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    Abstract     Development of metastatic cancer is a complex series of events that 
includes genesis of tumor-related vascular and lymphatic systems, enhanced cellular 
motility, and the capacity to invade and survive at distant sites, as well as evasion of 
host defences. The wild-type p53 protein plays key roles in controlling these facets 
of tumor progression, and loss of normal p53 function can be suffi cient to predis-
pose tumor cells to gain metastatic properties. In contrast, dominant p53 mutants 
that have gained oncogenic functions can actively drive metastasis through a variety 
of mechanisms. This chapter aims to highlight these processes.  

  Keywords     Extracellular matrix   •   Motility   •   Epithelial-mesenchymal transition   • 
  G-protein   •   Chemokine   •   Transforming growth factor beta   •   microRNA  

        Introduction 

 Invasion of the surrounding or underlying tissues is a crucial step in the progres-
sion to a malignant phenotype, and likely requires altered cellular interactions with 
the extracellular matrix (ECM) and enhanced motility. Development of metastatic 
disease is a late and often fatal process through which the tumor cells become 
established at a site distant to that of the primary lesion. This requires multiple 
biological steps, including development of capillary networks and/or lymphatic 
vessels adjacent to the tumor (angiogenesis or lymphangiogenesis), intravasation 
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into these vessels, transport through the blood or lymphatic system, extravasation 
from the circulation, and survival as a secondary tumor deposit. In the case of epi-
thelial neoplasms, this may be preceded by a phenotypic change in the tumor cells 
by means of epithelial-to-mesenchymal transition (EMT), although this remains 
somewhat controversial [ 1 ]. More recent work has highlighted the formation of a 
pre- metastatic niche in potential target organs as a result of mobilization and 
accumulation of bone-marrow derived cells which prepare the secondary site to 
accommodate tumor cells. 

 More than 100 years ago [ 2 ], in an effort to explain why some tumors metastasize 
preferentially to specifi c target organs, Paget proposed the “seed-and-soil” hypothe-
sis, in which tumor cells with metastatic potential (the “seed”) would only metasta-
size to, and survive in, sites with which they had compatibility (the “soil”). In an 
excellent review article [ 3 ], the modern concepts of seed and soil are highlighted, 
which include tumor heterogeneity, selective metastasis of cells with pre- existing 
metastatic potential, and the consequences of the interactions between the microen-
vironment (metastatic niche) and the tumor cells. Current models suggest that sub-
populations of cells exist within the heterogeneous primary tumor which have gained 
mutations that confer the propensity to metastasize and survive in particular organs, 
and that these mutations may be acquired early during tumorigenesis [ 4 ]. Two ele-
gant studies highlight this using sub-lines of MDA-MB-231 breast cancer cells that 
metastasize predominantly either to lung or bone [ 5 ,  6 ]. Microarray- based compari-
son of gene expression in primary tumors and lung metastases revealed that the prod-
ucts of some genes were implicated in growth at the secondary site only, whereas 
others also played a role in primary tumor growth [ 6 ]. In the case of cells that were 
metastatic to bone, differentially-expressed genes encoded products involved in oste-
olysis and angiogenesis, amongst others [ 5 ]. However, the authors reported that the 
“bone metastasis gene signature” was additional to a previously- identifi ed “poor 
prognosis gene signature” [ 7 ] that was present in the primary tumor, suggesting that 
additional biological functions over and above those required for primary tumorigen-
esis are needed to facilitate metastatic spread. Potentially, a subpopulation of cells 
within the primary tumor might harbor these metastasis-specifi c mutations, or they 
may be acquired as a result of further genetic insult of the primary lesion.  

    p53 Mutation and Development of Metastasis 

 It is well accepted that wild-type p53 is a key regulator of cellular homeostasis, and 
that its loss through deletion or mutation underpins the development of many human 
malignancies by abrogating cell cycle checkpoints, cell death pathways and various 
other functions, some of which are pertinent to metastatic spread. One such mecha-
nism involves regulation of neovascularization, a critical early step in metastasis, as 
outlined above. Some years ago, Van Meir and coworkers reported that expression 
of wild-type p53 in glioblastoma cells resulted in release of an angiogenesis inhibi-
tor [ 8 ], while separate studies identifi ed TSP-1, a potent inhibitor of angiogenesis, 
as a direct target of wild-type p53 [ 9 ], which impacts on survival [ 10 ]. Therefore, its 
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reduction in tumors with p53 loss-of-function would enhance the formation of a 
tumor blood supply. Wild-type p53 is now known to regulate angiogenesis through 
a number of mechanisms – by upregulating expression of angiogenesis inhibitors 
that include EphA2 [ 11 – 13 ] and BAI1 [ 14 ]. Conversely, wild-type p53 is reported 
to repress expression of proangiogenic molecules such as matrix metalloprotease 
(MMP)-1, hypoxia-inducible factor (HIF)-1α [ 15 ], the HIF-1α target vascular endo-
thelial cell growth factor (VEGF)-A [ 16 ,  17 ], and cyclo-oxygenase (COX)-2 [ 18 ]. 
Other studies also indicate that some pro-angiogenic chemokines [ 19 ], including 
CXCL12, CXCL8 and CXCL5, are repressed by wild-type p53 [ 20 ,  21 ]. Indeed, in 
a cellular progression model of sarcomagenesis in which wild-type p53 was inacti-
vated, Milyavsky et al. reported elevated expression of CXCL1 and CXCL8, 
amongst other genes, in the latter stages of tumor progression [ 22 ]. 

 Wild-type p53 is also important in attenuating cellular migration and invasion. 
Of course, there is some overlap between genes involved in regulation of angiogenesis 
and cell motility. MMP-1 (collagenase IV) is a key enzyme required for degradation 
of extracellular matrix (ECM) as a component of the metastatic process, in addition 
to its role in angiogenesis. Other examples include the chemokines CXCL5, CXCL8 
and CXCL12, which are repressed by wild-type p53 [ 20 ,  21 ] and which are key 
players in cell migration and metastasis [ 23 – 25 ]. Considerable insight into the role 
of p53 was provided by expression profi ling studies conducted by Zhao and col-
leagues [ 26 ], who examined wild-type p53-dependent gene expression in a physio-
logical setting. Amongst a cohort of targets that were either activated or repressed 
following induction of wild-type p53, they found activation of genes encoding α1 
collagens type II and type VI, as well as structural proteins including actin and sev-
eral keratins. Increased expression of plasminogen activator inhibitor-1 (PAI-1, 
SERPINE1), an inhibitor of the protease urokinase plasminogen activator (PLAU) 
was also reported. However, this protein may be involved in potentiation of the 
metastatic process as well as its inhibition, and its actual function may depend on 
the concentration in the microenvironment and the context in which it is expressed. 
For example, at physiological levels it acts to promote angiogenesis and cellular 
invasion, whereas elevated concentrations are inhibitory [ 27 ], and may act to aid 
cellular detachment [ 28 ] in an integrin-dependent manner [ 29 ]. Zhao et al. also 
found p53-dependent induction of endothelin-2 (EDN2), a modulator of vasocon-
striction. Yet, EDN2 was demonstrated to function as a chemoattractant for macro-
phages [ 30 ] and may modulate the infl ammatory infi ltrate of tumors as well as 
enhance invasion [ 31 ]. Why this would be induced by a tumor suppressor protein 
such as p53 is, thus far, unclear, but may be unrelated to its role in tumor biology. 

 Studies in a mouse model system of hepatocellular carcinoma also provide further 
understanding of the role of wild-type p53 in suppression of metastasis. Delivery of 
a polyomavirus middle T antigen using the RCAS system into the livers of transgenic 
mice expressing the viral receptor (TVA) was found to result in formation of hepatic 
adenomas. However, when this was performed on a p53-null background, invasive 
and metastatic tumors developed, with differential expression of 105 genes between 
benign and malignant tumors [ 32 ]. These included insulin-like growth factor (IGF)-
2, cathepsin E, and the chemokines CCL8 (MCP-2, SCYA8) and CCL5 (RANTES, 
SCYA5), all of which have recognized roles in metastatic spread of tumors. 
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 Wild-type p53 also suppresses prometastatic activity through inhibition of small 
GTPase activation. Using mouse embryo fi broblasts from p53-null and p19 ARF -null 
animals, Guo and colleagues reported changes in actin reorganization, accompanied 
by activation of phosphoinositide 3-kinase (PI3K) and Rac1 [ 33 ]. Further work by 
this group [ 34 ] indicated that p53 loss led to increased focal adhesion formation, 
and that ROCK activation only partially mimicked the RhoA phenotype. Promotion 
of an invasive phenotype by expression of active RhoA, Rac1, or Cdc42, but not an 
activated Ras mutant, was also observed in p53-null cells. However, subsequent 
studies by Xia and Land revealed that loss of p53 function combined with activated 
Ras resulted in enhanced cell motility [ 35 ]. Co-expression of mutant p53 R175H  and 
H-Ras G12V  led to more profound migration in both wound-closure and transwell 
assays, with increased activation of RhoA, but not Rac1 or Cdc42. Similar GTP 
loading of RhoA was observed when endogenous wild-type p53 was repressed by 
shRNA, as well as in p53-null HCT116 cells, indicating the importance of loss of 
function. Moreover, wild-type p53 was shown to enhance activity of p190 RhoGAP, 
thus minimizing accumulation of the GTP-bound (active) form of RhoA.  

    p53 Gain-of-Function Mutants 

 Over and above the undoubted importance of loss-of-function mutations in the 
development of metastatic disease, many common mutations in the p53 gene in 
human cancer result in expression of proteins with dominant transforming proper-
ties that actively drive tumor progression. These gain-of-function (GOF) mutants 
may endow the cells with many properties that impart growth or survival advan-
tages, and may include functions pertinent to metastatic spread. Indeed, mouse 
models with knock-in GOF p53 alleles exhibit increased metastasis compared to 
p53-null animals [ 36 – 38 ]. GOF mutant p53 may also be associated with EMT, as 
mice expressing a mutant KRAS gene together with p53R172H were found to 
develop spindle cell carcinomas and frequent (>60 %) spread to secondary organs, 
including lungs and lymph nodes [ 38 ]. Nude mouse xenografts of fi broblasts 
expressing GOF p53 (H179L) were also shown to undergo metastatic spread, with 
deposits in lung and mediastinum from subcutaneous primary tumors [ 39 ].  

    Gain-of-Function Mechanisms 

 Although there is debate over the mechanism through which GOF p53 mutants 
act, several models have been proposed. Some years ago, transcriptomic profi ling 
provided clues to the aberrant functions of this class of proteins. Studies in lung 
cancer cells expressing specifi c p53 mutants revealed key differences (as well as 
some similarities) compared to the same cells expressing wild-type p53 [ 40 ,  41 ], 
and at least in some cases this appeared to be dependent upon the transactivation 
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properties of p53 as L22Q/W23S mutants ( i.e. , in one of the transactivation 
domains) showed greatly reduced potency. Amongst the genes identifi ed by this 
method, NF- κ B2 (p100/p52) was upregulated by GOF p53 proteins [ 42 ], raising 
the possibility that transcription factors such as this may be activated by mutant 
p53, thereby leading to a secondary level of gene induction or repression that 
mediates the biological responses. 

 An important study by Weisz and colleagues investigated the effects of GOF p53 
on the response of cancer cells to tumor necrosis factor (TNF)-α [ 43 ]. Whereas TNF-α 
is potentially cytotoxic, as it is able to induce an apoptotic response, it is also well-
recognized that this cytokine can promote tumorigenesis through the activation of 
NF- κ B on a background of infl ammation [ 44 ,  45 ]. GOF p53 was shown to promote 
NF- κ B activity in response to TNF-α, with increased nuclear translocation of p65, and 
to inhibit TNF-α-induced apoptosis, whereas cells lacking p53 or treated with siRNA 
showed increased cell death in the presence of ligand. Moreover, co- expression of 
mutant p53 and NF- κ B was found in human tumors, further suggesting a functional 
relationship. Thus, GOF p53 may act as molecular switch that toggles the response to 
an otherwise cytotoxic factor through activation of NF- κ B. 

 Another proposed mechanism to explain p53 gain-of-function mutation is 
through interaction with other members of the p53 family, such as p63 and p73. 
Whereas p73 may be of more importance in apoptosis, p63 isoforms have been 
linked to tumor progression and metastasis, although there is considerable contro-
versy in the existing literature as to whether p63 proteins function as tumor suppres-
sors or tumor promoters, which isoforms are responsible, and in which tissue types 
[ 46 ]. The presence of two promoters leads to expression of full-length TAp63 and 
ΔNp63 which lacks the amino terminus. Each of these undergoes alternative splic-
ing at the 3′ end to generate α, β and γ forms and, potentially, δ and ε. ΔNp63 is 
required for normal epithelial differentiation, and its absence is lethal due to defi -
cient formation of the epidermis and associated structures. 

 Despite some apparent contradictory functions and activities reported for p63, 
emerging evidence seems to support the hypothesis that p63 acts as a suppressor 
of metastasis, and that the balance of expression between TA and ΔN isoforms is 
important, with ΔNp63 (or GOF mutant p53) being capable of oligotetramerizing 
with TAp63 and suppressing its anti-tumorigenic and anti-metastatic properties. 
Mice in which TAp63 is inactivated lose the Ras-dependent senescence response 
and show increased sarcomagenesis in the absence of p53 [ 47 ]. Consistent with 
this suppressive effect, gene knockdown of p63 in squamous carcinoma cell lines 
led to increased expression of a cohort of genes involved in invasion and metasta-
sis that included α4 integrin, N-cadherin, tenascin C and two Wnt proteins, Wnt-4 
and -5a, with a concomitant increase in cellular migration rate [ 48 ]. Moreover, 
mutant p53 has been shown to increase Rab-dependent recycling of the EGFR and 
α5β1 integrin, inhibit the function of TAp63, and promote random migration, 
invasion and metastasis [ 49 ]. 

 Maspin, also known as SERPINB5, is well-known for its function as an inhib-
itor of cell migration, invasion, metastasis and angiogenesis [ 50 ]. Although multiple 
factors contribute to altered maspin expression in human cancer, Kim et al. 
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identifi ed TAp63 as an important activator of maspin expression in lung cells 
through binding to a p53 binding site in the maspin promoter [ 51 ]. These authors 
found a striking correlation between expression of maspin and p63 in lung 
cancers, with loss of both in adenomacarcinomas and reduced expression of 
maspin in lung cancer metastases to lymph node. TAp63 was found to activate 
maspin expression in reporter gene assays, and maspin levels correlated inversely 
with invasion, implying that loss (or inactivation) of TAp63 during tumor pro-
gression results in enhanced capacity for metastatic spread. Consistent with this 
notion of p63-dependent suppression of invasion by maspin, studies in endome-
trial cancer cells showed that expression of the GOF p53 mutant R273H, but not 
a loss of function p53 mutant, inhibited maspin expression and promoted migra-
tion and invasion [ 52 ]. 

 Studies by Adomo and colleagues showed co-operativity between transform-
ing growth factor (TGF)-β and GOF p53, in which GOF p53 and Smad2 enter into 
a ternary complex with p63 and repress its anti-metastatic activity, in part through 
modulation of fi ve target genes: Cyclin G2, Sharp-1, Follistatin, ADAMTS9 and 
GPR87 [ 53 ]. They found that raising the level of p63 altered the balance of GOF 
p53 to p63, and suppressed lung colonization by tumor cells introduced  via  the 
mouse tail vein, further establishing p63 as a suppressor of metastasis. Moreover, 
TGF-β treatment of cells expressing GOF p53 enhanced cell migration. The 
model proposed involves interaction of the α-domain of p63 with the MH2 domain 
of Smad2, and binding of the transactivation domain of GOF p53 by the Smad2 
MH1 domain. Thus, this may be specifi c for p63α isoforms. Interestingly, tumor 
suppressive functions of TGF-β through the repression of maspin expression and 
consequent inhibition of cell migration are dependent upon the presence of wild-
type p53 [ 54 ]. 

 A third mechanism to explain mutant p53 gain of function is direct recruitment, 
together with other transcription factors, onto the promoters of specifi c target genes. 
For example, it has been reported that GOF p53 interacts with NF-Y and p300, 
activating NF-Y targets [ 55 ]. A pertinent example related to invasion and metastasis 
is given by the elegant work of Fontemaggi et al. [ 56 ], in which they examined regu-
lation of ID4 by GOF p53 – E2F1 complexes. They found that expression of R175H 
and R273H isoforms in H1299 cells led to elevated expression of ID4, whereas 
repression of mutant p53, but not wild-type p53, by siRNA resulted in lower ID4 
levels. Subsequent analyses revealed that E2F1 was required for GOF p53-mediated 
activation of ID4 expression. This was shown to facilitate stabilization of mRNAs 
encoding the pro-angiogenic (and pro-metastatic) chemokines IL-8 (CXCL8) and 
Gro-α (CXCL1). Furthermore, co-expression of p53 and ID4 in breast tumors was 
found to correlate with increased microvessel density, a measure of angiogenesis. 
Enhanced recruitment of CBP and STAT onto the NF- κ B2 promoter by GOF p53 
mutants [ 57 ] also explains some of the earlier observations that this transcription 
factor is upregulated by mutant p53 [ 42 ]. Direct nucleation of mutant p53 onto the 
promoter of the receptor tyrosine kinase AXL has also been shown recently [ 58 ], 
but this appears to be independent of transactivation ability of the mutant p53, as 
L22Q/W23S mutants in one of the transactivation domains were still able to enhance 
AXL expression. Stimulation of AXL expression by GOF p53 was correlated with 
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enhanced motility of lung cancer cells, supporting a role for this axis in aspects of 
tumor metastasis.  

    p53 and the Chemokine Network 

 It is now well accepted that NF- κ B signaling is central to the chronic infl ammatory 
response that promotes tumor progression and metastasis [ 59 ,  60 ]. The chemokine 
network is a complex system of ligands and receptors whose primary roles are in 
immune cell activation and their recruitment to infl ammatory foci through production 
of chemokines at the infl ammatory site, with establishment of a chemokine gradient 
towards which infl ammatory cells expressing the cognate receptor migrate [ 61 ]. 
However, chemokines and their receptors are now fi rmly established as major players 
in tumorigenesis, angiogenesis and metastasis [ 23 – 25 ,  62 – 65 ]. For example, Muller 
et al. reported upregulation of CXCR4 and CCR7 receptors on the surface of breast 
cancer cells and demonstrated that this enabled homing of tumor cells to target organs 
expressing the ligands for these receptors [ 66 ]. Multiple studies have also reported 
elevated expression of pro-angiogenic chemokines such as CXCL1, CXCL2, CXCL3, 
CXCL5 and CXCL8 in a wide range of tumor types [ 67 – 72 ]. Thus, the roles of differ-
ent chemokine-receptor interactions in tumor progression are varied and widespread. 

 As mentioned earlier, an interesting study by Moskovits et al. [ 20 ] reported that 
wild-type p53 represses CXCL12 expression, thereby reducing cell migration. 
Moreover, subsequent studies from our own laboratory [ 21 ], which focused on the 
contribution of GOF p53 to cell motility, highlighted a positive infl uence of these 
aberrant proteins on chemokine expression. Expression of several chemokines is 
regulated, at least in part, by NF- κ B family transcription factors [ 73 – 83 ], consistent 
with a promoting role for infl ammation in carcinogenesis, and it is clear that GOF 
p53 proteins activate a transcriptional response that includes NF- κ B2 [ 41 ,  42 ]. Thus, 
it is perhaps no surprise that chemokines are upregulated by GOF p53. This is a 
clear gain of oncogenic function, as p53-null cells show higher levels of chemokine 
expression compared to cells expressing wild-type p53, yet substantial increases in 
chemokine expression occur when GOF p53 proteins are present [ 21 ]. Moreover, 
levels of CXCL5, CXCL8 and CXCL12 are increased differentially, depending 
upon the amino acid substitution present in p53, suggesting a degree of allele- 
specifi city, and appear to depend upon elevated transcription. Further, these 
enhanced chemokine levels correlated with increased cellular motility, consistent 
with a role in invasion and metastasis. However, it is likely that deregulation of 
NF- κ B activity is not the only mechanism responsible for enhancing chemokine 
expression. At least in the case of CXCL1 (Gro-α) and CXCL8 (IL-8), enhanced 
mRNA stabilization through GOF p53 – E2F1 activation of ID4, as noted above, is 
crucial [ 56 ]. In addition, inactivation of p63 may also be a key mechanism, either 
directly or indirectly [ 84 ]. Thus, multiple biochemical mechanisms triggered by 
GOF p53 may cooperate to deregulate the chemokine network in cancer cells and 
enhance their progression to a metastatic phenotype.  
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    MicroRNA-Mediated Control of Metastasis 

 Another key mechanism that regulates processes involved in tumor cell metastasis 
is the action of microRNAs (miRNAs). These are small, non-coding RNAs present 
throughout the genome, which bind to target sequences in messenger RNAs 
(mRNAs), effecting their degradation or repressing their translation. They are gen-
erated in a step-wise process, which involves, fi rst, expression of a pri-miRNA that 
contains a characteristic stem-loop structure. This entity is processed by an enzyme – 
Drosha – into a pre-miRNA, generally between 70 base pairs (bp) and 100 bp in 
length. Following export into the cytoplasm, the pre-miRNA is cleaved by Dicer to 
generate the mature miRNA consisting of two strands of 20–25 bp in length, one of 
which becomes incorporated into the RNA-induced silencing complex (RISC). 

 A number of miRNAs have been implicated in suppression of metastasis, includ-
ing miR-31, miR126, miR-206, miR-335, miR-130, and the miR-200 family [ 85 , 
 86 ]. Processing of these requires Dicer, which is transactivated by TAp63 [ 87 ]. 
Therefore, transdominant inhibition of p63 by GOF p53 represents yet another 
mode of action through which mutant p53 may promote tumor metastasis, as well 
as other wide-ranging effects on cellular biology [ 88 ,  89 ]. In addition, miR-200 spe-
cies target the EMT-associated transcription factors ZEB1 and ZEB2 for degrada-
tion [ 90 ,  91 ]; therefore inhibition of miR-200 processing through loss of Dicer 
activity may explain how GOF p53 can promote EMT [ 92 ]. 

 A recent study has provided further evidence for GOF p53 regulation of 
microRNA that leads to enhanced invasion in breast cancer [ 93 ]. Expression of 
either miR-155 or GOF p53 in p53-null cells led to increased invasion and 
EMT. Subsequent experiments indicated a direct role for p63 in transcriptional 
repression of miR-155, which was relieved by the presence of GOF p53. Interestingly, 
these authors identifi ed the transcriptional repressor, ZNF652, as a target of miR- 
155. ZNF652 blocks expression of multiple genes involved in EMT, including 
vimentin, EGFR, TGF-β, and TGFβR2. Thus, inactivation of p63 by GOF p53 
enables miR-155 to inactivate ZNF652, thereby promoting emergence of the mes-
enchymal phenotype that is characteristic of many invasive epithelial malignancies. 
Unsurprisingly, low levels of ZNF652 were found to correlate with breast tumor 
invasion in clinical samples.  

    Conclusions 

 p53 mutation impacts metastatic processes on multiple levels. Loss of wild-type 
p53 function relieves repression of angiogenesis and enhances motility. However, 
dominant oncogenic p53 proteins actively drive metastasis by promoting angio-
genesis through upregulating the expression of chemokines and other angiogenic 
factors in tumor cells. GOF p53 mutants enhance metastasis by switching on tran-
scriptional programs that promote a more aggressive biological phenotype, and by 
interfering with the metastasis-suppressive functions of p63. Our emerging 
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understanding of microRNAs in control of angiogenesis and metastasis provides a 
further layer of complexity to p53 function. However, the central role of p53 in 
development of aggressive cancers may provide opportunities for targeted thera-
peutic approaches, either of p53 directly or one or more of its mediators, to improve 
clinical outcome.     
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