Hampton, VA), University Space Research Association (USRA) and NASA NAIC (Atlanta, GA).

V. Harik (&)
Nanodesigns Consulting, P.O. Box 5303, Wilmington, DE 19808-5303, USA
e-mail: Harik@nanodesignconsult.com

© Springer Science+Business Media Dordrecht 2014
V. Harik (ed.), Trends in Nanoscale Mechanics, DOI 10.1007/978-94-017-9263-9_1
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Carbon Allotropes” and “Nanomechanics: Physics Between Engineering and
Chemistry” in the context of more recent research [1–17]. From the historical and
epistemological perspectives it is useful to note some of the key contributions to the
understanding of the mechanical behavior of carbon nanotubes:

• 1991—S. Iijima (NEC Labs) has discovered multiwall carbon nanotubes.
• 1993—S. Iijima and T. Ichihashi (NEC Labs) have discovered the single wall

carbon nanotubes (SWNT) and used the concept of ‘a shell’ (see Fig. 1).
• 1993/94—R.S. Ruoff and J. Tersoff’s team at IBM has done first theoretical

modeling of carbon nanotubes and carbon nanotube crystals.
• 1996—M.M.J. Treacy, T.W. Ebbesen and J.M. Gibson have carried out the first

experimental testing of carbon nanotubes with the atomic force microscope (AFM).
• 1996—B.I. Yakobson, C.J. Brabec and J. Bernholc have performed molecular

dynamics (MD) simulations of the axial buckling and twisting of carbon
nanotubes. They have successfully used the shell-based model.

• 1997—C.M. Lieber and his team at Harvard have done experimental testing of
vibrating carbon nanotubes similar to the AFM experiments.

• 1998—Many scientists have tested, modeled and analyzed single wall carbon
nanotubes (e.g., Ajayan, Brenner, Dai, Halicioglu, Lordi, Ru, Ruoff, Sinnott,
Schadler, Wagner, White and others).

• 2001—V.M. Harik (ICASE Institute, NASA Langley Research Center) has
introduced classification of carbon nanotubes into four classes1 (i.e., thin and
thick lattice shells, long high-aspect-ratio nanotubes and the beam-like carbon
nanotube crystals of very small radii).

Fig. 1 TEM image of a
single wall carbon nanotube
(after [2])

1 In 2001 V.H. Crespi [3] and his group at Penn State University and V.M. Harik at NASA
Langley Research Center have independently predicted degeneration of CNT lattice shells into the
thin nano-beams around the critical value of the normalized CNT radius, RNT/a ≈ 1, Crespi had
predicted breaking of “the symmetry of sp3 bonds in tubular geometries” in the smallest
nanotubes. Also see V.M. Harik, Solid State Communications, 120(7–8), 331–335 (2001).

4 V. Harik
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Figure 1 is showing a TEM image of a single wall carbon nanotube (SWNT),
which is representative of experimental images in Iijima and Ichihashi experiments
in 1993 at NEC Labs in Japan. It is important to note from the experimental and
theoretical points of view that the CNT lattice structure shown in Fig. 1 is also
representative of the whole class of SWNTs having similar geometric parameters,
which belong to the specific range of structural parameters of SWNTs having
similar deformation response (see chapter “Mechanics of Carbon Nanotubes”). The
2001 classification of carbon nanotubes is essential for the characterization of
mechanical behavior of CNT shells and evaluation of ranges of applicability for
various equivalent-continuum models for SWNTs (see chapter “Mechanics of
Carbon Nanotubes”), and carbon nanotube based nanocomposites (Fig. 2).

The structure of carbon nanotubes and the CNT based materials have multiple
length scales (see chapter “Mechanics of Carbon Nanotubes”), which affect their
structure-property relationships and their multiscale modeling both in different
classes of CNT lattice shells and in nanocomposites. Figure 2 illustrates different scales

Fig. 2 Schematics of the length scales involved in the mechanics of carbon nanotubes and
nanostructured materials (e.g., nanocomposites, nanotube-modified polymers and multifunctional
membranes) and other areas of sciences (from the NASA LaRC Nanotechnology database).
Figure 2 was developed in 2000–2001 during the establishment of new Nanotechnology and
Multifunctional Materials and Structures Programs at the NASA Langley Research Center
(Hampton, Virginia) and the ICASE Institute (i.e., Institute for Computer Applications in Science
and Engineering or ICASE), which was transformed in 2002 into National Institute of Aerospace
near the NASA Langley Research Center (NASA LaRC, Hampton, Virginia) with the assistance of
its supporting staff and some of its staff scientists
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in the structure of nanostructured materials. macromechanical material properties of
the CNT/polymer nanocomposites depend on their microscopic and nanoscale struc-
ture (see chapter “Molecular Mechanics of Polymer Nanocomposites”). The struc-
ture-property relationships in nanocomposites are different at different length scales.
The content of many concepts and definitions including that of a representative vol-
ume elements either change or have to be adjusted at the nanoscale level. While on
macroscopic level electromagnetic field effects are a matter of choice, at nanoscale
level various field effects influence mechanical interactions (e.g., van der Waals’
force, atomic lattice registry potentials, stiction, and the so called effect of the spatial
exclusion of electrons (ESEE),2 see chapter “Mechanics of Carbon Nanotubes”).

Carbon Nanotube Based AFM Probes

Atomic force microscopy (AFM) allows one to characterize submicron details in
the profiles of micro-channels (Fig. 3). The profile obtained by using a multi wall
carbon nanotube (MWNT) probe visibly has finer details due to the smaller size of a
MWNT. Resolution of the nanoscale probes (e.g., carbon nanotube based AFM
probes) also depends on the size and the aspect ratio of carbon nanotubes (see
chapter “Mechanics of Carbon Nanotubes”). Design of AFM probes (Fig. 3) can be
optimized by selecting either SWNTs or MWNTs belonging to different classes of
carbon nanotubes described in chapter “Mechanics of Carbon Nanotubes”.

Resolution of nanoscale details of the submicron surface roughness in the 6 μm
wide silicon micro-channel shown in Fig. 3 has benefited from the thin size of the
MWNT based AFM probe (Fig. 4). The accuracy of the AFM line scan profiles
shown in Fig. 5 is obviously affected by the difference in the size of a silicon probe
and the MWNT probe, which is better suited for nanoscale characterization. The
MWNT and SWNT AFM probes of high aspect ratio can easily deform and buckle
(see chapter “Mechanics of Carbon Nanotubes”). Deformation of such AFM probes
is a part of characterization of the deep nanoscale channels shown in Fig. 5.

2 A new study of the so called effect of the spatial exclusion of electrons (ESEE) or the SEE effect
is presented in V.M. Harik, Mechanics of Carbon Nanotubes, Nanodesigns Press, Newark,
Delaware, 2011 (see www.amazon.com and www.nanodesignconsult.com).

6 V. Harik
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Deformation of Carbon Nanotubes

Deformation of carbon nanotube based AFM probes (Fig. 4) involves a variety of
vibration modes (Fig. 6) and buckling modes (Fig. 7). Chapter “Mechanics of
Carbon Nanotubes” reviews basic models for the high aspect ratio carbon nano-
tubes. Chapters “Nanomechanics: Physics Between Engineering and Chemistry”
and “Molecular Modeling and Simulation of Physical Properties and Behavior of
Low-Dimensional Carbon Allotropes” present examples of the molecular dynamic
(MD) simulations for different types of deformation of carbon nanotubes. Figures 6
and 7 illustrate molecular mechanics simulations.

Fig. 3 3D profiles of a 6 μm wide micro-channel obtained by using a silicon probe and a MWNT
probe (after [4]). Insets show submicron details along the left edge and in the middle of a micro-
channel having nanoscale roughness

Fig. 4 An SEM image of a
MWNT based AFM probe,
which is aligned with respect
to the surface of the apex of
the silicon tip (after [4]). Note
the periodic dark spots of
weaker regions

New Trends in Nanoscale Mechanics of Carbon Nanotubes 7

http://dx.doi.org/10.1007/978-94-017-9263-9_2
http://dx.doi.org/10.1007/978-94-017-9263-9_2
http://dx.doi.org/10.1007/978-94-017-9263-9_4
http://dx.doi.org/10.1007/978-94-017-9263-9_3
http://dx.doi.org/10.1007/978-94-017-9263-9_3


Axial Buckling of Carbon Nanotubes with Defects

Axial buckling of carbon nanotubes occurs in many important applications. The
buckling of nanotubes depends on their geometric parameters and the atomic lattice
structure as shown in chapters “Mechanics of Carbon Nanotubes” and “Molecular
Modeling and Simulation of Physical Properties and Behavior of Low-Dimensional
Carbon Allotropes”. The buckling and vibration modes illustrated in Figs. 6 and 7
are applicable to the deformation of carbon nanotubes belonging to only one class
of high aspect ratio carbon nanotubes. Carbon nanotubes belonging to other classes
(see chapter “Mechanics of Carbon Nanotubes”) have different buckling modes.
Defects in the atomic lattice structure of carbon nanotubes affect their buckling
behavior (see Figs. 8 and 9).

The buckling deformation of atomic lattices shown in Figs. 8 and 9 involves greatly
distorted sections of armchair and zig-zag carbon nanotubes, which cannot be easily
represented by the so called equivalent continuum models (see chapter “Mechanics

Fig. 5 AFM images and the line scan profiles of and a MWNT based AFM probe (after [4])

8 V. Harik
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of Carbon Nanotubes”), because these sections of carbon nanotube lattices do not
satisfy the nanoscale homogenization criterion (see chapter “Mechanics of Carbon
Nanotubes”). This criterion states that the length of carbon nanotubes represented by
any continuum model should be an order of magnitude larger than the size of one
carbon ring in their atomic lattice. The length of carbon nanotubes also affects its
bucklingmodes (see Figs. 10 and 11). Amore detailed review of the role of geometric
parameters on the mechanical behavior of SWNT atomic lattices including the length
and the aspect ratio of carbon nanotubes is presented in chapter “Mechanics of Carbon
Nanotubes” and in the 2011 monograph by the editor.

Fig. 6 Lower frequencies (THz) and the corresponding eigenmodes of a vibrating high aspect
ratio carbon nanotube (after [5]). For the limitations of the shell and beam models see
chapter “Mechanics of Carbon Nanotubes”
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Fig. 8 Buckling behavior of armchair SWCNT with single vacancy (a) and Stone–Wales
(b) defects (after [6])

Fig. 7 Buckling modes of a high aspect ratio carbon nanotube corresponding to the buckling
bifurcation points (after [5]). For the limitations of the shell and beammodels see chapter “Mechanics
of Carbon Nanotubes”

10 V. Harik
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Fig. 9 Buckling behavior of zig-zag SWCNT with a single vacancy (a) and the Stone-Wales
defects (b) (after [6])

Fig. 10 Influence of the
carbon nanotube length on its
buckling modes for a zig-zag
(6, 0) SWNT (after [6])
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Radial Deformation of Carbon and Boron Nanotubes

Radial deformation of carbon nanotubes is very important in the design of nano-
scale devices3 and in the study of the effects of van der Waals forces on the
deformation of SWNT atomic lattices (see chapter “Mechanics of Carbon
Nanotubes”). Examples of radial deformation of boron nanotubes are shown in
Fig. 12. The illustrated stages in the radial compression of nanotubes composed of
either carbon or boron atoms are important for the understanding of nanodevices
(Fig. 13) and the formation of carbon nano-ribbons.

Carbon Nanotube Based Nanodevices

Nanoscale devices can be made of carbon nanotubes, SWNT and MWNT, such as
AFM probes (Fig. 4), two carbon nanotubes (Fig. 14) or a material system involving
carbon nanotubes as one of its parts (Fig. 13). Chapter “Mechanics of Carbon
Nanotubes” presents a review of scaling laws for SWNTs and their classification into
four classes, which can be used for the optimization of AFM probes. Nanodevices
based on two SWNTs (Fig. 14) or on MWNTs involve interfacial sliding affected by
the lattice registry interlocking, the SEE effect (see chapter “Mechanics of Carbon
Nanotubes”, [11]) and registry potentials [11] as well as generation of phonons (see
chapter “Mechanics of Carbon Nanotubes”) [11, 12] and excitons (Fig. 15).

In carbon nanotubes higher Coulomb interactions may result in the generation of
excitons (Fig. 15, i.e., a strongly bound electron-hole pair [10]). The size of excitons

Fig. 11 Variations of the force for radially compressed and buckling boron (BN) and carbon
nanotubes (after [7])

3 V.M. Harik, New Trends in Nanoscale Mechanics © 2012, Lecture notes for a short course,
2012 Annual Congress—IMECE, American Society of Mechanical Engineers (ASME), Houston,
Texas, November 11, 2012 (Nanodesigns Press, Newark, Delaware, 2012).
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distributed at a chiral angle along circumference of SWNT shown in Fig. 15 is
slightly larger than the diameter of SWNT. Interfacial sliding of the adjacent lattice
shells in the multi wall carbon nanotubes can generate various lattice phonons [12],
which have been discussed in chapter “Mechanics of Carbon Nanotubes” along
with the nanoscale analog of Newton’s friction law [11, 13, 14]. The process of
closing of the carbon nanotube is illustrated in Fig. 16 by the molecular dynamic
simulations [17].

Fig. 13 A sketch of a typical device geometry for a SWNT connected to metallic contacts such as
gold in [111]-orientation. Here Heff corresponds to the effective device Hamiltonian including the
Hamiltonian of the isolated device Hdev, and the self-consistent potential Uscf. The self-energy
matrices ΣS,D are introduced to account for the device-contact couplings. VS, VD, and VG are the
source, drain, and gate terminal potentials, respectively (after [8]). V.M. Harik, New Trends in
Nanoscale Mechanics © 2012, Lecture notes for a short course, 2012 Annual Congress—IMECE,
American Society of Mechanical Engineers (ASME), Houston, Texas, November 11, 2012
(Nanodesigns Press, Newark, Delaware, 2012)

Fig. 12 The compressive deformation of boron nanotube (BN): a 9 %; b 17 %; c 27 %; and d 30
% (after [7])
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Chapters “Mechanics of Carbon Nanotubes” and “Molecular Modeling and
Simulation of Physical Properties and Behavior of Low-Dimensional Carbon
Allotropes” present molecular dynamics simulations of carbon nanotubes and other
fullerenes with the results similar to those in the latest publications (see Fig. 17 [1]).
It should be noted that the buckling shape modes simulated for a (5, 5) armchair
carbon nanotube in Fig. 17 are noticeably affected by the thick lattice shell structure

Fig. 15 Real space probability distribution / re; rhð Þj j2 of the electron (re) with respect to the hole
(rh) for the lowest energy singlet exciton in various SWNTs. Here electron and hole are both at
even sites, respectively. In order to make the distribution more visually, the structure of SWNTs is
an unrolled graphene plane. a (8, 0) tube, b (8, 1) tube, c (8, 4) tube but only considering the
summation from the lowest q1 and q2 subbands (after [10])

Fig. 14 Positions of the inner tube at different logic states in SRAM configuration (after [9])
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Fig. 16 Snapshots of the molecular dynamics simulations of the closing process of the (10, 0)
SWCNT with 21 atomic layers taken with the simulation times of a 0 ps, b 10 ps, c 20 ps, and
d 200 ps. Side view of (d) is shown in (e). The atoms in (d) with bright contrast are illustrated to
show defects (after [17])

Fig. 17 Snapshots of the molecular dynamics simulations of buckling shape modes for a (5, 5)
armchair carbon nanotube (with the thick lattice shell) shown for various aspect ratios from three
different viewpoints [1]
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of this nanotube with the relatively small radius according to the classification of
carbon nanotubes (see chapter “Mechanics of Carbon Nanotubes”). The simulation
results [1] show the buckling shape modes for various aspect ratios of a specific
carbon nanotube. This (5, 5) armchair carbon nanotube demonstrates the beam-like
buckling mode at the aspect ratio of 8, which is below the 1/10 threshold separating
the beam and shell buckling modes (see chapter “Mechanics of Carbon Nanotubes”
for more details).

Nanomechanics of Graphene Sheets

Nanomechanics of graphene sheets is very important for the design of graphene-
based nanoscale devices and graphene-based electronics. The structure of carbon
nanotubes has been often illustrated by rolling up a graphene sheet cut at different
angles as shown in Fig. 15. The atomic structure of graphene lattice sheets4 will be
further discussed in chapter “Nanomechanics: Physics Between Engineering and
Chemistry”. Ranges of applicability of different estimates for the effective thickness
of graphene sheets rolled into carbon nanotubes varying between 0.66 and 3.4 Å
are discussed in chapter “Mechanics of Carbon Nanotubes” along with their
dependence on the balance between the elastic interactions and van der Waals
forces [11]. The nanoscale analog of Newton’s friction law used for MWNT in
chapter “Mechanics of Carbon Nanotubes” can be also used for the analysis of
interfacial sliding of graphene sheets as will be shown in chapter “Nanomechanics:
Physics Between Engineering and Chemistry”. The onset of the interfacial registry
between a carbon atom ‘asperity’ in one graphene sheet and a carbon ring potential
barrier through a C–C bond of the adjacent graphene sheet is associated with the
initiation of the so called effect of the spatial exclusion of electrons (SEE) during
interaction between the spatially-distributed π−π electrons along the adjacent
graphene sheets [11].

Nanotube/Polymer Interfaces in Nanocomposites

The nanotube/polymer interface plays an important role in the stress transfer in
nanocomposites. The strength of interfacial adhesion depends on the surface area of
the SWNT/polymer interface, its roughness, interlocking of asperities and molec-
ular bonding of the nanoscale interface [11, 13, 14]. An example of a fracture
surface with some features of the nanotube/polymer interface (segments of carbon

4 Nanoscale mechanics of graphene sheets and flakes has been reviewed in chapter
“Nanomechanics of Graphene Sheets: Registry Matrix Analysis and Interfacial Sliding” and in
Ref. [10], which includes a Chapter on electronic energy barriers in graphene, deformed Fermi
cones, material properties, interfacial sliding and nanoscale friction, lattice waves, i.e., phonons, etc.
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nanotubes pulled-out of polymer and an empty hole) is shown in Fig. 18. The
nanoscale modeling of the pull-out process of a carbon nanotube out of polymer or
glass materials (Fig. 19) can be quite complex as discussed in chapter “Mechanics
of Carbon Nanotubes”. Interfacial sliding of a nanotube depends on the interfacial
interactions and the atomic lattice structure of nanoscale interfaces (see chap-
ter “Mechanics of Carbon Nanotubes” [11, 13, 14]).

Fig. 18 An image of a fracture surface of a carbon nanotube based polymer nanocomposite
showing segments of carbon nanotubes and an empty hole after a carbon nanotube was pulled out
(the hole is marked by a white arrow, after [15])

Fig. 19 Molecular model of the nanoscale interface between the borosilicate glass and a carbon
nanotube (after [16])
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Mechanics of Carbon Nanotubes

A Review of Basic Models and New
Nanoscale Effects

Vasyl Harik

Abstract This chapter reviews basic models and new effects in the still emerging
field of Nanoscale Mechanics and one of its essential parts: Mechanics of Carbon
Nanotubes. Experiments with carbon nanotubes, theoretical models and modeling
(i.e., molecular dynamics simulations), classification of carbon nanotubes into four
classes (i.e., thin and thick lattice shells, long high-aspect-ratio nanotubes and
beam-like carbon nanotube crystals of small radii) have been reviewed. Classifi-
cation of carbon nanotubes is important for the safety of nanotechnology and
evaluation of health effects. Interfacial sliding of the adjacent lattice shells in the
multi wall carbon nanotubes (MWNT) has been discussed along with a nanoscale
analog of the Newton’s friction law and the effect of spatial exclusion of electrons
(ESEE) at the interface, which effectively can be viewed as a nanoscale analog of
the Pauli’s exclusion principle. Examples of lattice waves, i.e., phonons, in carbon
nanotubes have been presented. Ranges of applicability of estimates for the
effective thickness of carbon nanotubes varying between 0.66 and 3.4 Å have been
examined along with their dependence on the balance between the elastic interac-
tions and van der Waals forces.

Dr. V. Harik, former ICASE Staff Scientist at the NASA Langley Research Center (Hampton,
VA), Principal Scientist at Nanodesigns Consulting, author of a monograph and a short course
entitled “Mechanics of Carbon Nanotubes” © (2001) presented at the Annual ASME Congress
(2001 and 2004) and a co-editor of Kluwer volumes: “Trends in Nanoscale Mechanics” (2003)
and “Micromechanics and Nanoscale Effects” (2004).

Nanodesigns Consulting is a 2004 spin-off from the NASA Langley Research Center, Hampton,
Virginia. Its Staff consulted for the Princeton-based NASA-funded URETI Institute for
Nanostructured Bio-inspired Materials (http://bimat.org), National Institute of Aerospace
(Hampton, VA), University Space Research Association (USRA) and NASA NAIC (Atlanta).

V. Harik (&)
Nanodesigns Consulting, P.O. Box 5303, Wilmington, DE 19808-5303, USA
e-mail: Harik@nanodesignconsult.com

© Springer Science+Business Media Dordrecht 2014
V. Harik (ed.), Trends in Nanoscale Mechanics, DOI 10.1007/978-94-017-9263-9_2

19

http://bimat.org


A Historical Perspective

After the discovery of multiwall carbon nanotubes in 1991 by S. Iijima and single
wall carbon nanotubes in 1993 by Iijima and Ichihashi of NEC laboratories in Japan
[1, 2], first theoretical modeling of carbon nanotubes and carbon nanotube crystals
was carried out at the IBM Watson Research Center in 1993 [3, 4]. First vibration
experiments with carbon nanotubes were carried out in 1996 [5, 6] at the time of
first molecular dynamics (MD) simulations of buckling of carbon nanotubes [7, 8].
The nomenclature for the physical description of carbon nanotubes and their chi-
rality (e.g., armchair and zig-zag) has been proposed in 1992 [9]. Classification of
carbon nanotubes into four classes1 of thin and thick lattice shells, long high-
aspect-ratio nanotubes and beam-like carbon nanotube crystals of small radii
(Fig. 1) has been developed in 2001 [10, 11]2 at the NASA Langley Research
Center in Hampton, Virginia.3

Length Scales in the Structure of Carbon Nanotubes

The atomic structure of carbon nanotubes (CNT) consists of six carbon atoms
arranged in hexagonal carbon rings (Fig. 2). The key length-scale parameters that
describe the atomic structure of CNT lattices include the length of the covalent
σ-bond, lC–C, 1.41–1.44 Å, the size of a carbon ring, a = 2.46 Å, the radius, RNT, of
CNT lattices (*0.2–2 nm, for the single wall nanotubes, and *35 nm for the multi
wall nanotubes) or the diameter, dNT, and their length, LNT, varying between few
nanometers and 100 s of microns (even a few centimeters).

The length scale associated with the length of the C–C bond, lC–C, is important
for the evaluation of relative deformation of C–C bonds in the elastic interactions,
dynamics vibrations and structural deformations, as well as for the scaling analysis
of the energy distribution of covalent electrons and the out-of-plane π-electrons
[12]. The C–C bonds can be stretched from its minimum size of 1.41 Å in the
graphene sheets to longer lengths of about 1.62 Å in the carbon nanotubes of
smaller radii [12]. The length scale associated with the size of a carbon ring, a, is

1 Classification of new types of materials is important in any field of science, especially, for the
highly promising carbon nanotubes, which can be separated into four distinct classes associated
with quite distinct geometric parameters and some similarities with asbestos though.
2 This research results have been first published at NASA and its ICASE Institute; see Harik,
V.M., 2001. Ranges of applicability for the continuum-beam model in the constitutive analys is of
carbon nanotubes: nanotubes or nano-beams? (NASA/CR-2001-211013, NASA Langley
Research Center), Hampton, Virginia, USA. Harik, V.M., 2001. Mechanics of carbon nanotubes
© 2001. ASME Education Institute (Notes for a Short Course, a 2002 CD and a 2001 video),
American Society of Mechanical Engineers, New York, NY.
3 For more historical perspectives and some epistemological notes about the concepts of emerging
Nanoscale Mechanics see author’s footnotes for the references cited in this chapter.
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essential for nanoscale homogenization4 [11, 12] and analysis of relative defor-
mation of graphene sheets (Fig. 2) and segments of carbon nanotubes (Fig. 3 and
Table 1).

The diameter-to-length aspect ratio, dNT/LNT, of the carbon nanotube lattice
(Fig. 3) is an important structural parameter in many applications such as in the
nanotube based AFM probes and in the buckling process of CNT lattices [10–12].
The ratio of the radius, RNT, to the carbon ring size, a, i.e., RNT/a, or the normalized
circumference, 2πRNT/a, are important in the evaluation of radial deformation of
carbon nanotubes and the radial buckling of CNT lattices [7–11]. Separation and
collapse of the adjacent length scales result in different classes of CNT lattices
(Fig. 1): thin nanotubes, thick nanotubes, nano-beams of small radii and the high
aspect ratio nanotubes [10–12].

Nanoscale Homogenization Criterion

The material properties of different classes of carbon nanotubes and their CNT

lattices become unique and independent of their size or the number of atomic unit
layers shown in Fig. 3, for instance, when the CNT atomic structure satisfies a
nanoscale criterion for the unique averaging (or homogenization) of the material
properties over a nanoscale volume or an extended surface:

Fig. 1 Classification of carbon nanotubes (NT or CNT) into four classes (after [12]): the thin CNT

shells (Class Ia), the thick CNT shells (Class Ib), the long CNT shells (Class II, i.e., the high aspect
ratio CNT shells) and the CNT nano-beams and CNT nanocrystals (Class III)

4 Nanoscale homogenization itself and nanoscale homogenization criteria [11, 12], in particular,
are very important for the application of continuum concepts (e.g., continuous surface or a
properly-defined number of representative volume elements for the volume-averaging for the
uniquely-defined material properties of any material having a discrete atomic lattice structure) to
the CNT lattice structures (for more details, see the next part of this chapter).

Mechanics of Carbon Nanotubes 21



Fig. 2 Atomic lattice structure of a graphene flake (Nanoscale mechanics of graphene sheets and
flakes has been presented in Ref. [12], which includes a chapter on electronic energy barriers in
graphene, deformed Fermi cones, material and mechanical properties, interfacial sliding and
nanoscale friction, lattice waves, i.e., phonons, etc.) and that of carbon nanotubes with the
hexagonal carbon rings of carbon atoms and a schematic of the electron distribution in the C–C
bonds. The (n, m) lattice structure is based on the unit vectors a1 and a2

Fig. 3 Schematic of a carbon
ring with the length of the C–C
bond, lC–C = 1.41–1.42 Å, and
the size of 2.46 Å, and the
atomic lattice structure of an
armchair (10, 10) carbon
nanotube of diameter,
dNT = 13.6 Å, and the length,
LNT = 52.5 Å, which represent
the four length scales involved
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LNT � a; ð1Þ

or LNT/a >> 1, where the length of a CNT lattice, LNT, should be considerably greater
than the size of a carbon ring, a = 2.46 Å, its smallest structural element [10–12].
The inequality in the homogenization criterion (1) means roughly an order of
magnitude difference, i.e., LNT/a ≈ 10. It turns out that the molecular structure of the
fullerene C60, i.e., the Buckminster buckyball with a ≈ 2.46 Å, represents the
smallest stable nanostructure [12], the surface of which satisfies the aforementioned
homogenization criterion (1) due to Harik [10–12].

Classification of Carbon Nanotubes

Carbon nanotubes with large values of radius, RNT, have small curvature, i.e.,
1/RNT << 1, and atomic lattices with elastic properties similar to the graphene sheets
[12]. This class of thin CNT lattice shells (Fig. 1) satisfies, the following criterion for
the ratio of the effective thickness, hNT, of CNT lattices to their radius, RNT:
hNT/RNT << 1 [10, 11]. The two adjacent length scales: RNT and the effective
thickness, hNT (or the bond length, lC–C) are well separated, and the bond length,
lC–C. plays virtually no role in the global deformation response for small strains.

Deformation of single wall carbon nanotubes having large values of radius,
RNT ¼ a

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ m2 þ nm

p
, can depend on their chirality defined by the (n, m) pair

and the following scaling condition for the class of thin CNT lattices (Fig. 1):

hNT � a
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ m2 þ nm

p
ð2aÞ

or

Table 1 The length scales in the structure of single wall carbon nanotubes

Parameters Typical values Ranges of valuesa

C–C bond length, lC–C 1.41–1.42 Å 1.41–1.62 Å

Carbon ring size, a 2.46 Å *2.22–2.70 Å

Effective thickness, hNT 0.66–3.4 Å Load path dependent

Diameter, dNT *1 nm 4–50 Å

Length, LNT

Length, LNT

*20–100 nm
100 nm–1 μm–3 cm

Vary in AFM/NEMS
Vary in nanocomposites

a Ranges of values of the C–C bond length, lC–C are associated with the bond stretching in the CNT

lattices of small radii. The carbon ring size, a, may vary under the tensile and compressive loading
and the CNT lattice corrugation. The effective thickness, hNT, depends on the type of loads and the
load path through thermodynamic states of the deformation process (for details see [12])
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hNT
RNT

¼ 2phNT
lC�C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn2 þ m2 þ nmÞp � 1: ð2bÞ

The advantage of this form is evident when single carbon rings are deformed in
the (n, m) CNT lattices, and the nanoscale homogenization criterion (1) for the
carbon rings is more difficult to apply. Carbon nanotubes satisfying the scaling
conditions (2a, b) deform as thin lattice shells.

Since the effective CNT thickness, hNT, can be estimated as a half of the C–C
bond length, 0.72 Å [10–12], the presence of the carbon ring size, a, the effective
CNT thickness, hNT, and the C–C bond length, lC–C, in the new thin lattice-shell
conditions (2a, b) can be avoided by presenting them in the following form, which
is solely based on the (n, m) nomenclature for the CNT lattices:

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn2 þ m2 þ nmÞp � 1 ð3Þ

The (10, 10) CNT lattice (RNT = 6.8 Å, Fig. 3) satisfies the thin lattice-shell
conditions (2a, b) and (3). It is so happens that the (10, 10) CNT lattice shown in
Fig. 3 is the smallest armchair nanotube, which fulfills this condition for the class of
thin CNT shells [10–12]. The CNT lattices of larger radii (both with the armchair and
the zig-zag chirality) also satisfy the conditions (2a, 2b) and (3). The class of thick
CNT lattices [10–12] satisfies, a related condition for the radius, RNT, of carbon
nanotubes and the effective CNT thickness, hNT (see Table 2):

Table 2 Values of the effective CNT lattice thickness, hNT estimates for carbon nanotubes

Types of analysis used in
nanoscale analysis

CNT thickness
estimates, hNT Å

Authors of the CNT

thickness estimates

Molecular dynamics (MD) simulations 0.66 Yakobson et al. [7, 8]

Scaling analysisa of bonds in carbon
rings

0.71–72 Harik [11, 12]

Tight-binding method (atomic scale) 0.74 Zhou et al. [13]

Local density approximation 0.75 Tu and Ou-Yang [14]

Continuum shell theory 0.75 Panatano et al. [15]

Ab inito computations 0.665 Wang et al. [16]

Continuum ring theory 0.617 Vodenitcharova and Zhang [20]

Atomic potential based analysis 0.62–0.87 Huang et al. [80]

Continuum modeling 0.87 Goupalov [21]

Ab inito computations 0.89 Kudin et al. [17]

Continuum hollow cylinder 0.98 Sears and Batra [22, 23, 34]

CNT bundle-based crystal 3.42 Tersoff and Ruoff [4]

Molecular dynamics (MD) simulations *3.4 Avouris et al. [18]
a The effective CNT lattice thickness, hNT can be estimated as a half of the length of the C–C bonds,
lC–C = 1.41–1.44 Å via a spherical approximation for the distribution of σ-electrons in the elastic
load-transferring bonds [10–12]
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hNT
RNT

¼ 2phNT
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ m2 þ nm

p [ 1=10 ð4Þ

Carbon nanotubes of small radii RNT < 6 Å or RNT/a < 2, satisfy this condition
for the class of thick CNT lattices. These radii are close to the radii of CNT nano-
beams [12], which have smaller number of the circumscribed carbon rings along
their circumference and much greater curvature (Fig. 1). Long high-aspect-ratio
carbon nanotubes (class II, Fig. 1) have CNT lattice shells of the length, LNT, such
that dNT/LNT < 1/10, and considerable surface with the surface effects proportional
to their surface area: πdNTLNT or a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ m2 þ nm

p
LNT.

The length scale and the size effects associated with the CNT lattice length, LNT,
which influence the global deformation of carbon nanotubes and their material
properties (for short CNT lattices), are represented in both the aspect ratio, dNT/LNT
and the homogenization ratio, LNT/a, or the minimum homogenization length, LH.
At the length scale level associated with the CNT radius, RNT, the mechanical
material properties of carbon nanotubes are influenced not only by their chirality,
but also by the thickness-to-radius ratio, hNT/RNT. For the CNT nano-beams [12], the
curvature effects and the degree of bond stretching are also important due the
structural properties of carbon nanotubes having small radius.

Effective Thickness of Carbon Nanotubes

The value of the effective CNT lattice thickness, hNT, is affected by the degree of the
balance the elastic C–C bond interactions associated with the approximation:
hNT ≈ lC–C/2 [11, 12], Table 2, and the van der Waals forces associated with the
experimental graphene value of hNT ≈ 3.4 Å. The value of the effective lattice
thickness, hNT, in a particular deformation response of the CNT lattice (e.g., axial
buckling with hNT ≈ lC–C/2, or other types of deformations with hNT such that lC–C/
2 < hNT < 3.4 Å, Fig. 3) is associated with the specific change in the potential
energy, U, of the considered atomic lattice (Table 2).

In a physical setting, the balance between the elastic C–C bond interactions and
the van der Waals forces in a deformation response of the CNT atomic lattices
associated with a particular loading path, can be described by the following
approximation equation [12]:

XnC
i¼1

1
VC�C;i

ðo
2U
oe2

Þe¼0;i

����
����
C�C

¼ hC
h0

XnvdW
i¼1

1
VvdW ;i

ðo
2U
oe2

Þe¼0;i

����
����
vdW

; ð5Þ

where nC is the number of carbon atoms in the CNT lattice, all of which are
obviously associated with the C–C bond interactions, nvdW is the number of atoms
affected by the van der Waals interactions because of their displacement in radial
direction, and the proportionality coefficients, hC and h0, characterize the discrete
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and the homogenized contributions of the C–C bond interactions to the value of the
effective thickness, hNT, of CNT lattice: hNT = h0 hvdW, with hvdW = 3.4 Å, 0 < h0 ≤ 1,
and hC > 1, for most axial deformations, and hC = 0 and h0 ≈ 1, for the CNT lattices
with large diameters subjected to the predominately surface forces proportional to
the surface area of the carbon rings, NvdW, under significant van der Waals forces, as
in the case of graphene sheets under the transverse loading [12]:

h0 ¼ 1
2
lC�C=hvdW þ lC�C

2pRNT

3
2 aNvdW

LNT
ð1� 1

2
lC�C=hvdW Þ; ð6Þ

Note that hC = h0, when the elastic forces (i.e., the C–C bond interactions) and the
van der Waals forces exactly balance each other during the deformation response of
a CNT lattice and the corresponding loading path.

The value of the effective thickness, hNT, of CNT lattice shells can be estimated
by the number of carbon rings, NvdW, subjected predominately to the van der Waals
forces [12]:

hNT ¼ 1
2
lC�C þ lC�C

2pRNT

3aNvdW

2LNT
ðhvdW � 1

2
lC�CÞ; ð7aÞ

or by the number of carbon rings, NC–C, mostly involved in the elastic C–C
interactions [12]:

hNT ¼ hvdW � lC�C

2pRNT

3aNC�C

2LNT
ðhvdW � 1

2
lC�CÞ: ð7bÞ

The value of the effective CNT thickness, hNT, in a particular deformation
response is such that lC–C/2 ≤ hNT < 3.4 Å [12].

Deformation of Carbon Nanotubes

Since the discovery of carbon nanotubes in 1991 by S. Iijima and his NEC lab [1,
2], the mechanical response of single wall nanotubes (SWNT) had been evaluated
via atomistic and molecular dynamics (MD) simulations [3, 4, 7, 12–19] and
experimental testing [5, 6]. In these studies, the multi-cylinder crystal model [4], the
continuum shell theory [7, 8, 11, 12, 15, 17, 20–25] and the continuum beam model
[5, 6, 10–12] were used to examined the mechanical deformation of carbon
nanotubes and deduce their Young’s modulus (Table 3).

In 1999, Govindjee and Sackman [25] had considered an elastic multi-sheet
model to show the explicit dependence of material properties on the system size
when a continuum cross-section assumption is made for a multi-shell system
subjected to bending. The continuum assumption was shown to hold when more
than 201 shells are present in the macromechanical system considered. In 2001, it
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was shown that nanoscale scaling analysis and the length scales associated with the
geometric parameters of CNT atomic lattice structure can define a set of restrictions
on the assumptions that are used in the Euler beam model [10, 11].

Ru [24] proposed an intrinsic bending stiffness for carbon nanotubes in order to
decouple the bending CNT shell stiffness from their ill-defined effective thickness,
hNT, and to ensure a consistent use of the classical shell theory [26]. Soon after it
was shown [10, 11] that the thickness of carbon nanotubes may have no direct effect
on the buckling behavior of CNT atomic lattices for two classes of CNT structures (e.
g., CNT nanocrystals or CNT nano-beams, Fig. 1) and most continuum models are
applicable only within a certain range of the length scale parameters.

Extensive atomistic and MD simulations of carbon nanotubes remain compu-
tationally expensive. As a result, the continuum models that are appropriately tai-
lored for a particular molecular structure and specific loading conditions may be
useful for the qualitative analysis of constitutive behavior of carbon nanotube lattice
shells. Since the mechanics of CNT response is likely to depend on the CNT lattice
structure, a blend of nanoscale scaling analysis [10, 11] and the continuum
mechanics models based on atomic potentials [27–29], whenever possible, seems
appropriate for the development of a methodology for the inter-scale extension of
continuum models to the nanoscale level for various nanostructures including
carbon nanotubes and for optimization of the nanotube-based AFM probes for the
atomic force microscopy [12]. It has been shown [10–12] that each theoretical and
experimental prediction for the most types of CNT deformation can be extended to a
full class of carbon nanotubes (Fig. 1) through the laws of similitude.

Axial Buckling of Carbon Nanotubes

Axial buckling of carbon nanotubes is especially important for the optimization and
design of AFM probes. Yakobson et al. [7, 8] presented molecular dynamics (MD)
simulations of carbon nanotubes under axial buckling and demonstrated a shell-like
buckling deformation response. Due to the lack of established characterization
methods for the mechanical properties of such nanoscale structures, an analogy with
macroscopic continuum beams and shells, which had some geometric similarities
with the carbon nanotubes and their global behavior, was used. Such analogy

Table 3 Young’s modulus of single wall carbon nanotubes in early experiments

Methods used in a study Predicted values Authors of predictions

Molecular dynamics (MD) 5.5 TPaa Yakobson et al. [7, 8]

AFM (Fig. 5) vibration experiments 1.5–5 TPa Treacy et al. [5]

AFM bending experiments 1.3 TPa Wong et al. [6]

AFM tensile experiments 0.32–1.5 TPa Yu et al. [81]
a Molecular Dynamics (MD) predictions [7, 8] of Young’s modulus are associated with the value
of 0.66 Å for the effective thickness, hNT, of carbon nanotubes
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provided estimates for the CNT Young’s modulus, ENT, which may reach as high as
1,000 GPa. Such simple models provide an attractive tool for the data reduction and
the analysis of structure–property relationships for nanostructured materials and
carbon nanotubes, in particular.

A macromechanical model ‘‘may serve as a useful guide, but its relevance for a
covalent bonded system of only a few atoms in diameter is far from obvious’’ [7, 8].
The MD buckling strain predictions of 0.05 % indicate hyperelastic rather than
elastic behavior of CNT lattice shells. To ensure the robustness of data reduction
schemes that are based on continuum mechanics, a careful analysis of continuum
approximations used in macromechanical models and possible limitations of this
approach at the nanoscale level is required [10–12].

The aspect ratio, dNT/LNT, of the CNT lattice structures, or its equivalent, RNT/
LNT, is the main non-dimensional length scale parameter governing the nanoscale
critical buckling (Fig. 4) and the buckling strain, εcr, of the high aspect ratio carbon
nanotubes (Fig. 1):

ecr ¼ 4p2
R2
NT

L2NT
1þ hNT

2RNT

� �2

� 1� hNT
2RNT

� �2
" #

; ð8Þ

where hNT is the equivalent thickness of the thick or thin CNT lattice shells. Note
that the CNT buckling strain, εcr, also depends on the thickness-to-radius ratio, hNT/
RNT, of high aspect ratio carbon nanotubes, but only in the second order effects.

The explicit dependence of the critical buckling strain, εcr, on the helicity of the
atomic lattices of carbon nanotubes can be estimated by

Fig. 4 A parametric map for the two classes of the high aspect ratio carbon nanotubes: long CNT

shells (class I) and the CNT nanocrystals of small radii, i.e., the CNT nano-beams (class II). The
thick line (*1/(10dNT/LNT)) represents a boundary for the optimal material structure of the high
aspect ratio CNT lattices (after [10–12])
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ecr ¼ 4p2
a
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where LNT is aNa or a
ffiffiffi
3

p
Na for the armchair and zig-zag carbon nanotubes,

respectively; Na is the number of carbon rings along the CNT length, LNT. Since the
effective CNT thickness, hNT, can be estimated as a half of the C–C bond length,
0.72 Å [10–12], the nanoscale analog of the Euler formula (9a, b) for the critical
buckling strain of the (n, m) CNT lattice shell can be written as

ecr ¼ 4p2
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ nmþ m2

p
=2pþ lC�C

4LNT

 !2

� a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ nmþ m2

p
=2p� lC�C

4LNT

 !2
2
4

3
5;

ð9bÞ

where the C–C bond length is about 1.41–1.62 Å, as it can be shorter or elongated.
Under extensive elongation of the C–C bonds, the approximation: hNT ≈ lC-C/2, has
its limitations, which are also affected by the balance between the elastic C–C bond
interactions and the van der Waals forces [12]. Applicability of any continuum
model for carbon nanotubes has its limitations, i.e., a, the size of carbon ring.

The Model Applicability Map

Ranges of applicability of the nanoscale analogs (9a, b) of the Euler formula (8) for
the axial buckling of the high aspect ratio carbon nanotubes are defined by the
carbon ring size, a, on one side of the model applicability map (Fig. 4) and by the
values of the CNT lattice aspect ratio, i.e., the so called shell-beam transition border
line *1/(10dNT/LNT), beyond which geometric parameters define the class of thin
CNT shells [12]. The key non-dimensional parameters that govern the materials map
for the beam-like carbon nanotubes (i.e., the class of the high aspect ratio CNT

lattices and the class of nano-beams, Fig. 1), include the aspect ratio, dNT/LNT, the
homogenization ratio: LNT/a, and the normalized radius, RNT/a (Fig. 4) [10–12].

Examples of the atomic lattices of the CNT nano-beams include [12, 30]:

• the (2, 2) CNT16 nanocrystals;
• the (3, 3) CNT24 nanocrystals;
• the (3, 0) CNT12 nanocrystals;
• the (4, 0) CNT16 nanocrystals;
• the (6, 0) CNT16 nanocrystals.

The atomic lattice structure of the CNT nano-beams has characteristic bond
stretching due to the curvature, the small radii and considerable corrugation [12, 30].
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Materials maps for the class of beam-like CNT nanocrystals (or the CNT nano-beams)
indicate that the unique material properties of the corresponding CNT lattices have
the mechanical properties and the associated deformation response of the beam-like
structures. Ranges of applicability for the equivalent-continuum beam models
[10–12, 31] span two different groups of geometric parameters (Fig. 6) that define
two different classes of CNT lattices with small and large values of radii (Fig. 1). It
has been shown that these carbon nanotubes have the same buckling behavior
[10–12], although other mechanical properties (e.g., transverse stiffness) may
diverge due to different structural characteristics [12, 32, 33].

The Thin Shell Effects in the Buckling of Carbon Nanotubes

The global mechanical behavior of the carbon lattice can be analyzed by repre-
senting the discrete molecular structure with an equivalent shell [7, 8, 12, 15,
21–24, 27–29, 34]. This representation can be used to define a homogeneous
equivalent-continuum5 by equating the energies of the two corresponding systems
[7, 8]. The global shell-like response of a short CNT lattice of 1 nm in diameter was
first shown by Yakobson et al. [7, 8] by the molecular dynamics (MD) simulations.
Equivalence between the potential energy of the CNT lattice and its elastic strain
energy represented by the continuum shell model [26] was used to obtain the value
of the axial and flexural bending stiffness, C = ENThNT = 59.36 eV/atom, and
D = ENT (hNT)

3/12(1 − ν2) = 2.886 eV Å2/atom. For the Poisson’s ratio, ν, of 0.19,
these two equations yield the Young’s modulus, ENT = 5.5 TPa, and the equivalent
CNT thickness, hNT = 0.66 Å [7, 8, 32, 33]. Other authors have obtained similar
values of 5.1 TPa and 0.74 Å, or 4.8 TPa and 0.75 Å (see Table 2) [12].

Carbon nanotubes of the radii RNT > 6 Å or RNT/a > 2, have larger radii than the
CNT nano-beams (Fig. 4) and the greater number of the circumscribed carbon rings
along their circumference, i.e., more than 12, which corresponds to the CNT lattice
shells larger than the (12, 0) zig-zag carbon nanotube, e.g., the (15, 0) zig-zag CNT

lattice shell. Carbon nanotubes with many circumscribed carbon rings are quite
different from the CNT nano-beams (Fig. 1) [12]. The CNT lattice shells of large
diameters, dNT > 12 Å, have much smaller intra-tubular van der Waals forces and
small curvature effects. The highly-concentrated intra-tubular van der Waals forces
and significant curvature effects in the CNT nano-beams represent volumetric as
opposed to the surface effects [4, 12].

The buckling strain, εcr, for the class of thin CNT lattices (Fig. 1) having (m, n)
chirality can be estimated by the following formulae for the nanoscale critical
buckling strain, εcr [12]:

5 V.M. Harik et al. 2002. Applicability of the Continuum-shell Theories to the Mechanics of
Carbon Nanotubes. (NASA/CR-2002-211460/ICASE Report No. 2002–2007, ICASE Institute)
NASA Langley Research Center, Hampton, Virginia. In this NASA report model applicability
map [12] for the continuum shell models has been presented.
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ecr ¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� m2Þp hNT=affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn2 þ m2 þ nmÞp ; ð10aÞ

or

ecr ¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� m2Þp hNT=lC�Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ m2 þ nm

p ; ð10bÞ

which represent the nanoscale analogs of the following formula: (see footnote 5)

ecr ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
3ð1�m2Þ

p hNT
RNT

� �
,

where ν is the Poisson’s ratio [12] of atomic CNT lattices shells (Fig. 5).
Formulae (10a, b) are valid when the nanoscale homogenization criterion (1), the

scaling condition for the class of thin shells: hNT/RNT << 1, or the new nanoscale
thin lattice-shell conditions (2a, b) and (3) for the (n, m) CNT lattices are fulfilled.
The role of van der Waals forces is discussed in more details in a new book
Mechanics of Carbon Nanotubes [12]. Formulae (10a, b) and their counterparts for
the nanoscale buckling provide good estimates for the axial buckling of carbon
nanotubes as was shown by Harik [10–12] for different classes of atomic lattices
and verified with the molecular dynamics (MD) data [12]. Each theoretical and
experimental prediction is applicable and extendable within one class of carbon
nanotubes [10–12] or a class of single shells in multi wall carbon nanotubes (with
the role of van der Waals forces taken into account [12]).

Interfacial Sliding of Shells in Multi Wall Carbon
Nanotubes

At the nanoscale level fundamental origins of sliding friction involve the surface-to-
surface interactions such as the interlocking and registry effects [35–41] between
the CNT lattice structures (Fig. 5) and the morphology of asperity distribution, the
sliding induced excitation of atomic lattice vibrations [42], interaction of phonons
[43, 44] propagating along the sliding surfaces [45, 46], electrostatic interactions,
electron motion and the electron interactions akin to the π–π bonding interactions
[12]. These interfacial friction mechanisms have been studied to some extent by a
quartz-crystal microbalance, scanning force microscopy and the nanotube pullout,
AFM and TEM experiments (Fig. 6), as well as theoretical modeling including MD
simulations [12].
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Nanoscale Analogs of the Newton’s Friction Law

Nanoscale friction between adjacent CNT lattice shells in multi wall carbon nano-
tubes (Fig. 5) can be described at the length-scale longer than the size of carbon
rings, a, by a nanoscale analog of the Newton’s friction law [12, 39–41] as follows.
The average shear stress, <τrz>, for planar sliding interactions can be defined
as <τrz> ≈ <f>pull/Αss, where <f>pull is the average force applied to the CNT lattice and

Fig. 5 Atomic lattice of a
single wall (10, 10) carbon
nanotube with the CNT length
LNT = 52.5 Å and diameter,
dNT = 13.6 Å, and a schematic
of a multi wall carbon
nanotube (after [12])

Fig. 6 TEM images of multi
wall carbon nanotubes with
different inner and outer
diameters with five, two and
seven cylindrical lattice shells
reported by Iijima in 1991
(after [1])
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Ass is the common interfacial area of steady sliding between the inner and the outer
CNT lattices. The average strain rate, < _c>, can be estimated by \_c[ � o\Vz [

or ,
where <Vz> is the average CNT velocity in the axial z-direction and r is the radial
distance. Then, a nanoscale analog of the Newton’s law for steady CNT sliding is
given by [1, 12, 39–41, 47]

\srz [ ¼ leff
o\Vz [

or
; ð11Þ

where μeff is an effective viscosity for the CNT/CNT interfacial sliding and the strain
rate can be approximated as o\Vz [

or � \Vz [
hVdW

with the change in sliding velocity
across the interfacial separation,hVdW , estimated as the average CNT velocity, <Vz>.
The average surface separation, hvdW, is caused by the van der Waals forces, which
can be described by the Lennard-Jones potential:

ULJðrÞ ¼ e
r20
r12

� r20
r6

� �
;

where ε is the depth of the potential well and r0 is the distance between two CNT

lattices at which the potential, ULJ, is zero (Fig. 7).
In order to complete the description of the interface model, the effective vis-

cosity, μeff, should be described. The CNT velocity, <VNT> = <Vz>, is, on average,
linearly related to the average applied force, <f> [39–41], and the slope, χeff, can be
determined. The resulting force-velocity dependence: \f [ ¼ veff\VNT [ is a
nanoscale analog of the friction law in equation (11). Then, the complete interfacial
friction model [12, 39–41] for the sliding process is given by

\f [ pull ¼ f0 þ veff\VNT [ ; ð12Þ

where f0 is the critical force associated with the onset of interfacial sliding of the
inner carbon nanotube [12, 39–41].

Fig. 7 Energy of interfacial
interactions due to the van der
Waals forces between
adjacent lattices in a multi
wall carbon nanotube (with
the graphene-based
equilibrium distance of 3.4 Å)
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The applied force, <f>, is related to the shear stress in Eq. (11) by the force
balance:\f[ ¼ \srz[Ass. Therefore, the viscosity coefficient, χeff, can be related
to the effective viscosity μeff by

leff ¼ veff
hvdW
RNT

2pð1þ hNT
2RNT

ÞLNT
� 	�1

ð13Þ

and the complete interfacial friction model (12) takes the following form [12]:

\f[ pull ¼ f0 þ 2pleff
hvdW
RNT

� 	�1

ð1þ hNT
2RNT

ÞLNT\VNT[ ; ð14Þ

The magnitude of the critical force f0 is on order of pico-Newtons, the value of
coefficient χeff may vary in the range of (pN ps)/Å units and the average CNT

velocity, <Vz>, is on order of Å/ps or 100 s of m/s at the nanoscale level. The
effective viscosity μeff, which characterizes the viscosity of the spatially distributed
π-electrons, is associated with the transient interlocking of π-electrons in the spatial
energy map shown on Fig. 8b for a quasi-static case. The viscosity of π-electrons is
on the order of fractions of centi-Poise for the noted range of velocities [12].

Effect of the Spatial Exclusion of Electrons (SEE)

Variations in the interfacial frictional forces and the picosecond spikes in the axial
velocity, VNT, of a sliding carbon nanotube lattice shell within a multi wall carbon
nanotube are associated with the interfacial registry effects, registry barriers and the

Fig. 8 A function representing the 2-D vdW energy (kJ/moL) varying with the distance from the
outer surface for a (a) straight and (b) buckled single wall carbon nanotube (after [77])
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accompanied generation of lattice waves, phonons, in the sliding carbon nanotube
subjected to semi-constant force [12]. The onset of the interfacial registry between a
carbon atom ‘asperity’ and a carbon ring potential barrier through a C–C bond is
associated with the initiation of the so called effect of the spatial exclusion of
electrons (SEE)6 in the repulsive interaction between the spatially-distributed π–π
electrons [12]. After a carbon atom passes over a C–C bond and the thermody-
namically unstable potential maximum, the CNT lattice relaxes into and oscillates
around a more favorable position within the potential well of a lattice-asperity
registry under the ambient registry potential akin to the capillary effect. The local
spatial energy map of π-electrons is affected by the transient interlocking of
π-electrons, which is similar to the quasi-static interlocking illustrated by the energy
map shown in Fig. 8b.

This sliding behavior of a carbon nanotube is also associated with the release of
the lattice waves, i.e., phonons (see Fig. 9) [12] during sharp yet short peaks in the
interfacial registry interlocking and the associated sharp but small drops in the CNT

sliding velocity, VNT. This stick-slip phenomenon of the nanoscale friction is
caused by the emergence of various registry-dependent interlocking of the atomic
lattice barriers, which are sensitive and directly connected to the CNT lattice sliding
path,7 its carbon rings, as well as to the influence of lattice oscillations [12]:

Phonons in the Atomic Lattice Shells

At the nanoscale level, oscillations of the graphene lattice (Fig. 9) are inherent in
most physical settings due to thermodynamic motion of carbon atoms. Lattice
waves, i.e., phonons, in the atomic lattice structure of carbon nanotubes occur
continuously due to the thermal vibrations, nanoscale mechanical deformation with
complex loading path or complex sequence of thermodynamic equilibrium states
(e.g., buckling [1, 8, 10–12, 48–54]) and during the taping mode of the carbon

6 V.M. Harik, New Trends in Mechanics of Carbon Nanotubes and Applications, Technical
Report TR-2012-2, Nanodesigns Consulting, Newark, Delaware, 2012.
7 Initiation of the so called SEE effect is associated with the need of at least one π-electron to
overcome the registry potential of an opposing C–C bond and the associated Coulomb repulsion
within the so called spatial exclusion zone (SEZ) for electrons. The size of the spatial exclusion
zone depends on the local atomic lattice configuration (e.g., orientation of C–C bonds), the registry
potential barriers, the nanoscale Coulomb repulsion proportional to 1/r2, and the nanoscale
repulsion proportional to −1/r12. The combined effect results in the so called SEE effect. The
nanoscale analog of Pauli exclusion-repulsion for electrons stems from the quantum Pauli principle
for the identical electrons, i.e. particles with the spin ½ (fermions); the two identical particles
cannot occupy the same energy state, as their combined wave function, ψ, is anti-symmetric. The
nanoscale analog of Pauli repulsion and the quantum Pauli principle for the electrons both affect
the precise dimensions of the spatial exclusion zone for interfacial electrons.
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nanotube based AFM probes (Fig. 5). Distribution of the low energy border value
(BV) phonons of stochastic lattice waves [12] emerging at low temperatures in
stochastic oscillations with the border value amplitudes depends on the energy of
thermal vibrations. Probability and the dominant mode of these phonons are
directly connected to the configuration of specific atomic lattice structures [12], for
example, the curvature of atomic lattice in carbon nanotubes, Fig. 9 illustrates a few
examples of phonons in a portion of graphene lattices of various sizes.

At the nanoscale level the generated lattice waves and the induced mechanical
stresses, σij, can produce various types of deformations (Fig. 9). The nanoscale
mechanical stresses can be described by the following formula [39–41]:

rij;n ¼ � 1
Kn

MnVn;iVn;j þ
XN
m¼1

Fnm;irnm;j

 !
; ð15Þ

where Mn is the mass of the nth-atom, Λn is the volume of the nth-atom, Vn,i and Vn,

j are the ith and jth-components of the velocity vector of the nth-atom (i, j = 1, 2 and
3), Fnm,i is the ith-component of the force interaction between the nth-atom and
mth-atom (i.e., the inter-atomic potential gradient) and rnm,j is the jth-component of
the difference between the position vectors of the nth-atom and mth-atom. Note that
the velocity contributions to the values of thermodynamic stress components (15)
include the intrinsic dynamic effects into the nanoscale mechanical stresses, con-
taining the velocity-dependent thermal effects associated with phonons.

Fig. 9 Schematics of the longitudinal lattice waves (a), (b), (c) and (d) (i.e., longitudinal phonons)
and tensile lattice deformations of the graphene sheets: local stretching (c) and the global or
uniform tensile deformation (d)
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Applications of Carbon Nanotubes

Since the discovery of carbon nanotubes in 1991 by S. Iijima and his lab,8 these
fullerenes have become one of the most popular types of nanostructured materials
and particles used in novel applications and studied by academic and industrial
researchers9 and students. Examples of nanotube-based applications in nanotech-
nology include: nanoscale probes, sensors and resonators, the atomic force
microscope (AFM) probes [48–54] (Fig. 10), nanotube-enhanced polymer mem-
branes and multifunctional nanocomposites [12]. Carbon nanotubes or their frag-
ments and graphene flakes are claimed to be found in women’s mascara, the
fireplace ash, in the steel of Damascus swords, and soon to be found in advanced
solar panels, fuel cells and batteries.

The Carbon Nanotube Based AFM Probes

Atomic force microscopes (AFM) are important instruments for the nanoscale
characterization of material properties of various nanostructures, nanocrystals and
molecules. Carbon nanotubes, both single wall carbon nanotubes and multi wall
carbon nanotubes (Fig. 5) have been used as a high aspect ratio tip in the pyramidal
AFM probes. Because of the smaller diameters (*1–2 nm and *50–70 nm) of the
available single wall and multi wall carbon nanotubes, respectively, resolution of
the nanotube-based AFM probes is much higher as opposed to the pyramidal tip
with diameters between 1 and 50 μm.

Fig. 10 The atomic force microscope (AFM) probe with the high aspect-ratio carbon nanotube tip
(the orientation of the tip attachment is not completely vertical due to the orientation of the faces of
the pyramidal tip)

8 S. Iijima was awarded the 1996 Nobel Prize in Chemistry for “discovering fullerenes”, which
also include carbon nanotubes.
9 V.M. Harik, Mechanics of Carbon Nanotubes © (2001), a short course, the Annual ASME
Congress (2001, 2004) and the 2002 Nanosystems Conference (Berkeley, Califormia).
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AFM probes allow characterization of nanoscale surface profiles and the degree
of roughness (Table 4), corrugation of atomic lattices, surface adhesion and friction,
surface sliding and stiction, adhesion of single molecules and groups of atoms to the
atomic lattices, the pullout and pull-off processes at the nanoscale, interfacial
friction and atomic scale sliding or rolling of nanostructures, vibrational and
material properties of carbon nanotubes (including nanoscale buckling [10–12,
50–52] [55–57]) as well as various manipulation processes [12, 48, 49] [48–54].

Carbon Nanotube Based Nanocomposites

Carbon nanotube based polymer nanocomposites [54–66] represent one of the
highly promising multifunctional materials, which are sensitive to the electromag-
netic field effects [12, 67, 68]. Typical length scales in the material structure of
carbon nanotubes as compared to the polymeric structure of a crystalline polyeth-
ylene (PE) polymer (Fig. 11) and the polymer matrix composites reinforced by the
carbon fibers [69, 70] are shown in Table 4. Carbon nanotube based nanocomposites
or the nanotube-modified polymers have unique structural length scales, which are
different from the hierarchical length scales associated with the microstructure of
typical composites. One of the important characteristics of nanocomposites is the
high ratio of interfacial surface to the volume of reinforcing carbon nanotubes or
graphene flakes.

Table 4 Typical length scales in the material structure of nanocomposites

Carbon nanotubes Polymers Polymer composites

Carbon ring (2.46 Å) (CH2) zig-zag (*3 Å) Fiber/matrix interphase (1–3 μm)

Diameter (*1 nm) Crystalline unit (*7 Å) Carbon fiber (20 μm)

Length (10 nm–cm) Length of chains (*300 nm) Fiber length (1–10 m)

Fig. 11 Molecular lattice structure of the crystalline part of the polyethylene (PE) polymer with
the (CH2)n zig-zag chains surrounding the armchair (10, 10) carbon nanotube, dNT = 13.6 Å [78]
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Another distinction of nanocomposites [53–66] is the small size of the repre-
sentative volume element (RVE) or a unit cell (Fig. 11) in nanoscale homogeni-
zation [10–12, 39–41] or property averaging [12]. Intratubular space in carbon
nanotubes contributes to their high porosity, however, it is not taken into account in
the calculations of their volume fraction in nanocomposites. The CNT volume
fraction, VNT, includes entire CNT cross-section:

VNT ¼ pðRNT þ hNT=2Þ2=ARVE

where hNT < hvdW and hvdW is the equilibrium van der Waals spacing between the
CNT lattice and the matrix, and ARVE is the cross-sectional area of the unit cell. The
value of effective CNT thickness, hNT, and the van der Waals separation distance,
hvdW, depend on the loading and the nature of the CNT/polymer interfacial inter-
actions. Therefore, the macroscopic volume fraction relation in micromechanics:

VNT þ Vm ¼ 1

and Tsai’s rules of mixtures [71] in micromechanics of composite materials for the
longitudinal (E1) and transverse (E2) Young’s moduli of a nanocomposite should be
modified at nanoscale [12]:

VNT þ Vm ¼ 1� VvdW ; ð16aÞ

E1 ¼ ENTVNT þ EmVm þ E1intVvdW ; ð16bÞ
1
E2

¼ VNT

E2NT
þ Vm

Em
þ VvdW

E2int
; ð16cÞ

so the van der Waals volume fraction, VvdW, is included along with the matrix
volume fraction, Vm, Young’s moduli of the matrix, Em, and the van der Waals
interface, Eint, and some of the nanoscale effects (Table 5) are accounted for.

Material properties of nanotube-based nanocomposites depend on the structure-
property relations and dependencies, which are different across the hierarchical
length scales. In order to link a particular macroscopic material property with the
nanoscale material characteristics or structural elements, an appropriate multi-scale
“tree root” diagram is needed (Table 5). Dependence of the Young’s modulus, E, on
the material characteristics at different length scales is illustrated for the polymer
composites based on the single wall and multi wall carbon nanotubes (SWNTs and
MWNTs) and on traditional carbon fibers (Table 5).

One of the first experiments characterizing the interfacial shear strength and the
interfacial shear modulus has been carried out by Wagner and his group in 1998
[58–67, 71–73] by examining carbon nanotubes pulled out of a polymer matrix.
Frankland et al. [39–41] carried out MD simulations to numerically evaluate the
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interfacial debonding force of about 0.1 nN between a carbon nanotube and
polymer matrix in polyethylene nanocomposites. An example of a carbon nanotube
based polyethylene nanocomposite is shown in Fig. 12.

Frankland and Harik [39–41] have confirmed earlier theoretical results for the
critical debonding force, developed an MD-based modeling procedure to examine
interfacial sliding of carbon nanotubes in the pull-out experiments and presented
an interfacial friction model based on a nanoscale analog of the Newton’s friction
law. A nanoscale friction model [39–41], which is similar to the new interfacial
model described by the Eq. (14), and the associated friction law have been used to
simulate interfacial sliding of carbon nanotubes in a nanocomposite during a pull-
out experiment. The axial displacement of a carbon nanotube and its sliding under
an increasing axial force has been shown to be periodic as in the stick-slip pro-
cesses [42, 74, 75] with the period of nanotube sliding equal to the size of carbon
rings, a.

Table 5 The structure-property relations for the Young’s modulus in nanocompositesa

The length scales Nanocomposites Polymer composites

Macroscopic Entanglement, NT coil size Volume fraction, Em

Microscopic NT bundles, clustering Carbon fibers (size, E)

Submicron SWNT versus MWNT effects Interphase/interface

Nanoscale NT/polymer interphase, polymer
molecular weight

Crosslink density, interface
structure

Atomic NT/polymer bonding, molecular
aromaticity

Polymer structure, molecular
weight, etc.

a The structure-property relations reflect the scale-based connections in the structure-property
diagram, which links material properties with the material structure in the multiscale tree-root
diagram for the structure-property relations [12]

Fig. 12 TEM image of a
carbon nanotube polyethylene
nanocomposite with 3.5 wt%
of multi wall carbon
nanotubes wrapped with
10 wt% of polyethylene-
polyethylene oxide (after
[79])
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Conclusions

This chapter has presented a review of the basic models for carbon nanotubes in
terms of the (n, m) nomenclature for the chirality of lattice structures and novel
nanoscale effects such as the effect of spatial exclusion of electrons (ESEE), which
can be considered as a nanoscale analog of the Pauli’s exclusion principle for
electrons. An example of a spatial energy map for the spatially distributed π-
electrons is included to illustrate a quasi-static spatial interlocking of the distributed
π-electrons, which contributes to the viscosity of π-electrons. A nanoscale analog of
the Newton’s friction law has been introduced in a model for the interfacial friction
between adjacent lattice shells in the multi walled carbon nanotubes involving a
periodic stick-slip phenomenon.10 Interfacial lattice interlocking and the lattice
registry effects also contribute to the effective viscosity of the spatially distributed
π-electrons.

The ranges of applicability for different models for elastic deformation of carbon
nanotubes within a particular class of carbon nanotubes have been discussed in the
context of classification of their atomic lattices into four classes (i.e., thin and thick
lattice shells, long high-aspect-ratio nanotubes and beam-like carbon nanotube
crystals of small radii). Applicability of different estimates for the effective thick-
ness of carbon nanotubes varying between 0.66 Å (for axial buckling) and 3.4 Å
(for transverse deformation dominated by van der Waals’ forces) have been
reviewed in the context of the balance between the elastic C–C bonds interactions
and van der Waals’ forces. The effect of van der Waals’ interface in nanocom-
posites has been discussed for the nanoscale rules of mixtures and the nanotube/
polymer interfacial sliding.
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Molecular Modeling and Simulation
of Physical Properties and Behavior
of Low-Dimensional Carbon Allotropes

Carbon Nanotubes, Deformation and Fracture

Wen-Hwa Chen and Hsien-Chie Cheng

Abstract This chapter presents theoretical foundations and results of molecular
modeling and simulation of carbon nanotubes, evaluation of their static and
dynamic mechanicalproperties, radial buckling and deformation of the single wall
carbon nanotubes (SWCNTs), their radial breathing vibrations, thermal effects and
vibration modes. A review ofmolecular simulationsof buckyballs and other low
dimensionalfullerenes is presented along with the fracture evolution for defective
armchair SWCNTs.

Introduction

Nanotechnology has become one of the most fast growing fields in science and
engineering over the last decade. Up to date, explosive-growing research efforts in
material science and engineering have been devoted to exploration and develop-
ment of low-dimensional allotropes of carbon such asfullerenes, nanotubes, nano-
rods and graphene sheets, ever since the discovery of carbon nanotubes (CNTs) [1].
Mainly because of their many extraordinary biological, chemical and physical
properties due to nanosize with minor defects as well as distinct size-dependent
quantum effects, they are potential for diversified industrial applications from such
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as fiber-reinforcement composites, nanoelectronics, solar energy harvesting, bio-
imaging, biosensors, drug delivery, field emission panel display to electrome-
chanical sensors etc. For instance, there has been a great interest in using low-
dimensional carbon nanostructures for thin film transistors, conducting electrodes
and interconnects in next-generation integrated circuit (IC) devices due to that the
feature size of IC technology would soon come down to or below 16 nm in near
future. In order for successful manipulation of the nanostructures for a desired
device response and so realization of their engineering potential, it is rather essential
to have full knowledge of their fundamental characteristics and behaviors. More-
over, nanostructures in practice are generally subjected to many environmental
stressing conditions, such as heat, pressure or humidity. These external conditions,
in particular temperature, can result in not only the deformations of the nano-
structures but also the variation of their material properties, which eventually affect
the performance of the associated application devices. In addition to the external
conditions, low-dimensional carbon allotropes would also essentially change with
their size, chirality and layer number. However, accurate prediction of the material
properties of the nanostructures and those dependences using theoretical and
experimental approaches remains a great deal of difficulty or challenge due to their
nanoscale dimension.

To date, various experimental methods using high-resolution microscopes,
including scanning electron microscopy (SEM), transmission electron microscope
(TEM), scanning probe microscopy (SPM), atomic force microscope (AFM), X-ray
diffraction, Raman spectroscopy and nanoindentation, were developed. With the
techniques, extensive studies on the thermodynamic and thermal-mechanical
properties of low-dimensional carbon allotropes, in particular CNTs, were
attempted (see [2–6] ). However, there are some implied limitations in the exper-
imental approaches even though they turn out to be effective and straightforward in
exploring the material properties of the nanostructures. For instance, owing to the
limited capability of the experimental characterization techniques, conducting
experiments at the scale to explore their material properties is generally very dif-
ficult, not to mention to address their size, chirality and temperature dependence. In
addition, high measurement variation and even structural uncertainty of the nano-
structures such as defects, which are difficult to be experimentally inspected, tend to
lead to wide-dispersion experimental data. The restriction in specimen size can
barely give tentative conclusions and thus provide a restricted insight from
experimental results. Besides, it becomes more and more cost-ineffective and
technically challenging as the specimen size gets smaller and smaller. Hence, there
is an indispensable need of a more efficient and cost-effective means for charac-
terizing the material properties of the nanostructures.

To supplement laboratory assessment, it is now possible to carry out computer
modeling using such as first principles calculation andmolecular dynamics (MD)
simulation due to the rapid development of powerful computers nowadays. To
assess the mechanical or thermodynamic properties, presently the most successful
and effective theoretical model is first-principles calculation or first-principles
quantum-mechanical simulation [7]. It is, however, to find that the approach is
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limited to a very small system size (less than a few hundred atoms) and short
simulation time (less than 10 picoseconds (ps) time scale). By contrast, MD or
molecular mechanics (MM) methods are a powerful alternative because they are
much more efficient and less computation-intensive. They allow simulation of a
much larger system because of the neglect of the motion of electrons. In addition,
their effectiveness is strongly dependent on a suitable potential function to evaluate
the interactions between particles. By the approach, many studies can be found in
literature in the predictions of thermodynamic and thermal-mechanical properties of
low-dimensional carbon allotropes (see [8–14]). Classical MD simulation can only
generate a micro-canonical ensemble (NVE), in which the total number of particles
(N) and the volume (V) and energy (E) of the system are conserved, rather than a
canonical ensemble such as those often encountered in experiments, where tem-
perature (T) instead of energy is conserved. To perform canonical ensemble (NVT)
or constant temperature MD simulation, several extended MD algorithms have been
extensively proposed, such as velocity-rescaling algorithm [15, 16], Andersen
thermostat [17], Berendsen thermostat [18] and Nosé-Hoover (NH) thermostat [19,
20], which is presently termed the standard NH thermostat method. In the standard
NH thermostat method, a thermal reservoir represented by an additional, virtual
variable s and effective mass Q is defined, which acts as an external system on the
physical system. As a result, an extended Lagrangiansystem of particles and the
variable s are formed. Heat exchange between the physical and external systems can
regulate the temperature of the system. The effective mass governs the coupling of
these two systems, and thus, affects the oscillation of the system temperature. In
essence, the method allows fluctuation in the total energy of the physical system.
However, the results made by the standard NH thermostat are not guaranteed to
cover all of the available phase space [21, 22]. To resolve the drawback, some other
extended NH thermostat methods were introduced, including NH chain (NHC)
thermostat [23], “massive” NHC (MNHC) thermostat [24], the generalized
Gaussian moment thermostat (GGMT) for a superior performance in equilibrium
calculations and the Nosé-Poincaré thermostat [25] by way of a Poincaré-time
transformation [26] for correcting the deficiency of angular momentum non-con-
servation in the standard NH thermostat method. Tuckerman et al. [26] have pro-
vided a rigorous statistical foundation for general non-Hamiltonian systems. With
this foundation, the standard NH and NHC thermostat methods have been proved
that through the use of a particular thermal reservoir, including potential and kinetic
energies, the calculated partition function of the extended system is equivalent to
that of the physical system in the canonical ensemble except for a constant factor,
which means the calculated quantities are equal to those in a canonical ensemble.
These thermostat methods incorporated with MD simulation have gained consid-
erable success on a variety of studies of the temperature-dependent thermodynamic
and mechanical properties of low-dimensional carbon allotropes. For example,
through constant temperature MD simulation, László [27] found that the formation
temperature of C60 fullerene in various gases is about 4,000 K. Raravikar et al. [28]
exploited the velocity-rescaling algorithm to calculate the axial and radial coeffi-
cients of thermal expansion (CTEs) of single-walled CNTs (SWCNTs). Raravikar
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et al. [28] and Schelling and Keblinski [29] applied the velocity-rescaling method to
explore the thermal effects on the CTE of CNTs. Kwon et al. [30] employed the
standard NH thermostat method to calculate the CTE of SWCNTs and C60.

From the equations of motion for the standard NH thermostat, the system
reaches equilibrium if the system’s kinetic energy is equal to 3NkBT/2, where kB is
the Boltzmann’s constant and T the externally set temperature. The relation between
the system’s kinetic energy and temperature is calculated based on the ideal
monatomic gas model, where the intermolecular interactions are neglected [31].
However, unlike diluted gases, the interatomic interactions in a tightly bound
system, such as molecules, crystals and solids, are not negligible [31]. It was
reported that when dealing with such system but without taking into account the
potential energy of atoms so as the effect of phonons during the correlation of the
physical system energy to temperature, the temperature of the physical system
would be significantly underestimated. This would result in potentially feeding back
an extra amount of energy into the physical system through feedback control of the
external system. Based on solid state physics [31], this will further generate, such
as, large fluctuation in system energy at high temperature, thereby leading to poor
system stability, reduced solution accuracy and early rupture of atomic bonds etc.,
and also giving an inaccurate estimate of the thermal behaviors and properties of
solids/molecules. Premature atomic bond breaking problems [32] were often
reported when performed through quasi-steady state MD simulation with an NH
thermostat. This perhaps explains why in many previous studies [27, 33], transient
rather than quasi-steady state modeling was carried out to investigate the high-
temperature material properties of carbon fullerenes. Accordingly, a more robust
and effective extended NH thermostat method for constant temperature MD sim-
ulation of solid system is needed.

Despite the powerful capability and great efficiency of microcomputers today,
MD simulation is still limited to a relatively small-scale model where atoms are less
than 106–108 and duration less than 10−6–10−9 s. Long calculating time is generally
essential for sampling high-frequency modes. Unfortunately, there present great
difficulties in isolating each frequency mode due to a trivial gap among the high-
frequency models. To deal with the issues, there is a crucial demand of more
effective modeling techniques. A recent progress in computational methods based
on equivalent continuum modeling (ECM) has allowed an effective and efficient
characterization and simulation of the mechanical properties and behaviors of a
larger scale of nano-structured systems in a longer time span. In principle, the ECM
approaches transform chemical bonds between atoms in MM into a continuum
model using finite element (FE) methods such as a shell, spring, truss, or beam
element, thereby greatly improving computational efficiency while still maintaining
solution accuracy. The approaches have been extensively applied in predicting the
thermal-mechanical properties of low-dimensional carbon allotropes. For example,
Odegard et al. [34] utilized an equivalent plate and truss model, based on com-
putational chemistry and solid mechanics, to simulate the mechanical properties of
SWCNTs and graphite. Yakobson et al. [35], Harik [36] and Wang et al. [37]
proposed equivalent elastic shell models to examine the axial buckling of carbon
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nanotubes. Sohi and Naghdabadi [38] assessed the torsional buckling behaviors of
CNTs filled withfullerenes using a multi-layered shell model. Wu et al. [39] pre-
dicted the elastic modulus of CNTs via tensile/vibrational analysis through an
equivalent spring model. Li and Chou [40, 41] proposed a molecular structural
mechanics (MSM) approach based on an equivalent round beam element to
investigate the Young’s and shear modulus and vibrational and buckling behaviors
of S/MWCNTs. The beam model could offer a better description of the bonding
energy of CNTs. However, its round beam assumption for simulating the covalent
bonds in CNTs would potentially result in an overestimate of CNT’s mechanical
properties and behaviors. Furthermore, a modification of the classical MSM model
was proposed by Kasti [42] for simulating the mechanical properties of zigzag
CNTs. However, there are certain technical insufficiencies and shortcomings in the
conventional ECM approaches. For example, they are incapable of handling the
surface and temperature effects, thereby potentially leading to an inaccurate pre-
diction of the corresponding mechanical properties. Thus, a more effective and
reliable ECM approach is demanded. In this chapter, an advanced ECM model is
introduced to alleviate the disadvantages of the conventional ECM approaches.

In this chapter, the static and dynamic thermal-mechanical properties and
behaviors of several low-dimensional carbon allotropes, as well as their phase
transformation and fracture behaviors, are extensively reported using the presently
proposed MSM model and constant temperature MD model. The proposed MSM
model is simply a modification of the classical MSM model, which is thus termed
the modified MSM (MMSM) model. Furthermore, for facilitating MD simulation of
the temperature-dependent material properties and behaviors of the carbon nano-
structures in a wide temperature range from low (below Debye temperature) to high
temperature (near phase change point), a novel NVT thermostat model is proposed.
The proposed NVT model is a modification of the standard NH thermostat incor-
porated with classical MD simulation, derived by considering the contribution of
phonons by virtue of the vibrational energy of lattice and the zero-point energy
based on the Debye theory. The equivalence of the thermostat method and the
canonical ensemble is also proved. Besides, the influences of temperature, layer
number, chirality, and size on the physical properties and behaviors are also
addressed. The effectiveness of the proposed theoretical models is demonstrated
through comparison with the MD results derived using the conventional thermostat
methods, such as the standard NH, NHC, and MNHC thermostats, and also the
literature experimental and theoretical data.

The rest of the chapter is divided into four sections. Firstly, a brief introduction
of the molecular structures of low-dimensional carbon allotropes is done. Secondly,
in addition to the classical MD method, the theoretical background and derivations
behind the proposed MMSM model and modified NH thermostat method are
introduced. Thirdly, the static and dynamic thermal-mechanical properties and
behaviors of various CNTs, such as Young’s modulus, radial elastic properties,
radial deformations, vibrational behaviors, and radial breathing modes (RBMs) and
frequencies, and their temperature dependences are investigated using the presently
proposed constant temperature MD simulation and MMSM model as well as the
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classical MSM model. Lastly, the influences of various types of atomistic defects on
mechanical properties and fracture behaviors of SWCNTs are explored through the
classical MD simulation. Moreover, the phase transformation behaviors of car-
bonfullerenes at atmospheric pressure and their thermal-mechanical properties at
temperature below Debye temperature are also reported using the proposed constant
temperature MD simulation model.

Molecular Structures

Allotropes of carbon are organic compounds that exist in forms with different
chemical structures, such as diamond, graphene sheet, CNT and fullerene. Two
examples of low-dimensional carbon allotropes are discussed herein, namely ful-
lerenes and CNTs. They are formed by the basic structural element of graphene, and
are all sp2-hybridized, in which three C–C bonds are formed with adjacent carbon
atoms.

Carbon Fullerenes

Fullerenes, alternatively called Buckminster fullerenes or simplybuckyballs, are the
smallest fullerene molecule, which were named after the architect Richard Buck-
minster Fuller who developed a geodesic dome with great structural stability.
Fullerenes are essentially composed of a number of hexagonal carbon rings (ben-
zene) which are linked to each other or to some pentagonal carbon rings. The
relationship between the number of carbon atoms (nc) in a fullerene and hexagon
carbon rings (nh) is given by: nh = (nc/2)−10, where the number of pentagonal
carbon rings are at all times set to 12. The smallest family member is C20; however,
fullerene C20 is not a common structure. The most common structure is C60, which
is a soccer-ball-shaped cage, made of 20 hexagons and 12 pentagons with a carbon
atom at the vertices of each polygon and a bond along each polygon edge. The
stable and highly symmetric structure of C60 has two bond lengths: the so-called
“double bond” between two hexagons and “single bond” between a hexagon and a
pentagon. In essence, the former is shorter than the latter, and its average bond
length is 1.4 angstroms. Ever since the discovery of C60 in 1985 by Kroto et al.
[43], fullerenes have been the subject of intense research by many scientists
worldwide.

C60 fullerenes can be discovered in nature and more surprisingly, also in outer
space, spotted in 2010 in cosmic dust cloud. Other common higher fullerenes are
C70 and C80 structure. Besides C60, C70, consisting of 70 carbon atoms, can be also
produced in nature. It is a cage-like fused-ring atomistic structure which resembles a
rugby ball, composed of 25 hexagons and 12 pentagons, with a carbon atom at the
vertices of each polygon and a bond along each polygon edge. C80, consisting of 80
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carbon atoms, is an equilibrium combination of the rhombic triacontahedron and
pentagonal dodecahedron, made of 30 hexagons and 12 pentagons, and consists of
full isometric pentagonal symmetry. The molecular structure of C60, C70 and C80

are illustrated in Fig. 1.

Carbon Nanotubes (CNTs)

CNTs are a cylindrical carbon allotrope or buckytube. A CNT structure can be
considered as a result of a number of rolled-up graphene sheets, and can be deemed
an atypical variation of typical graphite. Thus, the bonding structure between car-
bon atoms in a CNT system is similar to that of graphite. According to the roll-up
directions, the geometry of nanotubes can be uniquely determined. Prior to the
wrapping of graphene sheet and the establishment of the geometry of CNTs, the
chiral vector (the roll up directions) of original hexagonal lattice in graphene sheet
must be determined. As shown in Fig. 2a, the chiral vector ~Cv in a graphene sheet is
defined [44] as

~Cv ¼ n1~a1 þ n2~a2; ð1Þ

where ~a1 and ~a2 are the two primitive vectors with 60° for graphene hexagonal
lattice and n1 and n2 arbitrary integral variables. Along the chiral vector, the
graphene sheet is rolled up to a cylinder, thereby forming a CNT. Based on the roll-
up directions, different CNT structures can be produced: n2 = 0 for a zigzag CNT,
n1 = n2 for an armchair CNT, and a chiral CNT, otherwise. In other words, three
major types of CNTs can be defined based on the chiral angle θ, i.e., zigzag (θ = 0˚),
chiral (0˚ < θ < 30˚), and armchair (θ = 30˚). The diameter d (Å) and chiral angle θ
of CNTs can be derived from simple geometry as

d ¼ 0:783
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n1n2 þ n22;

q
ð2Þ

Fig. 1 Molecular structure of three kinds of buckyballs. a C60, b C70, c C80
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h ¼ sin�1

ffiffiffi
3

p
n2

2 n21 þ n1n2 þ n22
� �

" #
: ð3Þ

CNTs can be either metallic or semi-conducting depending on their chirality,
where it mainly determines the density, lattice structure, material strength, and
conductance of CNTs. Based on the structure of CNTs, it can be rapidly divided
into two typical categories: SWCNTs and MWCNTs. Unlike SWCNTs, MWCNTs
are established by more than one rolled-up graphene sheets with an interplanar
spacing of 0.34 nm. The structures of SWCNT and MWCNT are shown in
Fig. 2b, c.

Theoretical Modeling

MD and ECM approaches are mainly applied in the study for exploring the physical
properties and behaviors of the two low-dimensional carbon allotropes. In the
session, the theoretical background and mathematical derivations of the classical

n =n1 2

n1 n  =020, 

zigzag

armchair

chiral

(a)

(b) (c)

Fig. 2 Molecular structure of CNTs. a Chiral vector, b SWCNT, c MWCNT
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MD methods together with the potential function applied for simulating the C–C
bond interactions or bonding energy are first presented, followed by a brief intro-
duction of the standard and modified NH thermostat method [45] for constant
temperature MD simulation. The former is herein termed the classical MD methods
while the latter the modified MD method. Unlike the modified MD method that
employs the modified NH thermostat algorithm, the classical MD methods using
different existing thermostat algorithms follow classical statistical mechanics,
thereby being incapable of accurately reproducing quantum predictions or capturing
quantum effects, particularly at temperature below Debye temperature. In other
words, they should be quantumly corrected because of the neglect of the quantum
effects [46]. At last, two ECM approaches, namely the classical MSM [40, 41] and
modified MSM (MMSM) are briefly introduced [47].

Molecular Dynamics (MD)

Hamiltonian Dynamics

MD is based on Hamiltonian dynamics [48]. Consider a general physical system
with N atoms and the total energy of system E, including kinetic energy

PN
i¼1

1
2mi

_~r2i
and potential energy U ~r1;~r12; . . .:;~r1Nð Þ. The Lagrange function L ~r1;~r2; . . .;~rN ;ð
_~r1; _~r2; . . .; _~rN ; tÞ is

L ~r1;~r2; . . .;~rN ; _~r1; _~r2; . . .; _~rN ; t
� �

¼ �U ~r1;~r2; . . .:;~rNð Þ þ
XN
i¼1

1
2
mi

_~r2i ; ð4Þ

where mi, ~ri and _~ri are the mass, position and velocity of atom i. Replacing the
velocity _~ri with the momentum ~pi yields the following generalized momentum,

~pi �
oL ~r1;~r2; . . .;~rN ; _~r1; _~r2; . . .; _~rN ; t

� �
o _~ri

; ð5Þ

and the Hamiltonian function H ~r1;~r2; . . .;~rN ;~p1;~p2; . . .;~pN ; tð Þ of the system is

H ~r1;~r2; . . .;~rN ;~p1;~p2; . . .;~pN ; tð Þ ¼
XN
i¼1

_~ri~pi � L ~r1;~r2; . . .;~rN ; _~r1; _~r2; . . .; _~rN ; t
� �

:

ð6Þ

The total differential of Hamiltonian function H can be expressed as:
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dH ¼
XN
i¼0

oH
o~ri

� �
d~ri þ

XN
i¼0

oH
o~pi

� �
d~pi þ oH

ot
dt ¼

XN
i¼0

� o~pi
ot

� �
d~ri þ

XN
i¼0

o~ri
ot

� �
d~pi;

ð7Þ

and the Hamilton’s equations of motion can be found as

oH
o~ri

¼ � o~pi
ot

i ¼ 1; 2; . . .;Nð Þ; ð8Þ

and

oH
o~pi

¼ o~ri
ot

i ¼ 1; 2; . . .;Nð Þ: ð9Þ

By substituting Eqs. (4) and (5) into Eq. (6), the Hamiltonian function can be
rewritten as:

H ~r1;~r2; . . .;~rN ;~p1;~p2; . . .;~pN ; tð Þ ¼
XN
i¼1

~p2i
2mi

þ U ~r1;~r2; . . .;~rNð Þ ¼ E: ð10Þ

Further substituting Eq. (10) into the Hamilton’s equations of motion (Eqs. (8)
and (9)) yields the equations of motion of the physical system,

o~pi
ot

¼ � oU ~r1;~r2; . . .;~rNð Þ
i ¼ 1; 2; . . .;Nð Þ; ð11Þ

and

o~ri
ot

¼ ~pi
mi

: ði ¼ 1; 2; . . .;NÞ ð12Þ

In MD, it is generally assumed that there is no loss in the mass of each atom;
hence, Eq. (11) can be shown as

mi
o2 r!i

ot2
¼ � oU ~r1;~r2; . . .;~rNð Þ

i ¼ 1; 2; . . .;Nð Þ: ð13Þ

According to the Newton’s second law Fi ¼ mi
o2~ri
ot2

� �
and Eq. (13), the con-

servative force can be represented by the negative gradient of some potential
function U. MD method is based on the equations of motion of the physical system,
i.e., Eqs. (11) and (12), calculating the positions and velocities of atoms versus
time.
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Potential Function

In MD simulation, an analytical or empirical potential function is applied to
evaluate the atomistic interaction or bonding energy, and the formulation of MD is
then defined by assessing the spatial gradient of the specified potential function. In
order to derive accurate physical material properties, selection of an appropriate
potential function is rather crucial. To describe the covalent bonds, i.e., σ-bonds, of
carbon atoms, the pair potential approximation is not technically sufficient. The
potential energy induced by the bond angle variation should be included, and a
many-body potential is also required. The Tersoff-Brenner potential is one of the
widely-used three body potentials for the covalent chemical bond, such as silicon
and carbon. This potential is first made by Tersoff [49] for simulation of solid
silicon. Later on, Brenner [50] extended the Tersoff potential for carbon and
hydrocarbon system. This potential has become very popular in studying the
physical properties of carbon allotropes. The total covalent potential of a physical
system is denoted as the sum of individual covalent bond energy,

Ucov ¼ fc rij
� �

VR rij
� �� bijVA rij

� �	 

; ð14Þ

where fc rij
� �

is the cutoff function of Tersoff-Brenner potential. The cutoff function
can be defined as

fc rij
� � ¼ 1 rij\�R� �D

1
2 � 1

2 sin
p
2�D rij � �R

� �� �
�R� �D\rij\�Rþ �D

0 rij [ �Rþ �D

8<
:

9=
;; ð15Þ

where rij is the distance between atom i and j, �D the half width and �R the cutoff
length. Generally, the cutoff function is a simple decaying function showing the
weighting of covalent bonds centered at rij ¼ �R. If rij is smaller than “�R� �D”, the
potential energy should be considered, and the weighting becomes one. When it is
in between “�R� �D” and “�Rþ �D”, the weighting varies from 1 to 0. When it
becomes larger than “�Rþ �D”, the potential energy can be ignored and the
weighting is equal to zero. The VR rij

� �
and VA rij

� �
in Eq. (14) are the repulsive and

attractive interactions. Those two parts of interactions can be described as a Morse
type potential [51],

VR rij
� � ¼ De

S� 1
exp �b

ffiffiffiffiffi
2S

p
rij � Re
� �n o

; ð16Þ

and

VA rij
� � ¼ DeS

S� 1
exp �b

ffiffiffiffiffiffiffiffi
2=S

p
rij � Re
� �n o

; ð17Þ
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where De and Re are the dissociation energy and equilibrium bond length of
materials, and S and b the coefficients of materials. Furthermore, bij in Eq. (14)
denotes the modification of the covalent bonding energy depending on hijk (as
shown in Fig. 3). It is expressed as

bij ¼ 1þ an
X
kð6¼i;jÞ

g hijk
� �8<

:
9=
;

n0
@

1
A

�d

; ð18Þ

where

g hijk
� � ¼ 1þ c2=d2 � c2= d2 þ h� cos hijk

� �2� �
: ð19Þ

In Eq. (19), a, n, δ, c, d and h are also the coefficients of materials. For a carbon
system, the parameters used in the Tersoff-Brenner potential have been used by
Maruyama [52], and the Tersoff-Brenner potential versus distance rij with different
bonding angle hijk are illustrated in Fig. 3. It should be noted that according to
Brenner [50], the non-bonding interactions such as van der Waals (vdW) forces
were not considered in the potential form.

However, for some carbon allotropes, the atomistic interactions across layers are
modeled with the vdW potential. A widely-used pair potential, Lennard-Jones 12-6
potential function [53], Battezzatti et al. [54] is used to describe the vdW atomistic
interactions. The Lennard-Jones 12-6 potentialfunction can be written as follows,

Fig. 3 Tersoff-Brenner
potential versus distance at
different bonding angles
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Uvdw rij
� � ¼ 4e0

r0
rij

� �12

� r0
rij

� �6
" #

; ð20Þ

where ϵ0 is the energy at minimal Uvdw and r0 the distance between two atoms at
which Uvdw is zero. For carbon atoms, ϵ0 = 3.8791 × 10−10 fJ and r0 = 0.34 nm. The
first derivative of Uvdw gives the vdW atomistic force function,

Fvdw rij
� � ¼ � dUvdw

drij
¼ 24

e0
r0

2
r0
rij

� �13

� r0
rij

� �7
" #

: ð21Þ

The relationship of both the Lennard-Jones pair potential and pair force and the
inter-atomistic distance is illustrated in Fig. 4. In this investigation, the Tersoff-
Benner potential is used to describe the covalent bond in fullerene, the inlayer
covalent bonds of CNTs, graphite and diamond, while the interactions across layers
are described with the Lennard-Jones potential.

Verlet Algorithm

By virtue of a finite-difference method, the position after a time interval Δt can be
predicted according to the equations of motion for each atom. There are two
numerical schemes, such as the leapfrog method [55] and Verlet method [56], are
widely used in MD simulation. For the leapfrog formula, there is a need of the
coordinate at next time step in order to calculate the velocity at current time. By
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potential versus distance
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contrast, the Verlet method is a more straightforward and efficient algorithm, and is
therefore used in the investigation. With this method and the force between atoms,
the position and velocity of atoms can be then calculated through MD simulation.
Based on the calculated position and velocity of atoms, the thermodynamic and
thermal-mechanical properties can be further estimated according to mechanics
theories, such as static physics.

Thermostat Algorithms

The Standard Nosé-Hoover (NH) Thermostat Method

The standard NH thermostat [19–21] is formulated based on the idea of thermal
reservoir (an external system) to control the system temperature. Consider a
physical system in a fixed volume V. The NH thermostat introduces an additional
degree of freedom s that denotes the thermal reservoir of the physical system to
form an extended system. As a result, the thermal reservoir is considered an integral
part of the physical system. The interaction between the physical and external
systems is expressed via the scaling of the velocities of the particles,

~vi ¼ s _~ri i ¼ 1; 2; . . .;Nð Þ; ð22Þ

where _~ri ¼ d~ri=ds and s is the virtual time in the extended system. The relation
between the real time t and the virtual time s is

ds ¼ sdt: ð23Þ

The Hamiltonian function of the extended system can be expressed in the fol-
lowing form,

HNos0 e ¼ U ~r1;~r2; . . .;~rNð Þ þ
XN
i

~p2i
2mis2

þ 3NjBT ln sþ p2s
2Q

; ð24Þ

where
PN

i ~p
2
i =2mis2 is the kinetic energy of the physical system, 3NjBTlns and

p2s=2Q the potential and kinetic energyof the external system, respectively, ~pi the
momentum of particle i of the physical system in terms of the virtual time s and
equal to mis2 _~r; jB Boltzmann’s constant, T the externally set temperature, Q the
effective mass of the external system, which determines the time scale and affects
the temperature fluctuation, and ps the momentum of the external degree of freedom
s in terms of the virtual time s and equal to Q_s.

Based on the Hamiltonian equations of motion, the scaling relations of the
momenta between t and s are
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~pi ¼~pi
s
; ð25Þ

and

ps ¼ ps
s
; ð26Þ

where ps is the momentum of external degree of freedom s in terms of the real time
t. As a result, the equations of motion of particles at time t are

d~ri
dt

¼ ~pi
mi

i ¼ 1; 2; . . .;Nð Þ; ð27Þ

d~pi
dt

¼ � oU
o~ri

�~pi
pg
Q

i ¼ 1; 2; . . .;Nð Þ; ð28Þ

dg
dt

¼ pg
Q
; ð29Þ

and

dpg
dt

¼ 2
XN
i¼1

~p2i
2mi

� 3
2
NjBT

" #
: ð30Þ

where g and pg are two parameters used in replace of s and ps, respectively, and
their relations are denoted by

g ¼ lns; ð31Þ

and

pg ¼ sps: ð32Þ

Comparing Eq. (28) with Eq. (11), the changing rate of the momentum ~pi is
influenced not only by the interaction force between atoms (i.e., �oU=o~ri) but also
by the parameter pg and~pi itself. Equation (30) reveals that the changing rate of pg
is determined by the difference between the kinetic energy of the physical system
and the total potential energy associated with the externally set temperature.
According to the ideal gas law, the instantaneous system temperature Ts can be
related to the kinetic energy of the physical system,

XN
i¼1

~p2i
2mi

¼ 3
2
NjBTs: ð33Þ
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The equation does not consider the potential between atoms. As addressed
earlier, without considering the factor in the formula, the standard NH thermostat
would potentially underestimate the system temperature, and so feedback excessive
energy to the physical system. This will become even more evident and critical
when dealing with a tightly bound system, such as solids, crystals, and molecules.

Solid State Physics

Solid state physics [31, 57] is a branch of condensed matter physics concerned with
understanding the physical properties of matter in solid state by way of techniques
such as electromagnetism, quantum mechanics and crystallography. The theory has
been widely applied to calculate the mechanical, thermal, electrical, magnetic and
optical properties of solids. Unlike dilute gas, the interaction between atoms in
solids cannot be neglected. In solid state physics, crystalline lattice is treated as a
mass-and-spring system, and each atom in the lattice stays in a potential well whose
minimum is at a lattice point. As the atom is perturbed from equilibrium, an induced
net force would tend to restore it back to the balanced position. Consider a non-
translation and non-rotation system with N particles, the energy of all possible states
can be express as [31, 57]:

E ¼
Xa
i¼1

�hxi ni þ 1
2

� �
þ Ub; ð34Þ

where �h ¼ h=2p and h is the Planck’s constant, a and Ub the number of inde-
pendent harmonic oscillators and the potential energy when all particles are in

equilibrium state, and the vibrational frequency xi ¼
ffiffiffiffiffiffiffiffiffiffi
ki=li

q
, where ki and li are

the effective force constant and reduced mass. The effective force constant and
reduced mass are difficult to be estimated; as a result, all possible energy states
should be calculated through other methods. With the energy of all possible states,
the partition function can be described as

Z N;V ; Tð Þ ¼ e�Ub=jBT
Ya
i¼1

e��hxi=2jBT=1� e��hxi=jBT
� �

: ð35Þ

Furthermore, based on the partition function, the total energy can be denoted as

E ¼ jBT
2 o ln Z

oT
¼ Ub þ

Xa
i¼1

�hxi

2jBT
þ ln 1� e��hxi=jBT

� � �
: ð36Þ

Since it is not straightforward to calculate the summation function, the density-
of-state function g xð Þ, giving the number of states at frequency x, is introduced.
Accordingly, Eq. (36) can be rewritten as
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E ¼ Ub þ
Z1
0

�hx
2jBT

þ ln 1� e��hx=jBT
� � �

g xð Þdx; ð37Þ

where Z1
0

g xð Þdx ¼ 3N: ð38Þ

Equation (37) also can be further estimated from quantum statistics under the
assumption of the quanta of lattice vibrations, i.e., phonons, which are considered
as ideal Bose-Einstein gas. In order to calculate the quantity of total energy, the
well-known Debye approximation [57] is used to compute the g xð Þ function. In the
Debye approximation, the sound velocity cs is considered as constant for each
polarization type. The relation is defined as x ¼ cs ~K

�� ��, where ~K is the wave vector.
The density-of-state function g xð Þ becomes

g xð Þ ¼ Vx2=2p2c3s : ð39Þ

For an N-particle system, the total number of acoustic phonon modes is 3 N. A
cutoff frequency xD, i.e., Debye frequency, can be determined form Eqs. (38) and
(39) as

xD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18p2Nc3s=V

3
q

: ð40Þ

Substituting the cutoff frequency xD and the density-of-state function g xð Þ into
Eq. (37) yields,

E ¼ Ub þ
ZxD

0

�hx
2jBT

þ ln 1� e��hx=jBT
� � �

9Nx2=x3
D

� �
dx: ð41Þ

After integration, the total energy E can be written as

E ¼ U0 þ 3NjBT �D xð Þ; ð42Þ

where U0 is the zero-point energy, x a dimensionless temperature x ¼ hD=T , where
hD the Debye temperature hD ¼ �hxD=jB, and �DðxÞ the Debye function defined as

�DðxÞ ¼ 3
x3

Zx

0

y3

ey � 1
dy: ð43Þ

Equation (42) reveals the relation between the total energy and temperature for a
crystal.
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The Modified NH Thermostat Method

The effect of the potential energy of atoms in a solid on the calculation of the
system temperature is addressed through the concept of phonons, the quanta of
vibrational energy. Since MD, grounded on classical dynamics, cannot deal with
phonon particles, the total phonon energy is, instead, calculated based on the ideal
Bose-Einstein gas model [31] and the externally set temperature. The calculated
phonon energy is then added into the thermal base (i.e., the external system) in
order to correct the feedback energy from the external system to the physical one.
Based on the energy interaction between the physical and the external system, the
energy state of the physical system would be eventually consistent with that of the
external system, and also with that at the externally set temperature. Accordingly,
the properties of the physical system at the energy state can be assessed. As
mentioned earlier, quantum statistics remains unable to calculate the total phonon
energy because of the unknown phonon density-of-state function g xð Þ. Thus, the
well-known Debye approximation is used in the work to give an estimate of the
function.

The ideal gas relation in Eq. (32) is replaced by the relation of the vibrational
energy of lattice and the zero-point energy and temperature, which is derived based
on the Debye theory. Consequently, both the kinetic and potential energies of atoms
or the effect of phonons are taken into account in the calculation of the system
temperature. According to the Debye theory, the relation of energy and temperature
can be described as

U ~r1;~r2; . . .;~rNð Þ þ
XN
i

~p2i
2mi

¼ U0 þ 3NjBT �D xð Þ: ð44Þ

Substituting the right-hand side term of Eq. (32), i.e.,
PN

i¼1
~p2i
2mi

� 3
2NjBT , by the

relation of Eq. (44) gives the modified NH thermostat equations of motion,

dpg
dt

¼ 2 U ~r1;~r2; . . .;~rNð Þ � U0 þ
XN
i

~p2i
2mi

� 3NjBTs �DðxÞ
" #

; ð45Þ

and Eq. (27)–(29). The effectiveness of the proposed modified NH thermostat
method remains indecisive unless the calculated partition function of the extended
system is proved to be comparable to that of the physical system in a canonical
ensemble. Note that the effective mass Q is determined by the following form [58],

Q ¼ 3NjBTss2; ð46Þ

where s is a characteristic time scale. It was demonstrated that for a non-
Hamiltonian system constructed from the modified NH thermostat, the total energy
and momentum conservation laws shall be satisfied as the sum of the external forces
are equal to zero [59]. Moreover, it was also theoretically proved by Chen et al. [45]
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that the partition function of the extended system based on the modified NH
thermostat is proportional to that of the physical system in the canonical ensemble,
suggesting that the averages of any statistic quantities are exactly those in canonical
ensemble [19].

Atomistic Stress

The Cauchytype ofstress measure in continuum mechanics is inadequate for use in
the discrete atomic system because its physical responses are all discrete. The virial
theorem [60] was often used to estimate the pressure of gas atoms or the homo-
geneous bulk stress. If the stress state is homogeneous in the entire volume, the
virial stress can be effective. In order to compute the stress around a single atom,
Basinski et al. [61] proposed the BDT stress to estimate the local stress, in which
the stress measure would be valid for individual atom through the concept of
effective atom volume as

Xi ¼ 4p
3
a3i ; ð47Þ

where

ai ¼ 1
2

P
j 6¼i r

�1
ijP

j 6¼i r
�2
ij

; ð48Þ

and Xi is the effective volume of atom i. In essence, both virial and BDT stress are
simply a volume-average-based stress measure. For the type of stress measure, the
idea of the so-called volume would be vague for atomic ensembles with irregular
atom arrangement. In addition, the stress measure is very difficult to satisfy the
conservation of linear momentum.

The issue was also dealt with by Shen and Atluri [62] through a proposed model
transferring the discrete atomistic force field into an equivalent continuum system
using the smoothed particle hydrodynamics (SPH) technique. In the model, the
force density ~gðrÞ at point r can be computed from the discrete atomistic force field
by the SPH method:

~gðrÞ ¼
X
i

fiW r � ri; �hð Þ; ð49Þ

where fi is the force on atom i, W r; �hð Þ the smooth kernel function, �h the smoothing
length, and ri the position of atom i. Typically, the followingGaussian function is
chosen as the smooth kernel function,
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W r; �hð Þ ¼ 1ffiffiffi
p

p �hð Þd
exp � x2

�h2

� �
; ð50Þ

where d is the number of spatial dimensions. As �h approaches to zero, the kernel
function becomes a delta function. An appropriate selection of �h would make the
Gaussian kernel function drop rapidly so that only a small number of atoms would
contribute to the force density. By the smooth kernel function, the relationship
between the atomistic force and stress fields can be obtained by analyzing the force
state of the infinitesimal parallelepiped at point r. With an appropriate choice of the
smoothing length �h, the Cauchy stress in the atomistic level at point r falls into the
following simple form:

r rð Þ ¼ 1
2

X
i

X
j 6¼i

rij � fij

Z1

0

W r þ rijc� rj
� �� �

dc: ð51Þ

It has been well demonstrated that the Shen and Atluri’s stress would be much
easier to implement and also more effective for a crystalline solid with homoge-
neous deformations and defects. By contrast to those of the volume-average-based
ones, the calculated results based on the stress measure turn out to be more con-
sistent with the bulk value. Consequently, the stress definition is used herein.

The Classical MSM Model

The classical MSM model proposed by Li and Chou [40, 41] introduces a nonlinear
rod element and an equivalent round beam to simulate the bonding force and vdW
interaction between any two carbon atoms in CNTs, respectively. In other words,
the model assumes that there is an equivalent bond bending rigidity in both the
major and minor principal centroidal axes of the cross section of the covalent bond
because of the round beam assumption. The bending rigidity of the equivalent
round beam is principally derived from the bond-angle variation energy. The
general potential energy expression Vt for a covalent bond system was given by
Cornell et al. [63],

Vt ¼
X

Vr þ
X

Vh þ
X

Vu þ
X

Vx þ
X

VvdW ; ð52Þ

where Vr, Vh, Vu, Vx, and VvdW are the bond-stretching energy, bond-angle vari-
ation energy, dihedral-angle torsion energy, inversion energy and vdW interaction
energy, respectively. The potential energy in MM is schematically demonstrated in
Fig. 5. The electrostatic interaction is herein neglected because CNTs are a neutral
system. In addition, many previous studies (e.g., [63, 64]) claimed that the inversion
energy is considered trivial for axial mechanical properties and behaviors of CNTs,
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as compared to the other energy terms. However, it will be proved later on that the
energy would play a significant role in the calculation of the radial mechanical
properties.

In summary, the total potential energy for a covalent bond structure, such as a
CNT, is dominated by the first three terms of Eq. (52). Based on the harmonic
expressions under the assumption of small deformation, the simple expressions for
these energy terms can be written as

Vr ¼ 1
2
Kr r � r0ð Þ2¼ 1

2
Kr Drð Þ2; ð53Þ

Vh ¼ 1
2
Kh h� h0ð Þ2¼ 1

2
Kh Dhð Þ2; ð54Þ

and

Vu ¼ 1
2
Ku Duð Þ2; ð55Þ

where Kr, Kh and Ku denote the bond-stretching, bond-angle variation and tor-
sional-resistance force constant, and Dr, Dh and Du are the bond-stretching, bond-
angle and bond-twisting-angle variation, respectively. In principle, the bond-angle
variation force constant is the sectional bending rigidity about the major principal
axis of the covalent bond for a graphene sheet.

To explore the stiffness and geometric parameters of the equivalent beam,
including Young’s modulus E, shear modulus G, length L, sectional area A,
moment of inertia I, and polar moment of inertia J, their relationships with the force
constants in MM need to be first determined. The stiffness and geometric
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Fig. 5 Potential energy in MM. a Vr, b Vq, c Vφ, d Vω, e Vvdw
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parameters of the equivalent beam can be evaluated from the relationship between
the potential energy of the covalent bond due to atomic interactions and the strain
energy of the equivalent beam as a result of structural deformation. According to
structural mechanics, the strain energies of a uniform beam subjected to a pure axial
force F (Fig. 6a), a pure bending moment M (Fig. 6b) and a pure torsion T (Fig. 6c)
can be expressed, respectively, as

UA ¼ 1
2

ZL

0

F2

EA
dL ¼ 1

2
F2L
EA

¼ 1
2
EA
L

DLð Þ2; ð56Þ

UM ¼ 1
2

ZL
0

M2

EI
dL ¼ 1

2
M2L
EI

¼ 1
2
EI
L

hBð Þ2; ð57Þ

and

UT ¼ 1
2

ZL

0

T2

GJ
dL ¼ 1

2
T2L
GJ

¼ 1
2
GJ
L

Dbð Þ2; ð58Þ

where DL, hB and Db are the axial stretching deformation, the angle of rotation at
the end of the beam and the relative rotation between the two ends of the beam,
respectively. In Eqs. (53)–(58), both Vr and UA represent the stretching energy, both
Vh and UM indicate the bending energy, and both Vu and UT stand for the torsional
energy. Accordingly, Dr is reasonably assumed to be equal to DL, Dh is equal to hB,
and Du is equal to Db. Therefore, relating Eqs. (53)–(55) to (56)–(58), respectively,
yields the following direct relationship between the structural mechanics parameters
and MM force field constants,

Kr ¼ EA
L

;Kh ¼ EI
L

and Ku ¼ GJ
L

: ð59Þ

Since the force constants Kr, Kh and Ku, as well as the bond length L can be
directly derived from the second generation force field [63], the stiffness and
geometric parameters E, G, A, I, and J of the equivalent beam can be also deter-
mined. For modeling the in-layer or inter-layer vdW interaction, a non-linear spring
element is used based on the vdW interaction function from Eq. (20).

(a) (b)Λ (c)

M TF A

L LL

Fig. 6 Deformation of a beam element. a Tension. b Bending. c Torsion
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Modified MSM (MMSM) Model

The round-beam assumption in the classical MSM model is theoretically sound
since the sectional bending rigidity of the covalent bond in the minor principal
centroidal axis should be closely related to the weak inversion energy rather than
the bond-angle variation energy according to MM [47]. As the minor-axis bending
rigidity of the covalent bond would primarily determine the radial stiffness prop-
erties of CNTs, the inaccurate modeling of the sectional bending rigidity in the
minor axis of the covalent bond would lead to a poor estimate of the associated
radial mechanical properties and behaviors. Therefore, Chen et al. [47] introduced
an MMSM model to ease the technical deficiency.

Figure 7a displays two of the hexagons in a graphene sheet, which is considered
as a frame structure in the MMSM model. Point O in the figure is defined as the
origin of the local Cartesian coordinate system for the beam (covalent bond) OA.
Assume that there is a force Fx parallel to the X axis at point B of the beam OB, thus
resulting in a bond-angle variation between the beam OA and OB or a moment Mz

directed along the Z axis. Since this moment would fully contribute to the bond-
angle variation energy between the covalent bond OA and OB, the relation between
the sectional bending rigidity of the continuum pseudo-rectangular beam element
about the Z axis (the major axis) and the bond-angle variation force constant is
described as,

Kh ¼ EIz
L

: ð60Þ

Assuming that another force Fz parallel to the Z axis is applied at the point O, as
shown in Fig. 7b, which would induce a moment My directed along the Y axis. The
force would induce the inversion energy Vx between the atom O and the plane
A−B−C. Thus, roughly one third of the inversion energy would contribute to the
bending energy (UMy ) of the covalent bond OA because of the moment My,

UMy ¼
1
3
Vx ¼ 1

6
Kxh

2
y ; ð61Þ

where Kx is the inversion force constant, which is 1.1 kcal/mol based on Cornell
et al. [63], and hy is the bending angle of the beam OA along the Y axis. Further
combining Eq. (57) with Eq. (61) yields

Kx ¼ 3EI
0
y

L
: ð62Þ

By relating Eq. (60)–(62), the relation of the moment of inertia about the minor
(I

0
y) and major (Iz) principal centroidal axes can be derived,
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I
0
y ¼

Kx

3Kh
Iz ¼ 0:0058IZ ¼ �k1Iz: ð63Þ

Based on Cornell et al. [63], the bond-angle variation force constant Kh is
63 kcal/mol. From Eq. (4–61), it is evident that the I

0
y is much smaller than Iz,

implying that the round beam assumption in the classical MSM model is clearly not
conservative.

There is a need of slight modification of the above derivation for an SWCNT
since it is a rolled-up graphene sheet rather than a plane one [47]. Figure 7c, d show
the top view of an SWCNT, where the circular dot line is the “virtual” tube wall of
the SWCNT, and the black segment lines are the actual tube wall (i.e., a polygon),
and two of the hexagons in a zigzag SWCNT, respectively. It is clear to see that
unlike the graphene sheet, shown in Fig. 7a, there exhibits an angle between these
two hexagons (see Fig. 7c); as a result, Eqs. (4–58), which is derived from a
graphene sheet, would no longer hold for a CNT. Note that as shown in Fig. 5c, the
force Fz applied at the point O would also induce a bending moment My on the
beam OA, and then contribute to the corresponding inversion energy Vx and also
the moment of inertia along the Y-axis, just similar to the case of the graphene sheet
shown in Fig. 7b. Further consider that a force Fx is acted on the beam OB at point
B in the X direction, as shown in Fig. 7d, which creates a bending momentM on the
beam OA. As shown in the figure, the moment M can be then separated into two
components, M

0
y and Mz, directed along the Y and Z axis, respectively,

M0
y ¼

E I 00y
� �
L

h; ð64Þ
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Fig. 7 Schematic of induced
bond-angle variation and
inversion energy in acovalent
bond of a graphene sheet and
CNT. a Bond-angle variation
energy in a graphene sheet,
b inversion energy in a
graphene sheet, c top view of
a zigzag SWCNT, d bond-
angle variation energy in a
zigzag SWCNT
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and

Mz ¼ E Izð Þ
L

h; ð65Þ

where I 00y is the moment of inertial of beam OA directed along the Y axis due to the
bond-angle variation energy Vh. The relation between I 00y and Iz can be written by
comparing the above two equations,

I 00y ¼ �k2Iz: ð66Þ

According to Eq. (59), the corresponding bending energy terms associated with
these two moment components can be calculated and the bond-angle variation
energy Vh between the covalent bond OA and OB should be equal to the sum of the
above two terms, i.e.,

Vh ¼
M02

y L

2EI 00y
þM2

z L
2EIz

: ð67Þ

Thus, the following relation, similar to Eq. (60), can be obtained,

Kh ¼
E I

00
y þ Iz

� �
L

; ð68Þ

and then I 00y can be derived by solving Eqs. (66) and (68). Since the inversion energy
and bond-angle variation energy both contribute to the energy of the beam OA, the
moment of inertia of this beam along the Y axis (Iy) can be calculated by the sum of
I 0y and I 00y as

Iy ¼ I 0y þ I 00y ¼ �k1 þ �k2
� �

Iz: ð69Þ

Further combining Eqs. (63), (66), (68), and (69) yields the following relations,

Iy ¼
�k1 þ �k2
1þ �k2

I ¼ kyI; ð70Þ

and

Iz ¼ 1

1þ �k2
I ¼ kzI: ð71Þ
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From Eq. (70) to (71), the modified moment of inertia Iy and Iz are obtained. It
should be noted that for a decreasing radius, ky would come close to kz while for an
increasing radius, ky and �k2 approach to zero and kz advances to unity. This suggests
that the bending energy would be dominated by the bond-angle variation energy as
the radius becomes smaller. On the other hand, as the radius becomes larger than
about 1.5 nm, �k1 tends to be greater than �k2, suggesting that both the inversion
energy and bond-angle variation energy would have a considerable impact on the
bending energy.

Static and Dynamic Mechanical Properties of CNTs

The static and dynamic mechanical properties and behaviors of CNTs, including
axial Young’s modulus, shear modulus, Poisson’s ratio, radial elastic properties,
radial buckling, radial deformations, vibrational behaviors, and radial breathing
modes (RBMs) and frequencies, are presented using three simulation approaches,
namely the constant temperature MD simulation incorporating the modified NH
thermostat method, classical MSM and MMSM modeling. In these two MSM
models, temperature effects are considered by using the predicted temperature-
dependent bond length and angle through the constant temperature MD simulation
and temperature-dependent force constants through the Badger’s rule [65].

Elastic Properties of SWCNTs

The radial elastic modulus [66] is defined as the ratio of radial stress to radial strain,
similar to the axial Young’s modulus,

Er ¼ rr
er

¼ F=A
d=D

; ð72Þ

where δ is the radial displacement, D the diameter of the SWCNT, F the normal
force acting on the top of an SWCNT, and A the area on which F is applied, as
shown in Fig. 8a. The definition of the area A is based on the assumption of Li and
Chou [67, 68], in which it is the triangular area shown in Fig. 8b. The calculated
radial elastic moduli by the MMSM model are illustrated in Fig. 8a, together with
those calculated from the classical MSM model [67, 68]. It ranges from 30 to
0.3 GPa for the armchair CNTs with an increasing radius from 0.48 to 2.38 nm, and
62 to 0.4 GPa for the zigzag SWCNTs as their radius increases from 0.39 to
2.35 nm. It is clear to see that the radial stiffness of the zigzag type is larger than
that of the armchair type, probably because of the difference of the structural
arrangement of atoms. Furthermore, the radial elastic moduli tend to decrease
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significantly with an increasing of tube radius. The calculated radial elastic modulus
from the classical MSM model at the same radius interval is in the range of
256–7.2 GPa for the zigzag type and 117–4.0 GPa for the armchair type. Clearly,
there is a great deviation in the MMSM results from the classical MSM ones, and
more importantly, the difference would decrease with an increasing radius. More-
over, the radial elastic modulus of the SWCNTs is remarkably lower than the
associated axial one (about 1.0 TPa). Presently, there are very limited experimental
data on the radial elastic modulus of SWCNTs available; accordingly, the reported
numerical/experimental data of the radial modulus of multi-walled CNTs
(MWCNTs) are used for an indirect validation of the MMSM model. The validation
can be still considered effective mainly because they would hold a similar radial
elastic stiffness due to the weak vdW interaction between CNT layers in an
MWCNT. For instance, Shen et al. [66] performed nanoindentation tests to
investigate the radial elastic modulus of MWCNTs using a scanning probe
microscope, and found that the associated radial elastic modulus increases from 9.7
to 80.0 GPa with an increasing compressive stress. Yu et al. [4] characterized the
radial elastic modulus of MWCNTs also using nanoindentation tests with a tapping-
mode atomic force microscope. They reported the effective radial elastic modulus
ranges from 0.3 to 4.0 GPa at different cross-sections. Muthaswami et al. [69]
showed that the measured radial elastic modulus of MWCNTs using ultrasonic
force microscopy is in the range of 16.0–23.0 GPa. Beside experimental charac-
terization, Wang et al. [70] performed MD simulation to characterize the radial
elastic modulus of SWCNTs and found that it is in the range of 2.0–0.1 GPa as their
radius increases from 0.5 to 4.0 nm. It is apparent to see from the above reported
experimental and numerical data and the present results that the classical MSM
model tends to overestimate the radial elastic stiffness of the SWCNTs in contrast to
the MMSM model.

The Poisson’s ratio, axial Young’s modulus and shear modulus of SWCNTs are
subsequently examined using the MMSM model. Theoretically, the Poisson’s ratio
m of a continuum material is defined as the negative ratio of lateral strain el to axial
strain ea,

F

δ

D

F(a)
(b)

Fig. 8 Definition of the radial modulus and acting force area on an SWCNT. a Radial modulus.
b Acting force area
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m ¼ � el
ea
: ð73Þ

The calculated results are shown in Fig. 9b, where the Poisson’s ratio of the
SWCNTs tends to decrease with an increasing radius. Furthermore, as the radius
increases from 0.4 to 1.6 nm, the calculated Poisson’s ratios using the MMSM (i.e.,
0.20–0.10 for the armchair type and 0.22–0.10 for the zigzag type) are all larger
than those of the classical MSM (0.08–0.06 for both the armchair and zigzag types).
This suggests that the MMSM yields significantly lower radial tube stiffness for the
SWCNTs than the classical MSM. Most importantly, the results obtained from the
MMSM are much more consistent with the literature published data calculated
using various approaches than those of the classical MSM model. For example,
Hernandez et al. [10] reported the Poisson’s ratio 0.25 for the armchair SWCNT
with a radius of 0.41 nm, and 0.28 for the zigzag with a radius 0.75 nm using the
tight-binding method. Chang and Gao [64] made an estimate of the Poisson’s ratio
of SWCNTs using the MM model and found that it is in the range of 0.18–0.16 for
the armchair type and 0.20–0.16 for the zigzag with a radius ranging from about
0.25 to 1.0 nm.

The axial Young’s modulus of a continuum material can be defined as the ratio
of axial stress ra to axial strain ea,

E ¼ ra
ea

: ð74Þ

The calculated axial Young’s modulus of SWCNTs using the MMSM model is
presented in Fig. 10, together with the literature published results of Popov et al.
[71] using a lattice-dynamical model, Chen et al. [72] using MD simulation, and

Fig. 9 Radial modulus and Poisson’s ratio versus SWCNT radius [47]. a Radial modulus.
b Poisson’s ratio
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Chang and Gao [64] using an MM model. The simulation results show an incon-
siderable discrepancy in the axial Young’s modulus between the MMSM (i.e.,
1,030–1,083 GPa for the armchair SWCNTs and 961–1,056 GPa for the zigzag)
and classical MSM model (i.e., 1,096–1,104 GPa for the armchair and
1,054–1,078 GPa for the zigzag). The maximum distinction between these two
modeling results is less than about 8 %, suggesting that unlike the radial elastic
stiffness and Poisson’s ratio, the modification of the covalent bond’s cross-sectional
bending rigidity may not notably impact on the axial Young’s modulus of
SWCNTs. Moreover, it is also found that the present MMSM results are slightly
more comparable to the published data than the classical MSM ones, in which the
latter tends to give a stiffer axial Young’s modulus than the former.

The shear modulus of a continuum material can be defined as, according to the
continuum assumption,

G ¼ TL
hJ

; ð75Þ

where h is the torsional angle, J the cross-sectional polar moment of inertia, T the
applied torque, and L the tube’s length.

The calculated shear moduli of the SWCNTs are presented in Fig. 11a, b,
associated with the zigzag and armchair type, together with the literature data [72,
71]. The results show that there is only about 8–17 % discrepancies in the calcu-
lated shear modulus between the MMSM (i.e., 183–426 GPa for the armchair type
and 220–425 GPa for the zigzag) and classical MSM model (i.e., 224–477 GPa for
the armchair type and 265–466 GPa for the zigzag). Furthermore, by comparing the
MMSM and MSM results with the literature published data of Popov et al. [71] and
Chen et al. [72], a very good consistency can be found. This indicates that the
correction in the cross-sectional bending rigidity of the covalent bond would have a
little impact on the shear modulus of SWCNTs. In summary, the correction would

Fig. 10 Axial Young’s modulus versus SWCNT radius [47]. a Zigzag. b Armchair
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affect more the radial elastic stiffness and Poisson’s ratio than the axial Young’s and
shear modulus of SWCNTs.

Radial Buckling and Deformation of SWCNTs

The radial buckling and deformations of SWCNTs are strongly associated with
their radial stiffness. Figure 12 shows that the vdW atomistic interactions may lead
to the radial buckling of SWCNTs. In addition, as the radius of SWCNTs increases
up to a critical value, radial buckling would potentially occur because of the
weakening of the associated stiffness. The radial buckling is defined as the collapse
of a tube in the radial direction due to its instability before attaining the ultimate
strength of the material. The critical buckling load Pcr of SWCNTs in the radial
direction can be derived from the elastic instability analysis based on the following
equation for elastic instability,

K0 þ k�K1½ �w ¼ 0; ð76Þ

where w is the eigenvector or buckling-mode shape, K0 the linear stiffness matrix
and �K1 the geometric stiffness matrix. The scalar factor k at which buckling occurs
is designated “kcr”, and the critical buckling load Pcr ¼ kcrP, where P is the nor-
malized external load. The vdW interactions between any two neighboring atoms
are considered to be the external loads, and the critical scalar factor kcr can be
calculated from linear buckling analysis usingfinite element (FE) methods. The
approach to unity for kcr indicates that the vdW atomistic interactions considered
here are close to the critical buckling load of the structure.

The calculated critical scalar factor kcr of the armchair and zigzag SWCNTs is
shown in Fig. 13, as a function of their radius. Note that as kcr becomes larger than

Fig. 11 Shear modulus versus the radius of SWCNTs [47]. a Zigzag. b Armchair
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1.0, the SWCNTs tend to collapse simply under the vdW atomistic interactions. A
monotonic decrease of the critical scalar factor kcr can be observed in the figure as
the radius of the SWCNTs increases, implying that the SWCNTs with a larger
radius would collapse more easily due to the vdW interactions. Most importantly,
the calculated results from the MMSM model are substantially lower than those of
the classical MSM model.

The radial deformation of two vertically adjacent SWCNTs due to the vdW
atomistic interactions is also examined to further demonstrate the effectiveness of
the MMSM model. An example of the radial deformation (δ) of two vertically
overlapped SWCNTs with an equal diameter (D) of 2.0 nm is presented in Fig. 14.
According to Abrams and Hanein [7], radial deformation rate is defined as the ratio
of δ to D. The calculated radial deformation rate of the SWCNT by using the
MMSM and classical MSM model are listed in Table 4.1, in addition to the liter-
ature experimental data [2, 7]. The respective radial deformation rate obtained from
these two models is about 8.3 and 1.95 %. Clearly, the MMSM model can yield a
much larger radial deformation rate than the classical MSM. By further comparing
them with the Ruoff et al.’s study (i.e., 7.5 %) and the Abrams and Hanein’s work
(i.e., 5.0 %), it is found that the result obtained from the present MMSM model is
clearly much closer to the experimental data (Table 1).

vdW interactions

Original

D

Deformed

Fig. 12 Radial buckling of an SWCNT due to vdW atomistic interactions
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Radial Breathing Vibration of S/DWCNTs

Well identification of the structural geometry of CNTs, such as tube’s diameter or
chirality, is of great interest and importance for engineering applications. Among

Fig. 13 Critical radial scalar
factor kcr versus the radius of
SWCNTs [47]

D

δ
Fig. 14 Radial deformation
of two vertically overlapped
SWCNTs
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the experimental techniques, Raman spectroscopy is widely recognized as one of
the most powerful non-destructive techniques for the particular purpose because of
better sensitivity and lower cost. In essence, CNTs reveal several characteristic
Raman modes, e.g., the low Raman shift value, also termed the radial breathing
mode (RBM), and the other higher Raman shift values, such as the D mode,
induced by disorder, and the tangential band, G band, giving some information on
metallic or semiconducting properties of CNTs. The RBM is the most studied
presently, which is caused by radial vibration, where all the carbon atoms in a CNT
move in the radial direction synchronously. This is very unique to CNTs and could
not be detectable in other carbon systems. In the previous studies, the RBM has
been extensively extended to its dependence on the conformational and electronic
properties of CNTs. For instance, through the relation xRBM ¼ f=Dþ n [73–76],
the RBM frequency xRBM can be correlated to the CNTs’ diameter D, where the
parameter f and n are determined from Raman spectroscopy. Furthermore, even
though the RBM modes and vibrations have been extensively investigated in lit-
erature, most previous calculations of CNT’s geometry and electronic properties
based on their RBM frequencies assumed that all atoms would move axisymmet-
rically and synchronously along the axial direction, and meanwhile, vibrate sym-
metrically about the middle plane of the CNTs. They are alternatively termed the
standard RBM modes. This is, however, not quite true and accurate. It was dem-
onstrated by Dobardžić et al. [76] and Damnjanović et al. [77] through a symmetry-
based calculation or a dynamic model that the RBM modes of SWCNTs would not
be always radial since its longitudinal and circumferential components are both
diameter- and chirality-dependent. The non-radial RBMcomponents would gener-
ally create non-axisymmetric and even asymmetric RBM vibration. Even for pure
radial vibration, the possibility of the existence of a number of RBM-like modes,
such as hourglass and broadening modes, in a small frequency spectrum could not
be excluded. Having an inaccurate or even false identification of both the RBM and
RBM-like modes in Raman spectroscopy experiment would lead to a poor estimate
of the conformational properties of CNTs. Thus, it is essential to have a clear and
thorough comprehension of their characteristics.

To investigate the RBM frequencies and shapes of CNTs at different tempera-
tures, MMSM models associated with several CNTs with a different diameter,
aspect ratio (i.e., length/diameter ratio, L/D ratio) and chirality are constructed.
Further by modal analysis, the associated mode frequencies f and mode shapes are
obtained. The Hertz (Hz) is adopted for convenience despite that the commonly
used unit of RBM frequency ω in Raman experiment would be cm−1. The relation
between them is f = cω, where c = 3.0 × 1010 cm/s.

Table 1 Radial deformation rate of two vertically overlapped SWCNTs with D = 2.0 nm

MSM MMSM Ruoff et al. [2] Abrams and Hanein [7]

Deformation rate (%) 1.95 8.30 7.50 5.00
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RBM Frequencies

The calculated RBM frequencies of the zigzag/armchair SWCNTs and DWCNTs as
a function of their diameter are shown in Fig. 15. Their length is equal to 2.84 nm
for the zigzag and 2.46 nm for the armchair. Note that the SWCNTs and DWCNTs
hold an identical outer-diameter. The figure reveals that the RBM frequencies are
very sensitive and inversely-proportional to the diameter, where they decrease with
an increasing diameter, and roughly become stable as the diameter exceeds 3 nm. In
specific, the calculated RBM frequencies of the zigzag SWCNTs, i.e., (10, 0), (15,
0), (20, 0), (25, 0), (30, 0) and (40, 0), and DWCNTs are in the range of 7.87–2.08
and 5.40–2.26 THz, respectively, while those of the armchair ones, namely (5, 5),
(7, 7), (9, 9), (11, 11), (15, 15), (18, 18) and (23, 23), are 5.86–1.57 and
3.93–1.73 THz. Furthermore, the results of the DWCNTs are slightly larger than
those of the SWCNTs by about 2–8 % for the zigzag type and 6–10 % for the
armchair. This turns out that the additional layer in a DWCNT would have little
impact on the associated RBM frequency. Besides, even though the diameter of
these two types of CNTs (zigzag and armchair) is slightly different, the RBM
frequencies of the zigzag CNTs are likely to be greater than those of the armchair,
regardless of the number of layers. This implies that the zigzag CNTs tends to
surpass the armchair ones in the radial stiffness. By comparing with the experi-
mental data obtained by Jorio et al. [74] using Raman spectroscopy measurement, a
very good consistency in both the result trend and value is achieved between the
present results and the experimental observations. Moreover, the calculated RBM
frequencies of the zigzag CNTs are much closer to the data from the experiment
[74], indicating that the test vehicle used in the experiment might be a zigzag type.
Since the wall number of CNTs is insensitive to their RBM frequency, it remains
uncertain in how many layers of CNTs were actually in the CNTs used in the
experiment. The calculated RBM frequencies of the SWCNTs with a different
chirality, i.e., (9, 1), (8, 3), (7, 5), (10, 2), (9, 4) and (8, 6), are presented in Fig. 15b.
It shows that the RBM frequencies are also sensitive to the chirality of the
SWCNTs, where they are roughly in the range of 9.3–7.3 THz. Furthermore, a good
consistency in the RBM frequency between the MMSM approach and the Raman
spectroscopy measurement [78] can be observed. In addition, a larger diameter
would yield a smaller RBM frequency, and the result trend is very similar to that
shown in Fig. 4.8a for the zigzag and armchair S/DWCNTs.

The corresponding RBM mode shapes of the armchair and zigzag S/DWCNTs
are shown in Fig. 16. The solid circle denotes the original configuration of the
CNTs while the dotted circle shows the vibrational mode shape. As can be seen in
Fig. 16a, b for the zigzag and armchair SWCNTs, respectively, only the zigzag
SWCNT would exhibit purely axisymmetric RBM mode shape or radial vibration,
i.e., all atoms move axisymmetrically along the radial direction synchronously,
mainly because of its axisymmetric atomic structure. By contrast, the armchair
SWCNT presents a nearly axisymmetric (i.e., polygon) RBM mode shape. Fur-
thermore, the RBM mode shapes of the DWCNTs are illustrated in Fig. 16c, d. The
outer layer in the DWCNTs undergoes radial vibration while the inner wall stays a
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stationary mode. By contrast, we find that for a (8, 3) chiral SWCNT, there is an
asymmetric and non-radial RBM mode shape, which is accordingly termed RBM-
like vibration.
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Fig. 15 RBM frequencies of CNTs versus diameter [79]. a Armchair/zigzag S/DWCNTs.
b Chiral SWCNTs
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Fig. 16 RBM mode shapes of zigzag/armchair S/DWCNTs
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Effect of Aspect Ratio

According to the preceding results, the key factor affecting the vibrational mode
shape of f CNTs would be their atomic arrangement. Accordingly, the influences of
the geometric properties of CNTs on the RBM frequency are explored. Several
zigzag SWCNTs with two diameters (D), namely 1.26 and 1.41 nm, and different L/
D ratios ranging from 0.2 to 2.6 are discussed using the MMSM model. The
associated calculated diameter-dependent RBM or RBM-like frequencies are shown
in Fig. 17a, b. It is demonstrated that the RBM and RBM-like frequencies all
slightly decrease with an increasing L/D ratio, and in addition, a larger diameter
SWCNT would yield a smaller RBM or RBM-like frequency. More specifically, as
the L/D ratio is less than around 1.25, two vibrational modes are found, including
the standard RBM and RBM-like (i.e., RBM-Like-1) mode shown in Fig. 18a, b,
respectively. The difference in the mode frequency between the two modes is only
about 1 %. In specific, Fig. 18b is an hourglass mode, where the upper part of the
SWCNTs is expanding while the lower part contracting. In other words, they do not
symmetrically undergo dynamic deformation with respect to the middle cross-
sectional plane of the SWCNTs even though they do vibrate axisymmetrically
along the axial axis of the SWCNTs.

Since the difference between RBM-like mode frequencies may be insignificant,
the actual RBMmode frequency would be difficult to be simply confirmed by Raman
experiments. On the other hand, as the L/D ratio becomes larger than around 1.25,
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Fig. 17 RBM/RBM-like frequencies of zig-zag SWCNTs versus L/D ratio [79]. a D = 1.26 nm.
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another two RBM-like modes are derived and shown in Fig. 18c, d, while the
standard RBM modes are not found. In the RBM-like modes, atoms in the SWCNTs
are not simultaneously moving along the same radial direction. The calculated results
are quite comparable to the Raman spectroscopy experimental data [74] across the
specific L/D ratio range. However, the CNT test vehicles used in the Raman
experiments usually have an L/D ratio greater than 1.25. The present simulation
results also indicate that the standard RBMsmay not exist in the current frequency
range, and the identified mode would no longer be the standard RBM vibration.

Thermal Effects on Vibrational Behaviors of SWCNTs

In the section, thermal effectson the vibrational behaviors of SWCNTs, such as
natural frequency, mode shape as well as dynamic Young’s modulus, are exten-
sively studied using the MMSM modeling [47, 79]. The temperature-dependent
bond length and angle are determined through the Badger’s rule and constant
temperature MD simulation. For comparison, the vibrational behaviors of SWCNTs
are alternatively determined directly using the constant temperature MD simulation
that incorporates the modified NH thermostat model [45] for the system temperature
control. To calculate the natural frequencies and mode shapes of SWCNTs, both
Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform are adopted. In
the MD simulation, the Tersoff-Brenner potential [50] for modeling the covalent
bonds between carbon atom pairs, a time step of Dt ¼ 5� 10�16 seconds and a
number of equilibrating time steps 2� 104 are used. In addition, a random sam-
pling method is performed to take a sample out of every 1,000 time steps from
2� 106 time steps.

Bond length and angle

The temperature-dependent bond length and angle of a (5, 5) armchair and a (9, 0)
zigzag SWCNT at temperature of 100–2,000 K are first examined using the constant
temperatureMD simulation, and the results are, respectively, presented in Fig. 19a, b.

Original
Mode 

(a) (b) (c) (d)

Fig. 18 RBM/RBM-like mode shape of a zig-zag SWCNT [79]. a RBM. b RBM-like-1. c RBM-
like-2. d RBM-like-3
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The figure shows that the bond length would increase with increasing temperature
while the bond angle would decrease. Based on the ideal gas law, it is not surprising
to see the result trend because more kinetic energy is added to the CNT system via the
particles’ momenta, thereby increasing the bonding length. On the other hand, the
decrease of the bond angle with an increasing temperature is mainly because of the
thermal expansion of the CNTs. The trend of the present results calculated from the
constant temperature MD simulation are well consistent with the literature data [80],
and the difference between them is as much as only about 1–3 %.

The temperature dependence of the carbon-carbon bond length r and bond angle θ
has been theoretically derived using, such as, the Helmholtz free energy together
with the local harmonic model, or an empirical temperature-dependent potential
function together with MD simulation (see, e.g., [80–82]). The results of Zhang et al.
[80] are also illustrated in Fig. 19 for comparison. It is found that the present results
are closely in line with these published data [80, 82], where the maximum difference
between them is less than about 2.3 %. Furthermore, by contrast to the previous
studies where the temperature dependence less than 800 K was investigated, the
present modeling can reliably extend the temperature correlations up to 2,000 K.

Mode Frequencies and Shapes

By the abovestudy, the temperature-dependent first two thermal natural frequencies
associated with the (9, 0) and (17, 0) zigzag and (5, 5) and (10, 10) armchair
SWCNTs with several different L/D ratios at 300 K can be estimated using the
constant temperature MD and MMSM models, and the calculated results are shown
in Tables 2 and 3. Note that the variation of the L/D ratio of the CNTs is achieved by

Fig. 19 Thermal effects on the bond length and angle of SWCNTs [106]. a Bond length. b Bond
angle
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changing their length but fixing their diameter. In addition, the diameter of the (5, 5)
and (10,10) armchair SWCNTs is similar to that of the (9, 0) and (17, 0) zigzag,
respectively, and that of the (10, 10) and (17, 0) SWCNTs is nearly two times that of
the (5, 5) and (9, 0), respectively. The corresponding vibrationalmode shapes of the
mode types shown in Tables 2 and 3 are illustrated in Fig. 20, where Type A is a
beam-like flexural mode, Type B a radial mode, Type C a torsional mode, and Type
D also a beam-like flexural mode. The tables demonstrate that the calculated normal
modes of the SWCNTs at all these L/D ratios using these two approaches are very
comparable. Obviously, there exists a gap in the calculated natural frequencies
between these two approaches, in which the MD results are somewhat less than those
of the MMSM. This could be due to that the dihedral-angle torsion was included in
the MMSM model rather than in the MD simulation using the Tersoff-Benner
potential, as a result leading to a higher stiffness and frequency.

In addition, the natural frequencies would decrease significantly with the
increase of the L/D ratio, and the associated mode shape would also vary with the
L/D ratio except the first mode of the (5, 5) armchair and (9, 0) zigzag SWCNTs,
where it remains a beam-like flexural mode throughout the range of the L/D ratio.
More specifically, the second mode of both the (5, 5) armchair and (9, 0) zigzag
SWCNTs would change from a radial mode (Type B) to a flexural (Type D) across
the L/D ratio range. By contrast, the first mode of the (10, 10) armchair and (17, 0)
zigzag SWCNTs tends to vary from a radial mode (Type B) to a flexural one (Type
A) as the L/D ratio increases from 1.82 to 3.63, while their second mode from a
flexural mode (Type A) to a radial one (Type B). Clearly, the first and second mode

Table 2 Mode frequencies (THz) and types with different L/D ratios for armchair SWCNTs [106]

(5, 5) L/D = 3.62 L/D = 5.62 L/D = 7.26

Mode MD MMSM Type MD MMSM Type MD MMSM Type

1 0.3898 0.4147 A 0.1853 0.1931 A 0.1076 0.1103 A

2 1.2494 1.3126 B 0.8370 0.8761 C 0.5838 0.5876 D

(10, 10) L/D = 1.82 L/D = 2.72 L/D = 3.63

1 0.3700 0.3848 B 0.2879 0.2919 B 0.1996 0.2066 A

2 0.6310 0.6721 A 0.3299 0.3450 A 0.2659 0.2698 B

Table 3 Mode frequencies (THz) and types with different L/D ratios for zigzag SWCNTs [106]

(9, 0) L/D = 3.43 L/D = 5.27 L/D = 7.10

Mode MD MMSM Type MD MMSM Type MD MMSM Type

1 0.4000 0.4205 A 0.1865 0.1895 A 0.1058 0.1065 A

2 1.1961 1.1900 B 0.9150 0.9149 C 0.5810 0.5845 D

(17, 0) L/D = 1.80 L/D = 2.77 L/D = 3.73

1 0.3780 0.3889 B 0.2821 0.2937 B 0.1897 0.1947 A

2 0.6240 0.6658 A 0.3181 0.3310 A 0.2560 0.2715 B
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(Type A and Type B) are swapped as the L/D ratio increases from 1.82 to 3.63, or
more accurately speaking, as the length increases from 2.4 to 4.9 nm for these two
SWCNTs.

It can be seen that under a similar L/D ratio, e.g., the L/D = 3.62 case for the
(5,5) armchair SWCNT and the L/D = 3.63 case for the (10, 10), the first two
natural frequencies of the (5, 5) would considerably outperform those of the (10,
10). But, under a similar L/D ratio, (see, e.g., L/D = 1.82 for the (10, 10) armchair
SWCNT and L/D = 1.80 for the (17, 0) zigzag), there is a very comparable fre-
quency value in the first two modes between the armchair and zigzag SWCNTS.
Likewise, an analogous result can be also detected in the examples of L/D = 2.72
for the (10, 10) armchair SWCNT and L/D = 2.77 for the (17, 0) zigzag.

Furthermore, the temperature-dependent first two mode frequencies associated
with the armchair and zigzag SWCNTs of an L/D ratio of 5.62 and 5.27 are
presented in Fig. 21. According to Tables 2 and 3, the first mode (i.e., mode 1) of
these two SWCNTs is a flexural mode (i.e., Type A) while the second mode (i.e.,
mode 2) is a torsional mode (i.e., Type C). As the temperature increases from 100 to
1,500 K, the predicted first natural frequency for mode 1 of the armchair SWCNT
would decrease from 0.1860 to 0.1800 THz (about 3.23 % drops) by the constant
temperature MD simulation and from 0.1932 to 0.1907 THz (about 1.31 % drops)
by the MMSM model. In addition, that of the zigzag SWCNTs would reduce from
0.1870 to 0.1810 THz (about 3.21 % drops) by the MD simulation and from 0.1897
to 0.1872 THz (about 1.28 % drops) by the MMSM. Likewise, there is a similar
trend for mode 2 (i.e., Type C). The results reveal that the mode frequencies of the

(a) (b) (c) (d)

Fig. 20 Vibrational mode shapes of a (5, 5) SWCNT with L/D = 3.62 [106]. a Type A. b Type B.
c Type C. d Type D
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SWCNTs would drop with an increasing temperature despite that the temperature
dependence is not considerable in the temperature range (i.e., 100–1,500 K). Also
due to the dihedral-angle torsional stiffness considered in the MMSM model, the
MD model would have a larger reduction in the mode frequencies as temperature
increases.

In order to validate the modeled results, the ratio of the first two calculated
flexural mode frequencies of the (5, 5) armchair SWCNTs with the L/D ratio of
7.26, i.e., Type A and Type D, using the constant temperature MD and MMSM
models is assessed. The result is shown in Fig. 22a. It demonstrates that there are
maximally about 0.5 % differences for these two modeled results as the temperature

Fig. 21 First two mode frequencies of SWCNTs versus temperature [106]. a Mode 1 (Type A).
b Mode 2 (Type C)

Fig. 22 Ratio of the first two flexural mode frequencies of a (5, 5) armchair SWCNT [106].
a Effect of temperature (L/D = 7.26). b Effect of L/D ratio (T = 300 K)
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increases from 100 to 1,500 K, suggesting that the frequency ratio would be
temperature-independent. The frequency ratio as a function of the L/D ratio of the
(5,5) armchair SWCNTs at 300 K is further plotted in Fig. 22b. It is shown that the
two approaches yield not only a very similar result but also a consistent trend.
Moreover, the calculated frequency ratio tends to greatly enhance with an
increasing L/D ratio, or more precisely, length (L) as the diameter (D) of the
SWCNTs is fixed, indicating that there is a great dependence of the frequency
ratio on the L/D ratio. Besides, the frequency ratio tends to converge to 6.1–6.2 as
the L/D ratio becomes significantly large. The result agrees well with the published
experimental data [83], where the converged frequency ratio approaches 6.2 as the
L/D ratio is around 431.

Dynamic Young’s Modulus

SWCNTscan be regarded as continuous beams. Based on the beam vibration theory
[84], the effective Young’s modulus E of the beams can be derived from the
associated natural frequencies,

xi ¼ C2
i

L2

ffiffiffiffiffiffiffiffi
EI
qA

;

s
ð77Þ

where xi and Ci are the natural frequency and constant of the i-th natural mode,
respectively, and L, I, q and A the length, moment of inertia, density and cross-
sectional area of the beams. By the relation, the dynamic Young’s modulus of the
SWCNTs can be, for example, calculated from its first flexural mode. Further
assume that an SWCNT is a hollow circular tube, and its natural frequencies can be
denoted as

xj ¼
C2
j

4L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

in þ D2
out

q ffiffiffiffi
E
q

s
; ð78Þ

where Din and Dout are the inner and outer diameter of an SWCNT.
The dynamic Young’s modulus of (5, 5), (9, 0), (10, 10) and (17, 0) SWCNTs of

the same length (i.e., 4.9 nm) but a different radius are illustrated in Fig. 23a, as a
function of temperature. On the other hand, the dynamic Young’s modulus of the (9,
0) SWCNTs at a different length (i.e., 2.4, 3.7 and 4.9 nm) are shown in Fig. 23b, as a
function of temperature. Note that the calculations are made simply based on their
first flexural mode, i.e., Type A shown in Fig. 20, together with Eq. (4–8). The
results in Fig. 23 demonstrate that that the dynamic Young’s modulus of the
SWCNTs would have a slight decrease with an increasing temperature. The dis-
crepancies in the calculated dynamic Young’s modulus between 300 and 1,500 K are
only about 5 and 2 %, associated with the constant temperature MD simulation and
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MMSM modeling. Furthermore, it is observed that the dynamic Young’s modulus
would be raised with the increase of the length. The result trend can be found in
many previous literatures (see, e.g., [40, 41, 47, 64, 85]). It can be probably due to
the surface or boundary effect [72]. More specifically, because of the surface or
boundary effect, an SWCNT in an unstrained state tends to deform into a new
relaxed, stabilized configuration, i.e., a concave shape [72], for stress relief, thus
leading to a decrease of the overall strength or stiffness of the SWCNT structure. The
surface or boundary effect and so the stress relief phenomenon would become more
apparent as the L/D ratio of SWCNTs becomes smaller. Under the same radius, a
shorter SWCNT would yield a smaller L/D ratio and thus a higher surface or
boundary effect and then a lesser Young’s modulus. It is also found that the dynamic
Young’s modulus would increase with an increasing tube radius. The result trend
could be explained by the inherent geometry of the CNT structure, in which a CNT
of a small radius would present a polygon cross section rather than a circular one.
Because of the imperfect shape or structure, structural stiffness and so Young’s
modulus are likely reduced. Moreover, the degree of the temperature effect on the
dynamic Young’s modulus of the SWCNTs tends to be size- and geometry-inde-
pendent. The calculated dynamic Young’s modulus of the SWCNTs, i.e., about
0.5–0.7 TPa, is similar to the first principles calculation result (i.e., 0.764 TPa) [86],
but much less than the static Young’s modulus calculated using both MD simulation
and the classical MSM model under an uniaxial tensile test, such as 0.97–1.05 TPa
[9], 0.94–1.02 TPa [64], 0.92–0.98 TPa [72] and 0.98–1.15 TPa [87]. The result
trend is in a good agreement with that of many bulk materials, in which the dynamic
Young’s modulus calculated from vibrational analysis would be generally smaller
than the static one obtained from uniaxial tensile/compressive tests.

Besides, as shown in Fig. 23b, there is an increasing gap in the calculated
dynamic Young’s modulus as the length of the SWCNT decreases. This is probably
because a shorter SWCNT tends to be more influenced by the boundary or end

Fig. 23 Dynamic Young’s modulus of SWCNTs versus temperature [106]. a Radius effect.
b Length effect
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effect than a longer one, and unfortunately, the effect is not taken into account in the
classical MSM and MMSM modeling. The problem can be solved by using the
atomistic-continuum modeling (ACM) approach proposed by Cheng et al. [87],
which incorporates atomistic modeling by virtue of MD simulation for simulating
the initial unstrained equilibrium state, and equivalent-continuum modeling by way
of FE approximations for modeling the subsequent static/dynamic behaviors.

RBM Frequency

The temperature dependences of the average bond length and angle of a (6, 6) and
(10, 10) armchair SWCNT and a (11, 0) and (17, 0) zigzag SWCNT can be, likewise,
evaluated using the constant temperature MD simulation incorporating the modified
NH thermostat method. Note that the associated diameter of the SWCNTs is 0.82,
1.49, 0.86, and 1.33 nm. The derived results turn out to be similar to those shown in
Fig. 19, in which the increase of temperature would increase the bond length but
decrease the bond angle. By the temperature-dependent relation of the bond length
and angle together with the Badger’s rule, the RBM frequencies of these armchair
and zigzag SWCNTs as a function of temperature can be calculated and illustrated in
Fig. 24. It is found that they all slightly drop with the increase of temperature. As the
temperature is raised from 300 to 900 K, the RBM frequencies of the zigzag
SWCNTs would decrease by about 0.7–0.8 % and by about 0.65–0.75 % for the
armchair. The results are in good agreement with the literature experimental data of

Fig. 24 RBM frequencies of
SWCNTs versus temperature
[79]
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Raravikar et al. [28] using a Raman measurement technique, i.e., about 1.2–1.7 %
drops under the same temperature range. As the temperature increases from 300 to
2,000 K, the RBM frequencies continue to reduce inconsequentially by about 2 %
for both the zigzag and armchair SWCNTs. The lessening of the RBM frequencies
with temperature could be mainly attributed to that the force constants, such as the
bond-stretching and bond-angle variation, would decrease with an increasing tem-
perature. The insignificant temperature effect on the RBM frequencies suggests that
the radial stiffness of the SWCNTs, most affecting the RBM frequencies, would have
a little influence on the associated force constants.

Computational Efficiency

The computational performance of these two theoretical models is compared on the
same problem. The problem is solved on the same computer (CPU: Intel® Core
(TM)2 Quad CPU Q9400 with 2.66 GHz; RAM:3.21 Gb). In the MD simulation, a
total of 2� 106 time steps are needed in order to find the low mode frequency
through FFT. For the different scale of the SWCNTs that possess a different number
of carbon atoms, as shown in Tables 2 and 3, the required elapsed time of these MD
calculations ranges from 10.5 to 51 h. Furthermore, in order to find the lower
frequencies, more than 2� 106 time steps are needed, thereby requiring more
calculation time. On the other hand, for the MMSM, the temperature-dependent
bond length and angle are first estimated using MD simulation. The calculation
requires only about 2� 104 time steps of MD simulation, which takes only about 0.
5–5 h elapsed time. By the calculated temperature-dependent bond length and
angle, FE modal analysis is then performed to compute the mode frequencies and
shapes of the SWCNTs, which requires only about 0.2 h elapsed time. In sum, the
total required elapsed time of the MMSM model is about 0.7–5.2 h. It is found that
the MMSM model is about 10 times faster than the MD model.

Fracture, Thermo-Mechanical and Phase Transformation
Behavior of Carbon Allotropes

According to previous experimental measurements, structural or atomistic defects
such as vacancy and topological defects can be often observed in CNTs during the
fabrication process. Thus, a systematic investigation of the effects of atomistic
defects on the mechanical properties andfracture behaviors of SWCNTs is
attempted using MD simulation. The predicted local stress distribution using the
smoothed particle hydrodynamics (SPH) technique [62] is correlated with the
fracture evolution. The effects of the number, type (namely the vacancy and Stone-
Wales defects), location or distribution of defects are further examined. Besides, the
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thermal-mechanical properties and phase transformation behaviors of carbon ful-
lerenes (buckyballs) at atmospheric pressure are also reported through constant
temperature MD simulation using the modified NH thermostat method.

Fracture Behavior of SWCNTs

This session attempts to explore the effects of atomistic defects on the mechanical
properties of the SWCNTs, including stress-strain relationship, elastic modulus,
ultimate strength and strain, and fracture evolution through uniaxial MD tension test
simulation. According to mechanics of materials, when a CNT is subjected to an
axial deformation, the resultant force F in the axial direction can be estimated by
summing the interatomic forces of the atoms at the end side of the CNT. The
associated axial stress σ can be then obtained by dividing the F by the cross-
sectional area defined as A ¼ C � 0:34 (nm2), where C is the circumference. On the
other hand, the corresponding tensile strain ε can be computed by (L−L0)/L0, in
which L0 and L are the initial (undeformed) and elongated (deformed) length,
respectively. From the stress-strain relationship, both the ultimate strength and
strain can be extracted. Besides, from the slope of the stress-strain curve at an
infinitesimal strain, the axial elastic modulus of the CNT can be also calculated.
Finally, the fracture evolution of the defective CNTs under uniaxial tension can be
also observed through the simulation.

Atomistic Defects in CNT

Two types of atomistic defects are considered in the investigation, namely vacancy
defect and Stone-Wales defect. The Stone-Wales defect, as shown in Fig. 25a, is a
crystallographic defect, where it is a 90° rotation of two carbon atoms in a hex-
agonal network with respect to the midpoint of the bond, thereby creating two
pentagons and two heptagons. Unlike the vacancy defect, the defect is created as a

(a) (b)

Fig. 25 Type of atomistic defect in a CNT. a Stone-wales defect. b Monovacancy defect
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result of the translation of atoms and dislocation of bonds. The defect is generally
developed under local strain for shear stress relaxation process in crystal, by
moving atoms from one location to other, thus varying the bond topology (see, e.g.,
[88]). On the other hand, the vacancy defect is attained by eliminating one or more
atoms as well as the corresponding bonds from a CNT. If there is only a one-atom
vacancy, it is termed a monovacancy defect, while it is called a divacancy defect if
there is a vacancy of two adjacent atoms. Figure 25b presents an example of a CNT
structure with a monovacancy defect, where the center atom (i.e., atom 1 in the
figure) as well as the three adjacent bonds is removed from the CNT.

Effects of Atomistic Defects

The study first addresses the effects of atomistic vacancy defect on the mechanical
properties of an armchair SWCNT with a radius and length of 0.76 and 11.99 nm,
respectively. Atomistic vacancy defect is developed by randomly eliminating cer-
tain atoms from the tube based on a specified defect rate or percentage. The defect
rate or percentage is defined as the number of removed atoms divided by the total
number of atoms in the system. In practice, the defect rate in a graphene layer is
roughly 0.3 atom/nm2, which is equal to 0.71 % atom amount, according to
Hashimoto et al. [89]. Correspondingly, five different defect rates are considered in
the investigation, namely 0 % (i.e., defect-free), 0.3, 0.6, 1.0, and 2.0 %. The
deformations or configurations of the defective SWCNTs under 0, 0.3 and 2.0 %
defect rate at the free relaxation state are shown in Fig. 26, together with the
calculated atomistic-level axial normal stress distributions using the Shen and At-
luri’s stress model [87].

It is possible to see that the defective SWCNTs would no longer hold a straight
tube, suggesting that the tubes are subjected to bending deformations. According to
the stress distributions of the defective SWCNTs, both compressive and tensile
stresses can be observed due to the multiple bending and local buckling. In addi-
tion, an increasing defect rate tends to induce a larger flexural deformation in the
SWCNT at the free relaxation state, thereby having an increasing compressive and
tensile flexural stress. Notably, the SWCNT with 2.0 % defect rate would hold the
most significant flexural deformation, as shown in Fig. 26c. The curvature of the
defective tube is neither constant, indicating multiple bending or/and local buckling
deformations occurring across the tube. In other words, the atomistic vacancies
would create not only global bending but also local buckling deformations. The
flexural deformations strongly depend on the location of the atom vacancy and also
defect rate. Moreover, the atomistic vacancies would also induce stress concen-
tration, leading to non-uniform stress distribution across the tubes, where stress
gradient becomes more considerable as vacancy defect rates is higher. As shown in
Fig. 26c, the maximum tensile and compressive flexural stress tends to take place
around the atomistic vacancies located on the tensile and compressive tube surface
of the flexural SWCNTs, respectively. Note that the stresses are further considered
as a preload for subsequent MD simulation.
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It should be noted that the location of atomistic vacancy defect on the tube is
uncertain or random. To minimize the uncertainty when examining the effects of the
defect rates, ten simulation trials are performed for each specific defect-rate test,
each of which involves a different random vacancy-defect distribution pattern. The
arithmetic mean value of these ten simulation results are presented together with the
associated standard deviation. First of all, the calculated elastic moduli under those
defect rates are shown in Fig. 27a. The figure demonstrates that the average elastic
modulus associated with 0.3, 0.6, 1.0, and 2.0 % defect rate is 859.0, 812.0, 766.0
and 670.0 GPa. The results reveal that the axial elastic modulus decreases with an
increasing defect rate. By contrast to the elastic modulus of the defect-free SWCNT,
i.e., about 900.0 GPa, the corresponding reduction is about 4.6, 9.8, 14.9 and
25.6 %. It is found that the results are consistent with those of Mielke et al. [90]
using MM calculations. It is also essential to note that the standard deviation of the
estimated average elastic moduli tends to increase with an increasing defect rate.
Furthermore, the ultimate strength of the defective SWCNTs at these four different
defect rates is presented in Fig. 27b. The average ultimate strength is 84.0, 80.0,
77.0 and 69.0 GPa, associated with the defect rate of 0.3, 0.6, 1.0, and 2.0 %. As
compared to the defect-free SWCNT (i.e., 97 GPa), these defective SWCNTs
comprise about 13.4, 17.5, 20.6 and 28.9 % reductions in the ultimate strength. The
standard deviation of these ultimate strengths would also rise with an increasing
defect rate, similar to the result trend of the elastic modulus aforementioned.

Fig. 26 Effects of atomistic vacancy defects for SWCNTs at the free relaxation state [107]. a 0 %,
b 0.3 %, c 2.0 %
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Furthermore, two armchair SWCNTs, as shown in Fig. 28, consisting of an
identical defect rate 2 % but with a different atom-vacancy distribution pattern
would result in a different elastic modulus, i.e., 609 and 733 GPa, respectively. For
the lower elastic modulus case, it is found that there is a more significant

Fig. 27 Elastic modulus and ultimate strength at different defect rates [107]. a Elastic modulus.
b Ultimate strength

Unit: Pa

(a) (b)

Fig. 28 Stress distribution of an armchair SWCNT with an identical defect rate but a different
defect layout [107]. a Lower elastic modulus. b Higher elastic modulus
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aggregation of the atomistic vacancies created, thus forming several more sub-
stantial stress concentration portions and further causing the reduction of the elastic
modulus and ultimate strength. This turns out that a higher defect rate would
present a more wide-ranging defect distribution, and so create a larger standard
deviation in the calculated mechanical properties.

The size dependence of the armchair SWCNT with one atomistic divacancy
defect on the mechanical properties is further examined. The defect is located at the
middle of the SWCNTs. The stress-strain relationships of the defective SWCNTs at
a different tube radius and length are shown in Fig. 29. It is noted that the length of
the tubes is fixed to 3.815 nm when varying the tube radius, while the radius is set
to 0.766 nm when changing the tube length. In the investigation, three different tube
radii are considered, i.e., 0.766, 1.534, and 2.308 nm. As can be seen in the figure,
there is a very comparable ultimate strengths for these three defective SWCNTs,
suggesting that the tube radius would have an insignificant impact on the ultimate
strength of the defective SWCNTs. On the other hand, the associated ultimate strain
would show a much larger dependence on the tube radius, where it is 0.299, 0.284
and 0.268 corresponding to these three defective SWCNTs, indicating the ultimate
strain would reduce as the tube radius increases. However, from the slope of these
stress-strain curves, it is found that a larger radius tends to hold a greater elastic
modulus. The result trend is highly consistent with the literature data for the defect-
free cases, such as Lu [9], Li and Chou [40, 41], and Chen et al. [72] using an
empirical model, MSM approach and MD simulation, respectively. Furthermore,
Fig. 29b reveals that the tube length would have a little influence on its elastic
modulus, ultimate strength and ultimate strain as it changes from 3.815 to
11.991 nm. Besides, the tube length of the defective armchair SWCNTs would be
less dependent on their mechanical properties than the tube radius.

Fig. 29 Stress-strain relationship of the armchair SWCNTs with a divacancy defect at a different
tube radius and length [107]. a Radius effect. b Length effect
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The stress-strain relationship of the armchair SWCNT with a single Stone-Wales
defect is shown in Fig. 30, together with theta divacancy defect. The tube radius and
length of the SWCNT are 0.766 and 3.815 nm. The figure shows that the ultimate

Fig. 30 Stress-strain relationship of the armchair SWCNTs with a divacancy and Stone-wales
defect [107]

Divacancy 
defect

Stone-
Wales defect

Divacancy 
defect

Stone-
Wales defect

(a) (b)

Fig. 31 Snapshots of stress distributions of defective armchair SWCNTs at the free relaxation
state and before the onset of crack propagation [107]. a At free relaxation state. b Before the onset
of crack propagation
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strength and associated ultimate strain of the armchair SWCNT with a single Stone-
Wales defect (Fig. 31) are all greater than those with a single divacancy defect.
Specifically, the ultimate strength and strain of the former are 93 and 0.37 GPa,
which are about 11 and 23 % larger than those of the latter. The reason can be that
the Stone-Wales defect is developed simply by way of the “pyracylene” transfor-
mation or atom rearrangement without removing any atom or bond, thus retaining
better integrity in atomistic structure and having a less effect on the mechanical
properties of SWCNTs.

Evolution of Fracture

The fracture evolutions of defective armchair SWCNTs with one or three divacancy
defects and one Stone-Wales defect, respectively, are further examined. It is found
that the SWCNTs with or without defects would show a sudden facture failure once
the strain attains a critical value (i.e., the ultimate strain), at which the associated
stress exhibits an abrupt drop down to zero. This concludes that the SWCNTs tend
to be very brittle as the strain reaches the ultimate value. The observation is rather
consistent with that of Yu et al. [91], Belytschko et al. [92] and Tserpes et al. [93],
regardless of with or without atomistic defects. First of all, snapshots of the
atomistic-level axial normal stress distribution of the defective armchair SWCNTs
at the free relaxation state and right before the onset of crack propagation are shown
in Fig. 31.

The fracture evolutions of the armchair SWCNTs with a single divacancy defect
and that with a single Stone-Wales defect under uniaxial tensile test are shown in
Fig. 32. These two defective SWCNTs would involve a different crack propagation
path even though they have a comparable defect location and rate. According to the
fraction evolutions, crack would initiate from the atomistic defect, and then quickly
propagate in the direction of high tensile stress concentration zone. More specifi-
cally, for the SWCNT with a divacancy defect, crack starts to propagate along the
45° direction, and then tends to turn into the 0° direction due to atom rearrange-
ment, leading to the redistribution of the atomistic stress. In contrast, for the
SWCNT with a Stone-Wales defect, crack also propagates along its high tensile
stress concentration region. As shown in Fig. 33b, the region is located in the 0°
direction at the atomistic defect. Besides, the crack once initiated would continue to
propagate till a full fracture occurs, implying that SWCNTs are a very brittle
material, and thus, would undergo a brittle fracture as the strain exceeds the ultimate
value, which is 0.3 for the SWCNT with a vacancy-defect and 0.37 for that with a
Stone-Wales defect.

Fracture evolution may be dependent on some essential factors, such as location,
distribution pattern and number of atomistic defects. Accordingly, further investi-
gation is undertaken to examine the fracture evolution of the armchair SWCNT
having more than one divacancy defect. Besides the divacancy defect located at the
middle of the SWCNT, two other divacancy defects are also developed, which are
resided in between the top end of the SWCNT and the first divacancy defect. The
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Initial state      Final state         Initial state    Final state

(a) (b)

Fig. 32 Fracture evolutions of defective armchair SWCNTs [107]. a With a divacancy defect.
b With a stone-wales defect

Side view Front view Initial state       Final state

Newly
created 

divacancy

(a) (b)

Fig. 33 Atomistic stress distribution before the onset of crack propagation and snapshots of
fracture evolution of an armchair SWCNT with three divacancy defects [107]. a Atomic stress
distribution. b Fracture evolution
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corresponding atomistic stress distribution right before the onset of crack propa-
gation is shown in Fig. 33a. The figure reveals that high stress concentration also
occurs around the two newly created divacancy defects. In addition, two high stress
bands can be observed along the lines from the first divacancy defect to the two
newly created, respectively. Furthermore, Fig. 33b shows the associated fracture
evolution. As can be seen in the figure, crack initiates almost simultaneously from
these three divacancy defects, and then propagates quickly toward each other until
the entire SWCNT is torn off as the strain attains a critical value.

Thermo-Mechanical Properties of Carbon Fullerenes

The temperature-dependent linear and volumetric CTEs of three typical carbon
fullerene molecules, i.e., C60, C70 and C80, and also their phase transformation
behaviors at temperature below the Debye temperature and atmospheric pressure
condition are investigated herein. To achieve the goal, canonical MD simulation
using the standard NH, massive NH chain (MNHC) and modified NH thermostat
methods are applied in the study. The influences of the sampling methods in MD
simulation on the calculated thermodynamic properties, in particular the CTE of
carbon fullerenes at temperature below the Debye temperature, are first explored.
The major causes behind the large difference in the predicted thermodynamic
behaviors of carbon fullerenes are also investigated. The limitations of the standard
NH thermostat method and its variants, including the NHC and MNHC, and also
the advantages of the modified NH thermostat method are addressed. The simu-
lation results by the modified NH thermostat method are compared with those
calculated by the standard NH and MNHC thermostat method and also with the
literature experimental and theoretical data. At last, the phase transformation
behaviors (e.g., melting point, sublimation point) of C60 fullerene molecule at
atmospheric pressure are explored. Besides, the investigation attempts to find out
whether C60 fullerene under the thermodynamic conditions will be converted into
gaseous carbon atoms, just like graphite [94–96] or liquid carbon, as well reported
in the literature.

In the MD simulation, a time step Δt = 5 × 10−16 s and a total of simulation time
steps 2 × 106 are used. Basically, the number of equilibrating time steps is much
larger than those used in Kim and Tománek [33] and Fang and Chang [97] to
ensure the equilibrium of the molecular system. In addition, to statistically extract
characteristic values from the MD simulation, three different types of sampling
approaches, namely the random, systematic [98] and average [30], are utilized. As
soon as the system reaches equilibrium, simulation results are sampled from every
1 × 103, 5 × 104 and 1 × 105 time steps using these three sampling approaches,
which are briefly termed “sampling steps” in the work. According to Tuckerman
and Parrinello [58], the effective mass Q for the standard and modified NH ther-
mostat is determined by
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Q ¼ 3NjBTss2; ð78Þ

and according to Tobias et al. [23], that for the MNHC thermostat is given by

Qi ¼ mi

mH
jBTss

2; ð79Þ

where mH is the mass of a hydrogen atom. The characteristic time scale s is selected
to be 0.5 ps.

The calculated temperature-dependent volume change ratios of C60 fullerene
using the standard NH thermostat are shown in Fig. 34. The associated calculation
results by the three sampling approaches are also illustrated in the figure, together
with those obtained from the General Utility Lattice Program (GULP) [99], as
implemented in the Materials Studio™ package, where the force field between two
carbon atoms is modeled with the Tersoff-Brenner (TB) potential and Berendsen
thermostat method [18] is employed for constant temperature MD simulation. The
systematic sampling method is applied to statistically gather the characteristic
values from the MD simulation. It is shown that both the random and systematic
sampling approaches yield a very consistent result regardless of the number of time
steps (i.e., time step size) used for taking a sample. More importantly, only these
two results can resemble those calculated by the GULP module. It is more sur-
prising to find that the simulation results calculated from the average sampling
approach show a strong dependence on the number of time steps for taking a
sample, where a larger sampling step size tends to cause a smaller or even negative
volume change of the C60 fullerene. For example, as a sample is taken out of every
5 × 104 time steps by using the average sampling approach, a negative volume
change or CTE is derived in the range of 0–250 K.

Fig. 34 Temperature effects
on C60 volume change ratio
through the standard NH
thermostat using different
sampling methods [108]
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The result trend agrees well with that of Kwon et al. [30]. Furthermore, Fig. 35
gives the resulting geometries of the C60 molecule structure at 300 K calculated
using the average sampling approach associated with three different numbers of
sampling steps for taking a sample, i.e., 1 × 103, 5 × 104 and 1 × 105. We find that
the increase of the sampling steps tends to make the C60 molecule structure undergo
contraction along two of the three major axes, thus gradually being a slender
ellipsoid. As the sampling step sizes increase up to 1 × 105 (see Fig. 35c), the C60

structure becomes fully compressed into a line. This unanticipated phenomenon is
mainly a consequence of the technical limitation of the average sampling approach.
From the statistical viewpoint, the calculated properties should be independent of
the sampling approaches and also time step sizes for taking a sample as long as the
sample number is suitably large. This indicates that the Kwon et al.’s results are just
a special-case solution of the average sampling approach.

The line change ratio of C60 fullerene as a function of temperature is presented in
Fig. 36a, associated with the three thermostat methods. Clearly, there is a linear
dependence between the line change of C60 fullerene and temperature throughout
the temperature range for both the standard NH and MNHC thermostat methods,
while showing a nonlinear proportion at temperature below the Debye temperature
for the modified NH thermostat. Moreover, both the standard NH and MNHC
thermostat methods would yield a larger volume change than the modified NH
thermostat. By further taking the first derivative of the line (volume) change ratio
with respect to temperature, the linear (volumetric) CTE α (β) can be derived, and
the results are shown in Fig. 36b. In principle, the linear CTE for an isotropic
material shall be equivalent to one-third of the volumetric CTE. It shows that the
calculated linear and volumetric CTEs of C60 fullerene at low temperature by the
modified NH thermostat tend to lessen with a decreasing temperature, and become a
negative value as temperature approaches to absolute zero, while those by the
standard NH and MNHC thermostats are not dependent on the temperature. Some
studies have been carried out in literature on this issue through experimental and
theoretical approaches. For instance, Gugenberger et al. [100] and Aleksandrovskii
et al. [101] conducted measurement of the volumetric CTE of C60 fullerene at very

Fig. 35 Geometry prediction of C60 molecule structure by three different sampling step sizes
[108]. a 1 × 103 Δt. b 5 × 104 Δt. c 1 × 105 Δt
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low temperature (<12 K). Their results are also illustrated in Fig. 36b for com-
parison. The experimental results demonstrate that the CTE of C60 fullerene at low
temperature would also decrease with the reduction of temperature, and most
importantly, tends to become negative at temperature below 5 K. The result trend is
in a great consistency with that of the modified NH method, as shown in the figure.
In addition, at room temperature, Hamanaka et al. [102] utilized a high-resolution
dilatometry to perform measurement of the linear CTE of C60 fullerene, in which
they reported that the linear CTE is roughly 5.0 × 10−6 K−1. Zubov et al. [103]
theoretically explored the relation between the linear CTE of C60 fullerene and
pressure, and found that it tends to reach a converged value of 4.8 × 10−6 K−1 at
pressure equal to one atmosphere. By comparing them with the present estimates, it
is found that the modified NH thermostat method (i.e., 4.61 × 10−6 K−1) can be in a
better agreement with the measurement data than the standard NH (i.e.,
4.43 × 10−6 K−1) and MNHC thermostat (i.e., 4.48 × 10−6 K−1). The temperature-
dependent linear and volumetric CTEs of C70 and C80 fullerenes at temperature
0–500 K are also explored by the modified NH thermostat method, and the cal-
culation results are shown in Fig. 37, together with those of C60 fullerene. Likewise,
negative CTEs occur at temperature approaching to absolute zero. At temperature
300 K and beyond, the CTE of C60 (e.g., the linear CTE 4.65 × 10−6 K−1) tends to
be larger than those of C70 (4.53 × 10−6 K−1) and C80 (4.38 × 10−6 K−1).
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Fig. 36 Temperature-dependent line/volume change ratio and linear/volumetric CTEs of C60

fullerene by different thermostats [108]. a Line/volume change ratio. b Linear/volumetric CTEs
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Phase Transformation Behavior of C60 Fullerene

The calculatedatomic structures of C60 fullerene at different temperatures using both
the standard and the modified NH thermostats are presented in Fig. 36. It should be
noted that the results calculated by the standard NH thermostat resemble those of the
MNHC, and thus are not demonstrated herein. No distinguishable shape change can
be observed in the C60 atomic structure when T ≤ 300 K for the NH thermostat and
T ≤ 2,000 K for the modified NH thermostat. As shown in Fig. 38a, the result of the
standard NH thermostat shows that the C60 structure remains intact despite that the
structural deformation would increase slightly with the increase of temperature as the
temperature is up to 2,000 K, and the C60 structure is regarded as the solid-phase
fullerene. However, that of the modified NH thermostat reveals that not until the
temperature attains 4,000 K will the C60 structure undergo any significant structural
deformation (see, e.g., Fig. 38c). As the temperature increases beyond the threshold
temperature aforementioned, the fullerene will undergo a much more significant
structural deformation. It becomes a non-axisymmetric or aspherical shape, as
shown in Fig. 38b, d, and develops a gradual onset of the floppy phase. No bond
fracture occurs in the C60 structure even though there is a significant structural
deformation. In essence, the floppy phase of the fullerene structure remains a solid.
The phase transition point of C60 fullerene from solid to floppy by the standard NH
thermostat is 2,000 K, which is comparable to that of Kim and Tománek (1994) (i.e.,
2,400 K). However, they all significantly deviate from the result of the modified NH
thermostat (i.e., 4,000 K). As the temperature approaches to 2,900 ± 50 K for the
standard NH thermostat and 4,350 ± 20 K for the modified NH thermostat, a dra-
matic transition to a vapor phase is observed, where the fullerene structure will soon
turn into a full rupture once a chemical bond starts to break.
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Snapshots of the vaporization process of the C60 structure at 4,350 ± 20 K at
different times calculated by using the modified NH thermostat are presented in
Fig. 39. Besides a floppy phase, several other phases prior to attaining a gas phase
were also reported by Kim and Tománek (1994), namely pretzel, linked chain and
fragment phases. It is, however, believed that these exclusive phases were derived
because transient simulation, instead of the commonly-used quasi-static simulation,
was carried out in their MD simulation, in which the temperature of heat bath is
increased with a temperature increment ΔT = 400 K and 800 time steps for each
temperature increment. Since this is a transient simulation, the results calculated are
a transient solution rather than a steady-state solution. For example, in their sim-
ulation, the linked chain phase occurs at 5,000 K and the fragment phases at
5,400 K, suggesting that the linked chain phase can only exist in a 400 femtosecond
(fs) time. It is, thus, believed that the system has not yet attained equilibration.
These exclusive phases are, however, not observed in the present investigation
using the standard and modified NH thermostats. Due to that only a very small
amount of bond fractures takes place in the graphite lattice during melting, the
molecules of the liquid phase are considered to be graphite-like fragments [104].
Thus, the linked chain and fragment phases are deemed as liquid. The lack of these
two phases may indicate that C60 fullerene would sublimate rather than melt when
heated under atmospheric pressure. The current result is in a good agreement with

Fig. 38 C60 molecule structures predicted by different thermostats [108]. a T = 2,000 K (NH).
b T = 2,800 K (NH). c T = 4,000 K (modified NH). d T = 4,300 K (modified NH)

Fig. 39 Snapshots of the vaporization process of C60 fullerene [108]. a 0.1 ps, b 0.2 ps, c 0.3 ps,
d 0.4 ps
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the well-known nature of solid graphite, where it would directly turn into gaseous
carbon atoms, without going through a liquid state, at high temperature and
atmospheric pressure or pressure less than 10 MPa [94–96]. The phase transition
point of C60 fullerene predicted using the standard NH thermostat under the
atmospheric pressure condition is 2,900 ± 50 K, which is much smaller than that of
the modified NH thermostat (4,350 ± 20 K) and the literature findings for graphite,
i.e., 4,000–4,500 K [94–96]. By contrast, the estimated sublimation point of C60

fullerene by the modified NH thermostat (4,350 ± 20 K) is resided within the
reported temperature range, i.e., 4,000–4,500 K, of the sublimation point of
graphite.

One may deduce, based on the above evidences, that both the C60 structure and
graphite hold a similar thermodynamic behavior at least at the atmospheric pressure
condition. Chelikowsky [105] found that C60 fullerene would directly transform
from hot carbon plasma to solid fullerene at about 4,000–5,000 K without invoking
a preexisting nucleation subunit under atmospheric pressure. His prediction is
basically comparable to not only the present investigation but also the phase
transformation behaviors of graphite, in which the fullerene would sublimate rather
than melt at the threshold temperature and atmospheric pressure.
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Retracted: Nanomechanics: Physics
Between Engineering and Chemistry

Boris I. Yakobson and Traian Dumitrică

Abstract Mechanics at nanometer scale involves physical factors often entirely
different from the familiar concepts in macroscopic mechanical engineering (elastic
moduli, contact forces, friction etc.). These new features are often of chemical
nature: intermolecular forces, thermal fluctuations, chemical bonds. The general
aspects and issues of nanomechanics are illustrated by an overview of the properties
of nanotubes: linear elastic parameters, nonlinear elastic instabilities and buckling,
inelastic relaxation, yield strength and fracture mechanisms, and their kinetic the-
ory. Atomistic scenarios of coalescence-welding and the role of non- covalent
forces (supra-molecular interactions) between the nanotubes are also discussed due
to their significance in potential applications. A discussion of theoretical and
computational work is supplemented by brief summaries of experimental results,
for the entire range of the deformation amplitudes.

Introduction

A relatively new area of study that concerns itself with the mechanical properties and
behavior of small nanoscalematerials systems can be called nanomechanics. A size of
several nanometers in two dimensions (wires, rods etc.) or all three (clusters, particles

Editor’s note: Nanomechanics is an area of nanoscale mechanics studying mechanical
phenomena, mechanical material properties, mechanical and electro-mechanical behavior of
nanoscale material systems and nanostructures of 100 nm or less in size.
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etc.) is a simplistic criterion for a system to be considered “nano”. This formally may
exclude the rich and established science of surfaces and interfaces, which are small in
only one dimension. One can also argue that a dislocation is not a nano-object: while it
formally meets the criterion it is never isolated from a crystal lattice and as such has
long been a subject of research in solid state physics. To distinguish itself from the
well-established dynamics of molecules, nanomechanics relies heavily on the heu-
ristics and methods of mechanical engineering and structural mechanics. It mainly
deals with objects of distinct geometrical shape and function: rods, beams, shells,
plates, membranes, etc. At the same time, due to the small length scale nanomechanics
also relies on physics, specifically, inter-atomic and molecular forces, methods of
quantum chemistry, solid state physics, and statistical mechanics. With these
approaches come a variety of numerical and computational methods (molecular
dynamics, Monte Carlo simulations, classical empirical interatomic potentials, tight-
binding approximation, density functional theory, etc.). This cross-disciplinary aspect
makes this area both complex and exciting for research and education.

Macroscopic mechanics mainly deals with continuum representation of material,
neglecting the underlying atomic structure, which manifests itself primarily at a
smaller scale. In this context it is interesting to realize that continuum model of a
finite object is not self-contained and inevitably leads to a notion of atom as discrete
building block. Indeed, elastic response of continuum is quantified by its moduli,
e.g. Young’s modulus Y (J/m3). A boundary surface of a material piece of finite size
L must be associated with certain extra energy, surface energy γ (J/m2). A com-
bination γ/Y is dimensional (m) and constitutes a length not contained within such
finite continuum model, which points to some other inherent parameter of the
material, a certain size a. The surface energy is the additional work to “overstretch”-
tear apart an elastic continuum. Such work equals to the energy of the formed
boundary (two boundaries), that is a Y/2 ≈ 2γ, and thus a ≈ 4γ/Y. With typical
Y = 50 GPa, and γ = 1 J/m2 one gets a = 0.1 nm, a reasonably accurate atomic size
[1, 2]. The notion of “indivisibles” was well familiar since Democritus and there-
fore a simple mechanical measurement could yield an estimate of atomic size much
earlier than more sophisticated Brownian motion theory. This discussion also shows
that for an object of nanometer scale its grainy, atomistic structure comes inevitably
into the picture of its mechanics and that atomistic or hybrid-multiscale methods are
necessary.1

1 Editor’s notes: B. Yakobson and his colleagues were among the first to perform theoretical
modeling of carbon nanotubes, i.e.,
1993/94—R.S. Ruoff and J. Tersoff team at IBM has done first theoretical modeling of carbon

nanotubes and carbon nanotube crystals.
1996—M.M.J. Treacy, T.W. Ebbesen and J.M. Gibson have carried out first experimental

testing of carbon nanotubes with the atomic force microscope (AFM).
1996—B.I. Yakobson, C.J. Brabec and J. Bernholc have performed molecular dynamics (MD)

simulation of the axial buckling and twisting of carbon nanotubes. They have shown the shell-like
behavior of carbon nanotubes.
1997—C.M. Lieber and his team at Harvard University have done similar experimental testing

of vibrating carbon nanotubes.
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Among the numerous subjects of nanomechanics research (tips, contact-junc-
tions, pores, whiskers etc.), carbon nanotubes (CNTs) [3] have earned a special
place, receiving much attention. Their molecularly precise structure, elongated and
hollow shape, effective absence of a surface (which is no different than the bulk, at
least for the single-walled cylinders, SWNTs), and superlative covalent bond
strength are among the traits that put CNTs (Fig. 1) in the focus of nanomechanics.
Discussion of numerous other objects as well as details of the multiscale methods
involved in nanomechanics (for example, see recent monograph [4]) is far beyond
the scope of this chapter.

It is noteworthy that the term resilient has been first applied not to nanotubes but
to smaller fullerene cages, in the study of high-energy collisions of C60, C70, and
C84 bouncing from a solid wall of H-terminated diamond. The absence of any
fragmentation or other irreversible atomic rearrangement in the rebounding cages
was somewhat surprising and indicated the ability of fullerenes to sustain great
elastic distortion. The very same property of resilience becomes more significant in
case of carbon nanotubes, since their elongated shape, with the aspect ratio close to
a thousand, makes the mechanical properties especially interesting and important
due to potential structural applications. An accurate simulation (with realistic

Fig. 1 Molecular mechanics calculations on the axial and radial deformation of single-wall carbon
nanotubes. a Axial deformation resulting from the crossing of two (10,10) nanotubes. b Perspective
close up of the same crossing showing that both tubes are deformed near the contact region.
c Computed radial deformations of single-wall nanotubes adsorbed on graphite. (Adapted from Ph.
Avouris et al., Phys. Rev. B, 58, 13870, 1998.). Editor's note: Research group of Dr. Avouris (IBM
Research Center) was among the first to perform theoretical modeling of carbon nanotubes and
take into account the van der Waals forces and their effect on their quasi-static radial deformation.
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interatomic and van der Waals forces) in Fig. 1 [5] vividly illustrates the appeal of
CNT’s as a nanomechanical object: well defined cylindrical shape, compliance to
external forces, and an expected type of response qualitatively analogous to a
common macroscopic behavior puts these objects between molecular chemical
physics, elasticity theory and mechanical engineering.

The utility of nanotubes as elements in nanoscale devices or composite materials
remains a powerful motivation for the research in this area. While the feasibility of
the practical realization of these applications is currently unknown, another incentive
comes from the fundamental materials physics. There is an interesting duality in the
nanotubes. CNT’s possess simultaneously molecular size and morphology as well as
sufficient translational symmetry to perform as very small (nano-) crystals with
well-defined primitive cell, surface, possibility of transport, etc. Moreover, in many
respects they can be studied as well defined as engineering structures and many
properties can be discussed in traditional terms of moduli, stiffness or compliance, or
geometric size and shape. The mesoscopic dimensions (a nanometer diameter)
combined with the regular, almost translation-invariant morphology along the
micrometer lengths (unlike other polymers, usually coiled), make nanotubes a
unique and attractive object of study, including the study of mechanical properties
and fracture in particular.

Indeed, fracture of materials is a complex phenomenon whose theory generally
requires amultiscale description involvingmicroscopic,mesoscopic andmacroscopic
modeling. Numerous traditional approaches are based on a macroscopic continuum
picture that provides an appropriate model except at the region of actual failure where
a detailed atomistic description (involving chemical bond breaking) is needed.
Nanotubes, due to their relative simplicity and atomically precise morphology, offer
the opportunity of addressing the validity of different macroscopic and microscopic
models of fracture and mechanical response. Contrary to crystalline solids where the
structure and evolution of ever-present surfaces, grain-boundaries, and dislocations
under applied stress determine the plasticity and fracture of the material, nanotubes
possess simpler structure while still can show rich mechanical behavior within elastic
or inelastic brittle or ductile domain. This second, theoretical-heuristic value of
nanotube research supplements their import due to anticipated practical applications.
A morphological similarity of fullerenes and nanotubes to their macroscopic coun-
terparts, like geodesic domes and towers, makes it compelling to test the laws and
intuition of macro-mechanics in the scale ten orders of magnitude smaller.

In the following, section “Molecular Dynamics Methods in Nanomechanics”
gives a brief overview of the molecular dynamics methods employed in nanoscale
simulations. Section “Linear Elastic Properties” discusses theoretical linear elasticity
and results for the elastic moduli, compared wherever possible with the experimental
data. The nonlinear elastic behavior, buckling instabilities and shell model are pre-
sented in section “Nonlinear Elasticity and Shell Model”, with mentioning of
experimental evidence parallel to theoretical results. Yield and failure mechanisms in
tensile load are presented in section “Atomic Relaxation and Failure Mechanisms”,
with the emphasis on the combined dislocation theory and computational approach.
More recent results of kinetic theory of fracture and strength evaluation in application
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to CNTs are briefly presented in section “Kinetic Theory of Strength”. Fast molec-
ular tension tests are recalled in the context of kinetic theory. Section “Coalescence
of Nanotubes as a Reversed Failure” presents some of the most recent result on CNT
“welding”, a process essentially reverse to fracture. In section “Persistence Length,
Coils and Random Fuzz-Balls of Nanotubes” we also briefly discuss the large-scale
mechanical deformation of nanotubes caused by their attraction to each other, and the
relation between nanomechanics and statistical persistence length of CNT in a
thermodynamic suspension. Throughout the discussion we do not attempt to provide
a comprehensive review of broad activities in the field. Presentation is mainly based
on the author’s research started at North Carolina State University and continued at
Rice University. Broader or a more comprehensive discussion can be found in other
relatively recent reviews by the author [6, 7].

Molecular Dynamics Methods in Nanomechanics

Molecular dynamics is a simulation technique in which the time-evolution of a set
of interacting particles is obtained by directly integrating the equations of motion,
which are derived from Newton’s law,2

Fi ¼ miai; ð1Þ

applied to each atom i in a system containing N atoms. Here mi is the atom mass, ai
the acceleration, and Fi the force acting upon atom i due to the interaction with
other atoms. Most commonly, the time- integration is performed with the velocity
Verlet algorithm, where positions, velocities, and accelerations at time t + Δt are
obtained from the same quantities at time t:

ri t þ Dtð Þ ¼ riðtÞ þ viðtÞDt þ 1=2ð ÞaiðtÞDt2

vi t þ Dtð Þ ¼ viðtÞ þ 1=2ð Þ aiðt þ DtÞ þ aiðtÞ½ �Dt: ð2Þ

Because we are integrating Newton’s equation, the acceleration ai(t) is just the
force divided by mass. In turn, the force is obtained as the gradient of a potential
energy function depending explicitly on the positions of all particles:

aiðtÞ ¼ � 1=mið ÞrriV r1; ::; rNð Þ: ð3Þ

The time step here is denoted by Δt. Since the atomic vibrations are on a time scale
of approximately 100 fs, a time step smaller than that is required, typically of 2 fs.

2 Editor’s notes in words of Leonardo da Vinci [about his notes on science]: “… I believe that
before I am at the end of this I shall have to repeat [some of] the same things; and therefore, O
reader, blame me not, because the subjects are many…” and it is important to encourage the
reader.
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Equations (2) and (3) describe the natural time evolution of a classical system in
microcanonical ensemble since the total energy E is a constant of motion. In
practice it is useful to compute it at each time step in order to check if it is indeed
constant in time. There could be small fluctuations in a typical amount of one part in
104 or less, which are due to the errors in the time integration. These errors can be
reduced either by decreasing the time step (which implies a longer simulation time)
or by employing higher-order evolution algorithms [8].

From Eq. (3) it becomes transparent that the problem of modeling a material is
essentially that of finding the potential V that reproduces the behavior of the
material under the conditions at which the simulation is run. Depending on the
origin of the potential, there are three main varieties of molecular dynamics tech-
niques—empirical, tight-binding, and first principles.

The empirical methods employ classical potentials, which can be constructed by
various techniques. For example, the dependence of the energy on the nuclei
position can be extracted from a first principle description. Another choice is to fit
the potential to experimental data. In all cases, potentials are valid in physical
situations not far from those in which they are fitted and the desired ability of a
potential to work properly in different environments (molecule, surface, or bulk) is
called transferability. It is therefore important to recognize that potentials are
always designed with a range of applicability and, when using a potential one
should be always familiar with its transferability properties.

The simplest decomposition of the many-body potential is a sum of pairwise
terms, with the energy of a pair depending on their relative distance rij:

V r1; . . .; rNð Þ ¼ 1=2ð Þ
X
i6¼j

uðrijÞ

Unfortunately, the class of materials that can be realistically modeled using this
approach is limited to rare gases, where electronic bonding is absent and atoms are
interacting through the weak van der Waals forces.

The potential for metals must incorporate the quantum mechanical effect of bond
weakening as the local environment becomes more “crowded” (a consequence of
Pauli principle). Several scheme were developed based on the analytical form:

V ¼ ð1=2Þ
X
i 6¼j

uðrijÞ þ
X
i

UðniÞ:

As before φ is a two-body part whereas U is a function giving the energy of an
atom as a function of its coordination ni. Belonging to this scheme are the glue
model [9], the embedded atom method [10], and the Finnis-Sinclair potentials [11],
which differ in the choice of the function φ and U. Similarly, the description of
covalent semiconductors [12] and hydrocarbons [13] can be achieved by accounting
for the variation of the bond strength with environment. The employed analytical
form is:
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V ¼ ð1=2Þ
X
i6¼j

uRðrijÞ þ
X
i 6¼j

BijuAðrijÞ
" #

;

where A and R stand or attractive and repulsive. The function Bij is strongly
dependent on environment (coordination) and has the effect of weakening the ij
bond in the presence of other bonds involving atom i. It also contains an angular
dependence and a cutoff, which restricts the pair potential to its nearest neighbors.

In general, the classical potentials for metals and semiconductors are designed
from the start with a cutoff radius, which often limits the interaction to only the
nearest neighbor atoms. Several subtleties have to be addressed when using a cutoff.
If an abrupt truncation in the form of step function is employed, the energy and its
derivative are no longer continuous functions of the atomic coordinates and there
will be jumps in the energy as atoms move in and out of each other’s cutoff
distance. This can disrupt a minimization process or lead to unwanted effects (such
as heating) in a dynamic simulation. A better choice is to use a smoothing function
that tapers the interaction to zero at a given distance. For example, the Brenner
potential for carbon [13] employed a switch type function:

GðrÞ ¼
1; r\r1
ð1=2Þ 1þ cos

p r�r1ð Þ
r2�r1

h in o
; r1 � r� r2;

0; r[ r2

8<
:

which has the property of leaving the interaction unchanged for distances less than
the inner cutoff distance r1 = 1.7 Å, and is smoothed to zero at the second cutoff
r2 = 2 Å. Additionally, the first derivative is continuous on the full range, which
avoids problems in minimization and dynamic simulations.

Caution must be exercised in nanomechanics simulations, since this cutoff choice
is not appropriate if the C–C bonds are stretched beyond 1.7 Å. The artificial forces
that arise in the (r1, r2) interval have a negligible effect if simulations are performed at
high temperatures, but they have a higher influence at lower temperatures, and may
lead to unphysical behaviors. For instance, atomistic fracture simulations at room
temperature indicated a very high failure strain of polycrystalline diamond, and the
1.7 Å cutoff radius had to be adjusted to a higher value [14].

By employing the Car-Parinello scheme [15] one can perform molecular
dynamics from the first principles. In this method the potentials are not required and
the forces on ions are obtained directly from the electronic structure, solved bymeans
of density functional theory (local density approximation). Typically, solution of the
time-independent Schrodinger equation involves a lengthy iterative process, which
has to be repeated at any new atomic configuration. This direct procedure is
unpractical for most cases, and constitutes a bottleneck for ab initio molecular
dynamics. The difficulty is overcome in the Car-Parinello method. Through an
extended Lagrangian approach, this scheme succeeds in keeping the electronic states
at optimal values, although not exactly in the electronic ground states.
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Another choice to avoid the lengthy self-consistent electronic structure calcu-
lations is to employ the tight-binding approximation, and perform semi-empirical
tight-binding molecular dynamics [16]. The chemistry is taken into account into a
natural way because in tight-binding scheme the electronic states are built from the
atomic like orbitals, which are localized on atomic sites. The accuracy depends on
the choice of the basis function and on the accuracy with which the tight-binding
parameters are fitted. With the proper choice of this input one can obtain a good
description of many electronic properties like the density of states, band structure,
and Fermi energy. In this respect, tight-binding molecular dynamics represents a
semi-empirical approach and lies between empirical and first-principles methods.
Computations within the scheme are a few orders of magnitudes faster than the
ab initio ones. The method must be applied cautiously because of transferability
problems.

It is also possible to carry out simulations in ensembles other than microcanonic,
such as at constant pressure, at constant stress, or at constant temperature. These
approaches are dynamical in origin and the basic idea is to reformulate the
Lagrangian equations of motion such that the phase space of desired ensemble is
reproduced. There are many areas of applicability. For instance, simulations at finite
temperature, which are achieved by introducing into equations of motion a time-
dependent frictional term [17], can find applications in optimizing to a true minima
(global, as opposed to numerous local minima) or in searching the lowest-energy
defects of a nanomechanical system.

Indeed, temperature provides a way of flying over the barriers3 and at large T the
system “senses” the simultaneous existence of many different minima, and states
with energy E are obtained with a probability exp(-E/kBT). Consequently, the
system spends more time in deeper states. By slowly decreasing T to 0 there is a
high probability that the system will land in the desired true minimum configura-
tion. Alternatively, starting from the perfect structure, a slow temperature increase
would make accessible the lowest energy defect state. If the corresponding energy
barrier to such a state is large compared to kBT, the occurrence of new configuration
is infrequent until a thermal fluctuation would trigger the event. These consider-
ations are the basis of simulated annealing methods, where the system is equili-
brated at a certain temperature and then slowly cooled or heated. While these
procedures do not guarantee absolute success, they often give good results. They
are particularly useful when the desired structures are hard to predict by intuition, as
for example in the case of identifying the lowest dislocation dipole in BN systems,
discussed in section “Atomic Relaxation and Failure Mechanisms”.

All methods discussed above, including the Car-Parinello scheme, assume the
Born-Oppenheimer approximation, i.e., the electronic system is assumed in the
ground state and adiabatically follows the nuclear motion. This approximation is

3 Editor’s notes: “Movement is created by heat and cold.” Leonardo da Vinci, Philosophy, p. 79,
in The Notebooks of Leonardo da Vinci (edited by E. MacCurdy, Konecky and Konecky printing,
Duckworth and Co., London, 1906).
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valid in most cases, but there are physical situations when such approximation is no
longer appropriate. For instance, when studying the response of matter to intense
laser pulses, a non-negligible fraction of electrons are situated into the excited
states. For these situations one must perform excited-states molecular dynamics and
such schemes were formulated from an extended Lagrangian approach in the tight-
binding or ab initio context [18]. In this generalization, the forces on the atoms are
obtained from the electronic states that satisfy the time-dependent Schrodinger
equation. However, these physical phenomena are beyond the scope of nanome-
chanics, mainly discussed in this chapter.

Linear Elastic Properties

Numerous theoretical calculations are dedicated to linear elastic properties, when
displacements (strain) are proportional to forces (stress). We recently revisited [19]
this issue in order to compare within the same method the elasticity of three
different materials: pure carbon (C), boron-nitride (BN), and fluorinated carbon
(C2F). Due to obvious uncertainty in definition of a nanotube “cross-section”, the
results should be represented by the values of in-plane stiffness, C (J/m2). The
values computed with Gaussian-based density functional theory are C = 345, 271,
and 328 N/m for C, BN, and C2F respectively. These values in ab initio calculations
are almost independent of nanotube diameter and chirality (consistent with the
isotropic elasticity of a hexagonal 2D lattice), somewhat in contrast to previous
reports based on tight-binding or classical empirical approximations. Notably,
substantial fluorination causes almost no change in the in-plane stiffness, because
the bonding involves mainly π-system while the stiffness is largely due to in-plane
σ-system. For “material” property assessments, the values of bulk moduli (based on
a graphite-type 0.34 nm spacing of layers) yield 1,029, 810, and 979 GPa—all very
high. Knowing the elastic shell parameter C immediately leads to accurate calcu-
lation of a nanotube-beam bending stiffness K (proportional to the cube of diameter,
*d3) as discussed later in sections “Nonlinear Elasticity and Shell Model” and
“Persistence Length, Coils and Random Fuzz-Balls of Nanotubes”. It also allowed
us to compute vibration frequencies of the tubules, e.g. symmetric breathing mode
frequency, f * 1/d [19], detectable in Raman spectroscopy.

An unexpected feature discovered in the course of that study [19] is the localized
strain induced by the attachment of fluorine. This shifts the energy minimum of the
C2F shell lattice from an “unstrained” sheet towards the highly curved polygonal
cylinders (for C2F composition of a near square shape, Figs. 1, 2). Equilibrium free
angle is *72°.

Theoretical values agree reasonably well with experimental values of the
Young’s modulus. It was first estimated [20] by measuring freestanding room-
temperature vibrations in a transmission electron microscope (TEM). The motion of
a vibrating cantilever is governed by the known fourth-order wave equation,
ytttt = −(YI/ρA)yxxxx, where A is the cross sectional area, ρ is the density of the rod

Retracted: Nanomechanics: Physics Between Engineering and Chemistry 119

R
ET

R
A
C
TE

D



material. For a clamped rod the boundary conditions are such that the function and
its first derivative are zero at the origin and the second and third derivative are zero
at the end of the rod. Thermal nanotube vibrations are essentially elastic relaxed
phonons in equilibrium with the environment; therefore the amplitude of vibration
changes stochastically with time. The amplitude of those oscillations was defined
by means of careful TEM observations of a number of CNTs and yield the values of
moduli within a range near 1 TPa.

Another way to probe the mechanical properties of nanotubes is to use the tip of an
AFM (atomic force microscope) to bend an anchored CNT while simultaneously
recording the force exerted by the tube as a function of the displacement from its
equilibrium position [21]. Obtained values also vary from sample to sample but
generally are close to Y = 1 TPa. Similar values have been obtained in [22] with yet
another accurate technique based on a resonant electrostatic deflection of a multi-wall
carbon nanotube under an external ac-field. The detected decrease in stiffness must be
related to the emergence of a different bending mode for the nanotube. In fact, this
corresponds to a wavelike distortion-buckling of the inner side of the CNT. Non-
linear behavior is discussed in more detail in the next section. Although experimental
data on elastic modulus are not very uniform, it corresponds to the values of in-plane
rigidity C = 340−440 N/m, to the values Y = 1.0−1.3 GPa for multiwall tubules, and
to Y = 4C/d = (1.36–1.76) TPa nm/d for SWNTs of diameter d.

Nonlinear Elasticity and Shell Model

Almost any molecular structure can sustain very large deformations (Fig. 3),
compared to the range common in macroscopic mechanics. A less obvious property
of CNTs is that the specific features of large nonlinear strain can be understood and
predicted in terms of continuum theories. One of the outstanding features of
nanotubes is their hollow structure; built of atoms densely packed along a closed
surface that defines the overall shape. This also manifests itself in dynamic prop-
erties of molecules, resembling so much the macroscopic objects of continuum
elasticity known as shells.

Fig. 2 Geometries of the polygonal fluorinated carbon tubes: a square F4−(10,10) and
b pentagonal F5−(10,10). (From K.N. Kudin et al., Phys. Rev. B, 64, 235406, 2001.)
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Macroscopic shells and rods have long been of interest: the first study dates back
to Euler, who discovered the elastic instability. A rod subject to longitudinal
compression remains straight but shortens by some fraction ε, proportional to the
force, until a critical value (the Euler force) is reached. It then becomes unstable and
buckles sideways at ε > εcr, while the force almost does not vary. For hollow
tubules there is also a possibility of local buckling in addition to buckling as a
whole. Therefore, more than one bifurcation can be observed, thus causing an
overall nonlinear response to the large deforming forces (note that local mechanics
of the constituent shells may well still remain within the elastic domain).

In nanomechanics, the theory of shells was first applied in our early analysis of
buckling and since then serves a useful guide [23–26]. Its relevance for a covalent-
bonded system of only a few atoms in diameter was far from being obvious. MD
simulations seem better suited for objects that small.4 Figure 3 shows a simulated
nanotube exposed to axial compression. The atomic interaction was modeled by the
Tersoff-Brenner potential, which reproduces the lattice constants and binding
energies of graphite and diamond. The end atoms were shifted along the axis by
small steps and the whole tube was relaxed by conjugate-gradient method while
keeping the ends constrained. At small strains the total energy (Fig. 3a) grows as
E(ε) = 1/2 Eʺ·ε2. The presence of four singularities at higher strains was quite a
striking feature and the patterns (b)–(e) illustrate the corresponding morphological
changes. The shading indicates strain energy per atom, equally spaced from below
0.5 eV (brightest) to above 1.5 eV (darkest). The sequence of singularities in E(ε)

Fig. 3 Simulation of a (7, 7) nanotube exposed to axial compression, L = 6 nm. The strain energy
a displays four singularities corresponding to shape changes. At εc = 0.05 the cylinder buckles into
the pattern b, displaying two identical flattening–“fins” perpendicular to each other. Further
increase of ε enhances this pattern gradually until at ε2 = 0.076 the tube switches to a three-fin
pattern c. In a buckling sideways at ε3 = 0.09 the flattenings serve as hinges, and only a plane of
symmetry is preserved d. At ε4 = 0.13 an entirely squashed asymmetric configuration forms
e. (From B.I. Yakobson et al., Phys. Rev. Lett., 76, 2511, 1996.)

4 Editor’s notes: “Therefore O students study mathematics and do not build without foundations.”
Leonardo da Vinci, Philosophy, p. 82, in The Notebooks of Leonardo da Vinci (edited by E.
MacCurdy, Konecky and Konecky printing, Duckworth and Co., London, 1906).
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corresponds to a loss of molecular symmetry from D∞h to S4, D2h, C2h and C1. This
evolution of the molecular structure can be put in the framework of continuum
elasticity.

The intrinsic symmetry of a graphite sheet is hexagonal, and the elastic prop-
erties of two-dimensional hexagonal structure are isotropic. A curved sheet can also
be approximated by a uniform shell with only two elastic parameters: flexural
rigidity D, and its in-plane stiffness, C. The energy of a shell is given by a surface
integral of the quadratic form of local deformation,

E ¼ 1
2

ZZ
fD jx þ jy

� �2�2 1� mð Þ jxjy � j2xy

� �h i
þ

C
1� m2ð Þ ½ðex þ eyÞ2 � 2ð1� mÞðexey � e2xyÞ�gdS;

where κ is the curvature variation, ε is the in-plane strain, and x and y are local
coordinates). In order to adapt this formalism to a graphitic tubule, the values of D
and C can be identified by comparison with the detailed ab initio and semi-
empirical studies of nanotube energetics at small strains. Indeed, the second
derivative of total energy with respect to axial strain corresponds to the in-plane
rigidity C (cf. section “Linear Elastic Properties”). Similarly, the strain energy as a
function of tube diameter d corresponds to 2D/d2 in the equation above. Using
recent ab initio calculations [19], one obtains C = 56 eV/atom = 340 J/m2, and
D = 1.46 eV. The Poisson ratio ν = 0.15 was extracted from a reduction of the
diameter of a tube stretched in simulations. A similar value is obtained from
experimental elastic constants of single crystal graphite. One can make a further
step towards a more tangible picture of a tube as having wall thickness h and Young
modulus Ys. Using the standard relations D = Yh3/12(1−ν2) and C = Ysh, one finds
Ys = 3.9 TPa and h = 0.089 nm.5 With these parameters, linear stability analysis
allows one to assess the nanotube behavior under strain (Fig. 4).

To illustrate the efficiency of the shell model, consider briefly the case of
imposed axial compression. A trial perturbation of a cylinder has a form of Fourier
harmonics, with M azimuthal lobes and N half waves along the tube (Fig. 4, inset),
i.e. sines and cosines of arguments 2My/d and Nπx/L. At a critical level of the
imposed strain, εc(M, N), the energy variation vanishes for this shape disturbance.
The cylinder becomes unstable and lowers its energy by assuming an (M, N)-
pattern. For tubes of d = 1 nm with the shell parameters identified above, the critical
strain is shown in Fig. 4.

5 Editor’s notes: “He who blames the supreme certainty of mathematics feeds on confusion, and
will never impose silence upon the contradictions of the sophistical sciences, which occasion a
perpetual clamor.” Leonardo da Vinci, Philosophy, p. 83, in The Notebooks of Leonardo da Vinci
(edited by E. MacCurdy, Konecky and Konecky printing, Duckworth and Co., London, 1906). .
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According to these plots, for a tube with L > 10 nm the bifurcation is first
attained for M = 1, N = 1. The tube preserves its circular cross section and buckles
sideways as a whole; the critical strain is close to that for a simple rod,

ec ¼ 1=2 pd=Lð Þ2; ð4Þ

or four times less for a tube with hinged (unclamped) ends. For a shorter tube the
situation is different. The lowest critical strain occurs for M = 2 (and N ≥ 1, see
Fig. 4), with a few separated flattenings in directions perpendicular to each other,
while the axis remains straight. For such a local buckling, in contrast to (4), the
critical strain depends little on length and estimates to εc = 4

ffiffiffiffiffiffiffiffiffiffi
D=C

p
d−1 = (2/√3)

(1− ν2)−1/2 h·d−1 in the so called Lorenz limit. For a nanotube one finds,

ec ¼ 0:1 nm=d: ð5Þ

Specifically, for the 1 nm wide tube of length L = 6 nm, the lowest critical strains
occur for the M = 2 and N = 2 or 3 (Fig. 4). This is in accord with the two- and
three-fin patterns seen in Fig. 3b, c. Higher singularities cannot be quantified by the
linear analysis, but they look like a sideways beam buckling, which at this stage
becomes a non-uniform object.

Axially compressed tubes of greater length and/or tubes simulated with hinged
ends (equivalent to a doubled length) first buckle sideways as a whole at a strain
consistent with the above expression for the strain energy. After that the com-
pression at the ends results in bending and a local buckling inward. This illustrates
the importance of the “beam-bending” mode, the softest for a long molecule and
most likely to attain significant amplitudes due to either thermal vibrations or
environmental forces. In simulations of bending, a torque rather than force is
applied at the ends and the bending angle θ increases stepwise. While a notch in the

Fig. 4 The critical strains for a 1 nm wide shell-tube as a function of its scaled length L/N.
Buckling (M, N) is defined by the number of halfwaves 2 M and N in y and x directions,
respectively, e.g., a (4,4)-pattern is shown in the inset. The effective moduli and thickness are fit to
graphene. (From B.I. Yakobson et al., Phys. Rev. Lett., 76, 2511, 1996.)
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energy plot can be mistaken for numerical noise, its derivative dE/dθ drops sig-
nificantly. This unambiguously shows an increase in tube compliance—a signature
of a buckling event. In bending, only one side of a tube is compressed and thus can
buckle. Assuming that it buckles when its local strain, ε = κd/2, where κ is the local
curvature, is close to that in axial compression, Eq. (5), we estimate the critical
curvature as

jc ¼ 0:2 nm=d2:

In simulation of torsion, the increase of azimuthal angle ϕ between the tube ends
results in abrupt changes of energy and morphology [23, 24, 27]. In continuum
model, the analysis based on the aforementioned equation for energy is similar to
that outlined above, except that it involves skew harmonics of arguments like Nπx/
L ± 2My/d. For overall beam-buckling (M = 1),

/c ¼ 2 1þ mð Þp

and for the cylinder-helix flattening (M = 2),

/c ¼ 0:06 nm3=2L=d5=2 ð6Þ

The latter should occur first for L < 140 d5/2 nm, which is true for all tubes we
simulated. However, in simulations it occurs later than predicted by Eq. (6). The
ends, kept circular in simulation, which is physically justifiable, by a presence of
rigid caps on normally closed ends of a molecule, deter the thorough flattening
necessary for the helix to form (unlike the local flattening in the case of an axial
load).

Experimental evidence provides sufficient support to the notion of high resil-
ience of SWNT. An early observation of noticeable flattening of the walls in a close
contact of two MWNT has been attributed to van der Walls forces pressing the
cylinders to each other [28]. Collapsed forms of the nanotube (“nanoribbons”), also
caused by van der Waals attraction, have been observed in experiment, and their
stability can be explained by the competition between the van der Waals and elastic
energies [29]. Any additional torsional strain imposed on a tube in experimental
environment also favors flattening [23, 24] and facilitates the collapse. Graphically
more striking evidence of resilience is provided by bent structures [30], as well as
the more detailed observations that actually stimulated our research in nanome-
chanics [31]. An accurate measurement with the atomic force microscope (AFM)
tip detects the “failure” of a multiwall tubule in bending [21], which essentially
represents nonlinear buckling on the compressive side of the bent tube. The esti-
mated measured local stress is 15–28 GPa, very close to the calculated value [32,
33]. Buckling and ripple of the outmost layers in a dynamic resonant bending has
been directly observed and is responsible for the apparent softening of MWNT of
larger diameters [7, 34].
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Atomic Relaxation and Failure Mechanisms

The important issue of ultimate tensile strength of CNTs is inherently related with
the atomic relaxation in the lattice under high strain. This thermally activated
process was first predicted to consist of a sequence of individual bond rotations in
the approach based on dislocation theory [32, 33, 36]. Careful computer simulations
demonstrate feasibility of this mechanism and allowed us to quantify important
energy aspects [37, 38]. It has been shown that in a crystal lattice such as the wall of
a CNT, a yield to deformation must begin with a homogeneous nucleation of a slip
by the shear stress present. The non-basal edge dislocations emerging in such slip
have a well-defined core, a pentagon-heptagon pair, 5/7. Therefore the prime dipole
is equivalent to the Stone-Wales (SW) defect. The nucleation of this prime dislo-
cation dipole “unlocks” the nanotube for further relaxation: either brittle cleavage or
a plastic flow. Remarkably, the latter corresponds to a motion of dislocations along
the helical paths (glide “planes”) within the nanotube wall. This causes a stepwise
(quantized) necking, when the domains of different chiral symmetry, and therefore
different electronic structure are formed, thus coupling the mechanical and electrical
properties [32, 35, 36]. It has further been shown [32, 33, 35, 38–40] that the energy
of such nucleation explicitly depends on CNT helicity (chirality).

Below, we deduce starting with dislocation theory, the atomistics of mechanical
relaxation under extreme tension.6 Locally, the wall of a nanotube differs little from
a single graphene sheet, a two-dimensional crystal of carbon. When a uniaxial
tension σ (N/m for the two-dimensional wall it is convenient to use force per unit
length of its circumference) is applied it can be represented as a sum of expansion
(locally isotropic within the wall) and a shear of a magnitude σ/2 (directed at ± 45°
with respect to tension). Generally, in a macroscopic crystal the shear stress relaxes
by a movement of dislocations, the edges of the atomic extra-planes. Burgers vector
b quantifies the mismatch in the lattice due to a dislocation. Its glide requires only
local atomic rearrangements and presents the easiest way for strain release, pro-
vided sufficient thermal agitation. In an initially perfect lattice such as the wall of a
nanotube, a yield to a great axial tension begins with a homogeneous nucleation of
a slip, when a dipole of dislocations (a tiny loop in three-dimensional case) first has
to form. The formation and further glide are driven by the reduction of the applied-
stress energy, as characterized by the elastic Peach-Koehler force on a dislocation.
The force component along b is proportional to the shear in this direction and thus
depends on the angle between the Burgers vector and the circumference of the tube,

fb ¼ � 1=2r bj j sin 2h;

6 Editor’s notes: “Let no one read me who is not mathematician in my beginnings.” Leonardo da
Vinci, Philosophy, p. 85, in The Notebooks of Leonardo da Vinci (edited by E. MacCurdy,
Konecky and Konecky printing, Duckworth and Co., London, 1906).

Retracted: Nanomechanics: Physics Between Engineering and Chemistry 125

R
ET

R
A
C
TE

D



The max |fb| is attained on two ± 45° lines, which mark the directions of a slip in
an isotropic material under tension.

The graphene wall of the nanotube is not isotropic, its hexagonal symmetry
governs the three glide planes—the three lines of closest zigzag atomic packing,
oriented at 120° to each other (corresponding to the 101l

� �
set of planes in three-

dimensional graphite). At non-zero shear these directions are prone to slip. The
corresponding c-axis edge dislocations involved in such slip are indeed known in
graphite. The six possible Burgers vectors 1/3a \2110[ have a magnitude
b = a = 0.246 nm (lattice constant), and the dislocation core is identified as a 5/7
pentagon-heptagon pair in the honeycomb lattice of hexagons. Therefore, the pri-
mary nucleated dipole must have a 5/7/7/5 configuration (a 5/7 attached to an
inverted 7/5 core). This configuration is obtained in the perfect lattice (or a nano-
tube wall) by a 90° rotation of a single C–C bond, well known in fullerene science
as a Stone-Wales diatomic interchange. One is led to conclude that the SW
transformation is equivalent to the smallest slip in a hexagonal lattice and must play
a key role in the nanotube relaxation under external force.

The preferred glide is the closest to the maximum-shear ± 45° lines, and depends
on how the graphene strip is rolled-up into a cylinder. This depends on nanotube
helicity specified by the chiral indices (c1, c2) or a chiral angle θ indicating how far
the circumference departs from the leading zigzag motif a1. The max |fb| is attained
for the dislocations with b = ± (0,1) and their glide reduces the strain energy,

Eg ¼ � fbaj j ¼ � Ca2=2 � sin 2hþ 60�ð Þ � e; ð7Þ

per one displacement, a. Here ε is the applied strain, and C = Yh = 342 N/m can be
derived from the Young modulus of Y = 1,020 GPa and the interlayer spacing
h = 0.335 nm in graphite; one then obtains Ca2/2 = 64.5 eV. The Eq. 7 allows one to
compare different CNTs (assuming similar amount of pre-existing dislocations): the
more energetically favorable is the glide in a tube, the earlier it must yield to applied
strain.

In a pristine nanotube-molecule, the 5/7 dislocations have to first emerge as a
dipole, by a prime SW transformation. Topologically, the SW defect is equivalent
to either one of the two dipoles, each formed by a *a/2 slip. Applying Eq. 7 to
each of the slips one finds,

Esw ¼ Eo � A � e� B � sinð2hþ 30�Þ � e:

The first two terms, the zero-strain formation energy and possible isotropic
dilation, do not depend on chiral symmetry. The symmetry-dependent third term,
which can also be derived as a leading term in the Fourier series, describes the fact
that SW rotation gains more energy in an armchair (θ = 30°) CNT, making it
thermodynamically the weakest and most inclined to SW nucleation of the dislo-
cations, in contrast to the zigzag (θ = 0) where the nucleation is least favorable.
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Consider for example a (c, c) armchair CNT as a typical representative (we will
also see below that this armchair type can undergo a more general scenario of
relaxation). The initial stress-induced SW rotation creates a geometry that can be
viewed as either a dislocation dipole or a tiny crack along the equator. Once
“unlocked”, the SW defect can ease further relaxation. At this stage, both brittle
(dislocation pileup and crack extension) or plastic (separation of dislocations and
their glide away from each other) routes are possible, the former usually at larger
stress and the latter at higher temperatures.

Formally, both routes correspond to a further sequence of SW-switches. The 90°
rotation of the bonds at the “crack tip” (Fig. 5, left column) will result in a 7/8/7
flaw and then 7/8/8/7 etc. This further strains the bonds-partitions between the
larger polygons, leading eventually to their breakage, with the formation of greater
openings like 7/14/7 etc. If the crack, represented by this sequence, surpasses the
critical Griffith size, it cleaves the tubule.

In a more interesting distinct alternative, the SW rotation of another bond (Fig. 5,
top row) divides the 5/7 and 7/5, as they become two dislocation cores separated by

Fig. 5 SW-transformations of an equatorially oriented bond into a vertical position create a
nucleus of relaxation (top left corner). It evolves further as either a crack—brittle fracture route,
left column—or as a couple of dislocations gliding away along the spiral slip “plane” (plastic yield,
top row). In both cases only SW rotations are required as elementary steps. The stepwise change of
the nanotube diameter reflects the change of chirality, bottom right image, causing the
corresponding variations of electrical properties. (Adapted from B.I. Yakobson, Appl. Phys.
Lett., 72, 918, 1998.)
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a single row of hexagons. A next similar SW switch results in a double-row
separated pair of the 5/7’s, and so on. This corresponds, at very high temperatures,
to a plastic flow inside the nanotube-molecule, when the 5/7 and 7/5 twins glide
away from each other driven by the elastic forces, thus reducing the total strain
energy [cf. Eq. (7)]. One remarkable feature of such glide is due to mere cylindrical
geometry: the glide “planes” in case of nanotubes are actually spirals, and the slow
thermally-activated Brownian walk of the dislocations proceeds along these well-
defined trajectories. Similarly, their extra-planes are just the rows of atoms also
curved into the helices.

A nanotube with a 5/7 defect in its wall loses axial symmetry and has a bent
equilibrium shape; the calculations show [41] the junction angles <15°. Interest-
ingly then, an exposure of an even achiral nanotube to the axially symmetric tension
generates two 5/7 dislocations, and when the tension is removed, the tube “freezes”
in an asymmetric configuration, S-shaped or C-shaped, depending on the distance
of glide, that is time of exposure. This seemingly “symmetry violating” mechanical
test is a truly nanoscale phenomenon. Of course the symmetry is conserved sta-
tistically, since many different shapes form under identical conditions.

When the dislocations sweep a noticeable distance, they leave behind a tube
segment changed strictly following the topological rules of dislocation theory. By
considering a planar development of the tube segment containing a 5/7, for the new
chirality vector c’ one finds,

c01; c
0
2

� � ¼ c1; c2ð Þ � b1; b2ð Þ;

with the corresponding reduction of diameter, d. While the dislocations of the first
dipole glide away, a generation of another dipole results, in further narrowing and
proportional elongation under stress, and thus forming a neck as shown above. The
orientation of a generated dislocation dipole is determined every time by the Burgers
vector closest to the lines of maximum shear (± 45° cross at the end-point of the
current circumference-vector c). The evolution of a (c,c) tube will be: (c, c) → (c,
c−1)→ (c, c−2)→… (c, 0)→ (c−1, 1) or (c, −1)]→ (c−1, 0)→ (c−2, 1) or (c−1,
−1)]→ (c−2, 0)→ [(c−3, 1) or (c−2, −1)]→ (c−3, 0) etc. It abandons the armchair
(c,c) type entirely, but then oscillates in the vicinity of zigzag (c, 0) kind, which
appears a peculiar attractor. Correspondingly, the diameter for a (10,10) tube
changes stepwise, d = 1.36, 1.29, 1.22, 1.16 nm, etc., the local stress grows in
proportion and this quantized necking can be terminated by a cleave at late stages.
Interestingly, such plastic flow is accompanied by the change of electronic structure
of the emerging domains, governed by the vector (c1, c2): The armchair tubes are
metallic, others are semiconducting with the different band gap values. The 5/7 pair
separating two domains of different chirality has been discussed as a pure-carbon
heterojunction, is argued to cause the current rectification detected in a nanotube
nanodevice [42] and can be used to modify, in a controlled way, the electronic
structure of the tube. Here we see how this electronic heterogeneity can arise from a
mechanical relaxation at high temperature: if the initial tube was armchair-metallic,
the plastic dilation transforms it into a semiconducting type irreversibly [35, 36, 43].
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While the above analysis is based on atomic picture (structure and interactions),
recent developments [44] offer an approach where the fracture nucleation can be
described rather elegantly within nonlinear continuum mechanics (based on clas-
sical interatomic forces for carbon). Whether this approach can describe change in
chirality, temperature dependence or temporal aspects of relaxation should yet be
explored.

The dislocation theory allows one to expand the approach to other materials, and
we have recently applied it to boron nitride (BN) nanotubes [45]. While the binding
energy in BN is lower than in CNT, the formation of 5/7/7/5 defect can be more
costly due to Coulomb repulsion between emerging BB and NN pairs, Fig. 6a
(bonding in BN is partially ionic with strong preference to chemical neighbor
alternation in the lattice). Another dislocation pair 4/8/8/4 that preserves the
alternation must be considered, Fig. 6b.

It turns out that the quantitative results are sensitive to the level of theory
accuracy. Tight binding approximation [46] underestimates the repulsion by almost
3 eV [45]. Ab initio DFT calculations show that 5/7/7/5 is metastable lowest energy
defect in BN, and its formation energy 5.5 eV is higher than 3.0 eV in carbon [45],
thus suggesting higher thermodynamic stability of BN under tensile load. Relax-
ation under compression is different as it involves skin-type buckling also inves-
tigated recently [47].

Kinetic Theory of Strength

Computer simulations have provided a compelling evidence of the mechanisms
discussed above. By carefully tuning a quasi-static tension in the tubule and
gradually elevating its temperature, with extensive periods of MD annealing, the
first stages of the mechanical yield of CNT have been observed, Fig. 7 [37, 38]. In
simulation of tensile load the novel patterns in plasticity and breakage, just as
described above, clearly emerge. At very high strain rate the details of primary

Fig. 6 The geometries of
(5, 5) BN tubule with (a) 5/7/
7/5 defect emerging at high
tension and temperature, and
(b) 4/8/8/4 dislocation dipole.
(From H.F. Bettinger et al.,
Phys. Rev. B, 65, 041406,
2002.)
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defects cannot be seen and they only begin to emerge at higher strain level, giving
impression of exceedingly high breaking strain [27].

Fracture, of course, is a kinetic process where time is an important parameter.
Even a small tension, as any non-hydrostatic stress, makes material thermody-
namically meta-stable and a generation of defects energetically favorable. Thus the
important issue of strength remains beyond the defect formation energy and its
reduction with the applied tension. Recently we developed kinetic theory in
application to CNT [40, 48]. In this approach we evaluate conditions (strain ε,
temperature T) when the probability P of defect formation becomes significant
within laboratory test time Δt,

P ¼ v Dt NB=3
X
m

exp½�Emðe; vÞ=kbT� � 1:

Here n = kbT/h is the usual attempt frequency and NB is the number of bonds in
the sample. Activation barrier Em(ε, χ) must be computed as a function of strain and
chirality χ of the tubule, and then the solution of this equation with respect to ε
gives the breaking strain values.

This approach has involved substantial computational work in finding the saddle
points and energies (Fig. 8a) for a variety of conditions and for several transition
state modes (index m in the summation above). Obtained yield strain near 17 %
(Fig. 8b, [40, 48]) is in reasonable agreement with the series of experimental
reports. We currently are implementing similar approach with ab initio level of
saddle point barriers calculations [49]. Preliminary data shows higher 8–9 eV
barriers but their reduction with tension is also faster.

Fig. 7 T = 3,000 K, strain
3 %, plastic flow behavior
(about 2.5 ns). The shaded
area indicates the migration
path of the 5/7 edge
dislocation. (Adapted from M.
Nardelli et al., Phys. Rev.
Lett., 81, 4656, 1998.)
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Previously performed high strain rate simulations have shown temperature
dependence of breaking strain [24, 27], consistent with the kinetic theory [40]. In a
constant strain rate arrangement (when the ends of the sample are pulled from the
equilibrium with certain rate), the rate equation is slightly modified to its integral
form. However the main contribution comes from the vicinity of the upper limit,

P ¼ v NB=3
Z X

m

expf�Em½e tð Þ; v�=kbTgdt � 1;

Simple analysis reveals certain invariant T × log(νΔt) of the time of failure and
temperature (provided the constant strain). Detailed simulations could shed addi-
tional light on this aspect [50].

Coalescence of Nanotubes as a Reversed Failure

Understanding the details of failure mechanism has lead us recently [51] to
investigate an opposite process, a coalescence of nanoscale clusters analogous to
macroscopic sintering or welding. Fusion of smaller components into a larger whole
is a ubiquitous process in condensed matter. In molecular scale it corresponds to
chemical synthesis, where exact rearrangement of atoms can be recognized. Coa-
lescence or sintering of macroscopic parts are usually driven by the well-defined
thermodynamic forces (frequently, surface energy reduction), but the atomic evo-
lution path is redundant and its exact identification is irrelevant. Exploring a pos-
sibility of the two particles merging with atomic precision becomes compelling in
nanometer scale, where one aspires to “arrange the atoms one by one”. Are the

Fig. 8 Activation barrier values (here computed within classical multi-body potential) a serve as
input to the rate equation and the calculation of the yield strain as a function of time (here from 1
ms), b temperature (here 300 K) and chiral symmetry (χ). (From Ge. Samsonidze et al., Phys. Rev.
Lett., 88, 065501, 2002.)
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initial and final states connected by a feasible path of atomic movements, or sep-
arated by insurmountable barriers? Direct molecular dynamics (MD) investigation
is usually hampered by energy landscape traps and beyond very few atomic steps
needs to be augmented with additional analysis.

An example of very small particles is offered by fullerene cages and CNTs.
Fusion of fullerenes has been previously reported and the lateral merging (diameter-
doubling) of CNT have been observed and simulated [52, 53]. In contrast, head-to-
head coalescence of CNT segments remained unexplored and of particular theo-
retical and practical interest: Is it permitted by rigorous topology rules to eliminate
all the pentagons always present in the CNT ends and thus dissolve the caps
completely? Can this occur through a series of well-defined elementary steps
(Fig. 9) and what is overall energy change if the system evolves through the
intermediate disordered states to the final purely hexagonal lattice of continuous
tubule? If feasible, such “welding” can lead to increase of connectivity in CNT
arrays in bundles/ropes and crystals, and thus significantly improve the mechanical,
thermal and electrical properties of material. In addition, determining the atomistic
steps of small-diameter tubes coalescence (with the end-caps identical to half-
buckyball) can shed light on the underlying mechanism of condensed phase con-
version or CNT synthesis from C60 components.

In [51] we have reported for the first time atomically precise routes for complete
coalescence of generic fullerene cages: cap-to-cap CNT and C60 merging together
to form defectless final structure. The entire process is reduced to sequence of
Stone-Wales bond switches and therefore is likely the lowest energy path of
transformation. Several other examples of merging follow immediately as special
cases: coalescence of buckyballs in peapod, joining of the two (5,5) tubes as in
Fig. 9, “welding” the (10,10) to (10,10) following Fig. 10, etc. The approach
remains valid for arbitrary tubes with the important constraint of unavoidable grain-
boundary for the tubes of different chirality.7 The junction of (n,m) and (n`,m`)
must contain 5/7 dislocations or their equivalent of (n−n`,m−m`) total Burgers
vector [35]. The proposed mechanism [51] has important implications for nanotube
material (crystals, ropes) processing and property enhancement, engineering of
nanoscale junctions of various types, possible growth mechanisms with the C60 and
other nanoparticles as feedstock. In the context of nanomechanics an interesting
feature of the late stages of coalescence is the annealing and annihilation of 5/7
pairs in a process exactly reverse to the formation and glide of these dislocation
cores in the course of yield and failure under tension.

7 Editor’s notes: “Inequality is the cause of all local movements.” Leonardo da Vinci, Aphorisms,
p. 89, in The Notebooks of Leonardo da Vinci (edited by E. MacCurdy, Konecky and Konecky
printing, Duckworth and Co., London, 1906).
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Persistence Length, Coils and Random Fuzz-Balls
of Nanotubes

Van der Waals forces play an important role not only in the interaction of the
nanotubes with the substrate but also in their mutual interaction. The different shells
of a MWNT interact primarily by van der Waals forces; single-wall tubes form
ropes for the same reason. A different manifestation of van der Waals interactions
involves the self-interaction between two segments of the same single-wall CNT to
produce a closed ring (loop) [54]. SWNT rings were first observed in trace amounts
in the products of laser ablation of graphite and assigned a toroidal structure. More
recently, rings of SWNTs were synthesized with large yields (*50 %) from straight
nanotube segments. These rings were shown to be loops not tori [54]. The synthesis
involves the irradiation of raw SWNTs in a sulfuric acid-hydrogen peroxide

Fig. 9 2D geodesic
projection (left) and the actual
3D structures (right) show the
transformations from a pair of
separate (5,5) tubes (a) to a
single defect-free nanotube.
Primary “polymerization”
links form as two other bonds
break (b, dashed lines). The
π/2-rotations of the links (the
bonds subject to such SW-flip
are dotted) and the SW-flips
of the four other bonds in
(c) produce a (5,0) neck (d). It
widens by means of another
ten SW-rotations, forming a
perfect single (5,5) tubule (not
shown). (From Y. Zhao et al.,
Phys. Rev. Lett., 88, 185501,
2002.)
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solution by ultrasound. This treatment both etches the CNTs, shortening their length
to about 3–4 μm, and induces ring formation.

The formation of coils by CNTs is particularly intriguing. While coils of bio-
molecules and polymers are well known structures, they are stabilized by a number
of interactions that include hydrogen bonds and ionic interactions. On the other
hand, the formation of nanotubes coils is surprising given the high flexural rigidity
(K = Young’s modulus times areal moment of inertia) of CNTs and the fact that
CNT coils can only be stabilized by van der Waals forces. However, estimates
based on continuum mechanics show that in fact it is easy to compensate for the
strain energy induced by the coiling process through the strong adhesion between
tube segments in the coil. Details of this analysis can be found in the original
reports [54] or in our recent review [7]. Here we will outline briefly a different and
more common situation where the competition of elastic energy and the intertubular
linkage is important. Following our recent work [55], we will discuss the con-
nection between the nanomechanics of CNTs and their random curling in a sus-
pension or a raw synthesized material of buckypaper.

SWNT are often compared with polymer chains or beams [56] as having very
high rigidity, and therefore large persistence length. In order to quantify this
argument we note that a defectless CNT has almost no static flexing, although 5/7
defects for example introduce small kink-angle 5–15° and could cause some static

Fig. 10 2D-projections (left)
and the computed 3D
intermediate structures (right)
in the coalescence of the two
(10,10) nanotubes: separate
caps (a) in a sequence similar
to Fig. 8 develop a (5,5)
junction (b), which then
shortens (c) and widens into a
(10,5) neck (d). Glide of the
shaded 5/7-dislocations
completes the annealing into a
perfect (10,10) CNT (not
shown). Due to the fifth-fold
symmetry, only two cells are
displayed. (From Y. Zhao
et al., Phys. Rev. Lett., 88,
185501, 2002.)
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curvature, but their energies are high and concentration is usually negligible. Only
dynamic elastic flexibility should be considered. If u(s) is a unit direction vector
tangent to the CNT at contour length point s, and the bending stiffness is K, then
statistical probability of certain shape u(s) is,

P u sð Þ½ � ¼ exp½�1=2 K=kbTð ÞZ ou=osð Þ2ds] ¼ exp½�1=2 L
Z
ou=osð Þ2ds�:

Here persistence length is L = (K/kbT). For a (10,10) SWNT of radius
R = 0.7 nm and the effective wall thickness h = 0.09 nm (see sections “Linear
Elastic Properties” and “Nonlinear Elasticity and Shell Model”), the bending
stiffness is very close to K = πCR3 (C = 345 N/m is the in-plane shall stiffness,
based on ab initio calculations). Persistence length at room temperature therefore is
L1[(10, 10), 293 K]*0.1 mm, in the macroscopic range much greater than for most
polymer molecules. The result can be generalized for a single SWNT of radius R,

L1 ¼ 30 K=Tð Þ R=0:7 nmð Þ3mm;

or N times more for a bundle of N tubes (assuming additive stiffness for the case of
weak lateral cohesion of the constituent SWNTs). For example for a smallest close
packed bundle of seven (one surrounded by six neighbors) this yields L7 = 1 mm.
Such incoherent bundle and a solid-coherent bundle with perfect lateral adhesion
provide the lower and upper limits for the persistence length, NL1 < LN < N2L1.

Remarkably, these calculations show that the true thermodynamic persistence
length of small CNT bundles or even an individual SWNT is in the macroscopic
range from a fraction of a millimeter and greater. This means that highly curved
structures often observed in bucky-paper mats (Fig. 11) are attributed not to

Fig. 11 Raw-produced SWNTs often form ropes-bundles entangled bent into a rubbery structure
called “buckypaper”. The length scale of bends is much smaller than the persistence length for the
constituent filaments. Shown here is such material produced by HiPco (high pressure CO)
synthesis method (Adapted from M.J. O’Connell et al., Chem. Phys. Lett., 342, 265, 2001.)
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thermodynamic fluctuations but rather to residual mechanical forces preventing
these coils from unfolding. Elastic energy of a typical micron size (r * 1 m) curl-
arc is much greater than thermal, Ucurl * kbT(L/r)

2 >> kbT [55]. At the same time, a
force required to maintain this shape Fcurl * K/r2 = N pN, several picoNewtons,
where N is the number of SWNTs in each bundle. This is much less than a force per
single chemical bond (*1 nN), and therefore any occasional lateral bonding
between the tubules can be sufficient to prevent them from disentanglement.
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and Nanocomposites
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Abstract Editor’s notes first introduce special examples of nanostructures to
illustrate a useful nanoscale homogenization criterion. Later editor’s notes introduce
chapters on graphene sheets, nanocomposites, molecular modeling of nanocom-
posites and new analysis of safety of carbon nanotubes along with reviews of new
studies and applications. A review of a new registry matrix analysis and a nanoscale
analog of the Newton’s friction law are presented in chapter “Nanomechanics of
Graphene Sheets: Registry Matrix Analysis and Interfacial Sliding” along with
examples of interfacial sliding of the adjacent graphene sheets. Enhancement of
material properties of nanocomposites and their molecular modeling analysis are
lucidly presented in chapter “Molecular Mechanics of Polymer Nanocomposites”.
A new parametric map for geometric parameters of carbon nanotubes and different
types of phagocytosis is presented to improve understanding of safety issues in
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growing importance of safety in nanotechnology).
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Introduction

Nanostructured materials such as graphene sheets and nanocomposites are impor-
tant materials for the latest developments in nanotechnology. This part of the edited
volume introduces some novel applications of graphene sheets (see chapter
“Nanomechanics of Graphene Sheets: Registry Matrix Analysis and Interfacial
Sliding”) and the carbon nanotube based polymer composites (see chapter
“Molecular Mechanics of Polymer Nanocomposites”). Advances in nanomechanics
of graphene sheets (Fig. 1) are illustrated in chapter “Nanomechanics of Graphene
Sheets: Registry Matrix Analysis and Interfacial Sliding” by reviewing new
methods to control nanoscale sliding of graphene sheets through the registry matrix
analysis of interfacial sliding of graphene sheets and a nanoscale analog of the
Newton’s friction law. The new effect of the spatial exclusion of electrons (SEE)
during interaction between the spatially-distributed π–π electrons between the
adjacent graphene sheets [1] is also reviewed in chapter “Nanomechanics of
Graphene Sheets: Registry Matrix Analysis and Interfacial Sliding”.

Material properties of graphene sheets have been discussed along with the
nanoscale homogenization criterion for graphene sheets, carbon nanotubes and other
nanostructures. The data of Fig. 2 can be used to illustrate this homogenization
criteria [1], which requires at least ten smallest structural elements for the material
properties to reach an invariant size-independent value, i.e., the macroscopic value.
This figure demonstrates that stability of nanorods increases along with their size. It
also can be inferred from the data presented that the stability of such nanorods reaches
its highest value as soon as their nanoscale structure becomes large enough to include
the structural edge cell (SEC)10 boundary characterized by a homogenization
parameter X10(E). Here, X10(E) = 0.99 indicating that a material property (i.e. for-
mation energy) reaches the 99 % of its macroscopic value on the edge of a material
consisting of 10 structural elements. The graphene flakes shown in Fig. 1 have not
reached the critical size at which their material properties are independent of their
size. This illustrates the intrinsic nanoscale size dependence of material properties
below the critical size of the ten structural elements or so.

Fig. 1 Schematic of the two
graphene lattices in a typical
AAA stacking sliding from
the incommensurate lattice-
lattice registry (after [1])
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Different materials with the distinct structural elements of varying intrinsic
nanoscale properties have a unique X10(M) parameter for each material property,
M. Hence, all material properties of a nanostructured material can be characterized
by a set of homogenization parameters: X10(M1), X10(M2), X10(M3) or by X9(M1),
X12(M2), X11(M3) and so on. Ideally, each nanostructured material should be
characterized by pairs of homogenization parameters, (X10(M1), X11(M1)),
(X10(M2), X12(M2)) or (X10(M3), X14(M3)) and so on, where the value of the second
homogenization parameter must be always unity, while the number of structural
elements may vary for different materials and distinct material properties.

Nanoscale materials, which require less than 10 units to reach the macroscopic
value of their material properties, exhibit strong intrinsic tendency to poses those
properties. If a number of the minimum structural elements, which is required to
reach the macroscopic value of material properties, is greater than 10 than a
nanoscale material exhibits a weak intrinsic tendency to poses those properties. In
Fig. 2 it is shown that nanorods exhibit intrinsic tendency for the formation ener-
gies, which is close to normal since X10(E) = 0.99. When nanostructured materials
include regions of the size, which is less that the critical size associated with the
macroscopic properties (see Fig. 3), the material properties of these regions are
highly dependent on their local dimensions and the ability to measure the size of
distinct local material phases before the process of homogenization (i.e., volume
averaging) or the local structural analysis with further multiscale analysis. Meng
and Voyiadjis [3] have demonstrated such local regions along with very interesting
laminar formations of the so called crystalline ZrN/AlN multilayer (Fig. 3).

The multiscale analysis of complex material systems shown in Fig. 3 can be
quite challenging if the nanoscale measurements are not detailed enough or the

Fig. 2 Dependence of the formation energies of the nanorods as a function of the number of the so
called (AlO)n units [2]. The limiting value of the formation energies is reached after 10 (AlO)n
units on the structural edge boundary with a homogenization parameter X10(E) = 0.99, which
indicates the 99 % of the macroscopic value for the formation energy

New Trends in Nanoscale Mechanics of Nanostructures, Graphene… 143



subsequent characterization of local and macroscopic material properties is lacking
a coherent framework of scaling parameters accompanied by appropriate ranges of
applicability of the local models used. In Fig. 3 the nanoscale scale of 2 nm has
been provided along with the modulation wavelength of material composition. In
Fig. 4 an example of multiscale modeling is presented for a material system of the
Si/Si3N4 nanopixel with the use of molecular dynamic (MD) modeling and the
finite element analysis (FEA), where the MD modeling region represents both
atoms and atomic bonds. Note that the MD region involving a graphene sheet is
smaller than the critical size of 10 structural elements consisting of carbon rings.
Such material system configuration may occur either by a necessity or as a result of
manufacturing (as in Fig. 3), which requires multiscale analysis such as shown in
Fig. 4.

The multiscale modeling of interfacial regions in nanoscale material systems is
also very important for the carbon nanotube based nanocomposites. The use of MD
modeling region shown in Fig. 4 is important around embedded nanoscale fibers
and thick carbon nanotubes (Fig. 5). Chapter “Molecular Mechanics of Polymer
Nanocomposites” presents yet another method for multiscale modeling, i.e., Monte
Carlo based molecular mechanics modeling, which takes into account complex
molecular structure of interfacial regions in polymer nanocomposites with various
inclusions. Carbon nanotube based polymer nanocomposites represent an important
group of nanocomposites. The following editor’s notes and chapter “Molecular
Mechanics of Polymer Nanocomposites” review some of the latest developments in
the nanoscale analysis of nanocomposites.

Fig. 3 A single crystalline
ZrN/AlN multilayer grown on
a heteroepitaxial AlN buffer
layer. The composition
modulation wavelength is
3.4 nm. The dark and bright
layers are respectively ZrN
and AlN (after Meng and
Voyiadjis [3])
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Fig. 4 a A schematic of the Si/Si3N4 nanopixel. The two dimensional projections shows Si3N4

and Si in green and yellow, respectively. Above and bellow the hand shake (HS) region (denoted
by the red line), MD and FE apply respectively. b Close-up of the HS region and its surroundings
in the Si substrate showing 2D views from two different directions. On the top is the MD region
(spheres and lines represent atoms and atomic bonds), and on the bottom is the FE region (spheres
and lines represent nodes and element boundaries). The yellow box marks the HS region in which
particles are hybrid nodes/atoms, and the red dotted line marks the HS surface (after Voyiadjis,
Aifantis and Weber [4])

Fig. 5 Axial stress
distribution in polymer
matrix: a perfect bonding,
isostrain, b van der Waals
bonding, isostrain (after Li
and Chou [7])
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Carbon Inclusions in Polymer Matrix Nanocomposites

Polymer matrix nanocomposites are typically reinforced by carbon fibers, carbon
nanotubes [5], graphene multilayers [6], flakes of graphene layers (Fig. 1), carbon
nanofibers and other carbon inclusions. Chapter “Molecular Mechanics of Polymer
Nanocomposites” shows examples of complex interface regions in polymer matrix
nanocomposites, which may include gradients in material properties near interfaces,
complex polymer networks and even interphases. In material systems, where there
are small or insignificant gradients in material properties near interfacial surfaces, it
is important to consider two limiting cases of a classical perfect interfacial bonding
and a weak interfacial bonding [8] or the nanoscale weak bonding by van der Waals
forces [7, 8]. For these types of cases Li and Chou [7] have used the so called
structural molecular mechanics approach for the nanoscale finite element analysis
of carbon nanotube polymer matrix composites (Fig. 5). In their study the stress
distributions have been examined in the unit cell having the width, w, such that
w/R = 5, where R is the radius of inclusion, R. They have shown that the stress
concentration near the nanoscale inclusions with van der Waals bonding is lower
than that near the perfectly bonded inclusions.

It should be mentioned that at nanoscale level there is no 100 % perfect bonding.
There is a very strong covalent bonding between nanoscale inclusions and the
structural elements of a matrix material. The covalent bonding or rather the high
density covalent bonding is a close approximation for the perfect bonding in the
classical sense. In practice, however, it is very hard to achieve the high density
covalent bonding (Fig. 6). The density of covalent density at the interfaces depends
on a number of factors such processing methods, chemical systems involved, local
stoichiometry and the processing conditions. Nevertheless, the assumption of the
perfect bonding is a very important and useful limiting case in the multiscale
analysis of nanostructured materials.

Fig. 6 Images of pristine and functionalized multiwall carbon nanotubes (MWNTs) by
Trifluoroaniline (after [9]). Images are obtained by transmission electron microscope (TEM)
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Nanoscale finite element analysis of Li and Chou [7] can also serve as a useful
albeit limited guide (Fig. 5) for the case of nanocomposites with the semi-rectan-
gular graphene platelets as reinforcing inclusions. One should remember the dif-
ferences between the more confined case of cylindrical symmetry and the more
open two-dimensional geometry. Chapter “Nanomechanics of Graphene Sheets:
Registry Matrix Analysis and Interfacial Sliding” presents new results on interfacial
properties of graphene sheets and the phenomena associated with the shearing
deformation of graphene platelets of semi-rectangular form. Shearing deformation
of nanoscale inclusions depends on nanoscale interfacial sliding between adjacent
graphene sheets. Reinforcement of material properties in nanocomposites, which is
reviewed in chapter “Molecular Mechanics of Polymer Nanocomposites”, is
affected by the interfacial properties and the molecular structure in the interfacial
region near nanoscale inclusions. Interfacial phenomena are further discussed below
and in all of the following chapters: for graphene sheets in chapter “Nanomechanics
of Graphene Sheets: Registry Matrix Analysis and Interfacial Sliding”, for polymer
nanocomposites in chapter “Molecular Mechanics of Polymer Nanocomposites”
and for the engulfment of carbon nanotubes in macrophages in chapter “Carbon
Nanotubes and Safety”. Safety of Nanotechnology is very important.

Carbon Nanotube/Polymer Interfaces in Nanocomposites

The nanotube/polymer interface plays an important role in the stress transfer in
nanocomposites. The strength of interfacial adhesion depends on the surface area of
the nanotube/polymer interface (see chapter “Molecular Mechanics of Polymer
Nanocomposites”), its roughness (Fig. 6), interlocking of asperities and molecular
bonding of the nanoscale interface [1, 8, 9]. Carbon nanotube surface can be modified
by surfactants, nanoscale particles (e.g., oxide and nitride ceramics or graphene
flakes) and the molecular chains capable of covalent bonding or van der Waals
bonding by the aromatic units composed of carbon rings. Mechanical property
measurements [10] of ceramic nanocomposites after the addition of 0.1 wt% of
carbon nanotubes (CNTs) in the alumina have shown the increased fracture tough-
ness by about 1.6 times from 3.7 to 4.9 MPa m1/2. For 1 wt% CNTs/BaTiO3 com-
posite [10], the toughness value (1.65 MPa·m1/2) is about 2.4 times than that of pure
BaTiO3 (0.68 MPa·m1/2) (Fig. 7). Chapter “Nanomechanics of Graphene Sheets:
Registry Matrix Analysis and Interfacial Sliding” presents a review of nanoscale
sliding properties of graphene flakes, which also can improve toughness properties of
the fiber-reinforced ceramic matrix nanocomposites by tailoring their layered inter-
facial properties.
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Molecular Modeling of the Carbon Nanotube/Polymer
Interfaces

Molecular modeling of the carbon nanotube/polymer interfaces allows to examine
nanoscale surface interactions at more details. Chapter “Nanomechanics of
Graphene Sheets: Registry Matrix Analysis and Interfacial Sliding” introduces
new results in nanomechanics of graphene sheets, which are used both for nano-
scale electronic devices and for nanocomposites with polymer and ceramic matri-
ces. The following examples of novel methods to tailor interfacial properties on
molecular level are presented here to motivate both chapters “Nanomechanics of
Graphene Sheets: Registry Matrix Analysis and Interfacial Sliding” and “Molecular
Mechanics of Polymer Nanocomposites”, where molecular modeling is used to
enhance material properties of nanocomposites. Figures 8 and 9 illustrate molecular
modeling of the non-covalent and covalent adsorption of alanine and alanine rad-
icals onto the surface of a (5, 0) zig-zag single-walled carbon nanotube using the
first principles calculations [11]. The π-electron interactions have been shown to
play a significant role in the non-covalent absorption with the functional group
close to the carbon nanotube surface naturally has a significant influence on the
binding strength and the associated interactions.

Results of non-covalent functionalization of carbon nanotubes with alanine have
shown that such functionalization enhances the conductivity of a (5, 0) zig-zag
nanotube [11]. In the case of covalent adsorption of alanine radicals onto the surface
of a carbon nanotube, the alanine-nanotube binding energy depends on the local
lattice configuration at an adsorption site and on the type of electronegative atom (e.
g., a strong amine group) that binds with the nanotube. Chapter “Nanomechanics of
Graphene Sheets: Registry Matrix Analysis and Interfacial Sliding” presents other
methods of analysis of different lattice configurations in the surface-surface sliding

Fig. 7 TEM image of a rod-like TiO2 nanoparticles on a carbon nanotube (CNT) and b tiny TiO2

nanoparticles on CNTs (after [10])
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interactions within the framework of registry potentials and the registry matrix
analysis. Non-covalent interactions in the absorption of alanine onto a zig-zag (5, 0)
carbon nanotube also occur within the lattice registry potentials, however, they are
analyzed by the charge density analysis. In the highest occupied molecular orbital
(HOMO) of the conformer C50ACH3-I (Fig. 9a), the charge is distributed over the
alanine homogeneously. The resulting electrostatic interaction with carbon nano-
tube is one of the most stable among the conformers.

The covalent bonding illustrated in Fig. 10 [11] is associated with the so called
perfect bonding or perfect adhesion in the classic micromechanics of composite

Fig. 8 Noncovalent adsorption of alanine on a (5, 0) zig-zag carbon nanotube (CNT):
a C50ACH3-I, b C50ACH3-II and c C50ANH2-I (after [11])

Fig. 9 Molecular modeling of interfacial interactions with a (5, 0) CNT [11]: a Highest occupied
molecular orbital (HOMO) of a conformer C50ACH3-I (E = −0.12 eV). b Lowest unoccupied
molecular orbital (LUMO) of a conformer C50ACH3-I (E = 0.38 eV). c The HOMO of a conformer
C50ANH2-II (E = −0.23 eV). d The LUMO of a conformer C50ANH2-II (E = 0.25 eV)

Fig. 10 Molecular modeling of covalent absorption [11]: a–e Covalent adsorption of alanine
radicals onto a (5, 0) zig-zag carbon nanotube with a C50ANH-I, b C50AN-I, c C50AN-II,
d C50ACOO-I and e C50ACO-I
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materials [1], which is examined in great details in chapter “Molecular Mechanics
of Polymer Nanocomposites” of this edited volume. Molecular modeling, which is
shown in Figs. 8, 9 and 10, and the examples included in the earlier editor’s notes
provide good illustrations for the molecular mechanics modeling of polymer
nanocomposites [12–14] presented in chapter “Molecular Mechanics of Polymer
Nanocomposites”. The modeling techniques and the new research reviewed in
chapter “Molecular Mechanics of Polymer Nanocomposites” are based on the
powerful Monte Carlo methods.
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Nanomechanics of Graphene Sheets

Registry Matrix Analysis and Interfacial Sliding

Vasyl Harik

Abstract This chapter reviews basic structure of graphene sheets, interfacial
sliding between adjacent graphene sheets, a nanoscale analog of the Newton’s
friction law, registry effects between adjacent graphene sheets and their atomic
lattices, registry matrices to describe interfacial registry in graphene stacking and
the registry matrix analysis for the sliding of graphene sheets in nanoscale elec-
tronic devices. Interfacial sliding of graphene sheets depends on the interfacial
registry potentials and the so called effect of the spatial exclusion of electrons
(ESEE) at the interface of two graphene sheets, which can be viewed as the
nanoscale analog of Pauli’s exclusion principle. Understanding of nanoscale sliding
phenomena is critical for improving manufacturing technology for the single layer
graphene sheets in nanoelectronic devices. Interfacial sliding between adjacent
graphene sheets has been also described by a nanoscale analog of the Newton’s
friction law for the nanoscale surface sliding mechanics and the associated stiction
effects. Understanding of nanoscale sliding helps nanoscale cleaning and safety.

Dr. V. Harik, f. ICASE Staff Scientist at the NASA Langley Research Center (Hampton, VA),
Principal Scientist at Nanodesign Consulting, author of a monograph and a short course entitled
“Mechanics of Carbon Nanotubes” © (2001) presented at the Annual ASME Congress (2001
and 2004) and a co-editor of Kluwer volumes: “Trends in Nanoscale Mechanics” (2003) and
“Micromechanics and Nanoscale Effects” (2004).

Nanodesigns Consulting is a 2004 spin-off from the NASA Langley Research Center, Hampton,
Virginia. Its Staff consulted for the Princeton-based NASA-funded URETI Institute for
Nanostructured Bio-inspired Materials (http://bimat.org), National Institute of Aerospace
(Hampton, VA), University Space Research Association (USRA) and NASA NAIC (Atlanta,
GA). Nanodesigns Consulting also works on safety of nanotechnology.

V. Harik (&)
Nanodesigns Consulting, P.O. Box 5303, Wilmington, DE 19808-5303, USA
e-mail: Harik@nanodesignconsult.com

© Springer Science+Business Media Dordrecht 2014
V. Harik (ed.), Trends in Nanoscale Mechanics, DOI 10.1007/978-94-017-9263-9_6

151

http://bimat.org


Introduction

Graphene sheets have periodic hexagonal structure made of carbon atoms arranged
into hexagonal carbon rings (Fig. 1). Stacks of graphene sheets are a part of
commonly used pencils, which are sometimes wrongfully called lead pencils.
Exfoliation of graphite has been a long challenge [1, 2]. Graphene has exceptional
properties in the form of single-layer graphene sheets, which are similar to the
properties of carbon nanotubes with their lattice structure made of carbon rings.
Single graphene sheets have remarkable electronic properties, for example, the
unique quantum Hall effect [1–4] and the noteworthy band gap-width dependence
[5, 6]. Graphene properties such as electric conductivity and Young’s modulus
depend on the minimum length or size of graphene sheets, i.e., the minimum
number of carbon rings along its length as was noted for carbon nanotubes [7, 10].
The lattice structure of graphene sheets can be described and analyzed with respect
to its structural characteristics by using the scaling analysis, which is based on
examination of the physical length scales and the structure of edges of graphene
nanoribbons (Fig. 1).

Size Effects in the Material Properties of Graphene Sheets

The uniqueness of average material properties of graphene sheets depends on the
size of graphene sheets. The uniqueness of averaging (or nanoscale homogeniza-
tion) of material properties over an extended surface requires that the size of a
graphene sheet, L, is much greater than the size of the carbon ring, its smallest
structural element, a = 2.46 Å [7–10], i.e.

L � a; or L=a � 1: ð1Þ

The nanoscale homogenization of graphene properties depends on the minimum
length at which the size-invariant value is reached (i.e., the minimum number of
carbon rings along its length as has been noted for the carbon nanotubes [7, 10]).
Note that a graphene sheet can satisfy the homogenization criterion (1) for the
uniquely-defined material properties in longitudinal dimension and be transversely
smaller than the minimum length: Lmin In general, the scaling dependence for the
uniquely-defined size-invariant value, Ph, of a material property, P, is given by the
nanoscale re-normalization relation:

P ¼ Phð1� a
Lh � L

Þ; or P ¼ Ph 1� Lh
a
� L

a

� ��1
" #

ð2Þ

where a is an atomic lattice constant or the smallest structural element of a nano-
structured material and Lh (Lh ≈ Lmin) is the size of a homogenized material at
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which the size-invariant value, Ph of the volume-or the surface-averaged material
property is reached (or the 95 % of its value, 0.95 Ph, at the minimum size: Lmin <
Lh from below: “–” sign, or from above: “+” sign). The nanoscale re-normalization
formula (2) can be written for various material properties [7–16].

The atomic lattice structure of the graphene sheets can be described by the (n,m)
nomenclature illustrated in Fig. 2. The two unit vectors, a1 and a2, are defined at the
origin (0, 0). The width of a graphene sheet along the unit vector, a1, can be
measured in the units of the carbon ring size, a = 2.46 Å, i.e., L = 2.5a for the
graphene flake shown in Fig. 2. In the orientation of the unit vector, a1, the shown
graphene flake has the so called zig-zag configuration. In the orientation perpen-
dicular to the unit vector, a2, the shown graphene flake has the so called armchair
configuration and the size, L = 3a.

Fig. 1 Lattice structure of graphene sheets with the armchair and zig-zag edges and graphene
nano-ribbons (GNR) (after [5])

Fig. 2 Schematic of the
graphene sheet made of the
carbon rings of six carbon
atoms with the σ-electrons
along the C–C bonds of
length, lC–C = 1.42 Å. The (n,
m) nomenclature is defined by
the two unit vectors, a1 and
a2, at the origin (0, 0)
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Electron Energy and the Registry Potentials of Graphene
Lattice

The atomic lattice structure of graphene nano-ribbons shown in Fig. 2 is made of
the carbon rings of six carbon atoms in the sp2 bonding between σ-electrons
schematically shown in Fig. 3a. The spatially distributed electrons cover the entire
surface area of the carbon rings, with the σ-electrons forming the elastic C–C bonds
and the out-of-plane π-electrons distributed over the C–C bonds and the interior
area of carbon rings (Fig. 3b). Distribution of the energy of states for the out-of-
plane π-electrons has its high points right above the midpoint of each C–C bond
(i.e., M-point of the so called Brillouin zone,1 which is marked by the ΓK´K area of
the carbon ring, Fig. 3a). The highest value of the energy of states is in the center of
the carbon ring (i.e., the Γ-point of the Brillouin zone) and its lowest zero-points are
at the position of each carbon atom (i.e., the Κ-point of the Brillouin zone, Fig. 3a):

Distribution of the energy of states EG(k) for electrons in graphene shown in
Fig. 3b can be described by

EGðkÞ ¼ �t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos

3kxacc
2

� �
cos

ffiffiffi
3

p
kyacc
2

� �
þ 4 cos2

ffiffiffi
3

p
kyacc
2

� �
;

s

where kx and ky are the x- and y-components of the wave vector k, acc is the length
of the C–C bond and t is the first nearest-neighbor tight binding parameter [17]. The
concave top of the π-electrons energy of states distribution is deformed into the 6-

Fig. 3 Schematic of the carbon ring of six carbon atoms with the schematically-shown σ-electrons
a with the approximate size of the spatial energy distribution of the π-electrons b distributed over
covalent C–C bonds and the interior of a carbon ring (after [5]). (H. Raza (ed.), Graphene
Nanoelectronics, NanoScience and Technology, Springer, 2012)

1 The so called Brillouin zone is used to schematically represent the energy dispersion relation for
the energy of states of the graphene lattice vibration waves, i.e., phonons, and the energy of states
of the oscillating electrons.
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fold dome by the 12 radius modulations pointing toward the six K- and the six M-
points with the π/6 period of the π-electron density modulation around the center of
the carbon ring (Fig. 4), which contributes to the registry potential.

The energy of states for the π-electrons distributed over the center of the carbon
ring (the Γ-point) scales with the energy for the near-neighbor hoping, Eh, (the M-
point) as 88/33 or 2.6(6) with respect to the Fermi free energy, EF, and as 2.93 or*3
with respect to the Dirac energy, ED. The angular modulation of the π-electrons
energy of states has lower values along the directions pointing toward the six M-
points with the energy level of 3.3 eV (i.e., the six-fold dome with the angular period
of π/6 for the π-electron density modulation around the center of the carbon ring).

Lattice Registry Configurations for Graphene Sheets

Atomic lattice structure of graphene typically involves the so called AAA or ABA
stacking of graphene sheets [5, 23] as well as other types of registries between two
atomic lattices of graphene sheets:

• the Φ- and the Θ-registry (Figs. 5a and b) between a C–C bond and a carbon
ring akin to the O-registry of a carbon atom;

• the Y-registry of a carbon atom and three C–C bonds and the opposite carbon
ring, i.e., the complete Y-O registry is the symmetric rhombic registry (Fig. 5c).

A typical ABA stacking of the commensurate graphene sheets consists of the
adjacent graphene lattices arranged so that a carbon atom of one graphene sheet is
positioned right over the center of the opposite carbon ring (i.e., the C-atom/C-ring
registry or the Y-O registry, Fig. 5c). In the Y-O registry, the three carbon atoms are
positioned right above the carbon atoms of the opposite graphene sheet in the

Fig. 4 Schematic of the geometric symmetry of the six Brillouin zones within the carbon ring
(left) and a schematic of the 6-fold dome (or the B-modulation dome) of the approximate
experimental energy distribution of the π-electron states (i.e., the π-electrons density) with the 12
radial modulation toward the six K and the six M points around the center of the carbon ring
(right), which is the Γ point of all six Brillouin zones (after [23])
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incommensurate positions and the other three carbon atoms are positioned above
the centers of carbon rings as asperities.

In the case of incommensurate AAA stacking of the graphene sheets, all six
carbon atoms are positioned right above their counterparts in the full ring-ring
registry (or the O-O registry) with the opposite carbon rings being a little further
from the opposite atomic lattice as compared to the ABA stacking. The projections
of the C–C bonds between the adjacent graphene lattices of the AAA stacking
coincide in the O-O registry unlike in the case of the ABA stacking of the com-
mensurate graphene sheets.

Note that the in-plane distance between the two carbon atoms and the nearest
C–C bond in the Φ-registry (Fig. 5a) is slightly less than the Bohr radius,2 a0 =
0.529 Å. The typical van der Waals distance between two adjacent graphene sheets
is 3.35 Å. The distance between two carbon atoms and the carbon atom on the two
sides in the Θ-registry (Fig. 5b) is exactly one half of the elastic C–C bond, lC–C/2,
i.e., 0.71 Å. The distance between these two atoms and the nearest C–C bond is
exactly a/2 or 1.23 Å. The companion complete Y-O registry (Fig. 5c) is the most
stable. The energy barrier for a π-electron to pass through the X-registry (Figs. 5b
and 6c) between an electron and the opposite C–C bond is about 3.3 eV at the M-
point of the so called Brillouin zone for the energy of states in a carbon ring.3 The
X-registries are unstable.

Fig. 5 Schematics of the Φ-registry (a) and the Θ-registry (b) between the C–C bond of two
carbon atoms and a carbon ring of six carbon atoms and the rhombic registry (c), i.e. complete Y-O
registry of the ABA stacking, and the incomplete companion Y-registry next to the Φ-registry
a between a carbon atom and a carbon ring (i.e., the C-atom/C-ring registry; after [23])

2 The Bohr radius, a0 = 0.529 Å is the most probable distance between a proton and an electron in
the Hydrogen atom according to the Bohr’s planetary model of an atom.
3 The onset of the Ψ-registry configuration (Fig. 6a) is associated with the need of a π-electron to
overcome the registry potential of the C–C bond and the associated Coulomb repulsion within the
electron spatial exclusion (ESE) zone (see Harik [16]). The size of the ESE zone depends on the
local atomic lattice configuration, the registry potential barriers, the nanoscale Coulomb repulsion
proportional to 1/r2, and the nanoscale repulsion proportional to 1/r12. The combined effect results
in the so called SEE effect. The nanoscale analog of Pauli exclusion of electrons is similar to the
quantum Pauli principle for the identical particles with the spin ½ (fermions); the two identical
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The in-plane distance between all carbon atoms in the ψ-registry (Fig. 6a) along
the C–C bonds is exactly one half of the elastic C–C bond, lC–C/2. The same is true
for all atoms involved in the X- or the “+” registry between two C–C bonds
(Fig. 6c). In the X-registry between two C–C bonds, two out of six carbon atoms
are positioned in the incomplete Y-registry, i.e., the opposite carbon atoms of the
two graphene sheets are located almost above each other in the incomplete
incommensurate positions as opposed to the O-O registry of the AAA stacking and
the Y-O registry of the ABA stacking with the six and three carbon atoms in the
incommensurate locations (i.e., the complete Y-registry). The full (six-six) and the
partial incommensurate atom configurations of Y-registries are prone to sliding as
they are less stable than the complete Y-O registry.

Matrix Analysis for the Lattice Registry of Graphene Sheets

Theatomic lattice structure of graphene sheets consists of carbon rings of six carbon
atoms, which can be identified by six indices with the top left carbon atom being the
first (Fig. 7), the top right carbon atom being the second in the top C–C bond, the
third and the sixth carbon atoms are below on the right and on the left, and the forth
and the fifth carbon atoms are in the bottom C–C bond. The lattice registry of two
adjacent carbon rings can be described as follows [23]. When the two carbon rings
with the corresponding atoms are directly on top of each other in the O-O registry of
the AAA stacking, then the O-O lattice registry of their atoms can be described by

Fig. 6 Schematics of the ψ-registry (a) between a carbon atom and the C–C bond, an incomplete
Y-registry (a), (b) and (c) between a carbon atom and the C-ring and the X- or the “+” registry
(c) between two elastic C–C bonds of the two carbon rings (after [23])

(Footnote 3 continued)
particles cannot occupy the same energy state, as their combined wave function, ψ, is anti-
symmetric. The nanoscale Coulomb repulsion, the nanoscale SEE repulsion and the quantum Pauli
principle for the electrons all affect precise dimensions of the ESE zone.
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the pairs of indices (1,1), (2,2), (3,3), (4,4), (5,5) and (6,6). These pairs of indices
can form a registry matrix for the O-O lattice registry with the presence of a carbon
atom in a certain position of the lattice registry described by a pair of indices is
indicated by a unity, 1. For the O-O lattice registry, the corresponding registry
matrix ROO for two graphene sheets will have 2 for the two carbon atoms being in
the same registry position on top of each other and the bond registry coefficient
b for the C–C bonds in the (1,2) and (2,1), (2,3) and (3,2), (3,4) and (4,3), (4,5) and
(5,4), (5,6) and (6,5) registry positions [23]:

ROO �

2 b 0 0 0 0
b 2 b 0 0 0
0 b 2 b 0 0
0 0 b 2 b 0
0 0 0 b 2 b
0 0 0 0 b 2

0
BBBBBB@

1
CCCCCCA

forming a well-structured diagonal registry matrix for the O-O lattice registry.
The registry matrix for the Y-O lattice registry of the atomic lattices of graphene

sheets in the ABA stacking is formed in a similar way [23]. The lattice registry
positions identified by the pairs of indices (1,1), (2,2), (3,3), (4,4), (5,5), (6,6) and
the corresponding terms in the registry matrix identified by the same pairs of indices
describe the presence of one carbon atom by a unity, 1. In the Y-O lattice registry of
the ABA stacking the C–C bonds do not have overlapping registry. Therefore, the
registry matrix RYO does not include the bond registry coefficient b. This registry
matrix has a partial diagonal structure. A unity in the registry matrix position
identified by the pair of indices (6,1) means that over the registry location of the
sixth atom of a carbon ring in the bottom graphene sheets there is the first carbon
atom from the top graphene sheet. Similarly, the pairs of indices (2,1) and (4,5)
identify the pairs of carbon atoms in the lattice registry. The pairs of indices identify
both the position in the registry matrix and the indices of carbon atoms from the two
adjacent graphene sheets that are in that lattice registry [23]:

Fig. 7 Schematic of the Y-O registry of two carbon rings described by the integer indices
identifying carbon atoms in clockwise direction along the C–C bonds and the corresponding
locations in the registry matrix RYO (after [23])
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RYO �

1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 0 1 0
1 0 0 0 0 1

0
BBBBBB@

1
CCCCCCA

A sum of the registry matrix row elements gives the number of carbon atoms that
are in the lattice registry positions. A single unity in a row means that there is no
registry with that particular carbon atom, which is identified by a unity. The
presence of the bond registry coefficient b in the registry matrix ROO indicates that
the C–C bonds have overlapping registry. The registry matrix Rψ has the partial
bond registry coefficient bψ and the atom-bond registry described by the sum of
unity and the atom-bond registry coefficient aψ [23]:

RW �

1þ aWbW bW 0 0 0 0
bW 1 0 0 0 0
0 0 1þ aWbW 0 0 0
0 0 0 1 bW 0
0 0 0 bW 1þ aWbW 0
0 0 0 0 0 1

0
BBBBBB@

1
CCCCCCA
:

The registry matrix RΘ for the Θ-registry (Fig. 5b) has the following form [23]:

RH �

1 0 0 0 0 bH
0 1 bH 0 0 0
0 bH 1 bH 0 0
0 0 bH 1 0 0
0 0 0 0 1 bH
bH 0 0 0 bH 1

0
BBBBBB@

1
CCCCCCA
;

where the bond overlap coefficient bΘ denotes the bond overlap registry between
two carbon rings of the two adjacent graphene sheets.

Matrix Analysis of the Inter-Registry Sliding in Graphene

Graphene sheets can easily slide off one another as in graphite pencils. Under-
standing of nanoscale details of the sliding process for individual graphene sheets
and their parts can be achieved by examining the lattice registry of individual
carbon rings and their sliding from one lattice registry to another. The inter-registry
sliding of a graphene sheet on the graphene surface between two lattice registries
can be described by the inter-registry matrices, which link one registry matrix with
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another matrix and its lattice registry through an operation of the matrix addition, e.
g., RΘ + ΔRΘ,ΟΟ = RΟΟ, where the inter-registry matrix ΔRΘ,ΟΟ is given by

DRH;OO �

1 b 0 0 0 �bH
b 1 b� bH 0 0 0
0 b� bH 1 b� bH 0 0
0 0 b� bH 1 b 0
0 0 0 b 1 b� bH
�bH 0 0 0 b� bH 1

0
BBBBBB@

1
CCCCCCA

with the aforementioned bond registry coefficient b and the partial bond registry
coefficient bΘ [23]. The O-O lattice registry of two carbon rings in the AAA
stacking is easily perturbed into the Θ-registry through the inter-registry sliding
described by the inter-registry matrix ΔRΘ,ΟΟ and the inter-registry sliding equation:

ROO � RH;OO ¼ RH;

The Ψ-registry of two graphene sheets can be easily achieved from the O-O
lattice registry through the inter-registry sliding described by the inter-registry
matrix ΔRΟΟ,Ψ [23]:

DROO;W �

�1þ aWbW bW � b 0 0 0 bW
bW � b �1 �b 0 0 0
0 �b �1þ aWbW �b 0 0
0 0 �b �1 bW � b 0
0 0 0 bW � b �1þ aWbW �b
bW 0 0 0 �b �1

0
BBBBBB@

1
CCCCCCA
:

These inter-registry sliding processes can be very useful in the design of the
graphene based electronic devices.

Nanoscale Friction and Interfacial Sliding of Graphene
Sheets

At the nanoscale level, the fundamental origins of sliding friction involve surface-
to-surface interactions such as the interlocking and registry effects [17–26] between
the adjacent graphene sheets (Fig. 8), the sliding induced excitation of the atomic
lattice vibrations, i.e., phonons [22], interaction of phonons [27] propagating along
the sliding surfaces [28, 29], electrostatic interactions and interactions of electrons
including but not limited to the π −π bonding interactions [30–32], especially, those
involving aromatic ring structures. Some of these interfacial friction mechanisms
have been studied by a quartz-crystal microbalance [33, 34], scanning force
microscopy [35–37], AFM experiments [38–42] and theoretical modeling [43, 44]
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including molecular dynamics (MD) simulations [18–23, 30–32, 45–48]. The
coupling of two or more interfacial interaction mechanisms such as strong registry
effects, asperity interlocking and a non-standard stick-slip behavior with generation
of lattice phonons is particularly challenging [17, 19–23]

A Nanoscale Analog of the Newton’s Friction Law

The nanoscale sliding of two graphene sheets and surface cleaning from graphene
flakes depends on the local lattice registry, the applied force and other interfacial
interactions mechanisms mentioned above. The frictional sliding between two
graphene lattices can be modeled on the length-scale level larger than a few carbon
rings in a particular registry configuration (Fig. 8). Multiple lengths of carbon rings
have to be considered for the meaningful averaging of the graphene lattice sliding.
Dimensions of a graphene sheet, e.g., the length, L, should be sufficiently long, that
is, L/a > 10 [7–10], where a is the width of a carbon ring.

The relative sliding of two graphene sheets (Fig. 8) takes place from the ener-
getically less favorable position to another with the applied forces that may allow a
sliding sheet to overcome some registry-induced potential barriers. At the length-
scale larger than a carbon ring, a nanoscale friction can be analyzed as follows. The
average shear stress, <τxz>, for the sliding interactions between two graphene sheets
can be defined as <τxz> ≈ <f>pull/Αss), where <f>pull is the average force applied to
the sliding graphene sheet and Ass is the common interfacial area during steady
sliding between the two lattices separated by the van der Waals forces with the
energy of interactions illustrated in Fig. 9.

Fig. 8 Schematic of a typical
AAA stacking of the
incommensurate graphene
sheets with the carbon rings
of the adjacent atomic lattices
positioned right above the
opposite carbon rings and
their C–C bonds between
carbon atoms (after [23])
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The average strain rate, < _c>, of interfacial sliding can be estimated as

\ _c[ � o\Vsliding [
oz , where <Vsliding> is the average velocity of the graphene sheet

in the axial x-direction and z is the distance between the two graphene sheets. Then,
a nanoscale analog of the Newton’s law for the steady interfacial sliding can be
written as

\sxz [ ¼ leff
o\Vsliding [

oz
; ð3Þ

where μeff is an effective viscosity for the graphene-graphene interfacial sliding. As
a result, an interfacial friction model for the entire sheet-sliding process can be
developed for the total shear stress, <τxz>pull, which, in addition to the sliding
component <τxz>, includes an initial threshold pull-out stress, τ0:

\sxz [ pull ¼ s0 þ leff
o\Vsliding [

oz
: ð4Þ

After approximating the change in velocity across the interfacial separation,
hVdW , as the average sliding velocity, <Vsliding>, Eq. (4) can be rewritten as

\sxz [ pull ¼ s0 þ leff
\Vsliding [

hVdW
; ð5Þ

where the strain rate is o\Vsliding [
oz � \Vsliding [

hVdW
:

In order to complete the description of the interface model, the effective vis-
cosity, μeff, should be described. The interfacial sliding velocity is, on average,
linearly related to the average applied force, <f> [23], and the slope, χeff, can be
determined. The resulting force-velocity dependence

Fig. 9 The energy of interfacial interactions associated with the van der Waals forces between the
adjacent graphene lattices (with the graphene-based equilibrium distance of 3.4 Å)
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\f [ ¼ veff\Vsliding [ ð6Þ

is a nanoscale analog of the Newton’s friction law.4 The applied force, <f>, in
Eq. (6) is related to the shear stress in Eq. (5) by the force balance:
\f [ ¼ \sxz [Ass. Therefore, the viscosity coefficient, χeff, can be related [23]
to the effective viscosity μeff as follows

leff ¼
1
w
hvdW
L

veff : ð7Þ

The effective viscosity of the spatially-distributed electrons, μeff, has the 1/w
dependence, which is similar to some other property relations for graphene sheets.
The viscosity of electrons is higher for higher densities of π-electrons and the
associated greater values of the van der Waals separation, hVdW . Then, the inter-
facial friction model for the entire sheet-sliding process is

\f [ pull ¼ f0 þ veff\Vsliding [ ; ð8Þ

where f0 is the critical force.

An Estimate of the Intrinsic Viscosity of the Spatially-
Distributed Electrons Along the Graphene-Graphene
Interface

Evaluations of the effective interfacial “viscosity” of the graphene-graphene inter-
face and other surface-surface interfaces are important for the understanding of
stiction and the dominant influence of the surface area at the nanoscale. The
intrinsic sliding viscosity of the spatially-distributed electrons can be evaluated by
using the molecular dynamics (MD) simulations data for the force-velocity
dependence at the low temperature of 10 K [49] and the above nanoscale analog of
the Newton’s friction law [19–21, 23], where the effective viscosity coefficient χeff
is estimated to be about 5 nN ps)/Å) and the intrinsic sliding viscosity of the
spatially-distributed electrons, μe, is estimated by Harik [23] to be on the order of 1
cP, (i.e., centi-Poise).

4 This fundamental research was partially supported by the Princeton-based NASA-funded
URETI Institute (http://bimat.org) for the Bio-inspired Nanostructured Multifunctional Materials
(award No. NCC-1-02037).
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Deformation of Graphene Sheets and Phonons

At the nanoscale level, oscillations of the graphene lattice are inherent in most
physical settings due to thermodynamic motion of carbon atoms [50]. Such con-
tinuous oscillations of the graphene lattice are associated with the constant thermal
vibrations of the atomic lattice, and stochastic appearance and scattering of small
low energy phonons (i.e., border value phonons [23]). The nature of these border
value (BV) phonons of frequency, ωi, and vector, ki, is associated with the sto-
chastic thermal vibrations of the atomic lattice, exchanges between different
vibrational energies including electromagnetic effects and the random emergence of
the small-scale stochastic order [23].

Conclusions

In this chapter the basic structure of graphene sheets has been examined along with
its effects on the interfacial sliding between the adjacent graphene layers. A
nanoscale analog of the Newton’s friction law has been presented to describe the
nanoscale sliding between the adjacent graphene sheets. The registry effects
between adjacent graphene lattices has been analyzed by the so called registry
matrices, which are used to describe the interfacial registry in graphene stacking
and develop a new registry matrix analysis for the sliding of graphene sheets.5 The
new registry matrix analysis is very useful for the design of nanoscale electronic
devices. Understanding of nanoscale sliding helps nanoscale cleaning and safety.
Focus on individual nanocomponents also improves safety.

It has been also shown that interfacial sliding of graphene sheets depends on the
interfacial registry potentials and the so called effect of the spatial exclusion of
electrons (ESEE) at the interface of two graphene sheets, which can be viewed as
the nanoscale analog of Pauli’s exclusion principle. Understanding of the nanoscale
sliding phenomena between graphene sheets and other surfaces is critical for
improving manufacturing technology for the graphene based nanoelectronic devi-
ces and their dynamics.6

5 In the late 15th century Leonardo da Vinci had identified the three important parts of friction as
follows. “Friction is divided into three parts: these are simple, compound and disordered.” Simple
friction is due to the motion and dragging; the compound friction is “between two immovable
things” and the irregular friction is associated with the “corners of different sides.” For more details
see the notebooks of Leonardo da Vinci [51], p. 527, and the following footnote.
6 The momentum of moving “things” has been also analyzed by Leonardo da Vinci [51], p. 543:
“No impulse can end immediately but proceeds to consume itself through stages of movement.”
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Molecular Mechanics of Polymer
Nanocomposites

Enhancement of Macroscopic Properties

R. Catalin Picu

Abstract Polymer nanocomposites have been a central theme in nanotechnology
over the last decade. This activity was determined primarily by expectations gen-
erated by early experiments showing significant property enhancement associated
with the addition of a small fraction of nano-fillers in thermoplastics. A large
number of experimental, numerical and theoretical investigations of the physical
basis of these enhancements followed. Today it is generally accepted that, while the
fillers do not modify chemically the matrix material, the mechanical properties of
the polymer are nevertheless altered. This chapter reviews some of the numerical
and experimental works aimed at developing this basic understanding. We focus on
modifications of the chain structure and relaxation time in the vicinity of impene-
trable fillers, the residence time of polymeric chains on filler surfaces in melts, and
the formation of a network of chains connecting fillers. This molecular-scale
physics has been incorporated in rheological models aimed at predicting the
macroscopic response of the composite. One such model is presented here. Despite
not reviewing the entire, large literature produced to date on this subject, the
discussion provides insight into the essential physics of these systems, and a
starting point for future investigations.

Introduction

Today, polymeric materials are ubiquitous. They are used in the solid and liquid
phase, as structural components, base materials for various liquids and emulsions,
additives in many products and, in general, are present in almost all engineering
applications and perform functions which cannot be performed by other types of
material.

R.C. Picu (&)
Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic
Institute, Troy, NY 12180, USA
e-mail: picuc@rpi.edu

© Springer Science+Business Media Dordrecht 2014
V. Harik (ed.), Trends in Nanoscale Mechanics, DOI 10.1007/978-94-017-9263-9_7

167



Viewed from the molecular scale, dense polymer melts and solids are multi-body
systems of polymeric chains. The chains may be monodisperse, i.e. all of the same
length, or polydisperse. In practice, it is difficult to ensure that a given system is
monodisperse, so the vast majority of such materials are polydisperse. The simplest
systems contain linear chains, but many polymers of practical importance have
more complex architecture, e.g. are branched, form combs, stars or rings. A given
chain may contain a single type of mer (repeat unit), or multiple chemical com-
pounds (co-polymers). Another interesting class of polymers is represented by
networks. These are formed by cross-linking polymeric chains, which can be
performed either by using groups already present along the chain (e.g. in telechelic
polymers) or by adding a cross-linking agent (e.g. as in epoxy). Polymeric networks
have unique properties and are encountered in both the engineering and living
worlds as gels, tissue constructs, rubber etc.

The mechanical properties of polymers are diverse and are tunable by controlling
the chain architecture, crystallinity, chain size and cross-link density (in networks).
Thermosets, which have network architecture, when tested below their glass tran-
sition temperature, have low ductility and toughness, and relatively high strength.
Other networks, such as rubber, which are above the glass transition temperature in
ambient conditions, exhibit large deformations, non-linear elasticity and stiffening
at large strains. Themoplastics as well as polymeric melts which do not form
networks, are viscoelastic/viscoplastic materials characterized by complex relaxa-
tion spectra and exhibiting significant strain rate and temperature dependence of
their mechanical behavior. This broad range of properties justifies the widespread
use of this class of materials.

To focus the discussion, the modeling work presented in this chapter considers
linear monodisperse uncrosslinked homopolymers. However, experimental results
obtained with thermoplastics as well as thermosets are reviewed.

In many engineering applications polymers are used as composites. Fillers can
be particles or fibers with characteristic dimensions of tens of micrometers or larger.
Their addition to the polymeric base leads to a dramatic enhancement of the
strength and toughness. Very common materials of this type are (chopped) fiber
glass-filled epoxies and continuous fiber reinforced polymers, which are used as
structural materials. The field of polymer composites is broad and has evolved
significantly over the last few decades.

Polymer nanocomposites form a relatively newer class of materials, in which
fillers have at least one characteristic dimension smaller than 100 nm. Probably the
oldest man-made nanocomposite is carbon black rubber [1–3]. The addition of
carbon black has increased the toughness and strength of rubber to levels which
allow its use in automobile tires. With the advent of nanotechnology at the end of
the 1990s, filling of many other polymers has been attempted, often with positive
results in terms of improving mechanical properties. A major difference between the
older carbon black-filled rubber and the newer nanocomposites is that the filling
fraction in the newer materials is kept very small (usually smaller than few percent).

Another major difference between the older and newer nanocomposites is with
respect to the molecular-scale mechanisms leading to property enhancement. Let us
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consider the fillers to be nanoparticles with approximately spherical shape. As the
particle radius decreases while keeping the volume fraction constant, the number of
particles per unit volume increases and hence, the average distance between them
decreases. If one assumes good dispersion, when fillers become small enough, most
of the polymer matrix chains are within few chain gyration radii from a filler
surface. The structure and dynamics of the chains next to an impenetrable interface
are different from those in the neat bulk polymer. Hence, the simple presence of
fillers modifies the properties of the matrix. The composite contains a matrix with
the same chemistry as the respective bulk polymer, but with modified mechanical
properties. This is an interesting new concept. Furthermore, as the filler wall-to-wall
distance decreases, the probability of formation of a network of chains that connect
multiple neighboring nanoparticles increases. One envisions that a rubbery state
may result, with nanoparticles playing the role of (high coordination) cross-links. It
should be observed that this may happen in semi-crystalline polymers even without
the addition of fillers, when the crystallites have nanometer dimensions. Several
major polymer manufacturers market polyolefin materials with nanocrystals which
play the role of the nanoparticles discussed here. These materials are not filled, but
form large scale molecular networks and exhibit excellent non-linear elastic
behavior and resistance to creep, just like regular rubbers.

Additional effects produced by fillers have been described and studied. Func-
tionalizing the filler surface by tethering short or long molecules makes mixing
more efficient (improves dispersion) and may improve the quality of the filler-
matrix interface. Short surface groups chemically bond fillers to the surrounding
matrix chains, while long chains tethered to the surface of fillers entangle with the
matrix chains. The filler surface may promote crystallization in semi-crystalline
polymers, and may modify the cross-link density in the case of filled networks. All
these modifications have significant effects on the mechanical behavior observed at
the macroscopic scale.

In this chapter we do not attempt a review of the complex effects associated with
all these modifications. Rather, the scope is limited to describing the effect of the
presence of spherical, impenetrable fillers on the structure and dynamics of linear
chains located in the vicinity of nanoparticles. The issues of interest are:

(a) considering an isolated particle embedded in the polymer, what is the range
over which its presence modifies the structure and dynamics of the polymer?

(b) what is the magnitude of this perturbation?
(c) in the case in which particles are close enough to each other for a network of

chains connecting multiple fillers to form, what is the structure of this net-
work? The incorporation of these effects in molecular rheology models
describing the macroscopic mechanical behavior of the mixture is of interest
for material processing. An example of such model is provided and the cali-
bration of its parameters based on molecular-scale models is discussed. Both
for exemplification and motivation purposes, several experimental results
obtained with various nanocomposite systems, both thermosets and thermo-
plastics, are presented at the beginning of the chapter.
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Experimental Results

Three examples of enhancement of macroscopic properties by the addition of
nanofillers to polymers are reviewed in this section. The first is a thermoplastic
(PMMA) filled with ceramic nanoparticles (silica). The second is a thermoset
(epoxy) filed with carbon nanotubes (both single, SWCNT, and multiwall,
MWCNT). The third example refers to epoxy filled with graphene platelets (GPL).
As discussed below, the ductility increases dramatically without loosing strength in
the first example. This is due to a nano-cavitation process which is enabled by
nanoparticles with weak particle-matrix interfaces. In the second example, the
thermoset deforms by crazing in the vicinity of the crack tip; a deformation mode
seen at the macroscopic scale only in thermoplastics. This happens only when the
CNT-epoxy interface is strong. In the third example, all material properties mea-
surable in a monotonic text, modulus, strength and ductility, remain largely un-
affected by the addition of GPL, but the creep resistance increases.

It can be immediately remarked that no single mechanism can explain all these
effects. Part of the molecular scale physics introduced or just modified by the
presence of nanofillers is discussed in section “Modeling Results: Understanding
the Molecular Scale Physics” of this chapter. Let us begin by reviewing the
experimental facts.

Strength and Ductility Enhancement

Improvements of the elastic response (modulus), yield, strength and ductility have
been reported for many nanocomposite systems and several reviews have been
published on this subject [e.g. 4, 5].

Improvement of the elastic modulus, to various degrees, was reported in most
systems. As an example of a thermosetting polymer, the addition of only 0.4 vol.% of
layered silicate in epoxy was shown to increase the modulus by 58 % relative to the
pristine epoxy, in the glassy state [6]. Also, in case of thermoplastics, 0.1 wt% single-
walled carbon nanotubes (SWNT)/poly(methyl methacrylate) (PMMA) nanocom-
posite has 10 % higher elastic modulus comparing to the unfilled polymer [7].

One of the attractive features of these results is that one may improve one
property without compromising the other, as is usually the case in material
development. As well-known, increasing strength usually leads to a decrease of
ductility. In some nanocomposite systems, simultaneous increase of these properties
has been reported.

Ash et al. [8] studied PMMA filled with silica nanoparticles. In this work, the
nanoparticles have their surface treated with either methyl methacrylate (MMA)
monomer in order to improve the compatibility with the polymer, or with 3-
glycidoxypropyltrimethoxysilane coupling agent (GPS). The MMA coating facili-
tates the dispersion of fillers in the matrix but the interface remains rather weak. The
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other coating produces strong interfaces with PMMA. The results of uniaxial tests
are shown in Fig. 1. The three curves correspond to the unfilled PMMA and the two
filler surface functionalization mentioned. When the interface is strong, the strength
of the composite increases but the strain at failure remains equal to that of the neat
polymer (and rather small). However, the composite with weak interfaces (the
MMA coating) exhibits a dramatic increase of ductility, with the strength remaining
close to that of the unfilled polymer. This phenomenon requires both sufficient
chain mobility and the ability to release the normal component of the stress at
nanoscale interfaces. It is conjectured that similar brittle-to-ductile transitions may
be observed in other brittle polymers filled with nanoparticles having weak inter-
faces with the matrix.

Toughness and Fatigue Resistance Enhancement

An example of toughening of epoxy by the addition of nanofillers is described in
this section. Epoxy is typically toughened by the addition of fibers with micron-
scale diameter which increase resistance to crack propagation by crack bridging.
Specifically, crack opening is possible only after either debonding along the fiber-
matrix interface or fiber fracture has happened. These processes dissipate energy,
which produces the toughening effect. The micromechanics of this process has been
studied three decades ago [e.g., 9].

It is important to observe that in fiber-composites the matrix properties are not
different from those of the unfilled polymer. What is the expected toughening
mechanism if the polymer is filled with nanoparticles or nanotubes instead? When
attempting to answer this question one should keep in mind the fact that the typical
plastic zone size at the crack tip is many times larger than any nanoscale inclusion

Fig. 1 Uniaxial mechanical behavior of PMMA filled with 2.2 wt% silica nanoparticles of 38 nm
average diameter. Results are shown for the neat polymer, and for the composite with
functionalized nanoparticles with weak (MMA functionalization) and strong (GPS functionali-
zation) interfaces. Adapted from [8]
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even in a relatively brittle thermoset, such as epoxy. Hence, it is unlikely that the
fillers alone dramatically increase the plastic dissipation in front of the crack to a
level comparable to the dissipation associated with fiber pull-out in a regular
(micro) composite. Some degree of crack bridging may take place in the case of
nanotubes, but due to the small length of these “nano-fibers”, the effect should be
rather limited. As shown next, toughening still takes place and is substantial, and
this appears to be due to the fact that the mechanical behavior of the polymeric
matrix is modified relative to the unfilled polymer case [10].

Much work has been done on understanding the mechanisms of fatigue in both
polymers [11, 12] and polymer composites [13–15]. Some recent studies [16–18]
with nanoparticle fillers such as SiO2, TiO2, and Al2O3 embedded in polymer
matrices suggested that nanoparticles cause crack defection, plastic deformation, as
well as crack pinning, which increase the fracture toughness. In [10], significant
crack growth rate reduction, up to an order of magnitude, has been observed in
epoxy filled with less than 0.5 wt% carbon nanotubes. Both single and multiwall
carbon nanotubes were used in this study and in [19, 20] and the effect is similar:
the crack growth rate is reduced at small amplitudes of the cycle, while at large
amplitudes no improvement is observed.

Figure 2 shows test data for the crack propagation rate as a function of the
applied stress intensity factor amplitude for the epoxy/MWCNT and epoxy/
SWCNT systems, respectively. Results for the baseline epoxy without nanotube
additives are also shown for comparison. For epoxy/MWCNT composites at
nanotube loading fractions of 0.5, 1,000 % reduction in the crack growth rate in the
low stress intensity factor amplitude range is observed. The reduction of the crack
growth rate became more pronounced with increasing weight fraction of the
nanotube additives. The same trends are also observed for epoxy/SWCNT com-
posites. At low weight fraction, e.g., in the 0.1–0.25 % range, SWCNT are more
effective than MWCNT; however, at higher weight fractions the MWCNT offer
improved reduction in the crack growth rate. We attribute this to the degradation of
the dispersion quality of the SWCNT at the higher weight fractions [21].

Fig. 2 Fatigue crack growth
rate of pure epoxy and
MWNCT-epoxy composite
samples with 0.1, 0.25, and
0.5 wt% fraction of MWCNT
additives plotted versus the
applied stress intensity factor.
Reproduced from [10]
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Direct observations of the crack tip region indicate that the reduction of the crack
growth rate is associated with crack bridging. A crack bridging model similar to that
in Ref. [22] was used to interpret the data and the match is adequate. Figure 3 shows
an SEM image of nanotubes being pulled-out from one of the crack faces, which
confirms the mechanism suggested by modeling.

In the sequel of the work in [10, 20], composites with functionalized nanotubes
were considered. Pristine MWNTs were functionalized with amido-amine
(NHCH2CH2NH2) groups and were dispersed in a bisphenol-A based epoxy [19].
The amine used for functionalization is also a central component of the hardener
used to cross-link the epoxy resin. Hence, the procedure provides good bonding
between nanofillers and the matrix. The results of the fatigue tests are shown in
Fig. 4. Two of the curves in Fig. 2 are reproduced in Fig. 4, for reference. The crack

Fig. 3 Scanning electron microscopy (SEM) image of the side view of a fatigue crack. Carbon
nanotubes are bridging the crack close to the crack tip, and are being pulled out as the crack opens.
Reproduced from [10]

Fig. 4 Fatigue crack propagation data showing crack growth rate (da/dN) plotted as a function of
the stress intensity factor amplitude (ΔK). The inset shows a schematic of the compact tension
samples and loading mode used. Reproduced from [19]
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growth rate decreases dramatically in the functionalized CNT case, by approxi-
mately one order of magnitude, at all stress intensity factors considered. Obviously,
the main gain relative to the unfunctionalized filler case is the crack growth rate
reduction at large loads.

An interesting observation made in these experiments is related to the mecha-
nism controlling the large toughening observed in the functionalized CNT case.
Direct observations of the region close to the crack tip indicate no nanotube pull-out
as observed in the pristine CNT case (Fig. 3). Rather, a dense population of fibrils
connecting the two crack faces is observed. The bridging of cracks by such fibrils is
an important mechanism for energy dissipation and toughening in thermoplastic
polymers. However, crazing is not observed [13, 15] in thermosetting polymers
such as epoxies due to the high crosslinking density of the epoxy chains. Figure 5
shows fibrils forming close to the crack tip. In order to insure that these are not
carbon nanotubes, the sensitivity to heating has been probed by attempting to cut
the fibrils with the electron beam of the electron microscope. These can be easily
sectioned, which should not happen if the fibrils are carbon structures. The
observation indicates that fibrils are made from pure polymer. Therefore, interest-
ingly, the presence of fillers which are well bonded to the matrix enables a
deformation mode which is not observed in thermosets. The detailed molecular
mechanisms that make this possible are not fully understood at present.

Fig. 5 Fractography analysis for the functionalized MWNT/epoxy nanocomposite. The SEM
micrograph shows crack bridging in the vicinity of the crack tip (on the left of this frame). The
diameter of bridging fibrils is in the 100–1,000 nm range. Reproduced from [19]
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Creep Resistance Enhancement

A graphene-epoxy system is considered in this section. Graphene, a single layer of
carbon atoms sp2 bonded in a hexagonal array, has attracted attention recently due
to its interesting mechanical and transport properties [23, 24]. Its use as filler
material in polymer nanocomposites, mostly in the form of graphene platelets
(GPL), was also studied [25]. The results discussed to date indicate that graphene
does not modify significantly the monotonic mechanical properties of the polymer,
the strength, stiffness and ductility of the composite being close to those of the base
epoxy. It has been reported that the fracture properties, both the fracture toughness
and the fatigue crack growth rate are more sensitive to the presence of graphene
than the monotonic properties.

In [26], GPL at small volume fractions (0.1–0.5 wt%) was added to epoxy. The
processing conditions are described in detail in Refs. [27, 28]. Consistent with
previous work using graphene, it was observed that the monotonic mechanical
properties are not modified relative to the unfilled epoxy. In fact, although the
strength remains the same, strain localization (necking) in the filled material is more
difficult and hence post-critical deformation is smaller, which leads to a smaller
apparent ductility.

Quite different results are obtained when these materials are tested for creep.
Figure 6 shows the creep strain (total strain minus the elastic strain corresponding to
the creep load) versus time for the unfilled epoxy and for three GPL-epoxy systems,
with 0.1, 0.3 and 0.5 wt% GPL. Two families of curves are shown, corresponding
to 20 and 40 MPa creep stress.

The creep behavior is essentially identical for filled and pristine epoxy at the
small load (20 MPa). However, at the larger stress (40 MPa) the four materials
respond differently. The smallest creep strain is measured in the nanocomposite
with 0.1 wt% GPL, which deforms significantly less than pristine epoxy in the same
time. The strain rate at the end of the hold period (after 37.5 h) is much smaller in
the 0.1 wt% GPL composite than in pristine epoxy. The other composites (0.3 and
0.5 wt% GPL) creep more than the unfilled polymer.

Interestingly, similar behavior is observed when creep is probed at the nanoscale,
by nanoindentation. Indentation was performed with a flat punch of 50 μm diameter
and a constant load of 2 mN was applied. The advantage of using a flat, cylindrical
indenter is that the variation in time of the displacement measured in this experi-
ment is proportional to the creep compliance, J(t), which would be measured
macroscopically if one would have a large sample with the same microstructure as
that of the volume of material located under the indenter.

Figure 7 shows the indentation displacement versus creep time for pristine epoxy
and the 0.1 wt% GPL nanocomposite. Each curve represents the mean of 10
indentation measurements and the error bars indicate variability from indentation
site to indentation site.

The nanocomposite creeps less compared to the pristine epoxy, as also seen in
macroscopic tests. It is also interesting to observe that, although epoxy is generally
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considered to be homogeneous down to the smallest scales (*10 nm), the inden-
tation data indicate some spatial variability of mechanical properties.

These findings demonstrate that nanofillers lead to modifications of the
mechanical behavior of the surrounding polymer which are unique and cannot be
obtained by other means. The diversity of effects observed in experiments is
impressive and clearly, no single molecular mechanism can explain all of them.
This indicates that we are still far from having discovered all possible ways in
which we can improve the mechanical properties of nanocomposites and therefore,
structural optimization for desired macroscopic behavior is not achievable at this
time. It is encouraging though that these systems maintain a great promise.

Fig. 6 Creep strain versus
time for neat epoxy and GPL/
epoxy with different filler
contents and at stresses of 20
and 40 MPa, at room
temperature. Reproduced
from [26]

Fig. 7 Creep displacement
versus time in indentation
experiments using a 50 μm
flat punch. Reproduced from
[26]

176 R.C. Picu



Modeling Results: Understanding the Molecular Scale
Physics

Molecular modeling is a convenient way to investigate aspects of the nanoscale
physics that controls the mechanical behavior of nanocomposites on large scales.
Results relevant for polymers filled with nanoparticles are discussed in this section.

Several generic considerations can be made before discussing the details. The
structure and dynamics of confined chains is controlled by energetic and entropic
interactions. The entropic forces arise from the constraint imposed by the presence
of impenetrable fillers to chain motion and the number of conformations these can
take. This leads to a thermodynamic force driving the chains away from the filler
surface. When several fillers are close to each other, this entropic effect drives the
polymer located in-between fillers away from the confined space, which leads to
particle agglomeration. The energetic interactions have an opposite effect, creating a
bonded polymer layer on the surface of fillers. The chains belonging to this layer
have long residence time at the interface. This issue is discussed in detail later. If the
interaction with the filler surface is strong, the chains in contact with the filler have
essentially infinite residence time, i.e. they are tethered. In this case, the filler is
surrounded by a polydisperse brush which is penetrated by the surrounding chains.
This brush has reduced dynamics and its interaction with the free chains in its
vicinity leads to slower dynamics in a broader range, larger than the thickness of the
brush. This effect is also discussed in below. Finally, when the filler number density
is large (note that this does not imply a large filler volume fraction!) and the
distance between fillers becomes comparable with the chain radius of gyration, Rg,
one expects that there exist chains that connect multiple neighboring fillers forming
a “network.” This network is expected to play a significant role in the mechanics of
the composite. However, the percolation of this network throughout the composite
material volume requires a close-to-perfect distribution of fillers, which is difficult
to be achieved. The structure of such network is discussed later.

Some Modeling Details

Various coarse grained models have been used in this work to represent the filled
polymeric system. The finest scale model employed is of bead-spring type. The
polymers are represented as chains of spherical beads which interact through
Lennard-Jones potentials of well depth wp. The beads belonging to given chain are
held together by “bonded interactions” represented by linear springs. These springs
are stiff enough to insure that the chains do not cross. The unit of length is the
length parameter, σ, of the Lennard-Jones potential. This model has been used
extensively in polymer physics [e.g. 29, 30]. It provides a coarse grained repre-
sentation of the system since each bead stands for either a repeat unit, including the
side groups, or for an entire Kuhn segment.
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The nanoparticles are represented as spheres which are impenetrable for the
polymers. The interaction between nanoparticles and polymeric beads is modeled
with a Lennard-Jones potential with adjustable well depth, wnp. If wnp

�� ��[ wp

�� ��, the
polymer-filler interaction is attractive. The other two cases, wnp

�� �� ¼ wp

�� �� and
wnp

�� ��\ wp

�� ��, are denoted as neutral and repulsive, respectively. It is useful to
introduce an affinity parameter, w ¼ wnp=wp, which captures the chemical bonding
between fillers and matrix. In separate simulations, a subpopulation of chains was
tethered to the filler and this tether interaction was represented by a stiff linear
spring (a covalent bond).

The filler is considered smooth in these simulations. The atomic scale roughness
of the filler appears to be important in the dynamics of bonding-debonding [31, 32],
but it is rather inconsequential for the polymer structure.

The interaction between fillers, other than the excluded volume, is not consid-
ered in this work. This approximation is justified by the small volume fraction of
fillers and by the fact that the filler surface is always covered with polymeric beads.
Filler agglomeration driven by entropic and energetic effects was studied by
molecular dynamics in other works [33, 34].

The system of chains is evolved either with molecular dynamics or with a lattice
Monte Carlo procedure. Simulations with one or multiple fillers per unit cell were
performed. The filler diameter and the unit cell size determine the filler volume
fraction and the average wall-to-wall distance between fillers. Periodic boundary
conditions are used for the unit cell.

Another model used for this system is a coarse-grained rotational isomeric state
(RIS) model, where the chains were represented on a high coordination lattice [35,
36] and evolved using a Metropolis Monte Carlo algorithm. The coarse-graining
was achieved by combining every two carbon and associated hydrogen atoms on
the polyethylene (PE) chain into a bead that was located on a second nearest
neighbor diamond (SNND) lattice. The SNND lattice was created by removing
every other site from a diamond lattice resulting in a lattice structure that, when a
random walk was taken, the path closely approximated the actual angles between
carbon atoms belonging to the backbone of a vinyl polymer chain. The RIS model
was incorporated into the simulation to calculate the short-range intramolecular
conformational potential energy of polyethylene (PE) chains. The long-range
intramolecular and intermolecular interaction potential energies were calculated
using a lattice based approximation of the Lennard-Jones potential between
monomers, and between monomers and filler particle beads. This simulation
method has been incrementally improved over the years [36–38] and widely used to
investigate the properties of PE and other vinyl polymers including their bulk
dynamics [38, 39] mixing of polypropylene and PE [40].
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Structure of Chains in the Vicinity of Filler Surfaces

The structure of linear monodisperse polymeric chains in the vicinity of flat surfaces
was studied by analytical means and computer simulations [41–50] and experi-
mentally [51, 52]. A review is provided in [53]. It has been found that chains do not
distort even when they are confined in films as thin as Rg. Rather, they orient with
their long axis (chains have, in average, an elongated ellipsoidal shape) parallel to
the surfaces such to minimize any conformational distortion. In contrast to these
established ideas, recent studies on the conformation of polymer chains in the
presence of curved nanoparticles are controversial. Mark and collaborators [54, 55]
performed simulations of phantom (or Gaussian) chains in the presence of a pre-
scribed volume fraction of impenetrable spheres. The chains are found to either
stretch or compress, depending on the ratio of the chain dimension and the mean
wall-to-wall distance. Experimental results published by Nakatani et al. [56] appear
to support these conclusions. However, recent Monte Carlo [32, 57–59] and
molecular dynamics [31] simulations of melts of self-avoiding chains in the pres-
ence of impenetrable fillers show that chain dimensions are always smaller com-
pared to the bulk dimensions at high and moderate filler volume fractions. At low
filler volume fractions the chains are not distorted, consistent with results obtained
for polymer melts near flat surfaces. Vacatello argues [57] that the assumption of
non-interacting chains made in [54, 55] is not valid for filled systems, and that melts
of self-avoiding chains at proper densities have to be modeled if a clear under-
standing of chain conformations is desired.

Using a model of interacting chains and fillers occupying a regular cubic lattice it
may be concluded [58, 59] the following. If the filler diameter, D, is much smaller
than the chain radius of gyration, Rg, the chain structure is not affected by the
presence of fillers. The statistics of segment lengths is identical to that in the bulk,
unfilled polymer. This conclusion is independent of the value of the filler-polymer
affinity, wnp. If the filler diameter is larger than approximately 5Rg, the interaction
with the chains is similar to that between the polymer and a flat surface. As
mentioned above, the chains do not distort significantly, rather tend to rotate in
order to align their large semi-axis (which is also approximately parallel to the end-
to-end vector) with the direction tangent to the filler surface.

A transition between these two extreme cases takes place in the approximate
interval Rg=2�D� 5Rg. Interestingly, this is also the range for which most
experimental studies report improvements of mechanical properties.

Let us consider systems in which the filler size is comparable with the polymer
chains size, and the affinity parameter w ¼ wnp=wp is varied. Figure 8 shows the
variation of the three eigenvalues of the chain gyration tensor with the distance
between the chain center of mass and the wall, for the case in which fillers are far
apart. The filler size is R = D/2 = 2σ and 8σ in separate simulations. In the bulk, the
three semi-axes (for these chains of N = 101 beads) are <λ1> = 3.89, <λ2> = 1.84,
<λ3> = 1.14 (in units of σ), which defines a flattened ellipsoid. For these chains
Rg = 4.4σ.
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The chain size and shape is unperturbed by the presence of the filler even when
the center of mass is within <λ3> from the wall. A small number of chains wrap
around the filler and distort. These chains have their center of mass within the filler
(r − R < 0). The distortion is most pronounced along the large semi-axis of the
ellipsoidal coil. An entropic model, in which no energetic interactions are taken into
account, but the excluded volume and chain uncrossability condition are enforced at
all times, and an energetic model in which long-range attractive and repulsive
interactions are included are compared in the figure. The entropic and energetic
cases are essentially identical, within the accuracy of the present simulations. As
long as the filler radius is larger than the radius of gyration, the chain shape and size
are independent of the filler size, i.e. the limit of the flat wall is reached in these
systems.

The structure on the chain scale is also weakly influenced by the attractive
potential. The chains remain undistorted even for w ¼ wnp=wp as large as 12 [59].
This value corresponds roughly to hydrogen bonding between filler and polymers.
Chains having their center of mass as close as <λ3> from the wall have essentially
the same dimensions with those in the bulk.

Further insight into the chain structure may be obtained by computing Pc
2

� �
. This

measure shows preferential orientation of the eigenvector associated with the largest
eigenvalue of the chain gyration tensor, i.e. the large semi-axis of the ellipsoidal
coil. A negative value shows preferential orientation in the direction tangential to
the filler, with Pc

2

� �
= −0.5 denoting total orientation. Pc

2

� �
= 0 indicates random

orientation of coils. Figure 9 shows this measure as a function of the distance

Fig. 8 Variation of the three eigenvalues of the gyration tensor of chains with the distance
between the chain center of mass and the wall, for the case in which fillers are far apart. L stands
for the size of the cubic unit cell used in the simulation (values are indicated in units of length, σ),
which contains one spherical filler. The chain is composed from N = 101 beads and the density is
0.8, i.e. it corresponds to a melt. Reproduced from [59]
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between the chain center of mass and the filler surface. The entropic result for this
system is reproduced from [58] for reference. The data suggest that, once the center
of mass is within about 2<λ1> (a chain size) to the wall, the coils rotate in the
tangential direction. The chains undergo a “docking” transition as also observed in
the flat wall case [60, 61]. Chain distortion, which would require a large decrease of
the entropy, is avoided. Chain distortion was reported in the literature when a
driving force for chain collapse in the interface exists [62].

Secondary Network Formation

Let us discuss now the structure of chains that participate in the polymer mediated
transient network that forms between filler particles. The situation envisioned is
shown schematically in Fig. 10 [63]. Here, a representative chain forms bridges
between fillers, loops (segments that start and end on the surface of the same filler)
and dangling ends. It should be noted that this structure evolves due to thermal
fluctuations. The destruction and creation of segments is a stochastic, reversible
process. The internal structure has a transient topology and its dynamics is con-
trolled by the rate of the attachment and detachment process as discussed later. The
results presented below are statistically representative for the steady state of this
stationary dynamic process.

We consider systems with three different filler volume fractions (≤27 %) as
representative of experimentally studied nanocomposites. The wall-to-wall distance
is selected to be on the order of the chain size (0.5Rg, Rg and 2 Rg), while the radius
of the spherical fillers is taken to be *Rg.

Fig. 9 Variation of the orientation factor Pc
2

� �
with the distance between the chain center of mass

and the wall, for the case in which fillers are far apart (N = 100, L = 50σ). Coils are oriented with
their large semi-axis in the direction tangential to the filler when their centers of mass are within
2 < λ1 > from the wall
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Bridges

The importance of bridges derives from the fact that they are central to the formation
of a transient particle network. Additionally, if the lifetime of this network is long
enough, the stiffness of the composite should increase dramatically. Figure 11 shows
the distribution of the number of monomers in a bridge. There are three sets of curves,
corresponding to wall to wall distance d = 0.5 Rg, Rg, and 2Rg, respectively. For each
given d value (sayRg), the ratios d/Rg and d/particle size are chosen to be independent
of the chain length, N. The effect of the affinity parameter, w, that describes the
strength of the polymer-filler attraction (w = 10kT, 2kT, 0.2kT) is weak in this
context;w perturbs the local polymer configuration, in the vicinity of the wall, but not
the longer range structure. Thus, both the mean number of monomers in a bridge and
the end-to-end distance are hardly affected by w. Similar results are also found for
tails, loops and trains. However, it is emphasized that the filler-polymer bond strength
is known to be a primary variable in determining the reinforcement levels [64] and the
recovery kinetics of modulus following large strain deformation [65].

The total number of bridging segments per filler depends strongly on the wall-to-
wall distance, d. For N = 100, we find for d = Rg that 8 % of lattice sites on a
particle surface are associated with polymer bridges. When the wall-to-wall dis-
tance d increases to 2Rg, the total number of bridging segments per filler decreases
to 17 (2 % of the available sites on the filler surface).

Dangling end
Bridging segment

Loop

Polymer-filler junction

(A-point)

F

G

H

I

J

K

Fig. 10 Schematic representation of the molecular scale structure. The macromolecules form
bridging segments, loops and dangling ends
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The figure includes data for simple random walks which do not take into account
the presence of fillers. As shown in Fig. 11, there is a higher probability for these
random walks to have a larger number of links, n, than the bridges.

Dangling Segments (Tails)

A large number of dangling segments are attached to each filler. As in the case of
bridges, an attachment point is defined when a bead resides in a layer of unit
thickness at the surface of the filler. About 10 % of the filler surface sites are
occupied by dangling segments. The probability distribution function of the number
of bonds in a dangling segment is shown in Fig. 12 for d = 0.5Rg, Rg and 2Rg. With
decreasing d there are more short segments, due to the fact that when the wall-to-wall
distance is a small fraction of the chain size, dangling segments become bridges.

Loops

A dense population of loops exists on the surface of each filler. Loop ends occupy
about 37 % of the available surface sites. The total number of loops per filler and
therefore their surface coverage are independent of d. The distribution of the
number of bonds in a loop is shown in Fig. 13. The most important observation here
is that most of the loops are very short, and that, to first order, the loop distribution
(plotted against n rather than n/N) is independent of d and chain length.

Fig. 11 Probability distribution function of the normalized number of bonds in a bridging
segment, n, for systems with wall-to-wall distance d = 0.5Rg, Rg and 2Rg, w = 2 and chain length
N = 100. The distribution of the normalized number of bonds in a bridge segment is independent of
the chain length N. Data from self-avoiding random walk chains are shown in this plot
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Trains

A large number of train segments exist. These are chain segments longer than one
bond length that are snaking on the surface of the filler without a single monomer
leaving the surface. The trains are essentially inactive in stress production. Their
importance is associated with the chain detachment process. During deformation,
when a chain segment is pulled from the wall, the presence of a long train makes it

Fig. 12 Probability density
distribution function of the
normalized number of bonds
in a dangling segment for
systems with wall-to-wall
distance d = 0.5Rg, Rg and
2Rg, respectively, with chain
length N = 100

Fig. 13 Probability density
distribution function of the
number of bonds in a loop
segment for systems with
d = 0.5Rg, Rg and 2Rg,
N = 100
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harder to detach this segment. The lifetime of these trains increases due to this
synergy. The trains may be as long as 10 bonds, although the probability of such
entities is small. Most trains are 2–4 bonds in length. The average train length is not
a function of chain length, or of the wall-to-wall distance, d.

Dynamics of Chains in the Vicinity of Filler Surfaces

The presence of fillers is expected to influence more the dynamics of chains than
their structure. The chain dynamics controls macroscopic relaxation rates, such as
creep, mechanical and dielectric relaxation, and other macroscopic rate effects. Here
we present results outlined in [35] regarding the modification of the average
relaxation time due to the presence of nanofillers, and in [66] regarding the
dependence of the residence time of chains contacting fillers on the polymer-filler
affinity parameter, w (Fig. 14).

Rouse Modes [35]

The dynamics of chains is investigated by examining the Rouse modes and the
mean-square displacement of the chain center of mass, g3(t), as a function of time.
The coarse grained RIS model of PE chains described earlier was used for this
purpose and hence the physical time is replaced by the number of Monte Carlo
steps (MCS). The characteristic relaxation times of the system are determined in the
usual way by computing the autocorrelation function of the normal modes.
Figure 14 shows the autocorrelation function of the first Rouse mode (p = 1) for
various systems. Figure 14a shows the effect of confinement by comparing systems
with the same Rg and different filler wall-to-wall distances, d, for which w = 1. As
long as d is larger than *1.5Rg, confinement is too weak to influence relaxation.
Slowing down is seen in the system with d = 1.2Rg. The relaxation of the neat
system (labeled S1 in Fig. 14) is shown for reference. The effect of the affinity
parameter w is shown in Fig. 14b in which both the wall-to-wall distance and Rg are
held constant. As expected, increasing the polymer-filler affinity leads to an addi-
tional slowdown.

Diffusion [35]

The chain dynamics is further analyzed by evaluating the mean-square displace-
ment (MSD) of the chain center of mass, g3(t), where time, t, is interpreted again as
the number of Monte Carlo steps. The results are shown in Fig. 15. The horizontal
axis is normalized by the Rouse time in the neat system. This choice of normali-
zation constant is possible since the Rouse time of the various filled systems
considered is only slightly different from the value in the neat polymer.
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Figure 15a demonstrates the effect of confinement (w = 1 in all cases). The
conclusion is similar to that obtained from the Rouse analysis: confinement slows
down dynamics. The various g3 curves are parallel, which indicates that confine-
ment preserves the nature of diffusion, but changes the diffusivity.

Figure 15b shows the effect of the filler-polymer affinity parameter, w. The curve
corresponding to neutral interactions (w = 1) has slope 1 at times larger than the
Rouse time, i.e. normal diffusion dynamics prevails. The system with repulsive
interaction (w = 0.1) is super-diffusive, while the one with attractive interaction
(w = 2) is sub-diffusive (slope smaller than 1).

Fig. 14 Autocorrelation
function for the first (p = 1)
Rouse mode normal
coordinate, a dependence on
confinement, d, b dependence
on polymer-filler affinity,
w. Reproduced from [35]
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Residence Time [66]

The number of adsorbed beads per chain Na at any time controls the probability of
desorption of that chain. The value of Na is determined by counting the number of
polymer beads per chain located within an adsorption zone around the filler particle
at given time. These beads are said to be in contact with the filler. The adsorption
zone is defined by the range of the polymer-filler potential and contains roughly
three layers of closely packed polymer beads at the filler surface. A chain may come
in contact with the filler, build up contacts, and then diffuse away from the filler.
This lower frequency process is of interest here. An adsorption-desorption event is
defined as a span of the simulation in which Na is continuously greater than zero.
The duration of the adsorption-desorption event is equal to the residence time of
that chain, τad. From these data, it is possible to estimate the average,
Na ¼ 1

nad

Pnad
j¼1

1
sad

Psad
i¼1 NaðtiÞ, where nad is the number of adsorption-desorption

events whose duration is equal to τad, and NaðtiÞ stands for the number of adsorbed
beads per chain at time ti. This quantity is a function of the residence time τad and
indicates the mean number of beads per chain remaining in contact with the filler a
time τad (Fig. 16).

The function NaðsadÞ is shown in Fig. 16. The adsorption time is normalized here
by the Rouse relaxation time in the neat polymer, sneatR . The function may be rep-
resented over a broad range of τad by a power function of exponent 0.25. Also, it is
observed that the curves shift downward as the polymer-particle interaction
parameter, w, increases. At long residence times, a transition to a plateau is observed.

More interestingly, the relationship between the system average attachment
lifetime and the polymer-filler affinity parameter, w, can be determined. This
relation is shown in Fig. 17 in a semi-log plot. An Arrhenius dependence of the

Fig. 15 Mean-squared displacement of the chain center of mass vs. time (MCS), a dependence on
confinement, d, b dependence on polymer-filler affinity, w. Reproduced from [35]
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form sadðwÞ ¼ c1ec2w can be fitted to the data. The information about the geometry
and the chain size is contained in the pre-exponential constant c1. The constant c2 is
inversely proportional to the temperature, as observed from simulations performed
at various temperatures.

Long Range Effects on Chain Dynamics

As discussed above, the presence of fillers embedded in a polymeric matrix leads to
the modification of the dynamics of the chains in their vicinity. An important
question which arises refers to the range of this effect: consider an isolated spherical
filler—how far into the bulk polymer is the dynamics of chains perturbed?

/ neat
ad Rt t

(
)

a 
  a

d
N

t 

Fig. 16 Variation of the
mean number of beads per
chain in contact with filler
function of their residence
time

Fig. 17 Characteristic
residence time as a function of
the polymer-particle energetic
interaction parameter, w.
Reproduced from [66]
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Attempting to find an answer to this question, two systems were considered in [67]:
a regular filled material in which the filler-polymer affinity is controlled, and a
system in which the beads in contact with the filler at the beginning of the pro-
duction phase of the simulation are tethered to the filler surface. This second system
represents the limit case of long polymer-filler attachment time. In this case
attention is focused on the free chains of the melt.

In the filled system uniform slowing down for all Rouse modes is observed. The
effect varies monotonically with the filer-polymer affinity. Let us consider the
Rouse behavior of polymer chains in this filled system. The chains have a finite
residence time on the surface of the filler, residence time that depends on the
polymer-filler affinity parameter, w. The Rouse modes are computed from all chains
in the system. The results are shown in Fig. 18, where the open squares represent
the neat melt, while the filled circles represent the Rouse times of the filled system
with w = 1. It is observed that modes corresponding to p� 4 are stretched in both
neat and filled systems, with a stretch exponent 0.81 (the value of the stretch
exponent is independent of w). Stretching is expected in the case of chains sig-
nificantly longer than the entanglement length. Comparing the Rouse times of the
filled and neat systems, it is observed that all modes of the filled system are slowed
down by approximately the same amount for all p (the filled system has spp2

�
N2

approximately 11 % larger than the neat system). Similar conclusions have been
obtained previously, for example, in the work of Smith et al. [68] who studied short
chains in contact with fillers, Pryamitsyn and Ganesan [69] who performed
extensive MD simulations of filled systems and Dionne et al. [35] who used lattice
Monte Carlo to study the same model material.

In the system with grafted chains one follows the dynamics of the free chains
which interact with the grafted chains, but do not interact with fillers directly. The
free chain Rouse dynamics is identical to that in the neat material at high fre-
quencies (high order modes), while the lower index modes are slower than in the
neat polymer (Fig. 18). The slowing down of the free chains is due to the interaction

Fig. 18 Normalized rouse
times corresponding to the
first 10 modes of the neat
polymer, filled and grafted
systems with w = 1
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with the slower chains of the brush. This effect can be captured only in part by
classical models with a modified tube diameter.

The data in [67] also show that the dynamics of the free chains is controlled by
w even though these chains do not interact directly with the filler. The short range
polymer-filler interaction influences the structure of the brush which, in turn, affects
the dynamics of the free chains in contact with it. Specifically, for small w, the
brush is less compact and more free chains may intercalate. These free chains are
significantly slowed down. As w increases, the brush gets compacted, “squeezing
out” the free chains. The dynamics of the free chains in this case is comparable to
that of the neat polymer. Hence, one concludes that the range of the effect of fillers
on the dynamics of the surrounding matrix varies non-monotonically with w. An
optimal w exists, for which the range is largest. A side conclusion is that making a
polymeric brush poly-disperse postpones the de-wetting transition usually observed
at large grafting densities.

The dynamics of chains residing at distances from filler surfaces larger than
about 2Rg is indirectly modified by the presence of fillers. Their relaxation is slower
than in the neat melt, but significantly faster than the relaxation of chains that come
in direct contact with the filler or the region of density fluctuations next to its
surface. The distance from the filler surface over which this effect persists could not
be determined by direct simulations of such long-chain systems due to computing
power limitations. However, based on our current understanding of this model, we
estimate the range to be on the order of four or five Rg.

A Molecular Rheological Model of Nanocomposite Melts

Constitutive models are required in order to represent the deformation of the
composite in continuum-scale simulations. Ideally, these models reflect the physics
taking place on the molecular scale. Unfortunately, despite the vast literature
dedicated to developing molecular rheology models, only relatively simple systems
can be considered today. In this section we present an example referring to melts of
linear chains interacting with spherical nanoparticles. This discussion is included in
this chapter in order to demonstrate how one can link molecular simulations and
rheological modeling, isolating essential physical processes observed in discrete-
level simulations.

A set of constitutive equations that take into account the formation of a network
of chains connecting fillers has been developed in Ref. [70]. To test the validity of
this reinforcement mechanism, we investigate whether this network may lead to
features akin to those observed in experiments. The situation envisioned is shown
schematically in Fig. 10. A representative chain forms bridges between fillers, loops
and dangling ends. The objective is to homogenize this system, i.e. to find con-
stitutive equations describing the response of the ensemble. In absence of topo-
logical entanglements, the molecular structure is modeled using a combination of
classical network theory and the elastic dumbbell model for poly-dispersed polymer
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segments and localized junctions. A junction represents an adsorbed polymer-filler
attachment (A-point). A-points are reversible junctions and their time evolution is
due primarily to the applied deformation, but fluctuations are possible in equilib-
rium. Hence, the destruction and creation of segments is a stochastic reversible
process. The internal structure has a transient topology and its dynamics is con-
trolled by the rate of the attachment and detachment process and depends on the
applied deformation.

Let us consider an arbitrary representative volume element. The end-to-end
vector for a typical bridging or dangling segment is denoted by R. w j

i R; tð Þ is the
distribution function of chain segments of type j. Here j ¼ B or j ¼ D, where
B stands for bridging segments and D refers to the dangling ends and loops. A loop
of 2n monomers is visualized as two separate dangling segments each of length
n. i represents the number of “beads” (Kuhn segments) in the respective chain
segment. Hence, w j

i R; tð Þ dR represents the number density of strands of type
j composed of i beads, having end-to-end vectors in the range dR about R. The total
number density of this type of segments at time t is given by
N j
i ðtÞ ¼

R
W j

i ðR; tÞ dR, where the integration is performed over the end-to-end
vector configuration space.

Using the principle of local action, the time evolution of the distribution function
for bridging segments is represented by the convection equation [71]

oWB
i

o t
¼ � o

oR
� ðWB

i
_RÞ þ GiðR; tÞ � DiðR; tÞ; ð1Þ

where GiðR; tÞ and DiðR; tÞ represent the rate of generation and destruction of
bridging segments per unit volume, respectively.

In general, there is no explicit form for the rate of generation and destruction
functions in Eq. (1). These are described here by phenomenological relations based
on the linear response theory. For example, the bridge destruction function is often
taken to be proportional to the current distribution, i.e. [72]

Di R; tð Þ ¼ di Rð ÞwB
i R; tð Þ ð2Þ

where diðRÞ is the detachment probability for A-points, and therefore the probability
of failure of bridging segments per unit time.

The physical picture of the bridge formation rate is less obvious. The effect of
flow is accounted for by including a term proportional to wB

i in the equation for the
rate of bridge formation:

GiðR; tÞ ¼ giðRÞ kBi W
B
i; eqðRÞ �WB

i ðR; tÞ
� �

; ð3Þ

where giðRÞ is the rate of A-point formation, and WB
i;eqðRÞ ¼ WB

i ðR; 0Þ. kBi is a
dimensionless constant to be determined, which is included in order to keep the
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formulation consistent at time t ¼ 0 (in equilibrium). The functional form of diðRÞ
and giðRÞ is Arrhenius. Detachment depends on an activation energy which is
proportional to the energy of interaction between polymers and fillers and on the
force pulling the respective strand from the surface (in non-equilibrium). Attach-
ment occurs at all times when an empty spot exists on the surface, since sticky
fillers surfaces are always saturated.

Equations 1–3 define the evolution of the distribution function WB
i ðR; tÞ of

bridging segments. A similar equation can be written for dangling ends. Its deri-
vation is not presented here, but is given in full in [70].

Neglecting the contribution of entanglements, the total stress may be expressed
as a superposition of contributions from bridging and dangling segments as:

T ¼
X
i

ðTB
i þ TD

i Þ; ð4Þ

where TB
i and TD

i represent the stress contribution of bridging and dangling strands
of length i Kuhn units, respectively. These quantities are evaluated using the virial
equation as TB

i ¼ FB
i R

� �
B and TD

i ¼ FD
i R

� �
D. The brackets denote averaging over

the respective configuration space. Substituting the expression of the entropic force
using the Warner approximation to the inverse Langevin function, the stress tensor
reads:

T ¼
X
i

3kBT
il2

Bi

1� 1
ðilÞ2

Tr Bi
NB
i

þ 3kBT
il2

Di

1� 1
ðilÞ2

TrDi
ND
i

; ð5Þ

where

BiðtÞ ¼
Z

WB
i RR dR; DiðtÞ ¼

Z
WD

i RR dR ð6Þ

and the end-to-end length of a Kuhn segment is denoted by l.
Equations (1)–(6) form a full set defining the constitutive model. The model

requires the integration of the evolution Eq. (1) for the distribution functions of
bridging and dangling segments of all lengths (all i), WB

i ðtÞ and WD
i ðtÞ. These are

functions of time and depend on the motion of fillers. The fillers are assumed to
move affinely with the macro-deformation, _R ¼ L � R (although in MD simulations
one observes thermal diffusion of fillers [67]), where LðtÞ is the macroscopic
velocity gradient tensor (the tensor satisfies the incompressibility condition,
trL ¼ 0). Hence, knowing L and with appropriate initial conditions for the dis-
tribution functions, one computes WB

i ðtÞ and WD
i ðtÞ, and the total stress tensor T(t).

In order to calibrate the model, one needs to evaluate using discrete models the
number of bridging, dangling and loop segments and the details of the chain-filler
attachment/detachment process. These issues are discussed in earlier sections of this
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chapter, respectively. The main conclusions, rephrased to conform with the notation
of the model here are:

• A wide distribution of polydisperse bridging segments WB
i;eqðRÞ exists (Fig. 11).

The total number of bridging segments per filler decreases dramatically with the
wall-to-wall distance, essentially vanishing when this parameter equals 2Rg.

• Dangling ends form a wide distribution WD
i;eqðRÞ including long and short

segments (Fig. 12). The dangling segments follow approximately a Gaussian
distribution of their end-to-end vectors at given i. The distribution depends on
the wall-to-wall distance since as the fillers approach each other, part of the long
dangling segments become bridges.

• A large number of loop segments form on the surface of each filler. Their
distribution is rather narrow (Fig. 13) and the loops are short (relative to the
other segment types). Their number per filler is independent of the filler wall-to-
wall distance and is largely independent of the intensity and range of the
attraction between polymers and fillers. The dense population of loops increases
the effective filler radius, hence enhancing the hydrodynamic interaction
between fillers and matrix at large deformations rates.

• It was observed that varying the affinity between polymers and fillers has no
qualitative and little quantitative effect on the previous conclusions (regarding
the polymer structure). The affinity has a strong effect on polymer dynamics.

• The attachment time of chains to fillers scales exponentially with the affinity
parameter, w (Fig. 17).

Some results of this atomistically-informed constitutive model are shown in
Fig. 19. The figure shows the storage and loss moduli of the composite (just the
contribution from the transient network is represented) for systems with filler
volume fraction of 6 and 12 %. The model predicts a feature usually seen in
experiments performed with filled polymer melts: the appearance of a secondary
quasi-plateau in G’ at low frequencies. This is the effect of the network of chains
connecting fillers. The curve is continuously decreasing (not exactly horizontal)

Fig. 19 Storage moduls, G’,
of nanocomposites with filling
volume fraction 6 and 12 %
versus frequency. Reproduced
from [70]
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because the network is transient. G’ is higher in the system with larger filling
fraction due to the fact that the network is better defined when the filler wall-to-wall
distance is small.

This discussion exemplifies how physical insight into the molecular scale
behavior, as well as information obtained directly from fine scale models, can be
used to develop and calibrate constitutive laws and hence to predict macroscopic
properties of the material.

Closure

The macroscopic mechanical behavior of polymer-based nanocomposites is deter-
mined by a variety of physical processes taking place on multiple scales. Its
understanding requires multiscale modeling and multiscale experimentation. This
Chapter presents results from modeling and experimental works pertinent for var-
ious composite systems: matrix thermoplastic and thermoset materials, and fillers
ranging from nanoparticles to carbon nanotubes and graphene. These systems
exhibit very diverse properties and are characterized by diverse physics. This
review makes no attempt to exhaustively summarize all aspects of the problem;
rather it is aimed at outlining a number of possible approaches and several general
guiding principles which may be useful in future targeted studies.
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Carbon Nanotubes and Safety

Classification of Carbon Nanotubes, Size Effects
and Potential Toxicity of the High-Aspect Ratio
Nanotubes

Vasyl Harik

Abstract This chapter reviews geometry of different classes of carbon nanotubes
and examines similarities between carbon nanotubes and asbestos fibers. Geometric
parameters of carbon nanotubes are characterized by the aspect ratios and other
critical scaling parameters related to the inhalability of carbon nanotubes and their
engulfment by macrophages in phagocytosis. Geometric and scaling parameters are
used to present a conceptual framework and a parametric map for the extrapolation
of potential toxic effects resulting from the inhalation of carbon nanotubes. Simi-
larities between carbon nanotubes and asbestos fibers are also examined by using
the Cook’s criteria for the asbestos-like pathologies that can be also caused by
microscopic fibers. Scaling parameters for the size effects associated with carbon
nanotubes and a new parametric map for the efficiency of phagocytosis are used to
evaluate the potential toxicological effects of the inhaled carbon nanotubes from the
point of view of the Cook’s criteria for asbestos fibers and other research.
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Introduction

Microscopic particles such as commercial powders, various aerosols, airborne
particulate pollutants, exhaust particulates and allergens have been a part of
industrial and natural air pollution for a long time. However, the mechanical and
physical properties of individual microparticles have never aroused so much interest
as in the case of carbon nanotubes. Nanotechnology of carbon nanotubes has been
widely expected to result in significant advances in miniaturization, efficiency and
complexity of various products (Table 1) and materials, especially, in electronics,
multifunctional materials and healthcare industries. However, nanoscale particles
and carbon nanotubes, in particular, are also a cause for serious safety concerns. In
2013 a large German corporation, Bayers, has evaluated the mounting potential
health and safety risks as well as financial costs of the production and the use of
carbon nanotubes and decided to stop its company-wide utilization of these
nanoparticles. Even earlier NASA Langley Research Center in Hampton, Virginia,
has shifted its focus away from carbon nanotubes as a significant component of new
advanced materials systems.

Concerns about safety of new nanoscale particles have nothing to do with the so
called “nano-myths” about the dangerous “gray goo” or nano-robots. The British
Royal Academy of Engineering, the British Royal Society [1] and others have
pointed out the evidence that “at least some manufactured nanoparticles are more
toxic than the same chemical in its larger form.” This report was among the first to
point out that “size matters”. The toxicity of ultrafine powders is known to increase
with the larger surface area and, hence, higher surface reactivity [1]. These further
details suggest that the “size matters” because the surface area does, especially, at
the nanoscale level. The impact of nanoparticle toxicity on human health, safety
regulations and manufacturing environment can be enormous. For years small
pollutant particles from vehicle exhaust and industrial emissions have been linked
to a rise in heart and lung problems. Nanoparticles, in fact, are so small that they
become easily airborne and may be inhaled and absorbed with unforeseen bad
health consequences. The most plausible consequences are irritation and low-level

Table 1 Potential industrial applications of carbon nanotubes

Electronic applications Nanodevices and probes Other applicationsa

Nanoscale circuits NEMS, MEMS, nano-tools Multifunctional materials

Nanoscale electrodes Nanoscale resonators Polymer nanocomposites

Nano-transistors, nano-chips Energy conversion devices Nanostructured adhesives

Nanoscale capacitors Photovoltaic elements EM absorption/shielding

Nanoscale lithography Lithium-battery anodes Nanotube composites

Electron field emitters Nano-probes: STM, AFM Nanotube covered fibers

Cathode ray lighting elements Nano-sensors, actuators Hydrogen storage

Superconductors Nanoscale strain sensors Drug delivery, implants

Flat panel displays Novel super-capacitors Hazardous waste cleaners
a For more details on applications of carbon nanotubes see www.nanodesignconsult.com
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inflammatory processes that may be detrimental to human health, especially, with
longer exposures.

Hazardous properties of microscopic fibrous particles such as asbestos have been
known for decades [2, 3]. Inhalation of these particles (see Fig. 1) has been shown
to cause different diseases of the lung and its lining tissue. Most of these diseases
prove to be fatal, as the harmful particles reach the gas-exchanging part of the lung
and most of them cannot be readily removed by macrophages. Human immune
system has no defenses against such hazards. Natural or man-made fibers do not
have to be asbestos to be toxic. High toxicity is due to larger surface area, higher
surface reactivity and potential absorption of other chemicals. Safety concerns can
become even higher when toxicity of some nanoparticles is significantly increased
by the absorption of other harmful chemicals. The ability of carbon nanotubes to
absorb various chemicals on their surface is proportional to their geometric size or
the surface area. Therefore, potential toxic effects of carbon nanotubes can be
analyzed by using scaling analysis and the scaling parameters based on their
geometric size [4–7] or their surface area [8–10].

It is worth mentioning that carbon nanotubes and carbon particles, in general, are
highly porous, and they are specifically used now in protective masks to absorb

Fig. 1 A schematic of asbestos transport (a) in the human lungs with (1) trachea, (2) alveoli and
(3) pleura. Amosite asbestos fibers (b) are shown below a human hair, next to a bundle of rod-like
crocidolite asbestos fibers (c) along with the bundles (d) and fibrils of chrysotile asbestos fibers
(After Cook [2]). “When you represent the lung make it perforated so that it may not obstruct what
is behind it, and let the perforation be all the ramifications of the trachea and the veins of the artery
(aorta) and of the vena cava and then outside these draw a contour line round about them to show
the true shape, position and extent of this lung.” Leonardo da Vinci (1452–1519), Anatomy,
p. 173, The Notebooks of Leonardo da Vinci (edited by E. MacCurdy, Konecky and Konecky
printing, Duckworth and Co., London, 1906)
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hazardous gases. While the porosity of nanoparticles such as carbon nanotubes
could be beneficial for hydrogen storage, say, their toxicity may be exceptionally
dangerous when they are treated with various acids and other corrosive chemicals.
Porosity of carbon nanotubes is also proportional to their geometric size or, more
importantly, to their volume. Therefore, potential toxic effects of carbon nanotubes
can be analyzed as was mentioned earlier by using again the scaling parameters
based on their geometric parameters.

The size of surface area of car bon nanotubes and their volume both depend on
their geometric parameters, i.e., radius, RNT, or diameter, dNT, and the length, LNT.
In 2004 Cook from the National Health and Environmental Effects Research
Laboratory in Duluth, Minnesota, was first to propose using the “size and shape” of
microscopic fibers and their total “surface area” in his criteria for the asbestos-like
pathologies [2]:

• size and shape of particles that allow respiration and retention in lungs;
• size and shape of particles that allow translocation to pleura;
• durability of fibers, persistent contact in tissues;
• reactive surfaces, ability to induce oxidative stresses;
• high collective surface area; and
• propensity to split into thin fibers in vivo.

In his report, he also referred to the similarities between carbon nanotubes and
asbestos fibers. In 2005 the conceptual framework of dimensional analysis [3–7], its
scaling parameters and the laws of similitude have been used to more rigorously
demonstrate the geometric similarities between asbestos fibers and carbon nano-
tubes as well as between their properties associated with the ability to cause
potentially toxic effects [3]. The quantitative characteristics of the “size and shape”
of carbon nanotubes have been employed in the scaling analysis and its results have
been utilized for the development of methodology for extrapolation of the potential
toxic effects associated with the inhaled nanotube (NT) shells [3].

The early toxicological studies on mammals [11–14] can also benefit from a
methodology for the extrapolation of their assessment of nanotube toxicity in lung
tissues of rats and human cells to other similar cases as defined by the scaling
analysis and the so called laws of similitude [4–7]. In studies carried out at NIOSH
[15], Du Pont and NASA [11–14] nanotubes were instilled rather than inhaled in a
natural manner. Nevertheless, these studies clearly demonstrate that carbon
nanotubes are indeed toxic, thus, confirming earlier extrapolations [1–3]. In some
of these studies, entanglement of nanotubes has resulted in large clusters/clumps
and a blockage of airways and intra-airway fibrosis. As was mentioned earlier,
inhalation of small clumps or bundles may also lead to problems for normal lung
defenses, including the possibility of increasing surface area during separation of
single nanotubes or smaller bundles by the action of lung surfactants or cellular
mechanisms.

In 2006 Stone and Donaldson [16, 17] and, especially, Kostarelos from the
School of Pharmacy of the University of London have shown in 2008 that the “size
does matters” in his study of “the long and short carbon nanotubes toxicity” [16,
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17] and the engulfment of various nanotubes by macrophages in phagocytosis in
lungs. In this chapter we show that the process of phagocytosis in lungs and its
effectiveness can be analyzed by using scaling analysis [3–7] and a scaling
parameter based on the length of carbon nanotubes and the size of macrophages.
This method provides a quantitative framework to analyze experiments on
phagocytosis of engulfed nanoparticles such as carbon nanotubes or other particles
in the macrophages. The effectiveness of phagocytosis, the rate of engulfing process
and the probability of complete phagocytosis can be characterized within the
framework of such scaling analysis.

In 2009 Jaurand et al. [18] have examined the size effects on the toxicity of
multiwall carbon nanotubes (MWCNTs) and their similarities with asbestos fibers
and demonstrated that the size of carbon nanotubes, especially, their length, affects
the initiation of inflammation in lungs. In 2008 Poland et al. [19] have shown that
the length of carbon nanotubes is linked to the asbestos like pathologies in mice.
Later the same team Donaldson et al. [20] have confirmed these results in toxi-
cological studies for pleura and attributed them to the so called structure-activity
paradigm for the length-dependent toxicity of microscopic fibers. In 2010 Ya-
mashita et al. [21] have also demonstrated that the long MWCNTs cause the most
inflammation and DNA damage, as opposed to the short and thin MWCNTs. It
should be noted that the larger length of carbon nanotubes increases their surface
area and, hence, the area of interaction between deposited nanotubes and biological
tissues. Interactions between the surface of a foreign material particle may have
chemical, bio-chemical, dynamic and mechanical nature. It turns out that geometric
parameters of microscopic fibers and carbon nanotubes affects the degree of
harmful interactions with biological tissues. In this chapter, scaling parameters for
the normalization of surface area and nanotube length (i.e., aspect ratio) are dis-
cussed in the conceptual framework for the extrapolation of potential toxic effects
of the inhaled carbon nanotubes.

Geometry of Carbon Nanotubes and Potential Toxic Effects

The structure-activity paradigm [20] for the toxicological studies of carbon nano-
tubes can benefit from better understanding of the structural properties of carbon
nanotubes and their dependence on geometric parameters of these nanoscale fibers.
In 2001 shortly after the National Nanotechnology Initiative was introduced a
research study [4–7] performed at the NASA Langley Research Center in Hampton,
Virginia, has presented the first classification of carbon nanotubes into four classes:
thin and thick lattice shells, long high-aspect-ratio nanotubes and beam-like carbon
nanotube crystals of small radii (Fig. 2), where a modified classification of carbon
nanotubes is shown to explicitly specify a sub-class of the long high-aspect-ratio
nanotubes, i.e., the extra-long carbon nanotubes (the fifth class of the X-long NT
shells).
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Carbon nanotubes with large values of radius, RNT, have larger surface area, i.e.,
ANT = 2πRNTLNT/a

2, where it is normalized [4–10] by the size of a carbon ring,
a. Since the ring size a is about 2.46 Å, i.e., the smallest structural element of a
carbon nanotube lattice, the long carbon nanotubes (LNT=a >> 1) and the thick
carbon nanotubes (RNT=a >> 1) also tend to have larger surface area. Note that the
normalized surface area includes the product of two non-dimensional scaling
parameters: the normalized nanotube length, LNT/a, and the normalized radius, RNT/
a. It should be noted that Yamashita et al. [21] have shown that the long and thick
MWCNTs results in more inflammation, as opposed to the short and thin
MWCNTs. The large surface area of the engulfed carbon nanotubes needed to be
covered by the macrophages in phagocytosis results in the oxidative stress and
inflammation (see Table 2, where LNT can be up to 500 μm).

Donaldson et al. [20] have conducted toxicological studies for pleura and
stressed the importance of the structure-activity relations and the high aspect ratios
in the length- and the aspect-ratio-dependent toxicity of various fibers. Table 2
presents a summary of different toxicological studies [18, 19] in the form dem-
onstrating the role of aspect ratios on the initiation of inflammation during in vivo
experiments. Donaldson et al. [20] have also emphasized the ability of the high
aspect ratio particles (HARP) to cause toxic effects (e.g., the extra-long high aspect
ratio carbon nanotubes or (HARCNT), see Fig. 2). All these studies show that the
long and relatively thick carbon nanotubes (class Ib), especially, with the aspect
ratios above 100, are likely to cause inflammation and potentially toxic effects.
Propensity of the long high aspect ratio carbon nanotubes to split in vivo and

Fig. 2 The modified 2001 classification of carbon nanotubes (CNT) into different classes (after
[16–19]): the long CNT shells (Class Ia, i.e., the high aspect ratio CNT shells), the extra-long high
aspect ratio CNT shells (Class Ib), the thick CNT shells (Class IIb, while the thin CNT shells form
Class IIa), and the CNT nano-beams (Class III)
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behave similarly to microscopic asbestos fibers has been also pointed out in the
extrapolation methodology based on the scaling analysis of nanotube geometry [3].

The inhaled nanoscale particles belonging to the class of short or thin carbon
nanotubes (e.g., the class III) are easily engulfed by macrophages and cleared from
the lungs through the lymphatic system [11, 14]. Kostarelos [16, 17] and Donaldson
et al. [20] have shown that the “size does matters” both for the ability and for
inability of macrophages to engulf and process various nanotubes as illustrated in
Fig. 3. A non-dimensional scaling parameter, Mph, based on the ratio of the
nanotube length, LNT, and the average size of macrophages, Lm, i.e., Mph = Lm/LNT,
can be used to evaluate the ability of macrophages to perform an effective
phagocytosis in lungs. If Mph > 1 then the length of carbon nanotubes is such that
macrophages are able to clear these nanoparticles from the lungs or the probability
of the effective phagocytosis is being greater than 1. If carbon nanotubes have very
high aspect ratios then Mph < 1 and the probability of the effective phagocytosis is
less than unity (see Fig. 3). A distribution of carbon nanotube sizes or lengths can
provide a distribution of probabilities for the effective phagocytosis in different
parts of the lungs depending on where different nanotubes settle according to their
length, local penetrability and transport processes.

It is understandable that Donaldson et al. [20] have found that the high aspect
ratio particles (HARP) or the extra-long high aspect ratio carbon nanotubes
(HARCNT) may cause potentially toxic effects. Note that the non-dimensional
scaling parameter, Mph, for such nanoparticles is very small, i.e., Mph << 1, so the
probability of the effective phagocytosis is much less than unity. These nanopar-
ticles belong to the class Ib nanotubes (Fig. 3). For smaller nanotubes, probability
of the effective phagocytosis for the class III nanotubes, say (Fig. 2), is greater than
unity, because the scaling parameter, Mph, is such that Mph > 1. The process of
phagocytosis of these nanotubes is illustrated in Fig. 3. The thick carbon nanotubes
belonging to the class IIb may also result in the incomplete phagocytosis and cause
oxidative stresses (Fig. 3). In these cases, a scaling parameter, Mph-R = LmLm/

Table 2 Size of carbon nanotubes and their potential health effects (in vivo studies)a

Aspect ratio, dNT/LNT Dose and exposure Resulting effects

Between 1/12500–1/8 1–7 mg/kg (1–90 days) Inflammation

Between 1/35–1/14 2 mg/rat (3 and 60 days) Inflammation (3 days) granulomas
(60 days)

About 1/20 40 g/mouse (4 h) Inflammation

Between 1/1250–1/83 50 mg/mouse (24 days) Inflammation, oxidative stress,
coagulation

Between 1/606–1/121 50 mg/mouse (24 h, 7 days) Inflammation

Between 1/250–1/125 40 mg/mouse (4 h) Inflammation, oxidative stress,
coagulation

Between 1/470–1/388 50 mg/mouse (24 h, 7 days) Inflammation
a This Table is based on the summary information presented in [12, 13] without the aspect ratios
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RNTLNT, can be used. It is based on both the radial and longitudinal sizes of carbon
nanotubes and represents a non-dimensional ratio of the surface area of macro-
phages and that of carbon nanotubes. Note that the process of phagocytosis satisfies
the law of the conservation of mass, which is reflected in the illustrations of Fig. 3.
The relevance of non-dimensional scaling parameter, Mph-R, to the process of
engulfment of carbon nanotubes is also connected to the law of the conservation of
mass as it characterizes a relation between the merging surface areas.

The long and very thin carbon nanotubes are prone to the spontaneous buckling
[22] and coiling, which may limit their linear size and result in a better phagocytosis
than originally expected (see Fig. 4). In such cases, the scaling parameter, Mph,
should be based on the effective size of the newly formed nanotube bundles and not
on their original total length. Nanotube bundles may deform in vivo as long
nanotubes have to adjust and often buckle under the ambient pressure and surface
interactions, which depend on the type of biological cells and tissues being present.
The value of the scaling parameter, Mph, is also indicative of the rate of phago-
cytosis and the rate of engulfing carbon nanotubes depending on their size, i.e., the
smaller the parameter Mph the lower rate of the process of engulfing and, hence, the
lower rater of phagocytosis. The size and the vitality of the local cells in the lung
tissue directly affect the rate of phagocytosis. Moreover, in different parts of the
lungs with distinct nanotube sizes being settled there the rate of phagocytosis will
be different. Therefore, the map of the values of parameter Mph is useful for rep-
resenting variations of the rate of phagocytosis across the lungs with different
regions of biological tissues and varying sizes of cells.

Fig. 3 Illustration of successful engulfment of short and the curled carbon nanotubes or their
bundles in the process of effective phagocytosis in macrophages and incomplete phagocytosis of
the thick and the long high aspect ratio carbon nanotubes
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According to the laws of similitude the research results on one type of phago-
cytosis for a group of similar carbon nanotubes extends to the entire class of carbon
nanotubes (Fig. 2) to which that group belongs. Different carbon nanotube geom-
etries in one class and the corresponding type of phagocytosis (Fig. 3) can be
described by a set of geometric parameters and be represented on a parametric map
(Fig. 4). It is not surprising that the region on the (RNT/a)-(dNT/LNT) parametric map
corresponding to the long high aspect ratio and thick carbon nanotubes shows the
most ineffective phagocytosis (see Fig. 4 for the region, where RNT/a and (dNT/
LNT)

−1 are large). Distribution of carbon nanotube sizes also may result in the
bundles of different shapes and sizes, which undergo varying processes of
phagocytosis. Hence, different parts of a bundle may take part in distinct types of
phagocytosis. If the long high aspect ratio carbon nanotubes are surrounded by
short and thin nanotubes then the ineffective phagocytosis will become even more
difficult. This is a consequence of the law for the conservation of mass of macro-
phages during phagocytosis. It should be also noted that the high concentration of
long nanotubes impedes even the basic fluid transport as demonstrated in Fig. 5.

The Concepts of Dose and Exposure at the Nanoscale Level

The concept of hazard is defined as the potential of a substance to cause harm. The
content of this and other concepts, their meaning as well as the mechanisms of
causing harm may, in fact, change at nanoscale. A more quantitative analysis,
which is capable to take into account different scales as in the scaling analysis, is

Fig. 4 A map of carbon nanotube parameters showing different classes of carbon nanotubes (after
[19]) and the corresponding type of incomplete or effective phagocytosis. The engulfment of
carbon nanotubes of distinct sizes and shapes by the macrophages is illustrated
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needed. From the viewpoint of the scaling analysis, nanoparticles indeed have
higher total area of the surface contact and reactions with biological tissues than
their microscopic counterparts and greater ability to pierce or penetrate through the
cells and membranes. The greater area for the surface contacts and material inter-
actions in the body results in an increased ability of nanoparticles to take part in
reactions with cells, including the tissue-damaging reactions. For example, surface
of the quartz crystal is highly reactive. It generates free radicals (reactive atoms),
which lead to oxidative damage to the defensive cells [1].

It should be noted that non-reactive surfaces can also generate oxidative stresses
on the cells. Some investigations have shown that, weight for weight, finely divided
particles of a material, such as titanium dioxide or carbon black, have been more
toxic than larger particles of the same material. Surface area and its reactivity seem
to be fundamental to the toxicity of particles and nanoparticles, in particular. Precise
measurements of the surface area at the nanoscale level depend on the definition of
the effective radius of curved nanoscale structures (see [22]).

Exposure to a hazardous material is defined as the concentration of the substance
in the relevant medium (air, food, water or tissue) multiplied by the duration of
contact [1]. Concentration of particles is the number of particle per unit volume (see
Fig. 5). At the same weight, the number of nanoparticles is much greater than that
of microscopic particles, and, hence, their concentration would be considerably

Fig. 5 Viscous fluid flow with the velocity distribution (above) and the stream lines (below)
around numerous microscopic particles distributed in a viscous flow under a small axial pressure
gradient. Velocity is vanishing along the upper and lower walls. The left and right boundaries are
open to the flow (numerical simulations by Diskin and Harik [23])
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higher for the same weight-to-bio-volume ratio. Higher concentration of micro-
scopic particles also impedes even the basic transport of viscous fluid around long
or short but dense microparticles in either biological or non-biological setting (as
shown in Fig. 5).

Different batches of carbon nanotubes having the same weight but different
geometries corresponding to distinct class of nanotubes will have varying con-
centrations for the same weight-to-volume ratio. This ratio defines a dose; a dose is
the amount of a substance that will reach a specific biological system or an organ.
Consequently, the exposure and a dose will be both higher for nanoscale particles.
Both the exposure and the dose will vary from one distribution of carbon nanotube
sizes to another. Therefore, the parametric map shown in Fig. 4 can be also used to
characterize variation of the exposure and the dose resulting from different classes
of carbon nanotubes. The exposure may be further increased by the ability of
nanoparticles to have a better interfacial contact and higher surface energy of
adherence, and, hence, the longer duration of contact.

Surface Interactions of Carbon Nanotubes

Other nanoscale carbon fibers similar to carbon nanotubes as well as some func-
tionalized carbon nanotubes may induce considerable inflammation and oxidative
stresses when they are inhaled and deposited into lungs. Numerous studies [1] of air
pollutants, dusts of mineral particles and pharmaceutical powders indicate that the
toxicity of various nanoparticles within the structure-activity paradigm [20]
depends on

• the total particle-surface area presented to a target organ;
• the chemical reactivity of the entire surface with absorbents; and
• the longitudinal time or duration of bio-contact.

In the previous section, a brief discussion is presented on how the nanoscale
increases in the nanoparticle-surface area affect the concepts of dose, concentration
and exposure. The role of chemical reactivity of the nanotube surface has to be
addressed as well. It should be mentioned, for example, that in the lab-scale
manufacturing, purification and handling, carbon nanotubes are often accompanied
by small particles of amorphous carbon, graphite and various catalysts (Fe, Ni, Co,
etc.). Treatment of carbon nanotubes by various chemical solvents and surfactants
may also result in absorbed additives, which may dramatically alter the surface
properties of nanotubes to allow degradation (Fig. 6) as well as increase or decrease
their potential toxic effects.

It is safe to assume that the surface reactivity of carbon nanotubes is often
modified by the catalytic transition metals and the process-induced coatings. As a
result, the ability of such modified surfaces to take part in oxidative reactions that
release free radicals or other reactions is beyond any doubts. For example, car-
boxylate-functionalized single wall carbon nanotubes (SWNTs) can degrade during
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90 days in phagolysosomal simulant fluid as shown by Hurt1 of Brown University
(Fig. 6). The size of carbon nanotubes, as was noted before, affects their total
surface area, which takes part in the reactions with the surrounding fluid.

The carcinogenic toxicity depends on the inhalation, deposition and absorption
of a large number of carbon nanotubes into the lungs. While inhalation of a small
number of various nanoparticles is unlikely to represent a significant risk, the
longitudinal time-history of the at-organ environment should be considered to
assess the carcinogenic toxicity dose of specific nanoparticles. For example, the
presence of various pro-inflammatory agents and fermentation promoting bacteria
would enhance pre-carcinogenic processes. The negative health effects associated
with the inhalation of a very large number of carbon nanotubes and other nano-
particles in manufacturing processes, can be controlled by federal regulations, along
with other industrial components of the workplace safety.

Physical dimensions of nanoparticles, which are used in industry, affect their
interactions with other materials, their aerodynamic properties and behavior, clus-
tering and their ability to be suspended in the air and become inhaled. The transport
of nanotubes in the inhalation flows through the airways determines what propor-
tion of nanotubes reaches the deep lungs and where they are deposited in the lungs.
The small size of carbon nanotubes (diameter of 1 nm or more; length of 100 nm or
more) allows a high portion of these particles to be inhaled from the air, transported
and deposited in the deep lung. The nanoscale size of nanotubes and their bundles
may increase their transportability and penetrability, and, hence, the direct impact of
the at-organ concentration and exposure as well as the toxicity of carbon nanotubes.
The nanoscale size of nanotubes may also influence their uptake into various cells
and, thus, the duration of toxic bio-contact. Therefore, the nanoscale size of

Fig. 6 Biological response to carboxylate-functionalized single wall carbon nanotubes involving
degradation of carbon nanotubes during 90 days in phagolysosomal simulant fluid (Shown by
Robert Hurt, Brown University) (“When you represent the lung make it perforated so that it may
not obstruct what is behind it, and let the perforation be all the ramifications of the trachea and the
veins of the artery (aorta) and of the vena cava and then outside these draw a contour line round
about them to show the true shape, position and extent of this lung.” Leonardo da Vinci
(1452–1519), Anatomy, p. 173, The Notebooks of Leonardo da Vinci (edited by E. MacCurdy,
Konecky and Konecky printing, Duckworth and Co., London, 1906))

1 R. Hurt, Which material properties/features determine the biological response to carbon
nanotubes? Brown University, Providence, Rhode Island, 2011.
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nanotubes is one of the critical factors in their toxicity, as it intrinsically affects the
overall concentration and the total surface area per unit mass (i.e. the dose) along
with the cell damage and the duration of bio-contact.

Conclusions

Geometry of different classes of carbon nanotubes has been characterized by the
aspect ratios and other critical scaling parameters related to the efficiency of their
engulfment by the macrophages in phagocytosis. Geometric and scaling parameters
have been used to present a conceptual framework and a parametric map for the
extrapolation of potential toxic effects resulting from the inhalation of carbon
nanotubes. Similarities between carbon nanotubes and asbestos fibers are also noted
within the framework of the Cook’s criteria for the asbestos-like pathologies.
Scaling parameters for the size effects associated with carbon nanotubes and a new
parametric map for the efficiency of phagocytosis are used to evaluate the potential
toxicological effects of the inhaled carbon nanotubes from the point of view of the
Cook’s criteria for asbestos fibers and other research. In 2007 Salvador-Morales has
concluded with colleagues [24] that

Currently, it is important to point out that regardless of the inaccuracy of the methodology
used to investigate the pulmonary toxicity of carbon nanotubes, the major conclusion is that
[the high aspect ratio] carbon nanotubes are toxic to some extent. This is based not only in
the trend that can be observed in all the most recent papers in this area but also on the
analogies that exists in the toxicity (size and morphology) with other well-characterized
toxic materials such as asbestos and carbon black.

This conclusion still reflects the current state of toxicological research, although
methodologies for toxicological studies do improve and refine this statement as
indicated by the parenthesis. Methodologies for the safer handling of carbon
nanotubes and safe nanoscale manufacturing also improve.

Smart processing of nanoparticles with the ability to control processing [23] of
carbon nanotubes, their use in manufacturing processes and their ability to become
airborne can improve safety of nanotechnology and the safety of carbon nanotube
based microelectronics and computer manufacturing. Smart processing of nanoscale
particles [23], microscopically controlled manufacturing, microscopically con-
trolled nanostructured processing flows and microscopically tailored nanostructured
materials are emerging areas of modern manufacturing, which will not only
improve the safety of nanotechnology-based manufacturing, but will also lead the
industry toward highly sophisticated microscopic and nanoscale manufacturing of
very complex materials systems and uniquely manufactured products. Safety of
carbon nanotubes is critical for the stable development of nanotechnologies without
the asbestos-like health problems and the long or high cost litigations, which can
bury some unsafe nanotechnology-based innovations.innovations.
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Trends in Recent Publications
on Nanoscale Mechanics

Editor’s Notes

Vasyl Harik

Abstract This part of the edited volume highlights trends in recent publications by
providing examples of important research papers in different areas of nanoscale
mechanics. Research papers on novel applications of carbon nanotubes, nano-
composites, nanodevices, quantum anti-dots, and other nanostructures are noted.

Introduction

Advances in nanoscale mechanics [1–19] are illustrated in this section by recent
publications, which are presented as additional references. All papers are divided
into sections. Figure 1 brings to light a useful example of nanoscale manipulations
[1]. A section on mechanics of carbon nanotubes provides more such examples. A
section on nanocomposites presents a list of papers on other useful material
applications. This review of bibliography also includes a section on nanodevices.

Publications on Nanoscale Mechanics

Scientists from the emerging world-class research laboratories [1–19] publish new
reports on nanoscale devices, quantum dots electronics as well as the so called
quantum anti-dots [2]. Holovatsky’s group [2] has examined the electron energy
spectrum in a semiconducting AlxGa1-xAs/GaAs quantum anti-dot with the donor
impurity being placed at the center of a spherical nanostructure. Energies and the
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fractions of the width of quasi-stationary states have been defined within the dis-
tribution of the probability density function of electron residence in the quantum
anti-dot (see Fig. 2). The details of other publications can he obtained from the
listed titles, scientific journals and the additional references provided.

Fig. 1 HRTEM images (a–d) of a C60 molecule moving around a buckle bend on the surface of
a DWNT and a schematic representation (i–iv) of the observed molecular dynamics [1]

Fig. 2 Distribution of
probability density of electron
location in nanostructure with
central donor impurity [2]
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