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Foreword

Structural bioinformatics, one of the hot spots of bioinformatics, is experiencing a
rapid development in recent years. In the genome era, proteomics, genomics, and
other data increase dramatically, providing a basis to clarify the problem of
essential physiological functions of nucleic acids, proteins, and other biological
macromolecules. Relative to the traditional sequence-based bioinformatics,
structural bioinformatics focuses mainly on the exploration of the structure and
function of biological macromolecules and their dynamic properties. Many human
serious diseases are generally associated with some of the key enzymes, ion
channels, or associated regulatory proteins. So, most of the new drug research is
designed targeting on these proteins. Compared to the previous experimental
approaches and sequence analysis, a more comprehensive knowledge of the
physiological and pathological mechanism of the drug and the target protein could
be obtained from the view of the spatial three-dimensional structure of these
molecules and their dynamic structural changes.

The primary problem structural bioinformatics has been trying to solve is that
we can build a protein model to fully reveal the nature of its structure and function
through the extraction and analysis of the current high-throughput data of
biological macromolecules, combining with structural biology knowledge and
bioinformatics methods. Besides, to deduce and predict the unknown molecular
structure and function based on the known one, and further to realize computer-
aided the design and customization of the structure of protein complexes is a long-
term goal.

This book represents comprehensive introduction and latest progresses in
various aspects of structural bioinformatics. It covers not only the knowledge of
mathematical and physical modeling theory, but also the computational methods
and its applications in structural bioinformatics. More important, it takes the latest
research achievements from the leading groups in this field as examples to illustrate
the basic molecular dynamic theory. The content of this book mainly includes the
basic knowledge of structural bioinformatics, genomics and proteomics sequence
acquiring and analysis, structures of protein, DNA and RNA, basic methods of
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molecular dynamic simulations and conformation search, the application examples
of computing simulation methods and the structure-based drug design, recent
research progress, and future prospects.

We are most grateful to professors and students in the class of ‘‘Structural
Bioinformatics’’ at Shanghai Jiao Tong University, where the main contents of this
book are accumulated.

Minhang, Shanghai, January 2014 Dongqing Wei
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Chapter 1
Introduction to Structural Bioinformatics

Qin Xu, Hao Dai, Tangzhen Zhao and Dongqing Wei

Abstract Structural Bioinformatics is one of the hot spots of interdisciplinary
sciences and obtained amazing advances in recent years. The first chapter over-
views the concept of structural bioinformatics, and briefly describe the contents of
this book. The interdisciplinary corporations make it difficult to further divide
structural bioinformatics, so the chapters in this book are roughly separated
according to the different fields of their applications. That is, fundamental
developments in methods of structural bioinformatics, tertiary structure prediction
and folding mechanism analysis, the binding mechanism and the interactions
between biological macromolecules and ligands, structure-based functional anal-
ysis of biological macromolecules, as well as the applications in drug design.

Keywords Structural bioinformatics � Structure of macromolecules � Structure-
based drug design

1.1 What Is Structural Bioinformatics

Structural Bioinformatics is generally looked as a branch of bioinformatics mainly
about problems of structural biology, which the word ‘‘structural’’ is referred to
here. In the early days, it was also named as ‘‘computational structural biology’’,
using the distinctive techniques of computational molecular simulations. And the

Q. Xu � H. Dai � T. Zhao � D. Wei (&)
State Key Laboratory of Microbial Metabolism, College of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
e-mail: dqwei@sjtu.edu.cn

� Shanghai Jiao Tong University Press, Shanghai
and Springer Science+Business Media Dordrecht 2015,
D. Wei et al. (eds.), Advance in Structural Bioinformatics, Advances in
Experimental Medicine and Biology 827, DOI 10.1007/978-94-017-9245-5_1
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research interests were mainly focused in analysis and prediction of the three-
dimensional structures and related functions of biological macromolecules such as
proteins, RNA, and DNA.

However, the fast developments in technologies and combinations with other
fields make structural bioinformatics more and more diverse and interdisciplinary.
Mathematics, statistics, informational sciences, bioinformatics, biophysics, com-
putational chemistry, structural biology, enzymology, medical engineering, phar-
maceutical sciences, and much more other disciplines are making contributions to
structural bioinformatics. In the meanwhile, its applications are expanding into
much more fields, like comparisons of overall folds and local motifs of both
primary, secondary and tertiary structures, structural and functional predictions,
molecular mechanism of folding/unfolding of macromolecules, evolution and
bioengineering, binding interactions in the macromolecules complexes like drug-
target complex, molecular mechanism of enzymatic catalysis, as well as other
structure-function relationships. In addition to its wide application in the resear-
ches of biological sciences, it is showing more power in the industries of bioen-
gineering and drug developments.

The award of 2013 Nobel Prize in Chemistry to Martin Karplus, Michael Levitt,
and Arieh Warshel ‘‘for the development of multiscale models for complex
chemical systems’’ is, in a way, recognition of the importance of computational
techniques in chemistry and biology. However, the computational methods are not
opposite to the experimental ones, but complimentary and embedded into them,
boosting the developments of more new and advanced techniques and methods to
be used. Finally, these new methods might result into a new field of technologies
or sciences. Here, structural bioinformatics is a successful example: the advances
in this interdisciplinary science have gradually made it an unignorable discipline.

1.2 What Is in This Book

The fast developments in structural bioinformatics attracted more research inter-
ests, brought more collaboration from different scientific scopes, and resulted into
more advances, both in methodology and in applications. In this book, some of
these new advances in structural bioinformatics are introduced, so that the
researcher interested in this new field could get some new idea in the scientific
developments or interdisciplinary collaborations from these successful examples.

The diverse interdisciplinary combinations make it difficult to trace the
development of structural bioinformatics in a single line or divide it into sub-
disciplines. But the emergence of structural bioinformatics could be somewhat
simply explained as the application of new bioinformatic technologies into the
research of structural biology. Therefore, in this book the chapters are organized
roughly according to the different applications of the new techniques, additional to
those advances with more emphasis on methodology, which are described briefly
in the sections below.

2 Q. Xu et al.



1.2.1 Part I: Advances in Methods for Structural
Bioinformatics

In Part I, we first introduced several new advances to improve the methodology of
structural bioinformatics in different fields, like sequencing, molecular simulation
and in silico computational chemistry.

Chapter 2 is about program JVM, a powerful tool for mapping next generation
sequencing read to reference sequence. It can deal with millions of short read
generated by sequence alignment using the Illumina sequencing technology,
employing seed index strategy and octal encoding operations for sequence
alignments. It is implemented in Java and designed as a desktop application, which
supports reads capacity from 1MB to 10 GB. JVM is useful for DNA-Seq,
RNA-Seq when dealing with single-end resequencing.

Molecular simulation is always one of the major methods of structural bioin-
formatics. The contribution of molecular simulation to the developments of
chemistry was recently recognized by the 2013 Nobel Prize in Chemistry. The
various methods of simulations have covered a diversity of biological scales now.
The most popular method, the classical molecular dynamics is fully depended on
the force field used. One of the current hot spots of force fields is how to deal with
the influence of the electrostatic polarization. In Chap. 3, we review the history of
the classical force fields and polarizable force fields, together with its application
on small molecules and biological macromolecules simulation, as well as
molecular design. In the meantime, various coarse-grained (CG) approaches have
also attracted rapidly growing interest in this field of research, because they enable
simulations of large biomolecules over longer effective timescales than all-atom
molecular dynamics (MD) simulations. Chapter 4 reviews the recent development
of a novel and systematic method for constructing CG representations of arbitrary
biomolecules, which preserves large-scale and functionally relevant essential
dynamics (ED) at the CG level. This method may serve as a very useful tool for
the identification of functional dynamics of large biomolecules at the CG level. In
Chap. 5, techniques of rare event dynamics are reviewed, followed by further
discussion on the intrinsic difficulties to calculate free energy of rare events and
the introduction of several well-developed free energy calculation methods. Then
several examples of free energy calculations are illustrated, like the calculations on
the drug binding in the M2 proton channel, as well as the insertion and association
of membrane proteins and membrane active peptides.

In Chap. 6, the automatic fragmentation quantum mechanics/molecular
mechanics (AF-QM/MM) is introduced to calculate the ab initio NMR chemical
shifts so as to improve protein structure determination and refinement. Using the
Poisson-Boltzmann (PB) model and first solvation water molecules, the influence
of solvent effect is also discussed. Benefit from the fragmentation algorithm, the
AF-QM/MM approach is computationally efficient, linear-scaling with a low
pre-factor, and massively parallel.

1 Introduction to Structural Bioinformatics 3
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1.2.2 Part II: 3D-Structure Prediction and Folding
Mechanism of Biological Macromolecules

Part II focuses on one of the main applications of structural bioinformatics since its
early days, that is, the structural prediction and analysis on the mechanisms of
folding/unfolding of biological macromolecules. Without good understanding of
the structure of the research objects, any in-depth study is questionable.

The case in Chap. 7 is about the research of the extend structure of human islet
amyloid polypeptide (hIAPP). The human IAPP aggregates easily, so it is difficult
to characterize its structural features by standard biophysical tools. The problem
was solved by using rat version of IAPP (rIAPP) as substitute which differs from
human IAPP by six amino acids and is not prone to aggregation and does not form
amyloid fibrils and similar to human IAPP, it demonstrates random-coiled nature.
However, the overall shape of it in solution still remains elusive. Using small angle
X-ray scattering (SAXS) measurements combined with nuclear magnetic reso-
nance (NMR) and molecular dynamics simulations (MD) the solution structure of
rIAPP was studied and an overall random-coiled feature with residual helical
propensity in the N-terminus was confirmed eventually.

The application of structural bioinformatics on the analysis of protein folding
mechanisms is illustrated by two examples in Chaps. 8 and 9. In Chap. 8, the folding
mechanism of two trefoil knot proteins was simulated under high temperature using
all-atom Gō-model. Similar results of the folding process were obtained for the two
proteins. That is, the contacts in b-sheet are important to the formation of knot
protein. Without these contacts, the knot protein would be easy to untie. In Chap. 9,
the folding mechanism of intrinsically disordered proteins upon partner binding was
simulated under room temperature as well as high-temperature. The former suggests
both nonspecific and specific interactions between the intrinsically disordered
proteins and the partner, while the latter shows the kinetics of a two-state process for
both the unfolding of apo-states and the unbinding of the bound states. Based on the
results of the unfolding processes, the folding pathway of bound intrinsically dis-
ordered protein was proposed as: unfolded state, secondary structure folding, tertiary
folding, partner binding, and finally to the folded state. In addition, induced-fit
mechanism was suggested for the specific recognition between intrinsically disor-
dered protein and its partner using Kolmogorov-Smirnov (KS) P test analysis.

In the rest part of Part II, we presented applications of structural bioinformatics
in the studies of DNA and RNA folding. Chapter 10 discusses the folding
mechanisms of different DNA G-quadruplexes, which could be a promising
anticancer target. In this study, the folding of the thrombin aptamer, Form1 and
Form3 G-quadruplexes were simulated with all-atom Gō-model and analyzed by
the energy landscape theory, and all were suggested to be a two-state mechanism:
the compact structures are formed in the initial stage of the folding process, then
they are folded to the native states through the formation of G-triplex structures.
The free energy barrier to fold Form 3 G-quadruplex is higher than those to fold
thrombin aptamer and Form1, suggesting higher stability of Form 3 G-quadruplex

4 Q. Xu et al.
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than those of the other two G-quadruplexes. In Chap. 11, we review the recent
experimental and theoretical progress, especially the theoretical modeling of the
three major problems in RNA folding: structure prediction, folding kinetics and
influence of ion electrostatics.

1.2.3 Part III: The Interactions Between Biological
Macromolecules and Ligands

Part III emphasizes on the interactions between macromolecules like protein or
DNA/RNA and small ligand molecules, especially possible drug like compounds.

Chapter 12 studies the interactions between DNA base pairs and methylene
blue trihydrate, a dye and therapeutic agent possibly to be inserted into two
adjacent DNA base pairs. Thus it is called a DNA intercalator. Its binding mode
with different base pairs was evaluated and compared using a series of quantum
mechanical methods, including various semi-empirical methods, DFT methods
and ab initio methods. The results showed that the DFT method WB97XD with
6-311+G* basis set best reproduced the result of the expensive ab initio method
MP2 and determined that the best binding mode was into the AA-TT base pair
according to the binding energies and charge density analyses.

Chapter 13 is about the influenza A virus matrix protein 2 (M2 protein), a
pH-regulated proton channel crucial to the viral infection and replication. In this
chapter, the experimental and computational studies of the two possible drug binding
sites on the M2 protein were reviewed to explain the mechanisms for inhibitors to
prevent proton conduction, the recent molecular dynamics simulations of the inter-
actions between amantadine and drug-resistant mutant channels were summarized to
propose mechanisms for drug resistance, and two proton conduction mechanisms in
debate were discussed to further illustrate the applications of structural bioinfor-
matics to understand the structure and functions of this interesting membrane protein.

In Chap. 14, the studies of protein-ligand interactions are in a totally different
way, in which massive information about ligand bioactivity and the target protein
structures were summarized into the ligand-protein networks so as to elucidate
possible ‘‘multi-component—multi-target’’ mechanism of the traditional Chinese
medicine (TCM) from its complex composition and unclear pharmacology.

1.2.4 Part IV: Functional Analysis of Biological
Macromolecules

It is generally believed that the functions of biological macromolecules are in
some ways determined by their structures, including primary structures, secondary
structures and tertiary structures. Therefore, one of the major applications of
structural bioinformatics is to analyze or predict the functions, activities,
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specificities, binding affinities, etc., of protein, DNA/RNA, their complexes or
some domains of these biological macromolecules according to their sequences or
3D structures. In this chapter, several examples are illustrated.

In Chap. 15, the primary structure of a DNA fragment is used to predict the
possible binding sites (BSs) of a given transcription factor (TF). Based on the
hypothesis that positions contribute differently to the motif scoring according to
their nucleotide frequency patterns, this method formulated the position contri-
bution as a weight for the position, randomly mutated the weights of different
positions in the binding motif by an evolutionary algorithm, and optimized the
overall TFBS prediction accuracy. It obtained better or similar performance in
sensitivity, specificity, accuracy and Matthews correlation coefficient as the clas-
sical algorithm, Position Weight Matrix (PWM), and suggested the widely used
assumption of independence between motif positions to be invalid.

Similarly, in Chap. 16 a new predictor named as cPhosBac is introduced to
predict serine/threonine phosphorylation sites in bacteria proteins based on their
primary structures. The predictor used the composition of k-spaced amino acid
pairs (CKSAAP) method to encode the sequence context surrounding the phos-
phorylation sites, the motif length selection algorithm to optimize the length of the
surrounding sequence, and the support vector machine (SVM) algorithm to clas-
sify the positive sites from negative sites. This method achieved promising per-
formance and supports online services at http://netalign.ustc.edu.cn/cphosbac/.

In Chap. 17, we present a review on the available resources and methods for
discovery and analysis of the single nucleotide polymorphisms (SNPs) in human
cytochrome P450. A new method is illustrated as the example of computational SNPs
prediction, which uses DNA sequence-based features like nucleotide composition,
neighboring SNPs, and CpG dinucleotides occurrence. In addition, the current pro-
gress in the methods of annotation and prediction offunctional SNPs are summarized.

In the last part of Part IV, the tertiary structure of cytochrome P450cam was
used for QM/MM simulations to analyze the mechanism of the second protonation
of P450cam. In this example, in order to explore the key factors for the coupling
and uncoupling reactions, five 3D models suggesting five possible proton transfer
pathways were build, in which two of them led to the coupling reaction while the
other three resulted in uncoupling products. Analyses on the simulation results
suggested the key factors for the high coupling rate of this enzyme is the Asp251–
Thr252 channel, through which the second proton is transferred to the ideal
position for coupling reaction.

1.2.5 Part V: Application of Structural Bioinformatics
in Drug Design

Drug design is always one of the focuses of applications in structural biology and
biochemistry. In recent decades, the burst of computational power boost the
emergence of a diversity of new sciences and technologies, including structural
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bioinformatics. Logically, it is quickly applied into the discovery and design of
new drugs, such as the in silico structural or functional analyses on the target
proteins, the virtual screening of drug candidates, constructions of databases and
drug-target interaction networks, and so on. The applications of the new methods
of structural bioinformatics are often surprising and interesting. Here only limited
examples are introduced in this chapter.

Cytochrome P450 (CYP) families have been one of the hot spots in drug
discovery and development for a long time, because of their critical role in human
drug metabolisms. In Chap. 19, several structural bioinformatic studies on CYP
are described, including the long-range effects of peripheral mutations on the
catalytic activity of CYP1A2, the pharmacophore model for the active site of
CYP1A2 and the preliminary prediction of functional consequences of single
residue mutation in CYP. The impact of these results on the drug development,
especially on the metabolic profile of the drug candidates is also discussed. On the
other hand, Chap. 20 focuses on how the structural bioinformatic studies on SNPs
of human cytochrome P450 could contribute to personal drug design and opti-
mization of clinic therapies, such as to identify most possible genes associated
with the therapeutic targets of given human diseases, to predict the drug efficacy
and adverse drug response, to explore individual gene specific properties, etc. The
application of diverse structural bioinformatic methods reviewed in this section is
expected to greatly improve the current 30–40 % of drug efficacy and lower the
possible adverse drug responses of specific patients with personalized medicines
and treatments.

In Chap. 21, we introduced a study respect to nicotinic acetylcholine receptors
(nAChRs), an ion channel in the central or peripheral nervous system that might be
a possible target for Alzheimer’s disease. Here the structure of the agonist binding
site of a7 nAChR is analyzed to propose its interaction with the agonists, a
pharmocophore model of the agonists is designed to explain their selectivity for a7
nAChR, and a brief review of the agonists discovered by far is summarized to
confirm the proposed model. Another case of the drug design for resistant HIV is
illustrated in Chap. 22, where the current challenges in the experimental and
bioinformatic researches for anti-HIV therapy is reviewed, and a series of new
Bayesian statistical modeling method are described as a powerful tool comple-
mentary to biochemical analysis and molecular simulations to understand the HIV
drug resistance and to help the drug development for HIV.
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Chapter 2
JVM: Java Visual Mapping Tool for Next
Generation Sequencing Read

Ye Yang and Juan Liu

Abstract We developed a program JVM (Java Visual Mapping) for mapping next
generation sequencing read to reference sequence. The program is implemented in
Java and is designed to deal with millions of short read generated by sequence
alignment using the Illumina sequencing technology. It employs seed index
strategy and octal encoding operations for sequence alignments. JVM is useful for
DNA-Seq, RNA-Seq when dealing with single-end resequencing. JVM is a
desktop application, which supports reads capacity from 1 MB to 10 GB.

Keywords Mapping � Reads � Algorithms � Next generation sequencing �
Program

2.1 Introduction

Over the past 5 years, tens of read mapping programs were published to copy with
Illumina sequencing data. But there are some problems have to be pointed out. The
first is the limitation of the operating system (OS). Most of programs is designed by
C++ language and only can be used on Unix/Linux OS. The biologist is boring by
using Unix/Linux OS. Based on a survey on OS user, more than 90 % of users are
used to apply ‘‘Windows’’ OS; almost 7 % of users are willing to use ‘‘Mac’’ OS
provided by Apple Inc. So the program meeting the need of Multi-OS is required.
The second is the restriction of the memory usage. Traditional sequence alignment
softwares like MAQ [1], BWA [2], SOAP [3] are high memory consumption
programs, and it is difficult to run these programs on the laptop normally. Therefore
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the program with low memory consumption is needed. The last is the confusion of
the parameter settings. There are so many parameters in most of the existed tools that
it is difficult for a user to know how to set parameters to finish the alignment. In this
work we present a new program JVM (Java Visual Mapping), trying to address to
above three problems.

JVM is a desktop application program implemented with Java language, by
which the user only needs mouse actions to fulfill the alignment. The best hit of
each read which has zero number of sequence mismatch or gap will be reported.
The read has multiple hits will be reported in the final list. JVM can handle reads
around 11–1000 bp long, and can deal with single-end reads of FASTQ format
files which produced by Illumina sequencing platform. JVM supports file sizes
ranging from 1 MB to 10 GB. In order to run the program successfully, a Java
Runtime Environment version 6.0 or later is required.

2.2 Problem Statement

Read document is a FASTQ format file with four lines per sequence. Line 1 begins
with a ‘@’ character and is followed by a sequence identifier and an optional
description (like a FASTA title line). Line 2 is the raw sequence letters. Line 3
begins with a ‘+’ character and is optionally followed by the same sequence
identifier (and any description) again. Line 4 encodes the quality values for the
sequence in Line 2, and must contain the same number of symbols as letters in
Line 2 [4].

The genome sequence document is a series of characters, each character is
either a nucleic acid represented as A, G, C, or T, or an unknown character, named
N [5]. This document contains the genome chromosome information.

Read alignment (mapping) is the course of sequence mapping. JVM takes read
query sequences with equal length and a database of reference genome sequence as
input. Read alignment is just to locate the right places where reads have a perfect
alignment to reference genomes. JVM finds all valid alignment that satisfied the
constraint on zero error in the set of query sequence.

2.3 Preprocessing

To addresses the problem of too much of the memory spending, we adopt the
following preprocessing strategies in JVM.
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2.3.1 File Block

The size of a human reference genome document has around 2–3 GB. A read
document generated from Illumina platform has a size from 2 to 4 GB. JVM first
intelligently separate the read document into several parts, separate the reference
document base on the information of chromosome name, and write each part into
the disk. Then it maps each read block to a specified chromosome. The Fig. 2.1
illustrates the mapping strategy of choosing read and reference part.

Through this way, we can reduce the peak memory consumption when reading
the large capacity files.

2.3.2 Octal Encoding and Sequences Compressing

Problem 1: octal encoding

JVM uses five octal digits to represent each base in read and reference document.
The symbols A, C, G, T and N are encoded as 0, 1, 2, 3, 4 respectively. Take a
string ‘GGGANAACAT’ as an example, this string is encoded as octal string:
(2220400103)8 (see Table 2.1).

Read document :

(divide into 4 parts) :

Reference document:

R1

CH1

R2 R3 R4

CH2 CH3 CH4

CH5 CH6 CH7 CH8

Fig. 2.1 A simulated image of the mapping strategy

Table 2.1 An example of
octal encoding and string
compressing

String S GGGANAACAT

Octal encode 2220400103

Compressed value 306315331
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Problem 2: sequences compressing

We denote a reference genome sequence as R = R(1, 2,…, m), the query read
sequences as the set Q(q1, q2, …, qn), where m is the total bases of reference
genome, n is the number of short read; we also let each sequence length be
L(10\L\1,000). Alignment progress is the problem of mapping Q to R.

Reference compressing: We construct a new string P = P(1, 2,…, m) by using
octal encoding. We partition the r into a set of factor F1, F2, …Fm - L + 1,
where Fi = r(i, i + 1,…, i + L - 1), for 0 \ i \=m - L + 1. In view of the
range of integer type, we transform every 10 octal encoded number into a decimal
value and store this numeric into an integer array. In this way, we can reduce
memory cost five times when load a long sequences set into main memory.
Table 2.1 give an example of the encoding and compressing progress.

Read compressing: Similarly, we can deal with the read document in the same
way. We abstract the base sequences from the read and then encoding and com-
pressing the base sequences into an integer array. We define the read array set as
Q(1, 2,…n).

2.4 Method

JVM is a visualization tool that by using the mouse operation to complete read
mapping and then create a file of ‘‘.SAM’’ format as the output result. In order to
accelerate alignment, we take various measures to speed up the efficiency of JVM.

In the section of preprocessing, both reads and the reference sequences are
converted to numeric data type using octal encoding for each base. We set the
numeric reference as F(i)(0 \ i\= m, and i [ 108), and numeric read as
Q(j)(0 \ j\= n, and j [ 107). As the progress of read alignment, we use the non-
recursion quick sort algorithm combine with seed index strategy to complete
ascending sort of F(i). Then using the seed index to quickly position the Q(j) to
F(i). At the end of this section, we would give the time complexity of JVM.

The steps of our method are as follows.

Step 1.

Save the reference and read documents into memory. We get a numeric ref-
erence set F(i) and store each F(i) into an integer array Ai[t], for t = dL/10e. Then
we add Ai[t] to a list T. In this way, reference document is compressed into list T,
and reduces the size of reference document for five times. We use the same
strategy to copy with the read document Q(n).
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Step 2.

Build the seed index. We extract every Ai[0] (the first element of Ai[]) from list T.
We call Ai[0] as seed index. Then we load Ai[0] into a hash index array B[m -

L + 1]. The number of element in B[m - L + 1] almost equal with the number of
bases in reference document. In other words, B[m - L + 1] has an big order of
magnitude. Considering the memory overflow, we use non-recursive quick sort
algorithm to sort the B[m - L + 1]. At the same time, we save the original position
of every F(i) so as to keep the exact location of F(i). Non-recursive quick sort
algorithm is based on the divide-and-conquer strategy and takes O(m log m) time to
sort B[m - L + 1].

Step 3.

Index search and read alignment. We get the read sequence element array from
Q(n). To find the best hit of Q(j)(0 \=j \ n), we get the first element of each array
that is Q j (0), then map it to reference array set B[m - L + 1]. To improve the
ability of searching speed, we search the B[m - L + 1] base on the divide-and-
conquer strategy. And this take O(log m) time to find the best hit.

For three steps, in step 1 can be done in O(mL + nL) time. Step 2 should be
done in O(m log m) time. Step 3 runs in O(n log m). So the overall time com-
plexity is O(m log m + n log m).

2.5 Result

2.5.1 Test by Simulated Dataset

To evaluate speed and accuracy of JVM, we compared JVM with MAPNEXT [6]
and WHAM [7]. We had mapped a simulated dataset of 246,558 49 bp-long Illu-
mina single-end resequencing reads. Our reference genome is a dataset simulated
the structure of the zebra fish genome NCBI Zv9. To guarantee a fair comparison,
we ran the three programs on a same virtual machine and set the mismatch
parameter as 0. The OS of this machine is Linux CentOS.5.4. The configuration of
this machine includes 2G of main memory, dual 2.00 GHz AMD Turion 64 2-core
CPUs. We also test JVM on the Windows OS with the Java Virtual Machine
memory with 1.6 G. Table 2.2 shows the performance of each program.

As the result in Table 2.2, JVM has the similar performance on both Linux and
Windows OS. Although WHAM is much faster and has more numbers of read
mapped to reference, it needs to write parameters and build an index on the
reference genome. In addition, WHAM ignores the memory limitation from per-
sonal computer during the mapping progress. JVM has a better performance than
MAPNEXT on both speed and mapping rate.
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2.5.2 Test by Real Datasets

We evaluate three programs on a computer with dual 2.00 GHz AMD Turion 64
2-core CPUs, and 4G of DDR2 main memory, running Linux OS. We choose two
real datasets containing 20,099,013 and 17,680,937 Illumina single-end rese-
quencing reads (length 49 bp), which were generated from mRNA-Seq of zebra
fish. We call the two datasets as dataset 1 and 2. Two read files are two different
growth stages of zebra fish. Concerning the time consumption and feature of JVM,
we get the same part from dataset 1 and mapping to the zebra fish chromosome 25,
the result of three programs show in Table 2.3. In the same way, we take out part
of dataset 2 and mapping to the chromosome 22. It gives the performance of each
program. We finally run JVM on Windows 7 OS with the same computer con-
figuration in the previous tests.

In the article of WHAM, the author claimed and verified that WHAM was a
very fast alignment method. It is often orders of magnitude faster than BOWTIE
[8] and RBSA [9]. From the results shown in Table 2.3, total time consumption of
WHAM is much less than JVM and MAPNEXT. That is, we also confirmed its
conclusion by our experiment. Although JVM is not as fast as WHAM, JVM has a
better performance on mapping number. JVM has mapped nearly 20 % more reads
than WHAM.

JVM has great advantage over MAPNEXT on time consumption. JVM finished
alignment in 235.670 s, while MAPNEXT done in 480.000 s. In terms of mapped
reads, MAPNEXT has only 1001 reads mapping to chromosome 25, but JVM has
found 37009 reads, it is dozens of times to MAPNEXT.

Table 2.3 Mapping 20,099,013 49 bp-long real reads to the zebra fish chromosome 25
(38,499,472 bp)

Program Total time (s) Read aligned

JVM (on Linux) 235.670 37009

WHAM (on Linux) 25.685 31571

MAPNEXT (on Linux) 480.000 1001

JVM (on Windows) 243.890 37009

Table 2.2 Mapping 246,558 49 bp-long simulated reads to simulated the structure of the zebra
fish genome NCBI Zv9

Program Total time (s) Read aligned

JVM (on Linux) 47 224

WHAM (on Linux) 0.57 953

MAPNEXT (on Linux) 53 184

JVM (on Windows) 54 224
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We also run JVM on Windows 7 OS, we get the same result as that on the
Linux OS.

In order to valid the effectiveness of the results in Table 2.3, we not only adjust
the read and reference document, but also reset parameters on indexing and
mapping progress of WHAM and MAPNEXT. As it is indicated by Table 2.4, the
same result can be concluded.

2.5.3 Conclusion and Discussion

As it is demonstrated by above analysis, our developed JVM does a better overall
performance than MAPNEXT. And JVM can find more hit reads than WHAM.
Based on the efficiency and sensitivity on alignment, we believe that further
development and functionality research is not only necessary but also feasible.

We have to admit that JVM is still in the process of improving. As a feature of
JVM different from other software, file block is the first target which should be
deal with. Now that the order of read part document aligned to reference chro-
mosome document is defined, as the example showing in Fig. 2.1, we can take
parallel processing method to accelerate the alignment speed. We can regulate the
number of parallel threats based on the total number of physical cores in test
machine. So application of parallelization processing mechanism in JVM is the
next work we should to do.

In addition, alignment is just the first step in analysing and processing the next
generation sequencing data. Further researches based on JVM such as gene fusion
and gene expression profiles will be launched.
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Chapter 3
Advancement of Polarizable Force Field
and Its Use for Molecular Modeling
and Design

Peijun Xu, Jinguang Wang, Yong Xu, Huiying Chu, Jiahui Liu,
Meixia Zhao, Depeng Zhang, Yingchen Mao, Beibei Li, Yang Ding
and Guohui Li

Abstract The most important requirement of biomolecular modeling is to deal
with electrostatic energies. The electrostatic polarizability is an important part of
electrostatic interaction for simulation systems. However, AMBER, CHARMM,
OPLS, GROMOS, MMFF force fields etc. used in the past mostly apply fixed
atomic center point charge to describe electrostatic energies, and are not sufficient
for considering the influence of the electrostatic polarization. The emergence of
polarizable force fields has solved this problem. In recent years, quickly developed
polarizable force fields have involved a lot of fields. The chapter relating to
polarizable force fields spread over several aspects. Firstly, we reviewed the his-
tory of the classical force fields and compared with polarizable force fields to
elucidate the advancements of polarizable force fields. Secondly, it is introduced
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that the application of polarizable force fields to small molecules and biological
macromolecules simulation, including molecular design. Finally, a brief devel-
opment trend and perspective is given on rapidly growing polarizable force fields.

Keywords Polarizable force field � AMOEBA � Fluctuating charge model �
Induced point dipole model � Molecular modeling

3.1 History of Classical Force Fields

Molecular force fields are mainly based on a kind of potential energy descriptions
at different atomic and molecular levels, and can describe the topological struc-
tures and dynamic behaviors of molecules. Molecular force fields are usually
adopted to calculate the energies of molecules by using positions of atoms, and
greatly speed up calculations compared to quantum mechanics, thus it can be used
to study the systems that contain tens of thousands of atoms. Many researches have
shown that many physical problems of molecular systems can be explained based
on molecular force fields.

In 1930, Andrews [1] first proposed the basic conception of molecular force fields,
a bead-spring model was applied to describe the bond length and bond angle, and
compute the interactions of non-bonded atoms by using van der Waals interaction
expressions. Hill subsequently used process of molecular deformation under Van der
Waals interaction to optimize the energies of systems and obtain a reasonable
structure in 1946. Then Lifson et al. [2] described consistent force field (CFF) called
empirical function force field in 1960s, and it should belong to the modern molecular
force field. With the rapid development of molecular mechanics, so far, molecular
force fields have been developed many dozens. There are CFF [2], MM1, MM2 [3],
AMBER [4], CHARMM [5] etc. in early molecular force fields, these force fields are
only limit to several kinds of atom types and some atoms of orbital hybridization, and
they are mostly applied to simulations of organic molecular system.

There are two different types in the later development of the force field, such as
the accurate type and complete type. The MM3/MM4 [6, 7], SHARP [8], MMFF
[9], and OPLS [10] etc. are belonged to the accurate type force field. These force
fields adopt simple functional form, and the number of force field parameters range
from 10 to 100. They are generally applied to simple system and local specific
system. The complete type force fields include DREIDING [11], UFF [12],
COMPASS [13], AUA [14] etc., their parameters of force field are more than 100.
This kind of force fields cover almost the whole periodic table of elements, many
metal organic compounds, and a number of complicated ring compounds involving
the orbital hybridization atoms, thus they are more universal.

Among the above molecular force fields, the AMBER, OPLS, CHARMM,
MMFF force fields etc. are mostly used in the simulations of the biomolecules,
while the MM4, DREIDING, UFF, COMPASS etc. are applied to the simulations
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of the material science. Currently, three force fields AMBER, OPLS and
CHARMM are also used for the modeling of the ionic liquids. In addition, the MM
series force fields and CFF are suitable for the system of organic compounds. In
the 1980s, molecular force fields such as AMBER, CHARMM, OPLS and
GROMOS produce a positive impact on the research of life science, and promote
the development of the molecular force fields targeting life science.

Assisted model building with energy refinement (AMBER) force field.
AMBER force field is one of the earliest molecular force field used for the research
of biological macromolecules, and covers the simulations of proteins, DNA,
monosaccharide and polysaccharide. In this force field, –CH2– and –CH3 are regard
as united atom and used to treat hydrogen bonding interactions. The simulation
results show that the AMBER force field can obtain reasonable molecular geom-
etry, conformation energy, vibration frequency and solvation free energy. The
parameters of the AMBER force field are obtained as follow, the parameters of
equilibrium bonds length and angles are from the experimental data of microwave,
neutron scattering and molecular mechanics calculations, the distorted constants are
built by microwave, NMR and molecular mechanics calculations, the non-bonded
parameters are obtained through the unit cell calculations, and the parameters of
atomic charges are given by the calculations of local charge model and ab initio
quantum mechanics. For non-bonded interactions within neighboring four atoms in
the AMBER force field, the electrostatic interactions are reduced to1/1.2 of other
atoms, while the van der Waals interactions reduced to 1/2 of other atoms. The bond
stretching and angle bending energies in the AMBER force field are calculated
using the harmonic oscillator model, dihedral angle torsion energy is described by
Fourier series form, Lennard-Jones potential is chosen to represent the van der
Waals force, and the Coulomb formula is applied to estimate the electrostatic
interactions. The functional form of AMBER force field is shown as follows

�ij ¼
4eiiejj

e1=2
ii þ e1=2

jj

� �2

where r; h; / are the bond length, angle and dihedral angle, respectively. The forth
term represents the sum of the van der Waals and the electrostatic interactions, and
the fifth term is the hydrogen bonding interactions.

Optimized potentials for liquid simulations (OPLS) force field. The OPLS
force field includes united-atom model (OPLS-UA) and all-atom model (OPLS-AA),
and it is suitable for the simulations of organic molecules and peptides [15]. The bond
stretching and bending parameters of OPLS force field are obtained based on the
modifications of the AMBER force field. This force field is committed to calculate
conformation energies of gas-phase organic molecules, solvation free energies of
pure organic liquids and other thermodynamic properties. The OPLS force field is
represent as follows

Chemistry at Harvard molecular mechanics (CHARMM) force field. The
CHARMM force field is developed by Harvard University, and the force field
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parameters are not only from the experimental results, but also involve many
results of quantum chemical calculations. This force field is mostly used to study
multi-molecular systems including small organic molecules, solutions, polymers,
biochemical molecules etc. [16] it can also be used to perform energy minimi-
zation, molecular dynamics (MD) and Monte Carlo (MC) simulations. The form of
CHARMM force fields is as follows

In the CHARMM force, hydrogen bonding interaction energies are computed
by the expression form as follow where sw is defined as a switching function, and
it is used to control the range of the hydrogen bonding interaction. The subscripts
on and off indicate the start and termination point to calculate the bond lengths and
angle values relating to hydrogen bonds in this function.

Force fields in themselves are not correct forms. If the performance of one force
field is better than another one, it should be desirable. According to selected
different simulation unit, the force field can be divided into all-atom models such
as OPLS-AA and united-atom models such as OPLS-UA model. In all-atom
model, one atom is regarded as a motion unit, while a alkyl group is took as an
imaginary motion unit in the united-atom model. In present, the application of the
classical force fields becomes more and more universal [17–25].

3.2 Advancement of Polarizable Force Fields

Due to the smaller amount of calculations and relatively accuracy, the classical
force fields gradually become an important tool of biomolecules simulations, and
of course, the results of molecular simulations depend on the quality of the force
field. So far, the most of current force fields such as OPLS and CHARMM are
limited to the theoretical model. In the calculations of electrostatic interactions of
the biomolecules, the classical force fields are based on the model of fixed point
charge focusing on the atom center, and ignore the electrostatic polarization and
the intermolecular and intramolecular charge transfer. If solutes are put into the
water-like solvent with a large dielectric constant, or when ions with a larger
charge close to a neutral molecule, it will lead to the strong electrostatic polari-
zation phenomena. Therefore, the polarizations can produce an important impact
on the energies and structures in the process of the molecular recognition; and
significantly reduce the partial electrostatic interactions between the atomic
charges. The appearance of polarization force field can solve this problem.
20 years ago, the polarized force field was first introduced to elaborate the change
of charge distributions in the dielectric environment. In the past 5 years, the
polarized force fields are quickly developed, and it has been applied to many
systems ranging from waters to metal enzymes. It should be noticed that the
polarization model of water is of a good understanding in the advantages or
limitations, furthermore effective insights into the polarization model of the
polypeptide and protein-specific parameters are also obtained.
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Recently, with the rapid development of the polarized force fields, a dozen
different polarizable force fields come out. (1) A polarized force field base on a
fragment-based electronic structure method is introduced by Gao [26, 27] at the
University of Minnesota. This force field adopts the theory of the electronic
structure of the explicit polarization (X-Pol) theory, and it can be used at any level
of theory such as the ab initio Hartree-Fock (HF), semiempirical molecular orbital
theory, correlated wave function theory, and Kohn-Sham (KS) density functional
theory (DFT). In 2008, it is capable of performing more than 3,200 steps (3.2 ps)
of MD simulations of a fully solvated protein in water with periodic boundary
conditions, consisting of about 15,000 atoms and 30,000 basis functions on a
single processor in 24 h, with a full quantum mechanical representation of the
entire system [28]. Note that the first MD simulation of a protein by Gelin,
McCammon and Karplus in 1979 lasted just over 9 ps using a United-Atom force
field without solvent [29]. (2) Based on the induced dipole polarization force field,
CFF/ind and ENZYMIX, which is the first polarizable force fields [30], have been
applied to many biological systems, DRF90 is developed by Van Duijnen et al. and
PIPF force field developed by Gao [31, 32], which is induced point dipole force
field targeting organic liquids and biopolymers. (3) Many polarizable force fields,
such as the CHARMM polarized force field [33–36] and AMBER polarization
force field, are on the basis of the fix point charge polarization. (4) Sum of
Interactions between fragments ab initio computed (SIBFA) force field [37],
atomic Multipole Optimized Energetics for Biomolecular Applications
(AMOEBA) force field [38], ORIENT procedure, Non-Empirical Molecular
Orbital (NEMO) procedure [39], etc. belong to the polarizable force fields of the
multipole distributions. Of course, there are also some polarized force fields based
on density or bond polarization theory, such as the atom-bond electronegativity
equalization method developed by Yang et al. [40] at Liaoning Normal University.

3.2.1 Methods Used to Account for Polarization

The methods, which used in the energy calculation of polarization during the
simulation, are using different model. The widely used models are briefly intro-
duced below.

3.2.1.1 Induced Point Dipole Model

In this method, a point dipole (PD) Pind is induced at each contributing center in
response to the total electric field according to:

Pind ¼ aðE0 þ EpÞ
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where E0 is the field due to the permanent atomic charges and Ep is the field due to
the (other) induced dipoles. The total field is determined self-consistently via an
iterative procedure that minimizes the polarization energy or by means of the
extended Lagrangian method [41]. The contribution of the polarization energy to
the total non-bonded energy is then given by:

Epol ¼ �1=2Rpi � E0
i

where the summation is over polarizable centers i.

3.2.1.2 Fluctuating Charge Model

In this method, the atomic charges fluctuate in response to the environment is
according to the principle of electronegativity equalization, which states that charge
flows between atoms until the instantaneous electronegativities of the atoms are
equal. In this approach, the fluctuating charges (FQs) are assigned fictitious masses
and treated as additional degrees of freedom in the equations of motion. In the
context of molecular dynamics, the equation is efficiently solved by using the
extended Lagrangian method [42] at a computational cost little greater than that
required for a fixed-charge, pairwise-additive force field. This model has also been
implemented, though less efficiently, for use in Monte Carlo simulations [43].

Because liquid water holds a very good network of hydrogen bonds, it plays an
important role in most biological processes. Firstly, liquid water serves as a good
system to test the polarized force field. In the gas and condensed phases, the
properties are accurately simulated and described by the polarized water models.
Induced dipole model developed by Caldwell et al. [44] define that the molecular
polarization is equal to simple addition of each atomic polarization degree. Ber-
nardo et al. define that the polarization region is limited within the range of the
atom in 1,2 or 1,3 bond. Some force fields more directly point the experimental
values 1.444 Å3 of unipolar degree on the oxygen atom or HOH angle bisector
[45]. The research of Jedlovsky and Richardi compare three water models, and
show that the divergence constant obtained through the polarized water models is
closer to the experimental value compared with the water model of TIP4P and
SPC, [45–48]. The polarization parameters of water in floating charge polarization
force field are obtained by fitting the interaction of water dimer, trimer clusters to
results of ab initio quantum mechanics. The biggest advantage of this water
polarization model is high efficient, and drawback of one is that the polarization
effect only limits on the planes of the water molecules. Although the calculated
permittivity is very reasonable, their polarization degree is obtained by fitting, not
set in advance.

The AMOEBA water model, proposed by Ren and Ponder in 2003, also gives
excellent cluster and liquid phase results. This model uses a polarizable atomic
multipole description of electrostatic interactions. Multipoles through the quad-
rupole are assigned to each atomic center based on a distributed multipole analysis
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(DMA) derived from large basis set molecular orbital calculations on the water
monomer. Polarization is treated via self-consistent induced atomic dipoles. A
modified version of Thole’s interaction model is used to damp induction at short
range. Repulsion-dispersion (vdW) effects are computed from a buffered 14-7
potential. The new potential is fully flexible and has been tested versus a variety of
experimental data and quantum calculations for small clusters, liquid water, and
ice. Overall, excellent agreement with experimental and high level ab initio results
is obtained for numerous properties, including cluster structures and energies, bulk
thermodynamic and structural measures. The results of water potential should
provide a useful explicit solvent model for organic solutes and biopolymer
modeling.

Many models of molecular interactions have been improved by using electronic
polarization, and the models including ion solvation [49–51], ion-pair interactions
in micellar systems [52], a variety of small molecules condensate nature [53, 54],
cation-k interactions [55], as well as interface system etc. [56].

The polarization force fields of small molecules have been reported a lot.
Hermida-Ramon, Rios [57], and Krimm et al. take the formaldehyde as the study
object, Levy et al. [58] perform studies on small fatty amines and amides, Kollman
et al. [59] have studied the amines, Krimm uses polarization force fields to study
the N-methylacetamide etc. These polarization force fields upon small molecules
utilize induced point dipole method, but the ideas on the polarization model of
spectroscopically derived force field (SDFF) of Krimm is more complex [60],
SDFF model not only involves polarization simulations, but also the floating
charge model. Krimm et al. use the polarized and non-polarized SDD model to
calculate dipole moment and electrostatic potential of small molecule dimer as a
function of the orientation. The results show that the charge distribution including
polarization would significantly improve the consistency of the results with
ab initio quantum chemistry calculation. Therefore, we conclude that the simu-
lations ignoring the polarization will lead to some system errors, which include the
hydrogen bonding electrostatic interactions.

3.3 Use for (Bio)Molecular Modeling

The main defect of protein force field, such as Amber, CHARMM, OPLS,
GROMOS, MMFF, and most of the force fields, is not to fully consider electro-
static polarization effects, but this factor is essential for the protein and its solution
system. Because of the existence of a large number of polar groups and the
hydrogen bond network, and mutual polarization between the solvent molecules
and the solution of protein, thus the polarization effects should be considered in the
system of protein and solution.

Although the polarization force field has successfully used in the applications of
small molecules, there are also some limitations in biological macromolecules.
The first report used the polarization force field to perform the simulation on
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protein macromolecules without solvents, and the length of simulation is only 2 ps
[61]. Next, simulation time by the application of polarized force field to several
small solvent and protein reach nano-second level, and the simulations of the DNA
in the dissolved state has also been reported. Therefore, the development of bio-
logical macromolecules polarization force field is in a task of top priority.

Polarization force field used in the simulation of protein system can be divided
into three types, the first one is the induced dipole (multi-pole) model, the second
is a floating charge electrostatic potential model with electronegativity equaliza-
tion method (fluctuating charge the model, FQ), and the third is combination of
electronegativity equalization principle and molecular field.

Induced dipole (multi-pole) model. According to Applequist model, Kollman
et al. first added the point polarization to the AMBER force field, and the method
is applied effectively to organic molecules. Ponder et al. have treated the poly-
peptide polarization of the intramolecular and intermolecular by induction of a
multi-polar model, and applied the polarization force field on the alanine dipeptids
model. AMOEBA force field, which is based on multipole and considers the
induced dipole effects, has been proposed for many years. The AMOEBA force
field is in fact a significant improvement over fixed charge models for small
molecule structural and thermodynamic observables in particular, although further
fine-tuning is necessary to describe solvation free energies of drug-like small
molecules, dynamical properties away from ambient conditions, and possible
improvements in aromatic interactions. State of the art electronic structure cal-
culations reveal generally very good agreement with AMOEBA for demanding
problems, such as relative conformational energies of the alanine tetrapeptide and
isomers of water sulfate complexes. AMOEBA is shown to be especially suc-
cessful on protein-ligand binding and computational X-ray crystallography where
polarization and accurate electrostatics are critical. In the calculation of the
binding between protein and ligands, the AMOEBA force field has been utilized in
calculating the binding free energy between trypsinization and a series of six
benzamidine-like ligands [62–64], and the series of the calculation results are in
good agreement with the experimental values. The polarizable atomic multipole is
able to capture the chemical details of the substituted benzamidine ligands. Gresh
et al. have studied the protein system using the SIBFA point dipole potential
model. The polarization electrostatic interaction potential energy have been
reflected and calculated by using the atomic and molecular dipole or multipole
polarization and computing systems, achieved improved results in recent years,
and it has been applied to study a number of small molecular clusters, peptide
molecules and solution.

Floating charge electrostatic potential model with electronegativity
equalization method. The electronegativity equalization method can obtain a lot
of information in the molecular ground state, such as the electric dipole and multi-
pole moments, polarization, dissociation energy, electron affinity energy.
According to electronegativity equalization method, Rick et al. have performed a
simulation on the liquid water and NMA aqueous systems taking advantage of
fluctuating charge force field method [65] to calculate physical quantities of the
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structure and thermodynamics of liquid water. The results are good consistent with
the experimental results, and are better than ones of using the first fixed charge
force field. On the basis of the electronegativity equalization principle, Banks et al.
have established a new floating charge force field [66] and floating charge and
induced dipole combined force field, which combined linear response model with
OPLS-AA force field. Chelli and Tabacchi have developed a fluctuating charge
force field based on the polarization of atomic orbitals, which is based on the
chemical potential equalization method of York and Yang.

The combination of electronegativity equalization method and the molec-
ular mechanics. The calculation results by using the combination of electroneg-
ativity equalization method and molecular mechanics show that the conformation
of lowest energy is inconsistent with the description of force field, which the main
defect is the simple combination electronegativity equalization method and the
molecular mechanics. Another defect is that the fluctuations of energy there is
greater in the molecular dynamics simulations, it shows that the system is certain
lack of stability. Consistent implementation of electronegativity equalization
method (CIEEM) can make up for these deficiencies.

Polarized force field has been used in a more in-depth study of small organic
molecules and water, and also has been present some progress on biological
macromolecules such as peptides and proteins. AMBER force field added a point
degree of polarization according to Applequist model, which is created by Kollman
and his collaborators, and that can offset and reduce certain fixed charge. This
method is applied to the organic molecular formula is very convenient, but to some
extent, if directly used the other parameters of the original force field, it will affect
the calculations of conformational energy [67]. According to the polarization force
field method introduced by Banks and Stern [66], Friesner et al. have developed the
polarized force field which is applied to the polypeptides and proteins. And they
have performed the simulation of the dipeptide models of 20 amino acids, the
results show that the conformation of the dipeptides are good to repeat the results of
ab initio calculations. They provided a complete polarization force field of protein,
and provided a good tool to describe many-body impact and calculate the many-
body energy [68]. Gresh et al. develop the polarization force field of proteins and
peptides [69], and they make use of SIBFA method to study the formamide nitrogen
methylacetamide dimer and the hydrogen bonds energies of alanine, glycine resi-
dues. The results show that the addition of lone pair electrons or polar moment is
better than the simple atoms central fix charge model in description and calculation
the orientation and energy of hydrogen bond between the amide groups. In 2004,
Patel et al. have developed the first generation of CHARMM fluctuating charge
force field [70–74], which is mainly used to study the parameters of electrostatic
model in proteins and peptides. The dimer binding energy and bond length which is
calculated using upon model are good agreement with the ab initio calculation
results. Patel et al. then perform the molecular simulation on six smaller protein
under the conditions of constant temperature and pressure using the fluctuating
charge force field and polarization water model TIP-4P, and the length of the
simulation reach to a few nanoseconds, while it is the longest time of simulation by
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using the solvent and solute protein in the polarization potential field simulation in
present.

Polarized force field, which is applied to protein systems, have provided a more
effective model to calculate and described biological protein molecule and its
electrostatic polarization in solution, and explained and calculated the phenome-
non and the physical quantity that the fixed charge force establishments usually
can not describe and calculate. So far, the application of polarization force field in
molecular design is not widespread, and our laboratory is carrying out molecular
design research by using AMOEBA polarizable force field.

3.4 Conclusion and Perspectives

We have briefly introduced the development of the molecular field from classical
force field and now the rapid development of polarizable force field. The classical
force field has achieved very good results in the study of biological molecules,
either AMBER, CHARMM, OPLS and more early molecular field, but the fixed
atoms center point charge method still exist limitations, which is that they ignore
the intermolecular and intramolecular charge transfer and electrostatic polariza-
tion, and it should be noticed that this factor is critical.

So far, polarized force fields have been developed for over 30 years, only in
recent years the development of it is better. The polarized force fields have rela-
tively good development and application, whether it is used in simulation of small
organic molecules, solution, peptides, proteins, metal enzyme or other biological
macromolecules systems. Compared with classical force field, the fixed point
charge model does not consider the polarization effect, and there are a lot of
advantages of the polarization force field especially in the system where the
polarization and accurate electrostatics are critical. The different polarization force
fields have different shortcomings and limitations, which are required constantly
improving to refine these force field methods, to achieve the purpose of the
polarized force field requirements: (1) The charge is changed with the changes in
the environment. For example, the polarization in the biological macromolecules
is of great degrees of freedom, and the polarization between molecules is strongly
dependent on the conformation of the molecule and spatial configuration. (2) The
calculation of the many-body interactions is able to correctly, such as the inter-
molecular polarization effects of gaseous molecule clusters and solution. (3) The
polarized force field parameters are of good portability. (4) The calculation of
long-range interaction energy of the electrostatic is accurate.

The development of polarization force field is still very long, but we have been
working hard on it. We are currently developing AMOEBA force field for lipid
membrane system, and testing the binding energy data for large protein-ligand
complex systems by using all-atom molecular dynamics simulation of AMOEBA
polarizable force field.
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Chapter 4
Systematic Methods for Defining
Coarse-Grained Maps in Large
Biomolecules

Zhiyong Zhang

Abstract Large biomolecules are involved in many important biological processes.
It would be difficult to use large-scale atomistic molecular dynamics (MD) simu-
lations to study the functional motions of these systems because of the computational
expense. Therefore various coarse-grained (CG) approaches have attracted rapidly
growing interest, which enable simulations of large biomolecules over longer
effective timescales than all-atom MD simulations. The first issue in CG modeling is
to construct CG maps from atomic structures. In this chapter, we review the recent
development of a novel and systematic method for constructing CG representations
of arbitrarily complex biomolecules, in order to preserve large-scale and function-
ally relevant essential dynamics (ED) at the CG level. In this ED-CG scheme, the
essential dynamics can be characterized by principal component analysis (PCA) on a
structural ensemble, or elastic network model (ENM) of a single atomic structure.
Validation and applications of the method cover various biological systems, such as
multi-domain proteins, protein complexes, and even biomolecular machines. The
results demonstrate that the ED-CG method may serve as a very useful tool for
identifying functional dynamics of large biomolecules at the CG level.

Keywords CG modeling � Principal component analysis � Elastic network model

4.1 Introdcution

With dramatic recent improvements in computer power, atomistic molecular
dynamics (MD) simulations can be performed on timescales from ls to ms, which
enable us to study key biological processes such as protein folding, ligand binding,
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and functional conformational changes [1]. However, many biochemical events in
cells still take place on much longer timescales than ms. On the other hand, large
spatial scales of biomolecular complexes involved in these processes make atomic-
level MD simulations computationally expensive. Coarse-grained (CG) models,
which reduce the large number of degrees of freedom in an atomic structure into a
much smaller set of CG sites, allow us to simulate larger biomolecules over longer
effective timescales than atomistic MD simulations. CG modeling may overcome
the gap between computational capabilities and biological processes. Therefore
various CG approaches have been widely developed with rapid-growing interest in
many research groups [2–6].

In order to start CG modeling for a given biomolecular system, the first
important issue is to establish a reasonable mapping between its atomistic and CG
resolution. That is to say, one needs to determine the number of CG sites in the
biomolecule and where to place them. Once the proper CG mapping is obtained,
interactions among the CG sites (CG force field) are then defined before per-
forming CG simulations via MD or Monte Carlo methods.

The scheme of CG mapping varies among different CG methodologies. In the
MARTINI model [7], four heavy atoms are grouped into a single CG site (four-to-
one mapping on average), but those ring-like structures are mapped with higher
resolution (up to two-to-one). Therefore amino-acid residues are represented by
one to five CG sites, respectively [8]. The United reside (UNRES) model sim-
plifies each residue by two CG sites, which are its Ca atom and side-chain center
[9]. Elastic network models (ENMs), which have been very popular in the study of
protein functional dynamics [10–12], use a one-site per residue (usually at the
position of its Ca atom) CG mapping. The above methods represent each residue
by one or more CG sites, that is, the CG and atomic models have similar reso-
lution. In this case, the CG mapping is straightforward and can be constructed by
chemical intuition. However, it is more challenging to build CG maps with lower
resolutions than one-site per residue, thus systematic methodologies have been
developed, in order to define relatively few CG sites in a large biomolecule. Some
of these methods are neural network-based approaches [13, 14], whereas another
class of such methods uses dynamic information from atomic models to build CG
maps [15–23].

We have developed a systematic and quantitative method to define a CG map
beyond the resolution of individual residues, by using the information of essential
dynamics (ED) in the biomolecule [18, 22, 23]. Essential dynamics [24], which
can be characterized by principal component analysis (PCA) on a structure
ensemble or ENM of a single structure, usually represent those functionally
important collective domain motions in the biomolecule [25, 26]. In particular, this
essential dynamics coarse-graining (ED-CG) approach designs a residual to var-
iationally optimize the CG map, in order to preserve the essential dynamic domain
motions.

In the subsequent sections, the theory and technical details of ED-CG method
will be described. The resulting method is validated by applying to two proteins,
which are the HIV-1 CA protein dimer and globular actin (G-actin), respectively.
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Then an ED-CG map of the E. coli 70S ribosome is constructed from its MD data,
and those bridge interactions between the small and large ribosomal subunits are
analyzed at the CG level. Concluding remarks are provided at the end.

4.2 Theory and Methods

4.2.1 Essential Dynamics of Biomolecules

Internal dynamics is essential for a biomolecule to function, while it is a non-trivial
issue to extract large-scale and functionally-relevant motions of the biomolecule
from those small and uninteresting fluctuations. One solution to this problem is to
use collective coordinates [24–26]. It has been well studied that motions occurring
along the directions of a small number of properly-defined collective coordinates
may dominantly contribute to internal dynamics of the biomolecule [25, 26].
Therefore a low-dimensional subspace can be defined by these essential collective
coordinates, also named as essential subspace. Motions within the essential sub-
space, called essential dynamics [24], are usually functionally important. Collec-
tive coordinates are actually a set of eigenvectors obtained by diagonalizing a
second moment matrix. Various computational techniques for determining the
essential dynamics have been established.

Principal component analysis (PCA) on a structure ensemble. For a given
biomolecule, if a sufficiently large number of experimental structures are available,
PCA can be applied on them directly. Otherwise the structure ensemble is usually
generated by MD or Monte Carlo (MC) simulations using the atomic force field.
As an alternative, the CONCOORD method quickly produces a set of confor-
mations around a know structure based on atomic distance constraints [27], which
can then be used for PCA without doing CPU-intensive MD simulations. PCA
needs to diagonalize a covariance matrix of atomic fluctuations, which may require
a huge amount of memory storage and is computationally demanding for a large
biomolecule. Fortunately, Amadei et al. have demonstrated that PCA by using
only the coordinates of Ca atoms can preserve the essential dynamics obtained
from the all-atom PCA quite well [24]. Therefore, only the Ca atoms (P atoms if
there are nucleotides in the system) will be considered in the following.

For a biomolecule with n residues (that is, n Ca atoms), after removing the
translational and rotational motion by least-square fitting each structure in the
ensemble to a reference, a 3n 9 3n covariance matrix C is constructed, with each
element defined by

Cðix; jyÞ ¼
1
nt

Xnt

t¼1

DrixðtÞDrjyðtÞ; ð4:1Þ
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where ix and jy are one of the three components of the atom i and j in Cartesian
space, respectively, and nt is the total number of conformations in the ensemble.
DrixðtÞ and DrjyðtÞ are atomic fluctuations calculated by

DrixðtÞ ¼ rixðtÞ � rixh i

rixh i ¼ 1
nt

Xnt

t¼1

rixðtÞ:
ð4:2Þ

A 3n 9 3n matrix of eigenvectors and corresponding eigenvalues are obtained
by diagonalizing the covariance matrix (Eq. 4.1)

Cðix; jyÞ ¼
X3n

q¼1

Wix
q kqW

jy
q : ð4:3Þ

Here one column of the matrix W represents a 3n-dimensional eigenvector Wq

(also called a PCA mode), in which each atom i has three components. The
eigenvalue kq is the mean square fluctuation of the corresponding PCA mode. If
those PCA modes are sorted by decreasing order of their eigenvalues, the majority
of the motions in the biomolecule can be described by first few PCA modes with
the largest eigenvalues. Therefore this small subset of the PCA modes are essential
modes, with corresponding motions called the essential dynamics.

Normal mode analysis (NMA) of a single structure. NMA determines inde-
pendent normal modes of a biomolecule based on the assumption that the energy
surface of the biomolecule can be characterized by the harmonic approximation
with a single energy minimum [28]. Despite this crude approximation, NMA is
very useful in determining functional motions in biomolecules [29]. Since a single
structure is sufficient for NMA, one does not need to spend any CPU time on MD
simulations. However, standard NMA uses an all-atom structure that needs to be
energy minimized to a local minimum, and then a second moment Hessian matrix
is constructed and diagonalized. These calculations are still computational
demanding for large biomolecules. Elastic network models (ENMs) can signifi-
cantly reduce the computational task by using residue-based CG models to per-
form NMA, and energy minimization is not necessary [10–12]. Therefore, we use
an ENM called the anisotropic network model [10] in our ED-CG method.

Frequently in ENM, each residue is represented by the position of its Ca atom,
and their interactions are defined by effective bonds. Therefore the harmonic
potential of the ENM is written as

V ¼
X
i;j [ i

1
2

kijDr2
ij: ð4:4Þ

Here, Drij ¼ rij � r0
ij is the bond fluctuation connecting the atoms i and j. r0

ij is
the equilibrium bond length. Those spring constants, kij, can be determined by
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different rules. The most popular method is to pre-determine a cutoff distance, and
only those atoms within the cutoff are connected, then a uniform spring constant is
placed for all pairs of connected atoms [10]. Another strategy is to use distance-
weighted spring constants, which may be physically better motivated [30]. Since
there is no cutoff distance, this ENM is ‘parameter-free’ [31].

In NMA, the second moment Hessian matrix is a matrix of the second deriv-
atives of the overall potential at an energy minimum

Hðix; jyÞ ¼ o2V=orixorjy : ð4:5Þ

Since the entire equilibrium bond lengths are taken from the single structure
that means it locates at the minimum point on the energy surface under the NMA
approximation, no energy minimization is needed. The potential energy function is
harmonic (Eq. 4.4) in ENM, so the components of the matrix H can be solved
analytically (more details can be found in Ref. [22]). Similar to the covariance
matrix in PCA (Eq. 4.3), the Hessian matrix (Eq. 4.5) can be diagonalized to yield
a 3n 9 3n matrix of eigenvectors (each column is called a normal mode) and
3n eigenvalues (each reflects the frequency of the corresponding normal mode).
The normal modes are usually sorted by the increasing order of their eigenvalues,
of which the first six modes have zero eigenvalues (frequencies) because they are
associated with the overall translational and rotational motions of the biomolecule.
Many studies have indicated that the first few low-frequency normal modes cap-
ture the essential dynamics of the biomolecules [12], which may describe nearly
the same functional motions, as those revealed by large-amplitude PCA modes
(Fig. 4.1).

4.2.2 The ED-CG Method

The ED-CG methodology has been described in two papers [18, 22] with more
details. The atomic fluctuation of atom i in the essential subspace is denoted as
Dri

ED. For those atoms that move in a highly correlated fashion with the atom i,
their fluctuation differences are small. They can be grouped as a dynamic domain
[32] and defined as a single CG site I by using the center-of-mass (COM) of the
domain. Therefore, in order to define N CG sites in a biomolecule, the basic idea of
ED-CG is to decompose the whole molecule into N dynamics domains, which is
achieved by variationally minimizing the following residual

v2 ¼ 1
3N

XN

I¼1

X
i2I

X
j� i2I

DrED
i � DrED

j

� �2
� �

� 1
3N

XN

I¼1

X
i2I

X
j� i2I

DrED
i

� �2�2DrED
i � DrED

i þ DrED
i

� �2
D E

;

ð4:6Þ
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where DrED
i

� �2
D E

is the mean-square fluctuation of atom i in the essential sub-

space. Since the ED-CG method optimally preserve the dynamic domains and the
essential dynamics describes the collective motions among them, the CG map
defined by this algorithm can potentially capture the essential dynamics of the
biomolecule at the CG level.

In PCA, the essential subspace is spanned by the first a few PCA modes
(nED � 3n) with dominant fluctuations. According to Eqs. (4.1 and 4.3),

DrED
i

� �2
D E

¼
X3

x¼1

XnED

q¼1

Wix
q kqW

ix
q � tr cED

� �
ii

� 	
: ð4:7Þ

The 3 9 3 matrix (cED)ii is the ith super-element of the covariance matrix in the
essential subspace (denoted as CED), and tr[] refers to the trace of the matrix.
Therefore, Eq. (4.6) is equivalent to the following form:

Fig. 4.1 Essential dynamics in the HIV-1 CA protein dimer. a The first PCA mode with the
largest eigenvalue. PCA was performed on a 20 ns MD trajectory of the CA dimer. b The lowest-
frequency normal mode calculated by ENM based on a single structure. Bothe the PCA and ENM
mode describes the collective motion between the NTD and CTD. All Figures in this chapter
were created using VMD [55]. Reprinted from the reference [22], Copyright (2009), with
permission from Elsevier
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v2 ¼ 1
3N

XN

I¼1

X
i2I

X
j� i2I

tr cED
� �

ii

� 	
� 2tr cED

� �
ij

h i
þ tr cED

� �
jj

h i� �
: ð4:8Þ

Compared to Eq. (4.6) and (4.8) is computationally more convenient.
In ENM, the essential subspace consists of the first nED non-zero low-frequency

normal modes. According to the classical theory of networks [33],

DrED
i

� �2
D E

¼ kBT tr hED
� ��1

ii

h i
; ð4:9Þ

where kB is the Boltzmannconstant, andT is the absolute temperature. The 3 9 3 matrix

hED
� ��1

ii
is the ith super-element of (HED)-1, which is the inverse matrix of H in the

essential subspace. Therefore, in the case of ENM, Eq. (4.6) can be rewritten as:

v2 ¼ kBT

3N

XN

I¼1

X
i2I

X
j� i2I

tr hED
� ��1

ii

h i
� 2tr hED

� ��1

ij

h i
þ tr hED

� ��1

jj

h i� �
: ð4:10Þ

4.2.3 The Search Algorithms

In this section, we are going to introduce numerical algorithms to search the CG
mapping with the minimal residual (Eq. 4.8 or 4.10), which is a non-trivial
problem because the search space becomes extremely large with the increasing
number of residues n in the biomolecule and CG sites N to be defined. Two
algorithms are presented here, which are sequence-based [18] and space-based
[23], respectively.

A sequence-based search algorithm. A restriction is employed to make the
search more tractable, that is, the dynamic domains are assumed to be contiguous
in the primary sequence. Therefore, if there are N dynamic domains (CG sites) to
be defined, one just needs to determine N - 1 boundary atoms, and each of them
corresponds to the last atom of one domain (note that the C-terminus is always a
boundary). Under this restriction, the search space of CG mappings would be
greatly reduced, and at the same time, it is a rather reasonable assumption because
a group of sequentially-contiguous atoms may have a good chance to move
collectively.

Initially the boundary atoms are placed on the primary sequence randomly, then
the residual (Eq. 4.8 or 4.10) is minimized by adjusting the locations of these
boundary atoms, using a global simulated annealing (SA) [34] followed by a local
search. At each step of SA, a boundary atom is randomly picked and its position on
the sequence is changed randomly, to obtain a new CG map. This new map is
accepted or rejected according to the Metropolis criterion [35]. If the residual of
the new map is lower than its predecessor (Dv2 \ 0), it is certainly accepted as the
start of the next SA step. However, if Dv2 [ 0, the new map can only be accepted
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with a probability of exp (-Dv2/T), where T is the ‘temperature’. At the beginning
T is high and then gradually decreased during the SA process, which allows the
boundary atoms to move widely and escape from local minima, and finally settle
into the global minimum. The boundary-atom set after SA will be treated with a
local search algorithm to see if it can be further optimized. One at a time, each
boundary atom moves forward (+1) and backward (-1) on the primary sequence,
and any change that decreases the residual is accepted. This procedure continues
until the residual cannot be minimized anymore. To assure the convergence of the
results, multiple minimizations starting with different initial boundary-atom sets
are carried out. The boundary-atom set with the lowest residual is chosen, and the
COM of each dynamic domain is calculated as a CG site.

A space-based search algorithm. This is a more general method than the
sequence-based algorithm. Here we summarize the algorithm briefly, and more
details can be found in the paper [23]. In order to define N CG sites from the
atomic structure of the biomolecule, N ‘seeds’ are generated firstly. The position of
each seed is determined by the coordinates of a randomly selected atom, plus a
small random offset value between [-1, 1]. Then the atomic structure is decom-
posed into N domains according to the N seeds, such that each domain includes all
the atoms that are closest to the corresponding seed. The N CG sites are computed
as the COM of these domains, respectively, and the residual of this CG map is
calculated by (Eq. 4.8 or 4.10). In the next step, a seed is picked out and its
position is updated randomly. By repeating the above procedure, a new CG map is
obtained, which is then accepted or rejected based on the Metropolis criterion. As
in the sequence-based algorithm, SA is used to minimize the residual. The same
calculations are performed beginning with different initial sets of seeds, and the
CG model with the lowest residual is finally taken. Without the restriction of
sequentially-contiguous domains, the space-based algorithm can search a much
larger space of CG maps than the sequence-based algorithm, which may lead to a
good side and a bad side. The good side is that, the space-based algorithm can
obtain a CG map with lower residual than the sequence-based one at the same
resolution, but the bad side is the poorer convergence of the former. Computational
cost of the space-based algorithm is also larger since all the distances between
seeds and atoms have to be calculated at each step.

Biomolecular complexes: a divide-and-conquer strategy. For a biomolecular
complex with multiple subunits, the convergence of ED-CG results is usually not
good due to its large size. Such a problem can be improved by a divide-and-
conquer strategy. Here we will introduce how to employ it in the sequence-based
algorithm. In a complex with Ns subunits, all the C-terminal atoms are defined as
boundary atoms, that is to say, a dynamic domain is not allowed to cross the
subunits. The sequence-based algorithm is then applied to the whole complex to
define the leftover N - Ns boundary atoms. We have observed that although
multiple initial boundary-atom sets do not converge to the same ED-CG map, the
CG-site distribution among the subunits is much better converged. Therefore, after
fixing the number of CG sites in each subunit by the first round of minimization to
the whole complex, the positions of CG sites on the primary sequence of each
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subunit are then optimized, separately. Through this divide-and-conquer proce-
dure, the convergence of the algorithm in each subunit is far superior, and thus a
robust CG map to the whole biomolecular complex can be obtained.

4.3 Validation of the Methods

4.3.1 ED-CG Maps of the HIV-1 CA Protein Dimer

The assembly/disassembly of the HIV-1 viral capsid is a critical process during its
infection to a host cell. The capsid shell consists of about 1,500 monomers of the
CA protein, and each of them has 220 amino acid residues. Therefore, it is
valuable to define a CG map of the CA protein with a much lower resolution than
one-site per residue, in order to model the process of capsid assembly/disassembly
efficiently [36].

The CA protein includes an N-terminal domain (NTD) and a C-terminal domain
(CTD), which are connected by a a-helix (Fig. 4.1). From chemical intuition, each
domain can be coarse-grained to a single site, so we tried to build a four-site map for
the CA dimer using the sequence-based ED-CG method. PCA was carried out on a
20 ns MD trajectory of the CA dimer by considering only the coordinates of the Ca

atoms, and thus the essential modes were obtained. Our study has suggested that it is
reasonable to enforce symmetry between the two monomers [18], so only one
boundary atom needs to be determined in the sequence-based four-site map of the CA
dimer. We moved the boundary atom along the primary sequence of the monomer
from the Ca atom 1–219, and found a global minimum of the residual Eq. (4.8) at the
atom 131 that is located within the linking a-helix between NTD and CTD (Fig. 4.2).
The ED-CG method can therefore automatically find the NTD and CTD, and place
one CG site in each of them in the symmetric four-site map of the CA dimer
(Fig. 4.2a), which is consistent to the chemical intuition. When increasing the number
of CG sites to six, two boundary atoms needs to be defined in the CA monomer. They
are the Ca atom 72 and 134, respectively, when the residual Eq. (4.8) is reached to the
global minimum. The NTD is decomposed into two dynamic domains, but the CTD
remains intact, in the symmetric six-site map of the CA dimer (Fig. 4.2c). By looking
at the RMSF values of these boundary atoms, all of them are closely located at the
‘local minima’ in the RMSF curve of the CA dimer (Fig. 4.2b, d). These rigid hinge
regions can be regarded as ‘natural boundaries’ between dynamics domains.

4.3.2 ED-CG Maps of G-Actin

G-actin is the basic component of the actin filament (F-actin). CG models of G-actin
have proved to be very useful in the study of mesoscopic properties of F-actin, thus
revealing how protein conformational changes affect the elastic properties of
cytoskeleton [37–39]. From the work of Kabsch et al. [40], G-actin can be divided
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into four domains, which are D1 (residue numbers 1–32, 70–144, and 338–375), D2
(33–69), D3 (145–180, and 270–337), and D4 (181–269). Based on these domains,
an intuitive four-site CG map of G-actin is defined (Fig. 4.3a).

The G-actin structure was taken from its ATP-bound state (PDB entry 1NWK)
[41]. Low-frequency normal modes were calculated from a ‘parameter-free’ ENM
[31], in which the spring constants between pairs of Ca atoms Eq. (4.4) are pro-
portional to the inverse square of their distance. The sequence-based ED-CG four-
site map of the G-actin (Fig. 4.3b) is very different to the intuitive four-site CG
map, which is not surprising because the domains D1 and D3 are not contiguous
on the primary sequence. That is to say, the intuitive four-site map is unreachable
by the sequence-based ED-CG algorithm. In this case we need to switch to the
space-based ED-CG algorithm instead. The space-based ED-CG four-site map of
the G-actin (Fig. 4.3c) is very similar to the intuitive map with only minor dif-
ferences, and the former also has a lower residual than the latter. This result
supports that the ED-CG method can obtain CG maps that show agreement with
these ‘natural’ domains.

Fig. 4.2 ED-CG maps of the CA dimer. a The symmetric four-site map. Each CG site locates at the
COM of its corresponding dynamic domain, and the arrows on the sites indicate the first PCA mode
calculated from a CG trajectory that was constructed from the atomic MD trajectory based on the
four-site CG mapping. b The RMSF values of all the Ca atoms, which are colored according to the
dynamic domains in the panel a, and the boundary atoms are labeled. c The symmetric six-site map.
d The RMSF values of all the Ca atoms, which are colored according to the dynamic domains in the
panel c, and the boundary atoms are labeled. Reprinted from the reference [18], Copyright (2008),
with permission from Elsevier
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4.4 Application: The E. Coli 70S Ribosome

The ribosome is a biomolecular machine, which is responsible for protein bio-
synthesis in the cell [42–44]. The structure of the E. coli 70S ribosome is a
highly dynamic RNA-protein assembly, which consists of a 30S small subunit
and a 50S large subunit. To start peptide synthesis, the two subunits need to
associate through a network of ‘bridge interactions’ [45, 46]. Computationally
expensive MD simulations of the ribosome have been performed [47, 48] and
provided valuable information about these interactions in atomic details. How-
ever, the picture of the ribosomal bridge interactions at the atomic level is overly
complex. We have tried to investigate all the bridge interactions at the CG level
instead [49].

From an atomic MD trajectory of the ribosome, we calculated the COM of each
residue (amino acids or nucleotides). Thus a COM trajectory of the ribosome was
constructed, which was used to carry out PCA. These obtained essential PCA modes
were then utilized to build a sequence-based ED-CG map with 480 sites. Detailed
analysis has indicated that the CG map does capture those functionally important
regions in the ribosome [49]. The interactions between CG sites can be approximated
by a ‘fluctuation matching’ method [50], in which the CG sites within a cutoff
distance are connected by effective harmonic bonds. In this network of the CG sites,
mean-squared bond-length fluctuations will depend on these spring constants. Note
that a CG trajectory of the ribosome can be constructed from its COM trajectory
according to the ED-CG map, those bond-length fluctuations may also be calculated
from the CG trajectory. Therefore, the spring constants are optimized by matching the
fluctuations to the MD data of the ribosome. A large spring constant may indicate a
strong interaction between two CG sites (e.g., two dynamic domains in the ribosome).

Fig. 4.3 Four-site CG models of the G-actin. a The intuitive model: D1 (1–32, 70–144,
338–375) blue; D2 (33–69) red; D3 (145–180, 270–337) orange; and D4 (181–269) green. b The
sequence-based ED-CG model: (1–66) red; (67–219) blue; (220–256) green; and (257–375)
orange. c The space-based ED-CG model: D1 (1–33, 70–140, 337–375) blue; D2 (34–69) red;
D3 (141–181, 261–336) orange; and D4 (182–260). Adapted with permission from the reference
[23]. Copyright 2010 American Chemical Society
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From a static structure of the ribosome, one can visualize intersubunit bridges
(from B1 to B8) and identify ribosomal components involved in the bridge inter-
actions [46]. However, it is not straightforward to investigate how strong these
bridges are by either a single structure or an atomic MD trajectory. Here we map the
bridge interactions onto the CG sites and estimate their strength based on the
number of CG interactions and their spring constants. Almost all the intersubunit
bridges are preserved by one or more CG interactions (Table 4.1 and Fig. 4.4). The
head of the small subunit and the top of the large subunit are connected by bridges
B1a and B1b, which have significantly smaller spring constants than those in the
ribosome body (B2 to B8). The head also has the minimal CG interactions with the
rest of the small subunit. These results support the notion that the head is mobile and
can easily move relative to the body, which is consistent to the functional motions
of the head during the translocation process of the ribosome [51].

Table 4.1 Inter-subunit bridges between the small and large subunits based on the ribosome ED-
CG model

Bridge 30S subunit 50S subunit CG interactions (largest k)

B1a S13a H38b 3c (0.3d)

B1b S13 L5e 8 (1.0)

B2a h44f H69 4 (0.5)

B2b h24 H67, H69 2 (1.4)

h45 H69, H71 2 (2.2)

B2c h24 H67 1 (0.8)

h27 H67 1 (3.6)

B3 h44 H71 1 (13.3)

B4 h20 H34 1 (0.06)

S15 H34 2 (1.8)

B5 h44 H64 2 (6.0)

h44 L14 12 (3.7)

h44 H62 2 (13.3)

B6 h44 H62 2 (13.3)

h44 L19 8 (4.3)

B7a h23 H68 0 (0.04)

B7b h23 L2 5 (0.5)

h24 L2 3 (1.4)

B8 h14 L14 5 (2.0)
a S13 means the S protein 13. b H38 means the helix 38 in the large subunit. c Number of CG
interactions. d The largest spring constant (in kBT/Å2) in CG interactions that belong to a certain
bridge. e L5 means the L protein 5. f h44 means the helix 44 in the small subunit. Reprinted with
permission from the reference [49]. Copyright 2011 American Chemical Society
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4.5 Conclusions

This chapter introduces a systematic method to define CG maps of biomolecules
when the CG sites are coarser than the resolution of one-site per residue. In this
method, the atomic structure of the biomolecule is divided into a specified number
of dynamic domains, which are optimized to capture the essential dynamics of the
biomolecule. That is to say, the method has a functionality to identify domains, as
the other methods like the DynDom algorithm [52]. In terms of coarse-graining,
the COM of each domain is taken as a CG site. The ED-CG method has been
applied to various biological systems, such as multi-domain proteins [18], protein
complexes [22], and even biomolecular machines [23, 49]. The decomposition of
dynamic domains is consistent to chemical intuition (Fig. 4.2 and 4.3). Those CG
sites do identify functionally important regions in the biomolecule.

In the ED-CG scheme, the essential dynamics can be obtained by either PCA on
a structural ensemble [18] or ENM of a single structure [22]. It is important to
include enough number of essential modes (PCA or normal modes) in the essential
subspace to constitute a relatively stable basis set [53]. In practice, one can use the
first 3N-6 essential modes since an N-site CG model has 3N-6 internal DOF. A
simpler but safe choice is to take those essential modes that contribute about 95 %
of the total fluctuation as the essential subspace, in this case the number of
essential modes is usually less than 5 % of the total number of collective coor-
dinates [25]. The number of CG sites needs to be determined before the ED-CG
calculations, which would certainly depend on what properties of the biomolecule
to be investigated at the CG level. Since the residual (Eq. 4.8 or 4.10) is always
decreasing when N increases (note that v2 is naturally 0 when N equals to the

Fig. 4.4 Inter-subunit bridges between the small and large subunits, which are described by
interactions between the CG sites. The bridge interactions are divided into two groups, which are
the interactions between the head of the 30S subunit and the top of the 50S subunit, and the
interactions located at the ribosome body, respectively. Adapted with permission from the
reference [49]. Copyright 2011 American Chemical Society

4 Systematic Methods for Defining Coarse-Grained Maps … 45



number of residues), the residual itself may not be a good criterion to determine
the optimal number of CG sites. This issue has recently been addressed by Voth
and co-workers [54], to optimize the number of CG sites in different structural
components of a biomolecular complex. An ED-CG map can be sequence- or
space-based, but the former is recommended unless the space-based map is really
necessary (Fig. 4.3c). With the same number of CG sites, the sequence-base
algorithm is computationally more efficient than the space-based algorithm. The
sequence-based ED-CG map always has a better convergence than the space-based
one. Another advantage of the sequence-based CG map is that, it is straightforward
to define effective bonded interactions between CG sites (bonds, angles, dihedrals,
et al.) since they preserve the underlying primary sequence. The resulting CG
model may potentially be used to explore large conformational changes, and
meanwhile the CG map does not need to be altered.

The ED-CG method itself does not deal with the interactions between the CG
sites, such information may be derived from all-atom MD data. In a simple case,
any two CG sites within a cutoff distance are connected by a harmonic bond.
Those spring constants can be determined by matching the computed bond-length
fluctuations to those from the MD trajectory. Then it is possible for us to inves-
tigate the interactions between structural components in the biomolecule at the CG
level, according to the strength of the harmonic springs. Therefore, ED-CG in
combination with the fluctuation matching method provides a useful tool to build a
CG interaction network in any biomolecular complex, and those functional cou-
plings among the structural components in the complex may be reasonably rep-
resented by effective interactions between the CG sites. By comparing CG
interaction networks of the biomolecule in different functional states, we can
identify key changes during the conformational transition. CG simulations of
F-actin based on these harmonic interactions have yielded insights on the heter-
ogeneity in actin filaments [39]. More sophisticated CG interactions have also
been developed in order to simulate the assembly of HIV-1 viral capsid [36].

References

1. Dror RO, Dirks RM, Grossman JP, Xu HF, Shaw DE (2012) Biomolecular simulation: a
computational microscope for molecular biology. Annu Rev Biophys 41:429–452

2. Tozzini V (2005) Coarse-grained models of proteins. Curr Opin Struct Biol 15:144–150
3. Ayton GS, Noid WG, Voth GA (2007) Multiscale modeling of biomolecular systems: in

serial and in parallel. Curr Opin Struct Biol 17:192–198
4. Murtola T, Bunker A, Vattulainen I, Deserno M, Karttunen M (2009) Multiscale modeling of

emergent materials: biological and soft matter. Phys Chem Chem Phys 11:1869–1892
5. Saunders MG, Voth GA (2012) Coarse-graining of multiprotein assemblies. Curr Opin Struct

Biol 22:144–150
6. Voth GA (2009) Coarse-graining of condensed phase and biomolecular systems. CRC Press-

Taylor & Francis Group, Boca Raton 2009
7. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force

field: Coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

46 Z. Zhang



8. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The
MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput
4:819–834

9. Liwo A, He Y, Scheraga HA (2011) Coarse-grained force field: general folding theory. Phys
Chem Chem Phys 13:16890–16901

10. Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I (2001) Anisotropy of
fluctuation dynamics of proteins with an elastic network model. Biophys J 80:505–515

11. Bahar I, Rader AJ (2005) Coarse-grained normal mode analysis in structural biology. Curr
Opin Struct Biol 15:586–592

12. Bahar I, Lezon TR, Yang LW, Eyal E (2010) Global dynamics of proteins: bridging between
structure and function. Annu Rev Biophys 39:23–42

13. Arkhipov A, Freddolino PL, Schulten K (2006) Stability and dynamics of virus capsids
described by coarse-grained modeling. Structure 14:1767–1777

14. Murtola T, Kupiainen M, Falck E, Vattulainen I (2007) Conformational analysis of lipid
molecules by self-organizing maps. J Chem Phys 126:17

15. Gohlke H, Thorpey MF (2006) A natural coarse graining for simulating large biomolecular
motion. Biophys J 91:2115–2120

16. Stepanova M (2007) Dynamics of essential collective motions in proteins: theory. Phys Rev
E 76:16

17. Gfeller D, De Los Rios P (2008) Spectral coarse graining and synchronization in oscillator
networks. Phys Rev Lett 100:4

18. Zhang Z, Lu L, Noid WG, Krishna V, Pfaendtner J, Voth GA (2008) A systematic methodology
for defining coarse-grained sites in large biomolecules. Biophys J 95:5073–5083

19. Zhang Z, Wriggers W (2008) Coarse-graining protein structures with local multivariate
features from molecular dynamics. J Phys Chem B 112:14026–14035

20. Jang H, Na S, Eom K (2009) Multiscale network model for large protein dynamics. J Chem
Phys 131:10

21. Potestio R, Pontiggia F, Micheletti C (2009) Coarse-grained description of protein internal
dynamics: an optimal strategy for decomposing proteins in rigid subunits. Biophys J
96:4993–5002

22. Zhang Z, Pfaendtner J, Grafmüller A, Voth GA (2009) Defining coarse-grained representations
of large biomolecules and biomolecular complexes from elastic network models. Biophys J
97:2327–2337

23. Zhang Z, Voth GA (2010) Coarse-grained representations of large biomolecular complexes
from low-resolution structural data. J Chem Theory Comput 6:2990–3002

24. Amadei A, Linnsen ABM, Berendsen HJC (1993) Essential dynamics of proteins. Proteins
17:412–425

25. Kitao A, Go N (1999) Investigating protein dynamics in collective coordinate space. Curr
Opin Struct Biol 9:164–169

26. Berendsen HJC, Hayward S (2000) Collective protein dynamics in relation to function. Curr
Opin Struct Biol 10:165–169

27. de Groot BL, van Aalten DMF, Scheek RM, Amadei A, Vriend G, Berendsen HJC (1997)
Prediction of protein conformational freedom from distance constraints. Proteins 29:240–251

28. Brooks B, Karplus M (1983) Harmonic dynamics of proteins: normal modes and fluctuations
in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci USA 80:6571–6575

29. Cui Q, Bahar I (eds) (2006) Normal mode analysis: theory and applications to biological and
chemical systems. Chapman & Hall/CRC, London

30. Hinsen K (2009) Physical arguments for distance-weighted interactions in elastic network
models for proteins. Proc Natl Acad Sci USA 106:E128–E128

31. Yang L, Song G, Jernigan RL (2009) Protein elastic network models and the ranges of
cooperativity. Proc Natl Acad Sci USA 106:12347–12352

32. Yesylevskyy SO, Kharkyanen VN, Demchenko AP (2006) Dynamic protein domains:
Identification, interdependence, and stability. Biophys J 91:670–685

4 Systematic Methods for Defining Coarse-Grained Maps … 47



33. Flory PJ, Gordon M, McCrum NG (1976) Statistical thermodynamics of random networks
[and discussion]. Proc R Soc Lond A Math Phys Sci 351:351–380

34. Kirkpatrick S, Gelatt Jr CD, Vecchi MP (1983) Optimization by simulated annealing. Science
220:671–680

35. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state
calculations by fast computing machines. J Chem Phys 21:1087–1092

36. Krishna V, Ayton GS, Voth GA (2010) Role of protein interactions in defining HIV-1 viral
capsid shape and stability: a coarse-grained analysis. Biophys J 98:18–26

37. Chu JW, Voth GA (2005) Allostery of actin filaments: molecular dynamics simulations and
coarse-grained analysis. Proc Natl Acad Sci USA 102:13111–13116

38. Chu JW, Voth GA (2006) Coarse-grained modeling of the actin filament derived from
atomistic-scale simulations. Biophys J 90:1572–1582

39. Fan J, Saunders MG, Voth GA (2012) Coarse-graining provides insights on the essential
nature of heterogeneity in Actin filaments. Biophys J 103:1334–1342

40. Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin:
DNase I complex. Nature 347:37–44

41. Graceffa P, Dominguez R (2003) Crystal structure of monomeric actin in the ATP state.
Structural basis of nucleotide-dependent actin dynamics. J Biol Chem 278:34172–34180

42. Steitz TA (2008) A structural understanding of the dynamic ribosome machine. Nat Rev Mol
Cell Biol 9:242–253

43. Schmeing TM, Ramakrishnan V (2009) What recent ribosome structures have revealed about
the mechanism of translation. Nature 461:1234–1242

44. Yonath A (2009) Large facilities and the evolving ribosome, the cellular machine for genetic-
code translation. J R Soc Interface 6:S575–S585

45. Gabashvili IS, Agrawal RK, Spahn CMT, Grassucci RA, Svergun DI, Frank J, Penczek P
(2000) Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell 100:537–549

46. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JHD, Noller HF
(2001) Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–896

47. Sanbonmatsu KY, Tung CS (2007) High performance computing in biology: multimillion
atom simulations of nanoscale systems. J Struct Biol 157:470–480

48. Sanbonmatsu KY (2012) Computational studies of molecular machines: the ribosome. Curr
Opin Struct Biol 22:168–174

49. Zhang Z, Sanbonmatsu KY, Voth GA (2011) Key intermolecular interactions in the E. coli
70S ribosome revealed by coarse-grained analysis. J Am Chem Soc 133:16828–16838

50. Lyman E, Pfaendtner J, Voth GA (2008) Systematic multiscale parameterization of
heterogeneous elastic network models of proteins. Biophys J 95:4183–4192

51. Frank J, Agrawal RK (2000) A ratchet-like inter-subunit reorganization of the ribosome
during translocation. Nature 406:318–322

52. Poornam GP, Matsumoto A, Ishida H, Hayward S (2009) A method for the analysis of
domain movements in large biomolecular complexes. Proteins 76:201–212

53. Amadei A, Ceruso MA, Di Nola A (1999) On the convergence of the conformational
coordinates basis set obtained by the essential dynamics analysis of prtoeins’ molecular
dynamics simulations. Proteins Struc Func Genet 36:419–424

54. Sinitskiy AV, Saunders MG, Voth GA (2012) Optimal number of coarse-grained sites in
different components of large biomolecular complexes. J Phys Chem B 116:8363–8374

55. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graphics
14:33–38

48 Z. Zhang



Chapter 5
Quantum Calculation of Protein NMR
Chemical Shifts Based on the Automated
Fragmentation Method

Tong Zhu, John Z.H. Zhang and Xiao He

Abstract The performance of quantum mechanical methods on the calculation of
protein NMR chemical shifts is reviewed based on the recently developed auto-
matic fragmentation quantum mechanics/molecular mechanics (AF-QM/MM)
approach. By using the Poisson-Boltzmann (PB) model and first solvation water
molecules, the influence of solvent effect is also discussed. Benefiting from the
fragmentation algorithm, the AF-QM/MM approach is computationally efficient,
linear-scaling with a low pre-factor, and thus can be applied to routinely calculate
the ab initio NMR chemical shifts for proteins of any size. The results calculated
using Density Functional Theory (DFT) show that when the solvent effect is
included, this method can accurately reproduce the experimental 1H NMR
chemical shifts, while the 13C NMR chemical shifts are less affected by the sol-
vent. However, although the inclusion of solvent effect shows significant
improvement for 15N chemical shifts, the calculated values still have large devi-
ations from the experimental observations. Our study further demonstrates that
AF-QM/MM calculated results accurately reflect the dependence of 13Ca NMR
chemical shifts on the secondary structure of proteins, and the calculated 1H
chemical shift can be utilized to discriminate the native structure of proteins from
decoys.
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5.1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy is an invaluable and widely used
technique in areas of chemistry, biology and medicine [1, 2]. In proteins, the
chemical shift tensors are key parameters in the NMR experiment, enabling signals
from different nuclei of any given type in a molecule to be distinguished. During
the past decades, there has been significant progress in using chemical shift
information for characterization of protein structure and dynamics [3–11].

Although the chemical shifts are probably the most precise parameters that can
be obtained for biomolecules, the inherently complex dependency on geometric,
dynamic and electronic properties has made accurate calculation of chemical shifts
of protein a significant challenge [12–14]. There are mainly two widely used
methods to calculate protein NMR chemical shifts: the empirical approach based
on the experimental database and the ab initio approach based on quantum
mechanical (QM) calculations. Empirical methods rely on statistical data derived
from a limited set of high-quality 3D structures and make use of empirical or semi-
empirical equations to account for the non-sequential environment [15–19]. These
methods are usually quite successful in predicting backbone chemical shifts, which
are primarily determined by the local secondary structure, but they are not so well
suited to handle proteins with nonstandard residues, metal cofactors, or protein-
ligand complexes.

Over the past decade, QM methods have become increasingly useful for NMR
chemical shift studies. Following the pioneering work of de Dios et al. [20–22], a
number of quantum calculations have been carried out for chemical shifts in pro-
teins and peptides [23–33]. However, due to the poor scaling of ab initio and DFT
methods, it has not been practical to apply standard all-electron quantum chemistry
methods to realistic macromolecules. In fact, full quantum mechanical computa-
tions on structures with 1,000 atoms or more are currently not routinely feasible.
Fortunately, many previous studies have proven that there is no need to include all
atoms in the QM NMR calculation because the nuclear shielding is fundamentally a
local physical property. Cui and Karplus proposed a method for calculating
chemical shifts in the QM/MM framework, and concluded that the QM/MM
method can provide good descriptions of the environmental effect on chemical
shifts [34]. Frank et al. calculated the chemical shifts using the fragment based
adjustable density matrix assembler (ADMA) method [35–37]. Gao et al. also
reported a fragment molecular orbital (FMO) method for NMR chemical shift
calculations at the Hartree-Fock level [38, 39]. In our previous studies [40, 41, 49],
a more efficient automated fragmentation quantum mechanics/molecular mechan-
ics approach (AF-QM/MM) was shown to be applicable to routine ab initio NMR
chemical shift calculation for proteins of any size. In this approach, the entire
protein is divided into individual fragments, and residues within a certain buffer
region surrounding each fragment are included in the QM calculation to preserve
the chemical environment of the divided fragment. The remainder of the system
outside the buffer regions is described by the MM method. The AF-QM/MM
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calculated NMR chemical shifts of several proteins are in good agreement with the
experimental measurement [40, 41].

Since most NMR measurements are performed on liquid samples, the NMR
parameters (in particular NMR chemical shifts) are highly sensitive to the
molecular environment, and especially the solvent effect. The effect of solvent on
nuclear magnetic shielding parameters derived from NMR spectroscopy has been
of great interest for a long time [42–47]. Several empirical approaches have been
formulated to evaluate the solvent effects on nuclear shieldings, however, the
development of ab initio calculation of NMR properties of proteins in solution has
only recently received attention, and most of the studies were focused on small
molecular structures or model peptides. In this review, we mainly discuss the
influence of solvent effects on the QM calculation of protein NMR chemical shifts,
by including both the implicit and explicit solvent model based on our previous
works [40, 41, 48, 49].

5.2 Automated Fragmentation QM/MM Method

5.2.1 Fragmentation Criteria

The basic fragmentation scheme in the AF-QM/MM approach is shown in
Fig. 5.1. In this approach, the entire protein system is divided into non-overlapping
fragments termed core regions. The residues within a certain range from the core
region are assigned as the buffer region. Both the core region and its buffer region
are treated by QM, whereas the rest of the system is described by an empirical
point-charge model. The purpose of the buffer area is to include the local QM

Fig. 5.1 Subsetting scheme for the AF-QM/MM approach
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effects on the chemical shifts. Each fragment-centric QM/MM calculation is
carried out separately. Only the shielding constants of the atoms in the core region
are extracted from the individual QM/MM calculations. A more detailed illus-
tration of the automated fragmentation scheme is presented in Fig. 5.2.

For proteins discussed in this work, each residue is taken as the core region.
A different definition of the residue that consists of the –CO–NH–CHR– is adopted
to preserve the electron delocalization across the peptide bond (Fig. 5.2a).
A generalized molecular cap was also introduced to take into account the QM
polarization effect and charge transfer within the first shell from the residue of
interest, as shown in Fig. 5.2b. In this and all our previous studies, we adopt the
following distance-dependent criteria to include residues within the buffer region of
each core residue: (1) if one atom of the residue outside the core region is less than
4 Å away from any atom in the core region and at least one of the two atoms is a
non-hydrogen atom; (2) if the distance between one hydrogen atom in the core

Fig. 5.2 a Definition of the residue unit used in this work. b Nth amino acid is the core region.
Sequentially connected (n - 2)th, (n - 1)th, (n + 1)th and (n + 2)th residues are included in the
buffer region. In addition, the residues in spatial contact with the nth residue are also assigned to
the buffer region (see text for further details)
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region and the other hydrogen atom outside the core region is less than 3 Å, or (3) if
a heavy atom on an aromatic ring is within 5 Å from any atom in the core region. Of
course, other distance-dependent criteria could be used to further optimize the
choice of the buffer region. The non-neighboring residues in the buffer region are
simply capped by hydrogen atoms to construct the closed-shell fragment.

The remaining atoms beyond the buffer region are treated by MM method.
A point-charge model is employed to account for the empirical electrostatic field
outside the QM region. We use the full point charges for those junction atoms that
are replaced by hydrogen atoms. Because a buffer region is added to smoothly link
the core region and MM environment, atoms on the boundary between the QM and
MM regions are relatively far from the core region and their influence is attenu-
ated. By using a general criterion to assign a buffer zone to each residue, we can
reduce the size of each fragment in order to make the QM calculation as small as
possible until we strike a compromise between the desired accuracy and the
computational cost. Although the total number of residue pairs is proportional to
the square of the number of residues, the size of each fragment is independent of
the overall protein size because each residue can have only a limited number of
residues in its vicinity. Hence, the largest fragment normally contains less than
250 atoms consisting of C, H, O, N, and S, which is an affordable calculation at the
HF and DFT levels. In this work, all the QM calculation were performed using
Gaussian09 program [50].

5.2.2 Solvent Effects

The main obstacle of including solvent effects in QM/MM NMR calculation is the
determination of solvent positions around the biomolecules. It is known that the
interaction of the biomolecule with solvent is not well represented by the coor-
dinates present in the experimental structures. There are no water molecules in the
protein structure obtained by NMR experiment, and even some ‘‘crystallographic’’
waters are present in the X-ray structure, they represent only a fraction of the
waters surrounding the biomolecule. In addition, the static positions of water
molecules are probably not representative of the environment seen by the atoms of
the solvated biomolecule. Therefore, in most of the calculations, the implicit
continuum solvation model was used.

In continuum solvation model, the solute (protein) is represented by a charge
distribution q(r) embedded in a cavity surrounded by a polarizable medium with
dielectric constant e. The solute charge distribution polarizes the dielectric medium
and creates a reaction field which acts back to polarize the solute until equilibrium is
reached. The reaction field acting on the solute can be effectively represented by that
of induced charges on the cavity surface according to the classical electrostatic
theory. In the current approach, we use the DivCon [51] program which combines the
linear-scaling divide-and-conquer semi-empirical algorithm with the Poisson-
Boltzmann (PB) equation to perform the self-consistent reaction field (SCRF)
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calculation. The CM2 charges for the atoms of proteins in conjunction with the PM3
methods were derived since the PM3/CM2 is one of the best polarizable charge
models for NMR chemical shift calculations, as observed previously for HF/6-
31G** and B3LYP/6-31G** calculations [41]. Then the set of point charges of the
MM environment and on the molecular surface which represents the reaction field is
used as the background charges in the QM calculation. The effective surface charges
representing the solvent effects are shown in Fig. 5.3.

5.3 Applications

5.3.1 Comparison with the Full System Quantum Chemistry
Calculations

Firstly, the AF-QM/MM method with the solvation model was used to compute the
1H, 13C and 15N absolute chemical shielding tensors of a small protein Trp-cage
(20 residues, PDB entry: 1L2Y). And the results are compared with the conven-
tional full system calculations as shown in Fig. 5.4.

In the full system calculation, the protein is computed as an intact molecule
with the presence of the same set of surface charges. As one can see from Fig. 5.4,
the root mean square errors (RMSEs) for the 1H, 13C and 15N are only 0.06, 0.22
and 0.55 ppm, respectively. All these errors are very small as all of them are less

Fig. 5.3 NMR structure of Trp cage (PDB entry: 1L2Y) together with the surface charges
calculated by DivCon (red and blue dots represent the positive and negative charges, respectively)
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than 1 % of the absolute chemical shielding tensor. The result clearly demonstrates
that, as expected, the AF-QM/MM calculated chemical shifts can well reproduce
the full quantum mechanical calculations for proteins.

5.3.2 1H Chemical Shifts in Proteins

Proton chemical shifts are the most important and most studied output of NMR
experiments. In proteins, the proton atoms can be divided into two categories. One
is called non-polar 1H atoms which usually form covalent bonds with C atoms; the
other group is called polar 1H atoms which usually from covalent bonds with polar
N, S or P atoms, and most of them are involved in hydrogen bonding interactions.
The measured chemical shifts of 1H atoms for these two groups are quite different.
In this section, we first compare the non-polar 1H chemical shift of Trp-cage
calculated by the AF-QM/MM method with the experimental values. For the
hydrogen atoms, calculations in both gas phase and solution phase give excellent
agreement with the experimental value as shown in Fig. 5.5a.

The RMSE, MUE, correlation coefficient and the fitted function are given in
Table 5.1. Although the calculated results for trp-cage in the gas phase are pretty
well, the inclusion of the solvent effects still improves the correlation between the
theoretical and experimental values from 0.977 to 0.986. The RMSE also decreased
from 0.39 to 0.29 ppm, and the slop of the correlation function is closer to 1.

Fig. 5.4 Root mean square error (RMSE), mean unsigned error (MUE) and maximum error
(MaxE) of AF-QM/MM with respect to the full system calculated 1H, 13C and 15N chemical shifts
in Trp-cage at the B3LYP/6-31G** level
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The results here show that the solvent effects are important and calculated NMR
chemical shifts with the solvation model for 1H atom clearly improve the agreement
between theory and experiment.

We also calculated the non-polar 1H chemical shifts of Pin1 WW domain (PDB
entry: 1PIN) which mainly consists of b-sheets. The comparison of our calculated

Fig. 5.5 Correlation between experimental and calculated 1H NMR chemical shifts. a Trp-cage,
b Pin1 WW domain. The exchangeable protons were excluded
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chemical shifts with the experimental values is given in Fig. 5.5b and Table 5.1.
Here, the similar result as that of trp-cage is observed. The theoretical 1H chemical
shift in solvation is better correlated with the experimental values than results from
gas-phase calculations. The RMSE using the solvent model is 0.42 ppm, which is
smaller than the gas phase result of 0.57 ppm and the correlation between theo-
retical and experimental values also improved from 0.964 to 0.979. Thus, the
inclusion of the solvent effects clearly improves the theoretical result. In our
previous study [40], we also performed calculations on a large protein with mixed
a-helical and b-sheet secondary structures, GB3 (PDB entry: 1IGD, 61 residues).
The comparison between theoretical and experimental result is also shown in
Table 5.1. Again, better correlation with experiment is seen for non-polar 1H
chemical shift with the inclusion of solvation.

Furthermore, we check the performance of the AF-QM/MM method on the
polar hydrogen especially for protein amide H atoms. The 1HN chemical shift is
one of the most precise NMR parameters that can be measured, which plays key
roles in peak assignments. Thus, a QM model that can accurately predict their
chemical shift is in demand. Previous studies have found that the main reason for
the inaccuracy in computed amide H chemical shifts arises from the improper
treatment of the solvation effect, especially the specific solvent-solute hydrogen
bond effect. To include these effects in the calculation, explicit inclusion of solvent
molecules is required. In our previous study [49], we used a 3D reference inter-
action site model (3D-RISM) to correct the distribution of explicit solvent mole-
cules. The algorithm of 3D-RISM method is based on statistical mechanics and has
been shown to accurately reproduce water distributions at a reduced computational
cost. The PLACEVENT [52, 53] program developed by Hirata and co-workers
was utilized to translate the continuous distributions to explicit water molecules. In
the calculation, only the water molecules in the first and second solvation shell
(within 6.0 Å from any atom in the protein) are regarded as part of the entire
system. While the implicit solvent model was used to represent the bulk solvent
effect beyond the second solvent shell as shown in Fig. 5.6 [49].

The protein GB3 is taken as the initial geometry. Besides the crystallographic
water, 678 more water molecules were added by the PLACEVENT program to

Table 5.1 Comparison of AF-QM/MM and experimental chemical shifts for the 1H atoms in
Trp-cage and Pin1 WW domain

RMSE MUE R Correlation function

Trp-Cage G. 0.39 0.30 0.977 1.024 x -0.17

S. 0.29 0.23 0.986 1.018 x -0.06

Pin1 WW domain G. 0.57 0.44 0.964 1.036 x -0.13

S. 0.43 0.33 0.979 1.023 x +0.09

GB3 G. 0.86 0.39 0.925 0.976 x -0.02

S. 0.53 0.29 0.983 0.991 x -0.02

G. gas phase; S. in solution. The exchangeable protons were excluded
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mimic the first and second solvent shell. Calculated 1HN chemical shifts using both
the explicit and implicit solvent models are compared in Fig. 5.7. As can be seen, the
inclusion of explicit water molecules gives considerably better agreement with
experiment over the implicit solvent model. The correlation coefficient (R) between
the theoretical and experimental values is improved from 0.673 to 0.835. The RMSE
is also decreased from 1.19 to 0.86 ppm. Table 5.2 lists those residues which have
amide protons forming hydrogen bonds (H-bonds) with water molecules. It can be
seen that those calculated 1HN chemical shifts using the pure implicit solvent model
show large upfield shifts as compared to experimental values.

When the explicit solvents were included in the fragment QM calculations, the
results show significant improvement. It clearly indicates that hydrogen bonding
has large electronic polarization effect on the 1HN chemical shift (up to 2–3 ppm).
The water molecule which forms direct H-bond with the amide proton in proteins
should be treated quantum mechanically to accurately reproduce the experimental
1HN chemical shifts.

As shown in Fig. 5.7, although the inclusion of explicit water molecules
improves the results, the calculated 1HN chemical shifts with the explicit solvent
model are systematically underestimated by about 0.5 ppm. Previous studies on
some model systems have illustrated that the cooperative hydrogen bonding effect
has a non-negligible influence on 1HN chemical shifts by affecting the primary
hydrogen bond geometry and polarizing the electron density around the amide
proton. Therefore, we further explored the cooperative hydrogen bond effect on the
protein 1HN chemical shifts. For simplicity, we took the N-methylacetamide
(NMA) as the central fragment, the cooperative hydrogen bonding effects caused

Fig. 5.6 Graphical representation of GB3 (PDB entry: 2IGD) together with the first, second
solvation shells and surface charges calculated by DivCon program [51]. (Red and blue dots
represent the positive and negative surface charges, respectively)
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by both water and NMA molecules were investigated. As shown in Fig. 5.8, when
the cooperative hydrogen bond was formed, the chemical shifts of the 1HN atom in
the central residue are downfielded by around 0.3–0.5 ppm as opposed to the case
of single H-bond. Therefore, we expand our definition of the buffer region to
include the secondary hydrogen bond acceptor (the whole residue or water mol-
ecule) in the QM region. As depicted in Fig. 5.9, if the 1HN chemical shift in the
core residue (A) is to be calculated and there is a cooperative hydrogen bond
across the peptide bonds of residues: A, B (primary H-bond acceptor) and C
(secondary H-bond acceptor), we also include residue C in the buffer region.

The other factors that may govern the accuracy of calculated 1HN chemical
shifts include the density functional and the size of basis set chosen in our cal-
culation. Previous studies on small organic molecules have demonstrated that, at

Fig. 5.7 Correlation between the experimental and calculated 1HN chemical shifts of GB3 using
the AF-QM/MM method (the QM level is at B3LYP/6-31G**). (red circle 1HN chemical shifts
calculated using the implicit solvent model; blue circle 1HN chemical shift calculated using the
explicit solvent model.)

Table 5.2 Comparison of the experimental and AF-QM/MM calculated 1HN chemical shifts
(in ppm) of GB3 for residues which form hydrogen bonds with water molecules using the explicit
and implicit solvent models, respectively

Residue LEU12 VAL21 ALA23 GLU24 GLY41 TRP43 THR45

Implicit solvation 5.61 6.30 6.13 6.71 5.42 6.35 6.20

Explicit solvation 7.62 8.14 8.18 8.45 8.03 8.62 7.94

Experiment 7.55 8.50 8.32 8.35 7.91 9.27 8.55

The QM level is at B3LYP/6-31G**
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least a triple-zeta basis set with the diffuse basis function should be utilized to
accurately reproduce the experimental amide hydrogen chemical shift. However,
the computational cost is very demanding to apply large basis sets on the entire
QM region consisting of normally 150–300 atoms, which is the normal size of
each fragment (core + buffer region) using the current definition of the buffer
region. Hence, the use of locally dense basis sets, i.e. the combination of two basis
sets where the larger one is used for the atoms of interest and the smaller one for
all the other atoms, is adopted. The 6-311++G** basis set was employed on the
–CO–NH– atoms in both the core residue and other residues involved in the
primary and secondary H-bonds (as illustrated in Fig. 5.9). If the H-bond acceptor
is a water molecule, the entire water molecule is treated with the 6-311++G**
basis set, while the rest atoms in the QM region are set to a smaller basis set. In this
work, the 4-31G* basis set has been utilized and the result is shown in Fig. 5.10.

As can be seen, the inclusion of cooperative hydrogen bond effect and applying
the locally dense basis set give remarkable improvement for the 1HN chemical shifts
(compare Fig. 5.10 with Fig. 5.7). The calculation with the B3LYP/6-311++G**/4-
31G* method decreases the RMSE from 0.86 to 0.49 ppm. In our previous study
[49], we found that the increase of the lower basis set from 4-31G* to 6-31G*

Fig. 5.8 The 1HN chemical shift of the central fragment (A) as a function of the 1HN-O distance
between fragment A and B calculated at the B3LYP/6-311++G** level. Left panel both the
primary and secondary hydrogen bond acceptors are water molecules; right panel both the
primary and secondary hydrogen bond acceptors are N-methylacetamides (NMAs). The H-bond
length between fragment B and C are fixed at the original optimized structure at the B3LYP/6-
31G** level (1.98 Ǻ for WAT-WAT and 2.09 Ǻ for NMA-NMA, respectively.)
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or 6-311G** does not reduce the overall RMSE for GB3. Hence, we conclude that
the B3LYP functional with the mixed basis set of 6-311++G**/4-31G* strikes a
compromise between the computational cost and attained accuracy.

5.3.3 13C and 15N Chemical Shifts in Proteins

Taking protein GB3 as an example, we also show the influence of solvation effects
on the NMR chemical shifts of 13C. The comparison between theoretical and
experimental result is shown in Fig. 5.11.

It is not surprising that, as shown in Fig. 5.11, the chemical shift of 13C atom is
not significantly influenced by including the solvent effects, with the correlation
coefficient of 0.994 in gas phase and 0.998 in implicit solvent. This is mainly
because the 13C chemical shifts span a large range from aliphatic region
(15–35 ppm) to the carbonyl region (170–180 ppm). To further analyze the result
in more details, we also plot the chemical shift of 13Ca in Fig. 5.12.

Fig. 5.9 Subsetting scheme for the AF-QM/MM-PB approach with the explicit solvent model.
The red and blue region represents the core and buffer region, respectively. On top of the original
definition of the buffer region described in Ref. [41], this study adds one additional criterion
which is including the secondary hydrogen bond acceptor (residue C) in the buffer region to take
cooperative hydrogen bonding effect into account. The rest of the protein and explicit solvent
molecules are described by point charges. The bulk solvent effect is described by the classical
electrostatic potential induced by the point charges on the cavity surface calculated using the PB
model
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Fig. 5.10 Correlation between experimental and calculated 1HN chemical shifts of GB3 using
the AF-QM/MM method (the QM level is at B3LYP/6-311++G**/4-31G*)

Fig. 5.11 Correlation between the experimental and calculated 13C chemical shifts of GB3 using
the AF-QM/MM method (the QM level is at B3LYP/6-31G**) (red circle 13C chemical shifts
calculated in the gas phase; blue circle 13C chemical shifts calculated using the implicit solvent
model)
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As shown in Fig. 5.12, the inclusion of the implicit solvation model shows
some improvement and the overall correlation with experiment increased from
0.858 to 0.889 for GB3, and the RMSE was reduced from 2.89 to 2.41 ppm, but
the influence is not very significant. That is mainly because most of the Ca atoms
are buried in the hydrophobic core region of the protein and are nonpolar, their
chemical shifts are less affected by the solvent. The errors of the calculated 13Ca

chemical shifts with respect to the experimental values are likely due to the
insufficient sampling of the protein structure, since the experimental observed
chemical shifts represent the ensemble-averaged values. When the explicit waters
were included, the calculated results did not show any improvement and the
calculated 13Ca chemical shifts using the 6-311++G** basis set are all clearly
underestimated with respect to the experimental values. Similar findings have also
been concluded in the previous study by Case and co-workers [28].

The 15N results are summarized in Fig. 5.13. It has long been known that the
15N chemical shift in protein presents a challenge for first principle prediction
because they are very sensitive to the chemical environment and are influenced by
numerous factors. To accurately predict the 15N NMR chemical shifts usually
requires high-level electron correlation methods beyond DFT.

Fig. 5.12 Correlation between the experimental and calculated 13Ca chemical shifts of GB3
using the AF-QM/MM method (red circle 13Ca chemical shifts calculated in the gas phase at the
B3LYP/6-31G** level; blue circle 13Ca chemical shifts calculated using the implicit solvent
model at the B3LYP/6-31G** level; magenta circle 13Ca chemical shifts calculated using the
explicit solvent model at the B3LYP/6-311++G**/4-31G* level)
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From the B3LYP/6-31G** calculation, the correlation (R) between the calcu-
lated and experimental 15N chemical shifts is only 0.735 for GB3 in the gas phase.
Although the inclusion of solvent effects shows significant improvement (with the
correlation of 0.842 for GB3), it still has large deviations from the experimental
values. As one can see from Fig. 5.13, the implicit solvation treatment on the
nitrogen atoms improves more significantly than the nonpolar Ca atoms. However,
as discussed in our previous study [40], there is a difference between backbone and
side chain nitrogen atoms. For backbone amide nitrogen, which is buried in the
core region of protein, the solvent effects on the 15N chemical shift are relatively
weak, and the calculated shifts are usually larger than the experimentally measured
values [40]. In contrast, solvent effects on the nitrogen atoms from the side chain
amine groups (mostly exposed to the solvent) are stronger. However, as shown in
Fig. 5.13, including explicit water molecules did not give much improvement. The
correlation coefficient is marginally increased from 0.842 to 0.874. Besides the
solvent effect, there are other factors which may govern the accuracy of theoretical
prediction on 15N NMR chemical shifts, such as conformational sampling, the
choice of DFT functionals, etc. Research along these lines is currently underway in
our laboratory.

Fig. 5.13 Correlation between experimental and calculated 15N chemical shifts of GB3 using the
AF-QM/MM method (red circle 15N chemical shifts calculated in the gas phase at the B3LYP/6-
31G** level; blue circle 15N chemical shifts calculated using the implicit solvent model at the
B3LYP/6-31G** level; magenta circle 15N chemical shifts calculated using the explicit solvent
model at the B3LYP/6-311++G**/4-31G* level)
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5.3.4 Probing the Secondary Structures of Proteins
by the AF-QM/MM Method

In structural biology, the protein chemical shift is a powerful tool for studying the
structure and dynamics of the protein. They are often used to predict regions of
secondary structure in native and nonnative states of proteins, to aid the refinement
of complex structures and characterization of conformational changes. Here we
validated the capability of using the 13Ca secondary chemical shifts (i.e. the cal-
culated chemical shifts in the native structure minus the random coil values)
calculated by AF-QM/MM approach to distinguish the a-helix and b-sheet
structures. The 13Ca random coil chemical shifts are taken from the CamCoil
module [54]. The calculated results are presented in Fig. 5.14. As expected, there
is a clear separation between the shieldings of the two secondary structure types.
The 13Ca chemical shift experiences a downfield shift with an average value of
2.55 ppm (with respect to the random coil value) when in a helical configuration
and a comparable upfield shift of -2.38 ppm in average when in b-sheet con-
figuration. It shows that the AF-QM/MM method accurately reflects the influence
of the local geometry on the chemical shift calculation.

Recent studies [3, 6] have reported that, in combination with traditional
molecular mechanical force field or de novo protein structure sampling techniques,

Fig. 5.14 Histograms of secondary shift (the calculated chemical shifts in the native structure
minus the random coil values) distribution of a-helical and b-sheet chemical shifts for 13Ca in
four proteins (Trp-cage, Pin1 WW domain, GB3 and ubiquitin)
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protein structures can be derived using 1H, 13C and 15N NMR chemical shifts.
Hence, we also used the 1H chemical shifts calculated by the AF-QM/MM method
in detecting misfolded proteins relative to the natively folded target protein. The
X-ray structure of Pin1 WW domain was taken as the native structure and a set of
decoy structures for the same amino acid sequence was generated using Rosetta
program. Figure 5.15 gives the correlation between calculated and experimental
measured chemical shifts versus backbone RMSD with respect to the X-ray
structure. As indicated, with the increase of the backbone RMSD, the NMR
chemical shift correlation is declined. The RMSD values with the lowest corre-
lations are far from the native structure. The results show that using the chemical
shifts to detect the native structure from a collection of decoys is quite remarkable
and would have significant potential in this regard.

5.4 Conclusions

In this review, we discussed the performance of QM methods on the calculation of
protein chemical shifts based on the recently developed AF-QM/MM approach. By
using the PB model and first solvation water molecules, the influence of solvent
effect is also explored. Benefit from the fragment algorithm, the AF-QM/MM

Fig. 5.15 Correlation between the experimental and calculated 1H chemical shifts versus
backbone RMSD for Pin1 WW domain (PDB entries for the X-ray structure and NMR structures
are 1PIN and 1I6C, respectively)
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approach is computationally efficient and linear-scaling with a low pre-factor. The
calculation for each residue takes about 2–4 h of computer time using the current
definition of the buffer region. The approach is massively parallel and can be applied
to routinely calculate the ab initio NMR chemical shifts for proteins of any size.

The calculated results also indicate that when the solvent effect is included, the
calculated 1H and 15N chemical shifts show remarkable improvement over those
from the gas phase calculations, while the nonpolar 13C chemical shifts are less
affected by the solvent. In addition, to accurately calculate the 1HN chemical
shifts, the explicit solvent method should be taken into account. However,
although the inclusion of solvent effect shows significant improvement for 15N
chemical shifts, they still have large deviations from the experimental values.

Our study also demonstrated that the AF-QM/MM calculated result accurately
reflects the dependence of 13Ca chemical shifts on the secondary structure of
proteins, and the use of 1H chemical shift to discriminate the native structure of
proteins from decoys is quite remarkable as proton chemical shift is highly
influenced by the local chemical environment. The use of ab initio calculated
chemical shifts is capable of facilitating accurate protein structure refinement and
determination.

The AF-QM/MM method can be further utilized to predict other local chemical
properties, such as chemical shift tensor anisotropies and J coupling constants. The
applications may also be extended to more general biological systems, such as
proteins with nonstandard residues, metalloproteins, protein-ligand, protein-DNA/
RNA and membrane protein-lipid complexes.
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Chapter 6
Applications of Rare Event Dynamics
on the Free Energy Calculations
for Membrane Protein Systems

Yukun Wang, Ruoxu Gu, Huaimeng Fan, Jakob Ulmschneider
and Dongqing Wei

Abstract Techniques of rare event dynamics were reviewed including the string
methods, which will be implemented with the biochemical simulation packages.
The existing methods were applied to study biological systems with relevance to
drug design and drug metabolism. The rare event dynamics simulations were
performed to understand the kinetic and thermodynamic free energy information
on the drug binding sites in the M2 proton channel, and also the free energy of
insertion and association of membrane proteins and membrane active peptides.
Results give a theoretical framework to interpret and reconcile existing and often
conflicting opinions.

Keywords Rare event dynamics � Drug design � Free energy

6.1 Introduction

Membrane proteins pay an important role in many cellular processes, energy
transduction, active or passive molecules transport, transmembrane signaling,
Endocytosis and exocytosis. As to our recent knowledge 20–30 % of protein
encoding region of human genome encodes membrane proteins. Furthermore, as a
lot of membrane proteins are the terminal or central functional parts of some
cellular processes, nearly 50 % of these membrane proteins are considered to be
putative drug targets. Study of their structures and their interaction could facilitate
to get deep insight of those basic biological processes. Among tens of thousands of
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protein structures you can find in the protein data bank [1], only hundreds of
proteins are membrane proteins, so it is easy to understand how difficult it is to
research membrane proteins by experiments.

Computationally studying membrane protein systems can give some useful
information which is hard to get by experiment. We can get dynamical behavior of
membrane proteins by using molecular dynamics with atomic revolution. Access
to massively parallel computational resources and great progress on developing
linear scaling molecule dynamics algorithm has removed a lot of limitation of
molecular simulations, enabling larger system (millions of atoms) and longer time
(ls) to be simulated. But lots of bio-macromolecules work in the time-scale which
is much longer than ls. Lots of membrane transport proteins assist the trans-
membrane movement of substances in millisecond to several seconds. Some
Ligand-gated ion channels open themselves by conformational change induced by
binding of ligands. Quaternary structure change of proteins occurs on microsec-
onds to milliseconds. These membrane protein activities are very important,
however currently can’t be stimulated by standard molecular dynamics methods.

Activated processes such as nucleation events during protein folding, confor-
mational changes of macromolecules, or chemical reactions usually occur on a
time scale that is much larger than the micro-time scale in the system. The reason
is that these processes require an unusually large thermal fluctuation to drive the
system over some energy barrier separating the conformations. Because of the
wide separation of time scales, it is impossible to study activated processes by
conventional molecular dynamics simulations. Those activated processes are
usually called rare events.

To understand in depth the molecular mechanism for these membrane proteins’
function, the underlying free energy activity should be studied. Free energy gives
the most measurable connect between experimental and computational investi-
gation [2, 3]. A calculation of a priori free energy differences with a meaningful
accuracy can check the quality of the designed models. The ability of getting an
accurate free energy is reachable. A lot of researchers over the last 20 years
developed many free energy calculation methods.

This review paper consists of three parts. First part is an introduction of rare
event dynamics. The second part gives a review of the intrinsic difficulties to
calculate free energy of rare events and some well-developed free energy calcu-
lation methods. The last part presents a few examples on membrane protein free
energy calculations.

6.2 Rare Events of Proteins in Membrane Systems

Large-scale conformation change of protein happens rarely in the atomic resolu-
tion and specifically in the bio-membrane environment. Those rare events some-
times play a very important role in proteins’ to function. For example, Voltage-
gated potassium channel switched between open and closed channel state by
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transmembrane movement of its S4-helix which corresponds to the transmembrane
voltage change [4]. Those events can be understood to be a physical phase tran-
sition among two or more thermodynamically stable or meta-stable states sepa-
rated by free energy barriers, which happens rarely because system has to wait for
a long time to cross high energy region in phase space. If we know free energy of
those states and free energy barrels between those states, we can generally describe
membrane protein rare dynamics by this information.

A ¼ � kBT lnQNVT ð6:1Þ

A ¼ kBT ln exp
þHðp3N ; r3NÞ

kBT

� �� �
ð6:2Þ

(h i represents canonical ensemble average)

6.3 Intrinsic Difficulties to Calculate Free Energy by MD
Simulations

The free energy is usually expressed as the Helmholtz function (A) under NVT
ensemble or the Gibbs function (G) under NPT ensemble. For the simplicity, take
Helmholtz free energy for instance:

Helmholtz free energy A can be represented to be phase space integral as
Eq. (6.1). Theoretically Helmholtz free energy can be calculated by using MD or
MC sampling method according to Eq. (6.2), however in practice we can’t get a
correct result by implementing this for two main reasons. Firstly, exponentially
increased function in integrand in Eq. (6.2) makes some rarely accessed regions in
phase space have considerable contribution to the whole integral. Secondly, the
phase space is a very huge and complex high dimensional space which makes the
normal sampling method like MD and MC very hard to sample it ergodically. Due
to the above reasons accurate calculation of absolute free energy is nearly
impossible due to insufficient sampling in a finite length and time scale simulation.

Although it is very hard to calculate the absolute free energy, the relative free
energy is easier to calculate. The transition state theory (TST) which was devel-
oped in 1935 by Henry Eyring and Michael Polanyi gives the simplest way how
rare event happens. If a protein has two meta-stable states: A and B. According to
ergodic hypothesis, the time average equals ensemble average, we can run a very
long time simulation and get the probability of state A and state B, then we can get
the free energy difference between state A and state B by Eq. (6.3). But if free
energy barrel between A and B is too big, system has to wait a long time for
transition from A to B. In practice we always can’t afford for such a long time
waiting, then may get problematic result: PB = 0 and DG ¼ �1 in the finite
simulation time.
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DG ¼ � kBT ln
pA

pB
ð6:3Þ

Umbrella sampling as general algorithm was developed in 1977 by G.M. Torrie
and J.P. Valleau to solve above problem [7]. The basic idea is that if we can find an
order parameter (for example certain function of system atom coordinates) which
can monotonously distinguishes state A, state B and saddle point then we can
apply an external potential to the order parameter and force system to sample
specific phase region of system. The free energy of system projected into order
parameter can be gotten by histogram analysis.

The above picture in which two stable states are separated by one high energy
saddle point hardly works in practical protein conformational change situation.
Those real systems have a rugged potential energy landscape and also have plenty
of local minimal energy points between protein’s stable state A and state B. When
entropic (i.e., volume) effects matter (as they typically do in high dimensions), the
saddle points do not necessarily play the role of transition states.

So a serial of transition path based theories and methods were developed in
recent years. Transition Path Theory (TPT) was one the most mathematically
rigorous theory framework of them [34]. Intuitively, for systems with rugged
energy landscapes, TPT replaces the notion of a transition state by the notion of a
transition-state ensemble and to replace the notion of most probable transition
paths by that of transition tubes (inside which most of the flux of the transition
paths is concentrated).

6.4 Well Developed Free Energy Calculation Methods

Although absolute free energy is difficult to calculate, considering two well-
defined states X and Y, for example, X could be a hydrophobic peptides with cell
membrane surface-bound helix state, Y a transmembrane-inserted helix (TM)
states, the free energy difference between X and Y is more physical meaningful
and is easy to calculate. There are a lot of methods to solve this problem. Broadly
speaking these methods can be classified in three categories, according to their
scope and range of applicability:

1. Methods aimed at reconstructing the probability distribution or enhancing the
sampling as a function of one or a few predefined collective variables (CVs).
There is a great deal of degrees of freedom for a typical molecule dynamics
system. However, the number of the intrinsic slow degrees of freedom is
usually not too large. One can define some collective variables (CVs) to capture
those intrinsic slow degrees of freedom. The histogram of CVs are determined
and transferred to free energy which projected to those CVs. If the free energy
barrier is too high, the unbiased MD can sample the projected phase space
badly. The whole reaction process can be partitioned to several adjacent
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windows along CVs, and using some constraint algorithm one can force the
system to be sampled nearly uniformly along CVs, so speeds up the conver-
gence greatly. One would choose CVs, for the above case, as the distance
between center of mass of the peptide and membrane, in the study of chemical
reaction, the distance between reactive atoms and enhance the sampling as a
function of these coordinates. Examples of these methods include thermody-
namic integration [4, 5], free energy perturbation [6], umbrella sampling [7].
These approaches are very powerful but require a careful choice of the CVs
that must provide an intrinsic description of the reaction coordinate. If an
important variable is missed the calculation will suffer from quasi-nonergod-
icity or hysteresis and lack of convergence. Moreover, when the number of
involved CVs increases linearly, the cost of CPU time grows exponentially. So
for some complex chemical or conformational reaction with a very complicated
free energy surface, this kind of methods can’t work efficiently.

2. Methods aimed at exploring the transition mechanism and building reactive
trajectories [8], such as finite-temperature string method [9, 10], transition path
sampling [11–13], transition interface sampling [14], milestoning [15] and
forward flux method [16]. These methods do not require in most of the cases
the explicit definition of a reaction coordinate, but require an a priori knowl-
edge of the initial and final states of the process that has to be simulated. Take
string method for instance, it postulates that in the normal temperature the
reaction is taken place following a smooth transition tube (inside which most of
the flux of the transition paths is concentrated). Center of the tube is a curved
string in the high dimension phase space.

3. Methods in which the phase space is explored simultaneously at different tem-
perature, such as replica exchange [17], or as a function of the potential energy,
such as multicanonical MD [18] and Wang–Landau [19]. These approaches are
very general and powerful; however, they also meet the troubles from some of the
limitations of the first category. These methods actually use potential energy as a
generalized CV. In several cases, ordered and disordered states may correspond
to the same value of potential energy, or be present in the thermal ensemble at the
same temperature. This may lead to hysteresis and convergence problems [20].

6.5 Application of Free Energy Calculations to Membrane
Protein Systems

6.5.1 Binding Free Energy for the Influenza a M2 Protein
Channel

The influenza A M2 proton channel is critical for the viral life cycle. Two ada-
mantane-based antiviral drugs, amantadine and rimantadine take M2 proton
channel as the acting target. Understanding how these drugs bind to the M2
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channel and block its proton conduction will help design new drug against the fact
that virus has quickly obtained drug resistance. There are two alternative binding
sites of amantadine and rimantadine in the M2 channel reported recently, with one
amantadine molecule bound in the channel pore (pore binding or P-binding) and
with four molecules of rimantadine bound at the C-terminal surface of the trans-
membrane domain of the M2 channel (surface binding or S-binding) in Fig. 6.1,
until recently there are a lot controversy about which is the primary binding site.

Gu et al. [21] carried out molecular dynamics simulations and Potential of
Mean Force calculations using umbrella sampling on the M2-rimantadine complex
for two alternative drug binding models: pore binding and surface binding models.
From the PMF calculations for the two drug binding models, the free energy
profiles of two binding pattern were obtained in Fig. 6.2. Pore binding requires a
high energy barrier to be overcome but is thermodynamically favorable, leading to
stable drug binding and inhibition. In comparison, the less energetically stable
surface binding site can be easily accessed by rimantadine molecules in the lipid-
water environment. These results complement existing work, expand our under-
standing of these binding sites, and may help guide drug resign and screening
studies.

6.5.2 Free Energy of Insertion of Membrane Proteins
and Membrane Active Peptides

Recently, it has been observed that in some cases, it is possible to generate rare
events via straight MD simulations, without need for free energy methods. One
such example is the transfer free energy of the insertion of peptides into lipid
bilayers from an interfacial state. The most fundamental stability principle of
helix-bundle membrane proteins (MPs) is that the free energy of transfer of the
constituent transmembrane (TM) helices must favor the membrane rather than the

Fig. 6.1 Three possible rimantadine binding site for M2 proton channel membrane system.
P-binding pore-binding site, L-binding lipid-binding site and S-binding surface binding site
(adapted from [21] with permission from ACS Publications)
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aqueous phase. This truism has resisted direct quantitation, because of the
experimental challenges of measuring water-to-bilayer transfer free energies of
hydrophobic peptides. Aggregation in the aqueous phase is the principal issue.
Cells have conquered this problem by means of the translocon machinery, con-
sisting primarily of the SecY complex of membrane proteins in bacteria and
archaea and the highly homologous Sec61 complex in eukaryotes. To circumvent
the experimental challenges of partitioning transmembrane segments across lipid
membranes, Ulmschneider et al. have adopted a computational approach using
molecular dynamics (MD) simulations carried out in the microsecond time regime
[22, 23]. Because the simulations use the same TM segments used in a recent
in vitro study of the translocon-assisted insertion of poly-leucine segments of
various lengths, it was possible to compare direct peptide partitioning with tran-
slocon-to-bilayer partitioning. The strength of this partitioning approach is that all
states populated at equilibrium are directly detected, and the free energy between
them is obtained from their relative occupancies (Fig. 6.3). Key to the success of
this method is the use of elevated temperatures to speed up rare event kinetics.
Unfolding is not observed due to the high thermostability of hydrophobic peptide
in membranes. How far such direct equilibrium approaches can be applied to
related biophysical simulation studies has yet to be investigated, but they appear to
be a promising alternative to free energy perturbation techniques, which are
usually limited by large hysteresis errors for these type of transitions.

Fig. 6.2 The free energy of three binding site of rimantadine. a PMF from solvent-bound state to
P-binding state. b PMF from L-binding state to S-binding state. c PMF from solvent-bound state
to L-binding state. (right figure) Whole picture about the interaction rimantadine with M2
membrane system (adapted from [21] with permission from ACS Publications)
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6.5.3 Free Energy of Transmembrane Peptides Helix Tilting

Hydrophobic match or mismatch in transmembrane (TM) helices (or proteins)
refers to the match or mismatch between the length of the hydrophobic core of the
helix and the native thickness of the hydrocarbon region of the membrane.
Hydrophobic mismatch is a fascinating and important example of mutual protein-

membrane interaction. The tilt angle between TM helices and membrane is a direct
response to TM helices membrane mismatch. At the positive mismatch, the TM
helix tilts and the membrane swells to prevent the hydrophobic part of TM exposed
into the hydrophilic environment. But experiments and MD simulation both find

Fig. 6.3 Bilayer insertion efficiency and transfer free energy as a function of peptide length n.
a The experimental values are for translocon mediated insertion into dog pancreas rough
microsomes of GGPG-(L)n-GPGG constructs embedded into the leader peptidase carrier
sequence. b The computed values are for spontaneous partitioning of Ln peptides into POPC lipid
bilayers at 30–160 �C, and for GGPG-(L)n-GPGG at 217 �C. c Insertion propensity (d) free
energy of insertion DG(n) as a function of peptide length n (insertion for negative DG—shaded).
The straight lines indicate the two-state Boltzmann fit, while the data points show the computed
(red, green) and experimental (blue) values for the individual peptides (*measured DG, peptide
IDs: 43 and 380–383; **predicted DG, http://dgpred.cbr.su.se/) (adapted from [22, 23] with
permission from ACS Publications)
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TM helix always tilts in a certain degree in perfect match and even negative
mismatch situation (Fig. 6.4). Free energy calculation of transmembrane Helix
Tilting can explore the microscopic forces governing the helix tilting in mem-
branes. Lee et al. using umbrella sampling studied the potential of mean force
(PMF) as a function of tilt angle s of WALP19, a TM model peptide (hydrophobic
length L = 19.5 A), in a dimyristoylphosphatidylcholine membrane (width of the
effective hydrocarbon lipid region (Peff) = 25.4 A) [24]. The PMF shows a wide
range of thermally accessible tilt angles (5–22) with a minimum at s = 12.5. The
free energy decomposition reveals that the helix tilting up to s = 12.5 is mostly
driven by the entropy contribution arising from the helix precession around the
membrane normal, whereas the PMF increase after s = 12.5 results from helical
deformation due to the sequence specific helix-lipid interactions.

6.5.4 Free Energy of Transmembrane a-Helixes
Self-assembly and Association

Many channel proteins contain a central pore lined by a bundle of approximately
parallel a-helices. Such channels range in complexity from the M2 protein of
influenza A (ca. 100 amino acids per subunit) to the nicotinic acetylcholine receptor
(ca. 500 amino acids per subunit). Given the importance of this structural motif in a
number of channel proteins, it is important to have a simple yet detailed model
system for channels formed by a-helices. Given some membrane inserted a-helices,
the first step to self-assemble into a functional structure is association of those
discrete peptides. Because self-assemble of a-helices is usually a energy downhill
process, when two peptides are associated into a dimer, then the process will be

Fig. 6.4 Left figure helix-membrane configurations with a positive hydrophobic mismatch,
b perfect match, and c negative hydrophobic mismatch. The helix is represented as a cylinder,
with the hydrophobic core in purple and the hydrophilic termini in white. Right figure the
precession entropy gain associated with TM helix tilting in the membrane. b is the maximum
amplitude of around helix axis with tilt angle a. Assuming that b is independent on a. The helix’s
precession entropy is proportional to the dark cap or ring-like surface area. Helix with small tilt
angle (right A) has smaller precession entropy than that with large tilt angle (right B) (adapted
from [26] with permission from ACS Publications)
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followed that two dimer forms a tetramer or one dimer and one helix forms a trimer.
Association of TM helix is very hard to be studied by experiments. Recently several
theoretical computational studies have aimed to elucidate the detailed atomic
interactions and driving forces of TM helix association [24–28]. Most notably,
Hénin et al. recently calculated the dimerization free energy of the GpA TM region
by calculating the potential of mean force (PMF) as a function of the distance
between the centers of mass of the helices from MD simulations in a lipid mem-
brane. The free energy was decomposed into helix-helix and helix-solvent contri-
bution which has greatly improved our understanding of the recognition and
association mechanism of the GpA TM domain [28]. Zhang et al. recently com-
puted the standard association free energy of GpA with an implicit membrane
model, then derived translational, rotational, and conformational entropy contri-
butions from the total free energy. The gotten association free energy of GpA in
micelles gives a good agreement with the experimental result [29].

A framework of reaction coordinates which describes helix-helix distance and
crossing angle was developed by Lee and Im [30]. They applied external potential
to those RCs to enhance sampling in MD simulations. Lee et al. using those RC to
explore the role of hydrogen bonding and helix-lipid interactions in transmem-
brane helix pVNVV peptides association in DMPC membrane [31]. They found
that the As n residues in the middle of the helices show the most significant per-
residue contribution to the PMF with various hydrogen bonding patterns as a
function of helix-helix distance. Release of lipid molecules between the helices
into bulk lipid upon helix association makes the helix-lipid interaction enthalp-
ically unfavorable but entropically favorable.

6.6 Methods to Solve the Difficult Convergence of Free
Energy Calculations in Membrane Protein System

As mentioned above, free energy calculation is very hard to be gotten converged, for
there is huge volume of rugged phase space to be sampled. Even for the simplest TM
homo-to-dimer Association case, there are many degrees of freedom to be explored,
such as helix to helix distance and crossing angle, tilt and rotation of each helix, and
displacement of each helix along the membrane normal. Such high dimensionality in
TM helix assembly also makes the computational studies challenging. Most recently,
the method of window exchange umbrella sampling molecular dynamics (WE-
USMD) with a preoptimized parameter set was recently used to obtain the most
probable conformations and the energetics of transmembrane (TM) helix assembly
of a generic TM sequence [32]. WEUSMD method with optimal parameter set
acquires a significantly more efficient sampling of helix-helix interfaces than normal
umbrella sampling method. Park et al. applied WEUSMD method furthermore into
Two Dimensional RC space to explore glycophorin A TM domain Association
problem [33]. The two-dimensional WEUSMD results demonstrate that the
incomplete sampling in the one-dimensional WEUSMD arises from high barriers
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along the crossing angle between the GpA-TM helices. Together with the faster
convergence in both the assembled conformations and the potential of mean force,
the 2D-WEUSMD can be a general and efficient approach in computational studies
of TM helix assembly.
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Chapter 7
Extended Structure of Rat Islet Amyloid
Polypeptide in Solution

Lei Wei, Ping Jiang, Malathy Sony Subramanian Manimekalai,
Cornelia Hunke, Gerhard Grüber, Konstantin Pervushin
and Yuguang Mu

Abstract The process of islet amyloid polypeptide (IAPP) formation and the
prefibrillar oligomers are supposed to be one of the pathogenic agents causing
pancreatic b-cell dysfunction. The human IAPP (hIAPP) aggregates easily and
therefore, it is difficult to characterize its structural features by standard bio-
physical tools. The rat version of IAPP (rIAPP) that differs by six amino acids
when compared with hIAPP, is not prone to aggregation and does not form
amyloid fibrils. Similar to hIAPP it also demonstrates random-coiled nature in
solution. The structural propensity of rIAPP has been studied as a hIAPP mimic in
recent works. However, the overall shape of it in solution still remains elusive.
Using small angle X-ray scattering (SAXS) measurements combined with nuclear
magnetic resonance (NMR) and molecular dynamics simulations (MD) the solu-
tion structure of rIAPP was studied. An unambiguously extended structural model
with a radius of gyration of 1.83 nm was determined from SAXS data. Consistent
with previous studies, an overall random-coiled feature with residual helical
propensity in the N-terminus was confirmed. Combined efforts are necessary to
unambiguously resolve the structural features of intrinsic disordered proteins.

Keywords IAPP � NMR � Molecular dynamics simulations

7.1 Introduction

Islet amyloid polypeptide (IAPP) is a peptide hormone secreted by the endocrine
b-cells of the pancreas together with insulin [1]. It has 37 amino acids with a
disulfide bond between residue 2 and 7 in the N-terminus. In solution, IAPP is
characterized as a natively disordered protein [2–6]. In patients with type 2
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diabetes, IAPP changes its conformation to form amyloid fibers [7]. The process of
IAPP amyloid formation and the prefibrillar oligomers are supposed to be one of
the pathogenic agencies causing pancreatic b-cell dysfunction [8–11]. Thus the
structural characterization of IAPP in the form of monomer or small oligomer
states would be beneficial towards the full understanding of the toxicity mecha-
nism of IAPP oligomers.

The human IAPP (hIAPP) aggregates easily and therefore, it is difficult to
characterize its structural features by standard biophysical tools. Whereas the rat
version of IAPP (rIAPP), that differ by six amino acids compared with hIAPP, is not
prone to aggregation and does not form amyloid fibrils. But similar to hIAPP it also
demonstrates random-coiled nature in solution. The structural propensity of rIAPP
has been studied as a hIAPP mimic in several of the recent works [2–5, 12, 13].
However, the overall shape of it in solution still remains elusive. Here, we focus on
resolving the low resolution structure of this peptide in solution by small angle
X-ray scattering (SAXS) measurements and with complementary nuclear magnetic
resonance (NMR) data. Further, these structural information were utilized to assess
the ability of the three commonly used classic energy functions (force fields) for
simulating the intrinsic disordered peptides/proteins.

7.2 Materials and Methods

7.2.1 Systems and NMR Spectroscopy

The 15N uniformly labeled rIAPP sample preparation and NMR experiments have
been described in details in our last publication [3]. Briefly, 15N-HSQC, 15N-
TOCSY-HSQC (smix = 120 ms) and 15N-NOESY-HSQC (smix = 200 ms) were
performed using a Bruker Advance II 700 MHz spectrometer at 25 �C. The data
were collected on a sample containing 50 lM 15N uniformly labeled rIAPP (in
5 mM potassium phosphate buffer, 10 mM KCl, 3 % D2O, pH 6). The spectra
were analyzed and the chemical shifts were assigned with CARA software (www.
nmr.ch). Peaks were picked manually from the 3D 15N-NOESY-HSQC spectrum.
The peak list, together with the chemical shift assignments were used as the input
for structure calculations by CYANA 2.0 [14].

7.2.2 Small Angle X-ray Scattering Experiments

The synchrotron radiation X-ray scattering data for rIAPP were collected fol-
lowing standard procedures on the X33 SAXS camera of the EMBL Hamburg
located on a bending magnet (sector D) on the storage ring DORIS III of the
Deutsches Elektronen Synchrotron (DESY).
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7.2.3 Molecular Dynamics Simulations

Classic molecular dynamics simulations were performed on rIAPP using three
different force fields, AMBER03 [15] with recent modifications [16], OPLSAA
[17] and CHARMM with CMAP [18, 19]. All simulations lasted 50 ns, which
began with the NMR model 1 that has a Rg value of 1.78 nm. A dodecahedron box
of size 7 nm was used with 7,869 water molecules (SPC model) and four chloride
ions. The simulation was performed using Gromacs simulation package [20],
during which all bonds involving hydrogen atoms were constrained in length
according to LINCS protocol [21] with the integration step 2 fs. Non-bonded pair
lists were updated every five integration steps. The protein and the water were
separately coupled to the external heat bath with the relaxation time of 0.1 ps. The
structure snapshots were output every 1 ps. Electrostatic interactions were treated
with the particle mesh Ewald method [22] with a cutoff of 0.9 nm, while for the
van der Waals interactions a cutoff of 1.4 nm was used. The simulations were
repeated three times for each force field with different initial velocities. The helical
structures of peptides were assessed by DSSP algorithm [23].

7.3 Results

7.3.1 Solution Structure Obtained from SAXS Measurements

Solution X-ray scattering experiments have been performed with the aim to
determine the low resolution structure of rIAPP in solution. SAXS patterns from
solutions of the peptide were recorded as described in ‘‘Materials and Methods’’ to
yield the final composite scattering curve in Fig. 7.1a, showing that the peptide is
monodispersed in the solution. Inspection of the Guinier plots at low angles
indicated good data quality and no protein aggregation. The radius of gyration Rg

of rIAPP is 1.83 ± 0.1 nm and the maximum dimension Dmax of the peptide is
6.4 ± 0.4 nm (Fig. 7.1b). The solution shape of rIAPP was restored ab initio from
the scattering pattern in Fig. 7.1a using the dummy residues modeling program
DAMMIN [24], which fitted well to the experimental data in the entire scattering
range (a typical fit displayed in Fig. 7.1a, red curve, has the discrepancy of
v2 = 1.061). Ten independent reconstructions yielded reproducible models and
the average model is displayed in Fig. 7.2. rIAPP appears as an elongated mole-
cule with a length of 6.4 nm and an overall spiral-like shape.

The solution structure of rIAPP has also been studied by us through NMR
spectroscopy in our previous work [3]. Although the residual helical structure was
relatively well-defined, the global structures generated by applying NMR constraints
were quite heterogeneous, which was due to the lack of long-range constraints.
Twenty structural models generated from NMR constrains are shown in Fig. 7.3.
The radius of gyration (Rg) for this structure ensemble ranges from 1.1 to 1.78 nm.
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Out of the 20 structural models we do found one model (NMR1) with an Rg of
1.78 nm. This NMR1 model and the solution shape, determined by SAXS
(Rg = 1.83 nm), were superimposed with the program SUBCOMP [25] which
showed good fitting with an r.m.s. deviation of 1.47 Å (Fig. 7.2). When we repeated
the structural refinement processes using NMR constrains, only 5 % of the generated
structural models have Rg larger than 1.73 nm. Clearly combing local structural
information from NMR measurement with the global structural profile from SAXS
can greatly narrow down the configuration space of the model structures. Thus the

Fig. 7.1 Small-angle X-ray scattering data of rIAPP. a Experimental scattering data (circle) and
the fitting curves (line; green experimental, red calculated from ab initio model) for rIAPP. b The
distance distribution function of the same peptide

Fig. 7.2 Superposition of the DAMMIN model of rIAPP (mashed shape) with the NMR solution
structure (blue) of the same peptide. The two models are rotated clockwise by around 90� along
the Y-axis. The two helical regions are residue 9–12 and residue 15–17
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SAXS refined structural models of rIAPP are quite extended. Previously the
dynamics of contact formation between the N- and C-termini in monomeric IAPP
from human and rat were probed by triplet quenching technique [5]. This showed
that the relaxation rates are approximately 2-fold faster for hIAPP than for rIAPP,
which indicated that rIAPP is always more expanded than hIAPP.

7.3.2 Evaluation of Three Force Fields

Three all-atom force fields, AMBER03d [16], CHARMM [18] and OPLSAA [17],
were employed to simulate this peptide in the presence of explicit water. The
initial structure was taken from the elongated NMR1 model (Fig. 7.2 and 7.4a).
The back-calculated scattering curve from the NMR1 model with CRYSOL pro-
gram [26] gave a v2 value of 2.93 after superimposition onto the experimental data
(Fig. 7.4c, solid line), indicating the consistency with both the experimental NMR-
and SAXS data. Unfortunately, the configuration of the solution model cannot be
maintained within the three force fields. In the AMBER03d and OPLSAA force
field simulations the peptide collapses quickly in the first 10 ns from the initial Rg

value of 1.78–1.1 nm (Fig. 7.5a). These compact conformations (Fig. 7.5b) were
nearly unchanged during the following 40 ns simulations. The back-calculated
scattering curve from such compact model (Fig. 7.5b) with CRYSOL resulted in a
v2 value of 7.49 after superimposition with the experimental data (Fig. 7.4c, blue
dashed line).

This compact feature of rIAPP has also been proposed from theoretical simu-
lations and infrared spectroscopy data [4]. However, a compact model is not
consistent with the experimental SAXS- and NMR data presented. The simulated
conformations using CHARMM force field have larger Rg values, than the other
two force fields (Fig. 7.5a), however, they are highly helical (Fig. 7.5b). The
average number of helical residues is above 19 (more than half of the residues of
the peptide) during the 50 ns trajectory. Such highly helical propensity is in
contradiction with the overall random-coil nature of the peptide resolved by NMR

Fig. 7.3 The superimposing
of 20 structure models from
NMR constraints. The
average helical residue
number is 5.75
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measurement [2, 3]. The average helical residue number of 20 NMR structural
models (Fig. 7.3) is only 5.75. Two more simulations in each type of force fields
have been performed with different initial velocities in which similar results were
obtained.

Fig. 7.4 Comparison of NMR1 model (a) and simulation model of AMBER03d (b) scattering
intensities between experimental data and calculated from structural models (c)

Fig. 7.5 Evolution of radius of gyration, Rg, a and the number of backbone hydrogen bonds b of
rat IAPP from three different force fields simulations. Each data point is an averaged value during
1 ns simulation
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7.4 Conclusions

In summary we combined NMR measurements, which mainly provided local
secondary structure information in this case, and SAXS data, which delivered a
global structural profile, to resolve an extended, random-coiled structural model
for the rat IAPP peptide. The presented structure will provide an invaluable ref-
erence to further study the conformational propensity of more disease related
hIAPP.
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Chapter 8
Folding Mechanisms of Trefoil Knot
Proteins Studied by Molecular Dynamics
Simulations and Go-model

Xue Wu, Peijun Xu, Jinguang Wang, Yong Xu, Ting Fu,
Depeng Zhang, Meixia Zhao, Jiahui Liu, Hujun Shen,
Zhilong Xiu and Guohui Li

Abstract Most proteins need to avoid the complex topologies when folding into
the native structures, but some proteins with nontrivial topologies have been found
in nature. Here we used protein unfolding simulations under high temperature and
all-atom Gō-model to investigate the folding mechanisms for two trefoil knot
proteins. Results show that, the contacts in b-sheet are important to the formation
of knot protein, and if these contacts disappeared, the knot protein would be easy
to untie. In the Gō-model simulations, the folding processes of the two knot
proteins are similar. The compact structures of the two knot proteins with the
native contacts in b-sheet are formed in transition state, and the intermediate state
has loose C-terminal. This model also reveals the detailed folding mechanisms for
the two proteins.
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8.1 Introduction

The protein molecule performs the biological function through folding into the
compact structure. In the folding process, most proteins avoid complex topologies,
but some proteins are able to fold into nontrivial topologies, especially the main
chain fold into a knotted conformation [1–3], which is an evolutionary curiosity. If
pulling the knotted protein from both the two ends, this structure can’t be disen-
gaged. So far, most of the discovered knotted proteins are belong to the 31 knot,
and the others are belong to the 41, 52 or 61 knots [4–6]. Though the knotted
proteins are existent, but how the knotted proteins overcoming the energy barrier
fold into the complicated and intact topologies from the disordered linear poly-
peptide is still a mystery. The shape of the protein and the chain connectivity of its
backbone may determine the folding routes of a well-designed protein sequence
[7]. So the structure based protein models can capture the essential features of
protein folding through separating from the effects of topology and eliminating all
non-native energetic traps [8–10]. From the unfolded state to the native state of
protein, the energy landscape directs this folding route of protein, and the diverse
sizes and shapes of the free energy barriers are directed by the pattern of contacts
especially the native contacts [11–13]. The knot protein with the complicated
topology may not fold easily because of the emerging unlikely configurations in
the folding process [14–16]. The folding of knot protein needs right crossing of
polypeptide, otherwise may have an unknotted protein or a wrong chirality. Based
on the structure-based model, the information of protein folding pathway is con-
tained in the folded configuration, so it is a good model for studying the folding
process of knot protein. The time scale of protein folding is incompatible with the
time scale of molecular dynamics simulations, so studying the protein unfolding
process under high temperature is another meaningful method for studying the
folding process of protein. At high temperature, it is easy to cross the energy
barrier of knot protein, so this knot could be untied in this condition, and through
studying the unfolding progress of knot protein to get the information of the
folding process. Here we used the high-temperature unfolding method, all-atom
and Ca structure-based model to research the folding pathways of knot proteins.
The all-atom model can supply more accurate thermodynamic information for the
folding of knotted protein than the Ca structure-based model, which is good for
uncovering the folding mechanisms for the simple knot proteins.

For studying the formation of knot protein, various biochemical and biophysical
techniques have been employed, like chemical denaturants, single-molecule
atomic force microscopy (AFM) measurements [17]. The studies for the folding of
protein YibK from H. influenzae and YbeA from E. coli in experiment were
through using the denaturant urea to get the unfolded structure reversibly which
lacked secondary or tertiary structure, and then gave a detailed folding study for
protein [18, 19]. The folding pathways of protein YibK have been extensively
studied. The double-jump refolding experiment has been used to investigate the
presence of multiple unfolded states of protein YibK [20]. The folding mechanism
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of YibK has been probed by using single-site mutants, this folding process of
protein YibK was from the denatured state, but this structure was not unfold
completely [21]. The theoretical investigations of knot protein can be started from
the wholly unfolded structure, which does not contain a knot, so the theoretical
investigations can make up the defects of the experimental studies and give more
information for the folding of knot protein. The atomistic simulations have been
used for studying the unfolding of bovine carbonic anhydrase II [22]. On the
coarse-grained level, the simulations also could be used for the studies of protein
folding. The simulations of Gō-model for knot protein was applied to some
studies, and this model could make the protein fold from the unfolding structure to
the topologically frustrated, knotted structure. Generally, the Gō-model reduces
the protein to its Ca-backbone. Wallin undertook the coarse-grained model on the
knot protein YibK for studying the folding kinetics, and through introducing the
attractive nonnative interactions on the knot protein, this protein could take the
knotted mechanism of plug motion to form native structure [23]. The coarse-
grained model has been used for probing the folding processes of protein YibK and
YbeA, and succeeded in forming a native knot structure in 1–2 % of the simu-
lations with native interactions through using this model [24]. In the folding
processes of protein YibK and YbeA, an intermediate configuration with a slipknot
was involved, and the appearance of this configuration was aimed at reducing the
topological bottlenecks. The researches about slipknots of proteins also revealed
that these slipknots could give contribution to the thermal stability for the slipknot
feature [25]. The molecular dynamics simulations have been used widely in the
studies of proteins [26–34], so here molecular dynamics simulation methods were
used to study the folding of knot proteins. Two different approaches comparing
with these previous studies have been used for probing the folding mechanisms of
knot proteins. The method of protein unfolding under high temperature and all-
atom Gō-model were applied to two 31 knot proteins for studying the folding
mechanisms and thermodynamics of the two proteins.@@@@@

When folding to the correct native structure, the knot protein has to avoid the
topological traps and kinetic traps on the landscape. In the folding process, the
tying of knot protein is refer to a problem about the chain crossing, and a topo-
logical constraint may solve this problem, otherwise this process is not allowed.
The geometric constraint of the native structure may dominate the knot protein
through a subset of possible folding pathways. In theory, the protein with the
minimally frustrated structure is supposed to have the energy landscape of funnel
shape. In the folding process of protein, the shape of the landscape is dominated by
the strong energetic bias, which could reduce traps caused by non-native inter-
actions. Thus, this geometric constraint model is better for determining the folding
mechanisms of proteins. Using this geometric constrain model also is necessary for
guiding the chain to form knot, and the final folded structure of protein plays a
major role in determining its foldability, so this model may make the protein have
more chances to fold into the native state. Under high temperature, the knot protein
has more probability to cross the energy barrier, so this protein has more chances
to unfold. The all-atom model can make up the gap between coarse-grained
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models and all-atom empirical forcefields. Hence, here we used the method of
high-temperature unfolding and all-atom model to research two knot proteins in
order to have more information about the folding mechanisms and topological
constraint effects of these proteins.

In this study, the knot proteins are the smallest knot protein MJ0366, from
Methanocaldococcus jannaschii [5, 19], and protein VirC2, the border-specific
endonuclease, from Agrobacterium tumefaciens [25]. The two proteins have trefoil
knot structures (Fig. 8.1). At high temperature, the protein MJ0366 could unfold.
The conformational clustering method was used to find the transition state, and this
state has the native contacts in b-sheet. The unfolding process has relation ship
with the stability of this b-sheet. The all-atom model for the smallest knot protein
shows the intermediate state has native contacts in b-sheet, and slipknot and plug
knotting routes are found at folding temperature. The protein VirC2 is prone to
have traps in the folding process and through backtracking to fold into the native
state.

8.2 Results and Discussion

In this paper, we study two trefoil knot proteins which are two simple examples of
nontrivial knots. The protein MJ0366 with 82 residues belongs to a/b protein. The
trefoil knot is one end of the chain through into a loop. The C-terminal of protein
MJ0366 threads into the loop consists of a1, a2 and their linkers, and the N-
terminal threads into the loop which is comprised of b2, a3 and their linkers. The
protein VirC2 with 121 residues has ribbon-helix-helix (RHH) fold. This protein
has two b-strands, and four a-helices like protein MJ0366. The C-terminal of
protein VirC2 threads into the loop which is created by a1, a2 and the linkers
between a2 and b2, and the N-terminal threads into the loop formed by b2, a3 and
their linkers.

Fig. 8.1 Folded structures of
the two knot proteins. a The
crystal structure of protein
MJ0366 (PDB ID code 2efv).
b The crystal structure of
protein VirC2 (PDB ID code
2rh3)
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8.2.1 Protein MJ0366 Unfolding Pathway

Here we used molecular dynamics simulations under high temperature to study the
protein unfolding process. We selected 530 K for studying the protein unfolding
process, and the molecular dynamics simulation of native state was in 298 K as a
comparison. The Ca root-mean-square deviation (Ca RMSD) cluster method was
used to find out the transition state. We took nine unfolding simulation trajectories
for protein MJ0366, knot_1-knot_9. The transition states were identified at
8.175 ns in knot_1, 23.42 ns in knot_2, 14.076 ns in knot_3, 4.345 ns in knot_4,
14.073 ns in knot_5, 17.831 ns in knot_6, 8.431 ns in knot_7, 9.511 ns in knot_8,
and the transition state in the last trajectory knot_9 was not found.

The number of native contact for protein MJ0366 as a function of time in a
typical trajectory knot_6 is shown in Fig. 8.2. Under high temperature, the number
of native contact was obviously changed as the time growth, and the change trend
of the number of native contact for the whole protein was the same as the number
of native contact in the b-sheet. The native contacts in b-sheet decreased along
with the decreasing number of native contact of the whole protein, so the b-sheet
unfolding may have significant impact on the whole system. After the b-sheet
untied, the whole system may have low stability, so the knot would be easier to
unfold. The unfolding process of protein MJ0366 in the typical trajectory knot_6 is
shown in Fig. 8.3. Under high temperature, the a-helices especially the a2 unfold
firstly. The native contacts between a2 and the other secondary structures were

Fig. 8.2 The native contacts in b-sheet and the whole knot protein in a typical kinetic folding
trajectory for protein MJ0366 under high temperature
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few (Fig. 8.5b), which may effect the stability of this helix. In the trajectory
knot_6, the a-helices were almost disappeared after 1 ns, and the native contacts in
b-sheet were still existent. The a-helices disappeared after 2 ns, at this time the
b-sheet still was stable, and the protein MJ0366 formed a compact structure. The
b-sheet disappeared after 5 ns, and the new b-sheet between the position of a1 and
a3 was appeared. Though the b-sheet was disappeared, the two b-strands were in
close distance, and the loop controlled by this b-sheet was enlarged, so the
C-terminal may have the chance to unfold. The untied protein was appeared for the
first time at *9.71 ns, in this time scale the b-sheet was reformed, and the two
terminals formed a new b-sheet. This new b-sheet made the protein fluctuate
around N-terminal, so the C-terminal could have the chance to unfold in short
time. From this time, the knot protein entered a fluctuant stage lasting for *7 ns,
the knot protein was varied between the untied state and the knot state. In the
fluctuant stage, the contacts in b-sheet were diminished, which made the protein
change to a loose structure, and then made protein easier to untie. In this stage, the
b-sheet was prone to form loops to make the knot untie. Though the C-terminal has
formed loop, and it seems to be excluded from the loop formed by a1, a2 and their
linkers, but the contacts in the b-sheet were still existent, which effected the
unfolding of the C-terminal of knot protein. From the above, the b-sheet is
important for the stability of knot protein. The b-sheet disappeared completely
after *11 ns. At 16.09 ns, the protein was untied, and did not form the knot again.
The b-sheet between the two terminals was disappeared, and the terminal of b1
was prone to form a loop, which made the b1 exclude from the loop formed by b2,
a3 and their linkers. At *17 ns, the knot protein got to the transition state.

Fig. 8.3 The unfolding process of protein MJ0366 under 530 K. The transition state is at
*17 ns
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After the transition state the contacts between b-strands were disappeared, the
N-terminal excluded from the loop formed by b2, a3 and their linkers, and then the
C-terminal had the chance to exclude from the loop formed by a1, a2 and their
linkers. Under high temperature, the b-sheet is prone to be destroyed first, and then
the C-terminal may have the chance to exclude from the loop formed by a1, a2
and their linkers. The unfolding trajectories are considered in reverse as a
description of the folding pathway. The a-helixes of protein MJ0366 have been
disappeared in the early stage of the folding process, and then the b-sheet disap-
peared, so the b-sheet may be formed earlier than a-helixes. The process that
C-terminal unfolds firstly may consume more energy for the knot protein, so this
protein chooses the pathway that the N-terminal unfolds firstly. Hence, this protein
may choose a pathway that a structure with the b-sheet is formed firstly, and then
the C-terminal thread into this loop controlled by the b-sheet for folding into the
native state.

8.2.2 Transition States for Protein MJ0366 Under High
Temperature

In the protein unfolding process, the transition state was decided by the Ca-RMSD
cluster method. The Ca-RMSD has been used as a crucial criterion for the con-
vergence measure of the protein systems [35, 36]. The Ca-RMSD for protein
MJ0366 in a typical trajectory knot_6 is shown in Fig. 8.4a. Before performing the
unfolding simulations under high temperature, the dynamic behavior of protein
MJ0366 was investigated at room temperature. Under room temperature, the knot

Fig. 8.4 Transition state for protein MJ0366 in the unfolding process. a The Ca-RMSD of the
crystal structure as a function of time at 530 and 298 K. The protein unfolded at transition state.
b The average solvent accessible surface area for the residues of protein MJ0366 in transition
state
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protein was stable, and the Ca-RMSD for this protein was remained at *2.0 Å
during the 40 ns simulation. Under the temperature of 530 K, the Ca-RMSD of
protein MJ0366 had a rapid structural deviation comparing with the crystal struc-
ture in the native state at *17 ns in the typical trajectory, and the transition state
was found through the method of Ca-RMSD cluster at *17 ns. The knot position
can be characterized by its depth, the distance along the sequence from N-terminal
and C-terminal of the knot [24]. Here we used the residues that form the knot to
monitor this protein. The knot protein server was used for the detection of knot
proteins [37]. The size of knot protein as a function of time under temperature of
530 K is shown in Fig. 8.4a. At transition state, the knot of protein MJ0366 was
untied, and before reaching the transition state the protein fluctuated between fol-
ded and untied states. After transition state, the protein was untied and no longer
formed a knot. The contact map for the knot protein in native state is shown in
Fig. 8.5a. In transition state, some of the native contacts in b-sheet were existent,
which implied the two b strands fluctuated in the close distance between each other.
This state effected the excluding of C-terminal from the loop formed by a1, a2 and
their linkers. The number of native contact of residues A8-I53, R7-S57 and T8-L60
were higher than 30 % in the transition state. Some of the native contacts between
the loop of N-terminal and b2 were maintained at high level. The number of native
contact K5-E60 was higher than 40 %. The residues K3-E57, K3-E65 had the
number of native contact higher than 30 %. In the transition state, the non-native
contacts for this knot protein were increased, especially the contacts in the b-sheet
and between C-terminal and N-terminal. The non-native contacts between N-ter-
minal and b2 were increased, which implied the b1 was prone to exclude from the
loop formed by b2, a3 and their linkers, and the contacts in the b-sheet effected the
unfolding of knot protein. The non-native contacts between C-terminal and the
region around b1 were appeared. The decreasing native contacts in b-sheet made

Fig. 8.5 The average native contact maps for protein MJ0366. a The contact map of the
trajectory at 298 K. b The native contact map for the transition states of the nine simulation
trajectories at 530 K. The upper triangular presents the nonnative contacts, and the lower
triangular presents the native contacts
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the surrounding secondary structures of C-terminal become loose, so the C-terminal
had more chances to have contacts with N-terminal. All the above, the contacts in
the b-sheet is important for the protein stability, if breaking these contacts may
promote protein untie. The molecular dynamics simulations for this knot protein
were in water, and in transition state the solvent accessible surface area (SASA) was
changed (Fig. 8.4b). The SASA values of C-terminal and N-terminal were
decreased. The emerging non-native contacts between the C-terminal and N-ter-
minal made the two regions eliminate the surrounding water molecules. The
changes in the surrounding loop of C-terminal made the contacts among a-helices
decreased, which may impact the SASA value of the C-terminal in a1, and this
region had SASA decreased. In transition state, the whole system did not unfold, so
the SASA of the knot protein was not changed very much.

8.2.3 Protein MJ0366 Folding Pathway in Gō-model

We performed constant temperature molecular dynamics simulations to obtain the
free energy landscape for the monomer structure of knot protein at folding tem-
perature. Each simulation of all-atom model included the folded/knotted state and
unfolded/unknotted state. The folding process for protein MJ0366 was monitored by
reaction coordinates. The free energy as a function of the number of native contact is
shown in Fig. 8.6a. In the folding process, the knot protein had three states. The
unfolded state was near the number of native contact 0.15, and then this protein
folded into the intermediate state. This result is consistent with the investigation by
Jeffrey K. Noel et al., and they made use of Gaussian-type contact potential to study
knot protein [38]. After crossing the free energy barrier with the number of native
contact *0.4, the protein folded into the native state. The free energy as a function
of two reaction coordinates, the number of native contact and RMSD, is shown in
Fig. 8.6b. In the folding process, the RMSD of knot protein were changed with the
increasing number of native contacts. The RMSD of the unfolded state for knot
protein was near 20 Å. When the RMSD value decreased to *3 Å, the knot protein
folded into the native state. The two-dimensional free energy landscape as a func-
tion of the number of native contact and radius of gyration (Fig. 8.6c) was not shown
an obvious L-shaped landscape, which indicated the whole system not aggregated
rapidly. The radius of gyration of knot protein decreased with an increasing number
of native contact. When the value of radius of gyration decreased to *3 Å, the
protein folded into the native state. The landscape as a function of the number of
native contact and the number of native contact formed in the b-sheet was shown
three states (Fig. 8.6d). The number of native contact in b-sheet increased rapidly
with an increasing number of native contact of the whole protein, but stayed low and
increased little further once the number of native contact in b-sheet of *0.7 was
formed. In the folding process, the intermediate state was appeared, which near the
number of native contact of 0.7. After intermediate state the protein needed to cross
the energy barrier to form a knot. In the folding process, protein must overcome an
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energy barrier to form the b-sheet, and this state could form a loop, which is
necessary for the formation of the knot. This loop needs to twist correctly, otherwise
the protein may form the topological trap structures like the results of the investi-
gation by Jeffrey K. Noel et al. The C-terminal needed to thread into this loop for the
formation of native structure, and this step required to cross the high energy barrier.
The C-terminal may thread into this loop through plug or slipknot motion [38]. Here
we found when the loop formed by a1, a2 and their linkers was loose, the C-terminal
was prone to thread into this loop with plug motion, otherwise the C-terminal tended
to adopt slipknot motion. From the above, the native contacts between C-terminal
and the loop formed by a1, a2 and their linkers are stable, so more energy is needed

Fig. 8.6 The folding routes of knot protein MJ0366 from all-atom Gō-model at folding
temperature T = 111. a The free energy as a function of the number of native contact. b The free
energy as a function of the number of native contact and Ca-RMSD. c Two-dimensional
free energy landscape as a function of the number of native contact and radius of gyration. d The
free energy as a function of the number of native contact of the whole protein and the number of
native contact in b-sheet

102 X. Wu et al.



to destroy these contacts than the native contacts in b-sheet. Under high tempera-
ture, the protein chooses to untie the b-sheet firstly, which is because of the un-
stability of this region comparing with C-terminal of the knot protein.

8.2.4 Intermediate and Transition States for Protein MJ0366
in Gō-model

The native contact maps in intermediate state and transition state for protein
MJ0366 are shown in Fig. 8.7. The intermediate and transition states were defined
according to the free energy as a function of the number of native contact. The
intermediate state had the number of native contact of *0.2, and the transition
state was located in the maximum free energy as the function of the number of
native contact. In intermediate state, all the native contacts in b-sheet were almost
appeared, but the C-terminal was loose. After the intermediate state the protein
entered the transition state with high energy barrier. The transition state appeared
some native contacts, such as the native contacts between C-terminal and the
surrounding region of b1, and the C-terminal and a1. So the C-terminal was ready
to thread into the loop formed by a1, a2 and their linkers in transition state. In
addition, some structures in the transition state formed the native contacts between
a2 and a4, which means the main native contacts needed by the formation knot
protein were appeared, so some structures have formed knot and the formation
knot protein maybe at the late transition state.

Fig. 8.7 The native contact maps for protein MJ0366 from all-atom Gō-model at folding
temperature. a The contact map for protein in the native state. b The native contact map in the
intermediate state. c The native contact map in the transition state. The typical structures in the
three states are shown
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8.2.5 Protein VirC2 Folding Pathway in Gō-model

We used constant temperature molecular dynamics simulations of Ca Gō-model to
get the free energy landscape of the structure of protein VirC2 at folding tem-
perature for better understanding the folding mechanism of trefoil protein. The free
energy as a function of the number of native contact and radius of gyration is
shown in Fig. 8.8b. The L-shaped landscape indicated the radius of gyration
decreased rapidly with an increasing number of native contact, but once the
number of native contact of *0.4 was formed, the radius of gyration decreased
little further. The unfolded state had the radius of gyration of *0.1. After the
radius of gyration reached *0.6, the protein folded to the nature state. The two
states were separates by the area of transition state. The sharply decreased radius
of gyration implied the system of knot protein had the initial collapse. The
landscape of the free energy as a function of the number of native contact for the
whole protein and the number of native contact in b-sheet (Fig. 8.8c) was showed
the b-sheet formed first, subsequently the number of native contact increased until
the protein folded into the native state. So the native contacts in b-sheet may
promote the formation of compact structure. The free energy landscape was
plotted as a function of the number of native contact and the relative contact order
(RCO) parameter (Fig. 8.8d), which can be used to investigate more detail about
the folding mechanism of this knot protein [39]. In the folding process of protein
VirC2, the RCO increased with an increasing number of native contact. The
change trend of RCO value coincided with the number of native contact. This
implied that the local native contacts were formed in the initial stage of the folding
process, and then the long-range native contacts were formed as an increasing
number of native contact. In the Ca Gō-model, the b-sheet formed firstly, which
promoted the compaction between N-terminal and the other parts of this knot
protein. In this process, the local native contacts were important for the formation
of b-sheet. After forming the native contacts in b-sheet, the knot protein needed to
cross the transition state to fold into the native state. A typical folding process for
this protein with all-atom Gō-model at T = 103 is shown in Fig. 8.9. In the folding
process, the structure of knot protein formed the native contacts in b-sheet at the
number of native contact of *0.2. When the number of native contact reached
*0.5, the protein entered a state with a compact structure, but the C-terminal can
not thread into the loop formed by a1, a2 and their linkers, it is likely that this
process needed to adjust the conformation of this loop. When the number of native
contact decreased to *0.2 again, this loop was readjusted, and the orientation of
this loop was changed. After this process the C-terminal could thread into this
loop. The folding process for this trefoil knot protein was similar to the protein
MJ0366. The formation of the native contacts in b-sheet was important for the
whole protein, after forming the native contacts in b-sheet, the N-terminal could
have chances to thread into the loop formed by a1, a2 and their linkers. At the last
stage of the folding process, the C-terminal was prone to adopt slipknot motion to
thread into this loop.
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8.2.6 Transition State for Protein VirC2 in Gō-model

The free energy as a function of the number of native contact is shown in Fig. 8.8a.
The transition state has the number of native contact of *0.4. The native contact
map of transition state for protein VirC2 in Ca Gō-model is shown in Fig. 8.10. In
transition state, the native contacts in b-sheet were formed, some of the native
contacts were formed between N-terminal and C-terminal, and between C-terminal
and a2. Comparing with the native state, most of the native contacts have been
formed for some structures in the transition state, which implied this knot may be
formed at this stage. Hence, the protein VirC2 may be formed in the late transition
state like the trefoil knot MJ0366. The free energy as a function of Ca-RMSD and
the number of native contact in b-sheet (Fig. 8.8e) was presented a state with the
number of native contacts of *0.3 in the b-sheet. This state formed the native
contacts in the b-sheet, and the C-terminal was loose like the intermediate state of
protein MJ0366. So the knot protein VirC2 may have the intermediate state, in this
state the loop was controlled by the b-sheet which needed to be readjusted, and
then the protein could fold into the native structure.

Fig. 8.8 The folding routes of knot protein VirC2 from Ca Gō-model at folding temperature
T = 146. a The free energy as a function of the number of native contact. b The free energy as a
function of the number of native contact and radius of gyration. c Two-dimensional free energy
landscape as a function of the number of native contact for the whole protein and the native
contacts in b-sheet. d The free energy as a function of the number of native contact and RCO
parameter. e Two-dimensional free energy landscape as a function of Ca-RMSD and the number
of native contact in b-sheet

b

Fig. 8.9 A typical folding route for protein VirC2 from all-atom Gō-model at T = 103 close to
the folding temperature. The typical conformations in this trajectory are shown below each states
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8.3 Conclusions

We simulated two trefoil proteins with Gō-model, and high-temperature unfolding
simulations was used for the study of trefoil protein MJ0366. The unfolding
process of protein MJ0366 showed the contacts in b-sheet decreased firstly, and
then the C-terminal of knot MJ0366 could thread out of the loop controlled by the
contacts in b-sheet. In all-atom Gō-model, the native contacts in b-sheet promote
the formation of a loop, and then the C-terminal threads into this loop to form the
native state. The folding processes of the two trefoil knots were similar, and the
formation of b-sheet was important for the two knot proteins. The C-terminal was
prone to thread into the loop formed by secondary structures in correct size with
slipknot motion, but when the loop was loose, the C-terminal was probably to
thread into the loop with plug motion. In the intermediate state, the compact
structure with the native contacts in the b-sheet was formed, but the C-terminal
was loose. In transition state, the native contacts in b-sheet were formed, and the
C-terminal was prone to thread into the loop.

8.4 Materials and Methods

High-temperature unfolding. The molecular dynamics simulations for protein
MJ0366 were performed through using the software package GROMACS 4.0.7
with GROMOS force field [40]. The starting structure of protein MJ0366 was
taken from the NMR structure of the Protein Data Bank. This protein had nine
simulation trajectories at 530 K for 40 ns, and a molecular dynamics simulation in
native state was performed under 298 K at neutral PH. For preparing the molecular
dynamics simulations, the starting structure was solvated with SPC216 water, and
then subjected to 20,000 steps of steepest descent minimization. The nearest

Fig. 8.10 The native contact maps for protein VirC2 from Ca Gō-model at folding temperature.
a The contact map for protein in native state. b The native contact map for protein in transition
state
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distance between solute and box was 1.2 nm. Following the minimization, the
whole system was subjected to 500,000 steps molecular dynamics simulations
under NVT canonical ensemble and NPT constant pressure and constant tem-
perature ensemble, respectively. The initial velocities were assigned from the
Maxwellian distribution. The time step for these molecular dynamics simulations
was 2 fs, and the neighboring list was updated every 5 steps. The transition states
in the high-temperature unfolding process were determined by the conformational
cluster method which was based on the Ca root-mean-square deviation (Ca
RMSD) among the structures taken from the molecular dynamics simulation tra-
jectories. For the nine simulation trajectories, the Ca RMSD values of the whole
trajectory were used to generate positive definite matrix. The Michael Levitt’s
projecting co-ordinate spaces method was used to project this positive definite
matrix onto the best plane [41]. The structures in the last 5 ps of the first obvious
cluster were regarded as the transition state.

All-Atom Model. The all-atom model has been described [42] and has an
available web server [43]. In the all-atom model of protein, only the heavy atoms
were included. The single bead with unit mass was used to represent each atom.
The harmonic potentials were used to restrain the bond lengths, bond angles,
improper dihedrals, and planar dihedrals. The attractive 6–12 interactions were
used for the nonbonded atom pairs which formed the native contacts, and the
repulsive interactions were given to the other nonlocal interactions. For the Ca
coarse-grained protein model [44], the single bead was centered in the Ca position
to represent each residue. The contact map was constructed by including all res-
idue pairs that at least had one atom-atom contact between them. Here we used
GROMACS 4.0.7 software package to perform the molecular dynamics simula-
tions [40]. The constant temperature molecular dynamics simulations at folding
temperature were used to get thermodynamics datas, and these datas were com-
piled through using weighted histogram analysis method [45].

Reaction Cordinates. We used QAA and QCA as the reaction coordinates. QAA

is the fraction of native contact which is the probability of interactional atoms
comparing with the native state. If any atom-atom interaction between two resi-
dues within 1.2 times the native distance rij are considered as the native contact.
QCA is the fraction of native contact for the Ca coarse-grained model which
includes the residue pairs whose Ca atoms within 1.2 times their native distance.
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Chapter 9
Binding Induced Intrinsically Disordered
Protein Folding with Molecular Dynamics
Simulation

Haifeng Chen

Abstract Intrinsically disordered proteins lack stable tertiary and/or secondary
structures under physiological conditions in vitro. Intrinsically disordered proteins
undergo significant conformational transitions to well folded forms only on binding
to partner. Molecular dynamics simulations are used to research the mechanism of
folding for intrinsically disordered protein upon partner binding. Room-tempera-
ture MD simulations suggest that the intrinsically disordered proteins have non-
specific and specific interactions with the partner. Kinetic analysis of high-
temperature MD simulations shows that bound and apo-states unfold via a two-state
process, respectively. U-value analysis can identify the key residues of intrinsically
disordered proteins. Kolmogorov-Smirnov (KS) P test analysis illustrates that the
specific recognition between intrinsically disordered protein and partner might
follow induced-fit mechanism. Furthermore, these methods can be widely used for
the research of the binding induced folding for intrinsically disordered proteins.

Keywords IDPs � Molecular dynamics simulations � Induced-fit mechanism

9.1 Introduction

Intrinsically disordered proteins lack stable tertiary and/or secondary structures
under physiological conditions in vitro [1]. A large number of proteins (between
25 and 41 %) are intrinsically disordered. If the dogma dedicates that proteins
need a structure to function, why do so many proteins live in the disorder state? [2]
However, these intrinsically disordered proteins also play key function in regu-
lation, signaling, and control upon binding with multiple interaction partners [3].
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These proteins have many names, like rheomorphic, flexible or highly flexible,
natively denatured, natively unfolded, intrinsically unstructured, intrinsically dis-
ordered. These proteins composed of an ensemble of highly heterogeneous con-
formations. After statistics of disordered protein database, IDPs include
significantly higher levels of polar amino acids for Glu, Lys, Arg, Gln, Ser, Asp
and Pro, and lower levels of hydrophobic residues for Ile, Leu, Val, Trp, Phe, Tyr,
Thr, Met, Cys, His and Asn [4].

Furthermore, regions of disorder are found to be abundant in proteins associated
with signaling, cancer, cardiovascular disease, amyloidoses, neurodegenerative
diseases, and diabetes [5]. Different from structural protein as drug target, IDPs as
drug target can bring low binding affinity and low side effect. There are two
strategies for drug design targeting IDPs. Firstly, drug is binding to structured
partner, thereby preventing the binding of the disordered partner. Secondly, drug is
binding directly to the disordered partner, thereby preventing the association of
two proteins. For this approach both partners were disordered, but small molecules
bound to one of the two partners only. For example, c-Myc-Max inhibitors bind to
distinct ID regions of c-Myc [6, 7]. These binding sites are composed of short
contiguous stretches of amino acids that can selectively and independently bind
small molecules. Inhibitor binding induces only local conformational changes,
preserves the overall disorder of c-Myc, and inhibits dimerization with Max.

Furthermore, many intrinsically disordered proteins undergo significant con-
formational transitions to well folded forms only on binding to target ligands [8–
11]. These experimental observations raise a set of interesting questions if these
intrinsic disordered proteins obey an induced fit upon binding.

Coarse-grained modeling simulation [12] and all-atomic model with high
temperature simulation [13] were used in intrinsically disordered protein folding
coupled partner binding. So far the folding time scales of all atomic MD simu-
lations are restricted to microsecond magnitude at room temperature (298 K),
which is significant shorter than the folding half times of most proteins [14, 15]. In
order to reveal the conformational changes within reasonable time, all MD sim-
ulations in explicit solvent at high temperature have been widely used to monitor
the unfolding pathways of proteins. The unfolding timescales could be nanosecond
at 498 K [14, 16]. Moreover, according to the principle of microscopic revers-
ibility, experiments have demonstrated that the transition state for folding and
unfolding is supposed to be same [14]. Therefore, MD simulations high temper-
atures are widely used in the folding of intrinsically disordered proteins coupled
partner binding.

9.2 Materials and Method

The atomic coordinates of intrinsically disordered proteins were obtained from pdb
data bank. Point mutants were modeled with SCWRL3 [17]. All hydrogen atoms
were added using the LEAP module of AMBER [18]. Counter-ions were used to
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maintain system neutrality. All systems were solvated in a truncated octahedron
box of TIP3P waters with a buffer of 10 Ǻ [19]. Particle Mesh Ewald (PME) [20]
was applied to handle long-range electrostatic interactions with default setting in
AMBER [18]. The parm99 force filed was used to compute the interactions within
protein [21]. The SHAKE algorithm [22] was employed to constrain bonds
including hydrogen atoms. All solvated systems were first minimized by steepest
descent to remove any structural clash, followed by heating up and brief equili-
bration in the NPT ensembles at 298 K. The time step was 2 fs with a friction
constant of 1 ps-1 using in Langevin dynamics. To study the folded state of each
solvated system, multiple independent trajectories in the NPT ensemble at 298 K
were simulated with PMEMD of AMBER. Then multiple independent unfolding
trajectories were performed to investigate unfolding pathways for each solvated
system in the NVT ensemble.

9.3 Results

TIS11d, KID, LEF, p53, CBP, and Brinker are partially or fully intrinsically
disordered proteins. [13, 23–27] As transcription factor, they play key roles in
signal transduction. Upon binding with DNA, RNA, or other transcription factors,
they can well fold and will be introduced in this book. Their complex structures are
illustrated in Fig. 9.1.

Fig. 9.1 The complex structure of intrinsically disordered proteins. a TIS11d/mRNA. b p53/
MDM2. c pKID/KIX. d Brinker/DNA. e LEF/DNA. f p53/CBP
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To capture the average properties of proteins, multiple trajectories for MD
simulations (5–10) are necessary [28]. To study the recognition for intrinsically
disordered proteins, multiple independent trajectories for apo-states and their
complex were simulated at room temperature (298 K), respectively. Ca and U/w
fluctuations for apo and bound states are researched. In general, the Ca variations
of bound state are significant smaller than those of apo-state, especially in the
region of the binding site. The results of apo and bound TIS11d are shown in
Fig. 9.2 [26]. The Ca fluctuation of bound TIS11dTZF is much smaller than that of
apo-TIS11dTZF, especially in the binding site of mRNA and zinc. This suggests
that bound TIS11dTZF become less flexible and more stable upon mRNA and zinc
binding, which is consistent with the experiment. However, the U/w variation of
bound TIS11dTZF is similar to that of apo-TIS11dTZF, suggesting that the sec-
ondary structure of bound TIS11dTZF does not significantly change upon mRNA
and zinc binding. Indeed, the helices of a1, a3 and a4 are already stable within
apo-TIS11dTZF.

To clearly illustrate the conformational difference, the landscapes of distance
difference between the average pairwise intra-molecular distance of bound states
and corresponding average pairwise intra-molecular distance of apo states for
intrinsically disordered protein are shown in Fig. 9.3 [24]. The landscapes can
reflect the relative conformational change of DNA and LEF backbone. The deep
red area indicates that the distance difference for bases 5–8 and 23–26 is positive
value. These bases are corresponding to the minor groove. This suggests that the
minor groove is widened upon LEF-binding. Furthermore, disordered C-tail of
LEF is located at the minor groove. This suggests that the disordered C-tail of LEF
has interactions with DNA and open the minor groove of DNA. The deep blue area
represents that the distance difference is negative value. It suggests that the major
groove is contracted. That is consistent with the experimental observation that
DNA is bended upon LEF-binding [29, 30]. For LEF, the deep red and blue areas
are locked at disordered C-tail. This suggests that C-tail of LEF has significant
conformational change.

Fig. 9.2 Ca and U/W
variations for TIS11d
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To study the driving force for these conformational adjustments, the electro-
static, hydrophobic, and hydrogen-binding interactions between intrinsically dis-
ordered protein and partner were analyzed and shown in Fig. 9.4. From this figure,
stable electrostatic interactions, hydrogen bonds, and hydrophobic interactions can
be calculated. In general, partner binding will introduce more electrostatic inter-
actions, native contacts and hydrogen bonds at the interface which are responsible
for the higher stability for intrinsically disordered proteins.

9.3.1 Unfolding Kinetics

High temperature simulation was used to research the unfolding kinetics of
intrinsically disordered proteins with the parameters of the fraction of native ter-
tiary contact (Qf) and the fraction of native binding contact (Qb). Time evolutions
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of Qb and Qf for apo and bound states are shown in Fig. 9.5 [23]. The tertiary
unfolding and unbinding can be fitted well by a single exponential function,
indicating first order kinetics in the NVT ensemble at high temperature (498 K).
This suggests that the binding of partner significantly postpones the tertiary
unfolding of intrinsically disordered proteins. This is in agreement with the
experimental observations [8, 31].

9.3.2 U-Value Prediction

U values have been widely used by theoretical and experimental works to identify
the key residues for protein folding [32–34]. The U values of pKID were predicted
and shown in Fig. 9.6. Note also that the highest U values are found for Asn139,
Asp140 and Leu141, suggesting these residues play key role in the folding of

Fig. 9.5 Unfolding kinetics
for bound pKID

Fig. 9.6 U-values for bound
and apo pKID
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pKID [23]. A critical role of Leu141, which deeply extends into the hydrophobic
groove of KIX, forms three hydrophobic contacts with KIX. All predicted U
values can be confirmed by experiments.

9.3.3 Unfolding Pathway

According to the unfolding kinetics analysis, the unfolding orders of bound
intrinsically disordered protein are shown in Fig. 9.7 [13]. If we assumed folding is
reverse of unfolding, the proposed folding pathway of bound intrinsically disor-
dered protein is from the unfolded state, then secondary structure folding, tertiary
folding, partner binding, then to the folded state.

9.3.4 Recognition Mechanism

Conformational selection and induced fit are two widely used models to interpret
the recognition between intrinsic disordered proteins [35]. According to the con-
formational selection paradigm, various conformational ensembles explore the
free energy landscapes corresponding to diverse stable unbound states in equi-
librium. During the binding process, the favorable conformation compatible with
binding selectively stabilize, and the populations of conformational ensembles
shift towards stabilizing state [36–39]. However, the induced fit scenario proposes
that the favorable conformation results from significant changes of unbound
ensembles upon allosteric binding [40–43]. It is worthy to point out that confor-
mational selection and induced fit models cannot be distinguished absolutely [44].
Indeed, some systems involve kinetic elements of both mechanisms [45, 46].

Fig. 9.7 Unfolding pathway for bound p53. a fold state. b unbinding. c tertiary unfolding.
d helix 3/5 unfolding. e helix 1/2/4 unfolding. f unfolded state
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The possible magnitudes of conformational selection and induced fit [47] are
calculated to reveal the recognition mechanism. To explore the recognition
mechanism, the average RMSD deviations of bound conformation and apo con-
formations are analyzed as a function of distance from the centroid of binding
partner and shown in Fig. 9.8 [27]. This figure illustrates that the RMSD variation
gradually increases until to the global level. This suggests that there is an induced
fit far away for the binding site.

To address the statistical significance for differences of deviations between
these two systems, two sample Kolmogorov-Smirnov test [48] is used to calculate
the P value for each distance group. Figure 9.8c illustrates the median of P values
and the fraction with P \ 0.1 for all 100 pairs of CBP conformations in each
distance group. It is found that the median P values are typically smaller than 0.1
in most distance group, especially in some larger distance group with median
P values approximates 0. The conformations with P \ 0.1 exceed 50 % in most
distance groups. This suggests that the bound CBP is significant different from the
apo conformation far away from the binding site and the differences are statisti-
cally significant. In summary, the recognition between intrinsic disordered CBP
and p53 might obey an induced fit based on the RMSD and P-value analysis.

Fig. 9.8 Local conformational RMSD differences between bound and apo conformations as a
function of distance from the centroid of binding partner and statistical significance of
conformational selection in p53 and CBP binding. Average local RMSD for 10 pairs of bound
conformations and the most similar apo conformation and for 90 pairs of bound NCBD and the
other apo conformations, as a function of distance from the centroid of binding partner. a CBP.
b p53. c CBP. d p53
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9.4 Conclusion and Remark

Intrinsically disordered proteins lack stable tertiary and/or secondary structures
under physiological conditions in vitro. Intrinsically disordered proteins undergo
significant conformational transitions to well folded forms only on binding to
partner. Molecular dynamics simulations are used to research the mechanism of
folding for intrinsically disordered protein upon partner binding. Room-tempera-
ture MD simulations suggest that the intrinsically disordered proteins have non-
specific and specific interactions with the partner. Kinetic analysis of high-
temperature MD simulations shows that bound and apo-states unfold via a two-
state process, respectively. U-value analysis can identify the key residues of
intrinsically disordered proteins. Kolmogorov-Smirnov (KS) P test analysis
illustrates that the specific recognition between intrinsically disordered protein and
partner might follow induced-fit mechanism. Furthermore, these methods can be
widely used for the research of the binding induced folding for intrinsically dis-
ordered proteins.
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Chapter 10
Theoretical Studies on the Folding
Mechanisms for Different DNA
G-quadruplexes

Xue Wu, Peijun Xu, Jinguang Wang, Yong Xu, Ting Fu,
Meixia Zhao, Depeng Zhang, Jiahui Liu, Hujun Shen,
Zhilong Xiu and Guohui Li

Abstract The G-quadruplex DNA formed by the stack of guanines in human
telomere sequence is a promising anticancer target. In this study we used the
energy landscape theory to elucidate the folding mechanisms for the thrombin
aptamer, Form 1 and Form 3 G-quadruplexes. The three G-quadruplexes were
simulated with all-atom Gō-model. Results show that, the three G-quadruplexes
fold through a two-state mechanism. In the initial stage of the folding process, the
compact structures are formed. The G-quadruplexes need to form G-triplex
structures on the basis of the compact structures before folding to the native states.
The folding free energy barrier of Form 3 G-quadruplex is higher than thrombin
aptamer and Form 1, which shows that the structure of Form 3 G-quadruplex has
more stability than the other two G-quadruplexes.
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10.1 Introduction

Telomere, a nucleoprotein complex, is located at the ends of linear eukaryotic
chromosomes. It is important for maintaining the chromosomal stability and the
integrity of the genome [1, 2]. In the process of the replication of eukaryotic
chromosomes packed by the DNA, the ends of telomeric DNA cannot be copied by
DNA polymerase, which is due to lack of a template strand in the extreme 30 end
of a DNA sequence [3, 4]. As a result, the 30 end of telomeric DNA is eroded, and
the telomeric DNA is shortened without compensation mechanism. Nevertheless,
the telomeric DNA in the tumour cell is not shortened during the replication. The
telomerase is important for maintaining the stability and integrity of the telomeric
DNA in most of proliferating tumour cells [5]. It is interesting to study the telo-
mere and telomerase because of the difference between the somatic and tumour
cells for the maintenance of telomere. Human telomeric DNA is composed of
thousands of tandem repeats of the guanine-rich sequences, and the 30-end over-
hangs 100–200 nt [6]. The G-quadruplex structures can be built from the vertical
stacking of planar G � G � G � G tetrads in the G-rich DNA sequences in vitro, and
this structures have been found in the telomeric sequences and telomeres [7–11].
The activity of telomerase is inhibited by these structures, so the G-quadruplexes
in human telomere sequences are the promising anticancer targets. It is meaningful
to study these structures as the promising anticancer targets, and the research about
the folding of nucleic acids is useful to understand the biological natures, so here
we study the folding dynamics for DNA tetraplex.

To date, there have been reported various G-quadruplex structures [12, 13]. The
NMR structure of intramolecular quadruplex formed by four repeats of d(TTAGGG)
in the Na(+)-containing solution have been reported [9]. In this structure, three G-
quartets are held together by strands in the alternating orientations, and two lateral
loops and a central diagonal loop connect these G-quartets. Under approximately
physiological ionic conditions, the G-quadruplex has a different conformation in
present of the K+ solution comparing with the structure in Na+ solution. In the K+
solution, this crystal structure is consisted of all four parallel strands [12]. The
thrombin aptamer sequence d(GGTTGGTGTGGTTGG) could form a G-quadru-
plex structure in the K+ solution, and this structure is composed of two guanine
quartets connected by two T-T loops and a T-G-T loop [14]. The human telomeric
DNA in physiologically was observed to form the (3 + 1) G-quadruplex topology
(Form 1 and Form 2) in K+ solution, and this structure is consisted of three strands
oriented in one direction and the fourth in the opposite direction [15, 16]. Both Form
1 and Form 2 contain one double-chain-reversal and two edgewise T-T-A loops, but
the two structures differ in loop arrangement. Furthermore, a novel G-quadruplex
fold (Form 3) has been found in K+ solution, and this structure is a basket-type
G-quadruplex with two G-tetrad layers [17].

For better understanding the structure and biological nature, the investigation of
the folding dynamics for G-quadruplex structures is needed. The stopped-flow
mixing coupled with rapid wavelength scanning method was used to study the
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folding dynamics for G-quadruplexes [18]. The folding of G-quadruplex structures
from the G-rich oligonucleotides may be via intermediates. Some reports about the
G-quadruplexes were shown a triplex structure which was important for the for-
mation of G-quadruplex [19, 20]. The theoretical research has been used to study the
folding dynamics of G-quadruplexes. A thrombin-bind DNA aptamer was investi-
gated by replica exchange molecular dynamics simulation method at the all-atom
level for giving more insight into its fold in atomic detail [21]. Though the structure
and the folding of G-quadruplexes have been investigated, how this molecule
overcoming the energy barrier folds from the G-rich oligonucleotide to the correct
G-quadruplex topology still needs to be investigated. Here we used a different
approach from these studies to discuss the folding mechanisms of G-quadruplexes.
The folding routes of a well-designed sequence with the reduced effect of the local
trap may be determined by the shape of this molecule and the chain connectivity of
its backbone [22]. So the structure-based model can capture the essential folding
features through isolating the effect of topology and removing all non-native ener-
getic trap [23–25]. In the folding process, the energy landscape directs the folding of
protein from unfolded state to the native state, the pattern of contacts directs the
diverse sizes and shapes of the free energy barriers, and the native contacts may be
more favorable than the nonnative contacts [26–28]. The DNA molecules have been
studied widely [29–31], and this structure-based model has been used for the folding
of nucleic acid in theory [32–34]. So here we used the all-atom structure-based
model to study the folding pathways of thrombin-bind DNA aptamer, Form 1 and
Form 3 G-quadruplexes. The PDB entries for thrombin-bind DNA aptamer, Form 1
and Form 3 G-quadruplexes are 148d, 2jsm and 2kf8, respectively. The study for the
folding of the three G-quadruplexes demonstrated that all the three G-quadruplexes
had a two-state folding behavior. In the folding process, the thrombin aptamer
formed the two T-T loops firstly, and then the two G-quartets stacked together by the
native contacts between the two ends. The Form 1 and Form 3 G-quadruplexes
needed to form the compact structures first, and then through forming the G-triplex
structures to fold into the native states. The energy barrier of Form 3 was higher than
the other two G-quadruplexes, which may explain the reason that the stability of
Form 3 G-quadruplex is higher than the other two G-quadruplexes.

10.2 Results and Discussion

The thrombin aptamer is consisted of two stacked G-quartets (Fig. 10.1a).
Two T-T loops at the two ends and one T-G-T loop link the two G-quartets.
The guanines in the two G-quartets have the alternative glycoside orientations.
The two G-quartets compose of G1syn � G6anti � G10syn � G15anti and
G2anti � G5syn � G11anti � G14syn [14]. The Form 1, a (3 + 1) quadruplex,is
consisted of one anti � syn � syn � syn and two syn � anti � anti � anti G-tetrads
(Fig. 10.1b). This G-quadruplex has one narrow, one wide and two medium
grooves, and the double-chain-reversal loop is located in a medium groove
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[16]. The Form 3 G-quadruplex structure has two layers of G-tetrads like the
thrombin aptamer, but forms antiparallel-stranded basket-type structure
(Fig. 10.1c). The glycosidic conformations of guanines in the two G-tetrads
are G1syn � G14syn � G20anti � G8anti and G2anti � G15anti � G19syn � G7syn.
Form 3 has one diagonal and two edgewise loops.

10.2.1 Transition States in All-Atom Gō-Model

Thrombin aptamer. The free energy as a function of the number of native contact
at folding temperature is shown in Fig. 10.3a. There are two basins corresponding
to the folded and denatured states. The two states are separated by a free energy
barrier as the transition state near the number of native contact of *0.5. The
transition state is defined as the state that near the maximum free energy as a
function of the number of native contact [35]. The temperature wasn’t defined as
the usual Boltzmann constant but an arbitrary chosen constant in this study. The
native contact maps for thrombin aptamer is shown in Fig. 10.2a. Comparing with
the native state, the structures in the transition state have been formed some of the
native contacts. In the transition state, the native contacts between G2 and G5, G1
and G6, G11 and G14, and G10 and G15 at the two ends were formed. Between
G5 � G6 and G10 � G11, the native contacts G5-G11 and G6-G10 were appeared.
In this state the native contacts in the T7-G8-T9 loop were formed. Some

Fig. 10.1 The secondary structures and sequences alignment for thrombin aptamer, Form 1 and
Form 3 G-quadruplexes. a Thrombin aptamer ribbon diagram. b The ribbon diagram for Form 1
G-quadruplex. c Form 3 G-quadruplex ribbon diagram. d Sequences alignment for thrombin
aptamer, Form 1 and Form 3 G-quadruplexes. These guanines form the G-quartets in the three
G-quadruplexes marked in red
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structures formed the native contacts G2-G14, G1-G15, and T4-T13 between the
loops of the two ends, but these native contacts had low probability than the other
native contacts in the two G-tetrads. So in the transition state part of structures
formed most of the native contacts, but most of the structures only presented the
native contacts G2-G5, G1-G6, G11-G14, and G10-G15 at the two ends. Before

Fig. 10.2 Native contact maps for a thrombin aptamer, b Form 1 G-quadruplex and c Form 3
G-quadruplex. The left maps show the native contacts in native states, and the right maps present
the native contacts in transition states for the three G-quadruplexes
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reaching to the native state, the G-triplex structures were found, which were
formed by the native contacts G5-G11 and G6-G10 and the native contacts at the
two ends.

10.2.2 Form 1 G-quadruplex

The free energy as a function of the number of native contact at folding temperature is
shown in Fig. 10.4a. Two basins corresponding to the folded and denatured states are
presented like the thrombin aptamer. The denatured states have the number of native
contact of *0.15, and the number of native contact in the folded state is near 0.65.
The transition state with the number of native contact of *0.35 separates the folded
state and denatured state. The native contact maps of the structures in the native and
transition states are shown in Fig. 10.2b. The contact map of the transition state had
only two regions, so some of the native contacts weren’t formed. One of the regions in
the contact map had the native contacts G3-G21 and G4-G22 at the two ends of Form
1 G-quadruplex. At one end of the G-quadruplex, the native contacts G17-G21,
G16-G22, and G15-G23 were appeared at the transition state. In the transitions state,
the Form 1 G-quadruplex folded into the compact structure through forming the
native contacts between the two ends. The native contacts A2-T19 and A2-A20
stabilized this compact structure. The native contact T18-A20 also stabilized this
structure. The G9-G10-G11 strand did not stack with the other three strands. So the
G-triplex structures were formed in the transition state, and these structures included
the formed native contacts G3-G21, G4-G22, G17-G21, G16-G22, and G15-G23.

10.2.3 Form 3 G-quadruplex

The free energy as a function of native contact at the folding temperature is shown
in Fig. 10.5a. There are two basins corresponding to the folded and denatured states
like thrombin aptamer and form 1 G-quadruplex. The folded state has the number of
native contact of *0.7, and the number of native contact in the denatured state is
around 0.15. The transition state with the number of native contact of *0.3 sep-
arates the folded and denatured states. The native contact maps of the folded and
transition states for Form 3 G-quadruplex are shown in Fig. 10.2c. Comparing with
the native state, the some of the native contacts were formed at the transition state.
The native contacts G1-G14 and G2-G15 were appeared at the transition state. Few
structures in the transition state had native contacts G1-G8 and G2-G7. The native
contact between G3 and T5 was appeared in the transition state. This native contact
may stabilize the loop at one end, and promote the formation of the native contacts
G1-G14 and G2-G15. The native contact G3-A18 was formed in the loop at one
end, but the high probability of this native contact did not promote the formation of
native contacts G14-G20 and G15-G19. The structures were compact at transition

128 X. Wu et al.



state, and the native contacts T5-T17 and T5-A18 were good for the formation of
these compact structures. The native contact between G9 and T11 was appeared,
and this contact was benefit to the formation of native contacts G1-G14, G2-G15,
G1-G8 and G2-G7. All the above, few structures in the transition state showed the
G-triplex conformations formed by the native contacts G1-G14, G2-G15, G1-G8
and G2-G7, but most of the structures had native contacts G1-G14 and G2-G15
between the loops of the two ends.

10.2.4 The Folding Pathway of G-quadruplexes

Thrombin aptamer. The constant temperature simulations of thrombin aptamer
were performed at folding temperature. The landscape for free energy as a function
of the number of native contact and the Ca root-mean-square deviation (RMSD) is
shown in Fig. 10.3b. In the folding process, the RMSD decreased as an increasing
number of native contact, and the RMSD didn’t have the sharp change. The
transition state with the native contact of *0.5 separates the two folded and
denatured regions. The free energy landscape as a function of the number of native
contact and the radius of gyration is shown in Fig. 10.3c. The L-shaped landscape
indicated that the radius of gyration decreased sharply in the initial stage of the
folding process, when the structure reached the transition state with the number of
native contact of *0.5, the radius of gyration decreased little further. So in the
initial stage of the folding process, the compact structures were formed. The
Fig. 10.3d is shown for the free energy landscape as a function of the number of
native contact and the distance between 50-end and 30-end. In the initial stage of the
folding process, the distance between 50-end and 30-end decreased sharply, so the
50-end and the 30-end was in close distance, and this G-rich oligonucleotide has
formed a compact structure. After transition state the number of native contact
increased rapidly as the slowly decreasing distance between the 50-end and the
30-end, and the two ends was in short-distance as the native state. So the unfolded
state were formed a compact structure first through the stack between the 50 and 30

ends. More details on the folding mechanism can be derived from the free energy
landscape as a function of the number of native contact and the relative contact
order (RCO) parameter (Fig. 10.3e). The relative contact order was defined as a
function of the distance between two residues that formed native contact [36]. Two
regions as the denatured and folded states were shown in this plot. The unfolded
region had the RCO value of *0.3, the number of native contact of the unfolded
region was inferior to 0.4, and the folded region with the RCO of *0.5 presented
the number of native contact higher than 0.6. In the folding process, the RCO
increased as the increasing number of native contact, so the local native contacts
were important for the initial stage of the folding process. With the increasing
number of native contact the non-local native contacts were increased, so the local
native contacts may promote the stack of the local structures, and then stabilized
the whole structure with non-local native contacts.
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Fig. 10.3 Folding routes for thrombin aptamer. a Free energy is plotted as a function of the
number of native contact. b–f The free energy landscapes as a function of various quantities at
folding temperature: T = 115
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The typical structures for the folding process are shown in Fig. 10.6a. The two
ends of the unfolded structure folded to the native state firstly, but the native
contacts G5-G11 and G6-G10 were not formed. The native contacts in the region
of loop T7-G8-T9 were formed in the denatured state, and were stable in the whole
folding process. The native contacts in the two ends were not formed, but the
compact structures were appeared through forming the native contacts in the T7-
G8-T9 loop. So the local native contacts had the main contribution for the compact
structures. After the native contacts at the two ends formed, the native contacts
G5-G11 and G6-G10 were appeared, at this time the G-triplex was formed by the
native contacts G1-G6, G2-G5, G6-G10, G5-G11, G11-G14, and G10-G15. The
native contacts G2-G14 and G1-G15 were the last formed in the G-tetrads, and
these native contacts made the two ends stack together. In the experimental study,
two-state folding process was found, the two ends folded firstly, and G-triplex
structures were needed for the formation of the native state [37]. This folding
process studied by the all-atom Gō-model is consistent with the conclusion of the
experimental research. In the folding process, the native contacts in the loops
contributed to the formation of the G-tetrads. The free energy landscape as the
function of the number of native contact in the two G-triplexes is shown in
Fig. 10.3(F). The G1 and G2 represent the native contacts of the G-quartets
G1 � G6 � G10 � G15 and G2 � G5 � G11 � G14, respectively. The number of
native contact in G1 increased rapidly as an increasing number of native contact of
G2 before folding to the native state, so the native contacts in G1 may be formed
prior to G2. The local native contacts formed in these loops also promoted the
formation of the compact structure, and the native contact T4-T13 between the
loops at the two ends stabilized the compact structure. After the formation of
G-triplex structure the two ends stacked together and folded to the native state.

10.2.5 Form 1 G-quadruplex

We used constant temperature simulations for Form 1 G-quadruplex at folding
temperature. The free energy landscape as a function of the number of native contact
and the RMSD is shown in Fig. 10.4b. The RMSD decreased sharply with slowly
increasing the number of native contacts, and after the number of native contact
reached *0.4, the RMSD decreased little further. The transition area with the
number of native contact of *0.3 separates the two regions of folded and denatured
states. The Fig. 10.4c is shown for the free energy as a function of the number of
native contact and the radius of gyration. The L-shaped landscape showed the radius
of gyration for the integral G-quadruplex was decreased rapidly with an increasing
number of native contact, but once the number of native contact reached *0.3 the
radius of gyration decreased little further. In the initial stage of the folding process,
the sharply decreased radius of gyration implied the unfolded G-quadruplex formed
a compact structure, which was regarded as a basis for folding to the native state. The
landscape of the free energy as a function of the number of native contact and the
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distance between 50-end and 30-end is shown in Fig. 10.4d. In this plot, the distance
between 50-end and 30-end was decreased sharply in the initial stage of the folding
process, and the closeness between the two ends made the unfolded state have a
compact structure. After the formation of the compact structure with the number of
native contact *0.3 the distance between the two ends decreased little further. The
transition state with the distance between 50-end and 30-end of *2 nm separates the
two regions of the folded and denatured states. The distance between the two ends in
the folded state was lower than 2 nm, and the distance in denatured state was higher
than 2.5 nm. More detailed about the folding mechanism can be derived from the
free energy landscape of a function of the number of native contact and RCO
parameter (Fig. 10.4e). In the folding process, the RCO increased with an increasing
number of native contact, but this plot didn’t show the sharply increasing RCO. The
transition state with the RCO of *0.1 separates the folded and denatured states. The
RCO in the folded state was higher than 0.2, and the number of native contact was
higher than 0.6. The denatured state had the RCO of*0.01 and the number of native
contact *0.2. In the denatured state, the RCO increased with an increasing the

Fig. 10.4 Folding routes for Form 1 G-quadruplex. a The free energy as a function of the
number of native contact. b–g Free energy as a function of two coordinates at folding
temperature: T = 105
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number of native contact, so the local native contacts had the main contribution for
the formation of the compact structure in the initial stage of the folding process.
After the compact structure formed, the RCO was increased because of the
increasing non-local native contacts. Hence the local native contacts promoted
the formation of the compact structure like thrombin aptamer G-quadruplex, and the
non-local native contacts further contributed to the formation of the native structure.

The folding process with the typical structures is shown in Fig. 10.6b. The
starting structure was unfolded. In the initial stage of the folding process a compact
structure was formed. The native contacts in the 30-end were formed firstly, and the
native contacts G17-G21, G16-G20, and G15-G23 were appeared. The loop
T18-T19-A20 had fewer native contacts in the denatured state, and the loops in the
regions T6-T7-A8 and T12-T13-A14 were formed in the denatured state and stable
in the folding process. The native contacts in the loop T18-T19-A20 were
increased with the formation of the G-triplex at 30-end. After forming the native
contacts at the 30-end, the native contacts between 50-end and 30-end were formed,
and the compact structure was appeared. In the process of forming the compact
structure, the local native contacts were important, which implied the native
contacts in loop regions may have the main contribution for this structure.

Fig. 10.4 (continued)
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The formation of the native contacts in these loops drew the 50-end and the 30-end
toward each other, so the two ends could have the chance to form the native
contacts. The G1, G2 and G3 represent the three G-quartets G3 � G9 � G17 � G21,
G4 � G10 � G16 � G22 and G5 � G11 � G15 � G23, respectively. The landscape of the
number of native contact of G1 and G2 is shown in Fig. 10.4f, and the landscape
for the number of native contact of G1 and G3 is shown in Fig. 10.4g. The number
of native contact of G1 increased as the increasing number of native contact of G2,
and this change trend is the same as the landscape of the number of native contact
of G1 and G3. Hence, the three G-quartets may be formed in the same time. The
compact structure had the native contacts at the two ends, and the strand of G9-
G10-G11 didn’t stack with the other strands. The native contacts G3-G21, G4-
G22, G17-G21, G16-G22, and G15-G23 formed a G-triplex structure, and then this
structure folded to the native state through stacking the strand G9-G10-G11 with
the other three strands.

10.2.6 Form 3 G-quadruplex

The constant temperature simulations at the folding temperature were used for Form
3 G-quadruplex. The free energy landscape as a function of the number of native
contact and RMSD is shown in Fig. 10.5b. In the initial stage of the folding process,
the RMSD decreased sharply as an increasing number of native contact, but once the
number of native contact of *0.3 was fromed the RMSD decreased little further.
The transition state with the number of native contact of *0.3 separates two regions
of the folded and denatured states, and the folded state had the number of native
contact of*0.8. In Fig. 10.5c, the free energy landscape as a function of the number
of native contact and radius of gyration of the whole molecule for Form 3
G-quadruplex is shown. The L-shaped landscape implied that the radius of gyration
decreased rapidly with an increasing number of native contact, after the number of
native contact reached *0.3, the radius of gyration decreased little further. The
transition state with the radius of gyration of *1.2 nm separates the folded and
denatured states in this landscape. Hence, the unfolded state of this G-quadruplex
formed a compact structure in the initial stage of the folding process, and then
through adjusting this conformation to fold into the native state. The landscape as a
function of the number of native contact and the distance between 50-end and 30-end
at the folding temperature is presented in Fig. 10.5d. In this L-shaped landscape, the
distance between the two ends decreased sharply with an increasing number of
native contact, after the number of native contact got up to *0.3 the distance
decreased little further. The transition state with the distance between the two ends
of *2 nm separates folded and denatured states in this L-shaped landscape. In the
initial stage of the folding process, the 50-end was closed to 30-end for the formation
of a compact structure. The Fig. 10.5e presents the free energy landscape as a
function of the number of native contact and RCO parameter at the folding tem-
perature. The RCO increased sharply with an increasing number of native contact

134 X. Wu et al.



until the number of native contact reached *0.3 in the initial stage of the folding
process. The transition state with the RCO of *0.25 divided the two regions of
folded and denatured states in this landscape. In the initial stage of the folding

Fig. 10.5 Folding routes for Form 3 G-quadruplex. a Free energy as a function of the number of
native contact is plotted at folding temperature: T = 105. b–f The free energy landscapes are
shown as a function of various quantities
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process, the compact structure was formed, so the local native contacts had the main
contribution for this process. The RCO increased sharply in the denatured state, so
the contribution for the formation of the compact structure can’t eliminate the non-
local native contacts. These non-local native contacts may be mainly come from the
native contacts between the 50-end and one strand.

The snapshots for the folding process are shown in Fig. 10.6c. The starting
structure was unfolded. The compact structure was formed in the initial stage of the
folding process like Form 1 G-quadruplex. The free energy landscape as a function of
the number of native contact of G1 (G1 � G8 � G20 � G14) and G2
(G2 � G7 � G19 � G15) is shown in Fig. 10.5f. The number of native contact of G1
increased as an increasing number of native contact of G2. So the two G-quartets may
be formed in the same time. The native contacts in loop G9-T10-T11-A12-G13 were
formed in the denatured state with high probability. The loops G3-T4-T5-A6 and
T16-T17-A18 formed fewer native contacts comparing with the loop G9-T10-T11-
A12-G13. The formed native contacts especially the native contacts in loop G9-T10-
T11-A12-G13 contributed to the formation of the compact structure in the initial

Fig. 10.6 The folding pathways for a thrombin aptamer, b Form 1 G-quadruplex and c Form 3
G-quadruplex. The unfolded G-quadruplexes fold into the compact structures, and then through
folding into the G-triplex structures to form the native structures
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stage of the folding process. The native contacts G1-G14 and G2-G15 constituted the
compact structure, and the native contacts in loop G9-T10-T11-A12-G13 could
stabilize this structure. After forming the compact structure, the native contacts G1-
G8 and G2-G7 were formed at the 5’-end. Hence, in this stage the G-triplex was
formed by native contacts G1-G8, G2-G7, G1-G14 and G2-G15. The 30-end of the
Form 3 G-quadruplex was loose comparing with the other three strands. After the
30-end stacking with the other three strands, the native structure was formed.

10.2.7 Comparing the Folding Mechanisms of Thrombin
Aptamer, Form 1 and Form 3 G-quadruplexes

The thrombin aptamer has two G-quartets like the Form 3 G-quadruplex. The
Form 1 G-quadruplex has three G-quartets and folds to the (3 + 1) G-quadruplex.
The Form 3 G-quadruplex only has three different bases in the 50 and 30 ends
comparing with Form 1 G-quadruplex but folds to the basket form. Though the
structures of the three G-quadruplexes are obviously different, the folding pro-
cesses for the three G-quadruplexes are similar. A compact structure formed
firstly, and then the G-triplex structure was appeared for folding into the native
state. The compact structure of the thrombin aptamer was formed by the native
contacts in the two ends and the loop between the two ends. The compact structure
was formed by the native contacts between the two ends for Form 1 G-quadruplex.
The Form 3 G-quadruplex had the compact structure formed by the native contacts
between one strand and the 50-end. The sequences alignment for the three
G-quadruplexes is shown in Fig. 10.1d. In the folding process of thrombin apt-
amer, the native contact between T4 and T13 stabilized the G-triplex, and com-
paring with the Form 3 G-quadruplex the native contact T5-T17 stabilized the
loops at the two ends. The native contact G3-T5 in the G-triplex of Form 3
determined the loop, and the native contact between G9 and T11 gave the con-
tribution for the formation of the loop. The native contacts G1-G14 and G2-G15
were formed in the G-triplex of Form 3, but these native contacts were formed at
the last stage in the folding process of thrombin aptamer. The native contacts in
loop T7-G8-T9 were formed and stable in denatured state, and the native contacts
in the loops of the two ends were existent, so these loops were determined in the
initial stage of the folding process of thrombin aptamer for defining the stacking
way of G-quartets, which was different from Form 3. Some of the native contacts
in loops G9-T10-T11-A12-G13 and T16-T17-A18 of Form 3 were formed in the
denatured state, and most of the native contacts in these loops were formed in
folded state. These native contacts made the 30-end and one strand in a close
distance, so the compact structure of Form 3 could be formed. Hence, the local
native contacts in these loops have made a difference between thrombin aptamer
and Form 3 for the stacking ways of G-quartets in the denature state. The native
contacts in loop T18-T19-A20 of Form 1 G-quadruplex were appeared, and then
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these local native contacts promoted the formation of the native contacts in the
30-end. The native contacts in loop G9-T10-T11-A12-G13 of Form 3 for stabi-
lizing this region were higher than the number of the native contact in the
corresponding loop T12-T13-A14 of Form 1, and these native contacts in Form 3
were formed and stable in the denatured state. The formed native contacts in the
loops of Form 1 made the two ends stack together, however the stable native
contacts in the loop G9-T10-T11-A12-G13 of Form 3 promoted the stack between
the 3’-end and one strand of G-triplex. So the local native contacts formed in the
denatured state may impact the folding pathways of G-quadruplexes. The native
contacts T5-T17, G3-A18, G3-A6, and G9-G13 in Form 3 stabilized the G-triplex
structure, and the Form 1 had the native contacts A2-T19 and A2-A20 to stabilize
this G-triplex structure. The folding free energy barrier of Form 1 G-quadruplex
was *0.83 kbT, but the Form 3 G-quadruplex had the free energy barrier higher
than 1.15 kbT. Hence, the Form 3 needs more free energy than the Form 1 for
folding into the native state, and the Form 3 is more stable than the Form 1
G-quadruplex. This result is consistent with experimental studies. In experiment,
the Form 3 G-quadruplex with basket-type fold had high structural stability,
because of the base pairing and the stacking in the loops such as G21 � G9 � G13,
T21 � T11, A6 � G3 � A18, and T5 � T17 [17]. Here we found the thrombin apt-
amer with free energy barrier of *0.82 kbT as the Form 1 G-quadruplex may
have lower stability than the Form 3.

10.3 Conclusions

We have simulated thrombin aptamer, form 1 and form 3 G-quadruplexes with all-
atom Gō-model for studying the folding mechanisms for the three G-quadruplexes.
The folding processes of the three G-quadruplexes are similar. The compact
structures were formed in the initial stage of the folding process. The thrombin
aptamer had the compact structure through forming the native contacts in the two
ends and the medium loop. The native contacts in the loops of Form 1 had main
contribution for the formation of the compact structure. The Form 3 had the native
contacts formed between the 50-end and one strand in order to obtain the compact
structure. The G-triplex structures were formed before folding to the native states
of the three G-quadruplexes. The G-triplex of thrombin aptamer is consisted of the
native contacts G5-G11, G6-G10, G2-G5, G1-G6, G11-G14, and G10-G15. The
G-triplex of Form 1 is composed of the native contacts G3-G21, G4-G22, G17-
G21, G16-G22, and G15-G23. The G-triplex comprises the native contacts G1-
G14, G2-G15, G1-G8 and G2-G7 in Form 3 G-quadruplexes. The Form 3 has
higher free energy barrier than the other two G-quadruplex structures, and this
structure has more structural stability.
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10.4 Materials and Methods

All-Atom Gō-model. The all-atom Gō-model was described previously [34]. This
model is available on a web server [38]. In the all-atom Gō-model, all heavy (non-
hydrogen) atoms are explicitly included. A single bead of unit mass represents
each atom. The harmonic potentials were used for restraining the bond length and
angles, and planar dihedrals. The non-bonded atom pairs that are in contact in the
native state, are given attractive 6–12 interactions. Nevertheless, all the other non-
local interactions are repulsive. Gromacs 4.0.7 software package was used for all
simulations [39]. The simulations were started from the unfolded structures. For
obtaining the thermodynamic sampling, more than 30 simulation trajectories were
performed for the three G-quadruplexes at folding temperature. The Weighted
Histogram Analysis Method was used for the calculation of the thermodynamic
quantities [40].

Reaction Coordinates. We used the fraction of native residues in contact as the
reaction coordinate Q. A native contact is defined as any two atoms in different
residues that are within 4 Å of each other and separated by at least 3 bonds [34].
A contact between two atoms is formed if this pair distance is within the 1.2 times
their native distance.
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Chapter 11
RNA Folding: Structure Prediction,
Folding Kinetics and Ion Electrostatics

Zhijie Tan, Wenbing Zhang, Yazhou Shi and Fenghua Wang

Abstract Beyond the ‘‘traditional’’ functions such as gene storage, transport and
protein synthesis, recent discoveries reveal that RNAs have important ‘‘new’’
biological functions including the RNA silence and gene regulation of riboswitch.
Such functions of noncoding RNAs are strongly coupled to the RNA structures and
proper structure change, which naturally leads to the RNA folding problem
including structure prediction and folding kinetics. Due to the polyanionic nature
of RNAs, RNA folding structure, stability and kinetics are strongly coupled to the
ion condition of solution. The main focus of this chapter is to review the recent
progress in the three major aspects in RNA folding problem: structure prediction,
folding kinetics and ion electrostatics. This chapter will introduce both the recent
experimental and theoretical progress, while emphasize the theoretical modelling
on the three aspects in RNA folding.

Keywords RNA folding � Structure � Kinetics � Metal ions � Thermodynamics

11.1 Introduction

Recent discoveries reveal the new biological functions of non-coding RNAs such
as RNA silence and riboswitch. The functions of non-coding RNAs are intrinsic to
RNA structures and stability, and can provide potential RNA-based therapeutic
strategies. This demands the quantitative understanding and prediction on RNA
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structure and its stability, i.e., RNA folding problem. RNA structural folding is
driven by the intra-molecular forces, such as base pairing/stacking interactions,
ion-mediated interactions and the conformational entropies [1, 2]. This chapter is
focusing on the three aspects in RNA folding: structure prediction, folding kinetics
and ion-mediated electrostatic interactions, respectively.

First, RNA structure prediction is one of central issues in RNA folding problem,
since RNA structures involve not only their biological functions such as gene
regulation, but also the interactions with other molecules which can provide the
potential therapeutic strategies. Generally, RNA folding is hierarchical, i.e., the
secondary structure can be formed firstly driven by strong base pairing/stacking
interactions, and afterwards, the tertiary structure can be folded by the aggregation
of secondary segments and the formation of tertiary contacts [3]. Since the base
pairing/stacking interactions are very strong, the secondary structure of RNAs can
be relatively stable. Accordingly, the RNA structure prediction can be classified
into the secondary structure prediction and tertiary structure prediction. From
1980s, many efforts have been made on the secondary structure prediction based
on the experimentally derived parameters and great progress has been made in
accurate predictions on RNA secondary structure [4–8]. However, RNAs are often
biological functional in their 3-dimensional structures. The lack of experimentally
derived structures and the high cost for experimentally determining structures have
enabled the computational modelling for predicting RNA structures [9–38]. The
tertiary (including 3-dimensional) structure predictions have attracted much
attention and important progress has been achieved in recent years, which will be
focused on in the first part of this chapter.

Second, in addition to static structures, RNA folding kinetics is also directly
tied to RNA biological functions. Experiments suggest that alternative confor-
mations of the same RNA sequence perform different functions [39–41]. The
capability of RNA molecules to form multiple (metastable) conformations for
different functions is probably used by nature to regulate versatile functions of
RNA. Furthermore, it was found that the folding of the functional structures is
controlled by folding kinetics rather than by equilibrium thermodynamics. The
mechanisms of ribozyme [42, 43], anti-HIV RNA aptamers [44–46], gene
expression regulators such as miRNA, siRNA and riboswitches [47–53] and other
RNAs are often kinetically controlled. For instance, self-induced riboswitches
regulate RNA functions by limiting biologically functional properties of RNA
structures to certain time windows. The hok/sok system of plasmid R1 [54, 55]
regulates the plasmid maintenance through mRNA conformation rearrangements
into different functional forms. For riboswitches, it has been proposed that the
transient intermediate structure of RNA can regulate transcription and translation
by creating a time window that is necessary for regulatory reactions to occur [56].
After the early work of Porschke [57] and Crothers [58, 59], extensive kinetic
experiments, such as temperature-jump, single molecule and time resolved NMR
spectroscopy experiments, have been employed to study the RNA [60–64] and
DNA [65–67] folding kinetics. The recent progresses in understanding RNA/DNA
folding kinetics will become the second part of the chapter.
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Third, due to the polyanionic nature of RNAs, RNA folding causes massive
build-up of the negative charges [68–73] and a strong intra-chain Coulombic
repulsion. However, the folding would attract metal ions in solution and cause
significant ion binding to RNA, to effectively reduce the electrostatic energy barrier
and stabilize a folded RNA structure. Therefore, RNA folding including folded
structure, folding kinetics, and stability are strongly coupled to ion electrostatic
interactions [1, 68–73]. The third part of the chapter will focus on the recent progress
in qualitative/quantitative understanding on ion roles in RNA folding.

In the following, we will review the recent progress in RNA folding, in the
three aspects including structure prediction, folding kinetics, and ion electrostatics.

11.2 RNA Structure Prediction

As described above, the RNA structure prediction can be divided into two levels:
secondary structure prediction and tertiary structure prediction. On predicting
RNA secondary structure, many computational models have been proposed, based
on the experimental thermodynamic parameters [4–8], such as Mfold through free
energy minimization method [4], Vienna RNA package with dynamic program-
ming algorithm [5], Sfold through sampling structures with Boltzmann statistics
[6], etc.; see Ref. [8] for a recent review on RNA secondary structure prediction. In
the following, we will focus on the RNA tertiary structure prediction methods
which can be classified into three types: knowledge-based structure modelling,
physics-based structure modelling, and knowledge/physics-hybridized structure
modelling; see Table 11.1 for a summary on the algorithms for RNA tertiary
structure prediction [9–38]. Other reviews are also available [74–79].

11.2.1 Knowledge-Based Structure Prediction

With the rapid increase in the RNA structure data deposited in protein data bank
(PDB) and nucleic acid data bank (NDB), the knowledge-based modelling is
becoming an important method for predicting RNA structure based on available
sequences. The knowledge-based modelling relies on the database of experimen-
tally solved structures and empirically observed structural similarities between the
same (similar) sequences.

11.2.1.1 Graphics-Based Method

One kind of knowledge-based modelling is Graphics-based method, which usually
involves interactive (user-guided) manipulation of RNA structures based on the
assembly of fragments derived from various experimental structures (motifs),
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including the algorithms of MANIP [9], S2S/Assemble [11, 12], and RNA2D3D
[13].

MANIP. Massire and Westhof have developed a program MANIP [9], which
allows the rapid assembly of isolated motifs (each with a specified sequence) into a
complex three-dimensional architecture by users. As an interactive tool, MANIP
has a toolbox, where the user can find a variety of tools that help to design a three-
dimensional structure model. MANIP constitutes a quick and easy way to model
small- to large-size structured RNAs, and the use of multiple connections and
pairing tables opens the further development perspectives and allows, for instance,
the precise modelling of RNA-protein interactions.

S2S/Assemble. Jossinet et al. [11] developed a program S2S (sequence to
structure), in which a user can conveniently display, manipulate and interconnect
heterogeneous RNA data. Assemble [12], an algorithm complementary to S2S, is
an intuitive graphical interface to analyze, manipulate and build complex 3D RNA
architectures. S2S/Assemble is a system that combines various tools and web
services into a powerful package to edit sequences and structures of RNA. It
contains explicit annotation of base pairing and stacking interactions, multiple
sequence alignments, a motif library and an automatic procedure to generate 3D
models from the annotation. But all interactions have to be annotation manually,
and thus it is difficult to perform a high-throughput analysis.

RNA2D3D. With the use of the primary sequence and secondary structure
information of an RNA, the program RNA2D3D [13] automatically and rapidly
produces a 3-dimensional conformation (the initial) consistent with the available
information. At the next step, the overlaps in the initial 3D structure model are
removed and conformational changes are made aiming to the targeted features.
Subsequently, the refinement needs to be performed by the user through its
interactive graphical editing and the special tools such as the compacting, stem-
stacking and segment-positioning energy-refinement. The most important advan-
tage of RNA2D3D is that it is applicable to structures of arbitrary branches and
pseudoknots. The algorithm has been verified in the modelling of ribozymes, viral
kissing loops, and viral internal ribosome entry sites.

Obviously, all these methods are not an automatic algorithm. The graphics-
based modelling requires users to set up and refine the RNA structures according
to the specific principles, thus requires users’ expert knowledge [9–13].

11.2.1.2 Homology-Based Modelling

Another kind of knowledge-based modelling is the homology-based modelling,
i.e., comparative modelling, based on the empirical observation that evolutionarily
related macromolecules usually retain similar 3D structure despite the divergence
on the sequence level [81]. Several algorithms have been developed based on the
homology-based modelling, such as ModeRNA [14] and RNABuilder [15].

ModeRNA. As a minimal input, ModeRNA [14] requires the 3D coordinates of
template structures and a pairwise sequence alignment between the sequences of
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the template and the RNA to be modeled. The ModeRNA provides a flexible
scripting framework that can build RNA structures with various strategies,
including the fast automated modelling based on template structure and target–
template alignment without additional data. The ModeRNA was tested by 99
tRNAs with known structures (experimentally solved and each of them as a target
to be modelled on each of the other 98 structures as templates) with RMSD values
around 5.0 Å.

RNABuilder. Recently, Flores et al. have developed RNABuilder [15] now
known as MMB (a contraction of MacroMolecule Builder), for comparative
modelling of RNA structures. It generates RNA structures by treating the kine-
matics and forces at separate. The coarse-graining force field for an alignment used
in this approach consists of forces and torques which act to bring the interacting
bases into the base pairing geometry specified by the user. RNABuilder has been
used to predict the structure of the 200-nucleotide Azoarcus group I intron in the
absence of any information of the solved Azoarcus intron crystal structure. The
model accurately depicts the global topology, secondary and tertiary connections,
and gives an overall RMSD value of 4.6 Å relative to the crystal structure.

Homology-based modelling can be used to predict any RNA molecules no
matter how large or small, as long as the user can find a template and an effective
alignment between the template and the target [14, 15, 79]. So this method is also
called template-based modelling. Although the PDB/NDB database covers many
important families, it may be difficult to find a proper template RNA for a par-
ticular target. In addition, creating an accurate and biologically relevant target–
template sequence alignment is also a critical issue [79, 80].

11.2.2 Physics-Based Structure Prediction

Physics-based (ab initio) approach is based on the thermodynamics hypothesis
[82]: the conformation with the lowest free energy corresponds to the native
structure. Since a full-atomic structural model of RNA has a large number of
degrees of freedom, which results in the huge computational complexity. For
physical simplification, several prediction models with coarse-graining have been
proposed at different resolution levels [16].

11.2.2.1 One-Bead Coarse-Grained Model

One-bead model uses one bead to represent a nucleotide, thus significantly reduce
the spatial freedoms of an RNA structure. Several algorithms have been developed
for predicting RNA 3D structures, such as YUP [17] and NAST [18].

YUP. Yammp Under Python (YUP) [17] is a general-purpose molecular
mechanics program for multi-scaled coarse-grained modelling, in which Python is
used as a programming/scripting language. It can be used to model RNA structures
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as well as DNA and protein structures by extending the Python language through
adding three new data types (atom maps, atom vectors and numerous energy
types). In general, YUP is an extendable and useful tool for multi-scale modelling,
but its potentials are required to be changed by the user according to the problem at
hand. In addition, a fragment-based approach is used to add full-atomic details to
the coarse-grained structure in YUP.

NAST. The Nucleic Acid Simulation Tool (NAST) [18] is a molecular dynamics
simulation tool for predicting 3D structure for large RNA molecules based on
secondary structures. Three types of data are also used to rank the conformational
clusters produced form molecular dynamics simulations: (1) ideal small-angle X-ray
scattering (SAXS) data; (2) experimental and ideal solvent accessibility (SAS) data;
and (3) NAST energy (statistical information). NAST has been tested by building the
structural models for two RNA molecules–the yeast tRNAPhe (76-nt) and the P4-P6
domain of the Tetrahymena thermophila group I intron (158-nt), with the averaged
RMSD 8.0 ± 0.3 and 16.3 ± 1.0 Å, respectively. Recently, the authors also
developed a fully automated frament- and knowledge-based method, called C2A
(Coarse to Atomic) [19], to add full atomic details to coarse-grained models.

Both YUP and NAST are successful for large RNA molecules at nucleotide
level, but they are limited by their prior need for secondary structure and the
information of some tertiary contacts derived from both experimental and com-
putational methods.

11.2.2.2 Three-Bead Coarse-Grained Model

Beyond the one-bead models [17–20], a number of coarse-grained models with
higher resolution have been developed, such as three-bead [21, 24], five-bead [27]
and six to seven-bead model [28].

Vfold. Cao and Chen have developed a three-vector virtual bond-based RNA
folding model (Vfold) [21] for predicting RNA 3D tertiary folds from the sequence
without using the experimental constraints. In Vfold, the loop conformations are
produced by the self-avoiding random walks of the virtual bonds on a diamond
lattice [22, 23] and the conformational entropy of RNA structures can be calcu-
lated. The Vfold model has been tested by a systematic benchmark including a
wide range of RNA motifs (such as hairpin, duplex), pseudoknot, and a large RNA
(a 122-nt 5S rRNA domain) with rmsd of about 3.5, 6.0 and 7.4 Å, respectively.
Due to the rigid lattice constraints, Vfold is inadequate to study the folding
dynamics of RNA.

iFoldRNA. iFoldRNA [25] is a web-based methodology for RNA 3D structure
prediction and analysis of RNA folding thermodynamics. It is based on discrete
molecular dynamics (DMD) and a force field (including base-pairing, base-
stacking and loop entropy) [24]. The ifoldRNA has been tested by simulating a set
of 153 RNA molecules within an average 4 Å deviation from experimental
structures. Despite its rapid conformational sampling efficiency, the CPU time for
DMD simulations also depends on RNA length. Ding et al. recently reported the
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development of a qualitatively structure refinement approach using hydroxyl
radical probing (HRP) measurements to drive DMD simulations for large RNA
molecules (80 * 230 nt) with complex topologies [26].

The physical-based approaches not only emphasize the necessity of an accurate
understanding of RNA tertiary structure but also illustrate the importance of native
state dynamics. Although there are many models have been applied [16–28], how
to build and choose proper force-fields is still a challenge.

11.2.3 Knowledge/Physics-Hybridized Structure Prediction

In protein structure prediction, the most successful approach is hybrid (de nove)
modelling which combines the features of physics-based folding with the use of
previously solved structures [83–85]. This hybrid (de nove) modelling strongly
relies on the structural information from databases [79], and based on the principle,
there are some existed programs for RNA structure prediction [29–34].

FARNA/FARFAR. Fragment assembly of RNA (FARNA) [31] is developed to
predict RNA 3D structure from a sequence, while fragment assembly of RNA with
full-atom refinement (FARFAR) [32] adds a refinement with atomic-level inter-
actions to optimize RNA structures generated by FARNA. Based on knowledge-
based energy function, FARNA can assemble three-nucleotide all-atom fragments
with Monte Carlo algorithm. In a benchmark test of 20 RNA molecules (B46 nt),
FARNA reproduces better than 90 % of Watson-Crick base pairs. Smaller RNAs
in the test are accurately reproduced with a resolution of better than 4.00 Å, but the
probability of a FARNA prediction within a backbone rmsd of 4.00 Å decreases
sharply as a function of RNA length. Nevertheless, combined with secondary
structure and multiplexed hydroxyl radical cleavage analysis (MOHCA), FARNA
can predict the structure for an RNA as large as 158 nt with the rmsd of 13 Å [32].

MC-Fold/MC-Sym. MC-Fold/MC-Sym pipeline [34] is another full-atomic
RNA 3D structure prediction algorithm, which assembles RNA structures from a
library of the nucleotide cyclic motif (NCM) [35]. MC-Fold predicts RNA sec-
ondary structure using a free energy minimization function, and MC-Sym builds
full-atom 3D models of RNA structures based on the scripts generated by MC-
Fold and 3D version of the NCM fragments. The predictive power of the pipeline
has been confirmed by building 3D structures of precursor microRNA (pre-miR-
NA), and proposing a new 3D structure of the human immunodeficiency virus
(HIV-1) cis-acting 21 frame-shifting element.

Knowledge/physics-hybridized modelling including FARNA/FARFAR and
MC-Fold/MC-Sym pipeline is powerful for modelling small RNA molecules [29–
32], but larger structures remain a challenge because of the computational
requirements for full-atomic modelling. A coarse-grained approach would
decrease computational requirements for modelling large structures.
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11.3 RNA Folding Kinetics

11.3.1 Kinetic Model

Most approaches to kinetic RNA folding are based on the description of folding in
terms of a stochastic process. Each model consists of three key ingredients: (1) The
state space, i.e., the set of structures or conformations, (2) a move-set, i.e., the
elementary transitions that can occur between such conformations, and (3) tran-
sition rates for each of these allowed transitions. The folding process can now be
described as a continuous time Markov process, governed by a master equation for
the state probabilities.

Consider an ensemble of conformational states. The population pi(t) for each
state i at time t can be described by the following equation (master equation):

dpi=dt ¼
X

X½kj!ipjðtÞ � ki!jpiðtÞ�;

where X is the total number of conformations. kj!i and ki!j are the rate of the
respective transitions, and they should satisfy the detailed balance condition:
piki!j ¼ pjkj!i, where pi and pj are the Boltzmann distribution of state i and j,

pi ¼ 1
Z expð� DGi

kBTÞ, and Z is the partition function Z ¼
P

i expð� DGi
kBTÞ.

When X is not very large, the above rate equation can be written as the matrix
form [86]: dp=dt ¼ M � p, where p is the vector for the population distribution,
M is the X � X rate matrix with the matrix elements defined by Mij ¼ kj!i ði 6¼ jÞ
and Mii ¼ �

P
j 6¼i ki!j. The equation can be solved with analytical form and the

population kinetics is given by the eigenvalue spectrum for long times:

pðtÞ ¼
XX

m¼1

Cmnme�kmt; ð11:1Þ

where �km and nm are the m-th eigenvalue and eigenvector of the rate matrix and
Cm is the coefficient as determined by the initial condition.

Because the passage of a rate-limiting step is intrinsically related to the folding
speed, it is possible to probe and to identify the rate-limiting steps through the
folding from different unfolded initial conformations. In a master equation
approach, slow and fast folding speeds are directly correlated to the large and
small contributions of the rate-limiting slow kinetic modes. Because the contri-
butions from the slow modes can be computed from the corresponding eigen-
vectors, Zhang and Chen proposed a general transition state searching method to
identify the rate-limiting steps from the eigenvectors of the slow modes [87].

When X is large, if there exist discrete rate-limiting steps for the kinetic pro-
cess, it would be possible to ‘‘renormalize’’ the conformational space into a
number of conformational clusters. The large ensemble of chain conformations
can thus be drastically reduced into a much smaller number of conformational
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clusters [88, 89]. Different clusters are separated by the rate-limiting steps. If the
rate-limiting steps involve sufficiently high kinetic barrier, the microstates within
each cluster would have sufficient time to equilibrate and form a macrostate (in
local equilibrium) before crossing the intercluster barriers to enter other kinetically
neighboring clusters. The transitions between different clusters (macrostates)
determine the overall folding kinetics of the molecule. Otherwise, it needs to
simulate the process with Monte Carlo methods [90–93]. Due to the drawbacks
such as limited sampling and slow calculation, a few methods have been applied to
amend these. For examples, rejectionless Monte-Carlo approach was used to
conserve the detailed balance condition [94], the simulated annealing techniques
was used in order to accelerate folding [95], optimization techniques such as
genetic algorithms rather than Monte-Carlo simulation was also used [96].

11.3.2 Conformation Space

The base pair is the basic subunit for RNA secondary structure, so a base-pair
forming/melting corresponds to the smallest possible steps in conformation space
[90]. Considering that RNA secondary structure is stabilized mainly by the base
stacking interactions, and a single (unstacked) base pair is not stable and can
quickly unfold, Zhang and Chen [86] defined an elementary kinetic step for RNA
secondary structural change to be the formation/disruption of a stack or a stacked
base pair. While this allows the most detailed description of folding pathways, the
conformation space is so large that it leads to extremely long simulation runs or
restricted to short sequences. To reduce the conformation space, many approaches
therefore define the formation or destruction of an entire helix as the basic step [93,
97–100]. Another approach is that several uncorrelated base pairs are changed in a
single time step [101]. Folding simulations in this scenario are similar to that of
single base pair moves. But the relationship of the helices is different from that of
base pairs [102]: the two helices can be compatible, partial compatible, and
incompatible. A conformation state should consist of compatible or partial com-
patible helices [97–100]. Recently, thermodynamics-based RNA folding in a
kinetic folding context. Coarse-grained landscapes in conjunction with stochastic
sampling algorithms have been used to study the RNA folding kinetics [103]. By
using the barrier trees and assuming that the basins of individual local minima are
in quasi-equlibrium, the folding kinetics under transcription was studied [104].
Another approach for cotranscription folding combined the thermodynamic
computations with coarse-grained local kinetics [105]. Flammn et al. developed a
flooding algorithm that decomposes the landscape into basins surrounding local
minima connected by saddle points [106]. Wolfinger et al. [107] use a partitioning
of the landscape into macrostates, where a macrostate is defined as the set of all
starting conformations for which a gradient walk ends in the same local minimum.
The effective transition rates between any two macrostates were calculated from
the barrier tree. Tang et al. [103, 108] adopt the probabilistic roadmaps to build an
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approximated representation of the RNA folding landscape. In the roadmap graph,
the vertex set represents valid sampled conformations of the folding landscape and
edges are the possible transition path, and the time evolution of the population of
different conformations can be calculated through the probabilistic roadmap.

11.3.3 Move Set and Kinetic Rate Models

11.3.3.1 Kinetic Rate Models

The kinetic rate for an elementary kinetic step is usually defined as:

ki!j ¼ k0 expð�DGþ � DGi

kBT
Þ;

where DG+ is the free energy of the transition state, DGi is the free energy of the
state i, k0 is a constant. The actual models for the base pair kinetic move use:

k ¼ k0 expð� DG

2kBT
Þ;

where DG is the free energy difference between the two states. Schmitz and Steger
[95] treat the stacking energy as the barrier when opening a base pair, the loop
energy change as the barrier when closing a base pair. Zhang and Chen [86] define
the transition rate for the formation (k+) and the disruption (k-) of a base stack as
the following:

kþ ¼ k0 expð�DGþ
kBT

Þ; k� ¼ k0 expð�DG�
kBT

Þ;

where the prefactor k0 is fitted from the experimental data and is equal is 6:6 �
1012 s�1 and 6:6 � 1013 s�1 for an AU and GC stack [109], kB is the Boltzmann
constant, T is the temperature, and DG± is the free energy barrier for the respective
transition. Assuming that the barrier for the formation of a stack is caused by the
reduction in entropy, DGþ ¼ TDS. If the stack closes a loop, the formation of the
stack is accompanied by concomitant entropic decrease for loop closure, thus, the
kinetic barrier for loop closure is DGþ ¼ TDS ¼ TðDSloop þ DSstackÞ where DSloop

is the entropy of the loop and DSstack is the entropy of the stack. Assuming that the
barrier for the disruption of a base pair is caused by the energetic (enthalpic) cost
DH to break the hydrogen bonding and the base stacking interactions:
G- = DHstack, where DHstack is the enthalpy of the stack. Then the rates for the
formation and disruption of a stack are:

11 RNA Folding: Structure Prediction, Folding Kinetics … 153



kþ ¼ k0e�DSstack=kBT ;

k� ¼ k0e�DH=kBT

respectively, and the rates for formation and disruption of a loop-closing stack
(and the loop) are:

kloop
þ ¼ k0 expð�ðDSloop þ DSstackÞ=kBTÞ; kloop

� ¼ k0 expð�DH=kBTÞ:

11.3.3.2 Model to Calculate the Transition Rate for Helix Based Moves

Tacker et al. [110] propose a rate model similar to that described for single base
pairs: the activation energy is the change in loop energies when forming a helix,
while opening a helix it is the stacking free energies. The same approach was
adopted by in Refs. [111, 112]. Isambert [113] proposed that the free energy
barrier for helix formation is the entropic penalty incurred by inserting the nucleus
and the rate of is then given by an Arrhenius law using for nucleation. Zhao et al.
[102] calculate the rate of a helix move set from that of the stack move set. If two
conformations differ only in one helix, the transition between them would be the
formation and disruption of the helix. Assuming that after the first stack is closed
(with the concurrent formation of a loop), the helix will form along the zipping
pathway. The rate of helix formation can be estimated along this zipping pathway.
From the empirical thermodynamic parameters [114, 115], it can be found that for
most RNA helices, the free energy landscape for a zipping pathway shows a
downhill profile after the formation of the third base stack. Therefore, the rate kf of
the helix formation (along a specific pathway) is equal to the rate for the formation
of the three-stack state. Considering the (slow) breaking of the stacks, for zipping
along the 1 ? 2?3 pathway in Fig. 11.1:

kf ¼ k12K1ð1 � K 0
2K 0

1

X1

0

K 0
2K1Þ ¼ k12K1ð1 � K 0

2K 0
1

1
1 � K 0

2K1
Þ; ð11:2Þ

where kij denotes the rate for the transition from state i to state j, K1 and K0
1 are the

forward (state 2 ? 3) and reverse (state 2 ? 1) probability of state 2,K2 and K0
2

are the forward (state 3 ? 5 and 3 ? 6) and reverse (state 3 ? 2) probability of
state 3,

K1 ¼ k23

k23 þ k21 þ k24
;K 0

1 ¼ k21

k23 þ k21 þ k24
;K2 ¼ k35 þ k36

k32 þ k35 þ k36
;K 0

2 ¼ k32

k35 þ k36 þ k32
:

ð11:3Þ
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For a given RNA molecule, the first base stack can be formed anywhere inside
the helix. Therefore, the net rate kF for the formation of a helix is the sum of the
rates (Eq. 11.2) along the two pathways (Fig. 11.1) with the different first
(nucleation) base stacks. The rate for the disruption of the helix can be estimated
from the equilibrium constant of the helix: kU ¼ kFeDG=kBT , where DG is the
folding free energy of the helix.

If two helices A and B overlap with each other, they cannot coexist in the same
structure. The conversion of helix A to helix B through complete unfolding of
helix A followed by refolding to B is extremely slow due to the high energy barrier
to disrupt all the base stacks in helix A. Zhao et al. [102] proposed that there is a
much faster tunneling pathway, which is classified as three process: (1) at first
helix A partially disrupted, (2) exchanging, disruption of a base stack in A is
accompanied by a concurrent formation of a base stack in B, (3) zipping, helix B
grows through a zipping process. The pathway is fast because the formation of the
base stacks in B tends to cause an overall downhill shape of the free energy
landscape. This is similar to the Morgan-Higgs saddle point approach [116], in
which the saddle point height is estimated as the highest point along the path.
However, the free energy landscape suggests that there exist multiple high free
energy points along the path. This (tunneling) pathway involves a much lower
energy barrier to unwinding the helix than the complete unfolding pathway (Fig.
11.2). Based on the tunneling pathway, the rate for helix exchange is estimated as:

kA!B ¼
Q

n
i ki

P
n�1
j¼0

Q j
i¼1k0i

Q
n
m¼jþ2km

� � ; kB!A ¼ kA!Be�
DGAB
kBT : ð11:4Þ

In the above formula, kn and k0n are the rate constants for the process to for-
mation (disruption) and disruption (formation) of a base stack in A (B),
respectively.

When the conformation space is consisted of local minima, the transition rate is
often calculated by searching the saddle point or from the free energy barrier tree
[103–105].

Fig. 11.1 Multiple pathways
for the formation of a helix
after the first (nucleation)
stack formed
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11.3.3.3 Folding Kinetics During Transcription

The folding of functional RNA structures are often coupled with the transcription
process [117–119]: since transcription is slow compared to local folding processes,
the partially synthesized RNA will start folding while the molecule is still being
synthesized. For instance, in the auto-catalyzed splicing reaction of tetrahymena
group| intron, the functional native structure may form within the timescale of
transcription, which is much faster than the refolding of the complete chain in vitro
[120–125]. Investigations about the RNA component of Bacillus subtilis RNase P
folding indicate site-specific pausing could greatly influence the folding result of
RNA molecule [126]. Addition of NusA which causes pausing in the process of
transcription provides longer duration of temporary RNA chain to undergo the
conformational search. Recently, several RNA folding kinetics algorithms were
developed in connection with the thermodynamic energetics of the folding system.
For instance, by using the barrier trees and assuming that the basins of individual
local minima are in quasi-equilibrium, the folding kinetics under transcription was
studied [104]. Combining the thermodynamic properties with coarse-grained local
folding kinetics, a heuristic approach was also developed to successfully predict
cotranscriptional folding for large RNAs [105]. Zhao et al. [127] treat the tran-
scription of a single nucleotide as an elementary time step. The real time for each step
is a constant or variable if the nucleotides are synthesized at a constant or variable
speed, respectively. The transcriptional pausing at a specific site can be simulated by
assigning a large number of effective time steps for the corresponding (paused) step.
If the transcription speed of an RNA sequence is m nucleotides per second, the (real)
time window for each step would be 1/v seconds, i.e., the polymerase spends

Fig. 11.2 The free energy landscape of the tunneling pathway that connects two overlapping
helices A and B. U is the open state. The unfolding of A is accompanied by the folding of B. k1

denotes the transition rate for the unfolding of helix A to form the first stack of helix
B. k01; k2; k02; . . .; kn denote the transition rates between the neighboring intermediates along the
tunneling pathways
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1/v seconds to synthesis a nucleotide. Assuming that at time t the l-nt chain is (newly)
transcribed, the population distribution of the l-nt chain conformational space is
relaxed from ½P1ðlÞbegin;P2ðlÞbegin; . . .;PXðlÞbegin� to ½P1ðlÞend;P2ðlÞend; . . .;PXðlÞend�
at time t to time t þ 1=m, when the (l + 1)-th nucleotide is transcribed, here X is the
number of conformations for an l-nt chain (Fig. 11.3). The beginning population of
the (l + 1)-th step is inherited from the ending population of the l-th step. However,
the RNA chain in the (l + 1)-th step is one nucleotide longer than in the l-th step.
According to the possible changes of the structures upon the elongation of the chain
by one nucleotide, the structures are classified as four types. The population distri-
bution at the beginning of step l + 1 can be derived from that of the step at the end:
Pðl þ 1Þbegin ¼ PðlÞend for a, b, & c; Pðl þ 1Þbegin ¼ 0 for d. Applying this method
from the first step to the end of transcription, we compute the folding kinetics for the
RNA chain during transcription.

11.4 Metal Ions in RNA Folding

11.4.1 Ions Stabilize RNA/DNA Folded Structure

11.4.1.1 Ion Binding to RNAs/DNAs

Metal ions would like to bind to negatively charged nucleic acids to neutralize the
negatively charged RNAs/DNAs [128–139]. The number of binding ions is
important to DNA/RNA structure and stability, and can be measured via several
experimental methods such as the small angle X-ray scattering (SAXS) [128–139],
the ion-counting method [132], and the thermodynamic method [133–138].

Fig. 11.3 The relationships between l-nt and (l + 1)-nt structures: elongation of an open chain
(a), a dangling tail (b), a helix (c), and the formation of a new structure (d). The filled triangle
denotes the last transcribed nucleotide in step l, and the square denotes the last transcribed
nucleotide in step l + 1
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The experimental methods have been applied to various RNAs/DNAs, including
yeast 58-nt ribosomal RNA fragment [136], tRNA [137, 138], poly(A.U) [133],
beet western yellow virus pseudoknot fragment [135], polymeric calf thymus DNA
[134], oligomeric DNA/RNA duplexes [132], and DNA triplex [132]; see Ref [72]
for a collection on the experimental data for ion binding to RNAs/DNAs. The
extensive experimental data have yielded the following major conclusions:

(1) The detailed distributions of binding ions near molecular surface are sensitive
to the specific atomistic structure of the RNAs/DNAs [131], and the ion-
binding’s of different (monovalent and divalent) species of ions appear anti-
cooperative [132];

(2) Metal ions can give more efficient charge neutralization for RNA than for
DNA. Such difference possibly comes from the higher charge density on
backbone of A-form helix has than B-form helix [131].

(3) Multivalent ions (e.g., Mg2+) are much more efficient in charge neutralization
than monovalent ions (e.g., Na+). Such unusually higher efficiency of mul-
tivalent ions is beyond the mean-field description such as ionic strength, and
is more pronounced for larger RNAs with more compact structures.

In addition to the diffusive ion binding, the specific ion binding may make
significant contribution to stabilizing specific RNA folded structure and the
function of RNA. The specific ion binding may be related to the RNA sequence,
the local geometry, and the property of ion and water, and is a challenge in both
experiments and modelling.

11.4.1.2 Ion Contribution to Flexibility of Single-Stranded RNA

Single-strand (ss) RNA is a fundamental segment in RNA structure and the flexi-
bility of ssRNA is important to the global stability of RNA. The ion contribution to
the flexibility (e.g., persistence length lp) of single-strand RNAs have been quanti-
fied by a variety of experimental approaches, such as force-extension, single mol-
ecule fluorescence resonance energy transfer (smFRET), small angle X-ray
scattering (SAXS), and fluorescence recovery after photobleaching, over different
kinds of ssRNAs/DNAs [140–147]. The major conclusions are in the following:

(1) Mg2+ is approximately 60-120 times more efficient than Na+ in neutralizing
ss RNAs/DNAs, which is beyond the mean-field concept (e.g., ionic strength)
[145];

(2) The persistence length of ss RNA/DNA decreases with the increase of [Na+]
or [Mg2+], and the ion-concentration dependence is stronger for [Na+] than
for [Mg2+] [145, 146];

(3) The dependence of persistence length of ss RNA/DNA is stronger for longer
sequence. For long ss generic sequence, there is a crude empirical formula for
ion-dependent persistence length: lp ¼ 5 þ 1:5=

ffiffi
I

p
, where I is the ionic

strength [147].
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(4) Poly(A)/poly(U) are more stiff than poly(T) at high salt while the ion-
dependence of lp are similar. Such stronger intrinsic stiffness may result from
the stronger self-stacking of Poly(A)/poly(U) [144, 145].

However, there are also questions remained: (1) How do the flexibility of a ss
RNA/DNA and its Na+/Mg2+ dependence rely on the surrounding space? (2) How
is the Na+/Mg2+-dependent lp on the sequence length quantified? To answer the
questions remains a challenge due to the high conformational fluctuation of ss
chain and possible stronger correlations between Mg2+.

11.4.1.3 Ions Stabilize Helices and Hairpins

Helix is the most fundamental segment of RNA structure (ranging from several to
about ten base pairs), and hairpin is the simplest secondary structural motif. The
thermodynamic experiments have revealed that the stability of helices and hairpins
is sensitive to ionic environments. Most of the experiments were performed in a
Na+ solution or a mixed Na+/Mg2+ solution; see Ref. [72] for a brief summary on
the experimental data [148–159]. These thermodynamic data lead to the following
major features for ion effects in helix and hairpin stability:

(1) In Na+ or K+ solution, the stabilities of DNA/RNA helices/hairpins depend on
ion concentration with the approximately linear dependence on the logarithm
of Na+ or K+ concentration and such dependence is strong at low salt
(\0.1 M Na+ or K+), and relatively weak at a high Na+ or K+ concentration
(C0.1 M Na+);

(2) Compared with Na+ or K+, divalent ions (e.g., Mg2+) are more efficient in
stabilizing helices/hairpins. For an example, the stability for short DNA/RNA
duplexes/hairpins in a 10 mM Mg2+ solution is approximately equivalent to
the stability in a 1 M Na+ solution [139, 147–149].

The thermodynamic parameters for the formation of helix and loop have been
measured extensively at 1 M Na+ (i.e., the standard ion condition). These
parameters have enabled the accurate predictions on RNA (DNA) secondary
structure, stability and kinetics [160–164]. For ion condition other than 1 M NaCl,
RNA/DNA thermodynamic data and theoretical modelling for various ionic con-
ditions yields a set of fitted formulas for the thermodynamic parameters of RNA/
DNA helices versus Na+/Mg2+ concentrations. In contrast to Na+ solutions,
experimental data on Mg2+-dependent helix/hairpin stability has been relatively
limited, and the [Mg2+]-dependent thermodynamic parameters [154, 155] may
need to be validated through more extensive experimental data; see the
Sect. 11.4.3. For ion-dependent loop formation thermodynamics, the hairpin loop
stability has been derived as functions of [Na+] and [Mg2+], based on the statistical
mechanical modelling [156]; see the Sect. 11.4.3.
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11.4.1.4 Ions Stabilize Tertiary Structures

Generally, RNA tertiary structure is folded by the aggregation of secondary seg-
ments, the minor rearrangements of secondary segments and the formation of
tertiary contact. Since RNA tertiary folding generally involves massive charge
build-up, ion-RNA interaction is stronger for tertiary structures and consequently
the quantitative understanding on ion effects in RNA tertiary folding becomes
more challenging. Extensive experiments have investigated how metal ions assist
RNA tertiary folding and stabilize tertiary structures for various RNAs, such as
tRNA, 58-nt ribosomal RNA fragment, beet western yellow virus pseudoknot
fragment, Tetrahymena ribozyme, kissing complex etc.; see Ref. [72] for a sum-
mary for the experimental data of ion effects in RNA tertiary folding [165–179].
These experiments have revealed the following important major features on the
effects of metal ions, especially Mg2+:

(1) Metal ions of higher charge density (i.e. higher valence and smaller size) are
more efficient in stabilizing RNA tertiary folds [166, 169]. For the Tar–tar
RNA complex, smaller ions can enhance the folding stability [170].

(2) Mg2+ can make a significant contribution to RNA tertiary structure stability
even at high Na+ (or other monovalent ions) concentration, and Mg2+ can
induce more compact folded structures than Na+.

(3) For HIV-1 dimerization initiation signal (DIS) type kissing loop-loop com-
plexes, the melting temperature shows much stronger ion-dependence than
for the corresponding duplex of the same sequence at the kissing interface
[174, 175].

(4) The higher efficiency of Mg2+ over Na+ is much more pronounced for the
kissing loop complex than for the duplex [174]. Such phenomena may result
from the significantly higher massive built-up when loop-loop kissing.

In addition to the non-specific effects of metal ions shown above, some
experiments also suggest that, depending on the sequence and geometry, specific
interactions of binding ions with the RNA could make critical contribution to RNA
tertiary structure [72, 135, 136]. The unclear understanding on roles of specific
binding ions suggest the demand for the further more careful and extensive
investigations, especially theoretical investigations, on the role of specific binding
ions.

11.4.1.5 Ion-Mediated Structural Collapse

RNA structural collapse during tertiary folding often involves the helix-helix
packing, and therefore, the helix-helix interaction is important for RNA tertiary
folding. Rau and Parsegian have performed osmotic pressure measurements to
quantify the ion-mediated interactions between long DNA helices [159, 160],
leading to the following general conclusions:
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(1) Multivalent ions, such as Co3+, can induce effective attraction between DNA
helices, while monovalent ions (e.g., Na+) can only screen the helix–helix
electrostatic repulsion [180];

(2) Certain types of divalent ions such Mn2+ can induce effective helix-helix
attractive force [181], while other divalent ions such as Ca2+ cannot. Mg2+ in
the presence of methanol could induce the effective helix-helix attraction
[181]. The different roles of divalent ions might be attributed to the different
ion binding affinities to the different groups [1]. For example, Mn2+ likes to
binding into grooves, while Ca2+ likes to binding to phosphate groups [1].

However, in realistic RNA structures, helices are generally very short (ranging
from several to around ten base pairs). Ions may have different effects in the
effective interactions between short helices from long helices due to the greater
rotational freedom and stronger end-effects of short helices. The recent experi-
ments for short helices [68, 182–185] indicate the following conclusions:

(1) For a system of dispersed short DNA helices, the SAXS experiments suggest
that Mg2+ of high concentration can induce effective helix-helix attraction
through end-end stacking [183].

(2) For a system of loop-tethered short helices, the SAXS experiments suggested
a possible weak side-side helix-helix attraction in a Mg2+ solution of high
concentration (*0.6 M) [68].

(3) The experiments showed that the PB theory underestimates the efficiency of
Mg2+ in RNA structural collapse by over 10 times [184].

(4) In trivalent ion solution, short DNA duplexes can become condensed while
RNA duplexes keep soluble [185].

(5) Mg2+ cannot condense long DNA duplexes while could condense short DNA
triplex in aqueous solution [181, 184].

However, for the system of short helices, further investigations are still required
to make clear: (1) How do the different ions (with different valences and sizes)
cause the different effective helix-helix interactions? (2) Is the relaxation state a
randomly disordered state or a state with certain order or ion-specific?

11.4.2 Theoretical Modelling for Ion Electrostatics

To quantitatively explore the ion effects in RNA folding, some theoretical
approaches have been developed. The application of these theories on the ion-
RNA (DNA) system has significantly enhanced the quantitative understanding on
the ion role in RNA folding, which will be introduced in the following; see Ref.
[186] for a review on the theoretical models.
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11.4.2.1 Counterion Condensation Theory

The counterion condensation (CC) theory was developed for describing the
interaction between ion and long DNA [187, 188]. In the theory, a DNA helix is
approximated as a line-charge, and metal ions around DNA are either in the
condensed state (near the DNA surface) or in the free state (away from the vicinity
of DNA). The binding of an ion would decrease the electrostatic energy and
simultaneously increase the ion entropic free energy. The competition between the
two components (electrostatic energy and ion entropy) determines the thermody-
namically equilibrium state.

The application of the CC theory on the effect of monovalent ions (e.g., Na+,
K+) in DNA helix thermodynamics [160, 187] shows a linear dependence of
melting temperature Tm of DNA helix on the logarithm of monovalent ion con-
centration, which is in accordance with the experimental measurements. For the
system of multi-body helices, the CC theory predicts that two DNA helices attract
each other in both monovalent and multivalent salts. For lower salt concentration,
the predicted attractive force becomes stronger while two helices are equilibrated
at a larger separation [189]. The predictions are somewhat inconsistent with the
experiment measurements [180, 181, 183] and computer simulations [190, 191] on
nucleic acid helix-helix interactions.

Although the CC theory has gained the great success in the analysis of DNA
thermodynamics, the theory still has the serious shortcomings: (1) The CC theory
cannot be strictly employed to the RNA with complex structure in finite salt
solutions since the theory is derived based on the assumptions of infinite-length
DNA line-charge structural model and a infinite-dilute ion concentration; (2) The
CC theory ignores the fluctuation and correlation of condensed ions, by assuming a
uniform distribution of condensed ions along DNA. Consequently, the theory may
become invalid for the multivalent ion solution where the correlations can be
strong.

11.4.2.2 Poisson-Boltzmann Theory

The Poisson-Boltzmann (PB) theory has its early and simplified versions known as
Gouy-Chapmann theory and Debye-Huchel theory. These two theories are the
simplified versions of the PB theory for different specific systems [186]. The PB
equation can be derived based on the Poisson equation for mean electric potential
w and a Boltzmann distribution for diffusive ions in solutions

r � ½eðrÞe0rwðrÞ� ¼ �4p qf þ
X

a

ec0
aNAV zae�zaewðrÞ=kBT

" #
; ð11:5Þ

where zaew is approximated to be the electrostatic energy of a diffusive ion with
ionic charge zae. e is the dielectric constant; qf is the charge density of fixed
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charges in biomolecules; and c0
a is the bulk concentration of ion species a. In the

recent two decades, some algorithms have been developed to numerically solve the
PB equation, and the PB theory has been widely used in the electrostatics of
biomolecules in solutions [192–196]. For electrostatics of biomolecules in aqeous/
monovalent ion solutions, the experimental comparisons show that the PB theory
makes rather accurate predictions [e.g., 197].

However, a mean-field approximation is employed in deriving the PB equation,
i.e., diffusive charges (ions) obey a mean Boltzmann distribution based on the
mean electric potential in stead of the potential of mean force. As the result, (1) the
PB theory ignores the fluctuation of ions in solution by assuming a mean ion
distribution; (2) the PB theory ignores the ion-ion correlations by assuming the
mean electric potential for diffusive ions rather than the potential of mean force,
and (3) the PB theory ignores the ion finite size by the point-charge approximation.
Therefore, the PB could not make reliable predictions on the electrostatic inter-
actions for nucleic acid in multivalent ion solution where ion-ion interactions can
be strong [186, 198]. An important example is the (multivalent) ion-mediated like-
charge interaction, the PB always predicts repulsive force between two like-
charged polyelectrolytes (DNA helices), while the experiments have shown the
attractive force in multivalent salts [180, 181]. For ion-mediated RNA structural
collapse, the PB theory underestimates the efficiency of Mg2+ by over 10 times
[179, 182].

11.4.2.3 Modified Models Beyond Mean-Field Approximation

Aiming to improve the prediction for polyelectrolyte-multivalent ions, many
efforts have been made in the recent years to overcome the shortcomings of the PB
theory. Here, we will introduce several major modified models beyond the mean-
field approximation [198–207].

Size-modified Poisson-Boltzmann model. The simplest modification for the PB
model is to incorporating discrete ion size into the model. Recently, a size-mod-
ified PB model was proposed based on the lattice gas formulism, where the ion
solution is discretized into a lattice with grid cells which can be occupied by ions
with finite size [199, 200]. The application of the model for 3-dimensional com-
plex nucleic acids shows that the modification can improve the prediction on
monovalent ion-binding profiles at high salt concentration by capturing the binding
saturation effect at high ion concentration. But for RNA solution with multivalent
ions, the model still cannot give reliable predictions since it ignores the ion-ion
electrostatic correlations [199, 200].

Modified Poisson-Boltzmann theory based on Kirkwood/BBGY hierarchy. A
modified PB model has been developed based on Kirkwood/BBGY hierarchy
through taking into account the fluctuation potential and ion-exclusion term in the
potential of mean force for diffusive ions [e.g., 201]. The comparisons with the
computer simulations show that, the theory gives the improved predictions for
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multivalent ion distributions near polyelectrolytes with ideal 3D shapes such as
cylinder, sphere and plane. But for realistic nucleic acids (or proteins) with arb-
itary 3D shape, the numerical solution requires huge computational cost and is
computationally inapplicable for realistic nucleic acids/proteins with complex 3D
shape because the equation for the fluctuation potential is coupled to the equation
for the mean electrostatic potential [201, 202].

Correlation-corrected Poisson-Boltzmann model. Recently, a so-called corre-
lation-corrected Poisson-Boltzmann model was developed to account for the ion-
ion correlations, by introducing an effective potential between like-charge ions
[203]. Such effective potential is the same as the Coulomb potential at large ion-
ion separation, while becomes a reduced repulsive Coulomb potential for a close
ion-ion separation. For the electric double layers, the comparisons with the
computer simulations showed that the model makes improved predictions on
multivalent ion distributions and predicts an attractive force between the two
planes in the presence of multivalent ions [203]. However, the model is compu-
tationally expensive for RNAs with complex structures. Moreover, such effective
potential is somewhat ad hoc and the mode is still lack of the validation on
thermodynamics of nucleic acids.

Other theories beyond the mean-field approximation. Other theories beyond the
mean-field approximation such as the integration theory [204], the density function
theory [205] and the local molecular field theory [206] have been developed to
account for the ion-ion correlation effects around nucleic acids/polyelectrolytes.
But due to the huge computation cost for realistic nucleic acid system, these
theories are also practically inapplicable. Recently, a tightly bound ion (TBI)
theory is developed by explicitly treating the strongly correlated ions which reside
in the vicinity of nucleic acid surface [186, 198, 207–211]. The extensive exper-
imental comparisons showed that this theory has been shown to make improved
predictions on the ion effects for various nucleic acid structures in the presence of
Mg2+. In the following, we will focus on the TBI theory and its applications on
modelling ion effects in DNA/RNA structure stabilities, including helices, hair-
pins, tertiary folds, and assembly.

11.4.3 Tightly Bound Ion Theory

As described above, extensive experiments have shown that Mg2+ plays a special
role in RNA folding: Mg2+ is much more efficient than Na+ in RNA folding and
Mg2+ can induce more compact structure than Na+. For example, Mg2+ is generally
*1,000 times more efficient than Na+ in RNA tertiary folding [169]. Aiming to
quantitatively understand the role of multivalent ions in RNA folding, Tan and
Chen have developed a TBI theory, by accounting for ion-correlations and fluc-
tuations for realistic RNAs in ion solutions [186, 198, 207–211]. In the following,
we will introduce the TBI theory with theoretical framework and applications on
modelling ion effects in RNA/DNA structure stabilities.
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11.4.3.1 Framework of the Tightly Bound Ion Theory

Since RNAs/DNAs are highly charged polyanionic molecules, the positively
charged metal ions in solutions would aggregate on nucleic acid surface, causing
high ion concentration in the vicinity of RNA/DNA surface. These condensed ions
of high concentration would interact (correlate) strongly with each other. The
correlation strength between ions can be characterized by the coupling parameter
C [186, 198]

CðrÞ ¼ ðzaeÞ2

eawzðrÞkBT
�Cc: ð11:6Þ

Previous studies have shown that for ionic system, the change of coupling
parameter C can induce the gas-liquid transition, and the critical value Cc was
shown to reside in the range of [2.3, 2.9] [186, 198]. In the TBI theory, according
to the critical inter-ion correlation strength Cc (2.6, a mean value over [2.3–2.9]),
the ions around RNAs/DNAs are divided into two types: (strongly correlated)
tightly bound ions in the vicinity of RNA and (weakly correlated) diffusive ions in
the outer space. Correspondingly, the space around RNAs is also divided into the
tightly bound region and diffusive region. Due to the weak inter-ion correlations,
the diffusive ions can be treated by the mean-field PB approach. While for the
(strongly correlated) tightly bound ion, the tightly bound region is discretized into
different tightly bound cells, each of them around a (negatively) phosphate group.
Every tightly bound cell can keep empty or be occupied by an ion, and all possible
states of tightly bound cells (either empty or occupied by an ion) give the ensemble
of ion-binding modes. The different ion-binding modes (M) in different cells are
explicitly considered to account for the effects of ion correlations and fluctuations.

For a nucleic acid-ion system, the partition function Z is given by the sum-
mation of the partition function ZM for all possible modes M

Z ¼
X

M

ZM ; ð11:7Þ

where ZM is given by [177, 186, 198, 208]

ZM ¼ ZidðczÞNb

Z YNb

i¼1

dRi

 !
e� DGbþDGdþDGpol

bð Þ=kBT : ð11:8Þ

Here, Zid is the partition function for the uniform ion solution (without RNAs).
Nb is the number of the tightly bound ions for model M. cz is the bulk concentration

of the z-valent ions, and Ri denotes the position of tightly bound ion i.
R QNb

i¼1
dRi is

the volume integral over the tightly bound region for the Nb tightly bound ions.
DGb is the free energy for the discrete charges in the tightly bound region
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(including the tightly bound ions and phosphate charges); DGd is the free energy
for the diffusive ions, including the electrostatic interactions between the diffusive
ions, and between the diffusive ions and the charges in the tightly bound region as

well as the entropic free energy of the diffusive ions; DGpol
b is the (Born) self-

polarization energy for the discrete charges within the tightly bound region [177,
186, 198, 208].

The TBI theory has been widely applied to quantitatively understanding the ion
contributions to RNA secondary and tertiary structure stability, which will be
described in the following.

11.4.3.2 Modelling Ion Effects Stability of DNA/RNA Helices

The stability of helices is essential to the global stability and the functions of
RNAs (DNAs). Due to the polyanionic nature, metal ions can be important to the
stability of DNA/RNA helices. Based on a polyelectrolyte theory, the melting of a
helix can be modelled as a two-state model. The free energy change due to the
melting can be decoupled into a non-electrostatic contribution DGNE and an
electrostatic contribution DGE, and DGNE can be evaluated by combining the
experimental data at a reference state with a polyelectrolyte theory (e.g. the TBI
theory) [154, 155]

DG ¼ DGE þ DGNE

¼ DGE þ DG1MNaþ � DGE
1MNaþ

� �
:

ð11:9Þ

With the use of the TBI theory for treating ion-DNA(RNA) interactions, the
Na+/Mg2+ dependence of helix stability can be quantitatively evaluated.

The comparisons with the extensive experimental data showed that the TBI
theory makes reliable predictions on the stability of DNA and RNA helices in Na+/
Mg2+ solutions [154, 155]. Furthermore, the comprehensive calculations with the
TBI theory give a series of empirical formulas for describing the thermodynamics
of DNA (RNA) helices in Na+/Mg2+ solutions.

Thermodynamic parameters for DNA helix in Na+/Mg2+solution.
For a DNA helix in Na+ solution, the following formulas of Na+-dependent

thermodynamics can be obtained from the TBI theory [154]

DG½Naþ� ¼ DG½1 M Naþ� þ ðN � 1ÞDgDNA
1 ;

DS½Naþ� ¼ DS½1 M Naþ� � 3:22ðN � 1ÞDgDNA
1 ;

1=Tm½Naþ� ¼ 1=Tm½1 M Naþ� � 0:00322ðN � 1ÞDgDNA
1 =DH½1 M Naþ�;

ð11:10Þ

where DG, DS, Tm, DH are the free energy change, entropy change, melting
temperature, enthalpy change for helix formation at [Na+] (in molar), or 1 M [Na+]
(standard ion condition). DgDNA

1 is a function associated with electrostatic folding
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free energy per base stack of DNA, and is a function of helix length and [Na+]
[154]

DgDNA
1 ¼ aDNA

1 þ bDNA
1 =N;

aDNA
1 ¼ �0:07 ln½Naþ� þ 0:012 ln2½Naþ�;

bDNA
1 ¼ 0:013 ln2½Naþ�:

ð11:11Þ

The thermodynamics for DNA helix at any given [Na+] can be calculated
through the above empirical formulas, since those at 1 M [Na+] (standard ion
condition) can be obtained from the nearest neighbor model with the experimental
parameters of SantaLucia et al. [160]. The quantitative comparisons with extensive
experimental data show that the empirical formulas can give rather accurate
estimates for thermodynamics of DNA helices in Na+ solutions [154].

For the thermodynamics of a DNA helix in Mg2+ solution, the TBI model gives
the following similar empirical formulas [154]

DG½Mg2þ� ¼ DG½1 M Mg2þ� þ ðN � 1ÞDgDNA
2 ;

DS½Mg2þ� ¼ DS½1 M Mg2þ� � 3:22ðN � 1ÞDgDNA
2 ;

1=Tm½Mg2þ� ¼ 1=Tm½1 M Mg2þ� � 0:00322ðN � 1ÞDgDNA
2 =DH½1 M Mgþ�;

ð11:12Þ

where DgDNA
2 is given by

DgDNA
2 ¼ aDNA

2 þ bDNA
2 =N2;

aDNA
2 ¼ 0:02 ln½Mg2þ� þ 0:0068 ln2½Mg2þ�;

bDNA
2 ¼ 1:18 ln½Mg2þ� þ 0:344 ln2½Mg2þ�:

ð11:13Þ

Through the above empirical formulas, the thermodynamics of a DNA helix at a
given [Mg2+] can be calculated easily. The experimental comparisons show that
the empirical formulas can make reliable estimates for the stability of a short DNA
helix ranging from 6-bp to 30-bp at an arbitrary [Mg2+] [154].

Generally, a buffer contains both Na+ (or K+) and Mg2+ ions. The TBI theory
also gives the empirical formulas for DNA helix thermodynamics in a mixed Na+/
Mg2+ solution [155]

DG ¼ DG½1 M Naþ� þ ðN � 1Þ xduplexDgDNA
1 þ ð1 � xduplexÞDgDNA

2

� �
þ Dg12;

DS ¼ DS½1 M Naþ� � 3:22 ðN � 1Þ xduplexDgDNA
1 þ ð1 � xduplexÞDgDNA

2

� �
þ Dg12

� �
;

1=Tm ¼ 1=Tm½1 M Naþ� � 0:00322 ðN � 1Þ xduplexDgDNA
1 þ ð1 � xduplexÞDgDNA

2

� �
þ Dg12

� �
=DH½1 M Naþ�;

ð11:14Þ

where xduplex stands for the contribution fraction from Na+, and Dg12 is a crossing
term. xduplex and Dg12 are given by
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xduplex ¼
½Naþ�

½Naþ� þ ð8:1 � 32:4=NÞð5:2 � ln½Naþ�Þ½Mg2þ�
� � ;

Dg12 ¼ �0:6xduplexð1 � xduplexÞ ln½Naþ� ln ð1=xduplex � 1Þ½Naþ�
� �

=N;

ð11:15Þ

where [Na+] and [Mg2+] are both in molar. The comparisons with experimental
data show that the above formulas give good estimate for the thermodynamics of a
DNA helix in mixed Na+/Mg2+ solutions [155].

Thermodynamic parameters for RNA helix in Na+/Mg2+solution.
For an RNA helix in a Na+ solution, the thermodynamics can also be formu-

lated by Eq. (11.10), except that DgDNA
1 needs to be replaced by DgRNA

1 . DgRNA
1 can

be given by [155]

DgRNA
1 ¼ aRNA

1 þ bRNA
1 =N;

aRNA
1 ¼ �0:075 ln½Naþ� þ 0:012 ln2½Naþ�;

bRNA
1 ¼ 0:018 ln2½Naþ�:

ð11:16Þ

The combination of Eq. (11.10) and Eq. (11.16) can give good estimate for an
RNA helix in a Na+ solution, as shown in Ref [155].

Similarly, for an RNA helix in a Mg2+ solution, the thermodynamics can be
described by Eq. (11.12), except that DgDNA

2 needs to be changed into DgRNA
2

DgRNA
2 ¼ aRNA

2 þ bRNA
2 =N2;

aRNA
2 ¼ �0:6=N þ 0:025 ln½Mg2þ� þ 0:0068 ln2½Mg2þ�;

bRNA
2 ¼ ln½Mg2þ� þ 0:38 ln2½Mg2þ�:

ð11:17Þ

For an RNA helix in a mixed Na+/Mg2+ solution, the thermodynamics can be
calculated by the following empirical formulas

DG ¼ DG½1 M Naþ� þ ðN � 1Þ xduplexDgRNA
1 þ ð1 � xduplexÞDgRNA

2

� �
þ Dg12;

DS ¼ DS½1 M Naþ� � 3:22 ðN � 1Þ xduplexDgRNA
1 þ ð1 � xduplexÞDgRNA

2

� �
þ Dg12

� �
;

1=Tm ¼ 1=Tm½1 M Naþ� � 0:00322 ðN � 1Þ xduplexDgRNA
1 þ ð1 � xduplexÞDgRNA

2

� �
þ Dg12

� �
=DH½1 M Naþ�;

ð11:18Þ

where xduplex and Dg12 are given by Eq. (11.15). DgRNA
1 and DgRNA

2 are given by
Eqs. (11.16 and 11.17), respectively. As shown in Ref. [155]. The predictions from
Eq. (11.18) are quite reliable for the thermodynamics of an RNA helix in a mixed
Na+/Mg2+ solution (Fig. 11.4).
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11.4.3.3 Modelling Ion Effects in Stability of DNA/RNA Hairpins

An RNA/DNA hairpin consists of a helix stem and a hairpin loop. The Na+/Mg2+

dependence of a helix can be quantified by the empirical formulas described
above. The TBI model can also gives the empirically analytical Na+/Mg2+-
dependent thermodynamics for a single-stranded loop, with the combination with
the virtual bond model for the single-stranded loop conformation [156].

For a loop formation in Na+ solutions, the systematic calculations of the TBI
model give the following empirical relation for the folding free energy of an N-nt
loop with end-to-end distance l [156]:

DG½Naþ� ¼ �kBT a1 lnðN � l=d þ 1Þ þ b1ðN � l=d þ 1Þ2 � b1 � c1N � d1ð Þ
� �

;

ð11:19Þ

Fig. 11.4 The Mg2+ and Na+ binding fractions per nucleotide for various RNA/DNA molecules.
The solid lines are from the empirical formulas (Eqs. 11.26 and 11.28); and the symbols are
experimental data. a 24-bp DNA duplex in [Mg2+] with fixed [Na+] = 20 mM [132]; b 40-bp
RNA duplex. The experimental data are for poly(A.U) [133]: From the left to right, [Na+] = 10,
29, 60, and 100 mM, respectively; c 40-bp DNA duplex. The experimental data are for the calf
thymus DNA [134]; d BWYV pseudoknot RNA [135]; e 58-nt rRNA fragment [136]. Please note
that the experimental data are for mixed Mg2+/K+ (not Mg2+/Na+) solution: from left to right,
[K+] = 20, 40, 60, and 150 mM, respectively. Here we show the experimental data for semi-
quantitative comparisons. f Yeast tRNAPhe [137, 138]
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where d = 6.4 Å. The coefficients a1, b1, c1, and d1 are given by

a1 ¼ ð0:02N � 0:026Þ ln½Naþ� þ 0:54N þ 0:78;

b1 ¼ ð�0:01=ðN þ 1Þ þ 0:006Þ ln½Naþ� � 7=ðN þ 1Þ2 � 0:01;

c1 ¼ 0:07 ln½Naþ� þ 1:8;

d1 ¼ 0:21 ln½Naþ� þ 1:5:

ð11:20Þ

For a loop in Mg2+ solutions, the empirical formulas from the TBI theory for
the folding free energy can be written as

DG½Mg2þ� ¼ �kBT a2 lnðN � l=d þ 1Þ þ b2ðN � l=d þ 1Þ2 � b2 � c2N � d2ð Þ
� �

;

ð11:21Þ

where a2, b2, c2, and d2 are given by

a2 ¼ ð�1=ðN þ 1Þ þ 0:32Þ ln½Mg2þ� þ 0:7N þ 0:43;

b2 ¼ 0:0002ðN þ 1Þ ln½Mg2þ� � 5:9=ðN þ 1Þ2 � 0:003;

c2 ¼ 0:067 ln½Mg2þ� þ 2:2;

d2 ¼ 0:163 ln½Mg2þ� þ 2:53:

ð11:22Þ

For a loop in mixed Na+/Mg2+ solutions, the folding free energy is represented
by

DG½Naþ=Mg2þ� ¼ xloopDG½Naþ� þ ð1 � xloopÞDG½Mg2þ�; ð11:23Þ

where xloop stands for the contribution fraction from Na+ and is given by

xloop ¼ ½Naþ�
½Naþ� þ ð7:2 � 20=NÞð40 � ln½Naþ�Þ½Mg2þ�

: ð11:24Þ

With the use of the above formulas for loop formation, the folding thermo-
dynamics of hairpin loop, bulge loop, internal loop in an arbitrary Na+/Mg2+

solution can be easily calculated [156].
For a hairpin loop, the Na+/Mg2+-dependent thermodynamics can be obtain by

fixing the loop end-to-end distance at *17 Å. Then the thermodynamics of an
RNA (or DNA) hairpin can be calculated by the following formula [156]

DGhairpin ¼ DHstem � TDSstem þ DGhairpin loop½Naþ=Mg2þ�;
DHstem ¼ DHstem½1 M Naþ� þ DHterminal mismatch;

DSstem ¼ DS½Naþ=Mg2þ� þ DSterminal mismatch;

ð11:25Þ
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where DHstem, DHterminal mismatch, and DSterminal mismatch can be obtained from the
nearest neighbour model with the measured thermodynamic parameters.
DHstem[Na+/Mg2+] can be given by the previously introduced empirical formulas
(Eq. 11.14 for DNA and Eq. 11.18 for RNA). The extensive experimental com-
parisons show that the empirical formulas can make rather reliable predictions on
the hairpin stability in a Na+/Mg2+ solution; see Ref. [156].

In a very recent single-molecule experiment, the quantitative comparisons with
the measurements on a 20-bp RNA hairpin show that, the above empirical for-
mulas are rather accurate in describing the Na+/Mg2+-dependent thermodynamics
for short RNA hairpin [146] (Fig. 11.4).

11.4.3.4 Modelling Ion Binding to RNA Tertiary Structures

As described above (Sect. 11.4.1.1), ion binding is critical for stabilizing RNA
folded structure. The TBI theory has been developed for a static atomistic struc-
ture, and can quantify the ion atmosphere around an RNA (or DNA) with complex
3D structure [177]. In a mixed Na+/Mg2+ solution, the binding’s of Na+ and Mg2+

are competitive and anti-cooperative. The TBI model has given an empirical
equivalence relation between Mg2+ and Na+ as [177]

log½Naþ�Mg ¼ A log½Mg2þ� þ B; ð11:26Þ

where [Na+] and [Mg2+] are both in millimolar (mM). A and B are two parameters
depending on the (low-resolution) RNA (or DNA) structure

A ¼ 0:65 þ 4:2
N

Rg

R0
g

 !2

; B ¼ 1:8 � 9:8
N

Rg

R0
g

 !2

; ð11:27Þ

where N is the number of nucleotides of an RNA, and Rg is the radius of gyration
of the RNA (or DNA) backbone, and R0

g is the radius of gyration of an N-nt RNA
duplex.

Based on Eq. (11.23), the binding fractions of Na+ and Mg2+ can be calculated
through [177]

fNaþ ¼ ½Naþ�
½Naþ� þ ½Naþ�Mg

f 0
Naþ ; fMgþ ¼

½Naþ�Mg

½Naþ� þ ½Naþ�Mg

f 0
Mg2þ ; ð11:28Þ

where [Na+]Mg is given by Eq. (11.20). f 0
Naþ

and f 0
Mg2þ are the binding fractions for

pure Na+ and pure Mg2+ solutions, respectively. Generally, f 0
Naþ � 0:8, and f 0

Mg2þ �
0:47 [177]. As shown in Fig. 11.4, the above empirical formulas could make
reliable predictions for Na+/Mg2+ binding to RNAs/DNAs with complex 3D
structures.
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11.4.3.5 Modelling Salt Contribution to RNA Tertiary Structure
Stability

Since RNA folding is hierarchical, the tertiary structure folding can be crudely
modelled as a two-state transition from an intermediate (I) to the native (N) state.
Similarly to the helix stability, the RNA tertiary folding free energy can be
decoupled into two contributions: an electrostatic part and a nonelectrostatic part
[178]

DG ¼ DGE½Naþ=Mg2þ� þ DGNE;

¼ DGE½Naþ=Mg2þ� þ DG½expt Naþ� � DGE½expt Naþ�
� �

;

¼ DG½expt Naþ� þ DGE½Naþ=Mg2þ� � DGE½expt Naþ�
� �

;

ð11:29Þ

where DG½expt Naþ� is the experimental folding free energy at a reference ion
condition. DGE can be given by the empirical formulas derived from the TBI
model [178].

For an RNA folding in Na+ solutions, DGE can be calculated by the following
empirical formula

DGE½Naþ� ¼ DGE½1 M Naþ� þ a1N ln½Naþ� þ b1N ln2½Naþ�; ð11:30Þ

where a1 and b1 are the parameters related to the RNA folded structure. a1 and b1

can be formulated by [178]

a1 � e�ðTÞT� ¼ �0:086 þ 7=ðNr3
g þ 65Þ;

b1 � e�ðTÞT� ¼ 0:008 � 3:6=ðN � 5Þ2;
ð11:31Þ

where rg ¼ R0
g=Rg. e*(T) = e (T)/e (298.15 K) is the relative dielectric constant,

and T* = T/298.15 is the relative temperature.
For an RNA folding in Mg2+ solutions, the TBI model gives the following

empirical formula for DGE [178]

DGE½Mg2þ� ¼ DGE½1 M Mg2þ� þ a2N ln½Mg2þ� þ b2N ln2½Mg2þ� þ c2NT�;

ð11:32Þ

a2, b2, c2 are given by

a2 � e�ðTÞT� ¼ 0:012 � 1:4=ðNr3
g þ 75Þ;

b2 � e�ðTÞT� ¼ 0:0048 � 57=ðNr3
g þ N þ 75ÞðN þ 75Þ;

c2 � e�ðTÞT� ¼ �0:27 þ 0:16=r3
g þ 1:4=N:

ð11:33Þ
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For RNA folding in a mixed Na+/Mg2+ solution, DGE is given by the empirical
relation

DGE½Naþ=Mg2þ� ¼ x3oDGE½Naþ� þ ð1 � x3oÞDGE½Mg2þ� þ NDg12; ð11:34Þ

where x3o denotes the contribution fraction from Na+, and Dg12 is a crossing term.
x and Dg12 are given by

x3o ¼ ½Naþ�
½Naþ� þ 3:8 � 34=ðN � 20Þr3

g

� �
1 þ 0:2½Naþ�ð Þ½Mg2þ�0:64

;

Dg12 ¼ �x3oð1 � x3oÞð0:26 � 1:2=ðN � 20ÞÞ:
ð11:35Þ

With the use of the above empirical formulas for DGE and Eq. (11.29), the Na+/
Mg2+-dependent RNA tertiary folding thermodynamics can be conveniently cal-
culated. Figure 11.5 shows that Eq. (11.34) gives good estimates for the Mg2+-
contribution to the total folding stability DDGE

Mg2þ ¼ DGE
Naþ;Mg2þ � DGE

Naþ;Mg2þ¼0
,

as compared with the experimental data. It is also shown that Eq. (11.29) with the
empirical formulas for DGE (Eqs. 11.30–11.35) can make good evaluation for the
Na+/Mg2+-dependent folding thermodynamics of small RNAs [178].

11.5 Perspectives

Although many RNA 3D structure modelling methods have proposed, further
developments and refinements of the existing models are still required. Current
algorithms have shown how the use of available experimental data can dramatically
improve the structure prediction, e.g. the discrete molecular dynamics simulations

Fig. 11.5 The Mg2+-contribution DDGE
Mg2þ to RNA tertiary structure folding free energy as a

function of [Mg2+] for three RNA molecules: BWYV pseudoknot (a), 58-nt ribosomal RNA
fragment (b), and yeast tRNAPhe (c) at room temperature. Solid lines, empirical formulas derived
from the TBI model; symbols, experimental data: a BWYV pseudoknot in 54 and 79 mM Na+

solution [135]; b 58-nt rRNA fragment in solution with 1.6 M monovalent ions [178, 197];
c yeast tRNAPhe in solution with 32 mM Na+ [138, 179, 197]
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with the use of HRP measurements can predict structure of RNAs ranging in size
from 80 to 230 nucleotides [26]. In addition, several algorithms have exploited the
hierarchical properties of RNA folding [36–38], and consequently the prediction
accuracy can be improved by adding the knowledge of secondary structure and
tertiary contacts from experiments to the existed programs. However, there are still
some essential problems remaining challenging, including: (1) Could the structures
for larger RNA molecules be predicted reliably and efficiently? (2) Could RNA
structures be predicted versus different environments (temperature, ion conditions,
etc.)?

Despite the significant progress, modelling of RNA folding dynamics remains a
challenging problem. The current form of the theories involves several limitations.
First, the theories do not treat folding/unfolding of tertiary folds such as pseudo-
knots. Second, the theories cannot treat, at the explicitly atomistic level, the effects
of cofactors such as magnesium ions, ligands and proteins. In the future, we expect
that the RNA folding kinetic theories can overcome these limitations and will be
applicable to design RNA and DNA molecules with particular dynamic properties,
which is of great importance in the emerging fields of synthetic biology and
nucleic acid-based nanotechnology.

The extensive investigations have significantly enhanced the qualitative/quan-
titative understanding on ion effects in RNA folding. However, the quantitative
understanding on ion roles is still challenging at least in the following issues: (1)
How are the specific properties of ions correlated to their specific roles in RNA
folding? (2) Is the efficient role of multivalent ions come from the inter-ion Co-
ulomic correlation? (3) What are the roles of the specific-site binding of Mg2+ in
RNA tertiary binding [212]? More issues related to RNA ion electrostatics
includes: (1) What are the role of ions in RNA-ligand interaction? (2) What is the
role of ions in RNA-protein interaction? To answer the questions requires the
further development of theoretical modelling [209–211], combined with the pro-
gress in experiments.

Most above introduced progress in RNA folding problem were obtained for
in vitro systems, while in cells, RNAs are surrounded by many other macromol-
ecules. Therefore, in reality, RNA folds in a possibly interactive and dynamic
confined space [213–216]. Limited existed investigations have revealed that the
spatial confinement may significantly influence the folded structure and the ion
role in folding [179, 214–216]. Further investigations on RNA folding should also
involve the complex effects from the other macromolecules in vivo.
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Chapter 12
Binding Modes and Interaction
Mechanism Between Different Base Pairs
and Methylene Blue Trihydrate:
A Quantum Mechanics Study

Peijun Xu, Jinguang Wang, Yong Xu, Huiying Chu, Hujun Shen,
Depeng Zhang, Meixia Zhao, Jiahui Liu and Guohui Li

Abstract Different quantum mechanic methods have been evaluated for the
calculation of binding modes and interactions between intercalators with different
DNA base pairs by comparing with the results of MP2, which is very expensive,
indicating that WB97XD method under 6-311+G* basis set is able to efficiently
reproduce MP2 results. We discovered that the methylene blue trihydrate inter-
calated into the DNA base pairs, and DNA intercalation increased the distance
between DNA base pairs, depending on the types of DNA bases. According to the
binding energy results, it was found that the intercalation of methylene blue tri-
hydrate into AA-TT base pair was more favorable in the orientation of nitrogen
than other directions and intercalation, and the electric charge was transferred from
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methylene blue trihydrate to the AA-TT base pair. The analysis of change in the
charge density shows that changes often take place in the heavy atom in the middle
of the system which the charge density changes most remarkable.

Keywords DNA base pairs � Intercalators methylene blue trihydrate � Quantum
mechanic methods � Charge density

12.1 Introduction

DNA is an informational molecule encoding the genetic instructions used in the
development and functioning of all known living organisms and many viruses,
therefore there are many researches on it [1–3]. Small molecules interact with
DNA or RNA through the several modes: minor groove binding, major groove
binding, intercalation and other types of binding [4]. When a small molecule
inserts into the two adjacent base pairs of a DNA strand, sandwich-like structure is
formed, which is called DNA intercalation [5, 6].

A small molecule is called DNA intercalator if it can insert into the base pairs
and contains planar, polycyclic and aromatic conformations [4]. The interaction
between DNA and its intercalator is usually considered as stacking interaction [6–
8]. Up to now, intercalators of DNA are used in chemotherapy such as ethidium,
proflavine and anthracycline etc., understanding their interactions with nucleic
acids is of benefit to many fields—especially for medicinal chemistry, where it
may aid the rational design of novel drugs and make it possible to govern their
behavior, for instance, by triggering intercalative capabilities [5, 9]. The deriva-
tives and their specificities for certain nucleic acid sequences make intercalating
agents especially useful as nucleic acid dyes [10]. There have been numerous
experimental and theoretical studies carried out on intercalation systems, espe-
cially the antitumor drugs and antiseptics molecules [11].

Methylene blue trihydrate (Fig. 12.1) has a variety of biomedical and biolog-
ically therapeutic applications, and used widely as a dye and therapeutic agent [12,
13]. Methylene blue trihydrate has been also used in the detection of the envi-
ronmental pollutant in the experimental research as a dye. So far, the calculations

Fig. 12.1 Structure of methylene blue trihydrate
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of the interaction between intercalators and base pairs are mostly based on
empirical or semiempirical methods and there are only a few low-level ab initio
studies [4, 5, 14, 15]. The reason is that the size of the intercalation system is
usually large and high-level methods such as second-order Møller-Plesset per-
turbation theory (MP2) and coupled cluster (CCSD (T)) become impractical, and
thus, the interaction mechanism between the intercalators and DNA is still under
clear. Previous researches have elucidated that the study of intercalation systems
with large size, one should consider two aspects [16]. First, intercalator molecules
usually have side chains with various sizes. To capture the binding properties, at
least one intercalator and one DNA base pair have to be included in the calculation
[4]. Second, the intercalating process can also be affected by some factors such as
its surrounding environment, such as twisting of the DNA backbone, and entropic
effects, etc. [17].

Density functional theory (DFT) has been widely accepted as a useful tool for
understanding and predicting the electronic properties of materials [18]. Compared
to quantum chemical methods such as MP2 or CCSD (T), standard DFT methods
are often better choices for large size systems because of their computational
efficiency. They are efficient for both molecular complexes and single molecules,
while remain sufficient accuracy. Nevertheless, for van der Waals (vdW) com-
plexes and sparse matter, the dispersion energy becomes more important, such that
standard density functionals are often failed. To remedy the failure, some func-
tionals with long range correction have been developed, and can treat long-range
dispersion interactions reasonably well. Therefore, in this paper, we adapted
special DFT method to study the binding modes and interaction mechanism
between intercalators and different DNA base pairs.

Due to lacking the crystal structure information of the methylene blue trihydrate
interacting with DNA, the most favorable conformation between the methylene
blue trihydrate and DNA base pairs are studied through the theoretical methods. In
this paper, several calculation results of semiempirical and DFT methods are
compared with those derived from MP2 method. The suitable method is selected to
study the conformations between the methylene blue trihydrate and DNA base
pairs, and the electric charge change and electrostatic density are calculated as
well. Our results may help the understanding of interaction between methylene
blue trihydrate and DNA, and provide useful protocols for other related studies.

12.2 Computational Details

The structures and properties of isolated intercalators and base pairs are deter-
mined by the calculations using QM methods at the ab initio level and DFT level.
Then their complexes were evaluated using the selected ab initio and DFT cal-
culations. All the calculations were performed using Gaussian 09 package [19]. A
variety of methods were applied on the two adenine-thymine (A:T) base pairs at
different distances in order to estimate their results and compare with MP2
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calculation. The different methods, including (1) semiempirical method, such as
AM1 [20], PM6 [21] and PDDG [22], (2) DFT methods that contain Becke
3-Parameter (Exchange), Lee, Yang and Parr methods (B3LYP) [23], the long
range corrected version of B3LYP using the Coulomb-attenuating method (CAM-
B3LYP) [24], Long range-corrected version of wPBE (LC-wPBE) [25], the latest
functional from Head-Gordon and coworkers, which includes empirical dispersion
(WB97XD) [26], and the hybrid functional of Zhao and Truhlar (M06) [27], and
(3) ab initio methods, such as Hatree-Fork method (HF) [28], MP2 [29].

The geometries of two different DNA base pairs and their complex with
methylene blue trihydrate were partially optimized using WB97XD functional
under 6-311+G* basis set, which is accorded with MP2 results well in all the test
methods. The geometries of adenine-thymine (A:T) and guanine-cytosine (G:C)
base pairs, were fully optimized at the MP2/6-311+G* level. Molecular geometries
of the DNA bases and base pairs (with the exception of the thymine methyl group)
still remain planar. Atomic point charges for each molecule were obtained using
the method of natural bond orbital analysis at the WB97XD/6-311+G (d, p) level.

12.3 Results and Discussion

12.3.1 The Performance of the QM Methods

The two adenine-thymine (A:T) base pairs are applied into the evaluation of QM
methods and functional. Because the large size of systems are involved and
computational speed of DFT is comparable with MP2 method, DFT methods,
which contain the long range correction, are consider as good and useful tools for
understanding and predicting the electronic properties of materials. The model
used in the QM calculations and MP2 results are shown in Fig. 12.2.

Fig. 12.2 The calculated
model and the results of the
MP2 calculation (take the two
separated base pair of the
energy calculation, which is
in 100 Å, as the zero point)
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Among these QM methods, WB97XD is the best one reproducing the result of
MP2 method. Therefore, all the calculations for the following topics are performed
using WB97XD method. Furthermore, we also evaluate the performance of
WB97XD and MP2 with different basis sets including 6-31+G*, 6-311+G*,
6-311++G**, and their final results, shown in Table 12.1 and Fig. 12.3, demon-
strate that the basis set would not affect the results a lot, and the difference among
the results with various basis set is less than 1 kcal/mol. Thus, the middle level
basis set (6-311+G*) was used in the following calculations.

Table 12.1 The calculated results of energies under different functional in MP2 method and
WB97XD method

Distance
(Å)

Binding energy
(kcal/mol)

Binding energy
(kcal/mol)

Binding energy
(kcal/mol)

Binding energy
(kcal/mol)

Binding energy
(kcal/mol)

Binding energy
(kcal/mol)

mp2/6-31+G* mp2/6-311+G* mp2/6-
311++G**

Wb97xd/6-
31+G*

Wb97xd/6-
311+G*

Wb97xd/6-
311++G**

2.5 48.55 45.13 45.72 85.14 83.66 84.58

2.7 1.91 -0.41 0.38 29.19 27.91 28.69

2.9 -19.42 -20.96 -20.36 1.17 -0.02 0.54

3.1 -27.26 -28.45 -27.68 -11.25 -12.42 -12.00

3.3 -28.39 -29.15 -28.45 -15.20 -16.30 -16.00

3.5 -26.52 -26.90 -26.28 -15.06 -16.04 -15.85

3.7 -23.56 -23.60 -23.05 -13.27 -14.14 -14.00

3.9 -20.41 -20.16 -19.66 -11.09 -11.83 -11.72

4.1 -17.15 -16.68 -16.36 -8.90 -9.50 -9.43

4.3 -14.56 -13.98 -13.70 -7.24 -7.74 -7.68

4.4 -13.65 -13.05 -12.78 -6.69 -7.15 -7.09

Fig. 12.3 The binding energy of the WB97XD and MP2 calculations at different functional
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12.3.2 The Conformation of Methylene Blue Trihydrate
Inserting into Two Base Pairs

The conformations of two base pairs, which used in this paper, contain 8 con-
formations which are completely different, and these base pairs are all studied by
the QM calculations. The experimental results of distance between proflavine and
the guanine-cytosine (G:C) base pair is 3.4–3.5 Å. Therefore, the distance between
the two base pairs, which are intercalated by the proflavine, is about 6.8–7.0 Å.
The conformation of methylene blue trihydrate is similar to the structure of the
proflavine, and distance of two base pairs is set to be 5.3 Å. The methylene blue
trihydrate is intercalated into the base pairs between which the distance is set to be
5.3 Å. The new conformation of methylene blue trihydrate and two base pairs are
performed with partial optimization under WB97XD/6-311+G* basis set, with
freezed two base pairs. Then the conformation of methylene blue trihydrate was
kept as the same as the optimized structure, and two base pairs were allowed to
move at the same time to enlarge or shorten the distance between them. The
moving conformations are evaluated by single point energy calculation to obtain
the most stable geometry of the complex conformation of methylene blue trihy-
drate with base pairs. It should be noticed in the Fig. 12.1 that the methylene blue
trihydrate has two sides, one is S side, another is N side, so methylene blue
trihydrate can intercalate into DNA base pairs at both sides. Therefore, interca-
lations from these two sides are considered for the calculations. The most favor-
able distance between the two base pairs was determined through the above
calculations. The most stable conformations, which obtained from above, were
further undergoing partial optimization with the two freezed base pairs.

The conformation and the results of the binding energies are shown in Fig. 12.4
and Table 12.2. From the Table 12.2, it can be seen that binding energy of the
methylene blue trihydrate complexed with AA-TT base pair is the lowest. And
when the methylene blue trihydrate intercalates into the AA-TT base pair with the
N side, the distance of AA-TT is 6.6 Å, and it needs less energy to push the base
pair open. Therefore, the methylene blue trihydrate intercalates into AA-TT base
pair in the orientation of N is the most favorable conformation based on the above
calculation of binding energies.

12.3.3 The Analysis of the Charge Transfer and Charge
Density

The analysis of charge transfer between the methylene blue trihydrate before and
after intercalation is shown in Table 12.3. From Table 12.3, we can see that the
conformation with most favorable binding energy, which is the methylene blue
trihydrate intercalates into AA-TT base pair in the orientation of N, transfers 0.223
charges from methylene blue trihydrate to the AA-TT base pairs. Another
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Fig. 12.4 The conformation of the methylene blue trihydrate and two base pairs. a AA-TT;
b AC-GT; c AG-CT; d CG-AT; e GC-GC; f AT-AT; g TA-TA; h TG-AC
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Fig. 12.4 (continued)

194 P. Xu et al.



Table 12.2 The binding energy of the different base pairs

Base pair Orientation Distance (Å) Energy (kcal/mol)

AA-TT N 6.6 -43.34

AA-TT S 7.3 -37.07

AC-GT N 6.6 -35.94

AC-GT S 6.5 -37.02

AG-CT N 6.5 -39.43

AG-CT S 6.4 -41.73

AT-AT N 6.6 -33.15

AT-AT S 6.7 -40.39

CG-CG N 6.6 -33.23

CG-CG S 6.4 -36.84

GC-GC N 6.6 -37.23

GC-GC S 6.7 -39.91

TA-TA N 6.4 -36.75

TA-TA S 6.6 -40.54

TG-CA N 6.5 -40.47

TG-CA S 6.6 -41.97

Table 12.3 The change of the charge between the methylene blue trihydrate before and after
intercalation

Base pair Before intercalation After intercalation The change of the charge

aa-N-6.6 1 0.777 -0.223

aa-S-7.3 1 0.944 -0.056

ac-N-6.6 1 0.941 -0.059

ac-S-6.5 1 0.939 -0.061

ag-N-6.5 1 0.947 -0.053

ag-S-6.4 1 0.95 -0.05

at-N-6.6 1 0.957 -0.043

at-S-6.7 1 0.946 -0.054

cg-N-6.6 1 0.958 -0.042

cg-S-6.4 1 0.917 -0.083

gc-N-6.6 1 1.007 0.007

gc-S-6.7 1 0.987 -0.013

ta-N-6.4 1 0.883 -0.117

ta-S-6.6 1 0.933 -0.067

tg-N-6.5 1 0.937 -0.063

tg-S-6.6 1 0.934 -0.066
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conformation, which is the methylene blue trihydrate intercalates into TA-TA base
pair in the orientation of N, is the second significant charge-transfer situation, the
charge transfer quantity from methylene blue trihydrate to base pair is 0.117, but it
is not favorable in the binding energy. Therefore, the conformation, which the
binding energy is lowest, transfers the most charges, but the conformations of
favor binding energy do not all transfer the more charges.

The analysis of changes of charge after the methylene blue trihydrate intercala-
tion is shown in Fig. 12.5. From Fig. 12.5, we can see that the change of the charge
of heavy atoms in the middle of system is most remarkable, except for the AC-S-6.5,
AG-N-6.5, CG-N-6.6, CG-S-6.4, TG-N-6.5. It means that the charge transfers from
methylene blue trihydrate to different base pairs, is most probably taken place in
these positions. The amount of charge change of heavy atoms is large in some base
pairs, such as AC-N-6.6, AG-S-6.4, CG-N-6.6, and GC-N-6.6, but the total change
of charges is relatively small, which is -0.059, -0.050, -0.042, 0.007, respectively,
because of the charge is re-distribute within the inter-molecule. Therefore, the
changes of charge density often take place at the heavy atoms in the middle part of
system which the charge density changes most remarkable.

The change of charge density of the system after the methylene blue trihydrate
intercalation of all the base pair are analyzed through Multiwfn software [30] and
shown in Fig. 12.6. In the model of AA-N-6.6, the decrease of charge density is
concentrated at the side chain of methyl, the adjacent ring and the other side ring of
molecule. And the decreased region of AA-N-6.6 in the center of three rings in
methylene blue trihydrate is weaker and smaller than that in the model of AA-S-7.3.
In the model of AA-S-7.3, the decreased charge density is happened in side chain
near the N atom. In the model of AC-N-6.6, the decreased part of charge density is
smaller than that in the model of AC-S-6.5, and the domain is concentrated in the
side chain of the methyl, and between N atom of the side chain and the other side ring
of the molecule. The decreased domain of AC-N-6.6 can be found in the center of
these three rings in methylene blue trihydrate, but in the model of AC-S-6.5 only one
domain in the centre of middle ring can be identified. The decreased domain of
charge density is concentrated at both the side chain and methyl group in the side of
the N side, and the other side ring of molecule in the model of AG-N-6.5. The
decreased domain of the AG-N-6.5 in the center of the three rings in methylene blue
trihydrate, but in the model of AG-S-6.4 two domains in the centre of ring can be
found. In the model of AG-S-6.4, the decreased portion of charge density is located
at the opposite side of that in the model of AG-N-6.5. For the models of AT-N-6.6
and AT-S-6.7, the similar decreased region of charge density is concentrated in C of
the ring which is adjacent to the side chain N. The other decreased domains of two
models are found at different position of the other side ring in methylene blue
trihydrate, but in the model of AT-N-6.6 this area is large than that in the AT-S-6.7.
The decreased range of model CG-S-6.4 is remarkable smaller than in the CG-N-6.6.
The most decreased range can be found between the side chain and adjacent ring. In
the model of GC-S-6.7, the decreased domain of charge density is distributed
symmetrically and concentrated at the two sides of side chain N–C bond. But the
decreased ranges of GC-N-6.6 model is found in the side chain, center and outside of
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Fig. 12.5 The change of the charge of the system after the methylene blue trihydrate intercalation.
The charges of methylene blue trihydrate, which is before the intercalation, are shown in
parentheses, and the value of the change of charge, which is larger than 0.02 is colored in red
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Fig. 12.5 (Continued)
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Fig. 12.6 The change of the charge density of the system after the methylene blue trihydrate
intercalation. The change of the charge density is shown in the plane of methylene blue
trihydrate, in which the increase of the charge density is shown in red, and the decrease is shown
in blue
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Fig. 12.6 (Continued)
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the other side ring in methylene blue trihydrate, and in the model of GC-N-6.6 this
range is larger than that in the GC-S-6.7. In the model of TA-S-6.6, the decreased
domains are distributed in the N side of middle ring, and concentrated around the
side chain. Although the decreased area in the model TA-N-6.4 is close to the model
TA-S-6.6, the ranges are distributed in the two sides of the molecule. In the model of
TG-N-6.5, the decreased domain is concentrated in the side of the S atom of the
middle ring, but it is distributed in the N side in the model TG-S-6.6.

From the above analysis, it can be drawn that if \\\ the decreased domain
located in the centre of the ring of methylene blue trihydrate in S or N orientation
is more than the other orientation, and the binding energy of this orientation is
higher than the other, which means that the binding between the methylene blue
trihydrate and base pair is less stable.

Fig. 12.6 (Continued)
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12.4 Conclusion

In conclusion, we have shown that in the absence of crystal structure of interca-
lators with DNA base pairs, the calculated method can be performed to predict the
binding modes between the intercalators and DNA base pair. The different
methods including semiempirical method, such as AM1, PM6 and PDDG, DFT
methods, B3LYP, CAM-B3LYP, LC-wPBE, WB97XD, and the M06, and ab ini-
tio level methods, such as Hatree-Fork method (HF), were verified for the
appropriate calculation of the binding energy between the methylene blue trihy-
drate and DNA base pairs, and their complexes. Among these methods, WB97XD
with 6-311+G* basis set is selected for the detail analysis of changes of charge
density. Our results show that the methylene blue trihydrate intercalated into the
DNA base pair can enlarge the distance between the base pair, and the different
base pair was enlarged to the different distance. From the analysis of binding
energies, the methylene blue trihydrate intercalated into AA-TT base pair in the
orientation of N side is the most favorable conformation and it transfers the
charges of 0.223 from methylene blue trihydrate to the AA-TT base pair.
The analysis of change of the charge shows that the changes of charge of the
methylene blue trihydrate often take place on the heavy atoms in the middle of
system, where the charge changes most remarkable. And with the analysis of
changes of the charge density, we can see that if the decreased domain of charge
density located in the centre of the ring of methylene blue trihydrate in one ori-
entation is more than the other orientation, the binding between methylene blue
trihydrate and base pair is less stable.
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Chapter 13
Drug Inhibition and Proton Conduction
Mechanisms of the Influenza A M2 Proton
Channel

Ruoxu Gu, Limin Angela Liu and Dongqing Wei

Abstract The influenza A virus matrix protein 2 (M2 protein) is a pH-regulated
proton channel embedded in the viral membrane. Inhibition of the M2 proton
channel has been used to treat influenza infections for decades due to the crucial
role of this protein in viral infection and replication. However, the widely-used M2
inhibitors, amantadine and rimantadine, have gradually lost their efficiencies
because of naturally-occurring drug resistant mutations. Therefore, investigation
of the structure and function of the M2 proton channel will not only increase our
understanding of this important biological system, but also lead to the design of
novel and effective anti-influenza drugs. Despite the simplicity of the M2
molecular structure, the M2 channel is highly flexible and there have been con-
troversies and arguments regarding the channel inhibition mechanism and the
proton conduction mechanism. In this book chapter, we will first carefully review
the experimental and computational studies of the two possible drug binding sites
on the M2 protein and explain the mechanisms regarding how inhibitors prevent
proton conduction. Then, we will summarize our recent molecular dynamics
simulations of the drug-resistant mutant channels and propose mechanisms for
drug resistance. Finally, we will discuss two existing proton conduction mecha-
nisms and talk about the remaining questions regarding the proton-relay process
through the channel. The studies reviewed here demonstrate how molecular
modeling and simulations have complemented experimental work and helped us
understand the M2 channel structure and function.
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13.1 Introduction

The influenza A virus matrix protein M2 (A/M2) is a pH-regulated proton selective
ion channel in the viral envelop [1–3]. In the life cycle of the virus, the M2 channel
plays two critical roles. First, the acidification of the viral interior through the M2
channel facilitates the release of influenza ribonucleoproteins into the infected cell.
Second, the M2 channel regulates the pH value of the Golgi lumen of the host cell
and prevents premature conformational changes of other viral proteins to ensure
proper viral assembly [2, 3].

Due to these crucial physiological roles of the M2 protein in the influenza viral
life cycle, the M2 channel has been the target of anti-influenza drugs for several
decades. Amantadine and rimantadine, for instance, are adamantane-based anti-
influenza drugs that function as M2 inhibitors and they have been used for treating
influenza for more than thirty years [4]. However, these two drugs have gradually
lost their efficacy during the past decades because of naturally-occurring drug
resistant mutations [5, 6]. Understanding the mechanisms of drug resistance in
these mutant channels is of paramount importance for designing novel anti-
influenza drugs. Here, we will review recent experimental and theoretical studies
of the wild-type and drug-resistant mutant channels. These studies not only give us
insight into the proton conduction mechanisms and drug inhibition mechanisms of
the M2 protein, but also guide the design of novel anti-influenza drugs.

13.2 Structure of the M2 Proton Channel

The M2 channel is a homo-tetramer constituted by four transmembrane (TM)
peptides [7] arranged in a left-handed way with their N- and C-terminal domains
residing at the extracellular side and the cytoplasmic side, respectively [8]. Each of
the four monomer subunits contains 97 amino acids, including a short extracellular
domain (residues 1–24), a transmembrane (TM) domain (residues 25–46), and a
cytoplasmic domain (residues 47–97) [6, 8]. The extracellular domain is a signal
peptide that facilitates channel incorporation into the membrane bilayer. The
transmembrane domain consists of four a helices and is responsible for proton
conduction and could be inhibited by adamantane-based drugs (Fig. 13.1) [9]. The
cytoplasmic domain contains a short amphipathic helix and a disordered tail. The
amphipathic helices of four subunits stabilize the channel by forming a base that is
nearly perpendicular to the transmembrane bundle on the membrane surface,
whereas the disordered tails interact with matrix protein 1 (M1) that packs around
the ribonucleoproteins [10].

The transmembrane domain itself is capable of proton conduction and could be
inhibited by adamantane-based inhibitors [9]. Four single transmembrane helices
are packed to construct a hydrophilic channel pore that contains structured water
molecules across the membrane bilayer (Fig. 13.1). Several pore-facing residues
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are lined along the channel pore. These residues directly affect the pore radii and
the hydrophilicity of the channel pore, due to their physical shapes and different
electrostatic properties. These residues are Val27, Ser31 or Ala30, Gly34, His37
and Trp41, from the N-terminal side to the C-terminal side of the channel [11]
(Fig. 13.1).

The hydrophobic side chains of Val27 residues form a gate at the N-terminal
entrance of the channel (Fig. 13.1). The Val27 residues are also crucial for channel
inhibition by forming hydrophobic interactions with the M2 inhibitors, which will
be discussed in detail in the following sections.

The Ala30/Ser31 and Gly34 residues are located in the middle portion of the
proton channel and form a hydrophilic cavity occupied by water molecules in the
absence of M2 inhibitors (Figs. 13.1 and 13.2a). Highly-ordered water molecules
are stabilized by hydrogen bond interactions with the carbonyl groups of these
residues and the hydroxyl groups of Ser31.

The His37–Trp41 quartet is the functional core for the proton conduction
process through the channel. This quartet is highly conserved in the M2 proteins of
type A and type B influenza viruses. The Trp41 residues occlude the channel at the
C-terminal end and act as a channel gate to prevent outward ion flux from the viral
interior to the extracellular side (Fig. 13.1) [12]. The His37 and Trp41 residues
change their conformations under different pHout values (pHout refers to the pH
value of the extracellular side of the influenza virus) to open the channel and allow
proton transfer across the bilayer.

The Asp44 and Arg45 residues (Fig. 13.1) are not pore-facing residues, but
these two residues form hydrogen bonds and salt bridges among themselves to
stabilize the tetramer protein. These two residues also bind and stabilize water
molecules at the C-terminal end of the M2 channel. These water molecules are
believed to facilitate the proton conduction process.

Fig. 13.1 Structure of the transmembrane domain of the M2 protein. The M2 protein is shown in
cartoon model in white. The pore facing residues (Val27, Ala30, Ser31, Gly34, His37, and Trp41),
which constitute the drug binding site in the channel pore (the P-binding site), are shown in stick
model in cyan. The residues constituting the drug binding site on the protein surface (the S-binding
site) are shown in stick model in orange. The channel pore radius profile is shown in blue (pore radii
larger than 2.8 Å), green (pore radii larger than 1.4 Å and smaller than 2.8 Å) and red (pore radii
smaller than 1.4 Å), respectively
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13.2.1 M2 Protein Structure Is Sensitive to Its Environments

Although the M2 protein appears to have a very simple structure compared to ion
channels from higher organisms (such as K+ and Ca2+ channels), how the M2
channel conducts protons under low environmental pH and how drugs bind to the
channel and inhibit M2 channel function have not been fully understood. This is
mainly attributed to the flexibility of the M2 protein, which exhibits a wide range
of structural and functional properties due to the varying experimental conditions
and peptide chain lengths used in the studies. The M2 channel transmembrane
domain is directly contacted by the lipid molecules, leading to significant sensi-
tivity of the structure and function of the channel to the bilayer environment. The
channel pore of many higher-organism ion channels (e.g., the nicotinic acetyl-
choline receptors (nAChR) and the K+ channels) [13, 14], in contrast, is con-
structed with the help of other transmembrane helices. In these channels, the pore-
constituting helices are surrounded and protected by these additional transmem-
brane helices, so that direct contacts between the lipids and the pore helices are
reduced significantly and the sensitivity of the channel pore to the bilayer envi-
ronment is decreased. Such a shielding mechanism is absent in the M2 channel,
whose structure has been found to show large differences in different lipid envi-
ronments [15]. In addition, the C-terminal intracellular amphipathic helices that
are crucial for the structural stability and the proton conduction of the channel are
missing in most of the experimental studies, which may also lead to biased results.

Based on close examination and comparison of existing experimental and
computational studies, we postulated that the experimental conditions, including
drug binding, environmental pH value, as well as the bilayer composition, strongly
affect the structure of the M2 protein. We will briefly review these factors below.

Fig. 13.2 The three-layer water structure in the M2 channel pore. The figure is drawn based on
our molecular dynamics simulations [43]. Both the water structures in the apo form (panel a) and
the amantadine bound form (panel b) are shown. The M2 protein is shown in cartoon model in
white. The pore facing residues (Val27, Ala30, Ser31, and Gly34) and the amantadine molecule
are shown in ball and stick model with the carbon atoms of the residues, the carbon atoms of the
inhibitor, and the oxygen and nitrogen atoms in green, cyan, red and blue, respectively. The
stable water molecules in the channel pore are shown as magenta spheres, whereas the hydrogen
bonds between these water molecules and the Ala30, Ser31, and Gly34 residues and the
amantadine molecule are labeled by red lines
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Interested readers may also refer to two recent reviews by Hong and DeGrado [16]
and Zhou and Cross [15] for more discussion on this topic.

Drug binding has significant influence on the conformation of the M2 protein.
The M2 channel exists in a variety of conformational states in the apo-form,
whereas inhibitor-binding significantly reduces the conformational flexibility of
the channel. Thomason et al. [17] found that the drug-bound M2 channel tetramer
packed more tightly than the apo-form, while Ma et al. [9] observed that inhibitors
facilitated the tetramerization of the M2 peptides.

The M2 channel structure is also regulated by environmental pH value. The M2
tetramer reaches maximal stability around pHout value of 6.5. The structural sta-
bility of the M2 channel decreases in lower or higher pHout values [9, 18]. In low
pH environments where the channel opens and allows proton conduction, the
channel pore is more hydrated and the distances between the N-terminal ends of
the transmembrane helices are larger, implying a loosely-packed tetramer structure
[17]. The TM helical kink around Gly34 is eliminated under low pHout values
according to comparisons of the M2 structures solved under different pH values
(PDB ID: 2RLF, 3LBW, 3C9 J, see Fig. 2 in Ref. [19]). This conformational
change could result in more loosely-packed tetramer structure and wider channel
pore radii, which would facilitate the conduction of protons.

A variety of studies have revealed the influence of the molecular composition of
bilayers on the conformational equilibrium and the function of the M2 membrane
proteins. Such influence is achieved by binding of lipids and lipid-soluble mole-
cules (e.g., cholesterol) to specific positions of membrane proteins or by physical
properties of bilayers such as the dimension of the hydrophobic region [20]. These
elements also have significant effects on the conformational states of the M2
transmembrane domain, as reviewed by Cross et al. [21, 22] and Zhou and
McCammon [15]. The length of the transmembrane helix of the M2 channel (res.
25–46, *33 Å) is larger than the width of the hydrophobic region of bilayers
(*25 Å), therefore the transmembrane helices have to tilt at an angle to reconcile
this dimension mismatch. Duong-LY et al. [23] investigated the M2 conformations
in different bilayers and found that the helical tilt angle was highly correlated with
the bilayer width. The wider the bilayer was, the smaller the helix tilt angle (with
respect to the bilayer normal) and the longer the M2 channel would become. A tilt
angle ranging from 30� to 38� have been reported [11].

However, both Kovacs et al. [24] and Duong-LY et al. [23] found that the changes
of helical tilt angles of the M2 channel cannot be explained solely by the bilayer
width. For example, the helical tilt angles in DMPC (*23 Å) and DOPC (*27 Å)
bilayers were *37� and *33�, respectively, where significant changes of the
bilayer width only resulted in small changes of the tilt angle [23, 24]. This result
indicates that the conformation of the M2 channel is restrained by other factors
besides the bilayer width. For instance, the N-terminal end of the transmembrane
domain does not have an anchoring residue and its exact position in the bilayer
interfacial region is flexible. This variation in the N-terminal position may also affect
the channel conformation. Different molecular compositions of bilayers introduce

13 Drug Inhibition and Proton Conduction Mechanisms … 209



different lateral chemical groups that affect the equilibrium of the different con-
formational states of the M2 protein, as discussed by Duong-LY et al. [23].

The different M2 conformations in different bilayer environments affect its
functions, including inhibitor binding and proton conduction. For instance, the
proton conduction rate of the M2 channel varies in different bilayers [25–27]. The
conformation of the M2 transmembrane domain was found to shift toward the apo-
form rather than the drug-binding state in cholesterol-containing bilayers [20].
Therefore, investigating the M2 conformational states under different environ-
ments is crucial for understanding its proton conduction mechanism and for
designing novel channel inhibitors.

13.2.2 Differences Among the M2 Structures in the Protein
Data Bank

There are 12 structures of the wild-type and drug-resistant mutant M2 channels in
the Protein Data Bank solved by different techniques under different conditions
(crystal and solution NMR structures in micelle environments and solid state NMR
structures in bilayer environments, see Table 13.1 in Ref. [28]). The pore radius
profiles and the tetramer assembly of these structures were compared in detail in
our previous publications [11, 28]. We will only briefly summarize the differences
of these structures here.

In some of the early structures such as 1NYJ [29] and 2H95 [30], the channel
pore radii are very large in either the N- or the C-terminal ends of the channel,
implying that the tetramer was not assembled tightly. The most recent M2
structures showed more tightly-packed tetramers with two minima of the pore radii
at the two gates around Val27 and Trp41, respectively (Fig. 13.1). Such confor-
mation is believed to closely resemble the M2 conformation in psychological
conditions. The most representative M2 structures in the Protein Data Bank are
2KQT (ssNMR, bilayer), 3LBW (X-ray, micelle), 2RLF (sNMR, micelle), and
2L0 J (ssNMR, bilayer). Among them, 2KQT and 3LBW are transmembrane-only
constructs, whereas 2RLF and 2L0 J contain the short C-terminal intracellular
amphipathic helices. We would like to note that, the differences between these M2
structures are not only attributed to the different experimental conditions but also
due to technical issues such as the precision with which these structures were
resolved. We direct interested readers to several recent reviews of the M2 channel
structure for a brief overview of the existing structural work of the transmembrane
domain of the M2 channel [10, 21] as well as comparisons of the precision and
reliability of these structures [16].

We would like to note here that, the structures of the intracellular amphipathic
helices are different in 2RLF and 2L0 J, mainly because of the different lipid
environments in which these structures were solved. 2RLF was solved in micelle
and the C-terminal helices were connected to the transmembrane helices via a
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short loop (residue 47–51) and were located in the solution. However, in the
bilayer environment (2L0 J), the C-terminal helices are connected to the trans-
membrane helices through a rigid turn (residue 47) and are positioned on the
bilayer surface [31]. In 2L0 J, the conformation of the four amphipathic helices is
stabilized by extensive hydrophobic interactions among these helices. The posi-
tively-charged residues (Lys49, Arg53, His57, Lys60, and Arg61) are exposed to
the negatively-charged lipid head groups to anchor these helices on the membrane
surface.

13.3 Drug Inhibition Mechanism of the M2 Proton
Channel

13.3.1 Two Different Drug Binding Sites

As mentioned above, residues Ala30, Ser31 and Gly34 constitute a hydrophilic
cavity that is capable of accommodating water molecules and small drug mole-
cules (Figs. 13.1 and 13.2). Drug binding in the channel pore may inhibit proton
conduction across the bilayer by physically occluding the channel pore. According
to the NMR experiments (PDB ID: 2KQT) [32], inhibitor-binding in this pocket
was stabilized by hydrophobic interactions between the adamantane group and
Val27 side chains as well as an extensive hydrogen bonding network between the
positively-charged ammonium group and the pore-facing residues and water
molecules (Fig. 13.2b).

This pore-binding pocket (P-binding site) has been considered the only drug
binding site for several decades until in 2008 another possible drug binding site

Table 13.1 Proton conduction rate of several M2 mutants where each monomer chain contains a
single amino acid mutation

Mutation Proton
conduction*

Rationale for observed conduction results Refs.

V27A " Smaller side chains facilitate pore
hydration

[5,
27]

V27T, G34E, A30P,
A30T

# Larger side chains disrupt pore hydration [5]

S31N – – [5]

V27S – – [5]

S31A # Hydrophobic side chains disrupt pore
hydration

[27]

D44A, W41A # Mutation disrupt proton release at the exit [5,
27]

* " indicates increase of the proton conduction rate; # indicates decrease of proton conduction
rate; – indicates no obvious change.
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was reported by Schnell and Chou on the protein surface (the surface-binding site
or the S-binding site, PDB ID: 2RLF) [33]. This new drug-binding site is con-
stituted by Leu40, Leu43 and Asp44 from one subunit and Ile42 and Arg45 from
the adjacent subunit (Fig. 13.1). The adamantane group of the inhibitor interacted
favorably with the hydrophobic side chains of Leu40, Leu43 and Ile42, whereas
the positively-charged ammonium group interacted with the polar patch formed by
Asp44 and Arg45. The surface-bound inhibitors could stabilize helical packing and
may prevent proton conduction allosterically. This drug-protein binding model
was found in micelle environments (PDB ID: 2RLF). In contrast, in bilayer
environment (PDB ID: 2L0 J), the polar residues Asp44 and Arg45 were buried by
hydrophobic residues of the intracellular amphipathic helices and the S-binding
site was more hydrophobic than that in 2RLF. Therefore, the S-binding site was
absent in 2L0 J [31].

Both drug-binding sites have been observed in experimental studies but the P-
binding site has been believed to be the pharmacologically-relevant binding site
[11, 32, 34]. The S-binding site is believed to only exist under specific conditions
such as high drug concentration. The type B influenza virus M2 channel (B/M2) is
amantadine/rimantadine insensitive [3]. The chimeric ion channel constructed by
substituting the N-terminal half of the B/M2 TM domain (res. 6 to 18) with the
corresponding segment of the A/M2 (residue 24–36, in the P-binding site) was
partially (*50 %) sensitive to amantadine [35]. Transferring of residues 37–45 of
A/M2 (outside the P-binding site) to the corresponding position of B/M2 resulted
in a chimeric channel that was not sensitive to amantadine, indicating that only the
N-terminal part of the channel is associated with drug inhibition [35, 36]. Pielak
et al. [37] also solved an sNMR structure of a chimeric channel with a pore-bound
inhibitor in micelle environments, which proved the importance of the P-binding
site.

13.3.2 Free Energy Properties of the Two Binding Site

As two binding sites co-exist on the protein, extensive studies especially theo-
retical studies were conducted in order to explore the structural and energetic
properties of these two sites. In 2008, Chuang et al. defined binding hot spots on
both the X-ray crystal structure (PDB entry: 3BKD and 3C9 J) and the sNMR
structure (PDB entry: 2RLF) by computational solvent mapping method [38]. The
fact that binding hot spots were found at both sites on both structures implies co-
existence of the two drug binding sites. However, the hot spots at the P-binding
site were more preferred energetically than those at the S-binding site [39].

Our group performed molecular dynamics simulations of the M2 proton
channel with inhibitors binding at different sites to investigate the stability and
dynamic properties of the M2-inhibitor complexes [11]. We found that, in short
molecular dynamics simulations, drugs could bind at both sites stably. In the P-
binding site, the drug was bound with its ammonium group pointing to the His37
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residues and spaned the N-terminal portion of the channel pore. In the S-binding
site, extensive hydrophobic interactions were formed between the adamantane
group of the inhibitor and the Leu40, Leu43 and Ile42 residues, whereas the
positively charged ammonium group hydrogen-bonded with the protein, the lipids,
as well as water molecules simultaneously as the S-binding site was close to the
lipid-water interface. All of these interactions were consistent with experimental
results [32, 33, 40].

We then conducted free energy calculations for both sites. Umbrella sampling
methods were employed and three different reaction coordinates were designed to
calculate the free energy changes of rimantadine binding in the channel pore from
the N-terminal solution, rimantadine dissociating from the surface binding site and
entering into the lipid-water interfacial region, as well as rimantadine penetrating
the membrane bilayer. These calculations revealed a binding free energy differ-
ence of *7 kcal/mol between the P-binding site and the S-binding site with the P-
binding site being the more stable site (Fig. 13.3a, b). Although the P-binding site
binds inhibitor more stably, an energy barrier of *10 kcal/mol was found in the
vicinity of Val27 for rimantadine to enter the channel pore from the N-terminal
side (Fig. 13.3a, b). This energy barrier may be due to the small pore radius of the
M2 channel at this position, as well as the need for dehydration of the positively
charged ammonium group when the inhibitor passes through the hydrophobic gate.
In conclusion, our calculations showed that the P-binding site was more stable for
drug binding but a higher energy barrier needs to be overcome for binding to
occur. The S-binding site was less stable for drug binding but it was nearly
barrierless and was easily accessed. The dissociation of the drug molecule from the
P-binding site needs to overcome a large energy barrier (*28 kcal/mol), which
nicely explains the stability of drug-binding at this site. Dissociation of the drug
molecule from the S-binding site needs to overcome a small energy barrier
(*2 kcal/mol). Therefore, the P-binding site is the thermodynamic binding site
where the drug molecule binds slowly and stably and dissociates even more
slowly, whereas the S-binding site is a kinetic binding site where the drug mol-
ecule binds readily but less stably and dissociates easily.

We first conducted the above calculations by using the GROMOS united-atom
force field for the protein and the rimantadine molecule and then we repeated them
by using the OPLS all-atom force field. Both force fields revealed the same free
energy differences of the two binding sites with the OPLS force file resulted in
lower absolute binding free energies and slightly lower energy barrier. This result
may imply that the OPLS force field is more suitable for describing the protein and
the induced-fit process of drug-protein binding.

Our calculations also found an energy well of *9 kcal/mol for the rimantadine
at the lipid-water interface (lipid binding site or L-binding site). We postulated that
in bilayer environment rimantadine is primarily bound in the L-binding site. In
order to enter into the channel pore, it needs to dissociate from the L-binding site
first and then penetrates the hydrophobic gate at the channel entrance (Fig. 13.4).
Both processes needed to overcome very high energy barrier (*9 kcal/mol and
*10 kcal/mol), which explains the slow inhibition of the M2 proton channel
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Fig. 13.3 Free energy
profiles of inhibitor binding
with the M2 protein. Panel
a and Panel b show the free
energy profiles of
rimantadine binding to the
P-binding site from the
N-terminal solution and
dissociating from the
S-binding site on the protein
surface and entering into the
water-lipid interface (2RLF
was used as the initial
structure in the simulations,
where the GROMOS united-
atom force filed was used for
the protein), respectively.
Panel c shows the free energy
profiles of amantadine
binding to the channel pore of
the wild-type and the drug
resistant mutant M2 proteins
(2L0J was used as the initial
structure in the simulations,
where the OPLS all-atom
force filed was used for the
protein) from the N-terminal
entrance
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[6, 41, 42]. However, the S-binding site is close to the L-binding site at the
intracellular side of the bilayer and the drug molecule bound on the protein surface
could easily dissociate from the S-binding site (Fig. 13.4).

13.3.3 Structures of the Drug Resistant Channels

As mentioned earlier, the adamantane-based molecules have lost their drug effi-
cacy gradually because of naturally-occurring drug resistant mutations [6]. The
currently found drug resistant mutants could be classified into three categories
according to the positions of the mutated residues on the protein. They include
pore-facing mutations where the residues pointing toward the channel pore are
mutated (V27A, S31 N, G34E, A30T) and the N- and C-terminal interhelical-
facing mutations where the residues at the helical interfaces at the N- (L26F) and
C-terminal (L38F, D44A) ends of the M2 channel are mutated, respectively (see
Fig. 1 in Ref. [43]). The pore-facing mutations affect the pore radii and the
hydrophilicity of the channel pore directly by varying the size and electrostatic
properties of the mutated residues, whereas the interhelical facing mutations affect
drug-binding allosterically by modifying the interactions between the transmem-
brane helices and changing the channel tetramer packing and overall structure

In order to investigate the structural changes of the mutant channels and their
interactions with the M2 inhibitors, we conducted molecular dynamics simulations
of the apo-form, the amantadine-bound form as well as the rimantadine-bound
form of the wild-type and several drug-resistant mutant channels [43]. We simu-
lated four different mutants and they are V27A, S31 N, L26F, and L38F,
respectively. The S31 N mutation is the dominant naturally-occurring mutation
among all current drug resistant influenza viruses [44, 45]. There have been some
debates regarding the molecular mechanism of drug resistance for this mutant [33,
40]. The other three mutations were simulated to study the effects of mutations at
different positions in the channel.

Fig. 13.4 Different drug binding states in the M2-bilayer system. In the membrane environ-
ments, the rimantadine could bind in the channel pore of the M2 protein (the P-binding site) or on
the protein surface of the M2 protein (the S-binding site). There is also another binding site at the
lipid-water interfacial region (the L-binding site). The L-binding site exists on both sides of the
bilayer and the S-binding site is close to the L-binding site on the intracellular side
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Our MD simulations showed that, the pore radii of the V27A, L26F, and L38F
mutant channels were enlarged at the N-terminal side of the channel, which could
be explained by the different volumes of the new residues. For V27A, a larger pore
facing residue (Val27) was mutated to a much smaller alanine and the pore radii
were increased significantly by *2 Å. For L26F and L38F, the leucine residues
lying at the helical interfaces were mutated to larger phenylalanine residues that
destabilized the helical packing and hence increased the channel pore radii by
*0.5 Å. Our simulations are consistent with the results of Wang et al.’s work [46].

However, there are some debates regarding the structure of the S31 N mutant.
In our simulations using 2L0 J as the initial structure, the Ser31 residue was
located in the channel pore and mutation of it to larger asparagine decreased the
channel pore radius significantly by *1.5 Å. However, in other structures such as
2RLF, the Ser31 residue lies at the helical interfaces and simulations using this
structure showed destabilized tetramer and increased channel pore radii. Both
conformations of residue 31 were found in NMR structures 2L0 J and 2LYO and
each conformation account for *50 % of the snapshots of these two structures.
Pore-facing conformation in these experimental structures also resulted in smaller
pore radii than the helical facing conformation, as we showed in Fig. 3 in Ref.
[28]. However, the positions of residue 31 in these structures were not reliable due
to the precision of these structures according to Wang et al. [47] and at present,
most of the existing molecular modeling and simulations support the pore-facing
conformation and hence the decreased channel pore radius in the S31 N mutant.

The above-mentioned mutations also affected the water structures in the
channel pore. In the wild-type M2 protein, a three-layer model of stable water
structure was found around Gly34 in the absence of inhibitors (Fig. 13.2a). The
Ser31 side chains, the backbone oxygen atoms of Ala30, as well as the backbone
oxygen atoms of Gly34 constitute three sub-sites at the binding cavity, where well-
ordered water molecules are stabilized via hydrogen bond interactions with these
residues, as shown in Fig. 13.2a. Our water density maps based on MD simulations
confirmed these findings [43]. The water molecules in these three layers were
dynamic in our simulations and exchanged with the bulk water frequently.

In the V27A, L26F, and L38F mutant channels, this water structure was
destroyed or destabilized due to the increased channel pore radii. In the wild-type
channel, the Val27 residues formed a hydrophobic gate at the N-terminal entrance
and the water molecules were trapped in the drug binding cavity. However, in the
drug resistant mutants, the channel pore radii were increased, and the water
molecules in the binding site became more dynamic and the water structure was
destroyed or destabilized. In the S31 N mutant, the first layer of water molecules
disappeared because of the large asparagine side chains that occupy this site, but
the other two water layers became more stable.
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13.3.4 Interactions Between Inhibitors and Drug Resistant
Channels

MD simulations showed that, drug binding in the pore-binding site of both the
wild-type and mutant channels decreased the channel pore radii around Val27 and
enhanced this hydrophobic gate, consistent with Yi et al.’s work [48].

In order to analyze the energetic properties of drug-binding to the channel pore of the
drug resistant channels, we conducted free energy calculations using the umbrella
sampling method [28]. Figure 13.3c showed the free energy profiles of amantadine
binding to the P-binding site of the wild-type channel and the S31 N and V27A mutants.

2L0 J were used as the initial structure in these simulations and the shape of the
free energy profile of the wild-type channel is highly similar to the results using
2RLF (compare Fig. 13.3a and c). An energy well of *20 kcal/mol was found in
the drug binding site, whereas an energy barrier of *5 kcal/mol was found in the
vicinity of the hydrophobic gate. However, for the V27A and S31 N mutants, the
binding free energies of amantadine were only *3 kcal/mol, implying unstable
binding compared to the wild-type. There is no energy barrier for drug binding in
the channel pore of V27A, which means that the pore-binding site in the V27A
mutant is not stable and the drug molecule binds and dissociates easily. The energy
barrier for drug binding with the S31 N mutant was increased to *12 kcal/mol
due to the significantly decreased channel pore radius, implying that drug binding
in this mutant was much more difficult than in the wild-type channel (Fig. 13.3c).

We would like to note that, the positions of the energy well in these two mutant
channels were different from that of the wild-type channel, indicating different
inhibitor binding positions (Fig. 13.3c). In the V27A mutant, the inhibitor binding
site lied around Ala27, where a new hydrophobic pocket was formed because of the
mutation. The strong hydrophobic interactions between the drug molecule and
Val27 were significantly weakened. For the S31 N mutant, the inhibitor binding site
was located in a deeper position in the channel pore because the binding cavity of the
wild-type channel was partially occupied by the large asparagine side chains. The
hydrophobic interactions between the adamantane group and the Val27 residues
were shielded by the large, polar asparagine side chains. We proposed that the
abolished hydrophobic interactions between the inhibitor and the hydrophobic gate
may account for the unstable binding of drug molecules in these mutants and the
subsequent drug resistance.

13.4 Proton Conduction Mechanism of the M2 Proton
Channel

The M2 channel undergoes extensive conformational changes to facilitate the
proton conduction process when the His37 residues are protonated. By comparing
different M2 structures in the protein data bank, Acharya et al. [19] proposed that
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the helical kink around Gly34 was eliminated under low environmental pH values
and the helices took on a straighter conformation in the open channel. The ssNMR
experiments by Hu et al. [49] found more ideal helical conformation of the His37
backbone structure and broadened conformational distribution of the M2 helices at
low pH values. Their observations suggested that the M2 helices adjusted their
helical kink and tilt angle in order to open the channel for proton transfer at low pH
values. The C-terminal amphipathic base also changed conformations at low pHout.
Nguyen et al. [50] found significant structural differences of the C-terminal helices
under different pH values. The amphipathic helices rotated and were positioned in
a deeper position in the bilayer and were farther away from each other under low
environmental pH values than under neutral pH values. Their result suggests that
the C-terminal base may participate in channel opening by changing its confor-
mation. The M2 channel opening mechanism may be somewhat similar to other
ion channels, such as the KcsA K+ channel [13] and the nicotinic acetylcholine
receptors (Na+/Ca2+ channels) [14], where the pore-constituting TM helices rotate
and tilt to yield a wider channel pore for ion conduction.

13.4.1 Two Proposed Proton Conduction Models

There are two popular proton conduction models that have been proposed to
explain the proton transfer process through the M2 channel. In the first model,
called the ‘‘water wire’’ model, when the channel changes into an open confor-
mation at low pHout, the His37 and Trp41 adjust their side chains so that a con-
tinuous water wire is formed through which protons are transferred [27, 51, 52]. In
the second model, called the ‘‘proton relay’’ model, the His37 residues go through
transitions among several protonation and conformational states at low pHout

values and relay protons from one side of the channel to the other [7, 26, 27, 53,
54]. His37 residues may acquire protons from the N-terminal side of the channel at
low pHout and become protonated. They subsequently donate the protons to the
cytoplasmic side and return to their initial protonation states and conformations by
tautomerization or ring flip. One of the advantages of the ‘‘proton relay’’ model is
that it is easy to explain the ion selectivity: other monovalent ions, such as Na+ and
K+, cannot bind with the histidine residues and hence will not be relayed to the
viral interior [53].

The major difference between these two models is whether a stable continuous
water wire through which protons are transferred is formed. When pHout is low, if
the channel pore of the protonated M2 is large enough to accommodate a con-
tinuous water wire, the ‘‘water wire’’ model would take precedence. If the channel
pore radius is small and does not allow the formation of a continuous water wire,
then the ‘‘proton relay’’ model becomes the only plausible proton conduction
mechanism.
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As discussed earlier, the M2 channel structure is highly flexible and dynamic.
As a result, both proton conduction models may accurately describe the proton
conduction mechanisms in M2 channels under different conditions. For instance,
the proton conduction has two saturation steps, one pseudo-saturation step occurs
at pHout * 5.5 and another full saturation step exists at a pHout value of 4 [27].
Since the pKa values of the third and forth His37 residues are 6.3 and \5,
respectively [55], three His37 residues may be protonated in the first saturation
step whereas in the second full saturation step, all four histidine residues become
protonated. When the four His37 residues are protonated, the electrostatic repul-
sion may cause the channel pore to widen, hence forming the continuous water
wire. Therefore, it is possible that the ‘‘water wire’’ model may take effect in the
full saturation step. The ‘‘proton relay’’ model probably takes effect in the pseudo-
saturation step where the channel pore size is still relatively small and cannot
accommodate a continuous water wire.

Several experimental studies have found that the full-length M2 channel
transfers protons more slowly than the truncated transmembrane domain [9, 27].
For instance, Ma et al. [9] found that the transmembrane domain of the M2
channel plus a few C-terminal residues (residues 22–50) conducted protons at a
rate of 7.6 s-1 per tetramer, whereas the full length channel conducted protons at a
rate of 4.8 s-1 per tetramer. As discussed previously, the full-length channel is a
more stable and compact structure due to the C-terminal intracellular base.
Therefore, in the channel construct containing only the transmembrane domain,
the channel pore radius became larger in the ‘‘water-wire’’ model, and the His37
residue was more flexible in the ‘‘proton relay’’ model. Both mechanisms would
result in larger proton conduction rate in the truncated channel. We would also like
to note that, the different proton conduction rates are also probably due to the
different mechanisms that are at play under different conditions. It is possible that
the proton conduction in full-length channel occurs primarily in the fashion as
described in the ‘‘proton relay’’ model, whereas in the transmembrane only con-
structs, the channel is more open and the proton conduction might occur in a
fashion as described in the ‘‘water wire’’ model, which may transfer protons much
faster. More extensive experiments would be needed to delineate the proton
conduction mechanism in in vivo systems.

13.4.2 Proton Conduction Modeled by Molecular
Simulations

Molecular modeling of the M2 channel has been used to explore the proton
conduction mechanisms. However, the results are highly sensitive to the choice of
the starting M2 channel structures. For instance, molecular dynamics simulations
based on early M2 structures (loosely-packed conformation) (e.g., PDB ID: 1NYJ)
supported the ‘‘water wire’’ model by finding that three protonated His37 residues
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resulted in a channel pore wide enough to allow the formation of a water wire [51,
56]. The lowest energy barrier for protons diffusing through the water wire was
found to be *7 kcal/mol when three His37 residues were protonated [51].

In comparison, molecular simulations based on M2 structures in closed and
tightly-packed conformations solved in recent years mostly support the proton
relay model. For instance, Carnevale et al. studied the ‘‘proton relay’’ model by
using both MD simulations and quantum mechanics calculations starting from the
recent crystal structure (PDB: 3LBW) [57]. They found that the protons were
stored in water molecules in the vicinity of Ser31. The protons hopped among the
water molecules at the N-terminal half of the channel in a similar way as in bulk
water and were transferred to His37 in a nearly barrierless manner [57]. The
energy barrier of proton conductance mainly came from the His37 side chain
flipping.

In order for molecular modeling methods to capture in vivo proton conduction
mechanisms, there are two important considerations to keep in mind. First, the
intracellular amphipathic domain that is important in maintaining proper channel
conformational flexibility and dynamics needs to be included. Second, the pro-
tonation states and conformational states of the His37 and Trp41 residues under
different pHout need to be studied thoroughly and extensively, to delineate the
events (including transitions among different protonation states and conforma-
tional changes such as ring flips in His37) in the ‘‘proton relay’’ model. Quantum
mechanical calculations where His37 residues may change protonation states as
proton conduction occurs would be a valuable method for this study [58].

13.4.3 Details of the Proton Relay Process

The HxxxW quartet at the C-terminal part of the transmembrane helices is the
functional core of the pH-gated M2 proton channel. Since proton conduction
through the M2 channel requires the conformational changes of both His37 and
Trp41, it is therefore important to understand their side chain conformations under
low pH values.

Two recent studies by Hu et al. and Sharma et al. [31, 59] applied NMR
experiments and molecular dynamics simulations to explore the proton conduction
mechanisms of the M2 channel at low environmental pH values. Although both of
their studies support the proton relay model, they found different side chain
conformations for the His37 residues, leading to two different proton relay
processes.

Hu et al.’s study [59] found that the His37 residues packed tightly in an edge to
face conformation (Fig. 13.5a) [31, 59]. The His37 residues underwent multiple
reorientations and very large side chain rotations (change of v2 angle at about
180�) to relay protons (Fig. 13.5b). They estimated a proton conduction energy
barrier of *25 kcal/mol. The energy barrier for histidine side chain reorientation is
[ 14 kcal/mol [59]. The proton hopping energy barrier through a continuous
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water wire is in the range of 7–10 kcal/mol [51]. These energy values suggest that
the proton relay conduction mechanism was likely at play in the Hu et al.’s study.

Sharma et al.’s study [31] suggested that the His-Trp quartet changed its
conformations between three states, namely the ‘‘histidine-locked state’’, the
‘‘activated state’’, and the ‘‘conducting state’’. Through the transitions among these
three states, protons were relayed from the extracellular side to the cytoplasmic
side of the channel (Fig. 13.5d). At physiological pH, one proton was believed to
be shared between two adjacent histidine residues and the channel was locked by
two His-HisH+ dimers (Fig. 13.5c) [31, 60]. In the Sharma et al.’s proton con-
duction model, at low pHout, one hydronium ion approaches the Nd1 atom of one of

Fig. 13.5 Details of the ‘‘proton relay’’ model. Panel a shows the conformations of the His37
tetrad under neutral pH in Hu et al.’s model, whereas panel c is for Sharma et al.’ model. In Hu
et al.’s model, the four histidine residues pack tightly in an edge to face conformation in which
the Ce1–He1 of one histidine interacts with the electron rich imidazole ring of its adjacent histidine
(CH-p interaction). In Sharma et al.’s model, two His-HisH+ dimers are formed by sharing a
hydrogen atom between the Nd1 atom of one histidine residue and the Ne2 atom of the adjacent
His37. Panels b and d show the proton relay process in Hu et al.’s model and Sharma et al.’s
model, respectively. In Hu et al.’s model, much larger side chain conformational changes of
His37 residues are found. In Sharma et al.’s model, one proton is transferred to the Nd1 atom of
one histidine residue and the His-HisH+ dimer dissociates into two monomers in low pH
environment. The His37 and Trp41 residues then change their side chain conformations to release
protons to the cytoplasmic side. Panels a and b are drawn based on Cady et al.’s structure (PDB
ID: 2KQT) [32] and panels c and d are drawn based on Sharma et al.’s structure (PDB ID: 2L0 J)
[31]
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the deprotonated histidine residues from the N-terminal side to break the His-
HisH+ dimer (Fig. 13.5d). The ‘‘histidine locked state’’ is then transitioned to the
‘‘activated state’’. The cation-p interaction between the His37 and Trp41 side
chains stabilizes this ‘‘activated state’’. The Trp41 residues form a gate at the
C-terminal end of the channel. When the Trp41 residues change their conforma-
tions, the ‘‘activated state’’ is transitioned to the ‘‘conducting state’’ where the
cation-p interaction is perturbed and the protons are donated to the water mole-
cules at the C-terminal side of the HxxxW quartet. Unlike Hu et al.’s model where
large conformational changes of the His37 residues are required during proton
conduction, the conversions among the three states in Sharma et al.’s model are
accomplished by small changes of the v2 angles (\45�) of the His37 and Trp41
side chains. The differences of these two models may be attributed to the different
protein chain lengths used in the studies. The C-terminal intracellular helices were
included in Sharma et al.’s experiments, which resulted in a more stable channel
conformation and reduced flexibility of the His37 residues.

The most important differences between these two proton relay models are the
conformations of His37 residues and how the extra protons are stored in the
vicinity of His37 under different pH values. In Hu et al.’s model, the protons are
stored in the water molecules interacting with the His37 residues under natural pH
values and His37’s undergo extensive conformational changes to relay them from
one side of the channel to another. In Sharma et al.’s model, the protons are stored
in the channel by the His-HisH+ dimers and relatively smaller conformational
changes of the His37 residues are necessary in proton conduction. Both models
have extensive experimental and theoretical supports, which have been reviewed
carefully in two recent reviews [15, 16].

13.4.4 Effects of Mutations on Proton Conduction

Table 13.1 summarizes several single amino acid mutations of the M2 channel and
their effects on the proton conduction properties. It is generally believed that
mutations that increase the pore size would allow easier conduction of protons
(either through a continuous water wire or proton transfer via His37 protonation
state and conformational change) through the channel, and vice versa. For
example, substitution of the Val27 residue with the smaller alanine largely abol-
ishes the N-terminal gate, allowing easier entry of water molecules and pore
hydration, hence accelerates proton conduction [5, 61]. On the other hand,
mutations that decrease the pore size such as V27T, G34E, A30T, and A30P
interfere with pore hydration and slow down proton conduction (Table 13.1). The
Ser31 residue was often observed to be facing the pore, and its mutation into the
hydrophobic alanine was believed to cause poor pore hydration and decreased
proton conduction [5, 61]. However, the Ser31 to asparagine mutation has shown
some conflicting proton conduction rates. Based on the sNMR structure (PDB ID:
2RLF), the Ser31 residue lies in between two a helices, and its mutation into larger
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asparagine would increase pore size and consequently increase the proton con-
duction rate. In contrast, the Ser31 residue faces the pore in the crystal structure
(PDB ID: 3C9 J) and mutation into asparagine would decrease the pore size and
the proton conduction rate. Holsinger et al. [5] found that the proton conduction
rate of the S31 N mutant channel was nearly the same as that of the wild-type
channel at an environmental pH of 6.2. Therefore, the effects of the S31 N
mutation on the proton conduction in the M2 channel remain to be fully under-
stood. The Asp44 residues form hydrogen bonds with several water molecules that
may accept protons at the C-terminus of the channel. Replacing Asp44 with the
hydrophobic alanine causes an increase of the energy barrier for proton exit and
hence decreases the proton conduction rate [27] (Table 13.1). Other mutations
may also exist that could affect the conformations of the His37 and Trp41 residues,
which would lead to changes in the proton conduction rate.

13.5 Conclusions

The M2 proton channel in the influenza viral envelop has a relatively simple
molecular structure, but exhibits a wide range of structural and functional prop-
erties due to the flexibility of its transmembrane domain. Due to its crucial
physiological role in the viral infection and replication, it has been used as a target
for anti-influenza drugs. However, its structural flexibility led to difficulties and
controversies in understanding the drug inhibition mechanism and the proton
conduction mechanism.

At present, two drug binding sites are believed to co-exist in the channel pore
and on the protein surface, respectively. Extensive computational and experi-
mental studies showed that, drug binding in the channel pore is more stable than
binding on the protein surface, and therefore, the pore binding site is the phar-
macologically relevant site.

The adamantane-based M2 inhibitors have lost their channel inhibition efficacy
due to naturally occurring drug resistant mutations, among which the S31 N
mutant is the most dominant one. Our MD simulations found significant changes
of the channel pore radii and the water structures in the channel pore of the mutant
proteins. We also calculated the binding free energies of amantadine with the
V27A and S31 N mutants, and found that, the hydrophobic interactions between
the inhibitor and the Val27 side chains are either abolished or shielded. The
weakened hydrophobic interactions between the drug and the protein may be
responsible for the observed drug resistance.

Two proton conduction models have been proposed and they are the ‘‘water
wire’’ model and the ‘‘proton relay’’ model. The ‘‘proton relay’’ model is gaining
more support in recent studies. However, there are still extensive debates regarding
the details of the proton relay process, mainly because the conformations of the
His37 and Trp41 residues under different pH values are yet to be fully investigated
and understood.
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In summary, environmental conditions and the intrinsic protein flexibility affect
the structures and functions of the M2 protein. Such factors may also play
important roles in other membrane proteins.
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Chapter 14
Exploring the Ligand-Protein Networks
in Traditional Chinese Medicine: Current
Databases, Methods and Applications

Mingzhu Zhao and Dongqing Wei

Abstract While the concept of ‘‘single component–single target’’ in drug
discovery seems to have come to an end, ‘‘Multi-component–multi-target’’ is
considered to be another promising way out in this field. The Traditional Chinese
Medicine (TCM), which has thousands of years’ clinical application among China
and other Asian countries, is the pioneer of the ‘‘Multi-component–multi-target’’
and network pharmacology. Hundreds of different components in a TCM pre-
scription can cure the diseases or relieve the patients by modulating the network of
potential therapeutic targets. Although there is no doubt of the efficacy, it is
difficult to elucidate convincing underlying mechanism of TCM due to its complex
composition and unclear pharmacology. Without thorough investigation of its
potential targets and side effects, TCM is not able to generate large-scale medicinal
benefits, especially in the days when scientific reductionism and quantification are
dominant. The use of ligand-protein networks has been gaining significant value in
the history of drug discovery while its application in TCM is still in its early stage.
This article firstly surveys TCM databases for virtual screening that have been
greatly expanded in size and data diversity in recent years. On that basis, different
screening methods and strategies for identifying active ingredients and targets of
TCM are outlined based on the amount of network information available, both on
sides of ligand bioactivity and the protein structures. Furthermore, applications of
successful in silico target identification attempts are discussed in details along with
experiments in exploring the ligand-protein networks of TCM. Finally, it will be
concluded that the prospective application of ligand-protein networks can be used
not only to predict protein targets of a small molecule, but also to explore the mode
of action of TCM.
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14.1 Introduction

Drug discovery was once an empirical process when the effect of the medicine was
purely based on phenotype readout, while the mode of action of drug molecules
remained unknown. Later, reductionists began to research on the molecular
mechanism of the drug-target interactions, believing that the drug is like a magic
bullet towards the functioning targets [1]. This means a drug takes action on the
disease by interacting with one specific therapeutic target. The idea of each drug
being like a key (or ligand) matching each ‘lock’ (or protein) has guided the
modern drug discovery practice for the last several decades. However, in the recent
years, more and more evidence has shown that many drugs exert their activities by
modulating multi-targets [2–4]. Besides, some drugs interact with anti-targets and
induce strong side effects [5, 6]. Therefore, it is inappropriate to stick to the
paradigm that drug interact with only one target. How to modulate a set of targets
to achieve efficacy, while avoiding others to reduce the risk of side effects remains
a central challenging task for pharmaceutical industry.

The Traditional Chinese Medicine (TCM), which has been widely used in
China as well as other Asian countries for a long history, is considered to be the
pioneer of the ‘‘Multi-component—multi-target’’ pharmacology [7, 8]. Thousands
of years’ clinic practices in TCM have accumulated a considerable number of
formulae that exhibit reliable in vivo efficacy and safety. Based on the method-
ology of holism, hundreds of different components in a TCM prescription can cure
the diseases or relieve the patients by modulating a serial of potential therapeutic
targets [9].

In recent years, great efforts have been made on modernization of TCM, most
on identification of effective ingredients and ligands in TCM formulae and func-
tioning targets [10, 11]. Several databases of TCM formulae, ingredients and
compounds with chemical structures have been established such as Traditional
Chinese Medicine Database (TCMD) [12]. However, the molecular mechanisms
responsible for their therapeutic effectiveness are still unclear. On one hand,
experimental validation of new drug-target interactions still remains very limiting
and expensive, and very few new drugs and targets are identified as clinical
applications every year [13, 14]. On the other hand, the complex composition and
polypharmacology of TCM make it even harder to conduct a full set of experi-
ments between compounds and targets and elucidate the multi-target mode of
action from the holistic view on the biological network level.

On the contrary, in silico methods can predict a large number of new drug-
target interactions, construct the drug-target networks, and explore the functional
mechanism underlying the multi-component drug combinations at the molecular
level. In the present stage, there have already been successfully applications in
interpreting the action mechanism of TCM from the perspective of drug-target
networks, although the quantity is limited. Compared with the huge amounts of
TCM formulae and components, only a small portion of drug-target pairs have
been validated by the laborious and costly biochemical experiments. This
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motivates the needs for constructing models that could predict genuine interacting
pairs between ligands and targets, based on the existing small number of known
ligand-target bindings.

In this article, we firstly investigate TCM databases for in silico methods that
have been greatly expanded in size and data diversity in recent years. On that
basis, different screening methods and strategies for identifying active ingredients
and targets of TCM are outlined based on the amount of information available,
both on sides of ligand bioactivity and the protein structures. Finally, successful
applications in this area have been summarized and reviewed, including experi-
mental and computational examples. Learning from the methods in modern
western medicine (WM), different computing models and strategies can be used to
confirm the effective components and related targets in TCM in order to build the
ligand-target networks. One of the research directions of the modernization of
TCM is to clarify the mode of action of TCM based on ligand-protein networks.

14.2 Databases for TCM

Data availability is the first consideration before any virtual screening or data
mining task could be undertaken. The TCM databases can be classified in
accordance to several categories, namely formulae, herbs, and compounds. The
formula of TCM is a combination of herbs for treating a disease, while compounds
are the bioactive molecules within herbs. In this section, we have summarized a
list of databases for TCM herbs, formulations and compounds, as shown in
Table 14.1.

The elementary units of TCM databases are compounds, the bioactive com-
ponents that exert efficacy through binding to therapeutic targets. Most of the
compounds in TCM databases have two-dimensional structure, while some of
them have three-dimensional structures deduced by force filed. In most TCM
databases, the information of both herbs and compounds are collected while some
even have formulae information as well.

The Traditional Chinese Medicine Database (TCMD) contains 23,033 chemical
constituents and over 6,760 herbs that mainly come from Yan et al. [12]. The
query keywords for the database include molecular formula, substructure, botan-
ical identity, CAS number, pharmacological activity and traditional indications.
Only a small proportion of herbs in TCMD have full coverage of compounds while
most have partial coverage. Chinese Herb Constituents Database (CHCD) contains
information on 8,264 compounds derived from 240 commonly used herbs with
both botanical and Chinese pinyin names, the part of the herbs that contain the
compounds, pharmacological and toxicological information, and other useful
information [15]. Qiao et al. [16] have developed 3D structural database of bio-
chemical components which covers 10,564 constituents from 2,073 herbs with 3D
structures built and optimized using the MMFF94 force field [17]. This database
uses MySQL as the data engine and contains detailed information such as basic
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molecular properties, optimized 3D structures, herb origin and clinical effects. The
TCM Database@Taiwan was reported to be the world’s largest traditional Chinese
medicine database. The web-based database contains more than 20,000 pure
compounds isolated from 453 TCM herbs [18]. Both simple and advanced query
methods are acceptable in terms of molecular properties, substructures, TCM
ingredients and TCM classifications.

In addition to herbs and compounds, Traditional Chinese Medicine Information
Database (TCM-ID) [19], TCM Drugs Information System [20], and Compre-
hensive Herbal Medicine Information System for Cancer (CHMIS-C) [21] also
collect the information of TCM formulae. TCM-ID is developed by Zhejiang
University together with National University of Singapore on all aspects of TCM

Table 14.1 Basic information for main TCM databases

Database Description ULR or References

Traditional Chinese Medicine
Database (TCMD)

6,760 herbs, 23,033 compounds [12]

Chinese Herb Constituents
Database (CHCD)

240 herbs, 8,264 compounds [15]

3D structural database of
biochemical components

2,073 herbs, 10,564 compounds [16]

TCM Database@Taiwan 453 herbs, 20,000 compounds [18]

Traditional Chinese Medicine
Information Database (TCM-
ID)

1,197 formulae, 1,313 herbs,
*9,000 compounds

[19]

TCM Drugs Information
System

1,712 formulae, 2,738 herbs,
16,500 compounds, 868
dietotherapy prescription

[20]

Comprehensive Herbal
Medicine Information System
for Cancer (CHMIS)-C

203 formulae, 900 herbs, 8,500
compounds

[21]

China Natural Products
Database (CNPD)

45,055 compounds [22]

Marine Natural Products
Database (MNPD)

8,078 compounds, 3,200 with
bioactivity data

[23]

Bioactive Plant Compounds
Database (BPCD)

2,794 compounds [15]

Acupuncture.com.au TCM formulations http://www.
acupuncture.com.au/
education/herbs/herbs.
html

Dictionary of Chinese Herbs TCM formulae, toxicity and side
effects

http://
alternativehealing.org/
Chinese herbs dictio-
nary.htm

Plants For a Future Herb medical usage and
potential side effects

http://www.pfaf.org
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herbs. TCM-ID currently takes in 1197 TCM formulae, 1,313 herbs and around
9,000 compounds. It covers *4,000 disease conditions and more than half of the
compounds have valid 3D structures. The data are collected from creditable TCM
books as well as Journals and the records can be retried by different sets of query
keywords. TCM Drugs Information System based on networks of five large dat-
abases has also been developed [20]. It includes information of 1,712 formulae,
2,738 herbs, 16,500 compounds, 868 dietotherapy prescriptions from the inte-
gration of Chinese herb database, Chinese patent medicine database, effective
components database of Chinese herbs, Chinese medical dietotherapy prescription
database, and Chinese medical recipe database. Herbal Medicine Information
System for Cancer (CHMIS-C) integrates the information of 203 formulae that are
commonly used to treat cancer clinically as well as 900 herbs and 8,500 com-
pounds. The compounds in this database are linked to the entries in National
Cancer Institute’s database and drugs approved by the U.S. Food and Drug
Administration.

The China Natural Products Database (CNPD) [22], Marine Natural Products
Database (MNPD) [23], and Bioactive Plant Compounds Database (BPCD) [15]
only focus on the structures of the compounds in TCM and do not contain pertinent
information on formulae and herbs. CNPD is built to meet the needs for drug
discovery using natural products including TCM and collects the 2D and 3D
structures of more than 45,055 compounds. MNPD has a collection of 8,078
compounds from 10,000 marine natural products, of which 3,200 have bioactivity
data. BPCD contains information on 2,794 active compounds against 78 molecular
targets, as well as the subunits of the target structures to which the compounds
bind.

There are other databases from the internet focusing only on the clinical effi-
cacy or side effects of formulae and herbs, without details of compounds. Acu-
puncture.com.au collects the TCM formulae according to their clinical action and
efficacy. Both the English and Chinese names of TCM herbs are recorded to
facilitate studies using both traditional and modern methods. The Dictionary of
Chinese Herbs contains information on both clinical usage and side effects of the
TCM herbs. It also includes the samples of TCM formulae for treating diseases
such as cancer, dengue fever, diabetes, and hepatitis B. Besides, the compatibility
of TCM herbs and certain drugs are listed to provide biochemical explanation for
drug designers. The Plants for a Future database allows querying of herbs with
special medicinal usage, and also lists the potential side effects, medical usage, and
physical characteristics.

14.3 In Silico Methods for Ligand-Protein Interactions

The computational methods for drug discovery based on ligand-protein networks
have been increasingly developed and applied in the area of TCM and other drugs
in recent years [7, 8]. These methods mainly fall into the territories of ligand-based
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approach, target-based approach, and machine learning. Of course, these methods
of predicting ligand-protein interactions are not isolated, and researchers often use
them jointly to achieve better computational results, which can be easily shown in
the following case studies.

14.3.1 Ligand-Based Approach

The ligand-based approach, also known as the chemical approach, is to reorganize
pharmacological characteristics and protein associations, by means of ligand
similarities rather than genomic space such as sequence, structural or pathway
information. The basic assumption for ligand-based approach is that regardless that
similar chemical structures may interact with proteins in different ways, similar
ligands tend to bind to similar targets more than not [24]. The core of ligand-based
approach is the calculation of chemical similarities, with the help of chemical
descriptors. Before this approach can work, one need to answer how to describe
molecular structures in a way that computers can recognize. Currently there are
plenty of molecular descriptors to indicate the similarity of two different ligands.

14.3.1.1 Chemical Descriptors

In order to predict the ligand-target interactions, prior knowledge should be
acquired in terms of the ligand information for the target [25]. By comparing the
chemical structures of the new ligands against the know ligand set of a targeting
protein, a threshold is usually set to decide whether the new ligand and the tar-
geting protein can interact.

The most commonly used structure representation is the topological fingerprints
that encode the sub-structural information [26]. In these fingerprints, the atom-
centred feature pairs have also been proven to be very successful in many appli-
cations of virtual screening. The widely used samples of fingerprints are 2D
Daylight [25] and Scitegic extended connectivity fingerprints [27] with atom types
and the bond connectivity among them.

Although 2D fingerprints have been proven to be extremely robust and reliable
in many chemoinformatics approaches, they seem hard to credit to be informative,
therefore, consistent efforts have been made to develop more comprehensive three-
dimensional fingerprints [28, 29]. 3D fingerprints encode the 3D geometry or
scaffolds of molecular structures. One method to encode a compound is based on
geometrical configuration of molecular structures. A common methodology in
descriptors Flexible is the superposition of molecules onto one or multiple con-
formations of a reference bioactive ligand [30–32].

There are other topological descriptors based on molecular features that have
been developed to compare ligand profiles. The SHED (SHannon Entropy
Descriptors) is derived from distributions of atom-centered pairs and calculates the
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variability in a feature-pair distribution [33]. Gregori-Puigjane then used the SHED
descriptor to in silico profiling of 767 drugs against 684 related targets and
revealed the promiscuity of the drugs targeting aminergic G protein-coupled
receptors (GPCRs) [34]. On the other hand, RED (Renyi entropy descriptors) is
another topological descriptor that measures the molecular features generalized
Renyi Entropy. The scaffolds can also be used to predict the bioactivity of the
compounds on target sets. In this particular research, 24,000 unique scaffolds were
extracted from 458 target sets and the external test shows that to the high-priority
virtual scaffolds have the predictive activities [35].

Also in the area of chemicogeneric-based predictive methods to screen ligand-
target interactions Weil proposed a novel fingerprint encoding both ligand and target
properties. The ligand properties are represented by common descriptors, while the
cavity information of the target is incorporated by a fixed length bit string. This
fingerprint shows preference to support vector machine (SVM) classifiers and the
resulting precision is as high as 90 % in separating true and false pairs [36].

14.3.1.2 Similarity Coefficient

The most common way to compare molecular fingerprints for similarity analysis is
by means of Tanimoto Coefficient (TC, also known as Jaccard index) [37–39],
which compares the number of bits shared between the two fingerprints to all
possible matched bits between them,

TC ¼ NAB= NA þ NB�NABð Þ

where NA is number of features (ON bits) in compound A, NB is the number of
features (ON bits) in compound B, and NAB is the number of features (ON bits)
common to both A and B. If the Tanimoto Coefficient of two molecules is larger
than 0.85, then they are considered to have a higher structurally similarity [40].

14.3.1.3 Ligand-Based Predictions

One advantage of the ligand-based similarity searching approach is that it does not
need alignment between multiple molecules. The ligand-based approach describes
a protein by the chemicgenomic space of its ligands. With the ligand-based
descriptions of a protein, one can predict which targets are likely to be hit by a
ligand, given its known structure.

In the area of ligand-based virtual screening, researchers have tried to evaluate
whether novel ligand-target pairs could be identified, based on the chemical
knowledge of ligands and ligand-target interactions. G protein-coupled receptors
(GPCRs) are a family of effective drug targets with significant therapeutic value.
Many researchers have built SVM models as well as substructural analysis to
describe GPCRs from the perspective of ligand chemicogenerics [41]. Especially,
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the de-orphanization of receptors without known ligands was employed using the
ligands of the related receptors. For 93 % of the orphan receptors, the prediction
results are better than random, while for 35 % the performance was good.

A powerful ligand-based prediction method based on features of protein ligands
is the Similarity Ensemble Approach (SEA), which was originally used to inves-
tigate protein similarity based on chemical similarity between their ligand sets with
the main idea that similar ligands might tend to share same targets [3]. SEA cal-
culates Z-score and E-value by summing up the TC over a threshold between two
ligand sets as indicators to evaluate the possible interaction between two ligand sets
in a way similar to BLAST. The similarity threshold for TC is chosen in a way that
the Z-score best observes the extreme value distribution (EVD). This method was
then applied to predict new molecular targets for known drugs [42]. The Author
investigated 3000 FDA-approved drugs against hundreds of targets and found 23
new cases of drug-target interactions. By in vitro experiments, five of them were
validated to be positive with affinities less than 100 nM. Besides Keiser’s research,
SEA was also used to investigate the off-target effect of the some commercial
available drugs against the target protein farnesyltransferase (PFTase) [43] and two
drug loratadine and miconazole were found to be able to bind to PFTase.

The pharmacophore model is perhaps the most widely used methods that make
use of the 3D structure representations of molecules [44]. A pharmacophore is
defined to be the molecular features pertinent to bioactivity aligned in three
dimensional spaces, including hydrogen bonding, charge transfer, electrostatic and
hydrophobic interactions [45]. The underlying methodology of pharmacophore
model was defined by different researchers [46]. Recently, this model was suc-
cessfully applied in mesangial cell proliferation inhibitor discovery and virtual
screening of potential ligands for many targets such as HIV integrase and CCR5
antagonist [47–50]. In 3D pharmacophore model, the molecular spatial features
and volume constraints represent the intrinsic interactions of small bioactive
ligands with protein receptors. Wolber tried to extract ligand pharmacophores
from protein cavities based on a define set of six types of chemical structures [51],
and develop the algorithms for ligand extraction and interpretation as well as
pharmacophore creation for multiple targets.

Pharmacophore screening only considers those compounds who are direct
mimics of the ligand from which the pharmacophore has been generated and may
neglect the other positive binding modes as well. In fact, the pharmacophore
model limits to only one mode of action for small molecules [52]. However, this
limitation can be conquered by combining multiple pharmacophore models with
different modes of action. This method is called Virtual Parallel Screening and has
been successfully applied to the identification of Natural Products’ activity [52,
53]. In such work, The PDB-based pharmacophores was firstly used for target
fishing for TCM constituents. Results shown 16 constituents of Ruta graveolens
were screened against a database of pharmacophores and good congruity was
found between the potential predictions and their corresponding IC50 values.

Quantitative structure-activity relationships (QSAR) was first established in
early 1960s when computational means were used to quantitatively describe
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pharmacodynamics and pharmacokinetic effects in biology systems and the
chemical structures of compounds [54]. Generally speaking, any mathematical
model or statistical method that builds relationship between molecular structures
and biological properties may be considered as QSAR. The idea of QSAR is easy
while training and application of QSAR is much difficult since similar structures
may interact with totally different targets due to the diversity and complexity of
biology [55]. Furthermore, the intrinsic noise in data to describe both the chemical
space and biological effects brings much trouble in accurate modeling [56].
Despite these difficulties, in case robust biological data is available and few out-
liers coexist, thousands of QSAR models have been generated and stored in related
database in the past 40 years [57, 58].

14.3.2 Target-Based Approach

The target-based approach, predicts ligand-target interactions by the structural
information of protein targets as well as ligands. The target-based approach
depends highly on the availability of the structural information of targets, either
from wet experiments or numerical simulations [59, 60]. On one hand, these
methods aim to predict the conformation and orientation of the ligand within the
protein cavity. On the other hand, the binding affinity of the ligand and protein is
simulated with scoring functions. The main target-based approach is docking,
which predicts the preferred orientation of one molecule to another when they
bound to each other to form a stable complex [61]. Usually, docking is imple-
mented to search appropriate ligands for known targets with the lowest fitting
energy. On the contrary, inverse docking seeks to fish targets from known ligands
‘from scratch’ and also plays an important role in virtual screening.

Despite more than 20 years’ research, docking and scoring ligands with pro-
teins are still challenging processes and the performance is highly dependent on
targets [62–64]. Docking cannot be applied to proteins whose 3D structures are not
identified [65]. The high-resolution structure of the protein target is preferably
obtained from X-ray crystallography and NMR spectroscopy. However, approxi-
mately half of the currently approved drugs bind to the membrane proteins, whose
structures are extremely difficult to be acquired experimentally. Alternatively,
homology modeling is usually adopted to build a putative geometry and docking
cavity [66]. Besides, threading and ab initio structure prediction together with
molecular dynamics (MD) and Monte Carlo simulations are utilized to predict the
target structures. However, the fidelity of homology modeling, threading and
ab initio structures is still questioned by many researchers. Other important
challenges of docking are the dynamic behavior, the large number of degrees of
freedom and the complexity of the potential energy surface. This confines docking
to be a low throughput method on a very small scale, which fails to predict
interactions on the level of millions of ligands and targets.
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To alleviate the situation that docking depends on the nature of targets, multiple
active site has been used to compensate the ligand-dependent biases and the
Consensus scoring has been also suggested to reduce the false positives in virtual
screening [67]. The accuracy of scoring functions still remain the main weakness
of docking approach [68]. Also, docking is starting to adopt the conformation
information derived from protein-bound ligands as a strategy to overcome the
limitations of current scoring functions and can predict the orientation of the
ligands into the protein cavity [69]. Besides, molecular dynamics-assisted docking
method has been applied in virtual screening against the individual targets in HIV
to search for multi-target drug-like agents and KNI-765 was identified to be
potential inhibitors [70].

Regardless of the all the limitations, virtual screening based on docking and
inverse docking has been successfully utilized to identify and predict novel bio-
active compounds in the past 10 years. Using the combinatorial small molecule
growth algorithm, Grzybowski applied the docking to the design of picomolar
ligands for the human carbonic anhydrase II [71, 72]. Inverse docking was firstly
developed to identify multiple proteins to which a small molecule can bind or
weakly bind. In some cases, the bioactivity of the TCM compounds is well rec-
ognized, while the underlying mode of action is not very clear. In 2001, INV-
DOCK [73] has been developed to search for the targets for TCM constitutes, and
employed a database of protein cavities derived from PDB entries. The results of
inverse docking involving multiple-conformer shape-matching alignment showed
that 50 % of the computer-predicted potential protein targets were implicated or
experimentally validated. The same approach was used to determine potential drug
toxicity and side effects in early stages of drug development and results showed
that 83 % of the experimentally known toxicity and side effects were predicted
[74]. Zahler tried the inverse docking method to find potential kinase targets for
three indirubin derivatives and examined 84 unique protein kinases in total [75].
Recently, one indirubin compound was found to possess therapeutic effects against
myelogenous leukemia [76].

Docking is usually used as the second step to further validate the ligand-target
binding features after the first round of virtual screening by other ligand-based
approaches [77–80]. Wei applied the docking together with similarity search and
molecular simulation to search for Anti-SAS drugs [81], find the binding mech-
anism of H5N1 Influenza Virus with ligands [82], detect possible drug leads for
Alzheimer’s Disease [83, 84] and identify the binding sites for several novel amide
derivatives in the nicotinic acetylcholine receptors (AChRs) [85].

14.3.3 Machine Learning

The ligand-based approach and target-based approach predict potential ligand-
target bindings by means of chemical similarity and structural information.
Machine learning is a high-throughput method of artificial intelligence that enables

236 M. Zhao and D. Wei



computers to learn from data of knowns, including ligand chemistry, structural
information and ligand-protein networks and to predict unknowns, such as new
drugs, targets and drug-target pairs. This method gains stability and credibility,
and has strong ability for classifications among large numbers of ligand-protein
pairs that otherwise would be impossible to be connected based on chemical
similarity alone.

Machine learning is to exact features from data automatically by computers
[86]. Basically, machine learning can be categorized into unsupervised learning
and supervised learning. In unsupervised learning, the objective is to extract and
conjecture patterns and interactions among a series of input variables and there is
no outcome to train the input variables. The common approaches in unsupervised
learning are clustering, data compression and outlier detection, such as principal
component based methods [87]. In supervised learning, the objective is to predict
the value of an outcome variable based on the input variables [88]. The data is
commonly divided into training and validation datasets, which are used in turn to
finalize a robust model. The variable the supervised model predicts is typically the
binding probability of ligands and targets.

Nidhi trained a multiple-category Laplacian-modified naive Bayesian model
from 964 target classes in WOMBAT and predict the top three potential targets for
compounds in MDDR with or without known targets information [89]. On aver-
age, the prediction accuracy with compounds with known targets is 77 %.
Bayesian classifier was usually used in early prediction, while the Winnow
algorithm was reported more recently [90]. With the same training datasets, the
prediction result is slightly different with the Multiple-category laplacian. This
indicates that it is necessary to apply different prediction methods and make
comparisons even on the same training dataset.

The Gaussian interaction profile kernels, which represented the drug-target
interactions, were used in Regularized Least Squares in combined with chemical
and genomic space to achieve the prediction with precision-recall curve (AUPR)
up to 92.7 [91]. Based on simple physicochemical properties extracted from
protein sequences, the potential drug targets were related to the existing ones by
several models [92]. The supervised bipartite graph inference is used to represent
the drug interaction networks and can be solely be able to predict new interactions,
or together with chemical and genomic space [93, 94]. Besides, semi-supervised
learning method (Laplacian regularized least square FLapRLS) was also explored
to effectively predict the results by integration of genomic and chemical space
[95].

The Support Vector Machine (SVM) is a powerful classification tool in which
appropriate kernel functions are selected to map the data space into higher
dimensional space without increasing the computational difficulties. The perfor-
mance of SVM is usually stronger than other probability based models. Wale and
Karypis [96] made comparisons between a Bayes Classifier together with binary
SVM, cascaded SVM, a ranking-based SVM, Ranking Perception and the com-
bination of SVM and Ranking Perception in terms of the ability to predict the
targets for small compound, and found that the cascaded SVM has better
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performance than the Bayes models and the combination of SVM and Ranking
Perceptron has the best performance of all. Zhao et al. developed a SVM model
based on the chemical-protein interactions from STITCH [97] using new features
from ligand chemical space and interaction networks. Four new D-amino acid
oxidase inhibitors were successfully predicted by this model and validate by wet
experiments, and one may have a new application in therapy of psychiatric dis-
orders other than being an antineoplastic agent [98].

Random forest, a form of multiple decision trees, recently has been applied to
screen TCM database for potential inhibitors against several therapeutically
important targets [99]. With the use of binding information from another database,
random forest was performed to find multiple hits out of 8,264 compounds in 240
Chinese Herbs on an unbalanced dataset. Among all the predictions, 83 herb-target
predictions were proved by literature search. Three Potential inhibitors of the
human, aromatase enzyme (CYP19) myricetin, liquiritigenin and gossypetin, were
screened by Random Forest as well as molecular docking studies. The virtual
screening results were subsequently confirmed experimentally by in vitro assay
[100].

Linear regression models have also been applied to predict ligand-target pairs.
Zhao developed a computational framework, drugCIPHER to infer drug-target
interactions based on pharmacology and genomic space [101]. In this framework,
three linear regress models were created to relate drug therapeutic similarity,
chemical similarity and target similarity on the basis of a protein-protein inter-
action network. The drugCIPHER achieved the performance with AUC of 0.988 in
the training set and 0.935 in the test set and 501 new drug-target interactions were
found, implying potential novel applications or side effects.

Although machine learning has strong performance in classification of protein-
ligand interactions, its shortcoming is obvious. The process of some machine
learning methods is implicit, like a black box, from which we cannot have an
intuitive biological or physical relevance between proteins and ligands. SVM maps
the classification problem into higher space, and acquires excellent performance
with high computational efficiency. The tradeoff is that it can hardly explicitly
create relationship between a protein and a ligand. Therefore, even with a very
strong prediction tool, we can hardly move forward with innovations in theory of
protein-ligand interactions.

14.3.4 Case Studies

14.3.4.1 Inhibiting Biological Transmethylation Reaction

Wei et al. focused on the discovery of potential inhibitors against S-adenosyl-
homocysteine hydrolase (SAH), a key reactant in duplication of virus life cycle. A
similarity search in Traditional Chinese Medicine Database was performed and 17
hits with high similarity were retrieved. Followed by docking, they proposed the
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potential inhibitors by comparing best docked solutions and possible modification
for the best inhibitors [79].

14.3.4.2 New D-Amino Acid Oxidase Inhibitor Discovery

Zhao et al. have developed a support vector machine (SVM) model based on the
chemical-protein interactions from STITCH using new features from ligand
chemical space and interaction networks. The model is used to search for the
potential D-amino acid oxidase inhibitors from STITCH database and the predicted
results are finally validated by wet experiments. Out of the ten candidates
obtained, seven D-amino acid oxidase inhibitors have been verified, in which four
are newly found, and one may have a new application in therapy of psychiatric
disorders other than being an antineoplastic agent [98].

14.3.4.3 Drug Discovery for AIDs

From docking experiments for more than 9,000 compounds extracted from various
Chinese medicines, Gao found that the compound agaritine distinguished itself
from all the others in binding to the HIV protease with the most favorable free
energy. It has been observed thru an extensive docking study that some of agaritine
derivatives had markedly stronger binding interaction with the HIV protease than
agaritine, suggesting that these derivatives might be good candidates for devel-
oping drugs for AIDS therapy [77].

14.3.4.4 Treating Alzheimer’s Disease

To find new drug candidates for treating Alzheimer’s disease, Zheng used the
similarity search technique and GTS-21 as a template to search the Traditional
Chinese Medicines Database. Then those molecules with higher score were
selected for docking studies against the alpha7 nicotinic acetylcholine receptor.
Though an in-depth structural analysis, it was found Mol 7,235 might be a
promising candidate and need further experimental validation before it becomes an
effective drug for treating Alzheimer’s disease [78].

14.4 Applications of Ligand-Protein Networks in TCM
Pharmacology

Network-based pharmacology explores the possibility to develop a systematic and
holistic understanding of the mode of actions of multi-drugs by considering their
multi-targets in the context of molecular networks. It has also been suggested that
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relatively weak patterns of inhibition of many targets may prove more satisfactory
than the highly potent single target inhibitors routinely developed in the course of
a drug discovery program [102]. In drug discovery, the use of networks incor-
porating multiple components and the corresponding multiple targets, is one of the
driving force to propel the current development in TCM pharmacology. Several
successful examples have been accumulated both in experiments and in silico
analysis, as shown in Table 14.2.

14.4.1 Experimental Study

Many bioactive compounds in TCM herbs may have synergetic effort with many
non-TCM drugs in markets. Tannin, a component derived from a TCM, can be
combined with HIV triple cocktail therapy to yield everlasting efforts in preventing
HIV virus propagation. The underlying mechanism is that Tannin suppresses the
activity of HIV-1 reverse transcriptase, protease and intergrase and cut off virus
fusion and virus entry into the host cells [103]. Recently, Li proposed a new idea to
induce immunetolerance in T cells by using matrine, a chemical derived from the
root of Sophora flavescens AIT, targeting both the PKCy pathway and the NFAT
pathway in cocktail preparations for treating AIDS [104].

Lam et al. recently showed in murine colon 38 allograft model that a formula
containing 4 herbs (PHY906) has synergetic effect on reducing side effects and
enhancing efficacy induced by CPT-11, a power anticancer agent with strong
toxicity. The reason is that PHY906 can repair the intestinal epithelium by
facilitating the intestinal progenitor or stem cells and several Wnt signaling
components and suppress a batch of inflammatory responses like factor kB,
cyclooxygenase-2, and inducible nitric oxide synthase [105].

Multi-component and multi-target interactions are the main mode of action for
TCM formula, which exerts synergetic effects as a whole preparation rather than
the primary active compound in TCM alone. Xie et al. demonstrated that other
components in ‘‘Qingfu Guanjieshu’’ (QFGJS) could effectively influence the
pharmacokinetic behavior and metabolic profile of paeonol in rats, indicating the
synergy of herbal components. This synergy may be the result of enhanced
adsorption of paeonol in the gastrointestinal tract induced by P-glycoprotein-
mediate efflux change [106]. Another similar study, showed that paeoniflorin from
the root of Paeonia lactiflora were markedly enhanced when co-administrated
with sinomenine, the stem of Sinomenium acutum. Sinomenine promotes intestinal
transportation via inhibition of P-glycoprotei, and affect the hydrolysis of paeon-
iflorin via interaction with b-glycosidase [107].

Huang-Lian-Jie-Du-Tang (HLJDT) is a TCM formula with anti-inflammatory
efficacy, but the action mechanism is still not very clear. Zeng et al. investigated
the effects of its component herbs and pure components on eicosanoid generation
and found out the active components and their precise targets on arachidonic acid
(AA) cascade. Results showed that Rhizoma coptidis and Radix scutellariae were
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Table 14.2 Summary of multi-target drugs/preparations with TCM pharmacology based on
ligand-protein networks

Disease Methods and
experiments

Formula, herbs
and components

TCM
pharmacology

References

AIDS Experiments Tannin Tannin suppresses
the activity of HIV-
1 reverse
transcriptase,
protease and
intergrase and cut
off virus fusion and
virus entry into the
host cells

[103]

AIDS Experiments Matrine from the
root of Sophora
flavescens

Matrine is effective
in inducing T cell
anergy by targeting
both the MAPKs
pathway and the
NFAT pathway

[104]

Anti-tumor Experiments PHY906:
Glycyrrhiza
uralensis Fisch
(G), Paeonia
lactiflora Pall (P),
Scutellaria
baicalensis
Georgi (S), and
Ziziphus jujuba
Mill (Z).

PHY906 reduces
CPT-11-induced
gastrointestinal
toxicity in the
treatment of colon
or rectal cancer by
several
mechanisms. It
both repairs the
intestinal
epithelium by
facilitating the
generation of
intestinal
progenitor or stem
cells and several
Wnt signaling
components and
suppresses
inflammatory
responses like
factor kB,
cyclooxygenase-2,
and inducible nitric
oxide. synthase

[105]

Anti-
inflammatory
and analgesic
effects

Experiments Qingfu
Guanjieshu
(QFGJS):
Paeonol and other
components

The
pharmacokinetic
behavior and
metabolites of
paeonol are greatly
promoted by other
components in

[106]

(continued)
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Table 14.2 (continued)

Disease Methods and
experiments

Formula, herbs
and components

TCM
pharmacology

References

QFGJS. This may
be the result of
enhanced
adsorption of
paeonol in the
gastrointestinal
tract by P-
glycoprotein-
mediate efflux
change

Inflammatory
and arthritic
diseases

Experiments Paeoniflorin from
the root of
Paeonia lactiflora
and sinomenine
from the stem of
Sinomenium
acutum

Paeoniflorin is
markedly enhanced
when co-
administrated with
Sinomenine, which
promotes of
intestinal
transportation via
the inhibition of P-
glycoprotein, and
affects the
hydrolysis of
Paeoniflorin via
interaction with b-
glycosidase

[107]

Anti-
inflammatory

Experiments Huang-Lian-Jie-
Du-Tang
(HLJDT):
Rhizoma coptidis
and Radix
scutellariae

Baicalein derived
from Radix
scutellariae showed
significant
inhibitory effect on
5-LO and 15-LO
while coptisine
from Rhizoma
coptidis showed
medium inhibitory
effects on LTA(4)H

[108]

Acute
promyelocytic
leukemia
(APL)

Experiments Realgar-Indigo
naturalis:
tetraarsenic
tetrasulfide (A),
indirubin (I), and
tanshinone IIA
(T)

ATI leads to
ubiquitination/
degradation of
promyelocytic
leukemia (PML)-
retinoic acid
receptor
oncoprotein,
reprogramming of
myeloid
differentiation

[109]

(continued)
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Table 14.2 (continued)

Disease Methods and
experiments

Formula, herbs
and components

TCM
pharmacology

References

regulators, and G1/
G0 arrest in APL
cells by mediating
multiple targets. A
acts as the principal
component of the
formula, whereas T
and I serve as
adjuvant
ingredients

Chronic
myeloid
leukemia
(CML)

Experiments Imatinib (IM) and
arsenic sulfide
[As(4)S(4) (AS)]

AS targets BCR/
ABL through the
ubiquitination of
key lysine residues,
leading to its
proteasomal
degradation,
whereas IM inhibits
the PI3 K/AKT/
mTOR pathway

[110]

Inflammation Pharmacophore-
assisted docking

Twelve examples
of compounds
from CHCD

The screened
compounds target
cyclo-oxygenases 1
& 2 (COX), p38
MAP kinase (p38),
c-Jun terminal-
NH(2) kinase
(JNK) and type 4
cAMP-specific
phosphodiesterase
(PDE4)

[111]

Type II
diabetes
mellitus
(T2DM)

Molecular
docking
(LigandFit),
clustering and
drug-target
network analysis

676 compounds
in eleven herbs
from
Tangminling Pills

Multiple active
components in
Tangminling Pills
interact with
multiple targets.
The 37 targets were
classified into 3
clusters, and
proteins in each
cluster were highly
relevant to each
other. 10 known
compounds were
selected according
to their network
attribute ranking in
drug-target and
drug-drug network

[112]

(continued)
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Table 14.2 (continued)

Disease Methods and
experiments

Formula, herbs
and components

TCM
pharmacology

References

Cardiovascular
disease

Similarity search
and alignment,
docking
(LigandFit)

Xuefu Zhuyu
decoction
(XFZYD): 501
compounds, 489
drug/drug like
compounds

Active components
in XFZYD mainly
target rennin, ACE
and ACE2 in
Renin-Angiotensin.
System (RAS),
which modulates
the cardiovascular
physiological
function

[113]

9 types of
cancer, 5
diseases with
dysfunction,
and 2
cardiovascular
disorders

Distance-based
Mutual
Information
Model (DMIM)

Liu-wei-di-huang
formula (LWDH)
Shan-zhu-yu
(Fructus Corni),
Ze-xie (Rhizoma
Alismatis), Dan-
pi (Cortex
Moutan), Di-
huang (Radix
Rehmaniae), Fu-
ling (Poria
Cocos) and Shan-
yao (Rhizoma
Dioscoreae)

The interactions
between TCM
drugs and disease
genes in cancer
pathways and
neuro-endocrine-
immune pathways
were inferred to
contribute to the
action of LWDH
formula

[114]

Cardiovascular
diseases

Quantitative
composition-
activity
relationship
model (QCAR)
(SVM and linear
regression)

Shenmai, Qi-Xue-
Bing-Zhi-Fang
(QXBZF)

The proportion of
active components
of Shenmai and
QXBZF were
optimized based on
clinical outcome
(collateral and
infarct rate of heart)
using QCAR. The
interactions of
multiple weak
bindings among
different
compounds and
targets may
contribute to the
synergetic effect of
multi-component
drugs

[115, 116]

Anticoagulant Network-based
computational
scheme utilizing
multi-target

Six argatroban
intermediates and
a series of
components from

A ligand can have
impact on multiple
targets based on the
docking scores, and

[117]

(continued)
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Table 14.2 (continued)

Disease Methods and
experiments

Formula, herbs
and components

TCM
pharmacology

References

docking score
(Ligandfit and
AutoDock)

24 TCMs widely
used for cardiac
system diseases

those with highest
target network
efficiency are
regarded as
potential
anticoagulant
agents. Factor Xa
and thrombin are
two critical targets
for anticoagulant
compounds and the
catalytic reactions
they mediate were
recognized as the
most fragile
biological matters
in the human
clotting cascade
system

Alzheimer
disease

Systematical
target network
analysis
framework

Ginkgo biloba,
Huperzia serrata,
Melissa officinalis
and Salvia
officinalis

AD symptoms-
associated
pathways,
inflammation-
associated
pathways, cancer-
associated
pathways, diabetes
mellitus associated
pathways, Ca2þ-
associated
pathways and cell
proliferation
pathways are
densely targeted by
herbal ingredients

[118]

Depression Literature search
and network
analysis

Hyperforin (HP),
hypericin (HY),
pseudohypericin
(PH),
amentoflavone
(AF) and several
flavonoids (FL)
from St. John’s
Wort (SJW)

Active components
in SJW mainly
intervene with
neuroactive ligand-
receptor
interaction, the
calcium signaling
pathway, and the
gap junction related
pathway

[119]

Pertinent targets
include NMDA-
receptor, CRF1

(continued)
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the key herbs responsible for the suppressive effect of HLJDT on eicosanoid
generation. Further experiments on the pure components of HLJDT revealed that
baicalein derived from Radix scutellariae has significant inhibitory effect on 5-LO
and 15-LO while coptisine from Rhizoma coptidis show medium inhibitory effects
on LTA(4)H. Besides, baicalein and coptisine were proved to have synergetic
inhibition on LTB(4) by the rat peritoneal macrophages [108].

A TCM formula, Realgar-Indigo naturalis formula (RIF), was applied to treat
Acute promyelocytic leukemia (APL) and showed a high complete remission (CR
rate) [109]. In RIF, multiple agents within one formula were found to work syn-
ergistically. A small-scale combinational study using Chou and Talalay combi-
nation index method was performed and three main active components of RIF and
six core proteins they targets in mediating the auti-tumor effect were identified.
The main active ingredients of RIF are tetraarsenic tetrasulfide (A), indirubin (I),
and tanshinone IIA (T), from Realgar, Indigo naturalis, and Salvia miltiorrhiza,
respectively. A acts as the principal component of the formula, whereas T and I
serve as adjuvant ingredients. ATI leads to ubiquitination/degradation of

Table 14.2 (continued)

Disease Methods and
experiments

Formula, herbs
and components

TCM
pharmacology

References

receptor, 5-
hydroxytryptamine
receptor 1D,
dopamine receptor
D1, etc

Rheumatoid
arthritis (RA)

Integrative
Platform of TCM
Network
Pharmacology
including
drugCIPHER

Qing-Luo-Yin
(QLY), including
four herbs: Ku-
Shen (Sophora
flavescens), Qing-
Feng-Teng
(Sinomenium
acutum), Huang-
Bai
(Phellodendron
chinensis) and Bi-
Xie (Dioscorea
collettii), which
contain several
groups of
ingredients such
as Saponins and
Alkaloids

The target network
of QLY is involved
in RA-related key
processes including
angiogenesis,
inflammatory
response, and
immune response.
The four herbs in
QLY work in
concert to promote
efficiency and
reduce toxicity.
Specifically, the
synergetic effect of
Ku-Shen (jun herb)
and Qing-Feng-
Teng (chen herb)
may come from the
feedback loop and
compensatory
mechanisms

[120]
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promyelocytic leukemia (PML)-retinoic acid receptor oncoprotein, reprogram-
ming of myeloid differentiation regulators, and G1/G0 arrest in APL cells by
mediating multiple targets. Using multi-omics technologies, Zhang later proved
that combined use of imatinib and arsenic sulfide from toxic herbal remedy exerted
better therapeutic effects in a BCR/ABL-positive mouse model of chronic myeloid
leukemia (CML) than either drug as a single agent. AS targets BCR/ABL through
the ubiquitination of key lysine residues, leading to its proteasomal degradation,
whereas IM inhibits the PI3 K/AKT/mTOR pathway [110].

14.4.2 Computational Framework

To target the complex, multi-factorial diseases more effectively, the network
biology incorporating ligand-protein networks has been applied in multi-target
drug development as well as modernization of traditional Chinese medicine in the
systematic and holistic way. Zhao reviewed the available disease-associated net-
works, drug-associated networks that can be used to assist the drug discovery and
elaborate the network-based TCM pharmacology [119]. Klipp discussed the pos-
sibility to use networks to aid the drug discovery process and focused on networks
and pathways in which the components are related by physical interactions or
biochemical process [121]. Leung investigated the possibility of network-based
intervention for curing system diseases by means of network-based computational
models and using medicinal herbs to develop into new wave of network-based
multi-target drugs. It was concluded that further integration across various ‘omics’
platform and computational tools would accelerate the drug discovery based on
network [122].

Barlow et al. screened among Chinese herbs for compounds that may be active
against 4 targets in inflammation, by means of pharmacophore-assisted docking.
The results showed that the twelve examples of compounds from CHCD inhibit
multiple targets including cyclo-oxygenases 1 & 2 (COX), p38 MAP kinase (p38),
c-Jun terminal-NH(2) kinase (JNK) and type 4 cAMP-specific phosphodiesterase
(PDE4).The distribution of herbs containing the predicted active inhibitors was
studied in regards to 192 Chinese Formulae and it was found that these herbs were
in the formulae that were traditionally used to treat fever, headache and so on
[111].

Many Traditional Chinese Medicines (TCMs) are effective to relieve compli-
cated diseases such as type II diabetes mellitus (T2DM). Gu et al. employed the
molecular docking and network analysis to elucidate the action mechanism of a
medical composition-Tangminling Pills which had clinical efficacy for T2DM. It
was found that multiple active components in Tangminling Pills interact with
multiple targets in the biological network of T2DM. The 37 targets were classified
into 3 clusters, and proteins in each cluster were highly relevant to each other. 10
known compounds were selected according to their network attribute ranking in
drug-target and drug-drug network [112].
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XFZYD, a recipe derives from Wang Q. R. in Qing dynasty, was widely used in
cardiac system disease. From similarity search and alignment, the chemical space of
compounds in XFZYD was found to share a lot of similarities with that of drug/drug-
like ligands set collected from cardiovascular pharmacology while the chemical
pattern in XFZYD are more diverse than drug/drug-like ligands for cardiovascular
pharmacology. Docking protocol between compounds in XFZYD and targets
related to cardiac system disease using LigandFit show that many molecules have
good binding affinity with the targeting enzymes and most have interactions with
more than one single target. The active components in XFZYD mainly target rennin,
ACE and ACE2 in Renin-Angiotensin System (RAS), which modulates the car-
diovascular physiological function. It was proved that promiscuous drugs in TCM
might be more effective for treating cardio system diseases, which tends to result
from multi-target abnormalities, but not from a single defect [113].

A lot of integrative computational tools and models have been developed and
widely used to optimize the combination regimen of multi-components drugs and
elucidating the interactive mechanism among ligand-target networks.

Li et al. built a method called Distance-based Mutual Information Model
(DMIM) to identify useful relationships among herbs in numerous herbal formu-
lae. DMIM combines mutual information entropy and distance between herbs to
score herb interactions and construct herb network. Novel anti-angiogenic herbs,
Vitexicarpin and Timosaponin A-III were discovered to have synergistic effects.
Based on herb network constructed by DMIM from 3,865 collateral-related herbs,
the interactions between TCM drugs and disease genes in cancer pathways and
neuro-endocrine-immune pathways were inferred to contribute to the action of
Liu-wei-di-huang formula, one of the most well-known TCM formula as potential
treatment for a variety of diseases including cancer, dysfunction of the neuro-
endocrine-immune-metabolism system and cardiovascular [114].

Wang et al. adopted a new method based upon lattice experimental design and
multivariate regression to model the quantitative composition-activity relationship
(QCAR) of Shenmai, a Chinese medicinal formula. This new strategy for multi-
component drug design was then successfully applied in searching optimal com-
bination of three key components (PD, PT and OP) of Shenmai. Experimental
outcome of infarct rate of heart in mice with different dosage combination of the
three components were finally measured and the fitted relationship equation
showed that the optimal values of PD, PT and OP were 21.6, 39.2 and 39.2 %,
respectively [115]. The proportion of two active components of Qi-Xue-Bing-Zhi-
Fang, PF and FP, was also optimized in similar way using several fitting technique
like linear regression, artificial neural network and support vector regression [116].
Although the underlying mechanism of drug synergy for the two formulae was still
not very clear, the interactions of multiple weak bindings among different com-
pounds and targets might be the contributory factors.

A network-based multi-target computational scheme for the whole efficacy of a
compound in a complex disease was develop for screening the anticoagulant
activities of a serial of argatroban intermediates and eight natural products
respectively. Aimed at the phenotypic data of drugs, this scheme predicted
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bioactive compounds by integrating biological network efficiency analysis with
multi-target docking score, which evolves from the traditional virtual screening
method that usually predicted binding affinity between single drug molecule and
target. A ligand can have impact on multiple targets based on the docking scores,
and those with highest target network efficiency are regarded as potential anti-
coagulant agents. Factor Xa and thrombin are two critical targets for anticoagulant
compounds and the catalytic reactions they mediate were recognized as the most
fragile biological matters in the human clotting cascade system [117].

Sun et al. [118] presented a systematic target network analysis framework to
explore the mode of action of anti-Alzheimer’s disease (AD) herb ingredients based
on applicable bioinformatics resources and methodologies on clinical anti-AD herbs
and their corresponding target proteins. The results showed that just as many FDA-
approved anti-AD drugs do the compounds of these herbs binds to targets in AD
symptoms-associated pathway. Besides, they also interact closely with many suc-
cessful therapeutic targets related to diseases such as inflammation, cancer and
diameters. This suggests that the possible cross-talks between these complicated
diseases are prevalent in TCM anti-AD herbs [123]. Moreover, pathways of Ca(2+)
equilibrium maintaining, upstream of cell proliferation and inflammation were
found to be were intensively hit by the anti-AD herbal ingredients.

Based on the available experimental results, Zhao analyzed the molecular
mechanism with the aid of pathways and networks and theoretically proved the multi-
target effect of St. John’s Wort [119]. A comprehensive literature search was con-
ducted and the neurotransmitter receptors, transporter proteins, and ion channels on
which the SJW active compounds show effects were collected. Three main pathways
that SJW intervenes were found by mapping these proteins onto KEGG pathways.
Active components in SJW mainly intervene with neuroactive ligand-receptor
interaction, the calcium signaling pathway, and the gap junction related pathway,
pertinent to targets including NMDA-receptor, CRF1 receptor, 5-hydroxytryptamine
receptor 1D, dopamine receptor D1. The networks show that the effect of SJW is
similar to that of combinations of different types of antidepressants. However, the
inhibitory effects of the SJW on each of the pathway are lower than other individual
agents. Accordingly, the significant antidepressant efficacy and lower side effects are
due to the synergetic effect of low-dose multi-target actions.

Zhang et al. established an integrative platform of TCM network pharmacology
to discover herbal formulae on basis of systematic network. This platform incor-
porates a set of state-of-the-art network-based methods to explore the action
mechanism, identify activate ingredients, and create new synergetic combinations
of components. The Qing-Luo-Yin (QLY), an antirheumatoid arthritis (RA) for-
mula was studied comprehensively using the new platform. It is found the target
network of QLY is involved on RA-related key processes including angiogenesis,
inflammatory response, and immune response. The four herbs in QLY work in
concert to promote efficiency and reduce toxicity, as the jun, chen, zuo, shi in
Chinese, respectively. Specifically, the synergetic effect of Ku-Shen (jun herb) and
Qing-Feng-Teng (chen herb) may come from the feedback loop and compensatory
mechanisms [120].
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14.5 Discussion and Conclusion

In recent years, the bottleneck in western medicine has brought unprecedented
opportunities in TCM research and development. For decades, the fundamental
research has achieved great success, and laid the foundation of modern western
medicine and the philosophical idea of ‘‘reductionism’’ was considered to own the
credit.

The counterparty of ‘‘reductionism’’ in Chinese medicine is the philosophical
idea of holism, which has thousands years’ history of practice in China as well as
other Asian countries. Using this methodology, the effectiveness of TCM can only
be verified from a large number of clinical trials given the unclear composition and
unknown relationship among various components. This implicit effect without
clear clarification at the molecular level has been hindering the modernization of
TCM. How to learn from the accumulative knowledge of western medicine, in
order to identify the effective compositions and explore the molecular mechanism
of the efficacy is an urgent problem that needs to be solved in TCM.

The hypothesis of ‘‘multi-drug, multi-target and multi-gene’’ in fact bridges the
gap between TCM and western medicine and is also a manifestation of unity of
opposites on ‘‘reductionism’’ and ‘‘holism’’. TCM uses the holistic method to
investigate the effects of multi-component formula across the whole organism,
such as the use of a variety of ‘‘ZHENG’’ in TCM theory [124]. However, the only
option we have to uncover the underlying mechanism of TCM at the molecular
level is to make use of the theory of reductionism. Of course, for complex systems,
the reduction method can only reach to a certain depth since it becomes more
troublesome as we get deeper. Therefore, some researchers tend to reduce the
mechanism of TCM to the level of ‘‘multi-drug, multi-target, multi-gene’’ at
present, and for further reduction to the level of ‘‘single-drug, single-target, single
gene’’, the problem of emergentism [125] in philosophy needs to be addressed
properly. The theory of emergentism believes that some unique features or
‘‘ultimate features’’ of a system can never be reduced to properties at lower levels,
nor the former can be predicted or explained by the latter, as shown in Fig. 14.1.

So far, ligand-protein network or ‘‘multi-drug, multi-target, multi-gene’’ is one
of the few basic modules that can clearly reveal the pharmacology of TCM and is
expected to be the future direction of the modernization of TCM. But just relying
on experimental scientists to build ligand-protein interactions non-exhaustively
will slow down both the modernization of TCM and the development of its
industry. Therefore, the use of cross-platform database (TCM compounds and
recipe database, see Sect. 14.2 in this paper) and the improvement on modeling
technique (computational method of ligand-protein interactions, see Sect. 14.3 in
this paper), will afford the basis of in silico research for future modernization and
development of TCM. It can be foreseen that, one future direction is to use these
TCM databases and predictive models to reveal the pharmacological effect of
TCM, through the establishment of ligand-protein networks or, ‘‘multi-drug, multi-
target, multi-gene’’ relationships. Nevertheless, the pharmacological mechanism of
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TCM can be very complex and may not be well explained only with the known
ligand-protein network. After all, this is a process of reeling silk from cocoons and
also one of the best choices we have right now.

The increasing availability of ligand-protein networks is a unique chance to
boost success in the modernization of TCM based on the accumulative knowledge
of TCM formulae and practices based on the assumption that TCM exerts the
pharmacological efficacy in multi-drug-multi-target way. Although preliminary
research has been initiated in this area, there is still a long way to go to further
leverage these networks and modeling techniques. Virtual screening and infor-
matics in the drug discovery area have already been proven to be quite useful
either to predict potential new drug and target candidates for experimentalists or
explore the functional mechanism at the molecular level. A large number of drug-
target interactions have thus been gained and the resulted drug-target networks will
also be quite beneficial to investigate the underlying mechanism of multi-com-
ponent drugs, such as the TCM. With further applications of these methods in
TCM area, we are expecting to reveal the mode of action underlying polyphar-
macology of TCM. This grants us the possibility to discover novel effective drug
leads, understand the synergistic mechanism of drug combinations, and more
importantly, develop drug portfolios against epidemic, chronic disease, cancer and
other complex disease that are almost incurable by western medicine.

Phenotype DISEASE (WM)ZHENG (TCM) 

Multi-component-multi-
targets (multi-genes), or
Ligand-Protein Networks

Multi-target synergy

Multi-component
synergy

Specific 
therapeutic targets

One drug-one target
(one gene)

Single drug

Emergentism

Holism Reductionism

Fig. 14.1 Unity of opposites on holism in traditional Chinese medicine and reductionism in
Western medicine. Emergentism constructs the framework of the understanding of holism in
TCM via accumulative practice of reductionism in WM
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Chapter 15
Evolutionary Optimization
of Transcription Factor Binding
Motif Detection

Zhao Zhang, Ze Wang, Guoqin Mai, Youxi Luo, Miaomiao Zhao
and Fengfeng Zhou

Abstract All the cell types are under strict control of how their genes are tran-
scribed into expressed transcripts by the temporally dynamic orchestration of the
transcription factor binding activities. Given a set of known binding sites (BSs) of
a given transcription factor (TF), computational TFBS screening technique rep-
resents a cost efficient and large scale strategy to complement the experimental
ones. There are two major classes of computational TFBS prediction algorithms
based on the tertiary and primary structures, respectively. A tertiary structure
based algorithm tries to calculate the binding affinity between a query DNA
fragment and the tertiary structure of the given TF. Due to the limited number of
available TF tertiary structures, primary structure based TFBS prediction algo-
rithm is a necessary complementary technique for large scale TFBS screening.
This study proposes a novel evolutionary algorithm to randomly mutate the
weights of different positions in the binding motif of a TF, so that the overall TFBS
prediction accuracy is optimized. The comparison with the most widely used
algorithm, Position Weight Matrix (PWM), suggests that our algorithm performs
better or the same level in all the performance measurements, including sensitivity,
specificity, accuracy and Matthews correlation coefficient. Our data also suggests
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that it is necessary to remove the widely used assumption of independence
between motif positions. The supplementary material may be found at: http://
www.healthinformaticslab.org/supp/ .

Keywords Binding sites � Transcription factor � Position weight matrix � Motif

15.1 Introduction

Transcription of genic regions into RNA molecules is the first step of the bio-
logical central dogma, and is dynamically controlled by various transcription
factors (TFs) [1]. A TF regulates a gene’s transcription through its dynamic
binding to a short (5–20 bps) DNA sequence upstream to the regulated gene. This
DNA sequence is the TF’s binding site (TFBS), which is usually highly specific to
this TF and is called a motif [2]. Mutations within TFBSs will change the host’s
transcription regulatory network, and lead to species specific phenotypes or genetic
diseases [3].

There are two major high-throughput strategies to screen the binding sites of a
TF in the host genome. Firstly, various high-throughput experimental techniques
were developed to screen the TFBSs under the given cell culture conditions,
including DNase I footprinting [4], electrophoretic mobility shift assay [5], ChIP-
on-chip [6] and ChIP-Seq [7], etc. The dynamic landscape of the transcription
regulatory network may be elucidated through these screening techniques. But
they are usually costly and labor-intensive, and can only detect the binding sites of
one TF under one cell culture condition at a time. Considering the 2,886 tran-
scription factors curated in the human DNA-binding domain (DBD) database [8],
and the dynamic nature of transcription regulation, it can be anticipated that the
transcription regulatory landscape is significantly under-estimated.

Computational TFBS screening techniques have been used to infer the com-
prehensive list of TFBSs. The majority of in silico TFBS screening techniques
assumes that the binding sites of a given TF have a fixed length, and calculates the
similarity score of a query DNA sequence compared with the local oligo-nucle-
otide frequency patterns in the known TFBSs [9]. The computational techniques
include the position weigh matrix (PWM) [10], WebLogo [11], and position
specific pairwise score [12], etc. The introduction of TF’s structural information
will greatly reduce the false positive rates, as demonstrated by Facelli [13], Saito
et al. [14]. But there are only 300 unique human TF structures in the PDB database
[ref], and the limited availability of the experimentally detected TF structures
restricts the extensive application of these methods [15].

This study hypothesizes that positions contribute differently to the motif scoring
based on their nucleotide frequency patterns, and formulates the position contri-
bution as a weight for the position. The vector of weights for different motif
positions were randomly mutated by an evolutionary algorithm, with the

262 Z. Zhang et al.

http://www.healthinformaticslab.org/supp/
http://www.healthinformaticslab.org/supp/


optimization goal to maximize the overall accuracy. The prediction performance
suggests that our algorithm performs similarly or better than the position specific
scoring strategies.

15.2 Materials and Methods

15.2.1 Data Resources

The proposed algorithm is applied to the following seven transcription factors
(TFs), i.e. Ebox, Myc, P53, Q6MAZ, Q601MAZ, V_SREBP_Q3-SREBP
(abbreviated as Q3), and V_SREBP2_Q6-SREBP2 (abbreviated as Q6). The
known binding sites of these seven transcription factors were manually collected
from the database TRANSFAC in August 2012 [16]. Only those binding sites
without an ‘‘N’’ letter were kept for further analysis. The target gene sequences
and their promoter regions were extracted from the database ENSEMBL [17].

15.2.2 Motif Screening Problem

The mathematical model of the transcription factor binding site (TFBS) screening
problem (sTFBS) is formulated as follows. For a given transcription factor (TF),
its known fixed-length binding sites are defined to be the positive dataset
P = {M1, M2, …, Mn}, where |Mi| = L. A negative dataset N = {B1, B2, …, Bm}
is randomly extracted from the promoter regions of the genes regulated by the
given TF, where |Bj| = L, Bj has no ‘‘N’’ letters and Bj does not overlap with Mi.
Considering the promoter region is much larger than a TFBS, we set
m = 10 9 n. A TFBS screening model is denoted as the classification function
f(X) [ {P, N}, where X [ P [ N.

Firstly, a similarity score between two fixed-length DNA fragments V = {v1,
v2, …, vL} and U = {u1, u2, …, uL} is defined to be Score(V, U) = (w1 9 S(v1,
u1) + w2 9 S(v2, u2) +���+wL 9 S(vL, uL)), where the weight vector W = hw1, w2,
…, wLi is the pre-calculated combination pattern, and wi[ [0, 1]. The nucleotide
similarity score matrix S(vi, ui) is defined to be 2 if vi = ui, 1 for A versus G or C
versus T, and -1 for the other pairs [18]. The combination pattern W = hw1, w2,
…, wLi will be optimized by an evolutionary algorithm, as described in the next
section.

This study chose the simple nearest neighbor algorithm as the classification
model f(X).
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Position Weight Matrix (PWM) algorithm assumes that positions in a fixed-
length motif are independent to each other and calculates how a query sequence is
similar to the set of known motif occurrences [10, 19]. Firstly, a position con-

servation factor Mi is calculated as Mi ¼
P

b2 A;T ;C;Gf g ðfiðbÞ=N � P0ðbÞÞ2=P0ðbÞ;
i ¼ 1; 2; . . .; L; where fi(b) is the observed frequencies of nucleotide b at position
i in the set of known motif occurrences, and P0(b) is the background frequency of
nucleotide b. Then the position probability matrix (PPM) is calculated as:

PPM ¼

P1ðAÞ P2ðAÞ � � � PnðAÞ
P1ðTÞ P2ðTÞ � � � PnðTÞ
P1ðCÞ P2ðCÞ � � � PnðCÞ
P1ðGÞ P2ðGÞ � � � PnðGÞ

0
BB@

1
CCA;

where PjðbÞ ¼ fjðbÞ þ sðbÞ
� �

= N þ
P

b2fA;T ;C;Gg sðbÞ
n o

, and sðbÞ ¼ P0ðbÞ
ffiffiffiffi
N

p
is a

smoothing factor.
Then the position weight matrix (PWM) is calculated as

PWM ¼

w1ðAÞ w2ðAÞ � � � wnðAÞ
w1ðTÞ w2ðTÞ � � � wnðTÞ
w1ðCÞ w2ðCÞ � � � wnðCÞ
w1ðGÞ w2ðGÞ � � � wnðGÞ

0
BB@

1
CCA;

where wiðbÞ ¼ ln PiðbÞ=P0ðbÞf g:
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The standardized similarity score of a query sequence Q is defined to be

SðQÞ ¼
PL

i¼1 MiwiðQiÞ �
PL

i¼1 MiminfwiðbÞgPL
i¼1 MimaxfwiðbÞg �

PL
i¼1 MiminfwiðbÞg

;

where Qi is the ith nucleotide in Q, and b [ {A, T, C, G}. For a cutoff S0, only if
S(Q) C S0, Q is defined as a binding motif of the transcription factor.

15.2.3 Prediction Performance Measurements
and Evaluation

Given the positive dataset P = {M1, M2, …, Mn}, and the negative dataset
N = {B1, B2, …, Bm}, where |Mi| = |Bj| = L. Mi is a true positive or false negative
if SNN(Mi) = P or N, respectively, whereas Bj is a true negative or false positive if
SNN(Bj) = N or P, respectively. For the classification model SNN(X), the numbers
of true positives, false negatives, true negatives and false positives are abbreviated
as TP, FN, TN and FP, respectively. The classification performance of the model is
measured by sensitivity (Sn), specificity (Sp), accuracy (Ac) and Matthews cor-
relation coefficient (MCC) [20, 21], which are defined as follows. Sn = TP/
(TP + FN), Sp = TN/(TN + FP), Ac = (Sn + Sp)/2, and MCC = (TP 9 TN -

FP 9 FN)/sqrt((TP + FP) 9 (TP + FN) 9 (TN + FP) 9 (TN + FN)), where
sqrt(t) is the squared root of t.

A line plot will be generated for the evolutionarily optimized combination
pattern W = hw1, w2, …, wLi for the comparison with the WebLogo plot. TFBS
screening algorithms usually use the visual technique WebLogo to demonstrate the
DNA compositions at each position in the TFBS, and a higher plotted position
suggests a larger information content [11]. An initial weight vector W0 ¼
hw0

1;w0
2; . . .;w0

Li is generated from a transcription factor’s WebLogo plot, by
scaling the information content at position i to [0, 1] as w0

i :
Two validation strategies are adopted to evaluate the classification algorithm

SNN’s prediction performance. Firstly, the algorithm SNN is investigated for its
leave-one-out (LOO) cross validation performance, i.e. iteratively choosing one data
entry and investigating its prediction by the classification model trained on the rest
data sets. The LOO validation strategy has been widely used to measure how a TFBS
or other functional element prediction algorithm performs [22, 23]. To further
investigate the dataset dependency of the proposed SNN algorithm, this study
conducted 3-fold cross validation (3FCV) strategy [24–26]. The basic idea is to
randomly split the positive and negative datasets into 3 equal-size subsets {P1, P2,
P3} and {N1, N2, N3}, respectively. The prediction results are iteratively investigated
for {Pi, Ni} using the SNN trained on P\Pi and N\Ni, where i = 1, 2, and 3. A self
validation (denoted as Self) is also used to evaluate the self consistency, which is to
evaluate how a classification model performs on the training dataset.
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15.2.4 Evolutionary Optimization Algorithm

This study proposed an evolutionary optimization algorithm to screen for the
weight vector with the best overall accuracy Ac of the algorithm SNN, as shown in
Fig. 15.1. The basic idea of an evolutionary optimization algorithm (EOA) is to
simulate the natural selection process [27, 28]. Each generation of individuals
produce children through the operations of crossing and mutation from a pair of
parents. A fitness function is defined to describe how each children fit the natural
selection pressure. A better fitness leads to a higher chance to survive into the next
generation. The population size is usually fixed to a constant value [11, 29–37].

Fig. 15.1 Procedure of the evolutionary optimization algorithm. 5 weight vectors with the best
accuracies Ac will be output
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The initial population W consists of PopSize individual weight vectors, i.e. Wi,
where i[{1, 2, …, PopSize}. Each individual Wi is an L-dimension vector
Wi ¼ hWi

0;Wi
1; . . .;W

i
Li, where Wi

j is a random value between 0 and 1.
MaxGen generations of natural mutation and selection are conducted to find the

fittest weight vectors. For a given weight vector Wi, an SNN classification model is
built, and the overall classification accuracy Ac with the 4-fold cross validation is
defined to be the fitness function Ac(Wi), as used in step 5. For the population of
weight vectors W, Top5(W) consists of 5 weight vectors with the best fitness in the
population. The final top 5 weight vectors together with the performance mea-
surements of their classification models are output.

15.3 Results and Discussion

15.3.1 Best Parameters for EOA

There are two parameters for the evolutionary algorithm EOA, i.e. the population
size PopSize and the generation number MaxGen. Previous studies suggested that
PopSize = 100 performs well for the evolutionary optimization problems with
individual vector size *10 [38]. So we firstly fix PopSize = 100, and investigate
how the optimization goal, Ac, changes with the increased number of generations,
i.e. MaxGen. The parameter MaxGen is set between 0 and 5,000, and the step size
is 100. Q6MAZ and Q3 quickly reach the peak Ac value 1.00 after just Max-
Gen = 200 generations of optimizations, as shown in Fig. 15.2a. The TF genes
Ebox, Myc and P53 also reach very high Ac values ([97 %) at just Max-
Gen = 200. If we choose the Ac value at MaxGen = 5,000 as the final result, all
the six investigated TFs reach this peak value at MaxGen = 3,000, as shown in
Fig. 15.2a.

We further investigate how the parameter PopSize impacts the optimization
performance of EOA, as shown in Fig. 15.2 and Supplementary Figure S1. By
choosing PopSize [ {20, 40, 60, 80, 100, 120, 140, 160, 200}, the overall accuracy
Ac is calculated for generation G[{0, 100, 200, …, 4,900, 5,000} of EOA on each
of the six TFs. Figure 15.2 shows that the TFBS prediction problem of Q6 is the
most difficult to be optimized, and reaches the peak values at generations 3,800,
3,000 and 2,600 for PopSize = 60, 100 and 140, respectively. All the other five
TFs reach the peak Ac values before the optimization generation 3,000. Similar
patterns can be observed for other population sizes PopSize, as in Supplementary
Figure S1.

Considering that the running time of the evolutionary algorithm EOA increases
linearly with the product PopSize 9 MaxGen, and the above data, this study will
set PopSize = 100 and MaxGen = 3,000 for the following experiments.
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15.3.2 Comparison of PWM and SNN(W0)

We firstly compare the widely used PWM algorithm with the SNN algorithm.
WebLogo is also widely used to demonstrate the information content or conser-
vation at each position of a motif [11]. The higher a position is, the larger
information content this position has, as shown in Fig. 15.3. And the binding sites
of all the seven TFs do show significant patterns in information content of some
motif positions. So we hypothesize that the information content from WebLogo
plot may represent well the weight of each motif position for the SNN algorithm,
and the weight vector is denoted as W0.

Both PWM and SNN score the similarity of a query DNA sequence to the
known TFBSs, and this study chooses the cutoff score with Sn * Sp for the
comparison. In general, the SNN(W0) algorithm performs similarly well or slightly
worse compared with the PWM algorithm, as shown in Table 15.1. Both algo-
rithms produce *90 % or larger overall accuracy Ac for the TFBS motif screening
problem, and the TF Q3 even receives 100 % accurate separation of the positive
and negative data entries from both algorithms under the two validation strategies.
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Fig. 15.2 Distributions of overall classification accuracy, Ac, for different generation numbers.
The population sizes PopSize are fixed to a 100, b 60 and c 140, respectively
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The biggest difference between the two algorithms is for the TFBS motif screening
problem of Myc, where SNN(W0) performs 5.01 and 5.48 % worse in Ac than
PWM using the LOO and 3FCV validations, respectively. So our first hypothesis
about the usage of W0 is reasonable but may need further optimization.

15.3.3 Comparison of PWM and SNN + EOA

The next hypothesis is that there may exist a weight vector W = hw1, w2, …,
wLi with increased Ac value for the SNN algorithm. Besides the position inde-
pendent measurements, e.g. PWM or WebLogo, there is no available knowledge
about how to optimize the weight vector. So we choose to use the evolutionary
optimization algorithm to search for a weight vector with optimal overall accuracy
Ac by just random mutations in the weight vectors, as described in Sect. 15.2.4.

After the optimization of MaxGen = 3,000 generations of PopSize = 100
individuals (weight vectors), the motif screening algorithm SNN outperforms the
PWM algorithm in any performance measurements for all the seven TFs, as shown
in Table 15.2. The PWM algorithm achieves 100 % accuracy for the LOO vali-
dation of Q6MAZ and both LOO and 3FCV validations of Q3, and the

Fig. 15.3 WebLogo plots for the TFs. a Ebox, b Myc, c P53, d Q6MAZ, e Q601MAZ, f Q3 and
g Q6. The line plot is for the evolutionarily optimized weight vector by the SNN + EOA
algorithms for each TF
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SNN + EOA algorithm achieves such perfect classification. For the other tran-
scription factors, SNN + EOA outperforms PWM by 0.97–7.83 % in overall
accuracy Ac. The measurements MCC [ [-1, 1] evaluates how the prediction
results match the positive and negative datasets, and a larger MCC means a better
prediction. Besides the two TFs Q6MAZ and Q3 that both algorithms perform
equally well, SNN + EOA improves the MCC of PWM algorithm by
0.0327–0.2026. The PWM algorithm does not perform well on the dataset of the
well-known tumor suppressor P53, as in Table 15.2. It only achieves
Sn = 84.78 % and Sp = 96.74 % for the LOO validation of P53, and the overall
accuracy is only 90.76 %. SNN + EOA achieves a slightly better specificity
(Sp = 97.17 %) and a much better sensitivity (Sn = 100 %). A similar
improvement is also achieved by SNN + EOA for the 3FCV validation of P53.

It’s also interesting to observe that the weight vector achieving the best pre-
diction performance does not match the position independent measurement
WebLogo, as shown in Fig. 15.3. For the tumor suppressor P53, the optimized
weight vector does not agree with WebLogo at positions 4, 5 and 9, as shown in
Fig. 15.3c. The information content at position 4 is larger than that at position 5,
but their weights in the optimized vector weighs the two positions reversely. And
although the information content at position 9 only ranks 8th, position 9 has the
second largest weight. Similar discrepancy exists for all the seven investigated
TFs, as in Fig. 15.3, and suggests that a concerted weighing of different positions
is necessary for motif screening and other similar problems.
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Chapter 16
Prediction of Serine/Threonine
Phosphorylation Sites in Bacteria Proteins

Zhengpeng Li, Ping Wu, Yuanyuan Zhao, Zexian Liu and Wei Zhao

Abstract As a critical post-translational modification, phosphorylation plays
important roles in regulating various biological processes, while recent studies
suggest that phosphorylation in bacteria is also critical for functional signaling
transduction. Since identification of phosphorylation substrates and sites is fun-
damental for understanding the phosphorylation mediated regulatory mechanism, a
number of studies have been contributed to this area. Since experimental identi-
fication of phosphorylation sites is time-consuming and labor-intensive, compu-
tational predictions attract much attention for its convenience to provide helpful
information. However, although there are a large number of computational studies
in eukaryotes, predictions in bacteria are still rare. In this study, we present a new
predictor of cPhosBac to predict phosphorylation serine/threonine in bacteria
proteins. The predictor is developed with CKSAAP algorithm, which was com-
bined with motif length selection to optimize the prediction, which achieves
promising performance. The online service of cPhosBac is available at: http://
netalign.ustc.edu.cn/cphosbac/.

Keywords Phosphorylation � Prediction � Bacteria � CKSAAP

Z. Li � P. Wu
Institute of Applied Microbiology, Anhui Science and Technology University,
Fengyang, Anhui, China

Y. Zhao
School of Arts and Media, Hefei Normal University, Hefei, Anhui, China

Z. Liu (&) � W. Zhao (&)
Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences,
University of Science and Technology of China, Hefei, Anhui, China
e-mail: lzx@mail.ustc.edu.cn

W. Zhao
e-mail: zhaowei@ustc.edu.cn

� Shanghai Jiao Tong University Press, Shanghai
and Springer Science+Business Media Dordrecht 2015,
D. Wei et al. (eds.), Advance in Structural Bioinformatics, Advances in
Experimental Medicine and Biology 827, DOI 10.1007/978-94-017-9245-5_16

275

http://netalign.ustc.edu.cn/cphosbac/
http://netalign.ustc.edu.cn/cphosbac/


16.1 Introduction

In 1992, Edmond H. Fischer and Edwin G. Krebs were award the Nobel Prize in
Physiology or Medicine for their discovery that reversible protein phosphorylation
is a critical biological regulatory mechanism in biology [1]. So far, numerous
studies have been contributed to dissect the biological functions and regulatory
relationships of phosphorylation [2–4]. Although most of these researches were
carried out in eukaryotes, phosphorylation in bacteria also attracted great attention
for its great functional importance in regulation of cellular signaling [5–9]. Pre-
viously, studies on phosphorylation in bacteria were focused on phosphorylation of
histidine and aspartate, which play critical roles in the two-components systems
for signal transduction [8, 9]. However, recent discoveries indicate that serine/
threonine phosphorylation system in bacteria also play important roles in the
regulation of cellular processes [5, 7] and might be critical for the virulence of
pathogens [5, 7]. Since researches in this area are less intensive, more efforts
should be contributed.

Identification of phosphorylation substrates and sites is fundamental to under-
standing the molecular regulatory mechanisms and biological functions of phos-
phorylation, while recent advancement of large-scale technologies such as high-
throughput mass spectrometry greatly promoted the discoveries of phosphorylation
events [10, 11]. Although most of the studies are carried out in eukaryotes, pio-
neering scientists also conducted large-scale identification of serine/threonine
phosphorylation in bacteria [12, 13]. Besides experimental efforts, a large number
of computational studies have been carried out to predict and analyze the phos-
phorylation data [10, 14, 15]. Various predictors, databases and analyzing tools
were developed in this area [14, 15]. However, most of these tools are developed
for the phosphorylation in eukaryotes, while only NetPhosBac was constructed for
serine/threonine phosphorylation in bacteria [16]. In this regard, more efforts
should be contributed to improve the prediction.

In this study, we developed a novel predictor of cPhosBac to predict serine/
threonine phosphorylation sites in bacteria. The well-constructed dataset was
retrieved from NetPhosBac. The composition of k-spaced amino acid pairs
(CKSAAP) method [17–21] was employed to encode the sequence context sur-
rounding the phosphorylation sites, while the support vector machine (SVM)
algorithm was used to classify the positive sites from negative sites. The motif
length selection algorithm was adopted to optimize the length of sequence sur-
rounding the phosphorylation sites. Through careful evaluation with 4-, 6-, 8- and
10-fold cross validation, it was found that the prediction performance of cPhosBac
is promising. Furthermore, the comparison between cPhosBac and NetPhosBac
was conducted, while the result indicate that cPhosBac is more accuracy than
NetPhosBac. Taken together, it was proposed that cPhosBac could serve as a
useful tool to predict serine/threonine phosphorylation in bacteria. The online
service of cPhosBac is available at: http://netalign.ustc.edu.cn/cphosbac/.
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16.2 Materials and Methods

16.2.1 Data Preparation and Analysis

The dataset was retrieved from NetPhosBac [16], which contains 152 phosphor-
ylation serine/threonine sites in 119 substrates. The phosphorylation sites were
identified by previous studies [12, 13], while a homology reduction was conducted
to avoid overestimation of prediction performance during the construction of
NetPhosBac [16]. The authors set the ratio of negative/positive as 5, so their
training dataset contain 152 positive sites and 841 negative sites. However, in our
study, all the non-phosphorylated serines/threonines were regarded as negative
sites, which resulted in 152 positive sites and 5761 negative sites. To present the
differences between positive and negative sites, a two sample logo was created by
Two Sample Logo software [22].

16.2.2 The CKSAAP Method

A previously developed sequence encoding method, the composition of k-spaced
amino acid pairs [18, 19], was employed. The sequence window was presented by
the combination of multiple k-spaced amino acid pairs. For instance, the space
number k for ‘‘DxxD’’ and ‘‘DxxxxxD’’ is 2 and 5, respectively. In this study,
beside the 20 types of amino acids, ‘‘-’’ was employed to complete the sequence
window for N-terminal or C-terminal phosphorylation sites. So, the number of pair
types is 441 (21 9 21). Then the composition of each possible k-spaced amino
acid pair i could be calculated as:

CKSAAP i ¼ 1; 2; . . .; k þ 1ð Þ � 441½ � ¼ Ni= W � k � 1ð Þ

Ni represents the count of the k-spaced amino acid pair i while W is the window
size. In this study, the value of k was exhausted tested from 0 to 7, while the
optimized k was set to be 5 due to its better performance, which resulted in a 2205-
dimensional feature vector.

The SVM-light package (http://svmlight.joachims.org/) was employed to build
the SVM classifier, while the parameters were adopted from previous study [19].

16.2.3 Performance Improvement by Motif Length Selection

Previously, the sequence window size of the CKSAAP method in a number of
studies was manually selected without any optimization [19–21]. Recently, Xue

16 Prediction of Serine/Threonine Phosphorylation Sites in Bacteria Proteins 277

http://svmlight.joachims.org/


et al. [23] introduced a motif length selection algorithm to determine the sequence
window. We adopted the algorithm as follows:

The phosphorylation site peptide PSP(m, n) was defined as the sequence
window of a serine/threonine (K) residue flanked by m amino acids upstream and n
amino acids downstream. Then the combinations of PSP(m, n) (m = 1, …, 10;
n = 1, …, 10) were extensively tested, while the optimized sequence window of
PSP(m, n) with the highest AROC value of 10-fold cross validation was
determined.

16.2.4 Performance Evaluation

As previously described, four measurements of sensitivity (Sn), specificity (Sp),
accuracy (Ac), and Mathew’s Correlation Coefficient (MCC) were employed to
evaluate the prediction performance. The four measurements were defined as
below:

Sn ¼ TP

TP þ FN
; Sp ¼ TN

TN þ FP
; Ac ¼ TP þ TN

TP þ FP þ TN þ FN
;

and

MCC ¼ ðTP � TNÞ � ðFN � FPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FNÞ � ðTN þ FPÞ � ðTP þ FPÞ � ðTN þ FNÞ

p :

In this study, the 4-, 6-, 8- and 10-fold cross-validations were performed, while
the Receiver Operating Characteristic (ROC) curves and area under ROCs
(AROCs) were analyzed.

16.3 Results

16.3.1 Sequence Analysis of Phosphorylation Sites
in Bacteria

Although there are a number of sites identified, the sequence features and motifs of
phosphorylation in bacteria are still unknown. In this study, the two sample logo
was constructed to present the sequence features in the phosphorylation and non-
phosphorylation sites. With the Two Sample Logo software [22], the enriched and
depleted amino acid types around the phosphorylation sites were presented in
Fig. 16.1. Interestingly, it was observed that the enriched phosphorylated residues
were serine (Position 11 in Fig. 16.1), while threonine was depleted. The -1
position of the phosphorylation sites (Position 10 in Fig. 16.1) enrich charged
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residues, including positively charged residues lysine (K) and histidine (H) and
negatively charged residue aspartate (D), while hydrophobic residue tyrosine (Y)
is depleted in this position. Non-charged residues including asparagine (N), gly-
cine (G) and methionine (M) were also enriched in the -1, -2 and -3 positions
(Position 10, 9 and 8 in Fig. 16.1). In the position +1 (Position 12 in Fig. 16.1),
positively charged residue histidine (H) and negatively charged residue aspartate
(D) were enriched and depleted, respectively. Other detailed features were pre-
sented in Fig. 16.1.

Although the motif for phosphorylation in bacteria is unknown currently, we
conducted the motif analysis for the dataset with the Motif-All software [24]. The
identified motifs by the software are presented in Table 16.1. It is obvious that the
sequence features were consistent with the motifs. For example, the motif [pS]H
represent the sequence feature of histidine preference in position +1.

Fig. 16.1 The two sample logo for the phosphorylation dataset

Table 16.1 Identified motifs by Motif-All for the dataset

Motif Count in
positive

Count in
negative

Z-score p-value

----------[pS]H--------- 15 118 5.76 4.21E-09

--L------D[pS]---------- 8 23 6.27 1.76E-10

------L-G-[pS]---------- 8 43 5.07 1.95E-07

-------G--[pS]L--------- 8 44 5.02 2.54E-07

--------G-[pS]----A----- 9 47 5.45 2.56E-08

--------G-[pS]-----L---- 9 47 5.45 2.56E-08

--------G-[pS]------I--- 8 30 5.81 3.18E-09
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16.3.2 The Motif Length Selection Algorithm to Optimize
the Sequence Window

Previously, a number of studies have been carried out with CKSAAP employed as
the prediction method [17–21]. In these studies, the length of peptide considered
for prediction was manually determined [17–21]. However, recent study showed
that different motif lengths for prediction could generate various performances
[23]. Interestingly, it was observed that the self-consistence performances always
increase when the motif for prediction elongates, while the leave-one-out valida-
tion performances firstly increase to a peak and then decrease when the length of
peptide for prediction increase [23]. Since the self-consistence performances
represent the accuracy of prediction for the training dataset while the leave-one-
out or n-fold validation could represent the prediction ability for the new or
unknown sites, it is obvious that leave-one-out or n-fold validation should be better
to be employed as the measurement when optimizing the parameters.

In this study, we adopted the motif length selection approach to determine the
motif length for prediction in CKSAAP algorithm. The area under receiver
operating characteristic curve (AROC) values of 10-fold cross validations were
calculated to evaluate the performance. The heatmap of performances for different
combination of PSP(m, n) was presented in Fig. 16.2 with the ggplot program
(http://had.co.nz/ggplot2/) in the R package (http://www.r-project.org/) [25]. The
result showed that the best combination of PSP(m, n) is PSP(3, 6), which achieved
a AROC value of 0.7147.

Fig. 16.2 The heatmap of the AROC values for the motif length selection. Left and right
represent the m and n of the PSP(m, n)
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16.3.3 Performance Evaluation and Comparison

To evaluate the performance of our prediction, the 4-, 6-, 8-, 10-fold cross vali-
dations were carried out. The receiver operating characteristic (ROC) curves for
the validations were presented in Fig. 16.3. Since the 4-, 6-, 8-, 10-fold cross
validations performances were consistent, it was indicated that the prediction is
robust. Since the n-fold cross validations could represent the prediction of new or
unknown sites, the results show that our prediction achieves promising perfor-
mance. For the 10-fold cross validation, the prediction achieved an accuracy of
84.00 %, sensitivity of 44.00 %, specificity of 85.00 %, MCC of 0.1253. For the 8-
fold cross validation, the performance is accuracy of 84.18 %, sensitivity of
43.16 %, specificity of 85.27 %, MCC of 0.1244. For the 6-fold cross validation,
the prediction achieved an accuracy of 84.03 %, sensitivity of 44.00 %, specificity
of 85.07 %, MCC of 0.1258. For the 4-fold cross validation, the performance is
accuracy of 84.08 %, sensitivity of 42.37 %, specificity of 85.18 %, MCC of
0.1204.

Since our prediction achieved promising performance, we developed a new
predictor of cPhosBac (CKSAAP algorithm to predict Phosphorylation in Bacte-
ria) for prediction of phosphorylation sites in bacteria. Since our dataset was
identical with NetPhosBac [16], we compared the performance between them. The
result was presented as ROC curves in Fig. 16.4. It is obvious that the performance
of cPhosBac is much better than NetPhosBac. Since the authors showed that the
performance of NetPhosBac is better than other tools, cPhosBac should be better
than other tools.

Fig. 16.3 The ROC curves
of the 4-, 6-, 8-, 10-fold cross
validations. The AROC
values were calculated and
presented
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16.3.4 The Webserver of CPhosBac

With the promising prediction performance, we developed the webserver of
cPhosBac, which is available at http://netalign.ustc.edu.cn/cphosbac/. User could
submit one protein sequence or multiple sequences in FASTA format to predict
phosphorylation sites as Fig. 16.5a. Then user could click ‘‘Submit’’ button to
perform prediction. After the server carried out the prediction, the positive hits will
be shown in a tabular format (Fig. 16.5b), which could be downloaded.

16.4 Discussion

As a critical regulatory mechanism, phosphorylation plays important roles in
regulation of cellular processes in both eukaryotes and prokaryotes [2–4, 11].
Identification of phosphorylation substrates and their sites is critical to dissecting
the molecular mechanisms [7, 11]. Although phosphorylation in eukaryotes is a
hot topic, research on serine/threonine phosphorylation in bacteria is much less
intensive [11]. Since computational studies could provide helpful information for
further experimental investigation, predictor for phosphorylation in bacteria is
urgently needed.

In this study, we developed a new predictor of cPhosBac with the CKSAAP
method and SVM algorithm. Motif length selection approach is also adopted to
optimize the prediction. Although the cPhosBac achieved promising performance,
there are a number of improvements could be conducted in the future. Firstly, the
prediction performance could be further improved, complex feature selection

Fig. 16.4 The comparison
between cPhosBac and
NetPhosBac, the same dataset
was submitted to the two
predictor for prediction and
then the results were
compared
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could be carried out to provide better prediction, while structural features
including secondary structure, solvent-accessible surface areas might provide more
selectivity for prediction. Furthermore, since phosphorylation was reversibly
regulated by kinase and phosphotases, it should be more valuable to provide
kinase-specific prediction.

Taken together, we anticipate that computational prediction, followed by
experimental investigation, will help advancing studies of serine/threonine phos-
phorylation in bacteria.

Acknowledgments This work was supported, in whole or in part, by Provincial Key Research
Program of Universities in Anhui (KJ2012A063), Innovation Foundation of USTC for Young
Scientists (WK2070000028).

Fig. 16.5 The snapshots of the cPhosBac predictor. a One raw sequence and multiple sequences
in FASTA format were both allowed for input. b The results were presented in tabular format and
could be downloaded
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Chapter 17
Bioinformatics Tools for Discovery
and Functional Analysis of Single
Nucleotide Polymorphisms

Li Li and Dongqing Wei

Abstract With the high speed DNA sequencing of genome, databases of genome
data continue to grow, and the understanding of genetic variation between indi-
viduals grows as well. Single nucleotide polymorphisms (SNPs), a main type of
genetic variation, are increasingly important resource for understanding the
structure and function of the human genome and become a valuable resource for
investigating the genetic basis of disease. During the past years, in addition to
experimental approaches to characterize specific variants, intense bioinformatics
techniques were applied to understand effects of these genetic changes. In the
genetics studies, one intends to understand the molecular basis of disease, and
computational methods are becoming increasingly important for SNPs selection,
prediction and understanding the downstream effects of genetic variation. The
review provides systematic information on the available resources and methods for
SNPs discovery and analysis. We also report some new results on DNA sequence-
based prediction of SNPs in human cytochrome P450, which serves as an example
of computational methods to predict and discovery SNPs. Additionally, annotation
and prediction of functional SNPs, as well as a comprehensive list of existing tools
and online recourses, are reviewed and described.
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17.1 Introduction

With the completion of the Human Genome Project, a large number of subtle
variations (polymorphisms) among the population have been found [1–3]. The
most abundant (about 90 % of all human genetic variation) type of these variations
is single nucleotide polymorphisms (SNPs), with more than 9 million reported in
public databases [4, 5]. SNPs, are DNA sequence variations that occur when a
single nucleotide (A,T,C, or G) in the genome sequence is altered at least 1 % of
the population [6].

SNPs may fall within coding sequences of genes, non-coding regions of genes,
or in the intergenic regions between genes. Nonsynonymous SNPs produce either
be missense or nonsense change, where a missense change results in a different
amino acid, while a nonsense change results in a premature stop codon. Synon-
ymous SNPs (sometimes called a silent mutation) lead to the same polypeptide
sequence. SNPs that are not in protein-coding regions may have consequences for
gene splicing, transcription factor binding, or the sequence of non-coding RNA
(SNPs functional classes are shown in Fig. 17.1).

SNPs have a major impact on how humans respond to and respond to patho-
gens, chemicals, drugs, vaccines, and other agents. This makes SNPs valuable for
biomedical research and for developing pharmaceutical products or medical
diagnostics and personalized medicine [7].

Over the past several years a great deal of effort has been devoted to developing
accurate, rapid, and cost-effective technologies for SNP analysis, yielding a large
number of distinct approaches [8, 9]. Besides experimental methods to characterize
specific variants, there has been intense bioinformatics research to understand the
molecular effects of these genetic changes. These efforts have focused on two general
areas. First, bioinformatics studies have been involved in genomic experimental

Fig. 17.1 SNP functional classes
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assays. Second, researchers annotated genetic variation data and developed statis-
tical methods to predict mutations. These efforts have given rise to many databases,
web resources, and tools for prioritizing candidate single nucleotide polymorphisms
(SNPs) or hypothesizing the molecular causes of genetic disease. In this paper,
bioinformatics methods and tools for SNPs discovery are presented. Further, anno-
tation and prediction of functional SNPs are reviewed and described.

17.2 SNPs Discovery

17.2.1 Bioinformatics Tools and Resources for SNPs
Discovery and Analysis

Generally, the discovery and selection of SNPs are carried out by sequencing.
SNPs discovery based on the different sites isolating from the sequence, assesses
frequency of the error in total numbers of the selected sequences, isolates parol-
ogous and then determines genotype.

Bioinformatics techniques play an important role in SNP discovery and anal-
ysis. These methods annotate genes that contain SNPs, allow researchers to
retrieve data about SNPs based on gene of interest, genetic or physical map
location, or expression pattern. PolyPhred, PolyBayes and novoSNP are the widely
used bioinformatics tools.

PolyPhred (http://droog.gs.washington.edu/polyphred/) is a program that com-
pares fluorescence-based sequences across traces obtained from different indi-
viduals to identify heterozygous sites for single nucleotide substitutions.
PolyPhred’s functions are integrated with the use of three other programs: Phred,
Phrap, and Consed. PolyPhred identifies potential heterozygotes using the base
calls and peak information provided by Phred and the sequence alignments pro-
vided by Phrap. Potential heterozygotes identified by PolyPhred are marked for
rapid inspection using the Consed tool.

PolyBayes (http://genome.wustl.edu/tools/software/polybayes.cgi) is a com-
puter program for the automated analysis of single-nucleotide polymorphism
(SNP) discovery in redundant DNA sequences. The software integrates algorith-
mic solutions to three of the main challenges in sequence-based SNP discovery:
Multiple sequence alignment, Paralog identification, and SNP detection. This
program produces a list of candidate polymorphic sites, each site with an asso-
ciated SNP probability score that has been demonstrated to accurately forecast the
true positive rate in subsequent validation experiments.

novoSNP (http://www.molgen.ua.ac.be/bioinfo/novosnp/) is a program to find
SNPs and small indels in resequencing projects. It takes a reference sequence and a
number of sequencing trace files as input, and generates a list of possible variations
with a quality score. novoSNP allows easily filter, sort and check the variations
found visually and keep track of verifications.
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17.3 Predict SNPs by Computational Methods

Because only 1 % of mutations might be expected to confer more than modest
individual effects in association studies, the selection of predictive candidate
variants for complex disease analyses is formidable. Technologic advances in
SNPs discovery have led to massive informational resources that can be difficult to
master across disciplines.

Computational methods are successfully employed to predict SNPs function
such as whether they are likely to be neutral or deleterious. However, few
researches have applied computational approaches to predict SNPs to discover
potential SNP sites.

Yan et al. [10] firstly demonstrated SNP prediction and compared machine
learning techniques and pattern discovery algorithms for the prediction of SNPs in
human. They selected six pattern discovery algorithms (YMF, Projection, Weeder,
MotifSampler, AlignACE and ANN-Spec) and two machine learning techniques
(Random Forests and K-Nearest Neighbours), then applied them to the DNA
sequences. Six methods perform fairly poorly in predicting SNPs, with error rates
between 35 and 51 %. Machine learning algorithms perform better than the pattern
discovery methods by *6 %: the average prediction error for Random Forests and
KNN is about 44 %, while the pattern discovery methods have around 50 %
prediction error.

Li et al. improved the prediction performance using support vector machine
(SVM) model based on the CYP450 SNP sites and the physical and chemical
properties(polarity, volume, hydropathy, charge, flexibility, isoelectric point,
refractivity) of the amino acids on protein flanking sequence. They demonstrate

Fig. 17.2 A semi-screenshot of the home page of the web-server SCYPPred
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the accuracy of this method achieves 65 % and provide SCYPPred, an online tool
freely accessible at http://snppred.sjtu.edu.cn (the homepage is shown in Fig. 17.2)
to predict SNPs.

Predicting SNPs leads significant insights into the structural determinants of
DNA stability and species evolution. As such, these preliminary results strongly
support additional work to improve the ability to predict SNPs.

17.4 An Example of Computational Methods to Predict
SNPs–DNA Sequence-Based Prediction of SNPs
in Human Cytochrome P450

SNPs prediction can be cast into a binary classification task at the nucleotide level,
namely predicting for each nucleotide site in the human cytochrome P450, whether
it has the latent to be a SNP.

17.4.1 Datasets

We focused on CYP2 subfamily as they involved in almost 80 % drug metabolism
and exhibited a large degree of inter- and intra-species variability in regulation and
catalytic activities. Non-synonymous SNPs (nsSNP) change the protein expres-
sion, phenotype and directly cause diseases, so, cDNA sequences (only include
nsSNPs) were used to construct the datasets. cDNA sequences of human CYP2
subfamily were downloaded from NCBI (http://www.ncbi.nlm.nih.gov/nucleotide/
) and 282 SNPs in the human CYP450 SNPs were sourced from Human Cyto-
chrome P450 Allele Nomenclature Committee (http://www.cypalleles.ki.se).
Besides, we collected 18,629 remained sites as non-SNPs.

17.4.2 Extracted Features and Encoded the Vector

Our aim was to employ least attributes were employed while achieve higher
prediction accuracy. We exploited a set of features only from the DNA primary
sequence (summarized in Table 17.1), not require the complex structure infor-
mation. In the following we give a detailed description of the features.

D1 encode the types of the neighbouring nucleotide: adenine (A), thymine (T),
guanine (G) and cytosine (C) were separately converted into 1, 2, 3 and 4.
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D2 encode the SNPs near the candidate site.

For a pair of SNP alleles, linkage disequilibrium (LD) is a measure of deviation
from random association (i.e., no recombination). In recent years, LD analysis has
become a topic of great interest in the field of SNP association studies and an
effective approach to connect structural SNPs to phenotypes [11–14]. Because of
the close relation between LD and SNPs, we have taken the existent neighbouring
SNPs into account in our research.

D3 encode the occurrence of CpG dinucleotides at the candidate site.

The relation between the CpG dinucleotides and SNPs had been pointed out in
papers [15–19], which showed SNPs occurs at a high rate at CpG dinucleotides
due to the frequent methylation of CpG and the deamination of methylated
cytosine to thymine. This feature was firstly proposed to predict SNPs; and we
believed that the special sequence composition is related to SNPs.

For classification, we used window size of 25 (adjacent 25 residues upstream
and downstream from the SNP) for forming a 102-dimensional vector to describe
the SNP information. In this vector, the 1–51 dimensional characters were the
converted numerical vales of nucleotide types including the target site and flanking
sequence: adenine (A), thymine (T), guanine (G) and uracil (C) were separately
converted into 1, 2, 3 and 4 (the detail was showed in Fig. 17.3a ). The 52–101
dimensional characters were associated with the Neighbouring SNPs information.
SNPs and non-SNPs were separately encoded into 1 and 0 (showed in Fig. 17.3b).
The 102th dimensional character was the occurrence of CpG dinucleotides at the
candidate site. If the candidate site is cytosine (C) and the right neighbouring
nucleotide is guanine (G), the candidate site is encoded to 1. In another cases, the
candidate site is encoded to 0 (showed in Fig. 17.3c).

17.4.3 Group Training

Only 282 out of 18,911 nucleotide sites are SNPs, hence, the dataset is extremely
unbalanced with a ratio between positive and negative examples of about 1:66,
which usually lead a learning bias to the majority class. In order to deal with this,
we have resorted to group training approach [20, 21]. According to this method,
the primary training datasets (282 SNPs and 18,629 non-SNPs) was divided into

Table 17.1 Sequence-based
features

Feature Description

D1 Nucleotide composition

D2 Neighbouring SNPs

D3 CpG dinucleotides
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46 subsets at random; each of them has 400 SNPs and 200 non-SNPs (as shown in
Fig. 17.4). 46 models are generated after group training (Additional file 1), and the
best 23 models (showed in Table 17.2) were selected and integrated to give the

final prediction with the following decision criterion: Y ¼
P15

i¼1 Yi. If Y [ 0, it is
predicted as SNP; in contrast, if Y \ 0, it is considered as non-SNP.

Additionally, confusion matrix, a visualization tool typically used in supervised
learning, was applied to evaluate the computational models. As shown in
Table 17.3, confusion matrix is a table with the true values in rows and the
predicted ones in columns. The diagonal elements represent correctly classified
cases while the cross-diagonal elements stand for misclassified cases. So, with the
confusion matrix, we could compute the sensitivity, specificity, as well as the
overall accuracy of our predicting results (Table 17.4).

Fig. 17.3 Features definition

Fig. 17.4 Group prediction
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Table 17.2 The performance of selected 23 groups

Group Performance (%)

Specificity Sensitivity Accuracy AUC

1 75.1092 53.6585 69.4534 64.3839

2 79.4760 48.7805 71.3826 64.1282

3 76.4192 45.1220 68.1672 60.7706

4 85.1528 45.1220 74.5981 65.1374

5 79.0393 45.1220 70.0965 62.0806

6 82.9694 43.9024 72.6688 63.4359

7 81.2227 43.9024 71.3826 62.5626

8 83.8428 43.9024 73.3119 63.8726

9 89.9563 42.6829 77.4920 66.3196

10 82.0961 40.2439 71.0611 61.1700

11 88.2096 40.2439 75.5627 64.2268

12 90.8297 39.0244 77.1704 64.9270

13 86.8996 39.0244 74.2765 62.9620

14 82.5328 39.0244 71.0611 60.7786

15 89.5197 37.8049 75.8842 63.6623

16 88.2096 36.5854 74.5981 62.3975

17 86.8996 36.5854 73.6334 61.7425

18 90.8297 36.5854 76.5273 63.7075

19 86.4629 34.1463 72.6688 60.3046

20 88.2096 34.1463 73.9550 61.1780

21 93.0131 31.7073 76.8489 62.3602

22 85.1528 30.4878 70.7395 57.8203

23 89.9563 30.4878 74.2765 60.2221

Table 17.3 Confusion matrix of our datasets

Confusion matrix Predicted

Non-SNP SNP

Actual Non-SNP 196 33

SNP 43 39

Specificity ¼ TN
TNþFP ¼ 196

196þ33 ¼ 85:5895%

Sensitivity ¼ TP
TPþFN ¼ 39

39þ43 ¼ 47:561%

Accuracy ¼ TPþTN
TPþFPþTNþFN ¼ 39þ196

39þ36þ196þ43 ¼ 75:5627%

ACU ¼ 0:5 � ðSpecificity þ SensitivityÞ ¼ 66:5752%
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17.5 Comparison with Other Methods

We compared our results with the most recent methods for both DNA sequence-
based and protein sequence-based prediction.

Table 17.5 reports comparisons with other DNA sequence-based methods,
including six pattern discovery algorithms(Align ACE, ANN, Motif Sampler,
YMF, Weeder and Projection) and two machine learning techniques(Random
Forests and KNNs) [10]. All the eight methods only encode information on SNPs
with 25 base-pairs of 50 and 25 base-pairs of 30 flanking sequence. Our model
reached an SNP prediction accuracy of 75.56 %, which increased by 18 % over
the reported best accuracy of 57 %. The results indicate that features and SVM
employed in our methods allow improving performance on prediction.

Table 17.6 shows comparisons with protein sequence-based method (SCYP-
Pred) recently developed in our previous work. Previous results suggested that
protein sequence managed to predict SNPs with high accuracy. In this paper, our
method successfully improved the accuracy (from 66.3 to 75.6 %), the specificity
(from 66.3 to 85.6 %) and the AUC value (from 65.4 to 66.6 %). These
improvements we achieved show that DNA sequence can indeed be effectively
used in predictions. Nevertheless, further studies are needed to make fully exploit.

Table 17.4 The performance of the integrated model

Performance (%)

Specificity Sensitivity Accuracy AUC

Integrated model 85.5895 47.561 75.5627 66.5752

Table 17.5 Comparison with state-of-art DNA sequence-based approaches

Other DNA sequence-based approach Accuracy (%)

Align ACE 50.4

ANN 50.2

Motif sampler 50.1

YMF 51.0

Weeder 50.0

Projection 49.7

Random forests 57.0

KNNs 54.0

Our method 75.6

17 Bioinformatics Tools for Discovery and Functional Analysis … 295



17.6 SNPs Functional Analysis

17.6.1 Functional Annotation of SNPs (Web Resources Are
Reviewed in Table 17.7)

Coding SNPs are located in the exons of genes, in which three nucleotides ‘‘code’’
for the amino acids that are used to build proteins. SNPs may change (nonsyn-
onymous) or not change (synonymous) the amino acid. There are several ways a
nonsynonymous SNP (nsSNP) can affect gene product function. The most prob-
able effect is a partial or complete loss of function of the mutated gene product.
Less likely, SNPs in an exonic portion of a splice junction will make a noncoding
intron be retained or make the exon be skipped, which may result in the loss of
some amino acids or an unstable messenger RNA (mRNA) transcript. SNPs occur
within an exonic splicing enhancer (ESE), where various components of the
splicing machinery localize to splice the pre-mRNA [22], may result in intron
retention or exon skipping.

One of the most common annotations of a SNP is identification of its location
[23]. GoldenPath, assembled the UCSC Genome Browser and genome, is an
excellent resource for visualisation of SNP locations and other genome annotations
[24]. The other primary genome resource is Ensembl [25]. which provides visu-
alise variation in and around genes, and their data annotations are of high quality.
SNPper, focuses on SNP selection for genetic studies, is another powerful resource
for SNP analysis [26, 27].

Functional information is beginning to integrate in many locus databases, such as
protein structure, into their annotation sets. The NCBI databases, such as dbSNP and
OMIM [28], and Ensembl [29] provide visualisation access and some annotations
related to function, based on experiment. For protein structural annotations of var-
iation in dbSNP and Swiss-Prot, MutDB58 was developed to annotate known var-
iation data with information relevant to identifying the molecular effects of a
mutation or polymorphism. Effects on protein structure can be very subtle and may
not be obvious; hence, visualizing protein structure is useful to biochemistry experts.
Several web-based databases annotate protein structure and query services,
including Large Scale human SNP annotation (LS-SNP http://modbase.compbio.
ucsf.edu/LS-SNP/) [30], SNPs3D (http://snps3d.org/) [31], MutDB (http://www.
mutdb.org/) [32], and PolyDoms (http://polydoms.cchmc.org/polydoms/) [33].

Table 17.6 Comparison with protein sequence-based approaches

SCYPPred (protein sequence-based
approach) (%)

Our method (protein sequence-based
approach) (%)

Accuracy 66.3 75.6

Specificity 66.3 85.6

AUC 65.4 66.6
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Table 17.7 Useful web resources for SNPs functional annotation

Web resources URL Comments

dbSNP [96, 97] http://www.ncbi.nlm.nih.gov/
SNP/

Archive for genetic variation,
including SNP data

Ensembl [98] http://www.ensembl.org/ Produce and maintain automatic
annotation on SNPs

UCSC [99] http://genome.ucsc.edu/ Genome database, provides genome
browser, gene sorter, blat search
function

JSNP [100] http://snp.ims.u-tokyo.ac.jp/ A repository of Japanese SNP data

HGVBase [101] http://hgvbase.cgb.ki.se/ Public genotype phenotype database

HGMD [102] http://www.hgmd.org/ Mutation database with many
annotations

Swiss-Prot [103] http://us.expasy.org/ Protein database with extensive
variant annotations

CGAP-GAI
[104]

http://cgap.nci.nih.gov/ Cancer Gene Anatomy Project at the
National Cancer Institute, a tool for
viewing candidate SNPs in the context
of EST assemblies

SNPper [105] http://snpper.chip.org/ Novel software for SNP analysis, a
web-based application to automate the
tasks of extracting SNPs from public
databases

BioPerl [106] http://www.bioperl.org/ A programming application program
interface (API) for bioinformatics
analysis, open-source software

Genewindow
[107]

http://www.genewindow.nci.nih.
gov/

Interactive tool for visualization of
variation, represent genomic variation
intuitively

LS-SNP [30,
108]

http://modbase.compbio.ucsf.edu/
LS-SNP/

Large scale nsSNP annotation
software

MutDB [109] http://mutdb.org/ Annotate genomic variants with data
that assists in functional annotation,
contains protein structure annotations
and comparative genomic annotations

PolyDoms [33] http://polydoms.cchmc.org/ Genome database for the nsSNPs, a
whole genome database for the
identification nsSNP

PolyMAPr [73] http://pharmacogenomics.wustl.
edu/

Programs for polymorphism database
mining, annotation, and functional
analysis

PromoLign
[110]

http://polly.wustl.edu/promolign/
main.html

A database for upstream region
analysis and SNPs

PupaSuite [111] http://pupasuite.bioinfo.cipf.es/ A tool for the selection of relevant
SNPs within a gene

(continued)
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LS-SNP stands out as a useful resource because it provides annotations of nsSNPs
that have been mapped to homology models from the MODBASE (http://modbase.
compbio.ucsf.edu/modbase-cgi/index.cgi) [34] dataset.

17.6.2 Prediction of the Functional SNPs

17.6.2.1 Predicting Functional SNPs in Coding Sequence (Web
Resources Are Reviewed in Table 17.8)

According to the wide availability of functional data on proteins and the evidence
that regulatory and coding SNPs are most likely to affect disease [35–39], much
effort has been invested in predicting the function of non-synonymous mutations.
The key point is identifying whether a particular mutation will be tolerated [40].

Researchers have taken several approaches to predict the function of nsSNPs.
Almost all methods use categories, discrete or continuous valued features to
predict a deleterious mutation. Features usually based on sequence, structure, or
known function. To classify whether a mutation will be tolerated, a training set is
usually constructed of mutations known to be deleterious. Some researches use
experimental amino acid substitutions as training sets [41–44], for example, sat-
uration mutagenesis experiments where mutation severity is determined in activity
assays [41, 43, 45–47]. Others use substitutions based on disease-associated human
alleles [30, 31, 48, 49], such as multiple sequence alignments where tolerance to
mutation is derived from evolutionary analyses of sequence positions [50], or
known deleterious human mutations [45, 51].

The earliest studies using sequence conservative properties to analysis muta-
tions by a BLOSUM62 matrix [52], which does not take into account the sequence
or structural context of the mutation. Further efforts were employed to include
position-specific conservation estimates and protein structural information [47, 53,
54]. Sorting Intolerant From Tolerant (SIFT) [55], based on a position-specific
scoring matrix (PSSM), find that 25 % of nsSNPs in dbSNP are likely to affect

Table 17.7 (continued)

Web resources URL Comments

SNP function
portal [75]

http://brainarray.mbni.med.
umich.edu/Brainarray/Database/
SearchSNP/snpfunc.asp

A web database for exploring the
function implication of SNP alleles

SNP@Promoter
[112]

http://variome.kobic.re.kr/
SNPatPromoter/

A database of human SNPs within the
putative promoter regions

SNP3D [113] http://www.snps3d.org/ Annotations of structure, systems
biology, evolution and alternative
splicing

All the web resources in this table are free charged

298 L. Li and D. Wei

http://modbase.compbio.ucsf.edu/modbase-cgi/index.cgi
http://modbase.compbio.ucsf.edu/modbase-cgi/index.cgi
http://brainarray.mbni.med.umich.edu/Brainarray/Database/SearchSNP/snpfunc.asp
http://brainarray.mbni.med.umich.edu/Brainarray/Database/SearchSNP/snpfunc.asp
http://brainarray.mbni.med.umich.edu/Brainarray/Database/SearchSNP/snpfunc.asp
http://variome.kobic.re.kr/SNPatPromoter/
http://variome.kobic.re.kr/SNPatPromoter/
http://www.snps3d.org/


Table 17.8 Web resources and tools for predicting the function of SNPs

Web
resources

URL Comments

SIFT [55] http://blocks.fhcrc.org/sift/
SIFT.html

Online tool for sequence-based annotation of
mutations, nonsynonymous amino acid SNP
effect

PolyPhen
[50]

http://www.bork.
embl-heidelberg.de/
PolyPhen/

Server for functional analysis of mutations,
nonsynonymous amino acid SNP effect

SNP3D [31] http://www.snps3d.org/ Annotations of structure, systems biology,
evolution and alternative splicing

SNPeffect
[114]

http://snpeffect.vib.be/index.
php

Annotations based on structure, catalysis and
cellular process, nonsynonymous amino acid
SNP effect

PupasView
[115]

http://pupasview.bioinfo.
ochoa.fib.es/

Nonsynonymous amino acid SNP effect,
exonic splicing enhancer SNP identification,
splice site SNP identification, intronic/
upstream, downstream regulatory region, or
undiscovered exon SNP identification

SNPselector
[116]

http://primer.duhs.duke.edu/ Haplotype-tagging SNPs, splice site SNP
identification, intronic/upstream, downstream
regulatory region, or undiscovered exon SNP
identification

TAMAL
[117]

http://neoref.ils.unc.edu/
tamal

Haplotype-tagging SNPs, nonsynonymous
amino acid SNP effect, splice site SNP
identification, intronic/upstream, downstream
regulatory region, or undiscovered exon SNP
identification

PicSNP
[118]

http://plaza.umin.ac.jp/
hchang/picsnp/

Catalog of nonsynonymous SNPs in the
Human Genome, gene-centric mutation
annotation,

TopoSNP
[119]

http://gila.bioengr.uic.edu/
snp/toposnp/

Protein structural annotations of SNPs

MutDB
[109]

http://www.mutdb.org/ A topographic database of non-synonymous
SNPs, protein structural information of SNPs

PARSESNP
[120]

http://www.proweb.org/
parsesnp/

Predict the locations, effects of SNPs and
severity of missense changes

LS-SNP [30,
108]

http://alto.compbio.ucsf.edu/
LS-SNP/

A genomic scale software pipeline to annotate
nsSNPs

PMUT [48] http://mmb2.pcb.ub.es:8080/
PMut/

Annotation of pathological mutations on
proteins

ESEfinder
[121]

http://rulai.cshl.edu/tools/
ESE/

Rapid analysis of exon sequences to identify
putative ESEs

RESCUE-
ESE [122]

http://genes.mit.edu/
burgelab/rescue-ese/

Identify candidate exonic splicing enhancers in
vertebrate exons

PipMaker
[123]

http://pipmaker.bx.psu.edu/
cgi-bin/pipmaker

Identify conserved segments and for producing
informative, high-resolution displays of the
resulting alignments

(continued)
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protein function. SIFT has recently been applied to SNPs in both DNA repair
genes and separately to BRCA1 [56].

Sunyaev et al. [57] included protein structural features in their study to classify
and survey non-synonymous SNPs. They compared disease-associated mutations
in orthologous genes and human cSNPs. Both protein structural information (such
as solvent accessibility, location within beta strands or active sites) and evolu-
tionary information (evolutionary conservation) were taken into account to assess
local functionality for a given position. The authors found that approximately
70 % of disease-associated mutations were in protein structural sites described
above and most likely to affect protein function.

Saunders and Baker [45] assessed different features for prediction of intolerant
mutations by following the analysis of Sunyaev et al. and Chasman and Adams.
Decision trees and a linear logistic regression were applied to find that a protein
structure-derived solvent accessibility term (C density) and an evolutionary term

Table 17.8 (continued)

Web
resources

URL Comments

Vista [124] http://genome.lbl.gov/vista/
index.shtml

Visualizing global DNA sequence alignments
of arbitrary length. Intronic/upstream,
downstream regulatory region or undiscovered
exon SNP identification

ECR
browser
[125]

http://ecrbrowser.dcode.org/ A tool for visualizing and accessing data from
comparisons of multiple vertebrate genomes.
Intronic/upstream, downstream regulatory
region or undiscovered exon SNP identification

rVISTA
[126]

http://rvista.dcode.org Evolutionary analysis of transcription factor
binding sites. Intronic/upstream, downstream
regulatory region SNP identification

Promolign
[110]

http://polly.wustl.edu/
promolign/main.html

A database for upstream region analysis and
SNPs. Upstream (promoter) region SNP
identification

MAPPERa

[127]
http://bio.chip.org/mapper/
mapper-top

A platform for the computational identification
of transcription factor binding sites (TFBSs) in
multiple genomes. Upstream (promoter) region
SNP identification

Match*
[128]

http://www.gene-regulation.
com/pub/programs.
html#match

Search potential binding sites for transcription
factors (TF binding sites) nucleotide
sequences. Intronic/upstream, downstream
regulatory region SNP identification Intronic/
upstream, downstream regulatory region SNP
identification

BLAST
[129]

http://www.ba.itb.cnr.it/
BIG/Blast/BlastUTR.html

Sequence analysis tool, UTR regulatory region
SNP identification

All the web resources and tools in this table are free charged
a The online tool needs register before using
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derived from a PSSM matrix (SIFT) were the most accurate terms for prediction.
They found that in both human alleles and in vitro cases, the SIFT and Cdensity
terms classified the best, and that the normalised B-factor and Sunyaev derived
structural rules did not improve classification accuracy when incorporated with the
former terms in a combined analysis. Cai et al. applied a Bayesian method for
predicting disease-associated SNPs and obtained relatively low false positive error
rates, in exchange for a relatively high false negative rate [58].

Among recent researches, classification tools based on SVMs or decision trees
and the best features for classification based on structural and evolutionary
properties showed better performance. Structurally, solvent accessibility has
consistently been shown to be important in determining whether a mutation will be
tolerated [41, 45, 59, 60]. Evolutionarily, nontolerated mutations inferred using a
PSSM matrix are generally better than using positional conservation approaches
[45].

The widely accepted and easy to use tools and web resources provided for
functional annotation of variation are PolyPhen55 and SIFT.50. SIFT uses con-
servation in a multiple sequence alignment as its sole feature, and experimental
mutations as its training data. PolyPhen based on human allele data and includes
protein structure data as well as other features. More recently, other methods have
been developed and deployed online, including SNPs3D [31], LS-SNP [30], PMut
(http://mmb2.pcb.ub.es:8080/PMut/) [48], the SAP prediction method (http://
sapred.cbi.pku.edu.cn/) [61], Screening for Nonacceptable Polymorphisms (SNAP,
http://cubic.bioc.columbia.edu/services/SNAP/) [62], Predicting the Amino Acid
Replacement Probability (Parepro http://www.mobioinfor.cn/parepro/) [63] and
Protein Analysis Through Evolutionary Relationships (PANTHER, http://www.
pantherdb.org/) [64]. LS-SNP and the method SNAP are two more recent additions
to this library of tools that are the SVM utilized and have web sites available for
prediction.

Synonymous variation has been shown to be functional as well. Mutations can
occur in splicing factor binding sites such as intron–exon splice sites [65, 66],
especially the exonic splicing enhancers (ESEs), which are short sequences that
occur in exons, and encourage exon recognition by the cell’s splicing machine.
Mutation in ESEs may affect mRNA splicing and causing exon skipping [22].
Furthermore, it has been shown that mutations that affect mRNA splicing are the
most common type of mutations in neurofibromatosis type 1 [67]. A recent review
highlights the importance of splicing function on genetic disease [68]. Disease
associated variation that disrupts ESEs were found in the breast cancer-associated
genes BRCA1 [69, 70] and BRCA2 [71].

Fairbrother et al. reported the original approach to the analysis of variation that
disrupts ESEs. They aligned SNPs that are in predicted ESE sites and selected out
nearly 20 % of the polymorphisms that are most notable near splicing sites [72].
Nowadays, several tools available for annotation of splicing effects caused by
synonymous variation, including Polymorphism Mining and Annotation Programs
(PolyMAPr http://pharmacogenomics.wustl.edu/) [73], PupaSuite (http://
pupasuite.bioinfo.cipf.es/) [74] and the SNP Function Portal [75]. Motif or
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position specific scoring matrix (PSSM) are generally used in these resources to
predict of splicing signals or known sites in humans or comparative sites in model
organisms such as ESEFinder [76].

17.6.2.2 Predicting Functional SNPs in Non-coding Sequence

SNPs affecting transcription processing (e.g., splice site recognition) may also
occur within the intronic portion of a splice site or within the 50- or 30-UTR of an
exon. Introns are important, although they do not code for proteins, because they
contain sequences that dictate other attributes of how the protein is made. Introns,
exonic UTRs, and noncoding regions upstream and downstream of genes are
known to contain various regulatory elements important for transcription and
translation [77–79]. Continued advancements in the genome have made it clear
that noncoding regions are far from unimportant.

It is difficult to annotate and predict non-coding SNPs, so only a few studies that
have attempted to examine the relationship between gene expression and variation.
Most of the projects combined computational methods with experimental analysis
of gene expression levels using microarrays. Cowles et al. focused their studies on
the expression levels in an F1 hybrid mouse and addressed the problem of
removing trans-acting factors [80]. Wittkopp et al. found that most of the genes
with significant expression level differences had cis-regulatory differences by
comparing differences in gene expression between closely related Drosophila
species [81]. Hoogendoorn et al. have screened different promoter variants to
identify haplotypes that are likely to affect gene expression [82–84]. Later,
Buckland et al. found that approximately 18 % of the variants altered expression
levels with the ability of 20 variant promoters on chromosome 21 [85].

Very little bioinformatics research has been performed to build predictors of
variation that is likely to affect gene expression levels. Currently, computational
way of roughly estimating whether a variant will affect expression levels is
identifying whether the polymorphism sites in a known regulatory motif. Consite
is a method that predicts transcription factor binding sites [86, 87]. PupaSNP
Finder is a tool for identifying SNPs that could have an effect on transcription [74,
88]. Using Ensembl, the authors map SNPs in dbSNP to transcription factor
binding sites, intron/exon border consensus sequences, ESE sequences and vari-
ations that are nonsynonymous. rSNP_Guide is another resource which contains
annotations of SNPs based on potential effects to regulation [89, 90].

Accurate prediction of genetic regulatory networks appears to be in its infancy
because transacting regulation appears to be more complicated [91–94]. Recently,
sequence based prediction of expression was shown to be feasible in Drosophila
employing the sequences of transcription factor binding sites [95]. However, this
approach was failed to work for changes as small as a SNP.
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17.7 Conclusion

Genetic variations are exponentially increasing volume of sequence data in public
and private databases. As databases of genome data continue to grow, our
understanding of the genome grows as well. SNPs, the widespread genetic changes
in the genome, are important markers in many studies that link sequence variations
to phenotypic changes. SNPs provide opportunities to find detrimental mutations
which related to a variety of diseases, and serve as a powerful tool for the dis-
covery of high-risk people, disease gene identification, drug design, and funda-
mental biology research.

Bioinformatics play an important role in SNPs discovery and analysis. Powerful
approaches for investigating the molecular basis of disease were provided. And we
addressed human SNPs prediction from DNA sequence by developing an effective
approach with the extract sequence information. Besides, tools including both
computational procedures for data analysis as well as methods to efficiently store
and retrieve information were developed.

In future, with the progress of sequencing projects and increase SNP- related
research, more data will be gained for analysis and integrate. Bioinformatics,
which provides scientists with access to the genomic information, will exhibits
tremendous potential for playing a major role in the SNP discovery and functional
analysis and become an integral part of genetics. Many sophisticated, extremely
valuable, easily-accessible and user-friendly tools will be developed. At the same
time, further insights and difficult data management still challenges bioinformatics
scientists. The integration of bioinformatics tools and recourses for further geno-
mic biomedical research are urgently needed.
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Chapter 18
An Application of QM/MM Simulation:
The Second Protonation of Cytochrome
P450

Peng Lian and Dongqing Wei

Abstract The multiscale model strategy, hybrid quantum mechanics and molec-
ular mechanics (QM/MM), has become more and more prevalent in the theoretical
study of enzymatic reactions. It combines both the efficiency of the Newtonian
molecular calculations and the accuracy of the quantum mechanical methods.
Simulation using QM/MM multiscale model may be one of the most promising
approaches that could further narrow the gap between the theoretical models and
the real problems. It is capable of dealing with not only the conformational
changes of biomacromolecules, but also the catalytic reactions. Herein, we
reviewed some of our recent work to demonstrate the application of the QM/MM
simulations in exploring the enzymatic reactions.

Keywords QM/MM � Conformational changes � Catalytic reactions � Enzymatic
reactions

18.1 Introduction

Ever since the hybrid quantum mechanics and molecular mechanics (QM/MM)
method has been introduced by Warshel and Levitt in 1976 [1], it has become a
valuable tool in investigating organic/inorganic, solid-state, or reactions in explicit
solvents. In the studies of biological systems, the QM/MM approach has been
widely applied after Field, Bash and Karplus developed a combined potential of
semi-empirical QM and the CHARMM MM force field in 1990 [2]. Nowadays, it
becomes one of the most popular approaches in studying the mechanism of
enzymatic reactions.
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QM/MM method combines both the accuracy of the quantum mechanical
methods and the speed of the force field based molecular calculations. The fun-
damental idea is that the system can be partitioned into different regions and then
be described by different levels of approximations. As is shown in Fig. 18.1, for an
enzymatic reaction, the ligand and substrate in the active site are usually be treated
as QM region which is then calculated by the more accurate quantum approaches,
including semi-empirical, ab initio, density functional theory (DFT) quantum
mechanics etc. While the other part of the enzyme and the solvent environment are
partitioned as MM region, which could take advantage of the high speed of the
force field based molecular calculations. The quantum mechanical treatment of the
QM region allows for modeling the electronic rearrangement in chemical bond
making and breaking, while the force field modeling of the MM region allows for
exploring the effects of conformation change of the enzyme and solvent envi-
ronment on the enzymatic reactions.

18.2 The QM/MM Method

There are two general types of QM/MM, the additive approach and the subtractive.
For the additive QM/MM approach, the energy of the entire system could be
written as bellow,

ETotal ¼ EQM þ EMM þ EQM�MM ð18:1Þ

The total energy (ETotal) consists of three parts, the energy of the QM region
(EQM), the energy of the MM region (EMM) and the interaction energy between
QM and MM region (EQM-MM).

Fig. 18.1 A schematic
diagram of QM/MM method

312 P. Lian and D. Wei



Different from the additive QM/MM approach, the energy function of the
subtractive scheme is shown as bellow,

ETotal ¼ ETotalðMMÞ þ EQMðQMÞ � EMMðQMÞ ð18:2Þ

In this function, ETotal(MM) is the total energy of the entire system from
molecular mechanics level calculations. EQM(QM) represents the quantum level
calculations of the inner QM region of the whole system. EMM(QM) is the
molecular mechanics level energy of the QM region of the system. For subtractive
QM/MM, the entire scheme is actually the MM calculation of the entire system
with a certain region of the system has been cut out and treated at the QM level.
Therefore, this method is straightforward and there is no need to deal with the
QM–MM interaction explicitly. However, a calculation of the QM region at both
the molecular level and quantum level is required, which means a complete set of
MM parameters for the inner region is necessary. Generally, MM parameters for a
chemical reaction are difficult to obtain, which limits the application of the sub-
tractive QM/MM method.

In order to balance the accuracy and the required computational resource, a QM
region with a proper size is critical for an effective QM/MM calculation. For small
molecule reactions, if the reactant could be fully partitioned to the QM region, the
cutting-covalent bond problem can be avoided. Otherwise, special treatment of the
cutting-covalent bond is ineluctable. Generally, there are two wildly used
boundary schemes, the link-atom approach, and the localized-orbital approach. For
the link-atom scheme, the basic idea is to introduce an additional atom L in the
cutting-covalent bond to cap the free valence of the QM region atom. This link
atom L is usually a hydrogen atom; it is not a real part of the system, only to
saturate the free valence of the QM atoms. In order to cap the QM region, the
localized-orbital schemes are trying to put a set of hybrid orbitals at the boundary.
Some of these orbitals are kept frozen so that they do not participate in the SCF
iteration. This method could date back to the birth of the QM/MM scheme [1].
There are many elaborated schemes, i.e., Local Self-Consistent Field (LSCF) [3],
Frozen Orbitals [4], and Generalized Hybrid Orbitals (GHO) [5]. No matter for
which schemes, the cutting covalent bond should better be unipolar and not
involved in conjugative interactions, for instance, a single C–C bond.

18.3 QM/MM Study on the Mechanism of the Second
Protonation of P450cam

Cytochrome P450 catalyzes various stereospecific and regioselective processes of
oxygenation of the substrates. It is a superfamily of mono-oxygenases with an
immense biological impact of drug metabolism [6–10]. According to the previous
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studies, the catalytic cycle of P450 enzymes could be summarized in Fig. 18.2
[10–15].

There are two protonation steps in this cycle. The protonation of the ferric
peroxo (or ferric superoxo, S5) species and the subsequent proton transfer that
produces the iron (IV) oxo porphyrin p-cation radical intermediate (Compound I,
Cpd I). Cpd 0 is a precursor of Cpd I, and, it was not well characterized until
Naruta and co-workers synthesized the similar ferric hydroperoxo porphyrin
complex successfully [17]. The second proton transfer, which relates to the gen-
eration of Cpd I from Cpd 0 is of great interest [13, 16, 18–25].

The second proton transfer would lead to either the coupling process or the
uncoupling one. In coupling, the proton is transferred to the distal oxygen (denoted
as O(d). See Fig. 18.3) of Cpd 0, then the O–O bond is cleaved and Cpd I is
generated. In uncoupling, the proton is delivered to the proximal oxygen [denoted
as O(p)] of Cpd 0, then a hydrogen peroxide is produced and the enzyme goes back
to its resting state. These two oxygen atoms (O(d) and O(p)) compete against each
other for protons and affect the turnover rate of the catalysis of substrates.

Fig. 18.2 The catalytic cycle of P450. Possible mechanisms [16] for coupling and uncoupling
reactions are shown in blue and red, respectively
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However, the factors that determine the catalytic cycle of P450 goes to coupling or
uncoupling remain to be clarified.

According to the previous studies, proton transfer channels seem to play a role
in the second protonation of P450cam. There are two main channels in P450cam,
Glu366-Thr252 and Asp251-Thr252 [10, 16, 19, 26, 27]. Glu366-Thr252 channel
provides a proton to the active site via the Poulos–Kraut mechanism [15, 20].
However, Glu366 is difficult to get re-protonated after offering its proton, that’s
because for Glu366, there isn’t any direct connections to bulk water; therefore, the
function of Glu366 in the second protonation is questionable. In contrast, the
Asp251-Thr252 channel connects the active site to the bulk solvent and shuttles
the proton via the Asp251-Arg186 salt bridge [15, 20]. Moreover, according to the
previously computation, the energy barrier for proton transfer in Glu366-Thr252
channel is 6.6 kcal/mol, while it is essentially barrierless in Asp251-Thr252
channel [20]. Thus, in this study, we consider on the Asp251-Thr252 channel
exclusively.

Asp251 plays a vital role during the proton transfer [15, 19, 22, 25]. Experi-
mental results on the activities of P450cam and its mutants are summarized in
Table 18.1. It shows that mutations on Asp251 reduce the catalytic rate signifi-
cantly, while having little effect on the product formation. That’s probably because
Asp251 controls the proton shuttle through a ‘‘carboxylate switch’’ mechanism
[15, 27]. However, mutations on Thr252 exhibit interesting effects [16]. If it was a

Fig. 18.3 Superposition of the five models A–E. These models are different only in the position
of the hydronium probe (H3O+). The prophyrin, the hydroperoxo moiety and the hydronium
probe are represented in ball-and-stick. The P450cam enzyme is shown in carton. The Asp251-
Thr252 channel (dash line) and the Glu366-Thr252 channel (dot line) are shown schematically
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medium-sized residue with hydrophilic side-chain, like Thr and Ser, the coupling
product, 5-exo-hydroxycamphor could be produced quickly. Otherwise, if it were
replaced by an amino acid with large hydrophobic side-chain, like Val and Ile,
both the reaction rate and the ratio of coupling product would decrease signifi-
cantly. For mutants with a short side-chain, like Ala and Gly, uncoupling could be
observed. It seems the subsequent effect of the Thr252 mutations depends on the
volume and the hydrophobicity of its side-chain.

Recently, theoretical studies [16] on P450cam at QM/MM level have shown
that proton transfer pathways which are constructed by key residues and water
molecules may be responsible for the competition between coupling and uncou-
pling. Possible pathways, e.g. Asp251-Wat901-Thr252-FeOOH, Asp251-Wat901-
FeOOH and Asp251-Wat901-WatS-FeOOH, were explored. It has been found that
with an extra water molecule (WatS) in active site, the uncoupling barriers will be
reduced around 10 kcal/mol for T252X (X = V, A and G). In addition, the low
barrier of Grotthuss mechanism (around 2–3 kcal/mol [35]) indicates that the
proton could be transferred freely between water molecules. Therefore, there may
be multiple pathways for the proton being transferred to the hydroperoxo unit.
Thus, the observed coupling/uncoupling in Thr252 mutants may be owing to the
change of the proton-transfer pathways.

Herein, we explored the relationship between proton-transfer pathways and the
competition of coupling/uncoupling. Five models, A–E, representing possible
pathways of the second proton transfer were built and studied via CPMD/MM
dynamics simulations.

18.4 Methods

The crystal structure, PDB ID 1DZ8 [15], was used as the initial coordinates. The
protocols developed by Thiel’s group [16, 36–39] were employed for protonation
and solvation procedures. In order to obtain enough space in the active site for
studying possible proton transfer pathways in all mutants and the wild-type
enzyme T252G mutant was introduced. To make sure the intrinsic proton affinities
of O(p) and O(d) are investigated the substrate camphor was removed. Then the
deMon package [40] were used to optimize the geometry of the HOO moiety,
heme unit and the axial Cys ligand in gas phase. After that, an energy minimi-
zation was performed on the whole system. During the minimization the heme
unit, the sulfur and the Cb of Cys357 were fixed. The OPLS all-atoms force field
and GROMACS package were used.

Five models (A–E) shown in Fig. 18.3 were built with the previously optimized
system and different probes (H3O+). In model A which is for the wild-type
enzyme, both the oxygen atom [O(aq)] and the to-be-transferred proton [H+(aq)] of
the probe were kept the same positions as in the hydroxyl group of Thr252 in
Wang et al.’s study [39]. B and D were built to simulate the T252S and T252 V
mutants, respectively [16]. Model C served as a reference. In this model, both
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O(aq) and H+(aq) of the probe were placed equidistantly to O(d) and O(p).
Meanwhile, four atoms, O(aq), H+(aq) from the probe, O(d) and O(p) of the
hydroperoxo unit, were kept on the same plane with H+(aq) closer to the peroxide
group. The other two protons of the probe were optimized symmetrically
according to the orientation of the peroxide bond and the O(aq)–H+(aq) bond of
the probe. E is to cover Oprea et al.’s two-state mode water channel [41]. Different
from the other channels, this channel is made up by waters and starting from the
down side of the porphyrin ring (we define the peroxide side as up).

Each model was dealt with the same procedure below. The probe, the heme unit
and the side chain of Cys357 (49 atoms in total) were defined as QM region and
calculated by CPMD program (http://www.cpmd.org/). For QM calculations, the
GGA DFT method BLYP [42] and Vanderbilt ultrasoft pseudopotentials (USPPs)
[43–45] were used. The cutoff of the wave function was 25.0 Rydberg. The rest of
each system was the MM part, and was described by the OPLS all-atom force field
[46, 47] as implemented in GROMACS [48–50]. For the MM part, atoms within
15 Å of the QM region and all the polar residues and ions in the system were
chosen as inner layer. The s-wave partial wave expansion method which was
provided by the GROMACS-CPMD QMMM interface [51] was used to take
account for the polarization effect of the inner layer atoms. The link atom scheme
was used as the boundary of QM/MM [52].

Preconditioned conjugate gradients method [53] was used to perform the QM/
MM geometry optimizations. The convergence of geometry was set to
5 9 10-3 Å. During the geometry optimization, coordinates of O(aq) and H+(aq)
of the probe, O(d) and O(p) in the hydroperoxo moiety, the iron, the sulfur and the
Cb atom of Cys357 were fixed. The MM part was equilibrated to 300 K in 5 ps
using the Berendsen algorithm [54] with the QM region fixed. After that the QM/
MM ab initio MD was performed. For QM region, the Car-Parrinello molecular
dynamics [55] with a time step of 5 a.u. and a fictitious electron mass of 400 a.u.
was employed. For MM region, the leap-frog algorithm with the time step of 1 fs
and the cutoff for non-bond calculations as 1.0 nm was used. The total ab initio
simulation time was 37.5 ps. Similar approaches have been successfully applied to
other P450 enzymes and various bio-macromolecular systems [56–59].

18.5 Results and Discussion

According to our simulations, coupling is thermodynamically more favorable than
uncoupling by about 77 kcal/mol. However, among all of the five models, only two
of them, A and B, lead to coupling. The other three, including the reference model
C, generate uncoupling products. Both coupling and uncoupling were exothermic
and proceeded rapidly and without a barrier (or too small to be observed). It agrees
with former studies on the exothermic characters [13, 18, 21, 60].
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18.5.1 The Bond Properties

The progress of a reaction could be indicated from the dynamical changes of bond
lengths and bond orders. In this study, we captured the bond lengths of key atoms
during the first 200 fs and the related Mayer bond orders during the reaction
(50 fs) (Fig. 18.4).

Fig. 18.4 The time-dependent bond length and bond order evolution in simulations
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In coupling cases (Model A and B), although the probe was at different path-
ways, both show a strong negative correlation between bond H+(aq)–O(d)
(decreasing) and O(d)–O(p) (increasing). The proton transfer and the O(d)–O(p)
cleavage are coupled. This agrees well with former studies which show that the
O(d)–O(p) cleavage is assisted by the second proton transfer [13, 19, 22]. In
uncoupling cases (Model C, D and E), the Fe–O(p) bond didn’t break immediately,
but was weakened significantly. That is probably because the unoccupied orbital of
the iron atom was taken up by the lone pair electrons of one oxygen atom of H2O2.
The formation of H+(aq)–O(p) bond and the stretching of Fe–O(p) bond were also
proceeding simultaneously.

Based on these observations, we conclude that for both coupling and uncou-
pling the proton transfer is associated with the O(d)–O(p) cleavage or the Fe–O(p)
stretching.

18.5.2 Electronic Structural Properties

During the reaction the evolution of spin densities and natural charges of key
atoms and groups were monitored. NBO population analysis [61] was performed at
B3LYP/BS level (BS: LANL2DZ for Fe and 6-31G* for other atoms) with
Gaussian09 [62]. The spin densities and natural charges for coupling (Model A)
were shown in Fig. 18.5a, b, and uncoupling (Model E) in Fig. 18.5c, d,
respectively.

In coupling the increase of negative charge on O(d) is accompanied by the
decrease of the charge on porphyrin. Meanwhile, the spin density on O(d) was not
affected, while that on O(p) and porphyrin increases. It suggests that there is an
electron transfer from porphyrin to the hydroperoxo unit along with the proton
transfer. This electron flaw was probably to neutralize the positive charge of the
incoming proton. After the heterolytic cleavage of the O(p)–O(d) bond, a water
molecule, Wat903, is produced. Thus, in this step it follows a proton-coupled
electron transfer (PCET) mechanism [20]. In the uncoupling reaction, spin density
on the hydrogen peroxide diminishes during the reaction. The electron that is used
to neutralize the charge on the proton is pumped from Fe and Cys ligand. Por-
phyrin does not contribute much to the electron transfer in uncoupling.

The porphyrin ring plays different roles in both reactions. During coupling, the
heterolytic cleavage of the O(p)–O(d) bond generates a ferryl species with a high
valent Fe atom, which is stabilized by the charge transfer from the porphyrin. In
uncoupling, after the Fe(III)–O(p) bond is broken the enzyme goes back to its
resting state. It seems in uncoupling it is not required to pump additional electrons
into the hydroperoxo unit. It shows that although porphyrin can stabilize the ferryl
species formed in the coupling process, it does not have preference on either the
coupling or the uncoupling in the second proton transfer of P450cam.

In this application, our study shows that the coupling process is associated with
the proton delivery pathways represented in Model A and B, while the uncoupling
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with those in Model C, D and E. This suggests that besides the intrinsic proton
affinities of O(d) and O(p) [The natural charge on O(d) is about -0.56e, while
-0.32e on O(p)], the proton delivery pathway plays an vital role in determine the
coupling and uncoupling as well. It implies the importance of the topology of
active site. Therefore, it explains the tricks of the wild-type enzyme. In WT, the
proton is delivered through pathway the Asp251-Thr252 channel (Model A),
which leading to a coupling process exclusively. When this channel is destroyed
by mutation, for instance, when Thr252 is mutated to Ala or Gly, it increases the
probability of the proton undergoing other pathways, for example, pathways in
Model C, D and E, thus leads to uncoupling reactions.

18.6 Conclusions

QM/MM method is a powerful tool for tackling the mechanism of the enzymatic
reaction. In this article, we briefly reviewed the main idea of the methodology at
first. Then, the mechanism of the second protonation of P450cam was taken as an
example to demonstrate the application of QM/MM. In this example, we built five
models (A–E) which represent five possible proton transfer pathways to explore

Fig. 18.5 Spin densities (upper panels) and natural charges (lower panels) during the reactions
of both coupling (a, b) and uncoupling(c, d)
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the key factors that determine the coupling and uncoupling reactions. It is found
that two of them (A and B) led to the coupling, while the other three (C–E)
generated uncoupling products. During each reaction, bond properties and the
electronic structure of QM region show that in coupling, O(d)–O(p) cleavage,
proton transfer and electron delivery are coupled, while in uncoupling, stretching
of the Fe–O(p) bond and proton transfer take place spontaneously. Moreover, the
proton transfer pathway seems to play a vital role in the determination of the
reactions of the second proton transfer. The enzyme is likely to keep a high
coupling rate by maintaining a specific proton transfer channel, the Asp251–
Thr252 channel, through which the second proton is transferred to the ideal
position for coupling reaction.
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Part V
Application of Structural Bioinformatics

in Drug Design



Chapter 19
Recent Progress on Structural
Bioinformatics Research of Cytochrome
P450 and Its Impact on Drug Discovery

Tao Zhang and Dongqing Wei

Abstract Cytochrome P450 is predominantly responsible for human drug
metabolism, which is of critical importance for drug discovery and development.
Structural bioinformatics focuses on analysis and prediction of three-dimentional
structure of biological macromolecules and elucidation of structure-function
relationship as well as identification of important binding interactions. Rapid
advancement of structural bioinformatics has been made over the last decade. With
more information available for CYP structures, the methods of structural bioin-
formatics may be used in the CYP field. In this review, we demonstrate three
previous studies on CYP using the methods of structural bioinformatics, including
the investigation of reasons for decrease of enzymatic activity of CYP1A2 caused
by a peripheral mutation, the construction of a pharmacophore model specific to
active site of CYP1A2 and the prediction of the functional consequences of single
residue mutation in CYP. By illustrating these studies we attempt to show the
potential role of structural bioinformatics in CYP research and help better
understanding the importance of structural bioinformatics in drug designing.
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19.1 Introduction

Drug discovery is a time-consuming, costly and complicated process involving
many stages from initial target identification and validation, high throughput
screening of compound library, lead identification and optimization to final
selection of candidates for clinical evaluation [17]. Many advanced technologies
are applied in these component stages, such as microscopic imaging techniques
[4], embryonic stem cell technology [38], lab-on-a-chip technology [27], SNP
technology [44] and so on. More recently, the impressive progress in genome
sequencing, protein expression and high-throughput crystallography and NMR has
significantly accelerated drug development [19]. In addition, protein structure is
considered to play influential role in each stage throughout whole drug develop-
ment process [21]. The methods of structural bioinformatics focused on macro-
molecular structure particularly protein structure also efficiently facilitated target
identification and lead discovery [3].

Generally bioinformatics can be broadly divided into two branches, namely
sequential bioinformatics and structural bioinformatics [7]. Compared with
sequential bioinformatics, structural bioinformatics mainly focuses on macromo-
lecular structure and reveals potential structure-function relationship. The main
advantage of structural bioinformatics over other sequence-based methods lies in
the fact that it can provide more detailed insights into the mechanisms by which
biological events occur. Structural bioinformatics, therefore, can be considered as
a crucial tool for deciphering the biological insights from macromolecular struc-
ture [6]. The methods of structural bioinformatics have been used to investigate
many important biological processes such as blood coagulation [43], ion transfer
through channel [5] and diverse functions of membrane proteins [29].

Cytochromes P450 (CYP) is an important family of oxidative enzymes that exists
in many species and involves in the biosynthesis of endogenous substances and the
metabolism of exogenous compounds. In particular, CYPs play a central role in the
phase I-dependent metabolism of drugs and xenobiotics. It is estimated that CYPs
can metabolize approximately 80 % drugs and other xenobiotics that are present in
the human body [23]. Due to the great importance of CYPs for drug metabolism,
CYPs have attracted substantial attention from the researchers in the field of drug
design and development [13]. For example, whether a drug candidate can be
properly metabolized by CYPs has become an important consideration in the pro-
cess of drug development. In addition, CYP genes contain a large number of genetic
polymorphisms, which are related to inter-individual variation in drug-metabolizing
ability [54]. As a result, the genetic polymorphism of CYPs may cause unexpected
serious clinic consequences. Now, taking into account of individual differences of
CYPs’ activity has also become a critical consideration in drug design [1].

Over the past several decades, there have been many research groups dedicated
to CYPs research for understanding the process of CYP-mediated metabolism and
unraveling the reaction mechanisms of CYPs. However, many important questions
are still largely unanswered due to the complexity of CYPs. These questions
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include how to distinguish their substrates, how to allosterically modulate other
CYP activity and how to lead to individual variation in drug disposition and
metabolism for the genetic polymorphisms of CYPs, etc. With more information
available for CYP structures, the methods of structural bioinformatics may be used
to address these questions and may provide possible solutions in which CYP
protein structure and interaction with small molecules will be considered as the
basis for comprehending these issues.

In this review, three previous studies in our laboratory are presented to dem-
onstrate how the methods of structural bioinformatics have been applied to
understand the effects of a surface mutation on CYP activity [51] and investigate
the interaction of drugs bound within CYP active site with key residues [52] and
construct predictive model for the likely outcomes of nsSNP [47]. By illustrating
these studies we attempt to show the potential role of structural bioinformatics
playing in the CYP research field that is an essential component for designing
better drugs [9].

19.2 Study of Long-Range Effects of Peripheral Mutation
in CYP1A2

19.2.1 CYP1A2 Structure and F186L Mutant

CYP1A2 is a commonly studied member of CYP family since it can metabolize
about 20 % of clinical drugs [46]. CYP1A2 crystal structure bound with naphthof-
lavone has been determined using experimental method [37]. Similar to the struc-
tures of other CYP proteins, CYP1A2 crystal structure contains 12 alpha-helices and
4 beta-sheets (Fig. 19.1a). These secondary structural elements comprise both
conserved and distinct regions among CYP structures. The conserved regions are
associated with the proximal binding sites for heme prosthetic group and other redox
partners such as cytochrome P450 reductase and cytochrome b5 [24]. The distinct
regions constitute the distal surfaces of the substrate binding cavity of CYP1A2.

In vitro and in vivo experiments have found that some genetic variants signifi-
cantly resulted in changes in CYP1A2 activity. To better understand the mechanism
by which genetic variants affect the CYP1A2 activity, the methods of structural
bioinformatics may be suitable to investigate the change in protein structure caused
by the genetic variants. In the first demonstration we will show how to identify
potential reasons for decrease in CYP1A2 activity caused by a mutation of F186L at
the level of protein structure. We chose to study the mutation, F186L, due to three
reasons. Firstly, the in vitro experiment showed that the O-deethylation reaction
rates of 7-ethoxyresorufin and phenacetin were dramatically decreased to about 28
and 12.5 % of the wild-type, respectively. However, the F186L mutation did not
perturb CYP 1A2 protein expression [26]. Secondly, based on the crystal structure of
CYP1A2, F186 residue is situated on the flexible loop between helice D and E near
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the surface of the enzyme, at about 26 Å away from the heme iron atom embedded
inside the active site of CYP1A2 as shown in Fig. 19.1a. Thirdly, the multiple
sequences alignment of CYP1A subfamily shown in Fig. 19.1b demonstrated
100 % conservation of the F186 residue, indicating its importance in maintaining the
normal catalytic function of CYP1A2 [22]. In short, the strong effect on protein
enzymatic activity, the large distance from active site and the high sequence con-
servation of residue contribute to the potential role of this mutation F186L as a long-
range effector. Thus, the study of such peripheral mutation may elucidate the paths
of long-range communication between F186L mutation site and active site and may
also provide a promising direction for future studies of CYPs that have potential
applications in related drug design.

19.2.2 Long-Range Effects of F186L Mutation

In this study we investigated this peripheral mutation by carrying out molecular
dynamics simulation and related structural analyses including protein conformation
analysis and access channel analysis. Based on results from these analyses, we
compared overall and local structures between wild type and mutant and dynamically
explored the formation and collapse of important access channels in both structures.

The structural comparison clearly showed that F186L mutation did not perturb
the global protein conformation of CYP1A2, but increased the structural flexibility
of the protein. Based on the detailed analysis of local structure, we found that the
high flexibility of protein structure was attributed to a collective protein motion
involving mostly the D, E, F helices and their inter-helical loops.

Fig. 19.1 Three dimensional structure of CYP1A2 and the conservation of F186 among eight
CYP1A family proteins in four species. Panel a shows CYP1A2 crystal structure, in which 12
alpha-helices and 4 beta-sheets are marked and two conserved regions, i.e. the proximal binding
sites for heme prosthetic group and redox partners, are colored red and blue, respectively. F186
residue is also shown in CYP1A2 structure and depicted in ball-and-stick model. Panel b is the
partial multiple sequence alignment involving eight CYP1A family proteins
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Furthermore, some of residues involved in such collective protein motion
constituted the entrance to several main substrate access channels. We performed
further investigation on access channel analysis and the results showed that the
collective protein motion significantly affected the state of access channels.
According to the state of access channels, the F186L mutant was found to exist in
two sub-populations of conformational states. Two conformations correspond to
the substrate access channel being either open or closed. Closure of the main
access channel would lead to a decrease in enzymatic activity of the protein. Thus
we proposed an ‘‘access mechanism’’ to rationally explain the long-range effects of
the peripheral mutation F186L on the enzymatic activity of CYP1A2. Addition-
ally, our results also demonstrate that F186L mutation may serve as an allosteric
mutation [10] and the long-range effects of F186L are through structural flexibility
change and population change of protein conformations.

19.3 Pharmacophore Model for Active Site of CYP1A2

19.3.1 CYP Catalytic Cycle

Since the first CYP catalytic cycle was proposed in 1973 [14], the mechanism of
reaction catalyzed by CYPs has been extensively investigated using experimental
and computational methods [2, 40]. Now it is generally accepted that several
sequential steps consist of complete CYP reaction cycle including substrate
binding, electron transformation, compound-I formation, hydrogen and electron
extraction as well as products generation [25].

Substrate binding is generally considered as a rather complicated process in
which several sub-steps are contained, such as substrate recognizing and entering
as well as binding within active site [11]. In addition, substrate binding is also the
initial event in the reaction cycle of CYP and consequently can trigger subsequent
steps by changing the spin state of iron and reducing the redox potential of heme
[48]. As a result, the study of substrate binding is of great importance to CYP-
mediated drug metabolism.

19.3.2 CYP Substrate Binding

With more and more structures available for CYPs, many computational methods
especially the methods of structural bioinformatics have been applied to investi-
gate substrate binding [8, 30, 36]. For instance, few main channels transporting
substrates and water molecules have been identified based on available crystal
structures [45]. The key interactions between substrate and residues have been
observed using molecular dynamics simulation and molecular docking in dynamic
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manner [18, 42]. Other structure-based methods such as quantitative structure-
activity relationship (QSAR) [35] and 3D pharmacophore mode [39] as well as the
similarity analysis of fingerprint between protein and ligand [12] have also been
applied to explore the relation between CYPs and their substrates.

19.3.3 Pharmacophore Model for Active Site of CYP1A2

In the second demonstration, we integrate three methods, namely molecular
dynamics simulation, molecular docking and comparative molecular filed analysis
(CoMFA), together to develop a pharmacophore model of CYP1A2 active site in
terms of the role of residues in substrate binding. There are also three reasons for
choosing CYP1A2 and its substrates as research subject. Firstly, as the major
isoform among all CYP enzymes, CYP1A2 can not only metabolize many drugs
but also active a number of procarcinages to carcinges [15, 46]. Thus, constructing
such pharmacophore model can be quite useful to comprehensively understand the
catalytic mechanism of CYP1A2. Secondly, CYP1A2 crystal structure demon-
strates a narrow and planar active site with relatively small volume [37]. So it is
feasible to conclude the role of key residues in substrates binding by superim-
posing different substrate-binding conformations. Last, but most important, the
typical CYP1A2 substrates have also the planar aromatic group, so that they can
properly fit the unique shape of CYP1A2 active site [55]. When other compounds
with similar structure to CYP1A2 substrates are bound within the binding cavity of
CYP1A2, the similar interactions between functional groups and key residues may
occur. Therefore, the model developed from known substrates will be suitable for
other compounds that are likely to be metabolized by CYP1A2.

In order to construct the pharmacophore model, 17 CYP1A2 substrates shown
in Fig. 19.2 were collected together with related information about molecular
name and the experimentally determined metabolite site as well as their Michaelis
constant (Km) value.

Based on CYP1A2 protein and other molecular structures, we searched for
possible binding conformation of these substrates within the active site of CYP1A2
using molecular dynamics simulation and docking method. We then defined the
likely binding conformations from a large number of conformations. After aligning
all selected binding conformations for 17 substrates, we performed CoMFA to
determine the relation between substrate binding and molecular structure. On the
basis of results from CoMFA we finally constructed the pharmacophore model
specific to CYP1A2 active site, which is depicted in Fig. 19.3b and c.

All results of site-directed mutagenesis experiments and calculation of binding
energy are well agreed with the model. From this model we can obtain important
insights into drug metabolism and drug design. Moreover, this study indicates that
this strategy of combining structural bioinformatics with other structure-based
methods can also be applied into other CYP proteins or enzymes to obtain the
detailed information about protein-ligand interactions.
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19.4 Predicting Functional Consequence of Single Residue
Mutation

19.4.1 Single Nucleotide Polymorphism

Single nucleotide polymorphisms (SNPs) are firmly associated with differences in
phenotypes and disease susceptibility [49]. Typically, SNPs in protein coding
regions may be considered to be more important because of their potential effects
on protein structure and function [41]. These important SNPs are valuable for
understanding the mechanism of disease. Therefore, connecting structural effects
of residue mutations to their functional outcomes is also a major topics in struc-
tural bioinformatics [34]. Many computational tools have been developed to
investigate the associations between amino acid mutations and disease in the
context of protein structure [20, 28].

19.4.2 SNP and Drug Metabolism

As discussed previously, CYPs play an essential role in drug metabolism and can
metabolize almost all clinically used drugs. Consequently, the genetic

Fig. 19.2 The structure of 17 typical CYP1A2 substrates. Their molecular name and the
logarithm value of Michaelis constant (Km) value are also listed below structure. Red ball
represents the metabolite site of each substrate for CYP1A2 and blue ball is the exclusive sphere
of molecule
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polymorphisms in CYP genes may be an important causative factor for the inter-
individual differences in drug metabolism. Many investigations have proved that
non-synonymous SNPs (nsSNPs) of CYP genes could significantly alter drug
efficacy and pharmacokinetics [32]. For instance, the nsSNP enhancing metabolic
activity of CYP can lead to rapid clearance of drugs from the body. Thus these
drugs will not exert their therapeutic effects due to insufficient concentration in the
blood. On the contrary, if the nsSNPs can abolish or reduce enzymatic activity of
CYP, the drugs metabolized by such CYP cannot be metabolized safely and the
associated side effects may occur. Although there are some database for the effects
of nsSNPs on CYPs activity [33, 53], estimating such effects of nsSNPs is also
important for investigating drug responses among different patients and predicting
clinical implication of the novel genetic variants in CYP genes.

Fig. 19.3 The pharmacophore model specific to CYP1A2 active site. Panel a demonstrates the
binding model of 17 substrates into the active site of CYP1A2. The electrostatic and steric maps
in the pharmacophore model of CYP1A2 active site are depicted in Panel b and c, respectively. In
Panel b, the regions favorable for negative and positive charged group are colored in blue and
red, whereas in Panel c the green and yellow surfaces are the region favorable for smaller and
bulky group
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19.4.3 Predicting Functional Consequence of nsSNP

Alterations of CYP activity resulting from mutations are generally considered in
the context of protein structure. Regarding possible structural mechanisms by
which nsSNP and resultant mutation alter CYP activity, there are mainly several
possible interpretations such as altering the physicochemical and geometric
properties of CYP active site and disrupting the stability and folding of CYP
enzyme [21]. Although the computational methods for predicting the effect of
nsSNPs on protein function can be classified into two major types, sequence-based
and structure-based methods, the latter type of method seems more rational. In
addition, the enzyme kinetic results demonstrate that some nsSNPs may affect
CYP activity in a substrate-dependant manner [16, 31]. Therefore, the information
about structural characteristics of drugs that can be metabolized by CYP enzymes
is also useful for predicting the effects of nsSNPs on CYP activity.

In the third demonstration presented here, for more accurate prediction of the
effects of nsSNP on CYP activity we calculated two types of descriptors repre-
senting characteristics of CYP enzyme and specific drugs metabolized by such
CYP, respectively. As shown in Fig. 19.4, the former descriptors mainly reflect the

Fig. 19.4 Two type of descriptors calculated to predict the consequence of nsSNP. The protein-
based descriptors reflected physiochemical properties changes are calculated using the weighted
average features of five amino acids around mutated site according to CYP structure. The
substrate-based descriptors are obtained from the 2D and 3D molecular structure
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alternations of physiochemical properties caused by amino acid substitution. They
include the features difference between original and substituted amino acid as well
as the weighted average features of five amino acids around mutated site according
to CYP structure. On the other hand, the latter descriptors represent the structural
and chemical characteristics of drugs calculated from their 2D and 3D molecular
structure.

Furthermore, we used these two classes of descriptors to develop the model for
predicting the functional effect of nsSNPs on CYP activity. For constructing such
model, total 134 nsSNPs from nine CYP enzymes were collected together with the
relevant data from the drug metabolism studies. In addition, support vector
machine (SVM) and genetic algorithm (GA) were also applied to select the rel-
evant descriptors from all calculated descriptors. After multi-round selection, five
protein descriptors and eight substrate descriptors were finally chosen to construct
the computational model, by which we can roughly estimate the likely impact of
nsSNPs on the CYP activity metabolizing a given substrate. Therefore, this model
will be useful to facilitate the functional analysis of nsSNPs in CYP. Prior to
experimental observation, we can firstly carry out preliminary investigation to
examine whether the unknown single amino acid substitution can cause the
functional changes in CYP enzymatic activity.

19.5 Conclusion

Currently structural bioinformatics has become an invaluable tool for CYPs
research by offering the efficient tools and servers that enable visualization and
analysis of CYP structure and interaction with drugs. Thus, at the atomic level, we
can more deeply understand how CYP activity is affected by genetic, disease and
environmental factor, and we also can make initial prediction whether the new
chemical entity can be metabolized by CYPs [50]. Integrating these information
into the drug development process will facilitate identification of the drug can-
didates with excellent metabolic profile. With the development and application of
more powerful computational methods and tools, we believe that structural bio-
informatics will play an increasingly important role in the CYPs research field and
ultimately accelerate the course of drug development.
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Chapter 20
Human Cytochrome P450
and Personalized Medicine

Qi Chen and Dongqing Wei

Abstract Personalized medicine has become a hot topic ascribed to the devel-
opment of Human Genome Project. And currently, bioinformatics methodology
plays an essential role in personal drug design. Here in this review we mainly
focused on the basic introduction of the SNPs of human drug metabolic enzymes
and their relationships with personalized medicine. Some common bioinformatics
analysis methods and latest progresses and applications in personal drug design
have also been discussed. Thus bioinformatics studies on SNPs of human CYP450
genes will contribute to indicate the most possible genes that are associated with
human diseases and relevant therapeutic targets, identify and predict the drug
efficacy and adverse drug response, investigate individual gene specific properties
and then provide personalized and optimal clinic therapies.

Keywords Personalized medicine � SNPs � CYP450

20.1 Introduction of Human Cytochrome P450

With the rapid development of Human Genome Project and International HapMap
Project, the whole sequencing of human genome has completed, which has greatly
enriched the analysis datasets and experiment references for the researches of
human diseases and drug design. In 1959, Vogel proposed an idea of Pharmaco-
genetics that mainly focused on the researches of genetic variations of human
beings and resulted different drug responses using large amount of genomics
information and methods, so as to improve and discover better methods for new
drug design and medical therapy [1]. Since then, continuously studies about

Q. Chen � D. Wei (&)
State Key Laboratory of Microbial Metabolism, College of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
e-mail: dqwei@sjtu.edu.cn

� Shanghai Jiao Tong University Press, Shanghai
and Springer Science+Business Media Dordrecht 2015,
D. Wei et al. (eds.), Advance in Structural Bioinformatics, Advances in
Experimental Medicine and Biology 827, DOI 10.1007/978-94-017-9245-5_20

341



pharmacogenetics both from experimental and computational respects have been
held and reported in literatures.

According to the pharmacodynamics theory, drugs go thought absorption,
distribution, metabolism and excretion (ADME) after they are taken into human
bodies; the ADME properties are essential for efficient investigations of new drugs
or candidates. Among the four steps, metabolism is the most important and
meaningful one owes to its inclusion of nearly 40 % of the pharmacodynamics
interactions. The metabolic systems of drugs can be regarded as two phases, phase
I and phase II. Oxidation, reduction, and hydrolysis of xenobiotics are involved in
phase I, while phase II contains synthesis and conjugation of phase I products [2].
Different kinds of drug metabolic enzymes participate during the whole process,
such as cytochrome P450, N-acetyl Transferases, Flavin Monooxygenases,
Esterase, Alcohol dehydrogenase (ADH) that work as phase I enzymes and
Methyltransferase, Glutathione S-transferases, Sulfotransferases, N-acetyltrans-
ferases, UDP-glucuronosyltransferases that work as phase II enzymes.

Among all of phase I drug metabolic enzymes, cytochrome P450 superfamily
(officially abbreviated as CYP, also named CYP450) acts as an important role
responsible for the oxidation of endogenous substrates and xenobiotic compounds
like fatty acids, steroids, toxins and 90 % currently used drugs [3–5]. The catalytic
reaction can be summarized as RH + O2 + 2H++2e- ? ROH + H2O, where RH
represents different kinds of substrates. CYP450 is named because these enzymes
have a property to form a complex with CO (Carbon monoxide) and produce a
spectrally identifiable absorption peak at 450 nm. CYP450 enzymes can be found
widely distributed in intestines, liver, lung, kidney and brain of human body; as
well as other species like animals, plants, microorganisms. All the CYP genes can
be divided mainly into CYP1, CYP2, and CYP3 three subfamilies according to the
sequence similarity of their amino acid [3]. There are more than 50 CYP450
enzymes, among which CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and
CYP3A5 are the major drug metabolizing isoforms that metabolize 90 % of drugs.
Figure 20.1 demonstrates the main distribution of drug metabolism by different
families of CYP enzymes.
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drugs metabolized by
different CYP450s
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20.2 Introduction of Personalized Medicine

In current clinical treatments, the metabolism situation of drugs will be of variety
for different patients, as well as the drug efficiency and drug side effects. Drugs
will not have expected efficacy to 30–40 % patients in some circumstance, besides
some adverse drug reactions can be observed in some patients to whom sometimes
much worse effect will happen.

Take Warfarin for example, Warfarin (Coumadin) was introduced into clinical
use in the 1950s to treat and prevent thromboembolic disease. However it is very
difficult to manage the therapy well as the therapeutic index of this drug is very
narrow and patient responses are different individually. Relative studies have
already been taken and it is now clear that CYP2C9 is strongly related to Warfarin
responsiveness [6, 7].

The fact that we can’t predict the exact efficacy and side effect of a drug
preclude the development of pharmacy industry, more and more research insti-
tutions and companies have paid attention to this area recently. Several factors are
responsible for various drug responses, such as age, sex, weight and genetic fac-
tors. Numerous researches about CYP450 genomics represent that the mutations
occur in part of the CYP450 genes are mainly contribute to why different people
has different drug reactions.

These pheromones can be named as the Single Nucleotide Polymorphism
(SNP), which is the mutation of a single nucleotide like substitution, insertion or
missing with in a DNA sequence. As known to all, human DNA is composed of
four kinds of nucleotide which are A (adenine), G (guanine), C (cytosine), and T
(thymine), SNP occurs when one of them is replaced by the others. Among all
three billion DNA base pairs, 99.9 % are identical for all the human beings and the
rest 0.1 % make everyone unique in the world. If over 85 % of these differences
are SNPs, which will be potentially 3 million base pairs total.

Up to March, 25, 2010, 23,653,737 human SNPs have been identified and
updated to Single Nucleotide Polymorphism (dbSNP; http://www.ncbi.nlm.nih.
gov/projects/SNP; dbSNP Build 131) in NCBI Database. SNPs will affect the gene
transcription/translation or structure of proteins, thus it will change the function of
CYP450s in some situations. For instance, among all the CYP450 enzymes,
CYP2C19 and CYP2D6 represent the most significant individual difference in
humans. 5–10 % in a Caucasian population will act as poor metabolizers for
anti-arrhythmia agent like Metoprolol and Propafenone because of gene mutations
in CYP2D6. Some patients with CYP2C19 gene variant will be sensitive to
Phenytoin and Cyclobarbital, or even cause toxicity reactions [8].

Abundant of high throughput experimental methods have been proposed for
SNPs identification such as single-strand conformation polymorphism (SSCP),
conformation-sensitive gel electrophoresis (CSGE), chemical cleavage of mis-
match (CCM), allele specific PCR (AS-PCR), allele specific oligonucleotide
hybridization (ASO), DNA chip, pyrosequencing for SNP genotyping, matrix
assisted laser desorption ionization-time of flight mass spectrometry (MAIDI-
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TOF), denaturing high performance liquid chromatography (DHPLC) [9, 10]. On
the other hand, computational methods have been utilized as a faster and cheaper
tool for detecting SNPs such as multiple sequence alignments based on expressed
sequence tag (EST) or sequence tagged sited (STS), multiple linear regression
(MLR), support vector machines (SVM), learning machine an so on [11–14].

Variations of SNPs in human CYP450 genes will cause different drug effects.
Studies on SNPs can be used as predictive markers from different aspects in
medical care area, including disease-causing genes, drug efficacy and even adverse
effect of various drugs. As there are several different factors that will cause human
disease such as environment, lifestyle or genes, it is very difficult to apply
screening test methods to most diseases like cardiovascular diseases, Alzheimer’s
disease, and diabetes. SNPs studies will provide some fundamental understanding
about these diseases, which will indicate the most possible genes that are asso-
ciated with a disease and relevant therapeutic targets.

As we all know, large percent of patients will have positive responses after taking
a drug while some others will not benefit from it or even die of it. So another purpose
for SNPs studies is to identify and predict the drug efficacy and adverse drug
response from pharmacogenomics point of view. This idea leads us a new way in
medical therapy named as ‘‘personalized medicine’’. Personalized medicine (also
named as personalized therapy) is a new idea based on individual pharmacogenetics
and pharmacogenomics information. As variances of human genes will lead dif-
ferent sensibility of disease in individual people, personalized medicine will focus
on investigating individual gene specific properties and then providing personalized
and optimal clinic therapy. For example, Genetic variation in human CYP genes
CYP2D6, CYP2C19, and CYP2C9 will cause metabolism influences of neuroleptic
drugs. These information has been applied for antipsychotics usage decisions which
can reduce the drug side effects by almost 20 % [15, 16].

20.3 Data Resources for Researches on SNPs and CYP450s

Computer-Aided Drug Design (CADD) plays a very important role in pharmacy
not only because it is faster, cheaper and much more efficient, but also because it
leads a new research direction to screen important micromolecules which are
essential to human disease and drug design. With the rapid development of bio-
informatics theory, more and more bioinformatics efforts have been tried and used
in pharmacogenomics such as predicting gene variations which are likely to have
some functional or genotypic effects and classifying associated downstream
molecular effects.

To start researches on SNPs and CYP450s for drug design through bioinfor-
matics method, some particular and reliable database are necessary. There are
several famous bioinformatics database distributed in the USA, Europe and Japan.
Table 20.1 lists the most important database used in bioinformatics research and
drug design [17, 18]. Besides the traditional databases, some new specified data
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sources have been developed and published along with various web resources such
as Nelsons Homepage [19], PubChem [20], the P450 Knowledgebase designed by
The Center for Molecular [21], and so on. More details can be found in Table 20.2.

Information about CYP450 interactions usually can be found in huge amounts
of publications. Thus another essential way to gain useful data for future resear-
ches is to extract meaningful information from latest biomedical literature. Several
computational approaches have been developed for data extracting [22]. A natural

Table 20.1 Common databases

Nucleotide sequence
database

Genbank http://www.ncbi.nlm.nih.gov/
Genbank/

EMBL (European
Molecular Biology
Laboratory)

http://www.ebi.ac.uk/embl.html

DDBJ (DNA Data Bank of
Japan)

http://www.ddbj.nig.ac.jp

Protein sequence
database

SWISS-PROT and
TrEMBL

http://www.expasy.org/sprot/

PIR and PSD http://pir.georgetown.edu/

OWL http://bioinfman.ac.uk/dbbrowser/
OWL/

NRL3D http://www.gdb.org/Dan/proteins/
nrl3d.html

Protein domain
databases

PROSITE http://www.expasy.org/prosite

BLOCKS http://www.blocks.fhcr.org/blocks/

PRINTS http://www.biochem.ucl.ac.uk/bsm/
dbbrowser/PRINTS/PRINTS.html

3D structure database
of proteins

PDB http://www.pdb.org/

NDB (Nucleic Acid
Databank)

http://ndbserver.rutgers.edu/

BioMagResBank www.bmrb.wisc.edu

Protein structure database http://www.rcsb.org/pdb

CCSD (Complex
carbohydrate structure
database)

http://www.boc.chem.uu.nl/sugabase/
carbbank.html

The data on human
CYP genes

Entrez gene on the NCBI
web site

http://www.ncbi.nlm.nih.gov/sites/
entrez

HUGO gene database http://www.genenames.org/

Phenotype of SNPs of
human CYP genes

PubMed http://www.ncbi.nlm.nih.gov/
PubMed/

OMIM (Online Mendelian
Inheritance in Man)

http://www.ncbi.nlm.nih.gov/omim

UniProtKB/Swiss-Prot
databases

http://ca.expasy.org/sprot/

Human gene mutation
database

http://www.hgmd.cf.ac.uk
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language processing (NLP) based method has been proposed and applied for
extracting relationships information from literatures [23, 24]. However, the NLP
systems can’t be directly performed as an analysis tool from genes and proteins to
other fields like interactions between exogenous chemicals and biomolecules.
A NLP-based specialized system was carried out for extracting information about
chemical-enzyme interactions from the literature by Mitsuru Hashida et al.. The
system was concluded to be very feasible and powerful by a test research on
extracting relationships between chemicals and CYP3A4. Those gained dataset is
important for predicting CYP450 associated drug-drug interactions and subsequent
drug discovery and clinical applications. Xia Yang performed a systematic anal-
ysis of CYP450 enzyme activities in human liver, genetics, gene expression, and
enzyme activity measurements were integrated and investigated using systems
biology approaches. Human liver transcriptional network structure was then
defined using a weighted coexpression network and a Bayesian regulatory net-
work. Several activity SNPs which are strongly associated with CYP450 enzyme
activities were identified. This review provides comprehensive information about
the functionality, genetic control, and interactions of CPY450s [25].

20.4 Bioinformatics Applications

So far, polymorphisms in CYP genes have been studied widely for investigating
their potential implication of human disease.

Table 20.2 Specified data sources

Nelsons homepage http://drnelson.uthsc.edu/nelsonhomepage.
html

Flockharts interaction table http://www.medicine.iupui.edu/Flockhart/
table.htm

University of Maryland’s drug checker http://www.umm.edu/adam/drug_checker.
htm

PubChem http://pubchem.ncbi.nlm.nih.gov/

The cytochrome P450 homepage http://drnelson.utmem.edu/
CytochromeP450.html

PharmGKB (The Pharmacogenomics
Knowledge Base)

http://www.pharmgkb.org/

SuperCYP http://bioinformatics.charite.de/supercyp/

The human CYP450 allele nomenclature
committee

http://www.imm.ki.se/CYPalleles/

The directory of P450-containing systems http://www.icgeb.trieste.it/

The P450 knowledgebase http://cpd.ibmh.msk.su/

The P450s in PROMISE http://metallo.scripps.edu/PROMISE/P450.
html
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Polymorphisms in cytochrome P450 1A1 (CYP1A1) gene have been analyzed
in the context of oral and pharyngeal cancer, lung cancer, prostate cancer,
esophageal cancer and breast cancer. Using the same idea of meta-analysis, by
searching the MEDLINE bibliographical database for suitable articles and per-
forming sensitivity analysis, three SNPs in CYP1B1 have been studied to check
whether they are associated with breast cancer risk [26]. Genetic polymorphisms
in CYP2E1 were reviewed and evaluated for discover their affects on CYP2E1
function as they were proved linked to altered susceptibility to hepatic cirrhosis.
According to the known knowledge about the effects of the polymorphisms and
their frequency in the population, a population distribution of CYP2E1 activity can
be constructed which will be very useful for further SNPs research [27]. Con-
genital adrenal hyperplasia (CAH) is one of the most common metabolic disorders
due to 21-hydroxylase deficiency [28]. CYP21A2 is proved to be a steroid 21-
hydroxylase enzyme while a series of deleterious mutations can be found. Con-
colino et al. (2010) reviewed and updated the recently CYP21A2 mutations based
on the CYP21A2 database created by the Human Cytochrome P450 Allele
Nomenclature Committee. The molecular and genetic diagnosis of 21-hydroxylase
deficiency was reported as well for later studies [29].

Polymorphisms in CYP genes will also affect the clinical usage of drugs. SNPs
in CYP genes encoding can lead to lower enzyme activity which will decrease the
enzymatic metabolism of particular drugs that are substrates of these enzymes.
SNPs in CYP2D6 and CYP2C19 have already been proved to cause different
adverse drug effects during the treatment cardiovascular diseases, psychiatric
disorders and cancer. CYP2D6*4 in Caucasians has been concluded to be the most
common variant allele that acted ‘‘poor metabolism’’ of CYP2D6 substrates [30].
Relationships between CYP2D6*4, CYP3A5*3 and ABCB1 3435T polymor-
phisms and drug related falls have been investigated using multivariate logistic
regression method [31]. Sofi F et al. focused on the association with the loss-of-
function CYP2C19*2 (or 681 G [ A) polymorphism and coronary artery disease
(CAD) in patients taking clopidogrel, the results turned out that the CYP2C19*2
polymorphism is associated with the cardiovascular disease and stent thrombosis
in an increased risk [32]. Testing the SNPs in human CYP450 gene can further be
used for evaluating the clinical effectiveness and cost-effectiveness of specific
drugs. Fleeman et al. reviewed the analytical validity, clinical validity and clinical
utility as well as economic evaluations of CYP polymorphisms testing in patients
with schizophrenia treated with antipsychotics [33].

20.5 Structure-Based Analysis

As more and more 3-D structure of the proteins have been identified, structure-
based analysis has been developed and applied for analysis of target protein for
drug design. Normally after getting the 3-D structure of the target protein, com-
putational approaches are used to identify the initial drug candidates. Virtual

20 Human Cytochrome P450 and Personalized Medicine 347



screening is one of the most widely used approaches which perform the docking
analysis of the drug candidates on the active site of the target protein. Virtual
screening will provide a scoring function about the computational estimation of
binding free energy, binding constant, docking score and so on, drug candidates
which have high binding affinity are selected and tested in Vitro and in vivo later
[34, 35].

Significant effects have been made in CYP450 three-dimensional (3D) structure
and mechanism investigation during the last few years [36–38]. Abundant of
structure, activity and regulation information about CYP450 contribute to the
development of computational model approaches for predicting CYP-related
metabolism properties, detecting CYP450 SNPs, and identifying their associated
implications for drug design. Those modeling methodologies can be classified as
ligand-based, structure/protein-based, and ligand–protein interaction based
approaches according to the recent review [39].

Ligand-based approaches use structure information of the molecules interacting
with the target of interest such as CYP450s, while in structure-based methods
docking techniques are performed to find the possible binding modes of a ligand to
a receptor based on the structure information.

For the ligand–protein interaction based approaches both ligand and protein
information is involved [40]. Ligand-based approaches include various QSAR
(quantitative structure activity relationships) methods based on the ligand structure
information. QSAR can be performed through 2D or 3D structures and have been
widely used in drug discovery. As a methodology based on the assumption that
compounds can be mathematically defined as the distribution of molecular
descriptors, QSAR has been proved to be a powerful virtual-model based tool for
predicting pharmacodynamic, pharmacokinetic or toxicological properties as well
as quantities like binding affinity and molecules’ toxic potential. Furthermore,
chemical structure and metabolic properties are linked together quantitatively in
QSAR [41]. 3D-QSAR was induced for analyzing quantitative biological activity
of 3D structures of the ligands and electrostatic, steric, hydrophobic and hydrogen
bond fields. 3D-QSAR approach is applicable to more heterogeneous datasets.
QSAR modeling method contains several steps as follows: (1) dataset collection
(2) molecular descriptors calculation (3) model generation and optimization (4)
data updating [42].

By combining molecular biology, molecular dynamics, quantum chemistry and
graphical display system together, Structure-based Drug Design (SBDD) was pro-
posed based on the structures of receptors for revealing the molecule interaction
mode between ligands and receptors and guiding computational drug design. SBDD
methods contains analysis procedures about receptor and associated ligands based
on either an X-ray or NMR structure of the ligand, QM or QM/MM methods,
homology modeling, energy decomposition methods are all involved [43].

The methodology to combine molecular docking operation with the molecular
dynamics (MD) simulations together to predict possible binding sites of the SNPs
was wildly utilized. MD simulations can solve the classical equations of motions
for a system formed by target protein (SNPs) and small ligands such as drug
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molecular Fluvoxamine, Lescol and Ticlopidine under specified ensembles. In this
research, two SNPs of CYP2C19 which are named as W120R and I331 V were
chosen as the investigation targets [44]. Then docking simulation was performed
for W120R and I331 V binding reactions with selected ligands to find the most
possible binding site of these two SNPs. Docking results were verified by
molecular dynamics simulations.

Docking and molecular dynamics have also been widely used in researches
about cancer targets for identifying the recognition processes between ligands and
targets at the atomic level as well as affinity or conformational changes of the
molecular complexes. It could be very helpful for corresponding drug design and
development of improved drug efficacy for individuals [45].

20.6 Conclusion

Personalized medicine has become a hot topic ascribed to the development of
Human Genome Project. One key point to achieve personalized medicine per-
sonalized drug design is researches about the variance genetic polymorphisms in
human drug metabolism enzymes. Great efforts have been taken both in experi-
mental and computational aspects, large abundant of datasets haven been pub-
lished and gathered.

Among all the methods, bioinformatics methodology plays an essential role in
personal drug design. Here in this review we mainly focused on the basic intro-
duction of the SNPs of human drug metabolic enzymes and their relationships with
personalized medicine. Some common bioinformatics analysis methods and latest
progresses and applications in personal drug design have also been discussed.

Thus bioinformatics studies on SNPs of human CYP450 genes will contribute
to indicate the most possible genes that are associated with human diseases and
relevant therapeutic targets, identify and predict the drug efficacy and adverse drug
response, investigate individual gene specific properties and then provide per-
sonalized and optimal clinic therapies.
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Chapter 21
The a7 nAChR Selective Agonists as Drug
Candidates for Alzheimer’s Disease

Huaimeng Fan, Ruoxu Gu and Dongqing Wei

Abstract The nicotinic acetylcholine receptors (nAChRs) are ion channels dis-
tribute in the central or peripheral nervous system. They are receptors of the
neurotransmitter acetylcholine and activation of them by agonists mediates syn-
aptic transmission in the neuron and muscle contraction in the neuromuscular
junction. Current studies reveal relationship between the nAChRs and the learning
and memory as well as cognation deficit in various neurological disorders such as
Alzheimer’s disease, Parkinson’s disease, schizophrenia and drug addiction. There
are various subtypes in the nAChR family and the a7 nAChR is one of the most
abundant subtypes in the brain. The a7 nAChR is significantly reduced in the
patients of Alzheimer’s disease and is believed to interact with the Ab amyloid.
Ab amyloid is co-localized with a7 nAChR in the senile plaque and interaction
between them induces neuron apoptosis and reduction of the a7 nAChR expres-
sion. Treatment with a7 agonist in vivo shows its neuron protective and procog-
nation properties and significantly improves the learning and memory ability of the
animal models. Therefore, the a7 nAChR agonists are excellent drug candidates
for Alzheimer’s disease and we summarized here the current agonists that have
selectivity of the a7 nAChR over the other nAChR, introduced recent molecular
modeling works trying to explain the molecular mechanism of their selectivity and
described the design of novel allosteric modulators in our lab.
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21.1 Introduction

The nicotinic acetylcholine receptors (nAChRs) are ligand gated cation channels
that distribute throughout nearly all human tissues, especially on the neuromus-
cular junction and the pre- or post-synaptic of neuron of the peripheral and central
nervous systems [1]. Binding of endogenous neurotransmitter acetylcholine as
well as exogenous agonists such as nicotine to the nAChRs invokes ion flux
through the membrane bilayer that responsible for a neuron exciting and synaptic
communication [2]. The nAChRs in the central nervous system mainly distribute
in the hippocampus, temporal cortex, and basal forebrain, which are areas
responsible for memory and learning. Current studies have correlated the nAChRs
with various neuron disorders such as Alzheimer’s Disease, schizophrenia, Par-
kinson’s Disease as well as drug addiction [3].

21.2 a7 nAChR is a Target of Alzheimer’s Disease

Five subunits are required to constitute a functional nAChRs. Neuron nAChRs are
constituted by several kinds of subunits including a2–a7, a9, a10, and b2–b4 in
mammals, whereas other kinds of subunits such as a8 are found in birds and
invertebrates. Many kinds of neuron nAChRs have been described with the a4b2
and a7 subtypes being the most abundant ones in the brain [4]. The a7 nAChR is a
homo-pentameric and is different from the a4b2 subtype by being more permeable
for Ca2+ and desensitizes more quickly than the a4b2 nAChR [5].

It is found in the patients’ of Alzheimer’s disease that the expression of a7
nAChR is reduced significantly and therefore, it is of great interest for the
researchers studying the Alzheimer’s disease [6–8]. It is believed that, the a7
nAChR is involved in this disease by interacting with the Ab amyloid which is
derived from the amyloid peptide precursor and assembles to form fibrils and
senile plaque [9, 10]. The Ab amyloid binds to the a7 nAChR with significantly
higher affinity than the a-bungarotoxin which is a very potent a7 nAChR antag-
onist. It also interacts with other type nAChRs such as the a4b2 nAChR but with
much lower affinity. It blocks the a7 nAChR but in specific conditions it also
induces ion flux through the channel and the disturbed Ca2+ signal in the neuron
induces cell apoptosis [11–14]. Interaction between the Ab amyloid and
a7 nAChR also induces hyperphosphorylation of the tau protein. The tau proteins
constitute the microtubule and hyperphosphorylated tau proteins aggregate to form
oligomerics and the microtubule as well as the cytoskeleton is damaged. The
damaged cytoskeleton then results in the neurofibrillary tangle which is one of the
most important pathological characterizations in the brain of the Alzheimer’s
disease patients. Since the microtubule is correlated with intercellular transport of
proteins and cell organs, it is possible that the reduction of the a7 nAChR
expression is partially because of the hyperphosphorylation of the tau protein and
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the damage of the microtubule [15]. It is found that the agonist of a7 nAChR
could reduce the apoptosis induced by Ab amyloid [16]. However, the endoge-
nous neurotransmitter acetylcholine which is a potent agonist of nAChRs is greatly
reduced in the Alzheimer’s disease patients. Therefore, applying the exogenous
agonists that have selectivity for the a7 nAChR is of helpful for the treatment of
the Alzheimer’s disease and the a7 nAChR is a main target for drug design. We
have summarized here the recently found a7 nAChR specific agonists which may
be interest for not only the pharmacologists but also the scientists that are per-
forming electrophysiological experiments of ion channels.

21.3 The Agonist Binding Site of a7 nAChR

The neuron nAChRs are integral transmembrane proteins that can be divided into
the extracellular domain, the transmembrane domain and the cytoplasmic domain.
Its transmembrane domain which is responsible for the channel activity crosses the
membrane four times and the second transmembrane helix of each subunit con-
stitutes the channel pore [17]. The agonists bind to the extracellular domain of the
channel and the conformational changes deduced from agonist binding is then
transferred to the transmembrane domain which is *40 Å away and the channel is
open. The channel is closed again which is known as the desensitized state after
long exposure to the agonists [18].

The nAChRs are homo- or hetero-pentamerics that usually in a stoichiometry of
(a)5, (a)2(b)3 or (a)3(b)2 [19, 20]. The agonist binding site is located at the inter-
facial region of one a subunit and one non-a subunit (or the interfacial region of two
a subunits in the homo-pentameric) as shown in Fig. 21.1. The a subunit and the
non-a subunit (or the corresponding a subunit in the homo-pentameric) of the
binding cavity is known as the primary component and the complementary com-
ponent, respectively. Therefore, there are five binding sites on the homo-pentemric
whereas only two or three binding sites on the hetero-pentamerics [21, 22].

21.4 The Pharmocophores of the nAChR Agonist

It is found that two pharmacophores are usually important for the activity of an
agonist, one is a cation center which is usually a positively charged nitrogen atom,
whereas the other is a pyridine nitrogen which acts as an hydrogen bond donor.
The cation center resides in the aromatic cage formed by five aromatic residues of
the binding cavity and formed cation-p interaction with the aromatic rings. The
pyridine form hydrogen bonds with two residues of the complementary component
via water molecules, as shown in Fig. 21.2 [23, 24].

The agonists that have selectivity for the a7 nAChR are excellent drug can-
didates for treating cognition impacts in the neurological disorders such as the

21 The a7 nAChR Selective Agonists as Drug Candidates for Alzheimer’s Disease 355



Fig. 21.1 The 3-D structure of the nicotinic acetylcholine receptor (nAChR). The nAChR is
constituted by five subunits and two of them are shown in cartoon model in green and orange,
respectively, whereas the other three are shown in wheat lines for clarify. The nAChR is divided
in to the extracellular domain, the transmembrane domain and a cytoplasmic domain. The agonist
binding site is located at the interfacial region of the extracellular domain. One agonist is shown
in gray space filling model

Fig. 21.2 a Interaction between the nicotinic and the acetylcholine binding protein (AChBP), a
homology of the extracellular domain of the nAChRs. The cationic center resides in the aromatic
cage of the binding cavity and formed cation-p interaction with the aromatic ring whereas the
pyridine nitrogen form water mediated hydrogen bonds with residues form the complementary
component. The carbon atoms of the aromatic residues, the two residues from the complementary
component, and nicotine are shown in green, pink and purple, respectively, and the water
mediated hydrogen bonds are shown in black dashed line. The oxygen and nitrogen atoms are
shown in red and blue, respectively. b Pharmacophore models of the nicotine (top) and a7
nAChR selectivity agonist (bottom)
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Alzheimer’s disease and the schizophrenia. At present, various a7 nAChR selec-
tive agonists have been discovered and SEN12333/WAY-317538 is one example
of them [25]. The structure activity relation has been investigated for this series
compounds and a pharmacophore model is proposed. As shown in Fig. 21.2b, one
cation center is connected to an amine group by a carbon linker and an aromatic
moiety is connected to the amine group on the other side. The invert of the amine
group direction doesn’t affect the agonist activity [25, 26]. The amine group in this
model is corresponding to the pyridine nitrogen of nicotine and the significant
differences between the pharmacophore model of the a7 nAChR selective agonist
and that of those without subtype selectivity is the aromatic moiety connected to
the amine group (Fig. 21.2).

21.5 Full Agonist of a7 nAChR

A full agonist of an ion channel is defined as a ligand that can activate the channel as
efficiently as the endogenous agonist does. For the a7 nAChR, the full agonists refer
to those invoke inward ion flux in an efficient of[75 % of acetylcholine does. The
current full agonists that have selectivity for the a7 nAChR including AR-R17779,
ABBF, ABT-107, SEN12333/WAY-317538, WYE-103914/SEN34625, TC-5619,
compound 7aa, and PNU-282987 (Fig. 21.3) and their interaction properties with
nAChRs and some in vitro or in vivo functions are summarized here.

AR-R17779. AR-R17779 is the first reported full agonist that selective for the
a7 nAChR. The (-)-AR-R17779 binds with the a7 nAChR with much higher
affinity (Ki = 92 nM) than with the a4b2 subtype (Ki = 16,000 nM) and it is
twice as potent as nicotine for the a7 nAChR (EC50 of *21 mM and *43 mM for
AR-R17779 and nicotine respectively). It is an agonist of the 5-HT3 receptor [27].
In vivo experiments have proved that the AR-R17779 improves the social rec-
ognition memory of the rats by interacting with the a7 nAChR, implying the
relationship between the a7 nAChR and the learning and memory abilities [28].

ABBF. The ABBF is a full agonist of the human and rat a7 nAChR but acts as a
competitive antagonist of the other nAChR subtypes such as the a3b4, a4b2 and
muscle type nAChR at high concentration. It is also a competitive antagonist of the
5-HT3 receptor. The ABBF has much higher binding affinity with the a7 nAChR
(Ki = 62 nM) labeled by radioligand [3H]methyllycaconitine than nicotinic
(Ki = 770 nM) and acetylcholine (Ki = 3 lM). The EC50 value of 3 lM of ABBF
shows more potent activity of this agonist for a7 nAChR than the acetylcholine
(EC50 = 170 lM). Behavioral experiments show that it could improve the learning
and memory ability of both rats and mice in vivo [29].

ABT-107. ABT-107 is highly selectivity full agonist for the human and rat
a7 nAChRs which shows no activation for the a3b4 nAChR and very low agonist
activity for the a4b2 nAChR. The binding affinity and EC50 value of ABT-107 for
the human a7 nAChR are *0.22 and *10.4 nM, respectively [30]. Initial in vivo
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pharmacokinetic and safety experiments in healthy human volunteers imply it is a
good candidate for further development [31].

SEN12333/WAY-317538. SEN12333/WAY-317538 is a full agonist of
a7 nAChR with an EC50 value of *1.6 lM and it is also selective for the
a7 nAChR (Ki = 260 nM) over other nAChRs such as the a1, a3 containing
subtypes as well as the 5-HT3 receptor [25]. In vivo and in vitro experiments have
show that it has excellent pharmacokinetic profiles, brain penetration ability, as
well as oral bioavailability. It has been proved to improve the learning and cog-
nation ability and is neuroprotective for the experimental animals by interacting
with the a7 nAChR [32].

WYE-103914/SEN34625. WYE-103914/SEN34625 is a full agonist
(EC50 = 130 nM) of the human a7 nAChR and it binds to the a7 nAChR with
significant higher affinity (Ki = 44 nM) than the a1, a3 containing subtypes, the
a4b2 nAChR as well as the 5-HT3 receptor. It shows excellent brain penetration
ability and oral bioavailability as well as cognition improvements in the in vitro
and in vivo tests [26].

TC-5619. TC-5619 is a full agonist of a7 nAChR with an EC50 value of *33 nM
and it is also selective for the a7 nAChR (Ki = 1 nM) over the a4b2 nAChR
(Ki = 2,800 nM). It has very low agonist activity for the a3b4 and muscle type
nAChR [33]. TC-5619 show significant memory and cognation improvement on
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rats and mice and it is now under Phase II investigation for attention deficit/
hyperactivity disorder (ADHD) and cognitive dysfunction in schizophrenia (CDS).

Compound 7aa. Compound 7aa is a subtype selective full agonist of the
a7 nAChR with a binding affinity of *23 nM. Initial experiments show excellent
pharmacokinetic properties of this compound [34].

PNU-282987. PNU-282987 is a potent a7 nAChR agonist with an affinity of
27 nM and an EC50 value of 154 nM for the a7-5HT3 chimera [35]. However, it is
not suitable for development as a drug candidate because of its significant activity
for the human hERG channel [36]. The later found compound PHA-709829 is
highly selective for the a7 nAChR (Ki = 3 nM and EC50 = 46 nM for the a7-
5HT3 chimera) over the other subtypes such as the a4b2 nAChR, a3b4 nAChR,
and the muscle type nAChR. Its toxicity targeting the hERG channel is signifi-
cantly improved compared with the PNU-282987 [37].

EVP-6124, EVP-6124 is a selective agonist for the a7 nACh and is being
developed by En Vivo for potential cognitive enhancement in both schizophrenia
and Alzheimer’s patients. It has been shown to have excellent CNS penetration,
oral bioavailability, pharmacokinetics and metabolic profile. Two previous studies
with EVP-6124 in Alzheimer’s disease patients demonstrated that it was well
tolerated and produced significant effects on a variety of cognitive measures of
brain function such as attention, memory and executive function (complex
thinking tasks) (Table 21.1).

21.6 Partial Agonist of a7 nAChR

A partial agonist of an ion channel is defined as a ligand that activate the channel
in an efficacy lower than the endogenous agonist does. Many partial agonists of the
nAChRs are found (Fig. 21.4) and those have selectivity for the a7 nAChR are
listed below.

DMXB-A. The DMXB-A, a derivative of the anabaseine, is considered as
‘‘functional selective’’ for it is a partial agonist (EC50 = 81 lM, Emax = 50 %)
of the a7 nAChR but exhibits antagonist activity for other nAChR subtypes as well
as the 5-HT3 receptor. It binds to the a4b2 nAChRs (Ki = 20 nM) 100-fold more
potently than to the human a7 nAChRs [38]. It is now under Phase II investigation
for the Alzheimer’s Disease, Praksion Disease and schizophrenia.

JN403. JN403 is a partial agonist of the a7 nAChR with an Emax of 55 % in
Xenopus oocytes expressing human a7 nAChR. It binds to the a7 nAChR with
much higher affinity (Ki = 200 nM) compared with other nAChR subtypes such
as the a3b4 nAChR (Ki = 6,309 nM), the a4b2 nAChR (Ki = 158,489 nM) as
well as the 5-HT3 receptor (Ki = 12,589 nM) [39]. The agonist activity of JN403
on the nAChRs is blocked by MLA, a very potent competitive antagonist for the
a7 nAChR. In vivo tests show that the JN403 facilitates the improvement of
learning and memory abilities of experimental animals [40].
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AZD0328. AZD0328 binds to the human and rat a7 nAChR (Ki = 3.0 and
4.7 nM for human and rat a7 nAChR, respectively) and 5-HT3 receptor
(Ki = 12.0 and 25.0 nM for human and rat 5-HT3 receptor, respectively), but has
only moderate binding affinity with the rat a4b2 nAChR (Ki = 140 nM) and very

Table 21.1 Full agonists of a7 nAChR

Agonists Binding
affinity for
a7 nAChR
(Ki) (nM)

Efficacy
(EC50)

Activity on other
receptors

Clinical trials

AR-
R17779

92 21 nM Low affinity with the
a4b2 nAChR
(Ki = 16,000 nM),
agonist of the 5-HT3

receptor

No

ABBF 62 170 lM Competitive antagonist of
the a3b4, a4b2, muscle
type nAChR, the 5-HT3

receptor

No

ABT-107 0.22 10.4 nM No activation for the
a3b4 nAChR, very low
agonist activity for the
a4b2 nAChR

No

SEN12333/
WAY-
317538

260 1.6 lM Low binding affinity with
the a1, a3 containing
subtypes and the 5-HT3

receptor

No

WYE-
103914/
SEN34625

44 130 nM Low binding affinity with
the a1, a3 containing
subtypes, the a4b2
nAChR and the 5-HT3
receptor

No

TC-5619 1 33 nM Low agonist activity for
the a3b4, a4b2 and
muscle type nAChR, Ki
of 2800 nM with a4b2
nAChR

Phase II investigation
for attention deficit/
hyperactivity disorder
(ADHD) and cognitive
dysfunction in
schizophrenia (CDS)

Compound
7aa

23 175 % – No

PNU-
282987

27 154 nM
for the
a7-5HT3

chimera

Antagonist of the 5-
HT3 receptor
(IC50 = 4,541 nM), low
binding affinity with the
a4b2 subtype

Discontinued in phase II
clinical trials because of
activity for the human
hERG channel

PHA-
709829

3 46 nM
for the
a7-5HT3

chimera

– No
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low binding affinities with the a3 containing nAChRs and the muscle type nAChR.
It is a partial agonist of the human a7 nAChR with an EC50 value of 338 nM and
Emax of 65 %, however, it has very low efficacy on the mouse 5-HT3 receptor and
the human a4b2 nAChR and no activity on the human a3b4 nAChR [41].
Applying AZD0328 in animal models shows immediate and sustained improve-
ment of the cognation ability as well as the improvement of the working mem-
ory [42]. AZD-0328 was under phase II trial in schizophrenia in 2008 but was
discontinued in 2009 [43].

S 24795. S 24795 is a partial agonist of the rat a7 nAChR and has no affinities on
the a4b2 nAChR, the a3b4 nAChR as well as the muscle type nAChR. It active the
a7 nAChR with an EC50 of 34 nM and an efficacy of *10 % of the acetylcholine
does [44]. Applying the S 24795 in vitro or in vivo reduces the Ab42-a7 nAChR
complex and helps the release of Ab42 from the Ab42-a7 nAChR complex [45].

A-582941. The A-582941 exhibits high affinity (Ki = 16.7 nM) [46], and
partial agonist activity (EC50 = 4.26 lM; activity = 52 %) for the human
a7 nAChR. Initial in vitro and in vivo experiments show its appropriate phar-
macokinetic properties and excellent brain penetration. A-582941 improves the
cognition abilities in monkey, rat, and mouse and rescues the sensory gating
deficits induced by the potent a7 nAChR antagonist MLA [47].

R3487/MEM3454. The R3487/MEM3454 are antagonist and partial agonist of
the human 5-HT3 receptor and the rat a7 nAChR, respectively, and it shows
similar high affinities for both receptors (Ki = 6 nM for rat a7 nAChR and
Ki = 2 nM for human 5-HT3 receptor). It activates the monkey recombinant
a7 nAChR with an EC50 of 0.4 nM [48]. It is now under development for treating
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Alzheimer’s disease and schizophrenia [49]. A structural related molecular named
as MEM-63908 (R-4996) was developed and entered phase I investigation for
Alzheimer’s disease in March 2009 (Table 21.2).
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Chapter 22
Bayesian Analysis of Complex Interacting
Mutations in HIV Drug Resistance
and Cross-Resistance

Ivan Kozyryev and Jing Zhang

Abstract A successful treatment of AIDS world-wide is severely hindered by the
HIV virus’ drug resistance capability resulting from complicated mutation patterns
of viral proteins. Such a system of mutations enables the virus to survive and
reproduce despite the presence of various antiretroviral drugs by disrupting their
binding capability. Although these interacting mutation patterns are extremely
difficult to efficiently uncover and interpret, they contribute valuable information
to personalized therapeutic regimen design. The use of Bayesian statistical mod-
eling provides an unprecedented opportunity in the field of anti-HIV therapy to
understand detailed interaction structures of drug resistant mutations. Multiple
Bayesian models equipped with Markov Chain Monte Carlo (MCMC) methods
have been recently proposed in this field (Zhang et al. in PNAS 107:1321, 2010
[1]; Zhang et al. in J Proteome Sci Comput Biol 1:2, 2012 [2]; Svicher et al. in
Antiviral Res 93(1):86–93, 2012 [3]; Svicher et al. in Antiviral Therapy
16(7):1035–1045, 2011 [4]; Svicher et al. in Antiviral Ther 16(4):A14–A14, 2011
[5]; Svicher et al. in Antiviral Ther 16(4):A85–A85, 2011 [6]; Alteri et al. in
Signature mutations in V3 and bridging sheet domain of HIV-1 gp120 HIV-1 are
specifically associated with dual tropism and modulate the interaction with CCR5
N-Terminus, 2011 [7]). Probabilistically modeling mutations in the HIV-1 pro-
tease or reverse transcriptase (RT) isolated from drug-treated patients provides a
powerful statistical procedure that first detects mutation combinations associated
with single or multiple-drug resistance, and then infers detailed dependence
structures among the interacting mutations in viral proteins (Zhang et al. in PNAS
107:1321, 2010 [1]; Zhang et al. in J Proteome Sci Comput Biol 1:2, 2012 [2]).
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Combined with molecular dynamics simulations and free energy calculations,
Bayesian analysis predictions help to uncover genetic and structural mechanisms
in the HIV treatment resistance. Results obtained with such stochastic methods
pave the way not only for optimization of the use for existing HIV drugs, but also
for the development of the new more efficient antiretroviral medicines. In this
chapter we survey current challenges in the bioinformatics of anti-HIV therapy,
and outline how recently emerged Bayesian methods can help with the clinical
management of HIV-1 infection. We will provide a rigorous review of the
Bayesian variable partition model and the recursive model selection procedure
based on probability theory and mathematical data analysis techniques while
highlighting real applications in HIV and HBV studies including HIV drug
resistance (Zhang et al. in PNAS 107:1321, 2010 [1]), cross-resistance (Zhang
et al. in J Proteome Sci Comput Biol 1:2, 2012 [2]), HIV coreceptor usage (Svicher
et al. in Antiviral Therapy 16(7):1035–1045, 2011 [4]; Svicher et al. in Antiviral
Ther 16(4):A14–A14, 2011 [5]; Alteri et al. in Signature mutations in V3 and
bridging sheet domain of HIV-1 gp120 HIV-1 are specifically associated with dual
tropism and modulate the interaction with CCR5 N-Terminus, 2011 [7]), and
occult HBV infection (Svicher et al. in Antiviral Res 93(1):86–93, 2012 [3];
Svicher et al. in Antiviral Ther 16(4):A85–A85, 2011 [6]).

Keywords Bayesian statistical modeling � Markov chain Monte Carlo � HIV

22.1 Complexity of Personalized Medicine and Genomics

Tailoring preventive and therapeutic disease treatments towards each patient at a
time while fully utilizing genetic code information could become the future of
medicine [8–10]. Therefore, methods for discovering disease related variants in
patients’ genome and treatment related mutations in illness-causing virus will have
important applications in biomedicine. Such a task is immensely complicated by
the presence of non-trivial multilocus interactions in these problems [11, 12].

In genetics of common diseases, the presence of non-mendelian variants interacting
in complicated ways could account for a significant portion of missing heritability [13].
In a different field, interacting mutations in viral genome lead to drug resistance during
treatment procedures [1, 14]. Therefore, understanding of genetic interactions bio-
chemically and statistically becomes important for further applications.

22.2 Inferring Phenotype from Genotype

Predicting phenotype from genotype plays an important role in many areas of
biomedicine; particularly, in assessing the viral drug resistance [15] and common
diseases susceptibility [16]. Recently a multitude of different statistical methods
have been developed towards this goal [15, 17]. Specifically, the advantages of
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genotypic essays include low price, commercial test kits availability and quick
turnaround times [18].

However, analysis problems can arise when phenotypical response was
obtained in vitro while trying to make genotype based predictions [1]. Therefore,
interpretation of results from genotypic essays is not straightforward [18]. It is
crucial to notice that methods described in detail in this chapter are not centered on
predicting phenotype from genotype but instead detecting resistance associated
mutation patterns using just the genotype treatment data [1]. Even though analysis
methods described here are centered on the understanding of HIV drug-resistance,
the statistical toolbox can be applied to other similar genotype problems.

22.3 State and Goals of Antiretroviral Therapy

More than 20 million people have been killed by AIDS since 1980s [19, 20]. The
disease is caused by the human immunodeficiency (HIV) virus which leads to the
failure of the immune system. Currently there is no cure for AIDS available, but
modern treatment therapies can successfully slow disease development [20, 21].
Thus, the goals of the modern antiretroviral therapy consist of stopping AIDS
development via suppression of HIV virus in the human body through the use of
appropriate drug combinations. In this review, we are mostly concentrating on the
more widespread HIV-1 virus.

22.3.1 Structural Biology of HIV

While encoding merely fifteen mature proteins [21], HIV-1 virus can successfully
subvert human immune systems. Because every step in the virus replication cycle
could be a target for the antiviral treatment [22], we briefly review the life-cycle of
HIV-1 virus.

There are 13 important steps in the HIV replication cycle [21]. Particularly, the
replication cycle begins with the attachment step which results in the fusion of
membranes of the cell and virus and entry into the cell [21]. The last step in the
cycle includes the protease-mediated mutation [21, 22]. So far, however, approved
drugs aim at only three different targets in the mentioned cycle: reverse trans-
criptase, protease and viral entry [22].

22.3.2 Drug Classes

Approximately thirty antiretroviral drugs for HIV-1 infection are divided into
nucleoside RT inhibitors (NRTI), protease inhibitors (PIs), and non-nucleoside RT
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inhibitors (NNRTI) [2, 21, 23, 24]. Currently, there is an active search for other
types of drugs that are less susceptible to viral drug resistance capabilities [22].

22.3.3 HAART

As we just described there is significant research directed at development of new
HIV drugs; however, another crucial research venue in the HIV studies is the
optimization of existing drug combinations. Particularly, clinical applications of
highly active antiretroviral therapy (HAART), during which multiple drugs are
given in combination, have significantly improved the control over the develop-
ment of the HIV virus [19, 20]. Therefore, due to recent treatment success, AIDS
is now classified as a chronic disease [19]. Yet some drugs have certain toxic
effects; moreover, the development of more affordable options is still crucial [21].

Additionally, the use of multiple drugs concurrently leads to the phenomenon of
cross-resistance for the HIV virus in addition to usual emergence of drug-resistant
variants [2]. We return to the problem of cross-resistance near the end of the
chapter.

22.3.4 Pharmacogenomics of HIV Disease

Among the multitude of issues that need to be addressed during the anti-HIV
therapy in general and HAART in particular, increasing the efficiency of the drug
combination and decreasing its toxicity for the patient are the most crucial ones.
For the detailed review of toxicity effects from antiretroviral drugs we refer the
reader to Refs. [19, 25]. Briefly, the main types of resulting toxicity effects fall
under the following categories: mitochondrial toxicity, hypersensitivity, lipodys-
trophy, and drug-specific effects [25]. It is important to notice that genetic pre-
disposition probably plays an important role in the magnitude of the adverse side-
effects [26].

22.4 Complexity of Mutation Interactions

As can be seen from previous descriptions, anti-HIV therapy represents a com-
plicated science from both biological and clinical points of view. Additional,
complexity arises from the necessity to comprehend high-order interactions among
the drug resistant mutations of the HIV-1 virus [1, 2]. Mutations can be separated
into two groups: marginally or interactively associated with drug treatment.
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22.5 Bioinformatics Approach to HIV Resistance

Previously, we mentioned multiple complicated interactions among mutations that
have to be considered while developing statistical models for understanding of the
HIV virus drug resistance. In Fig. 22.1 we clearly summarize in the graph form all
the connections between resistive mutations, epistasis, and drug treatments regi-
men design. The ultimate goal is to be able to accurately understand all the shown
couplings in single and multiple drug treatment studies while also comprehending
the biological processes in the virus that lead to resistance development. Thus,
while statistical understanding is important, developing approaches that can point
in the direction of the appropriate biological molecular level processes taking
place is the ultimate goal for all drug resistance approaches including bioinfor-
matics analysis described here.

22.5.1 Overview of Machine Learning Methods

One of the possible approaches for exploring the drug resistance is using methods
from machine learning. Specifically, it is possible to use mutual information
concept from information theory to statistically calculate the probability of each
position to be associated with drug resistance [18]. Furthermore, decision trees can
be used for phenotype prediction [18, 20].

Fig. 22.1 HIV-1 drug resistance diagram. Schematic description of the drug resistance (square
brackets) to certain HIV-1 suppressing drugs (crossed red arrows) arising from mutation in the
viral genotype (colored dots). The goal is to figure out which mutations are already present to
tailor the regimen to each AIDS patient individually. Notice, the diagram is just a potential
situation adapted for concreteness purposes
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22.5.2 Emergence of Bayesian Methods

In this chapter, however, we focus on the Bayesian approaches to the problem. As
we will show, assuming Bayesian paradigm allows significant improvements in
understanding of drug resistance and cross-resistance.

22.6 Statistical Background

In order to describe in detail the novel approaches to computational understanding
of HIV drug resistance, it is first necessary to review the statistical background of
Bayesian inference and associated graphical models. At its core, Bayesian theory
provides a mathematical formulation for updating one’s current knowledge about
the system of interest based on presented or discovered evidence [27]. Thus,
Bayesian paradigm provides a way of calculating the probability distribution over
a set of hypotheses of interest utilizing the information from the collection of data/
observations [28]. In the next few paragraphs we provide a more detailed intro-
duction to the subject to form a solid foundation for introducing methods and
models for HIV drug resistance.

22.6.1 Bayesian Data Analysis Paradigm

Statistical conclusions about an unknown parameter h (or unobserved data yunobs)
in the Bayesian approach to parameter estimation are described utilizing proba-
bility statements which are conditional on the observed data y: p(h|y) and
p(yunobs|y). Implicit conditioning is performed on the values of any covariates [29].
The concept of conditioning on the observed data is what separates Bayesian
statistics from other inference approaches which estimate unknown parameter over
the distribution of the possible data values while conditioning on the true, yet
unknown parameter value [27, 29]. Thus, Bayesian paradigm is unique in that
sense.

At the heart of all the Bayesian approaches for detection of HIV drug resistant
mutation interactions lies the concept of Bayesian inference and, specifically,
Bayesian model selection. The goal is to determine the posterior distribution of all
parameters in the problem (resistance association and epistatic mutation interac-
tions), given the genetic data for the case-control study (drug treated and untreated
patients) while incorporating prior beliefs about parameter values. The conditional
probability of all parameters given the observed data is proportional to the product
of the likelihood function of the data and prior distribution on the parameters [27]:
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PðparametersjdataÞ ¼ PðdatajparametersÞPðparametersÞ
PðdataÞ ð22:1Þ

For most of the real world applications in bioinformatics, including genome
wide association studies and drug resistance studies, the marginal probability of
the data, P(data), cannot be explicitly calculated [30] and, therefore, P(parame-
ters|data) can be known only up to the proportionality constant as shown in
Eq. 22.1. However, advanced computational techniques (iterative sampling
methods) can be used to determine posterior distribution of parameters [27, 31].
The main task is to make appropriate choices of statistical models to describe
P(data|parameters) and also to choose appropriate prior distributions on the values
of parameters: P(parameters). Notice that the posterior distribution provides the
probability information for all values of parameters.

22.6.2 Bayesian Model Selection

Instead of testing each mutation set in a stepwise manner (‘frequentist’ hypothesis
testing), Bayesian approaches fit a single statistical model to all of the data
simultaneously [30, 32, 33] allowing for increased robustness when compared to
hypothesis testing methods [34, 35]. Another advantage of Bayesian approach
to the problem is the ability to quantify all the uncertainties and information and to
incorporate previous knowledge about each specific marker or mutation set into
the statistical model through the priors [27, 30].

In the Bayesian model selection framework, we are interested in figuring out
which of the set of models {M} is the most likely one given the observed data (X).
In analogous way to Eq. (22.1), we can find the posterior probability for a par-
ticular model Mi given data, by replacing parameters with Mi:

P MijXð Þ / P XjMið ÞP Mið Þ ð22:2Þ

Thus, through comparison of P(Mi|X) and P(Mj|X) it can be determined whether
model Mi or Mj is more likely [27].

22.6.3 Graphical Models

High-dimensional biomedical data represents a complex system with intricate
dependence structure arising from interactions at the molecular level [36].
Graphical models, which contain in addition to random variables also their con-
ditional independence information, provide a way to model such complicated data
in real life [28]. Particularly, Bayesian networks (BN), which represent directed
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acyclic graphs, find wide applicability for modeling complex dependencies among
random variables [37, 38].

While a particular BN represents a joint probability distribution p(a,b,c), its
main advantage is that it contains the information on the conditional independence
among the random variables considered [28]. Figure 22.2 shows an example of
BN containing conditional independence in the data structure.

While there are a few different methods for BN structural learning from the
observed data including constraint-based methods and search-and-score meth-
ods [39, 40], we will focus primarily on application of Bayesian recursive model
selection algorithm [41] to BN structure inference. Next we will consider how this
conceptual framework is applied in practice to extraction of mutation interactions
in drug resistance studies.

22.7 Bayesian Modeling of HIV Mutations and Their
Epistasis

Statistical approach to Bayesian modeling of HIV drug resistance can be divided
into two distinct parts. First, it is necessary to find the mutations in HIV-1 protease
or reverse transcriptase associated with drug resistance either individually or
through epistasis. Then, in order to describe the structural basis of drug resistance,
we need to obtain the detailed interaction structures among the involved mutations.
Each of those parts is based on a set of different but equally important statistical
models for virus drug resistance described in more detail below but relying on the
general ideas of Bayesian data analysis paradigm we reviewed in Sect. 22.6.1.

Fig. 22.2 A Bayesian network example. A simple example of using a Bayesian network (BN) to
model independence relationships between various observables. Here a BN is used to show the
effect of mutations in the HIV-1 virus on the AIDS suppression via drug resistance. Particularly,
observe the presence of the conditional independence structure in the shown BN: S?MjT
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22.7.1 Bayesian Variable Partition Model

Each marker in question is an amino acid position: HIV-1 protease amino acid
sequences from drug-treated patients represent the case group data, while similar
sequences from untreated individuals are the controls. BVP model allows for
detection of both interacting and non-interacting drug resistance loci among a
large number of mutations in the viral genome. It is an application of Bayesian
model selection procedure. Particularly, all the markers are split into three non-
overlapping groups: (1) mutations not associated with drug-resistance, (2) mar-
ginally resistance-associated mutations, and (3) those with interaction associated
resistance effect. Thus, using the prior probabilities on the marker memberships
and Markov Chain Monte Carlo (MCMC) methods, posterior probabilities for
group memberships are determined by iterative sampling from the posterior dis-
tribution. Specifically, by interrogating each marker conditionally on the current
status of others via MCMC method the algorithm produces posterior probabili-
ties [30]. Particularly, the genotype counts are modeled by the multinomial dis-
tribution with the frequency parameters described by the Dirichlet prior. In order
to determine the posterior probability of each marker’s group membership (rep-
resented by I) the Metropolis-Hastings (MH) algorithm [31] is used to sample
from P(I|D,H) as given in Eq. (22.3):

P IjT;Uð Þ / P T1jIð ÞP T2jIð ÞP T0;UjIð ÞP Ið Þ ð22:3Þ

where T is the drug treated data set, U is the control data set (untreated HIV
patients), and then T0, T1, and T2 are corresponding partitions of the treated data
set into the three categories described above. The main model assumption is that
case virus genotypes at the treatment associated markers will have different dis-
tributions when compared to control genotypes. Furthermore, the likelihood model
assumes independence between markers in control group.

Notice that we know the posterior probability for the partition markers only up
to the proportionality constant P(T,U), since summing over all possible partitions
is computationally unfeasible. However, we can still determine the approximate
distribution of P(I|T,U) via sampling from the posterior through advanced Monte
Carlo techniques described below. First, it is necessary to specify in detail the
statistical models for the likelihood distributions in Eq. (22.3). We assume that
marker values for virus amino acid positions of HIV-1 virus come from a multi-
nomial distribution with the frequency parameters described using the Dirichlet
prior; moreover, marker combinations in different drug resistance influence groups
are independent. If we let ai ¼ ai1; ai2; . . .; aiLið Þ to be the prior pseudo-counts and
integrating out the nuisance parameters [28], we obtain [1]:

P T1jIð Þ ¼
Y

i:Ii¼1

aLi

j¼1

C nij þ aij

� �

C aij

� �
 !

C
P

aið Þ
C
P

ni þ aið Þ

" #
ð22:4Þ
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While in the first group we consider the mutations that marginally contribute to
the drug resistance effect, in the second group we are looking at the mutations that
lead to the virus drug resistance via epistatic interactions. Therefore, it is necessary
to look at the mutation configurations among the markers in the group 2.

P T2jIð Þ ¼
aQ

j¼1

C nj þ bj

� �

C bj

� �
 !

C
P

bið Þ
C
P

ni þ bj

� � ð22:5Þ

where Q represents the number of possible mutation combinations, and bif g are
the prior pseudo-counts. Finally we need to specify P(T0,U|I). Here we combine
together the markers not associated with the drug resistance effect and those from
the control group data, we also assume that the observations are mutually inde-
pendent for this group (modeling with saturated multinomial distribution can be
performed similarly). By the same analysis path as above for P(T1|I), after inte-
grating out the nuisance parameters, we obtain [1]:

P T0;UjIð Þ ¼
Yp

i¼1

aLi

j¼1

C mij þ aij
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C aij

� �
 !

C
P

aið Þ
C
P

mi þ aið Þ ð22:6Þ

where mi1; . . .;miLif g are the counts of different types of mutations in the
(T0 + U) combined data set at each position i. In is also important to note that
utilizing the advantage of the Bayesian approach we can incorporate the prior
knowledge about the mutations associated with drug resistance through the choice
of the proper prior on I: P(I). One possible implementation is to use the multi-
nomial prior to reflect the appropriate proportion of markers associated with the
drug resistance. As noted previously, the results of the BVP step is the iterative
separation of the markers into the three groups.

22.7.2 Recursive Bayesian Model Selection

If the interactions among the mutations play a significant role in the drug resis-
tance capability of the HIV-1 virus, it is highly desirable to be able to know the
detailed interaction patterns to figure out the structural basis of the resistance.
However, results of the BVP model use the saturated model for the group 2
variables providing no details about the interactions present in the problem. While
inferring a complete Bayesian network structure using one of the methods
described in Sect. 6.3 is a possible approach, limited computation resources,
insufficient amount of data or a large number of mutations in question might make
that approach undesirable. However, limiting the choice to two simple models that
provide information about conditional independence among the interacting
mutations will make the computational time reasonable and provide sufficient
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structural details for further analysis of epistasis’ contribution to drug resistance on
the molecular level. Figure 22.3 shows an example of the independence structure
that could potentially be obtained among five different mutations applying the
recursive model selection algorithm.

22.7.2.1 Chain-Dependence Model

The first non-saturated model we consider for a group of random variables XG is
the partitioning of the index set into three non-overlapping subgroups such that
XA ! XB ! XC: Therefore, XA and XC are conditionally independent given
variables XB (see Fig. 22.4 for details).

Combining this information we obtain the joint distribution for all the variables
together:

P XGð Þ ¼ P XAð ÞP XBjXAð ÞP XCjXBð Þ: ð22:7Þ

Assuming our data D consists of n independent and identically distributed
observations, and P is the set partitioning, we can write the posterior distribution
of the data under the chain-dependence model as:

P D;Pð Þ ¼ P DAjPð ÞP DBjDA;Pð ÞP DCjDB;Pð ÞP Pð Þ: ð22:8Þ

Thus, we need to calculate the likelihood P DjPð Þ: It can be shown [1] that

P DAjPð Þ ¼
YNA

k¼1

C nA
k þ bA
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� �
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k¼1 bA
k

� � ð22:9Þ

Fig. 22.3 Detailed mutation interaction structure. A diagram of the procedure for the inference
of the detailed dependence structure among drug resistant mutations. In this example, five
mutations (numbered M1 through M5) were assumed to be associated with the resistance. The
determined independence sets within this set are singled out using circles/oval and different
colors
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Multiplying the three equations above and the prior on the partitions we obtain
the posterior of the data. Using the appropriately designed MCMC algorithm we
sample from P D;Pð Þ:

22.7.2.2 V-dependence Model

The V-dependence model is shown in Fig. 22.5 in detail. Thus, under this model
we partitioned data XG into subsets A, B, and C such that variables in sets A and C
are mutually independent. As in our description above for the chain-dependence
model, we are interesting in calculating the posterior P D;Pð Þ, so we need to set up

Fig. 22.4 The chain-dependence model structure. Colors indicate different sets of variables
Three different formulizing directions (a–c) are shown, but they are all equivalent structures in
BN

Fig. 22.5 The V-dependence model structure. Colors indicate different sets of variables. Notice
that variables in A are marginally independent of the variables in B
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the appropriate models for the likelihood P DjPð Þ: First, the likelihood can be
decomposed as:

P DjPð Þ ¼ P DAjPð ÞP DCjPð ÞP DBjDA;DC;Pð Þ: ð22:12Þ

First, since variables in sets A and C are marginally independent according to our
model, by analogy with the results in Sect. 7.2.1 we can use multinomial-Dirichlet
distributions on XA and XC to obtain the appropriate expressions for P DCjPð Þ and
P DCjPð Þ which are similar to equations above. Finally, in order to find the expres-

sion for P DBjDA;DC;Pð Þ, we use~hBjAC
i ¼ hBjAC

jji ; j ¼ 1; . . .;NB

n o
for the transi-

tion probabilities between A[C and B, and nBjAC
jji for the number of transitions from

allele combination i in A[C to allele combination j in set B. After assigning a

Dirichlet prior to~hBjAC
i and integrating out the nuisance parameters, we obtain:
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Combining the likelihood with the prior P Pð Þ, we can use an appropriate
MCMC algorithm to sample from the posterior.

22.7.2.3 Sampling Strategy

Since the data D can follow either one of the above mentioned models, we need to
determine the posterior:

P ICV ;PjDð Þ / P DjICV ;Pð ÞP ICVð ÞP Pð Þ; ð22:14Þ

where ICV is the indicator for the chain-dependence or V-dependence models.
Since the constant of proportionality is unknown in expression for the posterior
above, it becomes necessary to find the appropriate MCMC algorithms [31, 42] to
sample from the posteriors. For a sampling from posterior given by Eq. (22.14) we
use the Metropolis-Hastings (MH) algorithm. Particularly, following the descrip-
tion in Ref. [1], three types of proposals can be used, including (1) randomly
changing two markers between the groups, (2) changing the group membership for
a randomly chosen marker and finally (3) switching between the V-dependence
and chain-dependence models. During the computational step of the sampling
process, the acceptance decision is done according to the MH ratio of the two
Gamma functions.
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22.8 Applications of Bayesian Methodology to HIV Drug
Resistance

Described Bayesian systematic procedure for treatment associated mutation
epistasis has been already successfully applied to multiple HIV drugs in the
context of both single-drug and multiple-drug treatments. Table 22.1 provides a
compact summary of the results of such Bayesian analysis. Notice that multiple
statistically significant interactions among resistance causing mutations have been
discovered using Bayesian approaches. Results contain the analysis of multiple
mutation-prone positions. It is important to observe that molecular basis of mul-
tiple interacting mutations discovered with RMS was analyzed with MD simula-
tions and free energy calculations [2]. Therefore, this is an example of the
statistical study where biological processes underling drug resistance can be
extracted from the discovered independence groups. For sure, many other studies
applying Bayesian methodology to other drug classes and drug combinations will
follow in the future as more data become available.

Table 22.1 Results for applications of Bayesian methods to HIV drug resistance studies

Drugs Antiretroviral
effect

Discovered mutation interactions Details

Indinavir
(IDV)

Protease
inhibitor

{24,47{32{46\54|82}}}{10,71}{73,90} Interesting group
{46,54,82}a

Zidovudine Nucleoside
analog RT
inhibitor

{41,210,215}{67,219}{70} Further
biochemical
investigations
neededb

Nevirapine Non-
nucleoside RT
inhibitor

{106}{188}{103?181}{190} Weak interactions

IDV, SQV Protease
inhibitors

{61,71}{46,54,82}{73,90} Other details
ambiguous

IDV, NFV Protease
inhibitors

{24,54,82}{30,88}{73,90} 6 positions
disappearedc

IDV, NFV,
SQV

Protease
inhibitors

{30,88}{73,90}{24,46,54,82} Ambiguous
structure in 3rd
group

Epistatic mutations discovered with BVP approach are partitioned using RMS algorithm.
Independence groups are enclosed in brackets. ‘‘?’’ indicates inconclusive result. The table
contains summary of the results from Refs. [1, 2]
a Sequential mutation acquisition in this group leads to conditional independence. The results
were confirmed by the MD simulations
b It is not possible to study the structural basis of mutations using MD simulations for
Zidovudine
c When compared to single-drug treatment profiles
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22.9 Extensions of the Model

As we previously referred to at the beginning of the chapter, described statistical
methodology can be applied to other genotype-phenotype problems. Particularly,
studies have already been performed exploring multiple-drug treatment effects on
HIV-1 drug resistance. Particularly, in order to adapt the BVP and RMS algorithms in
such instances Ref. [2] authors used sequential application of the algorithms to data
from single-, double-, and triple-drug treated HIV patients. Comparing mutation
interactions in such runs, they discovered that drug-resistant effects are not additive,
but on the contrary significantly different from the independent conjecture [2]. This
discovery points to the necessity to update the current clinical state of the art
approaches to cross-resistance effects since they are usually ignoring significant
epistasis effects discovered. Another set of applications of the presented models lies
in HIV coreceptor usage [4] and occult HBV infection [3]. Therefore, applications
to other infectious diseases and cancer cells of the modified Bayesian methods could
follow in the near future with important medical results.

22.10 Conclusions and Future Prospects

In this chapter we described the details of the new procedure for detailed under-
standing of complex mutation interactions leading to HIV-1 drug resistance in
single and multiple-drug treatments. Results applying described methodology can
provide important information for clinical applications. Particularly, conditional
independence structures discovered will aid in clinical calculations of relative risks
for developing drug resistance for each patient given isolated mutation patterns.

Certain important issues need to be addressed in more detail with regard to
Bayesian statistical analysis of viral drug resistance. For example, emergence of
bias can result from multiple subpopulations in the data. Moreover, sensitivity of
the BVP algorithm may be affected by the transmitted resistance occurrence [1].

Even though the focus of the chapter was on statistical methods of analyzing
drug resistance, it is crucial to understand the importance of trying to connect
discovered mutation groups and biochemical underpinnings of the HIV-1 drug
resistance process. Thus, performing biochemical investigations and molecular
simulations of the discovered epistatic interactions plays a significant role for
clinical applications of the Bayesian results.
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