
Chapter 20
Space-Time Analytics of Tracks
for the Understanding of Patterns of Life

May Yuan and Atsushi Nara

Location-aware devices have enabled the recording of personal whereabouts at fine
spatial and temporal resolutions. These temporal sequences of personal locations
provide unprecedented opportunities to explore patterns of life through space-time
analytics of movement and stops of individuals. At a disaggregated level, patterns
of life reveal the activities and places as well as the development of routines for
individuals. At an aggregate level, patterns of life suggest potential social networks
and social hot spots for interactions. Moreover, the concept of “neighborhood” can
become personalized and dynamic with space-time analytics to identify the spatial
extent to which an individual operates and how the extent varies with temporal
granularity. This chapter starts with an overview of space-time track analysis. While
time geography has proven useful for analysis of space-time paths and space-time
constraints on human activities, its scalability to large data sets is questionable. This
chapter provides a conceptual framework and methodology for conducting space-
time analysis with a massive number of space-time tracks including over a million
points of moves and stops over the course of a year. The examples demonstrate
the usefulness of the proposed conceptual framework and methodology to distill
complex patterns of life at both disaggregate and aggregate levels that can lead
to research opportunities for space-time integration in GIScience for an improved
understanding of geography.
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20.1 Time Geography as the Conceptual Foundation

Time geography has long been the de facto framework for geographers to analyze
space-time activities of individuals and the everyday workings of society at locales
of operation (Berry and Linoff 1997). Central to this analytical framework is an
emphasis on modeling individual behavior, not just empirical analysis of large
groups (Morrill 2005). Hägerstrand’s seminal work on What about People in
Regional Science advocated for attention to individual human beings in an increas-
ingly complicated environment to examine the quality of life for of individuals and
collectives. To support such research, he proposed the basic framework of time
geography, including the concepts of lifelines, stations, bundles, domains and prisms
(Hägerstraand 1970). Advances in geospatial information analysis and visualization
have led to significant research developments in time geography, such as computing
activity-travel patterns of masses of individuals (Kwan 2004), activities and inter-
actions in a hybrid physical-virtual space (Shaw and Yu 2009), accessibility with
varying travel velocity (Miller and Bridwell 2009), and many other improvements.
This chapter offers yet another improvement to time geography with a new approach
to examining daily space-time paths of individuals with intensive observations
through location-aware devices. We have developed conceptual and computational
frameworks for space-time analytics of daily movements of individuals to project
their patterns of life and potential social networks. The basic concepts of time
geography are used to recognize lifelines, stations, bundles, and domains (Fig. 20.1),
but we introduce patterns of life, locales and social networks to construct geospatial
narratives of their routine activities, stages in life, and opportunities for social
interactions.

Fig. 20.1 Basic conceptual elements of time geography (Adapted from Hägerstraand 1970)
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The proliferation of location-aware devices has led to detailed accounts of entity-
location interactions. What are the usual paths that an individual commutes from
residence to work? What are common stops along these paths? What are the routine
activities that an individual participates in over a period of time? How have the
routine activities evolved over time? When and what are occasional outings or
routes that one took previously and for what purposes? What are the potential
social interactions among individuals? What kinds of and where are places that
individuals like to hang out and when? These questions seek to identify patterns
of life, socially significant places, and changes in routine activities in space and
time. In time geography, lifelines are comparable to the space-time paths taken
by individuals, stations correspond to locations visited by individuals, bundles
capture locations where multiple individuals visited within space-time proximity,
and domains correspond to the spatial extent in which individuals operate. While
the conceptual mappings work well, time geography offers no specific quantitative
movement analysis of empirical data (Miller and Bridwell 2009).

20.2 From Time Geography to Trajectory Analysis

Along with the growing use of location-aware devices, there are increasingly
ubiquitous surveillance sensors. With the availability of location data and sensor
data for moving objects, trajectory analysis has quickly gained popularity in
GIScience and related disciplines. The often massive, intensive trajectories recorded
by location-aware devices or geo-sensor networks at fine spatial and temporal reso-
lutions challenge management, query and analysis of trajectory data (Spaccapietra
et al. 2008). In contrast to time geography, trajectory studies have required the
development of quantitative methods for movement analysis. In time geography,
multiple modes of transportation influence an individual’s accessibility in a space-
time aquarium with conceptual elements of lifelines, prisms, bundles, etc. that
represent human activities. Innovative tools are being developed to visualize such
space-time aquaria with functions to query and analyze these conceptual elements
(Shaw and Yu 2009). Complementarily, trajectory analysis and trajectory mining,
emphasizing the ability to handle massive data, explore effective ways for data
aggregation and generalization (Andrienko and Andrienko 2011).

While location-aware devices and geo-sensor networks both provide space-time
data on moving objects, the two approaches observe movements in different ways.
Surveillance sensors monitor movements in an area, such as severe storms or
hurricanes in a region, traffic flows on a highway, vehicles in a parking lot, or
patrons at a building entrance. Each object has one trajectory with one activity
(e.g. entering a building), and each trajectory is assumed tangent and continuous
between beginning and ending points. Location-aware devices or personal diaries
(such as geo-tagged tweets or photographs), on the other hand, record the locations
of individuals over space and time. One space-time path taken by an individual may
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Fig. 20.2 Path and trajectories: Trajectories are defined through the semantic segmentation of a
path. Some parts of the path are irrelevant to the application of interest and do not belong to any
trajectory (Adapted from Spaccapietra et al. 2008)

Fig. 20.3 Trajectories and sub-trajectories (Adapted from Lee et al. 2007)

result from multiple activities (e.g. driving, working, shopping), and therefore, may
consist of multiple trajectories (Fig. 20.2). Trajectory analysis on both data sources
has been built upon descriptive and predictive analyses of trajectory descriptors,
similarity indices, clustering patterns, and individual-group dynamics (Long and
Nelson 2012). A suite of parameters and derivatives is being built to characterize
primitive and compound movement patterns (Dodge et al. 2008), which can serve
the basis for a systematic development of quantitative methods for trajectory
analysis.

Units of trajectory analysis usually are trajectories, trajectory segments (a.k.a.
sub-trajectories, Fig. 20.3), and stops. Measures of trajectory geometry or density
are common identifiers for clusters or outliers. Gaffney and Smyth (1999) proposed
a model-based clustering algorithm with a probabilistic mixture regression model
and the Expectation-Maximization algorithm to analyze hand movement. A similar
approach is used to analyze tracks of extratropical cyclones (Gaffney et al. 2007).
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By segmenting a trajectory into trajectory segments, movement parameters, such as
duration and speed (Dodge et al. 2012) and semantic behavior, such as shopping
and work (Popa et al. 2012), can be associated with these features along trajectories
for analysis. This approach enables us to extract local behavioral patterns of mobile
objects rather than global patterns for the entire trajectories. Several algorithms are
designed for trajectory segmentation, such as density-based clustering TRACLUS
(Lee et al. 2007), Geometry-based Representativeness (Panagiotakis et al. 2012),
and Velocity-based Trajectory Structure (Yan et al. 2012).

In contrast to segmentation, aggregation and connectivity among trajectory seg-
ments provide insights into the global trajectory patterns. Andrienko and Andrienko
(2011) introduced a trajectory aggregation technique by partitioning the space
into compartments, transforming raw trajectory data into moves between the
compartments, and aggregating the transformed moves with common origins and
common destinations. Guo et al. (2010) proposed a graph-based partition method
incorporating the use of trajectory topological relationships to find spatial structures
and general patterns of trajectories that were visualized in 2D trajectory density
maps at several temporal snapshots. These spatial structures or clusters often lead to
interesting semantic implications.

Semantic enrichment contextualizes trajectory segments with behavioral char-
acteristics. Eagle and Pentland (2006, 2009) applied the principle components of
movement data, termed eigen-behaviors, to capture the structure of behavioral
contexts of individuals, such as staying at home, work, or elsewhere. Availability of
a context-rich dataset is a critical factor for success for empirically based research of
semantic tracks (Giannotti and Pedreschi 2007). Using bus routes and bus stops data
and manually labeled modes of transportation (e.g. foot, bus, or car) to trajectory
segments, Patterson et al. (2003) obtained 84 % accuracy in predicting modes of
transportation with GPS data sampled at 2–10 s intervals over 3 months during
outside activities of the individuals being studied.

The combination of geometric and semantic trajectory analyses deepens the
level of behavioral knowledge that can be discovered from trajectories, such as
trajectory clusters (grouping), trajectory categories (typing), trajectory sequences
(transitioning) and trajectory aggregates (flocking). Laube et al. (2007) introduced
a methodology for lifeline context operators and standardizations, and explored the
spatio-temporal behaviors of homing pigeons using the sinuosity, rate of change
of trajectory sinuosity, navigational displacement, relation between distance to loft
and flight sinuosity. Dodge et al. (2009) identified local motion descriptors (i.e.,
motorcycle, car, bicycle, pedestrian) and global and local motion descriptors (e.g.,
velocity, acceleration, turning angle, straightness index) as movement signatures to
differentiate trajectories from different types of mobile objects. Similarly, Willems
et al. (2009) applied Kernel Density Estimation (KDE) to visualize movement
patterns of seafaring vessels. The density based visualization has shown to be useful
in identifying movement types (e.g. walking or driving; by vessels or speed boats)
and gathering places.

Besides mining trajectories from mobile collectives, attention to episodes along
individual trajectories offers new insights into behavioral changes in mobile objects,



378 M. Yuan and A. Nara

such as one person taking multiple modes of transportation (e.g. bike to a bus stop,
ride a bus, bike to building bike rake, and walk into a building), and when mining
data streams, the movement patterns of individuals can be revealed in real time
(Yan et al. 2011). MobiVis is but one tool developed to visualize social-spatial-
temporal patterns of mobile data (Shen et al. 2006; Shen and Ma 2008). The tool
incorporates heterogeneous network and semantic filtering techniques based on
associated ontology graphs, and the visualization technique of behavior rings that
reveal periodic behavioral patterns of individuals and groups.

20.3 From Trajectory Analysis to Space-Time Analytics

Generally speaking, time geography or trajectory analysis approaches explore
individual tracks over time or collective tracks within a confined area. Most
studies examine geometry, semantics, clusters, classifications, and entity-location
interactions of discrete tracks or attempt to generalize a collection of tracks.
Whether tracks are taken for the same mobile object is seldom considered, and
therefore, methods to reveal routine and incongruent movement patterns are missing
in the literature. Yet, temporal patterns that depict transitions between routine
and incongruent movements reflect shifts in patterns of life and are essential to
many domain applications, in which geospatial distributions of patterns of life and
movement are indicative of individual’s spatial social adaption or as a measure of a
population’s collective spatial-social pulses.

Under the assumption that people develop routines and follow these routines over
time, their patterns of life form through settling down to the regular activities that
take place in space and time. Movement is the process that people engage in to
get to the target place at the right time, and congruent movement patterns suggest
the formation of space-time routines and therefore, spatial patterns of life. For a
population, the summative characteristics for the progression in forming patterns of
life and spatial differentials of the process show how a society (or a community)
may foster faster or slower adjustments for newcomers and where and when people
are gathered in the society.

Analytics remains an ambiguous term that often serves as an umbrella term for
statistics, data mining, modeling, simulation, and computational methods to dis-
cover and communicate meaningful patterns in data (Shmueli and Koppius 2011).
Yet, analytics commonly emphasizes data-centric and data-driven approaches to
tackle massive, streaming, heterogeneous and/or unstructured data, especially in
business management and marketing (Lavalle et al. 2011), education (Wagner
2012), website use (Marek 2011), and many other applications. In this chapter, we
define space-time analytics as methods to simplify the complexity of space-time
data into elements and structures that capture the useful information embedded
in the data. We emphasize elements and structures that together reveal useful
space-time information. Tracks, track segments, stops, and moves are examples of
elements in track analysis. Aggregates or disaggregates of these elements may also



20 Space-Time Analytics of Tracks for the Understanding of Patterns of Life 379

be useful elements to decipher movement patterns for individuals or collectives.
Structures are proximity, connectivity, ordering, or relationships in space, time,
and semantics. Here, semantics simply refers to the element’s characteristics and
meanings of interest. Kinship, for example, is a semantic relationship, and so
is management in an operation and participation in a social network or orga-
nized/unorganized activity. With this emphasis, space-time analytics focuses on
what space-time elements and structures pertain to the research questions of interest
and how to elicit these elements and structures from complex data.

20.4 A Conceptual Framework for Space-Time
Analytics of Tracks

The conceptual framework of space-time analytics of tracks proposed below,
extending the conceptual frameworks of time geography and trajectory analysis,
aims to discern space-time patterns of multiple tracks repetitively taken by given
individuals, and from the space-time patterns to interpret spatial patterns of life for
individuals, their potential interactions, and the spatial patterns of social pulses in
the related population. Clarification of terminology is important to communicate
concepts precisely. While many terms seem have inconsistent meanings in previous
studies, great attention is given to avoid incompatibility of the terms used in the
proposed conceptual framework:

• Path: the actual route that one took. A path usually follows transportation
networks or existing pathways except when travelling in an open space such as a
yard, plaza, air or sea.

• Track: the line formed by connected observed locations. A track is based on
observations taken by GPS points, geo-tagged media, or journey narratives. With
a track we know temporally ordered locations visited by a mobile object, but we
don’t know exactly the path that the object took to travel from one location to the
next.

• Trajectory: the expected route that one took from one location to the next.
A trajectory is a movement estimate based on space-time continuum and space-
time constraints. For a car and two consecutive observations of its locations,
its trajectory is expected to follow one of the road options between the two
locations, except for accidents such as driving into a lake. With a surveillance
video, identified individuals are assumed to move within a space-time continuum.
Spatial and temporal interpolation methods can be used to estimate the possible
trajectories between two known locations.

• Stops: locations on a track where a mobile object stays over a length of time
beyond a specified duration. A car makes stops at traffic lights, a person stops
by a convenience store, and a train stops at a city station. A specified duration
may be 30 s, 10 min, an hour, or a week, etc. depending upon what meaningful
information may be in the problem domain of interest.
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• Moves: locations on a track where a mobile object stays shorter than the specified
threshold duration. Locations where an object moves have instantaneous velocity,
even though there may not be data available for velocity calculation. A track is
composed of temporally ordered observed locations at which the mobile object
of interest either stops or moves. In addition to the threshold duration, spatial
and temporal granularities can influence the determination of stops and moves
locations as well as locations along respective tracks.

Minimal spatial and temporal granularities are subject to observations and can
influence decisions on points of stops and moves. At a fine space-time granule, for
example sub-meter and second, detailed motion can be recognized, such as taking
a step forward and the point will be determined as a move. However, if the space-
time granule is at 10 m and 5 min, a step forward is likely to be within the granule
and therefore will be considered as a stop. The final decision of stops and moves is
subject to the defined space-time threshold, say 20 m in an hour, which will consider
a collection of points within 20 m in an hour as stops, but for a point which next
point is beyond 20 m in an hour will be consider a move point. Determination of a
proper space-time granule depends on the instrument taking observations (such as
GPS or twitter) as well as the application of interest.

There are two kinds of structures for the elements of paths, tracks, trajectories,
stops, and moves: time-oriented or space-oriented structures. For time-oriented
structures time is considered the first order principle of organization that connects
points of stops and moves over space to form different kinds of movement lines. At a
basic level there are locations of stops and moves that are recorded as observations.
Estimated pathways between temporally consecutive locations of stops and moves
are trajectories, while straight line connections between these locations form tracks.
Connections between these locations based on the actual route travelled results in a
path for the journey.

Alternatively, space is considered the first order principle of organization for
space-oriented structures. Space connects points of stops and moves over time to
form visit histories at locations. Some locations may be visited on a regular basis,
and others may be visited only occasionally. Frequency and timing of visits may
vary from time to time. Passing-by locations involves only points of moves, other
locations may have only stop points or mixed stops and moves. Moves by a location
may be at different speed or in different direction. Stops at a location may be long
or short. Passing by a location that has in the past been a traditionally stopping may
signal a change in spatial behavior (such as no longer eating at a given fast food
restaurant) or pattern of life (such as no longer needing to use day care services for
children). Changes in how an individual moves at locations can also be revealing,
such that speeding out of a work parking lot may be indicative of urgency.

Chronological time (a.k.a. calendar time) can serve the temporal structure
necessary for a time-oriented organization. Geographic space is two-dimensional
and is commonly referenced by x and y coordinates. Regular tessellation of space
is commonly used as the framework for discrete global grids, such as the Military
Grid Reference System, regular hierarchical triangulation (Dutton 2000), hexagonal
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Fig. 20.4 The hierarchical structure of Geohash grids progressively refines spatial granularity as
the length of Geohash strings increases (Geohash). Geohash strings are highly efficient in coding
spatial precision as compared to latitude and longitude pairs as well as other Cartesian coordinate
systems

quad balanced structure (Tong et al. 2010), equal-areal cells (Beckers and Beckers
2012), and many other partitioning and subdivision systems (Lu et al. 2012).
Any of the geographic coordinate systems or discrete global grid systems may
serve the purpose of spatial ordering. One particular example is Geohash system
(Geohash n.d.) that constitutes string-based prefixes as keys for coordinate sets in a
hierarchical grid system (Fig. 20.4).

Geohash was invented by Gustavo Niemeyer to create a concise spatial indexing
and data caching system for web services. Geohash is essentially a latitude and
longitude geocode system that interleaves bits obtained from latitude-longitude
pairs and converts the bits to a Geohash string using Base 32 character map. For
example, the latitude-longitude pair (35.18, �97.44) falls in the box with Geohash
code 9y68nuckb with approximately 2 m precision at Level 9. The string length
(e.g. level) of a Geohash code corresponds to the size of spatial granule. Generally
speaking, points closer to each other are likely to have longer common prefixes in
their Geohash codes. In most cases, all adjacent Geohash boxes only differ in the
last digit of their Geohash codes, except for the edge boxes that adjacent boxes have
different codes in the last two digits (Fig. 20.5). Exceptions also include Geohash
boxes near the Equator and Greenwich Meridian.1 The hierarchical organization of
Geohash codes facilitates rapid data grouping and efficient proximity search to meet
computational demands (Balkic et al. 2012). Geohash grids have been implemented
in Google Map, MySQL, PostGIS and MongoDB as well as libraries or modules
for Java, Javascript, Python, Perl, PHP, Pure Ruby, C, and many other programming
languages.

1The issue is referred to as Geohash faultlines. Algorithms have been developed to address the
faultline issues in spatial search. One algorithm with its source code is available at http://code.
google.com/p/geohash-fcdemo/

http://code.google.com/p/geohash-fcdemo/
http://code.google.com/p/geohash-fcdemo/
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Fig. 20.5 Examples of Geohash codes at Levels 4 and 5 and the alternate ordering schemes for
codes at even and odd levels. All codes at one level are of the same length. Codes in every 8 � 4 or
4 � 8 unit are only differentiated by their last digits

Both chronological time and Geohash space provide structures in which space-
time elements of stops, moves, and tracks can be referenced to develop analytical
methods and distill higher level information from primitive observations. Below are
methods of space-time analytics based on the elements of tracks, stops, and moves
and associated time-oriented and space-oriented structures to discern patterns of life
with a case study to illustrate the procedures and potential findings.

20.5 Space-Time Analytics of Tracks to Elicit Patterns of Life

Here, patterns of life are space-time summaries of movements and from the sum-
maries to project activities. Since trajectories and paths cannot be directly derived
from location observations, additional assumptions, information and modeling
projections are required to determine the most likely trajectories and paths taken by
individuals. Methods to construct space-time summaries of movements are based
on stops, moves, and tracks from observed or recorded locations. To facilitate the
discussion, we use GPS observations for several individuals in Oklahoma, USA to
step through Space-Time Analytics procedures.

20.5.1 Stop Analysis

Location-aware devices record GPS points at regular intervals. Unless the devices
are equipped with a motion sensor, GPS location data files consist of streams of
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time-stamped spatial coordinates. Where an individual frequently visits and how
the person usually travels to these places are fundamental space-time elements to
understanding the person’s pattern of life. Therefore, the first step of space-time
analytics is to distinguish stops and moves on tracks that the person took.

A convenient way to differentiate which GPS points correspond to stops from
those GPS points that were taken when one was in motion is based on how long
one stayed at these locations, which is reflected in differences of time-stamps or by
spatial clusters of GPS points (Palma et al. 2008). For tracks taken by individuals,
clusters may not be apparent due to the number of sample points taken in periods of
short duration. Therefore, we propose two scale parameters, a duration threshold (£)
and a distance threshold (•) to determine stops on a track. Duration thresholds, e.g.
greater than 5 min, may be used to include short duration stops such as the use of
drive-through windows at business establishments. Longer duration thresholds may
reflect locations for major activities, such as £ D 30 min or longer for shopping or
dining. A distance threshold is used to determine a geographical size of stop events.
A smaller distance threshold may filter GPS sampling noise and determine stop
events consisting of small locational variations, e.g. waiting at a bus stop in urban
space, whereas a larger distance threshold can determine stay events that potentially
include movement activities such as playing at a park.

Figure 20.6 illustrates the algorithm for differentiating stops and moves from
collected GPS points based on two threshold values. A GPS track TR is composed
of a sequence of 3- or 4-dimensional GPS points, Tr D fp1, p2, p3, : : : , pkg where
k denotes the number of points in the track, pk D fx, y, (z), tg where (x, y) are
longitude and latitude, z is altitude, and t is timestamp. Based on the distance
threshold, the algorithm finds anchor points (pa), which differentiate between stops
and moves, and each stop or move is composed of a set of GPS points between two
consecutive anchor points. To find anchor points, we begin with the first and the last
points of a track as anchor points (pa1, pan). Then, we calculate a segment distance
between two GPS points starting from the first point and check if it exceeds the
distance threshold. In Fig. 20.6, the distance between p1 and p2 exceeds the distance

Fig. 20.6 A stop detection algorithm based on duration and distance thresholds
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Fig. 20.7 GPS points and extracted stop-event distribution for a month (9/1/2009 to 9/30/2009)

threshold; therefore, the segment cannot formulate a stop. Moving to the next point,
the distance between p2 and p3 is less than the threshold value, and thus the segment
is a candidate for formulating a stop. When such a segment is identified, the first
point becomes an anchor point (pa2). Then we calculate the segment distance
between the anchor point and its following points until the distance exceeds the
threshold value. When the threshold is exceeded (a red dashed-line between p2 and
p9), the last point (p8) becomes an anchor point (pa3). Lastly, if the duration between
two anchor points (pa2 and pa3) is larger than the duration threshold, GPS points
enclosed by those anchor points formulate a stop event; otherwise, anchor points
will be released.

In our case study for stop analysis, we used GPS points of one individual
collected over a 6-month period between 5/1/2009 and 10/31/2009. Figure 20.7
illustrates GPS points (left) and the stop-events distribution identified by the
duration-distance thresholds algorithm, where £ D 1 s and • D 20 m. In this case, the
duration threshold is set to 1 s in order to extract all possible stops. The algorithm
extracted stops with short-duration near the street intersection suggesting stops due
to traffic lights. It also identified several long stops such as one in a residential area
possibly for one’s dwelling place, one in a commercial district located at south-east
corner of an intersection (B), and one at a golf course nearby a lake (A).

After the stop locations are extracted from the GPS point data, the similarity
between 2 days of stop points can be calculated for temporal analysis. For example,
over the time range of a dataset, one day of stops can be compared to its previous
day of stops to explore if any weekly stop pattern emerges, or one day of stops can
be compared to the same day the week before to investigate if a pattern of stops is
congruent or incongruent for a specific day of week. To measure similarity, various
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functions can be applied such as Sum-of-Pairs Distance (Li and Goodchild 2012),
Dynamic Time Warping (Li et al. 2011), and Longest Common Subsequence (Böhm
et al. 2011).

In our case study, we have employed a simple similarity measure, Sum-of-
Closest-Pairs Distance (SCPD). In this measurement, we find the closest pair of
points from two stop point datasets and calculate the sum of the distance between
them. Given two sets of stop points A and B, SCPD is calculated as follows:

SCPD .A; B/ D
nX

iD1

min
ai 2A;bj 2B

d
�
ai ; bj

�

Figure 20.8 shows similarity distance comparisons for one day of stops to the
previous day over a 6-month period (5/1/2009–10/31/2009). In this analysis, we use
a duration threshold of 5 min in order to ignore very short stop events such as stops
at traffic lights. The unit of similarity cost is measured in kilometer and a lower
distance value denotes similar stop-events between 2 days. The color of data points
represents a day of week, and it reveals weekly pattern of extracted stop-events. For
example, Saturday’s stop events are quite different from Friday’s throughout the
time period. In addition, Thursday’s are also different from Wednesday. Moreover,
stops between Saturday and Wednesday are relatively similar (low distance in the
box a in Fig. 20.8). This regularity corresponds to the 5-day and 2-day weekly
pattern suggesting that the individual may have a regular weekly work pattern. In
fact, stop points for those 5 days (Saturday to Wednesday) are found in the area A
in Fig. 20.7 and not the other 2 days (Thursday and Friday), which implies that the
location could be his/her work place.

Alternatively, space can serve as the first order structure for analysis of patterns
of life, investigating location-focused frequency and duration of stops distribution
over time is a useful exploratory analysis. The bar chart in Fig. 20.9 visualizes
stop-events frequency and duration distribution for two locations (A, B) in Fig. 20.7.

Fig. 20.8 Individual stop similarity over a 6-month period
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Fig. 20.9 Frequency and duration of stops over days of the week and over time of the day

Each bar on the graph represents a single stop-event and its vertical length represents
the duration. The x-axis orders stops by day of the week. Two graphs from the
top in Fig. 20.9 show stop-events frequency and duration for location A, while
the bottom graph is for location B. This chart provides basic understandings of
how an individual utilizes a particular place along with his/her life schedule and
reveals, for example, a daily/weekly stop pattern regularity and pattern shift over
time.
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For the location A, first, the chart reconfirms that there is no stop-event on
Thursday or Friday during a 6 month period. In addition, the stop-events observed
in the location A are within a fixed time interval mostly between 6 a.m. and 2 p.m.
These two patterns, 5 days in a week and 8 h in a day, further reinforce our previous
indication to infer that the location A is likely to be his/her work place. On the other
hand, the stop-events in location B are found only on Wednesday and Thursday
between 5 p.m. and 8 p.m. The location B is a commercial area including several
shops and restaurants, and the individual’s activity may be shopping or eating out
on Wednesday after work or on Thursday, which appears to be a day off work. In
addition to these daily and weekly patterns, we can identify a pattern shift over time.
Thursday’s stop-events at the location B are only found in June, July, and August.
The individual activity has been shifted from Thursday to Wednesday in September
and October.

20.5.2 Track Analysis

A track consists of stops and moves. In the context of patterns of life, track analysis
aims to reveal one’s routines or regularity in space and time. The consideration
includes regularity in time (e.g. leave home at 7 am for work), in space (e.g. take the
same route to work), and in activities (e.g. do grocery shopping on the way home
every Wednesday). Therefore, track analysis examines the degree to which points
of stops and moves from track to track vary in space and time. One extreme case
is a perfect match of stops and moves in space and time across all tracks for an
individual, who follows a rigid daily routine and hence exhibits an unambiguously
regular pattern of life. In such a unvarying daily routine, there is no deviance of
stops and moves between tracks, and the degree of space-time deviance should
be minimized or zero if all points of stops and moves across tracks are perfectly
matched.

The other extreme case is a total random walk, in which every location in space
and time enjoys the same probability being visited or passed by. The individual
would have no routine resulting in an accidental pattern of life. The degree of
space-time deviance would be maximized or approaching infinity depending on
the numbers of stops and moves on these tracks. Most of our patterns of life
fall in between the two extremes. Demographic characteristics (e.g. age, gender),
social-economic factors (e.g. kinds of employment, means of transportation),
local knowledge (e.g. new residents) and neighborhood effects (e.g. public safety,
restricted zones) all contribute to the development of one’s pattern of life in space
and time. Nevertheless, space-time analytics of tracks to elicit patterns of life
assumes that everyone will develop regular spatial routines over time, and the
spatial routines may follow chronological cycles, e.g. hourly daily, weekly, monthly,
seasonally, or other longer cycles. Space-time deviance is then expected to fluctuate
according to these cycles.
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Fig. 20.10 Resampling tracks to match locations and time intervals to facilitate calculation of
space-time deviance between two tracks

Determination of space-time differences between any two tracks is not trivial.
GPS observations were likely taken at different time intervals and at different times.
Even if a person leaves home at the same time and takes the same route for a 2 day
period, GPS points of stops and moves along the track for the first day will not
match exactly the track for the second day. Resampling is one technique that can
be used to adjust the shifts in location and time of GPS observations (Fig. 20.10).
Resampling along tracks allows all tracks in consideration to have the same number
of GPS locations during a period of interest for comparison. The resampled time
interval should be determined by spatial and temporal variability in the application
domain of interest. For daily patterns, identification of hourly changes in space and
time may be sufficient. For seasonal patterns, daily or weekly changes may be more
meaningful than hourly variations.

Assuming that the time resampling interval is T (say an hour) in Fig. 20.10, the
mean center of all GPS points taken T ˙ �T/2 (e.g. 30 min before and after an
hour) will be assigned to the location to time Ti (e.g. on the hour). When there
are no GPS points taken within T ˙ �T/2 (e.g. 30 min before and after the hour),
the mean center calculated for Ti�1 (e.g. the previous hour) is assumed to be the
representative location at Ti (e.g. on the hour). In addition, when there is no GPS
location in the initial hours of the day, the first known GPS location is assumed to be
the locations for these initial hours. An example would be if an individual left home
at 9 am, comparably later than 7 am on the previous day. The approach assumes that
the individual was at home at 7 a.m. to 9 a.m. The resampling procedure results in
the same number of locations and the same number of time intervals on all tracks in
consideration for comparative analysis of space-time difference.
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Furthermore, GPS locations carry spatial uncertainty. GPS technology at a survey
grade can obtain centimeter accuracy, but consumer grade GPS receivers may have
spatial uncertainty to tens of meters. Precise latitude and longitude readings of GPS
may be misleading in terms of location accuracy. Therefore, the use of Geohash
codes, instead of latitude-longitude readings, will better preserve the innate spatial
uncertainty in track analysis.

After resampling and converting coordinates to Geohash codes, track analysis
can compare locations at each time interval to determine if similar tracks were taken
on these days. Geohash codes condense two dimensional latitude-longitude pairs to
one text string, in which the distance comparison can be based on the length of
common codes and the distance represented by the differences of digits at the end
of the Geohash strings. Figure 20.11a shows an example of an individual that was

Fig. 20.11 Comparison of tracks to determine space-time deviance: (a) comparing locations
across days at the same time to reveal changes in tracks; (b) comparing distances in adjacent
locations to reveal changes in travel speed. The vertical line graphs show space-time deviance in
locations between two tracks (a) or in adjacent locations on the same track (b) over the days of
interest (Day1, Day2, : : : Dayn)
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at different locations in the fifth time interval across 2 days. This could be due to
detours or traffic conditions that caused the individual to be ahead or behind the
locations at this time on the previous days. Comparison can also be made using
distances between adjacent locations on the same track on different days but in
the same time intervals to determine changes in travel speeds from day to day
(Fig. 20.11b). Furthermore, daily groupings of strings of consecutive Geohash codes
(like the horizontal groupings in the shaded boxes in Fig. 20.11b) reveal the daily
patterns of stops in common locations. In this illustrative example, the individual
stayed (long stops) at 9y69gmob in the morning and returned to the same location
at night on Day1 and Dayn, but the person stayed at the location all day on Day2,
which suggested that the location is likely to be the individual’s residence.

In addition, differences in space and time across tracks as shown in separate line
graphs in Fig. 20.11a can be converted to a space-time-track image with a brighter
shade indicating a greater difference along tracks (Fig. 20.12). In a space-time-track
image, each row corresponds to a track, and each column represents resampled time
intervals along these tracks. The lighter a cell denotes a smaller spatial difference
of this track from the previous track. Measures of spatial difference can be based on
Euclidean distance, travel distance, or some other cost metrics. If the track taken on
Dayi is identical to the track taken on Dayi�1, the row for Dayi in the image will

Fig. 20.12 A space-time-track image showing spatial differences in daily track comparison. The
difference is determined for each time interval by the spatial difference of a track to that of the
previous day. The circles mark examples that may suggest incongruent patterns or new activities
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be black throughout. Otherwise, the spatial difference from the track on Dayi�1 at
Timej will be stored in the cell (Dayi, Timej).

Figure 20.12 shows a space-time-track image based on an individual’s GPS
tracks for 215 days. There are two key re-occurring features in the image. One
feature consists of repetitive sets of two bright lines starting around Day 35 to
Day 215. The bright lines correspond to spatial differences between Fridays and
Saturdays as well as Sundays and Mondays. The dark lines in-between reflect the
greater similarity between tracks recorded for Saturdays and Sundays. The second
re-occurring feature is the progression of the scattering bright spots developed over
these days in the late night hours. These late-night outings could be for social events
or a night job, which can be further explored by mapping stops and moves on these
days and times to determine places that the individual visited. The space-time-
track image also includes incongruent features. Examples are marked by circles
in Fig. 20.12. These incongruent features could be indicative of new or occasional
activities.

Furthermore, the daily total of spatial difference (e.g. the row sum in the space-
time-track image) reflects the cumulative difference of a track compared to the track
taken on the previous day. If an individual more or less took the same route to work,
the person’s daily track would be quite similar and therefore resulted in a small
cumulative difference along a track. On the other hand, if one was wandering around
town, the person’s daily tracks could be very different and the cumulative difference
would be large. Figure 20.13 shows a time series of daily cumulative differences of
tracks based on the values in the space-time-track image in Fig. 20.12. The time

Fig. 20.13 A time series of daily accumulative differences among tracks
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series shows comparably large fluctuations in the early days and then some small
fluctuations before settling into a rather regular pattern.

A possible interpretation of the pattern is that the individual was new to the
area, wandered around and narrowed his/her job search to a specific region. Once
the individual found a job, the person tried different routes to work (circle a
in Fig. 20.13) and then settled with a regular route to commute. The regular
fluctuations correspond to track differences in weekdays and weekends. After the
person settled down to a regular routine for a while, the person’s pattern varied
again, which might be due to exploration of one’s neighborhoods or participation
in social activities (circles b, c, and d in Fig. 20.13), and eventually grew to a
new pattern (circle e in Fig. 20.13) which can be related to the late-night outings
in Fig. 20.12. While the interpretation is speculative and requires validation with
interviews or auxiliary data, the example shows that daily cumulative differences in
track analysis can reveal the development of and changes in patterns of life implied
by an individual’s movements in space and time.

20.5.3 Identify Opportunities for Interactions in Space
and Time

In the framework of time geography (Fig. 20.1), paths in proximity in space and
time can be considered to coexist and therefore offer opportunities for interactions
(Fig. 20.14). Similar ideas can be used to identify individuals with opportunities
to interact based on their proximity in space and time. Studies may focus on
opportunities for sustained interactions and therefore discount the cases when two

Fig. 20.14 Space-time
coincidence indicative of
opportunity for interactions
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people pass by each other in transit, and therefore only locations of stops are
considered for analysis. Other studies may include instantaneous interactions during
passing.

The Geohash system provides a convenient spatial structure to determine proxim-
ity for its grouping efficiency. For a Level 9 Geohash, the default spatial proximity is
set at 2 m, and for Level 8 Geohash, 30 m. All stops for all individuals of interest are
included in the analysis. However, like all discrete grid systems, locations along the
boundary of adjacent grid boxes can be within the proximity threshold even though
these locations are not in the same grid box (i.e. the fault line issue). Therefore,
proximity examination needs to include locations in all Geohash boxes adjacent to
the box of interest.2 Figure 20.15 provides an example of the adjacent Geohash
boxes needed for analysis of nearby points. The spatial proximity needs to be
adjusted to about 5 m for Level 9 and 45 m for Level 8 Geohashes.

Once the Geohash Level is determined, all stops falling in the same Geohash
box as well as in adjacent Geohash boxes are grouped. The analysis then proceeds
one group at a time to determine stops within temporal proximity. Both spatial
proximity and temporal proximity should be defined based on application domains.
Individuals can sit next to each other in a basketball game or run far apart in a
marathon race. One can drop a package at a friend’s house, and another person
might pick up the package an hour later. There are four types of space-time
constraints on communication (Janelle 1995). Spatially, communications can take
place among individuals who are in presence or telepresence, and temporally, it
can be synchronous or asynchronous. The four types of space-time constraints on
communication can also guide for the conceptualization of interactions.

Once the proper thresholds for spatial proximity and temporal proximity are
determined, Euclidean distance (or travel distance) and time differences can be
calculated among locations in a group to determine stops that are within the
desired spatial proximity and temporal proximity. Individuals within the spatial
and temporal proximity can then be identified and connected for a social network
of potential interactions. In a case study of 50 individuals in a suburban town
(Moore, Oklahoma, USA), we define the space-time proximity as within one level
8 Geohash grid (�45 m) and 30 min. Eleven of the 50 individuals are within
space-time proximity of synchronous presence over 553 days of the study period
(3/4/2009–9/8/2010). The width of an edge corresponds to the relative frequency
of the potential to meet. The connection between person ID 16 and person ID
30 is an example of a strong connection with a relatively high frequency for
potential meetings in places where both individuals visited at about the same time
(Fig. 20.16). Individuals with IDs not listed in the social network have no records of
presence within the defined space-time proximity to other individuals in the study.

2The issue can be solved with the fault line algorithm. Its source code is available at http://code.
google.com/p/geohash-fcdemo/

http://code.google.com/p/geohash-fcdemo/
http://code.google.com/p/geohash-fcdemo/
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Fig. 20.15 Consideration of proximity should include locations in adjacent Geohash boxes

20.6 Concluding Remarks

Data Science and Big Data challenges are prominent research issues with the fast
growing body of spatio-temporal data being generated across many domains and
applications. With the popularity of GPS devices, location-aware devices (including
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Fig. 20.16 An example of a social network based on space-time proximity that implies opportu-
nities for interactions

smart phones), geotagged tweets and photographs, and numerous other means,
we can attach location information and record movements for animals, people,
goods, and services. While time geography offers a rich conceptual framework
to examine spatial behavior and interactions among individuals, research on tra-
jectory analysis, trajectory mining, and more generally, mobile object modeling
has developed many statistical or computational methods to identify clusters or
detect outliners in movement data. Many of these studies considered only geometric
or semantic properties of trajectories. Instead, this chapter advocates for a space-
time analytics approach to examine reoccurring movements of individuals and from
the reoccurring movements to identify patterns of life and their opportunities for
interactions based on proximity in space and time.

The chapter defines the terms: paths, tracks, trajectories, stops and moves, while
the meanings of these terms may vary in the literature. Paths are actual routes
taken by individuals, tracks are composed of observed locations, trajectories are
interpolated paths between observed locations, and stops and moves are observed
locations with durations of non-movement in transit. Space-time analytics of tracks
emphasize elements of tracks and how the elements may be structured for analysis.
Stops, moves, and track segments are considered in this chapter as elements of
tracks, and Geohash boxes and chronological time are used to structure space and
time for georeferencing and sequencing stops and moves to form tracks for analysis.
Spatial clusters and time spent at locations are criteria used to identify stops along
tracks. Analysis of stops reveals the place where an individual frequently visits and
visiting patterns. Observed locations are resampled to form tracks with stops and
moves in Geohash codes at common time intervals.

Comparison of corresponding Geohash strings at time intervals reveals how
an individual might have taken a different route or changed travel behavior (left
early/late or at a higher speed). In this chapter, we show three ways to compare
tracks: (1) line graphs that show variations across multiple days; (2) space-time-
track images to highlight high and low differences in tracks throughout a day
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and across multiple days; and (3) summative line graph to show cumulative daily
track differences across multiple days. The three ways progressively characterize
individual’s movements, recurring track differences over time that can lead to
inferences about the individual’s pattern of life. Moreover, space-time proximity
of stops along tracks is used as a proxy indicator for potential interactions among
individuals. We briefly described a case study with daily tracks from 50 individuals,
identified 11 in a space-time proximity to each other, and connected these 11
individuals in a social network with edge widths representing the frequency of
the two individuals within the space-time proximity. Locations of stops within the
proximity can be mapped to show potential meeting places.

Space-time analytics of tracks for the understanding of patterns of life is rooted in
the premise that space-time research in GIScience must connect what we learn from
the data to the underlying geographic dynamics that generate the data. Space-time
data are observations about activities, events and processes. Space-time analytics
aims to discern elements of these geographic dynamics and recognize structures
among these elements to capture the spatiotemporal characteristics of activities,
events and processes through geographic contextualization for interpretation and
understanding. It is a divide-and-conquer as well as disaggregate-and-aggregate
approach to first zoom in to disassembling the composition and then finding ways
to organizing them to expose hidden meanings. The main goal of this chapter is to
communicate such a conceptual framework for space-time research in GIScience.
The potential of Data Science, Big Data, or BigSpatial research is much enhanced
with emphases on making the connection between data and what the data represent
as elements or in a structure.
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