Chapter 2
JVM: Java Visual Mapping Tool for Next
Generation Sequencing Read

Ye Yang and Juan Liu

Abstract We developed a program JVM (Java Visual Mapping) for mapping next
generation sequencing read to reference sequence. The program is implemented in
Java and is designed to deal with millions of short read generated by sequence
alignment using the Illumina sequencing technology. It employs seed index
strategy and octal encoding operations for sequence alignments. JVM is useful for
DNA-Seq, RNA-Seq when dealing with single-end resequencing. JVM is a
desktop application, which supports reads capacity from 1 MB to 10 GB.

Keywords Mapping - Reads - Algorithms - Next generation sequencing -
Program

2.1 Introduction

Over the past 5 years, tens of read mapping programs were published to copy with
Illumina sequencing data. But there are some problems have to be pointed out. The
first is the limitation of the operating system (OS). Most of programs is designed by
C++ language and only can be used on Unix/Linux OS. The biologist is boring by
using Unix/Linux OS. Based on a survey on OS user, more than 90 % of users are
used to apply “Windows” OS; almost 7 % of users are willing to use “Mac” OS
provided by Apple Inc. So the program meeting the need of Multi-OS is required.
The second is the restriction of the memory usage. Traditional sequence alignment
softwares like MAQ [1], BWA [2], SOAP [3] are high memory consumption
programs, and it is difficult to run these programs on the laptop normally. Therefore

Y. Yang - J. Liu (<)
School of Computer, Wuhan University, Wuhan 430072, Hubei, China
e-mail: liujuanjp@163.com; liujuan @whu.edu.cn

Y. Yang
Military Economy Academy, Wuhan, Hubei, China

© Shanghai Jiao Tong University Press, Shanghai 11
and Springer Science+Business Media Dordrecht 2015,

D. Wei et al. (eds.), Advance in Structural Bioinformatics, Advances in

Experimental Medicine and Biology 827, DOI 10.1007/978-94-017-9245-5_2

12 Y. Yang and J. Liu

the program with low memory consumption is needed. The last is the confusion of
the parameter settings. There are so many parameters in most of the existed tools that
it is difficult for a user to know how to set parameters to finish the alignment. In this
work we present a new program JVM (Java Visual Mapping), trying to address to
above three problems.

JVM is a desktop application program implemented with Java language, by
which the user only needs mouse actions to fulfill the alignment. The best hit of
each read which has zero number of sequence mismatch or gap will be reported.
The read has multiple hits will be reported in the final list. JVM can handle reads
around 11-1000 bp long, and can deal with single-end reads of FASTQ format
files which produced by Illumina sequencing platform. JVM supports file sizes
ranging from 1 MB to 10 GB. In order to run the program successfully, a Java
Runtime Environment version 6.0 or later is required.

2.2 Problem Statement

Read document is a FASTQ format file with four lines per sequence. Line 1 begins
with a ‘@’ character and is followed by a sequence identifier and an optional
description (like a FASTA title line). Line 2 is the raw sequence letters. Line 3
begins with a ‘+’ character and is optionally followed by the same sequence
identifier (and any description) again. Line 4 encodes the quality values for the
sequence in Line 2, and must contain the same number of symbols as letters in
Line 2 [4].

The genome sequence document is a series of characters, each character is
either a nucleic acid represented as A, G, C, or T, or an unknown character, named
N [5]. This document contains the genome chromosome information.

Read alignment (mapping) is the course of sequence mapping. JVM takes read
query sequences with equal length and a database of reference genome sequence as
input. Read alignment is just to locate the right places where reads have a perfect
alignment to reference genomes. JVM finds all valid alignment that satisfied the
constraint on zero error in the set of query sequence.

2.3 Preprocessing

To addresses the problem of too much of the memory spending, we adopt the
following preprocessing strategies in JVM.

2 JVM: Java Visual Mapping Tool ... 13

2.3.1 File Block

The size of a human reference genome document has around 2-3 GB. A read
document generated from Illumina platform has a size from 2 to 4 GB. JVM first
intelligently separate the read document into several parts, separate the reference
document base on the information of chromosome name, and write each part into
the disk. Then it maps each read block to a specified chromosome. The Fig. 2.1
illustrates the mapping strategy of choosing read and reference part.

Through this way, we can reduce the peak memory consumption when reading
the large capacity files.

2.3.2 Octal Encoding and Sequences Compressing

Problem 1: octal encoding

JVM uses five octal digits to represent each base in read and reference document.
The symbols A, C, G, T and N are encoded as 0, 1, 2, 3, 4 respectively. Take a
string ‘GGGANAACAT’ as an example, this string is encoded as octal string:
(2220400103)g (see Table 2.1).

Read document : |

(divide into 4 parts) : RI | R2 | | R3 || R4

Reference document: @ é

O
()(2
0lO

Fig. 2.1 A simulated image of the mapping strategy

Table 2.1 An example of String S GGGANAACAT

octal encoding and string

compressing Octal encode 2220400103
Compressed value 306315331

14 Y. Yang and J. Liu

Problem 2: sequences compressing

We denote a reference genome sequence as R = R(1, 2,..., m), the query read
sequences as the set Q(ql, q2, ..., qn), where m is the total bases of reference
genome, n is the number of short read; we also let each sequence length be
L(10<L<1,000). Alignment progress is the problem of mapping Q to R.

Reference compressing: We construct a new string P = P(1, 2,..., m) by using
octal encoding. We partition the r into a set of factor F1, F2, ...Fm — L + 1,
where Fi=1r(i, 1+ 1,..., i+ L — 1), for 0 <i<=m — L + 1. In view of the
range of integer type, we transform every 10 octal encoded number into a decimal
value and store this numeric into an integer array. In this way, we can reduce
memory cost five times when load a long sequences set into main memory.
Table 2.1 give an example of the encoding and compressing progress.

Read compressing: Similarly, we can deal with the read document in the same
way. We abstract the base sequences from the read and then encoding and com-
pressing the base sequences into an integer array. We define the read array set as

Q(, 2,...n).

2.4 Method

JVM is a visualization tool that by using the mouse operation to complete read
mapping and then create a file of “.SAM” format as the output result. In order to
accelerate alignment, we take various measures to speed up the efficiency of JVM.
In the section of preprocessing, both reads and the reference sequences are
converted to numeric data type using octal encoding for each base. We set the
numeric reference as F(@)(0 <i<=m, and i> 108), and numeric read as
Q()(0 < j<=n, and j > 107). As the progress of read alignment, we use the non-
recursion quick sort algorithm combine with seed index strategy to complete
ascending sort of F(i). Then using the seed index to quickly position the Q(j) to
F(i). At the end of this section, we would give the time complexity of JVM.
The steps of our method are as follows.

Step 1.

Save the reference and read documents into memory. We get a numeric ref-
erence set F(i) and store each F(i) into an integer array Ai[t], for t = [L/10]. Then
we add Ai[t] to a list T. In this way, reference document is compressed into list T,
and reduces the size of reference document for five times. We use the same
strategy to copy with the read document Q(n).

2 JVM: Java Visual Mapping Tool ... 15

Step 2.

Build the seed index. We extract every Ai[0] (the first element of Ai[]) from list T.
We call Ai[0] as seed index. Then we load Ai[0] into a hash index array B[m —
L + 1]. The number of element in Blm — L + 1] almost equal with the number of
bases in reference document. In other words, B[m — L + 1] has an big order of
magnitude. Considering the memory overflow, we use non-recursive quick sort
algorithm to sort the B[m — L + 1]. At the same time, we save the original position
of every F(i) so as to keep the exact location of F(i). Non-recursive quick sort
algorithm is based on the divide-and-conquer strategy and takes O(m log m) time to
sort Blm — L + 1].

Step 3.

Index search and read alignment. We get the read sequence element array from
Q(n). To find the best hit of Q(j)(0 <=j < n), we get the first element of each array
that is Q j (0), then map it to reference array set Blm — L + 1]. To improve the
ability of searching speed, we search the B[m — L + 1] base on the divide-and-
conquer strategy. And this take O(log m) time to find the best hit.

For three steps, in step 1 can be done in O(mL + nL) time. Step 2 should be
done in O(m log m) time. Step 3 runs in O(n log m). So the overall time com-
plexity is O(m log m + n log m).

2.5 Result

2.5.1 Test by Simulated Dataset

To evaluate speed and accuracy of JVM, we compared JVM with MAPNEXT [6]
and WHAM [7]. We had mapped a simulated dataset of 246,558 49 bp-long Illu-
mina single-end resequencing reads. Our reference genome is a dataset simulated
the structure of the zebra fish genome NCBI Zv9. To guarantee a fair comparison,
we ran the three programs on a same virtual machine and set the mismatch
parameter as 0. The OS of this machine is Linux CentOS.5.4. The configuration of
this machine includes 2G of main memory, dual 2.00 GHz AMD Turion 64 2-core
CPUs. We also test JVM on the Windows OS with the Java Virtual Machine
memory with 1.6 G. Table 2.2 shows the performance of each program.

As the result in Table 2.2, JVM has the similar performance on both Linux and
Windows OS. Although WHAM is much faster and has more numbers of read
mapped to reference, it needs to write parameters and build an index on the
reference genome. In addition, WHAM ignores the memory limitation from per-
sonal computer during the mapping progress. JVM has a better performance than
MAPNEXT on both speed and mapping rate.

16 Y. Yang and J. Liu

Table 2.2 Mapping 246,558 49 bp-long simulated reads to simulated the structure of the zebra
fish genome NCBI Zv9

Program Total time (s) Read aligned
JVM (on Linux) 47 224
WHAM (on Linux) 0.57 953
MAPNEXT (on Linux) 53 184
JVM (on Windows) 54 224

2.5.2 Test by Real Datasets

We evaluate three programs on a computer with dual 2.00 GHz AMD Turion 64
2-core CPUs, and 4G of DDR2 main memory, running Linux OS. We choose two
real datasets containing 20,099,013 and 17,680,937 Illumina single-end rese-
quencing reads (length 49 bp), which were generated from mRNA-Seq of zebra
fish. We call the two datasets as dataset 1 and 2. Two read files are two different
growth stages of zebra fish. Concerning the time consumption and feature of JVM,
we get the same part from dataset 1 and mapping to the zebra fish chromosome 25,
the result of three programs show in Table 2.3. In the same way, we take out part
of dataset 2 and mapping to the chromosome 22. It gives the performance of each
program. We finally run JVM on Windows 7 OS with the same computer con-
figuration in the previous tests.

In the article of WHAM, the author claimed and verified that WHAM was a
very fast alignment method. It is often orders of magnitude faster than BOWTIE
[8] and RBSA [9]. From the results shown in Table 2.3, total time consumption of
WHAM is much less than JVM and MAPNEXT. That is, we also confirmed its
conclusion by our experiment. Although JVM is not as fast as WHAM, JVM has a
better performance on mapping number. JVM has mapped nearly 20 % more reads
than WHAM.

JVM has great advantage over MAPNEXT on time consumption. JVM finished
alignment in 235.670 s, while MAPNEXT done in 480.000 s. In terms of mapped
reads, MAPNEXT has only 1001 reads mapping to chromosome 25, but JVM has
found 37009 reads, it is dozens of times to MAPNEXT.

Table 2.3 Mapping 20,099,013 49 bp-long real reads to the zebra fish chromosome 25
(38,499,472 bp)

Program Total time (s) Read aligned
JVM (on Linux) 235.670 37009
WHAM (on Linux) 25.685 31571
MAPNEXT (on Linux) 480.000 1001
JVM (on Windows) 243.890 37009

2 JVM: Java Visual Mapping Tool ... 17

Table 2.4 Mapping 17,680,937 49 bp-long real reads to the zebra fish chromosome 22
(42,261,000 bp)

Program Total time (s) Read aligned
JVM (on Linux) 246.32 53369
WHAM (on Linux) 28.213 44627
MAPNEXT (on Linux) 520.000 1407

JVM (on Windows) 254.762 53369

We also run JVM on Windows 7 OS, we get the same result as that on the
Linux OS.

In order to valid the effectiveness of the results in Table 2.3, we not only adjust
the read and reference document, but also reset parameters on indexing and
mapping progress of WHAM and MAPNEXT. As it is indicated by Table 2.4, the
same result can be concluded.

2.5.3 Conclusion and Discussion

As it is demonstrated by above analysis, our developed JVM does a better overall
performance than MAPNEXT. And JVM can find more hit reads than WHAM.
Based on the efficiency and sensitivity on alignment, we believe that further
development and functionality research is not only necessary but also feasible.

We have to admit that JVM is still in the process of improving. As a feature of
JVM different from other software, file block is the first target which should be
deal with. Now that the order of read part document aligned to reference chro-
mosome document is defined, as the example showing in Fig. 2.1, we can take
parallel processing method to accelerate the alignment speed. We can regulate the
number of parallel threats based on the total number of physical cores in test
machine. So application of parallelization processing mechanism in JVM is the
next work we should to do.

In addition, alignment is just the first step in analysing and processing the next
generation sequencing data. Further researches based on JVM such as gene fusion
and gene expression profiles will be launched.

References

1. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants
using mapping quality scores. Genome Res 18:1851-1858

2. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25:1754—1760

3. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program.
Bioinformatics 24:713-715

18 Y. Yang and J. Liu

4. Cock P, Fields C, Goto N et al (2010) The Sanger FASTQ file format for sequences with
quality scores and the Solexa/Illumina FASTQ variants. Nucl Acids Res 38:1767-1771

5. Frousios K, Iliopoulos CS, Mouchard L, Pissis SP, Tischler G (2010) REAL: An efficient
REad ALigner for next generation sequencing reads. ACM, New York, pp 154-159

6. Bao H, Xiong Y, Guo H et al (2009) MapNext: a software tool for spliced and unspliced
alignments and SNP detection of short sequence reads. BMC Genomics 10:S13

7. Li Y, Terrell A, Patel J (2011) WHAM: a high-throughput sequence alignment method.
SIGMOD Conf 11:445-456

8. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

9. Papapetrou P, Athitsos V, Kollios G, Gunopulos D (2009) Reference-based alignment in large
sequence databases. PVLDB 2(1):205-216

	2 JVM: Java Visual Mapping Tool for Next Generation Sequencing Read
	Abstract
	2.1…Introduction
	2.2…Problem Statement
	2.3…Preprocessing
	2.3.1 File Block
	2.3.2 Octal Encoding and Sequences Compressing

	2.4…Method
	2.5…Result
	2.5.1 Test by Simulated Dataset
	2.5.2 Test by Real Datasets
	2.5.3 Conclusion and Discussion

	References

