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and Fengfeng Zhou

Abstract All the cell types are under strict control of how their genes are tran-
scribed into expressed transcripts by the temporally dynamic orchestration of the
transcription factor binding activities. Given a set of known binding sites (BSs) of
a given transcription factor (TF), computational TFBS screening technique rep-
resents a cost efficient and large scale strategy to complement the experimental
ones. There are two major classes of computational TFBS prediction algorithms
based on the tertiary and primary structures, respectively. A tertiary structure
based algorithm tries to calculate the binding affinity between a query DNA
fragment and the tertiary structure of the given TF. Due to the limited number of
available TF tertiary structures, primary structure based TFBS prediction algo-
rithm is a necessary complementary technique for large scale TFBS screening.
This study proposes a novel evolutionary algorithm to randomly mutate the
weights of different positions in the binding motif of a TF, so that the overall TFBS
prediction accuracy is optimized. The comparison with the most widely used
algorithm, Position Weight Matrix (PWM), suggests that our algorithm performs
better or the same level in all the performance measurements, including sensitivity,
specificity, accuracy and Matthews correlation coefficient. Our data also suggests
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that it is necessary to remove the widely used assumption of independence
between motif positions. The supplementary material may be found at: http://
www.healthinformaticslab.org/supp/ .

Keywords Binding sites � Transcription factor � Position weight matrix � Motif

15.1 Introduction

Transcription of genic regions into RNA molecules is the first step of the bio-
logical central dogma, and is dynamically controlled by various transcription
factors (TFs) [1]. A TF regulates a gene’s transcription through its dynamic
binding to a short (5–20 bps) DNA sequence upstream to the regulated gene. This
DNA sequence is the TF’s binding site (TFBS), which is usually highly specific to
this TF and is called a motif [2]. Mutations within TFBSs will change the host’s
transcription regulatory network, and lead to species specific phenotypes or genetic
diseases [3].

There are two major high-throughput strategies to screen the binding sites of a
TF in the host genome. Firstly, various high-throughput experimental techniques
were developed to screen the TFBSs under the given cell culture conditions,
including DNase I footprinting [4], electrophoretic mobility shift assay [5], ChIP-
on-chip [6] and ChIP-Seq [7], etc. The dynamic landscape of the transcription
regulatory network may be elucidated through these screening techniques. But
they are usually costly and labor-intensive, and can only detect the binding sites of
one TF under one cell culture condition at a time. Considering the 2,886 tran-
scription factors curated in the human DNA-binding domain (DBD) database [8],
and the dynamic nature of transcription regulation, it can be anticipated that the
transcription regulatory landscape is significantly under-estimated.

Computational TFBS screening techniques have been used to infer the com-
prehensive list of TFBSs. The majority of in silico TFBS screening techniques
assumes that the binding sites of a given TF have a fixed length, and calculates the
similarity score of a query DNA sequence compared with the local oligo-nucle-
otide frequency patterns in the known TFBSs [9]. The computational techniques
include the position weigh matrix (PWM) [10], WebLogo [11], and position
specific pairwise score [12], etc. The introduction of TF’s structural information
will greatly reduce the false positive rates, as demonstrated by Facelli [13], Saito
et al. [14]. But there are only 300 unique human TF structures in the PDB database
[ref], and the limited availability of the experimentally detected TF structures
restricts the extensive application of these methods [15].

This study hypothesizes that positions contribute differently to the motif scoring
based on their nucleotide frequency patterns, and formulates the position contri-
bution as a weight for the position. The vector of weights for different motif
positions were randomly mutated by an evolutionary algorithm, with the
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optimization goal to maximize the overall accuracy. The prediction performance
suggests that our algorithm performs similarly or better than the position specific
scoring strategies.

15.2 Materials and Methods

15.2.1 Data Resources

The proposed algorithm is applied to the following seven transcription factors
(TFs), i.e. Ebox, Myc, P53, Q6MAZ, Q601MAZ, V_SREBP_Q3-SREBP
(abbreviated as Q3), and V_SREBP2_Q6-SREBP2 (abbreviated as Q6). The
known binding sites of these seven transcription factors were manually collected
from the database TRANSFAC in August 2012 [16]. Only those binding sites
without an ‘‘N’’ letter were kept for further analysis. The target gene sequences
and their promoter regions were extracted from the database ENSEMBL [17].

15.2.2 Motif Screening Problem

The mathematical model of the transcription factor binding site (TFBS) screening
problem (sTFBS) is formulated as follows. For a given transcription factor (TF),
its known fixed-length binding sites are defined to be the positive dataset
P = {M1, M2, …, Mn}, where |Mi| = L. A negative dataset N = {B1, B2, …, Bm}
is randomly extracted from the promoter regions of the genes regulated by the
given TF, where |Bj| = L, Bj has no ‘‘N’’ letters and Bj does not overlap with Mi.
Considering the promoter region is much larger than a TFBS, we set
m = 10 9 n. A TFBS screening model is denoted as the classification function
f(X) [ {P, N}, where X [ P [ N.

Firstly, a similarity score between two fixed-length DNA fragments V = {v1,
v2, …, vL} and U = {u1, u2, …, uL} is defined to be Score(V, U) = (w1 9 S(v1,
u1) + w2 9 S(v2, u2) +���+wL 9 S(vL, uL)), where the weight vector W = hw1, w2,
…, wLi is the pre-calculated combination pattern, and wi[ [0, 1]. The nucleotide
similarity score matrix S(vi, ui) is defined to be 2 if vi = ui, 1 for A versus G or C
versus T, and -1 for the other pairs [18]. The combination pattern W = hw1, w2,
…, wLi will be optimized by an evolutionary algorithm, as described in the next
section.

This study chose the simple nearest neighbor algorithm as the classification
model f(X).

15 Evolutionary Optimization of Transcription Factor Binding Motif Detection 263



Position Weight Matrix (PWM) algorithm assumes that positions in a fixed-
length motif are independent to each other and calculates how a query sequence is
similar to the set of known motif occurrences [10, 19]. Firstly, a position con-

servation factor Mi is calculated as Mi ¼
P

b2 A;T ;C;Gf g ðfiðbÞ=N � P0ðbÞÞ2=P0ðbÞ;
i ¼ 1; 2; . . .; L; where fi(b) is the observed frequencies of nucleotide b at position
i in the set of known motif occurrences, and P0(b) is the background frequency of
nucleotide b. Then the position probability matrix (PPM) is calculated as:

PPM ¼

P1ðAÞ P2ðAÞ � � � PnðAÞ
P1ðTÞ P2ðTÞ � � � PnðTÞ
P1ðCÞ P2ðCÞ � � � PnðCÞ
P1ðGÞ P2ðGÞ � � � PnðGÞ

0

B
B
@

1

C
C
A;

where PjðbÞ ¼ fjðbÞ þ sðbÞ
� �

= N þ
P

b2fA;T ;C;Gg sðbÞ
n o

, and sðbÞ ¼ P0ðbÞ
ffiffiffiffi
N

p
is a

smoothing factor.
Then the position weight matrix (PWM) is calculated as

PWM ¼

w1ðAÞ w2ðAÞ � � � wnðAÞ
w1ðTÞ w2ðTÞ � � � wnðTÞ
w1ðCÞ w2ðCÞ � � � wnðCÞ
w1ðGÞ w2ðGÞ � � � wnðGÞ

0

B
B
@

1

C
C
A;

where wiðbÞ ¼ ln PiðbÞ=P0ðbÞf g:
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The standardized similarity score of a query sequence Q is defined to be

SðQÞ ¼
PL

i¼1 MiwiðQiÞ �
PL

i¼1 MiminfwiðbÞg
PL

i¼1 MimaxfwiðbÞg �
PL

i¼1 MiminfwiðbÞg
;

where Qi is the ith nucleotide in Q, and b [ {A, T, C, G}. For a cutoff S0, only if
S(Q) C S0, Q is defined as a binding motif of the transcription factor.

15.2.3 Prediction Performance Measurements
and Evaluation

Given the positive dataset P = {M1, M2, …, Mn}, and the negative dataset
N = {B1, B2, …, Bm}, where |Mi| = |Bj| = L. Mi is a true positive or false negative
if SNN(Mi) = P or N, respectively, whereas Bj is a true negative or false positive if
SNN(Bj) = N or P, respectively. For the classification model SNN(X), the numbers
of true positives, false negatives, true negatives and false positives are abbreviated
as TP, FN, TN and FP, respectively. The classification performance of the model is
measured by sensitivity (Sn), specificity (Sp), accuracy (Ac) and Matthews cor-
relation coefficient (MCC) [20, 21], which are defined as follows. Sn = TP/
(TP + FN), Sp = TN/(TN + FP), Ac = (Sn + Sp)/2, and MCC = (TP 9 TN -

FP 9 FN)/sqrt((TP + FP) 9 (TP + FN) 9 (TN + FP) 9 (TN + FN)), where
sqrt(t) is the squared root of t.

A line plot will be generated for the evolutionarily optimized combination
pattern W = hw1, w2, …, wLi for the comparison with the WebLogo plot. TFBS
screening algorithms usually use the visual technique WebLogo to demonstrate the
DNA compositions at each position in the TFBS, and a higher plotted position
suggests a larger information content [11]. An initial weight vector W0 ¼
hw0

1;w0
2; . . .;w0

Li is generated from a transcription factor’s WebLogo plot, by
scaling the information content at position i to [0, 1] as w0

i :
Two validation strategies are adopted to evaluate the classification algorithm

SNN’s prediction performance. Firstly, the algorithm SNN is investigated for its
leave-one-out (LOO) cross validation performance, i.e. iteratively choosing one data
entry and investigating its prediction by the classification model trained on the rest
data sets. The LOO validation strategy has been widely used to measure how a TFBS
or other functional element prediction algorithm performs [22, 23]. To further
investigate the dataset dependency of the proposed SNN algorithm, this study
conducted 3-fold cross validation (3FCV) strategy [24–26]. The basic idea is to
randomly split the positive and negative datasets into 3 equal-size subsets {P1, P2,
P3} and {N1, N2, N3}, respectively. The prediction results are iteratively investigated
for {Pi, Ni} using the SNN trained on P\Pi and N\Ni, where i = 1, 2, and 3. A self
validation (denoted as Self) is also used to evaluate the self consistency, which is to
evaluate how a classification model performs on the training dataset.
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15.2.4 Evolutionary Optimization Algorithm

This study proposed an evolutionary optimization algorithm to screen for the
weight vector with the best overall accuracy Ac of the algorithm SNN, as shown in
Fig. 15.1. The basic idea of an evolutionary optimization algorithm (EOA) is to
simulate the natural selection process [27, 28]. Each generation of individuals
produce children through the operations of crossing and mutation from a pair of
parents. A fitness function is defined to describe how each children fit the natural
selection pressure. A better fitness leads to a higher chance to survive into the next
generation. The population size is usually fixed to a constant value [11, 29–37].

Fig. 15.1 Procedure of the evolutionary optimization algorithm. 5 weight vectors with the best
accuracies Ac will be output
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The initial population W consists of PopSize individual weight vectors, i.e. Wi,
where i[{1, 2, …, PopSize}. Each individual Wi is an L-dimension vector
Wi ¼ hWi

0;Wi
1; . . .;W

i
Li, where Wi

j is a random value between 0 and 1.
MaxGen generations of natural mutation and selection are conducted to find the

fittest weight vectors. For a given weight vector Wi, an SNN classification model is
built, and the overall classification accuracy Ac with the 4-fold cross validation is
defined to be the fitness function Ac(Wi), as used in step 5. For the population of
weight vectors W, Top5(W) consists of 5 weight vectors with the best fitness in the
population. The final top 5 weight vectors together with the performance mea-
surements of their classification models are output.

15.3 Results and Discussion

15.3.1 Best Parameters for EOA

There are two parameters for the evolutionary algorithm EOA, i.e. the population
size PopSize and the generation number MaxGen. Previous studies suggested that
PopSize = 100 performs well for the evolutionary optimization problems with
individual vector size *10 [38]. So we firstly fix PopSize = 100, and investigate
how the optimization goal, Ac, changes with the increased number of generations,
i.e. MaxGen. The parameter MaxGen is set between 0 and 5,000, and the step size
is 100. Q6MAZ and Q3 quickly reach the peak Ac value 1.00 after just Max-
Gen = 200 generations of optimizations, as shown in Fig. 15.2a. The TF genes
Ebox, Myc and P53 also reach very high Ac values ([97 %) at just Max-
Gen = 200. If we choose the Ac value at MaxGen = 5,000 as the final result, all
the six investigated TFs reach this peak value at MaxGen = 3,000, as shown in
Fig. 15.2a.

We further investigate how the parameter PopSize impacts the optimization
performance of EOA, as shown in Fig. 15.2 and Supplementary Figure S1. By
choosing PopSize [ {20, 40, 60, 80, 100, 120, 140, 160, 200}, the overall accuracy
Ac is calculated for generation G[{0, 100, 200, …, 4,900, 5,000} of EOA on each
of the six TFs. Figure 15.2 shows that the TFBS prediction problem of Q6 is the
most difficult to be optimized, and reaches the peak values at generations 3,800,
3,000 and 2,600 for PopSize = 60, 100 and 140, respectively. All the other five
TFs reach the peak Ac values before the optimization generation 3,000. Similar
patterns can be observed for other population sizes PopSize, as in Supplementary
Figure S1.

Considering that the running time of the evolutionary algorithm EOA increases
linearly with the product PopSize 9 MaxGen, and the above data, this study will
set PopSize = 100 and MaxGen = 3,000 for the following experiments.
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15.3.2 Comparison of PWM and SNN(W0)

We firstly compare the widely used PWM algorithm with the SNN algorithm.
WebLogo is also widely used to demonstrate the information content or conser-
vation at each position of a motif [11]. The higher a position is, the larger
information content this position has, as shown in Fig. 15.3. And the binding sites
of all the seven TFs do show significant patterns in information content of some
motif positions. So we hypothesize that the information content from WebLogo
plot may represent well the weight of each motif position for the SNN algorithm,
and the weight vector is denoted as W0.

Both PWM and SNN score the similarity of a query DNA sequence to the
known TFBSs, and this study chooses the cutoff score with Sn * Sp for the
comparison. In general, the SNN(W0) algorithm performs similarly well or slightly
worse compared with the PWM algorithm, as shown in Table 15.1. Both algo-
rithms produce *90 % or larger overall accuracy Ac for the TFBS motif screening
problem, and the TF Q3 even receives 100 % accurate separation of the positive
and negative data entries from both algorithms under the two validation strategies.
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Fig. 15.2 Distributions of overall classification accuracy, Ac, for different generation numbers.
The population sizes PopSize are fixed to a 100, b 60 and c 140, respectively
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The biggest difference between the two algorithms is for the TFBS motif screening
problem of Myc, where SNN(W0) performs 5.01 and 5.48 % worse in Ac than
PWM using the LOO and 3FCV validations, respectively. So our first hypothesis
about the usage of W0 is reasonable but may need further optimization.

15.3.3 Comparison of PWM and SNN + EOA

The next hypothesis is that there may exist a weight vector W = hw1, w2, …,
wLi with increased Ac value for the SNN algorithm. Besides the position inde-
pendent measurements, e.g. PWM or WebLogo, there is no available knowledge
about how to optimize the weight vector. So we choose to use the evolutionary
optimization algorithm to search for a weight vector with optimal overall accuracy
Ac by just random mutations in the weight vectors, as described in Sect. 15.2.4.

After the optimization of MaxGen = 3,000 generations of PopSize = 100
individuals (weight vectors), the motif screening algorithm SNN outperforms the
PWM algorithm in any performance measurements for all the seven TFs, as shown
in Table 15.2. The PWM algorithm achieves 100 % accuracy for the LOO vali-
dation of Q6MAZ and both LOO and 3FCV validations of Q3, and the

Fig. 15.3 WebLogo plots for the TFs. a Ebox, b Myc, c P53, d Q6MAZ, e Q601MAZ, f Q3 and
g Q6. The line plot is for the evolutionarily optimized weight vector by the SNN + EOA
algorithms for each TF
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SNN + EOA algorithm achieves such perfect classification. For the other tran-
scription factors, SNN + EOA outperforms PWM by 0.97–7.83 % in overall
accuracy Ac. The measurements MCC [ [-1, 1] evaluates how the prediction
results match the positive and negative datasets, and a larger MCC means a better
prediction. Besides the two TFs Q6MAZ and Q3 that both algorithms perform
equally well, SNN + EOA improves the MCC of PWM algorithm by
0.0327–0.2026. The PWM algorithm does not perform well on the dataset of the
well-known tumor suppressor P53, as in Table 15.2. It only achieves
Sn = 84.78 % and Sp = 96.74 % for the LOO validation of P53, and the overall
accuracy is only 90.76 %. SNN + EOA achieves a slightly better specificity
(Sp = 97.17 %) and a much better sensitivity (Sn = 100 %). A similar
improvement is also achieved by SNN + EOA for the 3FCV validation of P53.

It’s also interesting to observe that the weight vector achieving the best pre-
diction performance does not match the position independent measurement
WebLogo, as shown in Fig. 15.3. For the tumor suppressor P53, the optimized
weight vector does not agree with WebLogo at positions 4, 5 and 9, as shown in
Fig. 15.3c. The information content at position 4 is larger than that at position 5,
but their weights in the optimized vector weighs the two positions reversely. And
although the information content at position 9 only ranks 8th, position 9 has the
second largest weight. Similar discrepancy exists for all the seven investigated
TFs, as in Fig. 15.3, and suggests that a concerted weighing of different positions
is necessary for motif screening and other similar problems.
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