
Chapter 9
Binding Induced Intrinsically Disordered
Protein Folding with Molecular Dynamics
Simulation

Haifeng Chen

Abstract Intrinsically disordered proteins lack stable tertiary and/or secondary
structures under physiological conditions in vitro. Intrinsically disordered proteins
undergo significant conformational transitions to well folded forms only on binding
to partner. Molecular dynamics simulations are used to research the mechanism of
folding for intrinsically disordered protein upon partner binding. Room-tempera-
ture MD simulations suggest that the intrinsically disordered proteins have non-
specific and specific interactions with the partner. Kinetic analysis of high-
temperature MD simulations shows that bound and apo-states unfold via a two-state
process, respectively. U-value analysis can identify the key residues of intrinsically
disordered proteins. Kolmogorov-Smirnov (KS) P test analysis illustrates that the
specific recognition between intrinsically disordered protein and partner might
follow induced-fit mechanism. Furthermore, these methods can be widely used for
the research of the binding induced folding for intrinsically disordered proteins.
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9.1 Introduction

Intrinsically disordered proteins lack stable tertiary and/or secondary structures
under physiological conditions in vitro [1]. A large number of proteins (between
25 and 41 %) are intrinsically disordered. If the dogma dedicates that proteins
need a structure to function, why do so many proteins live in the disorder state? [2]
However, these intrinsically disordered proteins also play key function in regu-
lation, signaling, and control upon binding with multiple interaction partners [3].
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These proteins have many names, like rheomorphic, flexible or highly flexible,
natively denatured, natively unfolded, intrinsically unstructured, intrinsically dis-
ordered. These proteins composed of an ensemble of highly heterogeneous con-
formations. After statistics of disordered protein database, IDPs include
significantly higher levels of polar amino acids for Glu, Lys, Arg, Gln, Ser, Asp
and Pro, and lower levels of hydrophobic residues for Ile, Leu, Val, Trp, Phe, Tyr,
Thr, Met, Cys, His and Asn [4].

Furthermore, regions of disorder are found to be abundant in proteins associated
with signaling, cancer, cardiovascular disease, amyloidoses, neurodegenerative
diseases, and diabetes [5]. Different from structural protein as drug target, IDPs as
drug target can bring low binding affinity and low side effect. There are two
strategies for drug design targeting IDPs. Firstly, drug is binding to structured
partner, thereby preventing the binding of the disordered partner. Secondly, drug is
binding directly to the disordered partner, thereby preventing the association of
two proteins. For this approach both partners were disordered, but small molecules
bound to one of the two partners only. For example, c-Myc-Max inhibitors bind to
distinct ID regions of c-Myc [6, 7]. These binding sites are composed of short
contiguous stretches of amino acids that can selectively and independently bind
small molecules. Inhibitor binding induces only local conformational changes,
preserves the overall disorder of c-Myc, and inhibits dimerization with Max.

Furthermore, many intrinsically disordered proteins undergo significant con-
formational transitions to well folded forms only on binding to target ligands [8–
11]. These experimental observations raise a set of interesting questions if these
intrinsic disordered proteins obey an induced fit upon binding.

Coarse-grained modeling simulation [12] and all-atomic model with high
temperature simulation [13] were used in intrinsically disordered protein folding
coupled partner binding. So far the folding time scales of all atomic MD simu-
lations are restricted to microsecond magnitude at room temperature (298 K),
which is significant shorter than the folding half times of most proteins [14, 15]. In
order to reveal the conformational changes within reasonable time, all MD sim-
ulations in explicit solvent at high temperature have been widely used to monitor
the unfolding pathways of proteins. The unfolding timescales could be nanosecond
at 498 K [14, 16]. Moreover, according to the principle of microscopic revers-
ibility, experiments have demonstrated that the transition state for folding and
unfolding is supposed to be same [14]. Therefore, MD simulations high temper-
atures are widely used in the folding of intrinsically disordered proteins coupled
partner binding.

9.2 Materials and Method

The atomic coordinates of intrinsically disordered proteins were obtained from pdb
data bank. Point mutants were modeled with SCWRL3 [17]. All hydrogen atoms
were added using the LEAP module of AMBER [18]. Counter-ions were used to
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maintain system neutrality. All systems were solvated in a truncated octahedron
box of TIP3P waters with a buffer of 10 Ǻ [19]. Particle Mesh Ewald (PME) [20]
was applied to handle long-range electrostatic interactions with default setting in
AMBER [18]. The parm99 force filed was used to compute the interactions within
protein [21]. The SHAKE algorithm [22] was employed to constrain bonds
including hydrogen atoms. All solvated systems were first minimized by steepest
descent to remove any structural clash, followed by heating up and brief equili-
bration in the NPT ensembles at 298 K. The time step was 2 fs with a friction
constant of 1 ps-1 using in Langevin dynamics. To study the folded state of each
solvated system, multiple independent trajectories in the NPT ensemble at 298 K
were simulated with PMEMD of AMBER. Then multiple independent unfolding
trajectories were performed to investigate unfolding pathways for each solvated
system in the NVT ensemble.

9.3 Results

TIS11d, KID, LEF, p53, CBP, and Brinker are partially or fully intrinsically
disordered proteins. [13, 23–27] As transcription factor, they play key roles in
signal transduction. Upon binding with DNA, RNA, or other transcription factors,
they can well fold and will be introduced in this book. Their complex structures are
illustrated in Fig. 9.1.

Fig. 9.1 The complex structure of intrinsically disordered proteins. a TIS11d/mRNA. b p53/
MDM2. c pKID/KIX. d Brinker/DNA. e LEF/DNA. f p53/CBP
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To capture the average properties of proteins, multiple trajectories for MD
simulations (5–10) are necessary [28]. To study the recognition for intrinsically
disordered proteins, multiple independent trajectories for apo-states and their
complex were simulated at room temperature (298 K), respectively. Ca and U/w
fluctuations for apo and bound states are researched. In general, the Ca variations
of bound state are significant smaller than those of apo-state, especially in the
region of the binding site. The results of apo and bound TIS11d are shown in
Fig. 9.2 [26]. The Ca fluctuation of bound TIS11dTZF is much smaller than that of
apo-TIS11dTZF, especially in the binding site of mRNA and zinc. This suggests
that bound TIS11dTZF become less flexible and more stable upon mRNA and zinc
binding, which is consistent with the experiment. However, the U/w variation of
bound TIS11dTZF is similar to that of apo-TIS11dTZF, suggesting that the sec-
ondary structure of bound TIS11dTZF does not significantly change upon mRNA
and zinc binding. Indeed, the helices of a1, a3 and a4 are already stable within
apo-TIS11dTZF.

To clearly illustrate the conformational difference, the landscapes of distance
difference between the average pairwise intra-molecular distance of bound states
and corresponding average pairwise intra-molecular distance of apo states for
intrinsically disordered protein are shown in Fig. 9.3 [24]. The landscapes can
reflect the relative conformational change of DNA and LEF backbone. The deep
red area indicates that the distance difference for bases 5–8 and 23–26 is positive
value. These bases are corresponding to the minor groove. This suggests that the
minor groove is widened upon LEF-binding. Furthermore, disordered C-tail of
LEF is located at the minor groove. This suggests that the disordered C-tail of LEF
has interactions with DNA and open the minor groove of DNA. The deep blue area
represents that the distance difference is negative value. It suggests that the major
groove is contracted. That is consistent with the experimental observation that
DNA is bended upon LEF-binding [29, 30]. For LEF, the deep red and blue areas
are locked at disordered C-tail. This suggests that C-tail of LEF has significant
conformational change.

Fig. 9.2 Ca and U/W
variations for TIS11d
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To study the driving force for these conformational adjustments, the electro-
static, hydrophobic, and hydrogen-binding interactions between intrinsically dis-
ordered protein and partner were analyzed and shown in Fig. 9.4. From this figure,
stable electrostatic interactions, hydrogen bonds, and hydrophobic interactions can
be calculated. In general, partner binding will introduce more electrostatic inter-
actions, native contacts and hydrogen bonds at the interface which are responsible
for the higher stability for intrinsically disordered proteins.

9.3.1 Unfolding Kinetics

High temperature simulation was used to research the unfolding kinetics of
intrinsically disordered proteins with the parameters of the fraction of native ter-
tiary contact (Qf) and the fraction of native binding contact (Qb). Time evolutions
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of Qb and Qf for apo and bound states are shown in Fig. 9.5 [23]. The tertiary
unfolding and unbinding can be fitted well by a single exponential function,
indicating first order kinetics in the NVT ensemble at high temperature (498 K).
This suggests that the binding of partner significantly postpones the tertiary
unfolding of intrinsically disordered proteins. This is in agreement with the
experimental observations [8, 31].

9.3.2 U-Value Prediction

U values have been widely used by theoretical and experimental works to identify
the key residues for protein folding [32–34]. The U values of pKID were predicted
and shown in Fig. 9.6. Note also that the highest U values are found for Asn139,
Asp140 and Leu141, suggesting these residues play key role in the folding of

Fig. 9.5 Unfolding kinetics
for bound pKID

Fig. 9.6 U-values for bound
and apo pKID
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pKID [23]. A critical role of Leu141, which deeply extends into the hydrophobic
groove of KIX, forms three hydrophobic contacts with KIX. All predicted U
values can be confirmed by experiments.

9.3.3 Unfolding Pathway

According to the unfolding kinetics analysis, the unfolding orders of bound
intrinsically disordered protein are shown in Fig. 9.7 [13]. If we assumed folding is
reverse of unfolding, the proposed folding pathway of bound intrinsically disor-
dered protein is from the unfolded state, then secondary structure folding, tertiary
folding, partner binding, then to the folded state.

9.3.4 Recognition Mechanism

Conformational selection and induced fit are two widely used models to interpret
the recognition between intrinsic disordered proteins [35]. According to the con-
formational selection paradigm, various conformational ensembles explore the
free energy landscapes corresponding to diverse stable unbound states in equi-
librium. During the binding process, the favorable conformation compatible with
binding selectively stabilize, and the populations of conformational ensembles
shift towards stabilizing state [36–39]. However, the induced fit scenario proposes
that the favorable conformation results from significant changes of unbound
ensembles upon allosteric binding [40–43]. It is worthy to point out that confor-
mational selection and induced fit models cannot be distinguished absolutely [44].
Indeed, some systems involve kinetic elements of both mechanisms [45, 46].

Fig. 9.7 Unfolding pathway for bound p53. a fold state. b unbinding. c tertiary unfolding.
d helix 3/5 unfolding. e helix 1/2/4 unfolding. f unfolded state
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The possible magnitudes of conformational selection and induced fit [47] are
calculated to reveal the recognition mechanism. To explore the recognition
mechanism, the average RMSD deviations of bound conformation and apo con-
formations are analyzed as a function of distance from the centroid of binding
partner and shown in Fig. 9.8 [27]. This figure illustrates that the RMSD variation
gradually increases until to the global level. This suggests that there is an induced
fit far away for the binding site.

To address the statistical significance for differences of deviations between
these two systems, two sample Kolmogorov-Smirnov test [48] is used to calculate
the P value for each distance group. Figure 9.8c illustrates the median of P values
and the fraction with P \ 0.1 for all 100 pairs of CBP conformations in each
distance group. It is found that the median P values are typically smaller than 0.1
in most distance group, especially in some larger distance group with median
P values approximates 0. The conformations with P \ 0.1 exceed 50 % in most
distance groups. This suggests that the bound CBP is significant different from the
apo conformation far away from the binding site and the differences are statisti-
cally significant. In summary, the recognition between intrinsic disordered CBP
and p53 might obey an induced fit based on the RMSD and P-value analysis.

Fig. 9.8 Local conformational RMSD differences between bound and apo conformations as a
function of distance from the centroid of binding partner and statistical significance of
conformational selection in p53 and CBP binding. Average local RMSD for 10 pairs of bound
conformations and the most similar apo conformation and for 90 pairs of bound NCBD and the
other apo conformations, as a function of distance from the centroid of binding partner. a CBP.
b p53. c CBP. d p53
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9.4 Conclusion and Remark

Intrinsically disordered proteins lack stable tertiary and/or secondary structures
under physiological conditions in vitro. Intrinsically disordered proteins undergo
significant conformational transitions to well folded forms only on binding to
partner. Molecular dynamics simulations are used to research the mechanism of
folding for intrinsically disordered protein upon partner binding. Room-tempera-
ture MD simulations suggest that the intrinsically disordered proteins have non-
specific and specific interactions with the partner. Kinetic analysis of high-
temperature MD simulations shows that bound and apo-states unfold via a two-
state process, respectively. U-value analysis can identify the key residues of
intrinsically disordered proteins. Kolmogorov-Smirnov (KS) P test analysis
illustrates that the specific recognition between intrinsically disordered protein and
partner might follow induced-fit mechanism. Furthermore, these methods can be
widely used for the research of the binding induced folding for intrinsically dis-
ordered proteins.
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