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    Chapter 16   
 An Introduction to Design-Based Research 
with an Example From Statistics Education 

             Arthur     Bakker      and     Dolly     van     Eerde    

    Abstract     This chapter arose from the need to introduce researchers, including Master 
and PhD students, to design-based research (DBR). In Sect.  16.1  we address key 
features of DBR and differences from other research approaches. We also describe 
the meaning of validity and reliability in DBR and discuss how they can be improved. 
Section 16.2 illustrates DBR with an example from statistics education.  

  Keywords     Design based research   •   Statistics education  

16.1              Theory of Design-Based Research 

16.1.1    Purpose of the Chapter 

 The purpose of this chapter is to introduce researchers, including Master and PhD 
students, to design-based research. In our research methods courses for this audi-
ence and in our supervision of PhD students, we noticed that students considered 
key publications in this fi eld unsuitable as introductions. These publications have 
mostly been written to inform or convince established researchers who already have 
considerable experience with educational research. We therefore see the need to 
write for an audience that does not have that level of experience, but may want to 
know about design-based research. We do assume a basic knowledge of the main 
research approaches (e.g., survey, experiment, case study) and methods (e.g., inter-
view, questionnaire, observation). 

 Compared to other research approaches, educational design-based research 
(DBR) is relatively new (Anderson and Shattuck  2012 ). This is probably the reason 
that it is not discussed in most books on qualitative research approaches. For exam-
ple, Creswell ( 2007 ) distinguishes fi ve qualitative approaches, but these do not 
include DBR (see also Denscombe  2007 ). Yet DBR is worth knowing about, espe-
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cially for students who will become teachers or researchers in education: Design- 
based research is claimed to have the potential to bridge the gap between educational 
practice and theory, because it aims both at developing theories about domain- 
specifi c learning and the means that are designed to support that learning. DBR thus 
produces both useful products (e.g., educational materials) and accompanying sci-
entifi c insights into how these products can be used in education (McKenney and 
Reeves  2012 ; Van den Akker et al.  2006 ). It is also said to be suitable for addressing 
complex educational problems that should be dealt with in a holistic way (Plomp 
and Nieveen  2007 ). 

 In line with the other chapters in this book, Sect.  16.1  provides a general theory 
of the research approach under discussion and Sect.  16.2  gives an example from 
statistics education on how the approach can be used.  

16.1.2    Characterizing Design-Based Research 

 In this section we outline some characteristics of DBR, compare it with other 
research approaches, go over terminology and history, and fi nally summarize DBR’s 
key characteristics. 

16.1.2.1    Integration of Design and Research 

 Educational design-based research (DBR) can be characterized as research in which 
the design of educational materials (e.g., computer tools, learning activities, or a 
professional development program) is a crucial part of the research. That is, the 
design of learning environments is interwoven with the testing or developing of 
theory. The theoretical yield distinguishes DBR from studies that aim solely at 
designing educational materials through iterative cycles of testing and improving 
prototypes. 

 A key characteristic of DBR is that educational ideas for student or teacher learn-
ing are formulated in the design, but can be adjusted during the empirical testing of 
these ideas, for example if a design idea does not quite work as anticipated. In most 
other interventionist research approaches design and testing are cleanly separated. 
See further the comparison with a randomized controlled trial in Sect.  16.1.2.5 .  

16.1.2.2    Predictive and Advisory Nature of DBR 

 To further characterize DBR it is helpful to classify research aims in general (cf. 
Plomp and Nieveen  2007 ):

•    To describe (e.g., What conceptions of sampling do seventh-grade students have?)  
•   To compare (e.g., Does instructional strategy A lead to better test scores than 

instructional strategy B?)  
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•   To evaluate (e.g., How well do students develop an understanding of distribution 
in an instructional sequence?)  

•   To explain or to predict (e.g., Why do so few students choose a bachelor in math-
ematics or science? What will students do when using a particular software 
package?)  

•   To advise (e.g., How can secondary school students be supported to learn about 
correlation and regression?)    

 Many research approaches such as surveys, correlational studies, and case 
studies, typically have descriptive aims. Experiments often have a comparative 
aim, even though they should in Cook’s ( 2002 ) view “be designed to  explain  the 
consequences of interventions and not just to describe them” (p. 181, emphasis 
original). DBR typically has an explanatory and advisory aim, namely to give 
theoretical insights into how particular ways of teaching and learning can be pro-
moted. The type of theory developed can also be of a predictive nature: Under 
conditions X using educational approach Y, students are likely to learn Z (Van den 
Akker et al.  2006 ). 

 Research projects usually have one overall aim, but several stages of the project 
can have other aims. For example, if the main aim of a research project is to advise 
how a particular topic (e.g., sampling) should be taught, the project most likely has 
parts in which phenomena are described or evaluated (e.g., students’ prior knowl-
edge, current teaching practices). It will also have a part in which an innovative 
learning environment has to be designed and evaluated before empirically grounded 
advice can be given. This implies that research projects are layered. Design-based 
research (DBR) has an overall predictive or advisory aim but often includes research 
stages with a descriptive, comparative, or evaluative aim.  

16.1.2.3    The Role of Hypotheses and the Engineering Nature of DBR 

 In characterizing DBR as different from other research approaches, we also need to 
address the role of hypotheses in theory development. Put simply, a scientifi c theory 
can explain particular phenomena and predict what will happen under particular 
conditions. When developing or testing a theory, scientists typically use hypothe-
ses—conjectures that follow from some emergent theory that still needs to be tested 
empirically. This means that hypotheses should be formulated in a form in which 
they can be verifi ed or falsifi ed. The testing of hypotheses is typically done in an 
experiment: Reality is manipulated according to a theory-driven plan. If hypotheses 
are confi rmed, this is support for the theory under construction. 

 Just as in the natural sciences, it is not always possible to test hypotheses empiri-
cally within a short period of time. As a starting point design researchers, just like 
many scientists in other disciplines, use thought experiments—thinking through the 
consequences of particular ideas. When preparing an empirical teaching experi-
ment, design researchers typically do a thought experiment on how teachers or stu-
dents will respond to particular tools or tasks based on their practical and theoretical 
knowledge of the domain (Freudenthal  1991 ). 
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 In empirical experiments, a hypothesis is formulated beforehand. A theoretical idea 
is operationalized by designing a particular setting in which only this particular feature 
is isolated and manipulated. To stay objective experimental researchers are often not 
present during the interventions. In typical cases, they collect only pre- and posttest 
scores. In design-based research, however, researchers continuously take their best bets 
(Lehrer and Schauble  2001 ), even if this means that some aspect of the learning envi-
ronment during or after a lesson has to be changed. In many examples, researchers are 
involved in the teaching or work closely with teachers or trainers to optimize the learn-
ing environment (McClain and Cobb  2001 ; Smit and Van Eerde  2011 ; Hoyles et al. 
 2010 ). In the process of designing and improving educational materials (which we take 
as a prototypical case in this chapter), it does not make sense to wait until the end of the 
teaching experiment before changes can be made. This would be ineffi cient. 

 DBR is therefore sometimes characterized as a form of didactical engineering 
(Artigue,  1988 ): didactical engineering: Something has to be made with whatever 
theories and resources are available. The products of DBR are judged on innovative-
ness and usefulness, not just on the rigor of the research process that is more promi-
nent in evaluating true experiments (Plomp  2007 ). 

 In many research approaches, changing and understanding a situation are sepa-
rated. However, in design-based research these are intertwined in line with the fol-
lowing adage that is also common in sociocultural traditions: If you want to 
understand something you have to change it, and if you want to change something 
you have to understand it (Bakker  2004a , p. 37).  

16.1.2.4    Open and Interventionist Nature of DBR 

 Another way to characterize DBR is to contrast it with other approaches on the fol-
lowing two dimensions: naturalistic vs. interventionist and open vs. closed. 
Naturalistic studies analyze how learning takes place without interference by a 
researcher. Examples of naturalistic research approaches are ethnography and sur-
veys. As the term suggests, interventionist studies intervene in what naturally hap-
pens: Researchers deliberately manipulate a condition or teach according to 
particular theoretical ideas (e.g., inquiry-based or problem-based learning). Such 
studies are necessary if the type of learning that researchers want to investigate is 
not present in naturalistic settings. Examples of interventionist approaches are 
experimental research, action research, and design-based research. 

 Research approaches can also be more open or closed. The term  open  here refers 
to little control of the situation or data whereas  closed  refers to a high degree of 
control or a limited number of options (e.g., multiple choice questions). For  example, 
surveys by means of questionnaires with closed questions or responses on a Likert 
scale are more closed than surveys by means of semi-structured interviews. 
Likewise, an experiment comparing two conditions is more closed than a DBR 
 project in which the educational materials or ways of teaching are emergent and 
adjustable. Different research approaches can thus be positioned in a two-by-two 
table as in Table  16.1 . DBR thus shares an interventionist nature with experiments 
and action research. We therefore continue by comparing DBR with experiments 
( 16.1.2.5 ) and with action research ( 16.1.2.6 ).
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16.1.2.5         Comparison of DBR with Randomized Controlled Trials (RCT) 

 A randomized controlled trial (RCT) is sometimes referred to as “true” experiment. 
Assume we want to know whether a new teaching strategy for a particular topic in a 
particular grade is better than the traditionally used one. To investigate this question 
one could randomly assign students to the experimental (new teaching strategy) or 
control condition (traditional strategy), measure performances on pre- and posttests, 
and use statistical methods to test the null hypothesis that there is no signifi cant 
 difference between the two conditions. The researchers’ hope is that this hypothesis 
can be rejected so that the new type of intervention (informed by a particular theory) 
proves to be better. The underlying rationale is: If we know “what works” we can 
implement this method and have better learning results (see Fig.  16.1 ).

   This so-called experimental approach of randomized controlled trials (Creswell 
 2005 ) is sometimes considered the highest standard of research (Slavin  2002 ). It has 
a clear logic and is a convincing way to make causal and general claims about what 
works. It is based on a research approach that has proven extremely helpful in the 
natural sciences. 

 However, its limitations for education are discussed extensively in the literature 
(Engeström  2011 ; Olsen  2004 ). Here we mention two related arguments. First, if we 
know what works, we still do not know why and when it works. Even if the new 
strategy is implemented, it might not work as expected because teachers use it in 
less than optimal ways. 

 An example can clarify this. When doing research in an American school, we 
heard teachers complain about their managers’ decision that every teacher had to 

   Table 16.1    Naturalistic vs. interventionist and open vs. closed research approaches   

 Naturalistic  Interventionist 

 Closed  Survey: questionnaires with closed questions  Experiment (randomized controlled 
trial) 

 Open  Survey: interviews with open questions  Action research 
 Ethnography  Design-based research 

  Fig. 16.1    A pre-posttest experimental design (randomized controlled trial)       
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start every lesson with a warm-up activity (e.g., a puzzle). Apparently it had been 
proven by means of an RCT that student scores were signifi cantly higher in the 
experimental condition in which lessons started with a warm-up activity. The nega-
tive effect in teaching practice, however, was that teachers ran out of good ideas for 
warm-up activities, and that these often had nothing to do with the topic of the 
 lesson. Effectively, teachers therefore lost fi ve minutes of every lesson. Better 
insight into how and why warm-up activities work under particular conditions could 
have improved the situation, but the comparative nature of RCT had not provided 
this information because only the variable of starting the lesson with or without 
warm- up activity had been manipulated. 

 A second argument why RCT has its limitations is that a new strategy has to be 
designed before it can be tested, just like a Boeing airplane cannot be compared 
with an Airbus without a long tradition of engineering and producing such airplanes. 
In many cases, considerable research is needed to design innovative approaches. 
Design-based research emerged as a way to address this need of developing new 
strategies that could solve long-standing or complex problems in education. 

 Two discussion points in the comparison of DBR and RCT are the issues of gen-
eralization and causality. The use of random samples in RCT allows generalization 
to populations, but in most educational research random samples cannot be used. In 
response to this point, researchers have argued that theory development is not just 
about populations, but rather about propensities and processes (Frick  1998 ). Hence 
rather than generalizing from a random sample to a population (statistical general-
ization), many (mainly qualitative) research approaches aim for generalization to a 
theory, model or concept (theoretical or analytic generalization) by presenting fi nd-
ings as particular cases of a more general model or concept (Yin  2009 ). 

 Where the use of RCTs can indicate the intervention or treatment being the cause 
of better learning, DBR cannot claim causality with the same convincing rigor. This 
is not unique to DBR: All qualitative research approaches face this challenge of 
drawing causal claims. In this regard it is helpful to distinguish two views on 
causality: a regularity, variance-oriented understanding of causality versus a realist, 
process- oriented understanding of causality (Maxwell  2004 ). People adopting the 
fi rst view think that causality can only be proven on the basis of regularities in larger 
data sets. People adopting the second view make it plausible on the basis of circum-
stantial evidence of observed processes that what happened is most likely caused by 
the intervention (e.g., Nathan and Kim  2009 ). The fi rst view is underlying the logic 
of RCT: If we randomly assign subjects to an experimental and control condition, 
treat only the experimental group and fi nd a signifi cant difference between the two 
groups, then it can only be attributed to the difference in condition (the treatment). 
However, if we were to adopt the same regularity view on causality we would never 
be able to identify the cause of singular events, for example why a driver hit a tree. 
From the second, process-oriented view, if a drunk driver hits a tree we can judge 
the circumstances and judge it plausible that his drunkenness was an important 
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explanation because we know that alcohol can cause less control, slower reaction 
time et cetera. Similarly, explanations for what happens in classrooms should be 
possible according to a process-oriented position based on what happens in response 
to particular interventions. For example, particular student utterances are very 
unlikely if not deliberately fostered by a teacher (Nathan and Kim  2009 ). Table  16.2  
summarizes the main points of the comparison of RCT and DBR.

16.1.2.6        Comparison of DBR with Action Research 

 Like action research, DBR typically is interventionist and open, involves a refl ective 
and often cyclic process, and aims to bridge theory and practice (Opie  2004 ). In both 
approaches the teacher can be also researcher. In action research, the researcher is not 
an observer (Anderson and Shattuck  2012 ), whereas in DBR s/he can be observer. 
Furthermore, in DBR design is a crucial part of the research, whereas in action 
research the focus is on action and change, which can but need not involve the design 
of a new learning environment. DBR also more explicitly aims for instructional theo-
ries than does action research. These points are summarized in Table  16.3 .

   Table 16.2    Comparison of experimental versus design-based research   

 Experiment (RCT)  Design-based research (DBR) 

 Testing theory  Developing and testing theory simultaneously 
 Comparison of existing teaching methods by 
means of experimental and control groups 

 Design of an innovative learning environment 
long 

 Proof of what works  Insight into how and why something works 
 Research interest is isolated by manipulating 
variables separately 

 Holistic approach long white word 

 Statistical generalization  Analytic or theoretical generalization, 
transferability to other situations 

 Causal claims based on a regularity view on 
causality are possible 

 Causality should be handled with great care 
and be based on a realist, process-oriented 
view on causality 

   Table 16.3    Commonalities and differences between DBR and action research   

 DBR  Action research 

 Commonalities  Open, interventionist, researcher can be participant, refl ective cyclic process 
 Differences  Researcher can be observer  Researcher can only be participant 

 Design is necessary  Design is possible 
 Focus on instructional theory  Focus on action and improvement of a situation 
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16.1.2.7       Names and History of DBR 

 In its relatively brief history, DBR has been presented under different names. 
 Design-based research  is the name used by the Design-Based Research Collective 
(see special issues in Educational Researcher,  2003 ; Educational Psychologist 
 2004 ; Journal of the Learning Sciences  2004 ). Other terms for similar approaches are:

•    Developmental or development research (Freudenthal  1988 ; Gravemeijer  1994 ; 
Lijnse  1995 ; Romberg  1973 ; Van den Akker  1999 )  

•   Design experiments or design experimentation (Brown  1992 ; Cobb et al.  2003a ; 
Collins  1992 )  

•   Educational design research (Van den Akker et al.  2006 )    

 The reasons for these different terms are mainly historical and rhetorical. In the 
1970s Romberg ( 1973 ) used the term  development research  for research accompa-
nying the development of curriculum. Discussions on the relation between research 
and design in mathematics education, especially on didactics, mainly took place in 
Western Europe in the 1980s and the 1990s, particularly in the Netherlands (e.g., 
Freudenthal  1988 ; Goffree  1979 ), France (e.g., Artigue  1988 , cf. Artigue Chap.   17    ) 
and Germany (e.g., Wittmann  1992 ). The term  developmental research  is a transla-
tion of the Dutch  ontwikkelingsonderzoek , which Freudenthal introduced in the 
1970s to justify the development of curricular materials as belonging to a university 
institute (what is now called the Freudenthal Institute) because it was informed by 
and leading to research on students’ learning processes (Freudenthal  1978 ; 
Gravemeijer and Koster  1988 ; De Jong and Wijers  1993 ). The core idea was that 
development of learning environments and the development of theory were inter-
twined. As Goffree ( 1979 , p. 347) put it: “Developmental research in education as 
presented here, shows the characteristics of both developmental and fundamental 
research, which means aiming at new knowledge that can be put into service in 
continued development.” At another Dutch university (Twente University), the term 
 ontwerpgericht  (design-oriented) research was more common, but there the focus 
was more on the curriculum than on theory development (Van den Akker  1999 ). 
One disadvantage of the terms ‘development’ and ‘developmental’ is their connota-
tions to developmental psychology and research on children’s development of con-
cepts. This might be one reason that this term is hardly used anymore. 

 In the United States, the terms  design experiment  and  design research  were more 
common (Brown  1992 ; Cobb et al.  2003a ; Collins  1992 ; Edelson  2002 ). One advan-
tage of these terms is that design is more specifi c than development. One possible 
disadvantage of the term  design experiment  can be explained by reference to a criti-
cal paper by Paas ( 2005 ) titled  Design experiment: Neither a design nor an experi-
ment . The confusion that his pun refers to is two-fold. First, in many educational 
research communities the term  design  is reserved for research design (e.g., compar-
ing an experimental with a control group), whereas the term in design research 
refers to the design of learning environments (Sandoval and Bell  2004 ). Second, for 
many researchers, also outside the learning sciences, the term  experiment  is reserved 
for “true” experiments or RCTs. In design experiments, hypotheses certainly play 
an important role, but they are not fi xed and tested once. Instead they may be 
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 emergent, multiple, and temporary. In line with the Design-Based Research 
Collective, we use the term  design-based research  because this suggests that it is 
predominantly research (hence leading to a knowledge claim) that is based on a 
design process.  

16.1.2.8    Theory Development in Design-Based Research 

 We have already stated that theory typically has a more central role in DBR than in 
action research. To address the role of theory in DBR, it is helpful to summarize 
diSessa and Cobb’s ( 2004 ) categorization of different types of theories involved in 
educational research. They distinguish:

•    Grand theories (e.g., Piaget’s phases of intellectual development; Skinner’s 
behaviorism)  

•   Orienting frameworks (e.g., constructivism, semiotics, sociocultural theories)  
•   Frameworks for action (e.g., designing for learning, Realistic Mathematics 

Education)  
•   Domain-specifi c theories (e.g., how to teach density or sampling)  
•   Hypothetical Learning Trajectories (Simon  1995 ) or didactical scenarios (Lijnse 

 1995 ; Lijnse and Klaassen  2004 ) formulated for specifi c teaching experiments 
(explained in Sect.  16.1.3 ).    

 As can be seen from this categorization, there is a hierarchy in the generality of 
theories. Because theories developed in DBR are typically tied to specifi c learning 
environments and learning goals, they are humble and hard to generalize. Similarly, 
it is very rare that a theoretical contribution to aerodynamics will be made in the 
design of an airplane; yet innovations in airplane design occur regularly. The use of 
grand theoretical frameworks and frameworks for action is recommended, but 
researchers should be careful to manage the gap between the different types of the-
ory on the one hand and design on the other (diSessa and Cobb  2004 ). If handled 
with care, DBR can then provide the basis for refi ning or developing theoretical 
concepts such as meta-representational competence, sociomathematical norms 
(diSessa and Cobb), or whole-class scaffolding (Smit et al.  2013 ).  

16.1.2.9    Summary of Key Characteristics of Design-Based Research 

 So far we have characterized DBR in terms of its predictive and advisory aim, par-
ticular way of handling hypotheses, its engineering nature and differences from 
other research methods. Here we summarize fi ve key characteristics of DBR as 
identifi ed by Cobb et al. ( 2003a ):

    1.    The fi rst characteristic is that its purpose is  to develop theories about learning 
and the means that are designed to support that learning . In the example pro-
vided in Sect.  16.2  of in this chapter, Bakker ( 2004a ) developed an instruction 
theory for early statistics education and instructional means (e.g. computer tools 
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and accompanying learning activities) that support the learning of a multifaceted 
notion of statistical distribution.   

   2.    The second characteristic of DBR is its  interventionist  nature. One difference 
with RCTs is that interventions in the DBR tradition often have better ecological 
validity—meaning that learning already takes place in learning ecologies as they 
occur in schools and thus methods measure better what researchers want to mea-
sure, that is learning in natural situations. Findings from experiments do not have 
to be translated as much from controlled laboratory situations to the less con-
trolled ecology of schools or courses. In technical terms, theoretical products of 
DBR “have the potential for rapid pay-off because they are fi ltered in advance for 
instrumental effect” (Cobb et al.  2003a , p. 11).   

   3.    The third characteristic is that DBR has  prospective and refl ective components  that 
need not be separated by a teaching experiment. In implementing hypothesized 
learning (the prospective part) the researchers confront conjectures with actual 
learning that they observe (refl ective part). Refl ection can be done after each les-
son, even if the teaching experiment is longer than one lesson. Such refl ective 
analysis can lead to changes to the original plan for the next lesson. Kanselaar 
( 1993 ) argued that any good educational research has prospective and refl ective 
components. As explained before, however, what distinguishes DBR from other 
experimental approaches is that in DBR these components are not separated into 
the formulation of hypotheses before and after a teaching experiment.   

   4.    The fourth characteristic is the  cyclic  nature of DBR: Invention and revision 
form an iterative process. Multiple conjectures on learning are sometimes refuted 
and alternative conjectures can be generated and tested. The cycles typically con-
sist of the following phases: preparation and design phase, teaching experiment, 
and retrospective analysis. These phases are worked out in more detail later in 
this chapter. The results of such a retrospective analysis mostly feed a new design 
phase. Other types of educational research ideally also build upon prior experi-
ments and researchers iteratively improve materials and theoretical ideas in 
between experiments but in DBR changes can take place during a teaching 
experiment or series of teaching experiments.   

   5.    The fi fth characteristic of DBR is that the  theory  under development  has to do 
real work . As Lewin ( 1951 , p. 169) wrote: “There is nothing so practical as a 
good theory.” Theory generated from DBR is typically humble in the sense that 
it is developed for a specifi c domain, for instance statistics education. Yet it 
must be general enough to be applicable in different contexts such as class-
rooms in other schools in other countries. In such cases we can speak of 
transferability.    

16.1.3        Hypothetical Learning Trajectory (HLT) 

 DBR typically consists of cycles of three phases each: preparation and design, 
teaching experiment, and retrospective analysis. One might argue that the term 
 ‘retrospective analysis’ is pleonastic: All analysis is in retrospect, after a teaching 
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experiment. However, we use it here to distinguish it from analysis on the fl y, which 
takes place during a teaching experiment, often between lessons. 

 A design and research instrument that proves useful during all phases of DBR is 
the  hypothetical learning trajectory  (HLT), which we regard as an elaboration of 
Freudenthal’s thought experiment. Simon ( 1995 ) defi ned the HLT as follows:

  The hypothetical learning trajectory is made up of three components: the learning goal that 
defi nes the direction, the learning activities, and the hypothetical learning process—a pre-
diction of how the students’ thinking and understanding will evolve in the context of the 
learning activities. (p. 136)   

 Simon used the HLT for one or two lessons. Series of HLTs can be used for lon-
ger sequences of instruction (also see the literature on didactical scenarios in Lijnse 
 1995 ). The HLT is a useful research instrument to manage the gap between an 
instruction theory and a concrete teaching experiment. It is informed by general 
domain-specifi c and conjectured instruction theories (Gravemeijer  1994 ), and it 
informs researchers and teachers how to carry out a particular teaching experiment. 
After the teaching experiment, it guides the retrospective analysis, and the interplay 
between the HLT and empirical results forms the basis for theory development. This 
means that an HLT, after it has been mapped out, has different functions depending 
on the phase of the DBR and continually develops through the different phases. It 
can even change during a teaching experiment. 

16.1.3.1    HLT in the Design Phase 

 The development of an HLT starts with an analysis of how the mathematical topic of 
the design study is elaborated in the curriculum and the mathematical textbooks, an 
analysis of the diffi culties students encounter with this topic, and a refl ection on what 
they should learn about it. These analyses result in the formulation of provisional 
mathematical learning goals that form the orientation point for the design and 
redesign of activities in several rounds. While designing mathematical activities the 
learning goals may become better defi ned. During these design processes the 
researcher also starts formulating hypotheses about students’ potential learning and 
about how the teacher would support students’ learning processes. The confrontation 
of a general rationale with concrete tasks often leads to a more specifi c HLT, which 
means that the HLT gradually develops during the design phase (Drijvers  2003 ). 

 An elaborated HLT thus includes mathematical learning goals, students’ starting 
points with information on relevant pre-knowledge, mathematical problems and 
assumptions about students’ potential learning processes and about how the teacher 
could support these processes.  

16.1.3.2    HLT in Teaching Experiment 

 During the teaching experiment, the HLT functions as a guideline for the teacher 
and researcher for what to focus on in teaching, interviewing, and observing. It may 
happen that the teacher or researcher feels the need to adjust the HLT or instruc-
tional activity for the next lesson. As Freudenthal wrote ( 1991 , p. 159), the cyclic 
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alternation of research and development can be more effi cient the shorter the cycle 
is. Minor changes in the HLT are usually made because of incidents in the class-
room such as student strategies that were not foreseen, activities that were too dif-
fi cult, and so on. Such adjustments are generally not accepted in comparative 
experimental research, but in DBR, changes in the HLT are made to create optimal 
conditions and are regarded as elements of the data corpus. This means that these 
changes have to be reported well and the information is stronger when changes are 
supported by theoretical considerations. The HLT can thus also change during the 
teaching experiment phase.  

16.1.3.3    HLT in the Retrospective Analysis 

 During the retrospective analysis, the HLT functions as a guideline determining 
what the researcher should focus on in the analysis. Because predictions are made 
about students’ learning, the researcher can contrast those conjectures with the 
observations made during the teaching experiment. Such an analysis of the interplay 
between the evolving HLT and empirical observations forms the basis for develop-
ing an instruction theory. After the retrospective analysis, the HLT can be reformu-
lated, often more drastically than during the teaching experiment, and the new HLT 
can guide a subsequent design phase. 

 An HLT can be seen as a concretization of an evolving domain-specifi c instruc-
tion theory. Conversely, the instruction theory is informed by evolving HLTs. For 
example, if patterns of an HLT stabilize after a few cycles, these generalized pat-
terns in learning or instruction and the insights of how these patterns are supported 
by instructional means can become part of the emerging instruction theory. 

 Overall, the idea behind developing an HLT is not to design the perfect instruc-
tional sequence, which in our view does not exist, but to provide empirically 
grounded results that others can adjust to their local circumstances. The HLT 
remains hypothetical because each situation, each teacher, and each class is differ-
ent. Yet patterns can be found in students’ learning that are similar across different 
teaching experiments. Those patterns and the insights of how particular educational 
activities support students in particular kinds of reasoning can be the basis for a 
more general instructional theory of how a particular domain can be taught. Bakker 
( 2004a ), for example, noted that when estimating the number of elephants in a pic-
ture, students typically used one of four strategies, and these four strategies reoc-
curred in all of the fi ve classrooms in which he used the same task. Having observed 
such a pattern in strategy use, the design researcher can assume the pattern to be an 
element of the instruction theory. 

 For some readers, the term ‘trajectory’ might have a linear connotation. Although 
we aim for a certain direction, like the course of a ship, Bakker’s ( 2004a ) HLTs were 
non-linear in the sense that he did not make a linear sequence of activities in advance 
that he strictly adhered to (cf. Fosnot and Dolk  2001 ). Moreover, two subtrajectories 
came together later on in the sequence. In the following sections we give a more 
detailed description of the three phases of a DBR cycle and discuss relevant 
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 methodological issues. Further details about hypothetical learning trajectories can 
be found in a special issue of  Mathematical Thinking and Learning  (Mathematical 
Thinking and Learning  2004 , volume 6, issue 2) devoted to HLTs. 

 The term HLT stems from research in which the teacher was a researcher or a 
member of the research team (Simon  1995 ). However, if the teacher is not so famil-
iar with the research team’s intentions it may be necessary to pay extra attention to 
what the teacher can or should do to realize the potential of the learning activities. 
In such cases, the terms  hypothetical teaching and learning trajectory  (HTLT) or 
 teaching and learning strategy  (Dierdorp et al.  2011 ) may be more appropriate.   

16.1.4    Phases in DBR 

16.1.4.1    Phase 1: Preparation and Design 

 It is evident that the relevant present knowledge about a topic should be studied fi rst. 
Gravemeijer ( 1994 ) characterizes the design researcher as a tinkerer or, in French, a 
 bricoleur , who uses all the material that is at hand, including theoretical insights and 
practical experience with teaching and designing. 

 In the fi rst design phase, it is recommended to collect and invent a set of tasks 
that could be useful and discuss these with colleagues who are experienced in 
designing for mathematics education. An important criterion for selecting a task is 
its potential role in the HLT towards the mathematical end goal. Could it possibly 
lead to types of reasoning that students could build upon towards that end goal? 
Would it be challenging? Would it be a meaningful context for students? 

 There are several design heuristics, principles, and guidelines. In Sect.  16.2  we 
explain heuristics from the theory of Realistic Mathematics Education.  

16.1.4.2    Phase 2: Teaching Experiment 

 The notion of a teaching experiment arose in the 1970s. Its primary purpose was to 
experience students’ learning and reasoning fi rst-hand, and it thus served the pur-
pose of eliminating the separation between the practice of research and the practice 
of teaching (Steffe and Thompson  2000 ). Over time, teaching experiments proved 
useful for a broader purpose, namely as part of DBR. During a teaching experiment, 
researchers and teachers use activities and types of instruction that according to the 
HLT seem most appropriate at that moment. Observations in one lesson and theo-
retical arguments from multiple sources can infl uence what is done in the next les-
son. Observations may include student or teacher deviations from the HLT. 

 Hence, this type of research is different from experimental research designs in 
which a limited number of variables are manipulated and effects on other variables 
are measured. The situation investigated here, the learning of students in a new 
context with new tools and new end goals, is too complicated for such a set-up. 
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Besides that, a different type of knowledge is looked for, as pointed out earlier in 
this chapter: We do not want to assess innovative material or a theory, but we need 
prototypical educational materials that could be tested and revised by teachers and 
researchers, and a domain-specifi c instruction theory that can be used by others to 
formulate their own HLTs suiting local contingencies. 

 During a teaching experiment, data collection typically includes student work, 
tests before and after instruction, fi eld notes, audio recordings of whole-class dis-
cussions, and video recordings of every lesson and of the fi nal interviews with stu-
dents and teachers. We further fi nd ‘mini-interviews’ with students, lasting from 
about twenty seconds to four minutes, very useful provided that they are carried out 
systematically (Bakker  2004a ).  

16.1.4.3    Retrospective Analysis 

 We describe two types of analysis useful in DBR, a task oriented analysis and a 
more overall, longitudinal, cyclic approach. The fi rst is to compare data on students’ 
actual learning during the different tasks with the HLT. To this end we fi nd the data 
analysis matrix (Table  16.4 ) described in Dierdorp et al. ( 2011 ) useful. The left part 
of the matrix summarizes the HLT and the right part is fi lled with excerpts from 
relevant transcripts, clarifying notes from the researcher as well as a quantitative 
impression of how well the match was between the assumed leaning as formulated 
in the HLT and the observed learning. With such analysis it is possible to give an 
overview, as in Table  16.5 , which can help to identify problematic sections in the 
educational materials. Insights into why particular learning takes place or does not 

   Table 16.4    Data analysis matrix for comparing HLT and actual learning trajectory (ALT)   

 Hypothetical learning trajectory  Actual learning trajectory 

 Task 
number 

 Formulation 
of the task 

 Conjecture of 
how students 
would respond 

 Transcript 
excerpt 

 Clarifi cation  Match between HLT 
and ALT: Quantitative 
impression of how 
well the conjecture 
and actual learning 
matched (e.g., −, 0, +) 

   Table 16.5    ALT result compared with HLT conjectures for the tasks involving a particular type of 
reasoning   

 +  x  x  x  x  x  x  x  x  x  x  x  x  x 

 ±  x  x  x 

 –  x  x  x 

 Task:  5d  5f  6a  6c  7  8  9c  9e  10b  11c  15  17  23b  23c  24a  24c  25d  34a  42 

   Note : an x means how well the conjecture accompanying that task matched the observed learning 
(− refers to confi rmation for up to 1/3 of the students, and + to at least 2/3 of the students)  
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take place help to improve the HLTs in subsequent cycles of DBR. This iterative 
process allows the researcher to improve the predictive power of HLTs across sub-
sequent teaching experiments.

    An elaborated HLT would include assumptions about students’ potential learn-
ing and about how the teacher would support students’ learning processes. In this 
task-oriented analysis above no information is included about the role of the teacher. 
If there are crucial differences between students’ assumed and observed learning 
processes or if the teaching has been observed to diverge radically from what the 
researcher had intended, the role of the teacher should be included into the analysis 
in search of explanations for these discrepancies. 

 A comparison of HLTs and observed learning is very useful in the redesign pro-
cess, and allows answers to research questions that ask how particular learning 
goals could be reached. However, in our experience additional analyses are often 
needed to gain more theoretical insights into the learning process. An example of 
such additional analysis is a method inspired by the  constant comparative method  
(Glaser and Strauss  1967 ; Strauss and Corbin  1998 ) and Cobb and Whitenack’s 
( 1996 ) method of longitudinal analyses. Bakker ( 2004a ) used this type of analysis 
in his study in the following way. First, all transcripts were read and the videotapes 
were watched chronologically episode-by-episode. With the HLT and research 
questions as guidelines, conjectures about students’ learning and views were gener-
ated and documented, and then tested against the other episodes and other data 
material (student work, fi eld notes, tests). This testing meant looking for confi rma-
tion and counter- examples. The process of conjecture generating and testing was 
repeated. Seemingly crucial episodes were discussed with colleagues to test whether 
they agreed with our interpretation or perhaps could think of alternative interpreta-
tions. This process is called  peer examination . 

 For the analysis of transcripts or videos it is worth considering computer soft-
ware such as Atlas.ti (Van Nes and Doorman  2010 ) for coding the transcripts and 
other data sources. As in all qualitative research, data triangulation (Denscombe 
 2007 ) is commonly used in design-based research.   

16.1.5    Validity and Reliability 

 Researchers want to analyze data in a reliable way and draw conclusions that are 
valid. Therefore, validity and reliability are important concerns. In brief, validity 
concerns whether we really measure what we intend to measure. Reliability is about 
independence of the researcher. A brief example may clarify the distinction. Assume 
a researcher wants to measure students’ mathematical ability. He gives everyone 7 
out of 10. Is this a valid way of measuring? Is this a reliable way? 

 It is a very reliable way because the instruction “give all students a 7” can be 
reliably carried out, independently of the researcher. However, it is not valid, 
because there is most likely variation between students’ mathematical ability, which 
is not taken into account with this way of measuring. 

16 An Introduction to Design-Based Research with an Example From Statistics…



444

 We should emphasize that validity and reliability are complex concepts with 
multiple meanings in different types of research. In qualitative research the 
meanings of validity and reliability are slightly different than in quantitative 
research. Moreover, there are so many types of validity and reliability that we 
cannot address them all. In this chapter we have focused on those types that 
seemed most relevant to us in the context of DBR. The issues discussed in this 
section are inspired by guidelines of Maso and Smaling ( 1998 ) and Miles and 
Huberman ( 1994 ), who distinguish between internal and external validity and 
reliability. 

16.1.5.1    Internal Validity 

 Internal validity refers to the quality of the data and the soundness of the reasoning 
that has led to the conclusions. In qualitative research, this soundness is also labeled 
as  credibility  (Guba  1981 ). In DBR, several techniques can be used to improve the 
internal validity of a study.

•    During the retrospective analysis conjectures generated and tested for specifi c 
episodes are tested for other episodes or by data triangulation with other data 
material, such as fi eld notes, tests, and other student work. During this testing 
stage there is a search for counterexamples to the conjectures.  

•   The succession of different teaching experiments makes it possible to test the 
conjectures developed in earlier experiments in later experiments.    

 Theoretical claims are substantiated where possible with transcripts to provide a 
rich and meaningful context. Reports about DBR tend to be long due to the  thick 
descriptions  (Geertz  1973 ) required. For example, the paper by Cobb et al. ( 2003b ) 
is 78 pages long!  

16.1.5.2    External Validity 

 External validity is mostly interpreted as the generalizability of the results. The 
question is how we can generalize the results from these specifi c contexts to be 
useful for other contexts. An important way to do so is by framing issues as 
instances of something more general (Cobb et al.  2003a ; Gravemeijer and Cobb 
 2006 ). The challenge is to present the results (instruction theory, HLT, educa-
tional activities) in such a way that others can adjust them to their local 
contingencies. 

 In addition to generalizability as a criterion for external validity we mention 
 transferability  (Maso and Smaling  1998 ). If lessons learned in one experiment 
are successfully applied in other experiments, this is a sign of successful gener-
alization. At the end of Sect.  16.2  we give an example of how a new type of learn-
ing activity was successfully enacted in a new research project in another 
country.  
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16.1.5.3    Internal Reliability 

 Internal reliability refers to the degree of how independently of the researcher the 
data are collected and analyzed. It can be improved with several methods. Data 
collection by objective devices such as audio- and video registrations contribute to 
the internal reliability. During his retrospective analysis Bakker ( 2004a ) ensured 
reliability by discussing the critical episodes, including those discussed in 
Sect.  16.2 , with colleagues for peer examination. For measuring interrater reliability, 
the agreement among independent researchers, it is advised to calculate not only 
the percentage of agreement but also use Cohen’s kappa or another measure that 
takes into account the probability of agreement by chance (e.g., Krippendorff’s 
alpha). It is not necessary for a second coder to code all episodes, but ensure that a 
random sample should be of suffi cient size: The larger the number of possible 
codes, the larger the sample required (Bakkenes et al.  2010 ; Cicchetti  1976 ). Note 
that the term internal reliability can also refer to the consistency of responses on a 
questionnaire or test, often measured with help of Cronbach’s alpha.  

16.1.5.4    External Reliability 

 External reliability usually denotes replicability, meaning that the conclusions of 
the study should depend on the subjects and conditions, and not on the researcher. 
In qualitative research, replicability is mostly interpreted as virtual replicability. 
The research must be documented in such a way that it is clear how the research has 
been carried out and how conclusions have been drawn from the data. A criterion 
for virtual replicability is ‘trackability’ (Gravemeijer and Cobb  2006 ), ‘traceability’ 
(Maso and Smaling  1998 ), or transparency (Akkerman et al.  2008 ). This means that 
the reader must be able to track or trace the learning process of the researchers and 
to reconstruct their study: failures and successes, procedures followed, the concep-
tual framework used, and the reasons for certain choices must all be reported. In 
Freudenthal’s words:

  Developmental research means: experiencing the cyclic process of development and 
research so consciously, and reporting on it so candidly that it justifi es itself, and that this 
experience can be transmitted to others to become like their own experience. ( 1991 , p. 161)   

 We illustrate the general characterization and description of DBR of Sect.  16.1  
by an example of a design study on statistics education in Sect.  16.2 .    

16.2            Example of Design-Based Research 

 In this second section we illustrate the theory of design-based research (DBR) as 
outlined in Sect.  16.1  with an example from Bakker’s ( 2004a ,  b ) PhD thesis on DBR 
in statistics education. We briefl y describe the aim and theoretical background of 
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this DBR project and then focus on one design idea, that of growing samples, to 
illustrate how it is related to different layers of theory and how it was analyzed. 
Finally we discuss the issue of generalizability. In the appendix we provide a struc-
ture of a DBR project with examples from this Sect.  16.2 . 

16.2.1    Relevance and Aim 

 The background problem addressed in Bakker’s ( 2004a ) research on statistics 
 education was that many stakeholders were dissatisfi ed with what and how students 
learned about statistics. For example, in many curricula there was a focus on 
 computing arithmetic means and making bar charts (Friel et al.  2001 ). Moreover, 
there was very little knowledge about how to use innovative educational statistics 
software (cf.    Biehler et al.  2013 , for an historical overview). 

 To solve these practical problems, Bakker’s ( 2004a ) aim was to contribute to an 
empirically grounded instruction theory for early statistics education with new com-
puter tools for the age group from 11 to 14. Such a theory should specify patterns in 
students’ learning as well as the means supporting that learning in the domain of 
statistics education. Like Cobb et al. ( 2003b ), Bakker ( 2004a ) focused his research 
on the concept of distribution as a key concept in statistics. One problem is that 
students tend to see isolated data points instead of a data set as a whole (Bakker and 
Gravemeijer  2004 ; Konold and Higgins  2003 ). Yet statistics is about features of data 
sets, in particular distributions of samples. The selected learning goal was therefore 
that distribution had to become an object-like entity with which students could see 
data sets as an entity with characteristics.  

16.2.2    Research Question 

 Bakker’s initial research question was: How can students with little statistical back-
ground develop a notion of distribution? In trying to answer this question in grade 
7, however, Bakker came to include a focus on other statistical key concepts such as 
data, center, and sampling because these are so intricately connected to that of dis-
tribution (Bakker and Derry  2011 ). The concept of distribution also proved hard for 
seventh-grade students. The initial research question was therefore reformulated for 
grade 8 as follows: How can coherent reasoning about distribution be promoted in 
relation to data, variability, and sampling in a way that is meaningful for students 
with little statistical background? 

 Our point here is that research questions can change during a research project. 
Indeed, the better and sharper your research question is in the beginning of the proj-
ect, the better and more focused your data collection will be. However, our experi-
ence is that most DBR researchers, due to progressive insight, end up with slightly 
different research questions than they started with. 
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 As pointed out in Sect.  16.1 , DBR typically draws on several types of theories. 
Given the importance of graphical representations in statistics education, it made 
sense for Bakker to draw on semiotics as an orienting framework. He came to focus 
on semiotics, in particular Peirce’s ideas on diagrammatic reasoning. The domain-
specifi c theory of Realistic Mathematics Education proved a useful framework for 
action in the design process even though it had hardly been applied in statistics 
education.  

16.2.3    Orienting Framework: Diagrammatic Reasoning 

 The learning goal was that distribution would become an object-like entity. 
Theories on reifi cation of concepts (Sfard and Linchevski  1992 ) and the relation 
between process and concept (cf. Tall et al.  2000 , on  procept ) were drawn upon. 
One theoretical question unanswered in the literature was what the process nature 
of a distribution could be. It is impossible to make sense of graphs without having 
appropriate conceptual structures, and it is impossible to communicate about con-
cepts without any representations. Thus, to develop an instruction theory it is 
necessary to investigate the relation between the development of the meaning of 
graphs and concepts. After studying several theories in this area, Bakker deployed 
Peirce’s semiotic theory on diagrammatic reasoning (Bakker  2007 ; Bakker and 
Hoffmann  2005 ). For Peirce, a diagram is a sign that is meant to represent rela-
tions. Diagrammatic reasoning involves three steps:

    1.    The fi rst step is to  construct  a diagram (or diagrams) by means of a representa-
tional system such as Euclidean geometry, but we can also think of diagrams in 
computer software or of an informal student sketch of statistical distribution. 
Such a construction of diagrams is supported by the need to represent the rela-
tions that students consider signifi cant in a problem. This fi rst step may be called 
 diagrammatization .   

   2.    The second step of diagrammatic reasoning is to  experiment  with the diagram (or 
diagrams). Any experimenting with a diagram is executed within a not necessarily 
perfect representational system and is a rule or habit-driven activity. Contemporary 
researchers would stress that this activity is situated within a practice. What makes 
experimenting with diagrams important is the rationality immanent in them 
(Hoffmann  2002 ). The rules defi ne the possible transformations and actions, but 
also the constraints of operations on diagrams. Statistical diagrams such as dot 
plots are also bound by certain rules: a dot has to be put above its value on the  x  
axis and this remains true even if for instance the scale is changed. Peirce stresses 
the importance of doing something when thinking or reasoning with diagrams:    

  Thinking in general terms is not enough. It is necessary that something should be DONE. In 
geometry, subsidiary lines are drawn. In algebra, permissible transformations are made. 
Thereupon the faculty of observation is called into play. (CP 4.233—CP refers to Peirce’s 
collected papers, volume 4, section 233)   
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 In the software used in this research, students can do something with the data 
points such as organizing them into equal intervals or four equal groups.

    3.    The third step is to observe the results of experimenting. We refer to this as the 
 refl ection  step. As Peirce wrote, the mathematician observing a diagram “puts 
before him an icon by the observation of which he detects relations between the 
parts of the diagram other than those which were used in its construction” (   Peirce 
 1976  III, p. 749). In this way he can “discover unnoticed and hidden relations 
among the parts” ( Peirce CP  3.363; see also CP 1.383). The power of diagram-
matic reasoning is that “we are continually bumping up against hard fact. We 
expected one thing, or passively took it for granted, and had the image of it in our 
minds, but experience forces that idea into the background, and compels us to 
think quite differently” ( Peirce CP  1.324).     

 Diagrammatic reasoning, in particular the refl ection step, is what can introduce 
the ‘new’. New implications within a given representational system can be found, but 
possibly the need is felt to construct a new diagram that better serves its purpose.  

16.2.4     Domain-Specifi c Framework for Action: Realistic 
Mathematics Education (RME) 

 As pointed out by diSessa and Cobb ( 2004 ), grand theories and orienting frame-
works do not tell the design researcher how to design learning environments. For 
this purpose, frameworks for action can be useful. Here we discuss Realistic 
Mathematics Education (RME). 

 Our research took place in the tradition of RME as developed over the last 40 
years at the Freudenthal Institute (Freudenthal  1991 ; Gravemeijer  1994 ; Treffers 
 1987 ; van den Heuvel-Panhuizen  1996 ). RME is a theory of mathematics education 
that offers a pedagogical and didactical philosophy on mathematical learning and 
teaching as well as on designing educational materials for mathematics education. 
RME emerged from research and development in mathematics education in the 
Netherlands in the 1970s and it has since been used and extended, also in other 
countries. 

 The central principle of RME is that mathematics should always be meaningful 
to students. For Freudenthal, mathematics was an extension of common sense, a 
system of concepts and techniques that human beings had developed in response to 
phenomena they encountered. For this reason, he advised a so-called  historical 
 phenomenology  of concepts to be taught, a study of how concepts had been devel-
oped in relation to particular phenomena. The insights from such a study can be 
input for the design process (Bakker and Gravemeijer  2006 ). 

 The term ‘realistic’ stresses that problem situations should be ‘experientially 
real’ for students (Cobb et al.  1992 ). This does not necessarily mean that the  problem 
situations are always encountered in daily life. Students can experience an abstract 
mathematical problem as real when the mathematics of that problem is meaningful 
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to them. Freudenthal’s ( 1991 ) ideal was that mathematical learning should be an 
enhancement of common sense. Students should be allowed and encouraged to 
invent their own strategies and ideas, and they should learn mathematics on their 
own authority. At the same time, this process should lead to particular end goals. 
This process is called  guided reinvention —one of the design heuristics of RME. This 
heuristic points to the question that underlies much of the RME-based research, 
namely that of how to support this process of engaging students in meaningful 
mathematical and statistical problem solving, and using students’ contributions to 
reach certain end goals. 

 The theory of RME is especially tailored to mathematics education, because it 
includes specifi c tenets on and design heuristics for mathematics education. For a 
description of these tenets we refer to Treffers ( 1987 ) and for the design heuristics 
to Gravemeijer ( 1994 ) or Bakker and Gravemeijer ( 2006 ).  

16.2.5    Methods 

 The absence of the type of learning aimed for is a common reason to carry out 
design research. For Bakker’s study in statistics education, descriptive, compara-
tive, or evaluative research did not make sense because the type of learning aimed 
for could not be readily observed in classrooms. Considerable design and research 
effort fi rst had to be taken to foster specifi c innovative types of learning. Bakker 
therefore had to design HLTs with accompanying educational materials that sup-
ported the desired type of learning about distribution. Design-based research offers 
a systematic approach to doing that while simultaneously developing domain- 
specifi c theories about how to support such learning for example here on the domain 
of statistics. In general, DBR researchers fi rst need to create the conditions in which 
they can develop and test an instruction theory, but to create those conditions they 
also need research. 

  Teaching experiment . Bakker designed educational materials with accompany-
ing HLTs in several cycles. Here we focus on the last cycle, involving a teaching 
experiment in grade 8 .  Half of the lessons were carried out in a computer lab and as 
part of them students used two minitools (Cobb et al.  1997 ), simple Java applets 
with which they analyzed data sets on, for instance, battery life span, car colours, 
and salaries (Fig.  16.3 ). The researcher was responsible for the educational materi-
als and the teacher was responsible for the teaching, though we discussed in advance 
on a weekly basis both the materials and appropriate teaching style. Three preser-
vice teachers served as assistants and helped with videotaping and interviewing 
students and with analyzing the data. 

 In the example that we elaborate we focus on the fourth of a series of ten lessons, 
each 50 min long. In this specifi c lesson, students reasoned about larger and larger 
samples and about the shape of distributions. 

  Subjects.  The teaching experiment was carried out in an eighth-grade class with 
30 students in a state school in the center of a Dutch city. The students in this study 
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were being prepared for pre-university ( vwo ) or higher professional education 
( havo ). The students in the class reported on here were not used to whole-class dis-
cussions, but rather to be “taken by the hand” as the teacher called it; they were 
characterized by the three research assistants as “passive but willing to cooperate.” 
These students had no prior instruction in statistics; they were acquainted with bar 
and line graphs, but not with dot plots, histograms, or box plots. Students already 
knew the mean from calculating their report grades, but mode and median were not 
introduced until the second half of the educational sequence after variability, data, 
sampling, and shape had been topics of discussion. 

  Data collection.  The collected data on which the results presented in this chapter 
are based include student work, fi eld notes, and the audio and video recordings of 
class activities that the three assistants and researcher made in the classroom. An 
essential part of the data corpus was the set of mini-interviews we held during the 
lessons; they varied from about twenty seconds to four minutes, and were meant to 
fi nd out what concepts and graphs meant for students, or how the minitools were used. 
These mini-interviews infl uenced students’ learning because they often stimulated 
refl ection. However, we think that the validity of the research was not put in danger by 
this, since the aim was to fi nd out how students learned to reason with shape or distri-
bution, not whether teaching the sequence in other eighth-grade classes would lead to 
the same results in the same number of lessons. Furthermore, the interview questions 
were planned in advance as part of the HLT, and discussed with the assistants. 

  Retrospective analysis.  In this example we do not illustrate how HLTs can be 
compared with observed learning (see Dierdorp et al.  2011 ). Here we highlight one 
type of analysis that in Bakker’s case yielded more theoretical insights: a method 
resembling Glaser and Strauss’s constant comparative method (Glaser and Strauss 
 1967 ). For the analysis, Bakker watched the videotapes, read the transcripts, and 
formulated conjectures on students’ learning on the basis of transcript episodes. 
Numbering the conjectures served as useful codes to work with during the analysis. 
Examples of such codes and conjectures were:

    C1 . Students divide imaginary data sets into three groups of low, ‘average’, and high 
values.  

   C2.  Students either characterize spread as range or look very locally at spread  
   C3 . Students are inclined to think of small samples when fi rst asked about how one 

could test something (batteries, weight).  
   C5.  What-if questions work well for letting students think of aggregate features of 

a graph or a situation. What would a weight graph of older students look like? 
What would the graph look like if a larger sample was taken? What would a 
larger sample of a good battery brand look like?  

   C7 . Students’ notions of spread, distribution, and density are not yet distinguished. 
When explaining how data are spread out, they often describe the distribution or 
the density in some area.  

   C9.  Even when students see a large sample of a particular distribution, they often do 
not see the shape we see in it.    

 The generated conjectures were tested against other episodes and the rest of the 
collected data (student work, fi eld observations, and tests) in the next round of anal-
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ysis by data triangulation. Conjectures that were confi rmed remained in the list; 
conjectures that were refuted were removed from the list. Then the whole generat-
ing and testing process was repeated. The aforementioned examples were all con-
fi rmed throughout this analysis. 

 To get a sense of the interrater reliability of the analysis, about one quarter of the 
episodes including those discussed in this chapter and the conjectures belonging to 
these episodes were judged by the three assistants who attended the teaching experi-
ment. The amount of agreement among judges was very high: all four judges agreed 
about 33 out of 35 codes. A code was only accepted if all judges agreed after discus-
sion. We give an example of a code that was fi nally rejected and one that was 
accepted. This example stems from the seventh lesson in which two students used 
the four equal groups option in Minitool 2 for a revised version of the jeans activity. 
Their task was to advise a jeans factory about frequencies of jeans sizes to be pro-
duced (Fig.  16.2 ).

    Sofi e     Because then you can best see the spread, how it is distributed.   
  Int.     How it is distributed. And how do you see that here [in this graph]? 
  What do you look at then? (…)   
  Sofi e    Well, you can see that, for example, if you put a [vertical] line here, 
   here a line, and here a line. Then you see here [two lines at the right] 
  that there is a very large spread in that part, so to speak.   

   In the fi rst line, Sofi e seems to use the terms spread and distributed as almost 
synonymous. This line was therefore coded with C7, which states that “students’ 
notions of spread, distribution, and density are not yet distinguished. When explain-
ing how data are spread out, they often describe the distribution or the density in 
some area.” In the second line, Sofi e appears to look at spread very locally, hence it 
was coded with C2, which states that “students either characterize spread as range 
or look very locally at spread.” 

 We also give an example of a code assignment that was dismissed in relation to 
the same diagram.

  Fig. 16.2    Jeans data with four equal groups option in Minitool 2       
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   Int.    What does this tell you? Four equal groups?   
  Melle    Well, I think that most jeans are between 32 and 34 [inches].   

   We had originally assigned the code C1 to the this episode (students talk about 
data sets as consisting of three groups of low, ‘average’, and high values), because 
“most jeans are between 32 and 34” implies that below 32 and above 34 the frequen-
cies are relatively low. In the episode, however, this student did not talk about three 
groups of low, average, and high values or anything equivalent. We therefore 
removed the code from this episode.  

16.2.6    HLT and Retrospective Analysis 

 To illustrate relationships between theory, method, and results, this section pres-
ents the analysis of students’ reasoning during one educational activity which was 
carried out in the fourth lesson. Its goal was to stimulate students to reason about 
larger and larger samples. We summarize the HLT of that lesson: the learning 
goal, the activity of growing a sample and the assumptions about students’ poten-
tial learning processes and about how the teacher could support these processes. 
We then present the retrospective analysis of three successive phases in growing a 
sample. 

 The overall  goal  of the growing samples activity as formulated in the hypotheti-
cal learning trajectory for this fourth lesson was to stimulate students’ diagrammatic 
reasononing about shape in relation to sampling and distribution aspects in the con-
text of weight. This implied that students should fi rst make diagrams, then experi-
ment with them and refl ect on them. The idea was to start with ideas invented by the 
students and guide them toward more conventional notions and representations. 
This process of guiding students toward these culturally accepted concepts and 
graphs while building on their own inventions is called guided reinvention. We had 
noted in previous teaching experiments that students were inclined to choose very 
small samples initially. It proved necessary to stimulate refl ection on the disadvan-
tages of such small samples and have them predict what larger samples would look 
like. Such insights from the analyses of previous teaching experiments helped to 
better formulate the HLT of a new teaching experiment. More particularly, Bakker 
assumed that starting with students’ initial ideas about small samples and asking for 
predictions about larger samples would make students aware of various features of 
distributions. 

 The  activity  of growing a sample consisted of three phases of making sketches of 
a hypothetical situation and comparing those sketches with graphs displaying real 
data sets. In the fi rst phase students had to make a graph of their own choice of a 
predicted weight data set with sample size 10. The results were discussed by the 
teacher to challenge this small sample size, and in the subsequent phases students 
had to predict larger data sets, one class and three classes in the second phase, and 
all students in the province in the third phase. Thus, three such phases took place as 
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described and analyzed below. Aiming for guided reinvention, the teacher and 
researcher tried to strike a balance between engaging students in statistical reason-
ing and allowing their own terminology on the one hand, and guiding them in using 
conventional and more precise notions and graphical representations on the other. 
Figure  16.3b  is the result of focusing only on the endpoints of the value bars in 
Fig.  16.3a . Figure  16.3c  is the result of these endpoints falling down vertically on 
the x-axis. In this way, students can learn to understand the relationship between 
value-bar graphs and dot plots, and what distribution features in different represen-
tations look like (Bakker and Hoffmann  2005 ).

  Fig. 16.3    ( a ) Minitool 1 showing a value-bar graph of battery life spans in hours of two brands. 
( b ) Minitool 1, but with bars hidden. ( c ) Minitool 2 showing a dot plot of the same data sets       
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16.2.6.1      Analysis of the First Phase of Growing a Sample 

 The text of the student activity sheet for the fourth lesson contained a number of 
tasks that we cite in the following subsections. The sheet started as follows:

   Last week you made graphs of predicted data for a balloon pilot. During this lesson you will 
get to see real weight data of students from another school. We are going to investigate the 
infl uence of the sample size on the shape of the graph.  

  Task a. Predict a graph of ten data values, for example with the dots of minitool 2.    

 The sample size of ten was chosen because the students had found that size rea-
sonable after the fi rst lesson in the context of testing the life span of batteries. 
Figure  16.4  shows examples for three different types of diagrams the students made 
to show their predictions: there were three value-bar graphs (such as in minitool 
1—e.g., Ruud’s diagram), eight with only the endpoints (such as with the option of 
minitool 1 to “hide bars”—e.g., Chris’s diagram) and the remaining nineteen plots 
were dot plots (such as in minitool 2—e.g., Sandra’s diagram). For the remainder of 
this section, the fi gures and written explanations of these three students are demon-
strated, because their work gives an impression of the variety of the whole class. 
Those three students were chosen because their diagrams represent all types of 
 diagrams made in this class, also for other phases of growing a sample.

   To stimulate the refl ection on the graphs, the teacher showed three samples of ten 
data points on the blackboard and students had to compare their own graphs 
(Fig.  16.4 ) with the graphs of the real data sets (Fig.  16.5 ).

    Task b. You get to see three different samples of size 10. Are they different from your own 
prediction? Describe the differences.    

 The reason for showing three small samples was to show the variation among these 
samples. There were no clear indications, though, that students conceived this varia-
tion as a sign that the sample size was too small for drawing conclusions, but they 
generally agreed that larger samples were more reliable. The point relevant to the 
analysis is that students started using predicates to describe aggregate features of the 
graphs. The written answers of the three students were the following:

   Ruud    Mine looks very much like what is on the blackboard.   
  Chris     The middle-most [diagram on the blackboard] best resembles mine 
  because the weights are close together and that is also the case in my 
  graph. It lies between 35 and 75 [kg].   
  Sandra    The other [real data] are more weights together and mine are further 
  apart.   

   Ruud’s answer is not very specifi c, like most of the written answers in the fi rst 
phase of growing samples. Chris used the predicate “close together” and added 
numbers to indicate the range, probably as an indication of spread. Sandra used such 
terms as “together” and “further apart,” which address spread. The students in the 
class used common predicates such as “together,” “spread out” and “further apart” 
to describe features of the data set or the graph. For the analysis it is important to 
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  Fig. 16.4    Student predictions (Ruud, Chris, and Sandra) for ten data points (weight in kg) (Bakker 
 2004a , p. 219)       

  Fig. 16.5    Three real data 
sets in minitool 2 (Bakker 
 2004a , p. 219)       
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note that the students used predicates (together, apart) and no nouns (spread, 
 average) in this fi rst phase of growing samples. Spread can only become an object-
like concept, something that can be talked about and reasoned with, if it is a noun. 
In the semiotic theory of Peirce, such transitions from the predicate “the dots are 
spread out” to “the spread is large” are important steps in the formation of concepts 
(see Bakker and Derry  2011 , for our view on concept formation).  

16.2.6.2    Analysis of the Second Phase of Growing a Sample 

 The students generally understood that larger samples would be more reliable. With 
the feedback students had received after discussing the samples of ten data points in 
dot plots, students had to predict the weight graph of a whole class of 27 students 
and of three classes with 67 students (27 and 67 were the sample sizes of the real 
data sets of eighth graders of another school).

   Task c. We will now have a look how the graph changes with larger samples. Predict a 
sample of 27 students (one class) and of 67 students (three classes).  

  Task d. You now get to see real samples of those sizes. Describe the differences. You can use 
words such as majority, outliers, spread, average.    

 During this second phase, all of the students made dot plots, probably because 
the teacher had shown dot plots on the blackboard, and because dot plots are less 
laborious to draw than value bars (only one student started with a value-bar graph 
for the sample of 27, but switched to a dot plot for the sample of 67). The hint on 
statistical terms was added to make sure that students’ answers would not be too 
superfi cial as (often happened before) and to stimulate them to use such notions in 
their reasoning. It was also important for the research to know what these terms 
meant to them. When the teacher showed the two graphs with real data, once again 
there was a short class discussion in which the teacher capitalized on the question of 
why most student predictions now looked pretty much like what was on the black-
board, whereas with the earlier predictions there was much more variation. No stu-
dent had a reasonable explanation, which indicates that this was an advanced 
question. The fi gures of the same three students are presented in Figs.  16.6  and  16.7  
and their written explanations were:

     Ruud    My spread is different.   
  Chris     Mine resembles the sample, but I have more people around a certain 
  weight and I do not really have outliers, because I have 10 about the 70 
  and 80 and the real sample has only 6 around the 70 and 80.   
  Sandra     With the 27 there are outliers and there is spread; with the 67 there are 
  more together and more around the average.   

   Here, Ruud addressed the issue of spread (“my spread is different”). Chris was 
more explicit about a particular area in her graph, the category of high values. She 
also correctly used the term “sample,” which was newly introduced in the second 
lesson. Sandra used the term “outliers” at this stage, by which students meant 
“extreme values,” which did not necessarily mean exceptional or suspect values. 
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  Fig. 16.6    Predicted graphs for one class (n = 27, top plot) and three classes (n = 67, bottom plot) 
by Ruud, Chris, and Sandra (Bakker  2004a , p. 222)       
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  Fig. 16.7    Real data sets of size 27 and 67 of students from another school (Bakker  2004a , p. 222)       
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She also seemed to locate the average somewhere and to understand that many 
 students are about average. These examples illustrate that students used statistical 
notions for describing properties of the data and diagrams. 

 In contrast to the fi rst phase of growing a sample, students used nouns instead of just 
predicates for comparing the diagrams. Like others Ruud used the noun “spread” (“my 
spread is different”) whereas students earlier used only predicates such as “spread out” 
or “further apart” (e.g., Sandra). Of course, this does not always imply that if students 
use these nouns that they are thinking of the right concept. Statistically, however, it 
makes a difference whether we say, “the dots are spread out” or “the spread is large.” 
In the latter case, spread is an object-like entity that can have particular aggregate char-
acteristics that can be measured, for instance by the range, the interquartile range, or the 
standard deviation. Other notions such as outliers, sample, and average, are now used 
as nouns, that is as conceptual objects that can be talked about and reasoned with.  

16.2.6.3    Analysis of the Third Phase of Growing a Sample 

 The aim of the hypothetical learning trajectory was that students would come to 
draw continuous shapes and reason about them using statistical terms. During teach-
ing experiments in the seventh-grade experiments (Bakker and Gravemeijer  2004 ), 
reasoning with continuous shapes turned out to be diffi cult to accomplish, even if it 
was asked for. It often seemed impossible to nudge students toward drawing the 
general, continuous shape of data sets represented in dot plots. At best, students 
drew spiky lines just above the dots. This underlines that students have to construct 
something new (a notion of signal, shape, or distribution) with which they can look 
differently at the data or the variable phenomenon. 

 In this last phase of growing the sample, the task was to make a graph showing 
data of all students in the city, not necessarily with dots. The intention of asking this 
was to stimulate students to use continuous shapes and dynamically relate samples 
to populations, without making this distinction between sample and population 
explicit yet. The conjecture was that this transition from a discrete plurality of data 
values to a continuous entity of a distribution is important to foster a notion of dis-
tribution as an object-like entity with which students could model data and describe 
aggregate properties of data sets. The task proceeded as follows:

   Task e. Make a weight graph of a sample of all eighth graders in the city. You need not draw 
dots. It is the shape of the graph that is important.  

  Task f. Describe the shape of your graph and explain why you have drawn that shape.   

   The fi gures of the same three students are presented in Fig.  16.8  and their written 
explanations were:

   Ruud    Because the average [values are] roughly between 50 and 60 kg.   
  Chris    I think it is a pyramid shape. I have drawn my graph like that because I 
  found it easy to make and easy to read.   
  Sandra    Because most are around the average and there are outliers at 30 and 
  80 [kg].   
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   Ruud’s answer focused on the average group. During an interview after the 
fourth lesson, Ruud like three other students literally called his graph a “bell shape,” 
though he had probably not encountered that term in a school situation before. This 
is probably a case of  reinvention . Chris’s graph was probably inspired by line graphs 
that the students made during mathematics lessons. She introduced the vertical axis 
with frequency, though such graphs had not been used before in the statistics course. 
Sandra may have started with the dots and then drawn the continuous shape. 

 In this third phase of growing a sample, 23 students drew a bump shape. The 
words they used for the shapes were pyramid (three students), semicircle (one), 
and bell shape (four). Many students drew continuous shapes but these were all 

  Fig. 16.8    Predicted graphs for all students in the city by Ruud, Chris, and Sandra (Bakker  2004a , 
p. 224)       
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 symmetrical. Since weight distributions are not symmetrical and because skewness 
is an important concept, a subsequent lesson addressed asymmetrical shapes in rela-
tion to the weight data (see Bakker  2004b ).   

16.2.7    Refl ection on the Example 

 The research question we addressed in the example is: How can coherent reasoning 
about distribution be promoted in relation to data, variability, and sampling in a way 
that is meaningful for students with little statistical background? We now discuss 
those key elements for the educational activity and speculate about what can be 
learned from the analysis presented here. 

 The activity of growing a sample involved short phases of constructing diagrams 
of new hypothetical situations, and comparing these with other diagrams of a real 
sample of the same size. The activity has a broader empirical basis than just the 
teaching experiment reported in this chapter, because it emerged from a previous 
teaching experiment (Bakker and Gravemeijer  2004 ) as a way to address shape as a 
pattern in variability. 

 To theoretically generalize the results, Bakker analyzed students’ reasoning as an 
instance of diagrammatic reasoning, which typically involves constructing dia-
grams, experimenting with them, and refl ecting on the results of the previous two 
steps. In this growing samples activity, the quick alternation between prediction and 
refl ection during diagrammatic reasoning appears to create ample opportunities for 
concept formation, for instance of spread. 

 In the fi rst phase involving the prediction of a small data set, students noted that 
the data were more spread out, but in subsequent phases, students wrote or said that 
the spread was large. From the terms used in this fourth lesson, we conclude that 
many statistical concepts such as center (average, majority), spread (range and range 
of subsets of data), and shape had become topics of discussion (object-like entities) 
during the growing samples activity. Some of these words were used in a rather 
unconventional way, which implies that students needed more guidance at this point. 
Shape became a topic of discussion as students predicted that the shape of the graph 
would be a semicircle, a pyramid, or a bell shape, and this was exactly what the HLT 
targeted. Given the students’ minimal background in statistics and the fact that this 
was only the fourth lesson of the sequence, the results were promising. Note, how-
ever, that such activities cannot simply be repeated in other contexts; they need to be 
adjusted to local circumstances if they are to be applied in other situations. 

 The instructional activity of growing samples later became a connecting thread 
in Ben-Zvi’s research in Israel, where it also worked to help students develop statis-
tical concepts in relation to each other (Ben-Zvi et al.  2012 ). This implies that this 
instructional idea was transferable to other contexts. The transferability of instruc-
tional ideas from the USA to the Netherlands to Israel, even to higher levels of 
education, illustrates that generalization in DBR can take place across contexts, 
cultures and age group.  
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16.2.8    Final Remarks 

 The example presented in Sect.  16.2  was intended to substantiate the issues dis-
cussed in Sect.  16.1 , and we hope that readers will have a sense of what DBR could 
look like and feel invited to read more about it. It should be noted that there are 
many variants of DBR. Some are more focused on theory, some more on empiri-
cally grounded products. Some start with predetermined learning outcomes, others 
have more open-ended goals (cf. Engeström  2011 ). DBR may be a challenging 
research approach but it is in our experience also a very rewarding one given the 
products and insights that can be gained.      
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    Appendix: Structure of a DBR Project with Illustrations 

 In line with Oost and Markenhof ( 2010 ), we formulate the following general criteria 
for any research project:

    1.    The research should be  anchored  in the literature.   
   2.    The research aim should be  relevant , both in theoretical and practical terms.   
   3.    The formulation of aim and questions should be  precise , i.e. using concepts and 

defi nitions in the correct way.   
   4.    The method used should be  functional  in answering the research question(s).   
   5.    The overall structure of the research project should be  consistent , i.e. title, aim, 

theory, question, method and results should form a coherent chain of reasoning.     

 In this appendix we present a structure of general points of attention during DBR 
and specifi cations for our statistics education example, including references to rel-
evant sections in the chapter. In this structure these criteria are bolded. This struc-
ture could function as the blueprint of a book or article on a DBR project.

 General points  Examples 

 Introduction:  1. Choose a topic  1. Statistics education at the middle school level 
 2. Identify common 
problems 

 2. Statistics as a set of unrelated concepts and 
techniques 

 3. Identify knowledge gap 
and relevance 

 3. How middle school students can be supported 
to develop a concept of distribution and related 
statistical concepts 

 4. Choose mathematical 
learning goals 

 4. Understanding of distribution (2.1) 

(continued)
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 General points  Examples 

 Literature review forms the basis for formulating the research aim (the research has to be 
 anchored  and  relevant ) 
 Research aim:  It has to be clear whether 

an aim is descriptive, 
explanatory, evaluative, 
advisory etc. (1.2.2) 

 Contribute to an empirically and theoretically 
grounded instruction theory for statistics 
education at the middle school level (advisory 
aim) (2.1) 

 Research aim has to be narrowed down to a research question and possibly subquestions with 
the help of different theories 
 Literature 
review 
(theoretical 
background): 

   Orienting frameworks    Semiotics (2.3) 
   Frameworks for action    Theories on learning with computer tools 
   Domain-specifi c learning 

theories (1.2.8) 
   Realistic Mathematics Education (2.4) 

 With the help of theoretical constructs the research question(s) can be formulated 
 (the formulation has to be  precise ) 
 Research 
question: 

 Zoom in what knowledge is 
required to achieve the 
research aim 

 How can students with little statistical 
background develop a notion of distribution? 

 It should be underpinned why this research question requires DBR (the method should be 
 functional ) 
 Research 
approach: 

 The lack of the type of 
learning aimed for is a 
common reason to carry 
out DBR: It has to be 
enacted so it can be studied 

 Dutch statistics education was atomistic: 
Textbooks addressed mean, median, mode, and 
different graphical representations one by one. 
Software was hardly used. Hence the type of 
learning aimed for had to be enacted. 

 Using a research method involves several research instruments and techniques 
 Research 
instruments 
and techniques 

 Research instrument that 
connects different theories 
and concrete experiences in 
the form of testable 
hypotheses. 

 Series of hypothetical learning trajectories 
(HLTs) 

 1. Identify students’ prior 
knowledge 

 1. Prior interviews and pretest 

 2. Professional 
development of teacher 

 2. Preparatory meetings with teacher 

 3. Interview schemes and 
planning 

 3. Mini-interviews, observation scheme 

 4. Intermediate feedback 
and refl ection with teacher 

 4. Debrief sessions with teacher 

 5. Determine learning yield 
(1.4.2) 

 5. Posttest 

 Design  Design guidelines  Guided reinvention; Historical and didactical 
phenomenology (2.4) 

 Data analysis  Hypotheses have to be 
tested by comparison of 
hypothetical and observed 
learning. Additional 
analyses may be necessary 
(1.4.3) 

 Comparison of hypothetical and observed 
learning 
 Constant comparative method of generating 
conjectures and testing them on the remaining 
data sources (2.6) 

(continued)
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 General points  Examples 

 Results  Insights into patterns in 
learning and means of 
supporting such learning 

 Series of HLTs as progressive diagrammatic 
reasoning about growing samples (2.6) 

 Discussion  Theoretical and practical 
yield 

   Concrete example of an historical and 
didactical phenomenology in statistics 
education 

   Application of semiotics in an educational 
domain 

   Insights into computer use in the mathematics 
classroom 

   Series of learning activities 
   Improved computer tools 

 The aim, theory, question, method and results should be aligned (the research has to be 
 consistent ) 
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