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  Pref ace   

 Over the last three decades, a variety of qualitative research methods have emerged 
within mathematics education. In 2003, two volumes of ZDM were dedicated to 
such methods in mathematics education with a focus on interpretative research, to 
promote a discussion about qualitative methods. Those two volumes necessarily 
presented only a selection of the range of research available. This book provides a 
different selection, including chapters based on research since 2003 and research 
approaches not included in the ZDM volumes, with some overlap in areas of 
 particular importance. It continues the discussion, bringing additional depth and 
variety and including the close relationship between theory and methodology. 

 In his book on doing qualitative research, Roth (2005) describes how participating in 
research practice helps students to understand methodologies in a much better way than 
general how-to-do descriptions are able to achieve (see also Roth 2006). Given that 
doing research is more than can be written down as a procedure or as a description, how 
can a book offer an in-depth insight into such a methodologically enriched process? 

 In handbooks on research in science and mathematics education (English 2002; 
Kelley et al. 2008; Lester 2007; Kelly and Lesh 2000), we fi nd chapters on method-
ological considerations (Cobb 2007; Cobb and Gravemeijer 2008; Lesh 2000, 2002; 
Schoenfeld 2002, 2007; Silver and Herbst 2007), but detailed descriptions on how 
methodologies are substantiated in a specifi c project, how they are implemented to 
investigate a research question, and how they are used to capture the research objects 
are normally missing. One exception is a monograph edited by Teppo (1998). Therein 
scholars have outlined general descriptions of methodologies that they illustrated by 
examples from their own research. For example, Goldin (1998) described task-based 
interviews on problem solving this way, and Pirie (1998) exhibited her search for a 
methodology and her decision-making process in research, concluding as follows:

  …this choice of methodology, should not be undertaken hastily. We must review imagina-
tively the range of possible approaches to answering our research questions. One approach 
may at fi rst sight appear seductive, but it is in the details that the connections between ques-
tions and successful explorations lie. (p. 96) 
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   The editors of this book share Pirie’s and Roth’s views and have looked for a way 
to make such a search for adequate methodologies easier to accomplish by docu-
menting and offering insight into a variety of different methodologies and how each 
of them can be used in research. However, this was not the only reason for publish-
ing this book. We also felt that like every research discipline, scholars in mathemat-
ics education also should communicate their new developments in research 
methodologies and make them accessible to others in order to sustain a critical 
debate about methodologies in our fi eld. This is especially demanding for qualita-
tive methodologies because they are deeply intertwined with the respective research 
objects and research goals. To solve this problem, we have chosen a format that 
devotes to each research methodology one part of the book. Each part includes both 
a description of the theoretical and methodological underpinnings of the research 
approach and a concrete research example of how the approach is used in practice. 
Some parts describe the underpinnings and the example in two separate chapters, 
while others take an integrated approach. This structure means the reader can use 
the book also as an actual guide for the selection of an appropriate methodology, on 
the basis of both methodological depth and practical implications. The methods and 
examples presented are not intended as procedures to imitate, but rather they illus-
trate how different methodologies come to life when applied to a specifi c question 
in a specifi c context. 

 The exception to this structure is Part   XI     which presents three alternate 
approaches to design-based research. It illustrates how cultural and institutional 
contexts may not only require distinctive and sophisticated methodical adaptations, 
but also can imply fundamentally different methodological and theoretical under-
pinnings. Design-based research in the tradition of Realistic Mathematics Education 
in the Netherlands, didactical engineering in the French didactical culture, and 
 conducting educational design research in the US context to support system-wide 
 instructional improvement demonstrate substantially distinct understandings of 
design-based research. The theoretical underpinnings described and the examples 
of the three contributions in this part illustrate this. 

 Many of the methodologies presented in this book are also used outside mathe-
matics education, but the examples provided are chosen so as to situate the approach 
in a mathematical and educational context. Some of the methodologies are well 
known in mathematics education, while others provide innovative approaches to 
research that readers may not have encountered previously. The contributors come 
from a wide range of backgrounds within and outside mathematics education, 
including both experienced and new researchers. 

 In the fi rst part, Anne R. Teppo provides an introduction to grounded theory as a 
methodology, beginning with Glaser and Strauss’s seminal work in 1967. A clear 
layout of basic ideas and methodical principles allows the reader to establish a 
 fundamental understanding of essential methods of grounded theory. Teppo’s 
 further discussion of variations of this approach by second-generation researchers 
then insightfully reveals the underlying, and sometimes diverging, methodological 
perspectives of grounded theory approaches. In the second chapter of Part   I    , Maike 
Vollstedt illustrates in the context of mathematics education how such a perspective 
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can shape the way a grounded theory is developed methodically. Based on Strauss 
and Corbin’s (1990/1996) outlines of grounded theory, she constitutes the concept 
of personal meaning from interview data, collected in Germany and Hong Kong in 
an intercultural study. Through a pragmatic interpretation of theoretical sampling, 
comparing codes, and using a coding paradigm, Vollstedt identifi es different types 
of personal meanings and describes conditions of their emergence, which constitute 
signifi cant elements of a theory of personal meaning in mathematics learning. 

 In the second part, Götz Krummheuer, Christine Knipping, and David Reid offer 
two different perspectives on reconstructing social interaction and argumentation in 
mathematics classrooms, both following Toulmin’s theory of argumentation. For 
Krummheuer, argumentative learning is the essential research agenda, and so 
methodical analyses of students’ participation in collective argumentation are 
 central in his approach. Goffman’s idea of decomposition of the speaker’s role is a 
key element in this. While Krummheuer focuses on elementary classrooms and 
locally developed arguments, Knipping and Reid contribute a “global” model of 
argumentation, based on empirical research in secondary classrooms. As their focus 
is reconstructing entire proving processes in the mathematics classroom in this 
 context, comparative methods that allow description of the “gross, anatomical struc-
ture” and rationale of the emerging global arguments are essential. Both chapters 
provide examples to illustrate the methodologies. 

 In the third part, Angelika Bikner-Ahsbahs shows how the construction of ideal 
types can be used as a methodological principle of theory construction. She fi rst 
explains the underlying idea of ideal types, different kinds of these, and their role in 
theory development. She then illustrates methodical principles of ideal type con-
struction and demonstrates how different heuristics for generating these can ground 
an emerging theory in empirical contexts. In her second contribution to this part, 
Bikner-Ahsbahs discusses an example of the ideal type reconstruction of epistemic 
processes in so-called interest-dense-situations. Key features of structures of these 
situations are singled out using an approach divided into four steps. Based on these 
characteristics, several ideal types are construed, providing theoretical insights into 
the dynamics of epistemic processes. 

 In Part   IV    , Luis Radford and Cristina Sabena present a methodology based on a 
Vygotskian perspective on semiotics. They describe the Vygotskian semiotic 
approach in terms of an interrelated triplet of principles, methodology, and research 
questions and refer in particular to two methodological constructs: the semiotic 
node and the semiotic bundle. In the second half of their chapter, they illustrate the 
semiotic approach with an example of the analysis of pattern generalization in class-
room activity. The research reported in the example, concerning the role of words, 
gestures, and rhythm in the process of becoming aware of mathematical relation-
ships, contributed to the development of the semiotic approach when unexpected 
data required the transformation of the theory, methods, and research questions. 

 In Part   V    , Tommy Dreyfus, Rina Hershkowitz, and Baruch Schwarz present 
Abstraction in Context (AiC) as a theoretical-methodological approach for research-
ing students’ knowledge constructions. Emergence of constructs that are new to 
students is investigated, taking into account the particular learning environments 
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and their specifi c mathematical, curricular, and social components. The authors are 
especially interested in an integral approach that allows the study of learners’ pro-
cesses of constructing abstract mathematical knowledge, within a methodology 
based on the AiC theoretical framework. The main methodological tools of AiC are 
three observable epistemic actions: Recognizing, Building-with, and Construction. 
A specifi c example illustrates how these actions and AiC as a theoretical- 
methodological approach can be applied in a methodical way in research. 

 In Part   VI    , the networking of theories is proposed as a methodology by Ivy 
Kidron and Angelika Bikner-Ahsbahs. Both authors discuss and demonstrate how 
engaging different theoretical frameworks and models can allow for a more 
comprehensive understanding of concepts and phenomena on the one hand and the 
theories involved on the other. The authors argue that this can be done in a strategic, 
methodological way. Networking strategies and cross-methodologies are presented 
and illustrated briefl y by research examples in the fi rst chapter of this part. In the 
second chapter, one research example on combining the theory of Abstraction in 
Context, a cognitive approach, with the theory of interest-dense-situations, a social 
approach, pictures how the networking process is accomplished. The authors 
demonstrate how bringing these two perspectives together offers methodologically 
new ground for gaining insights into students’ epistemic processes when learning 
mathematics. 

 Part   VII     offers a methodology for studying classroom processes of teaching and 
learning over signifi cant spans of time. In the fi rst sections of their chapter, Geoffrey 
B. Saxe, Kenton de Kirby, Marie Le, Yasmin Sitabkhan, and Bona Kang present a 
conceptual framework for understanding the reproduction and alteration of a 
 common ground in classroom communities through time. This framework incorpo-
rates analyses at collective and individual levels, looking for collective norms and 
the function of individuals’ use of representations. Later in the chapter, a 19- lesson 
sequence on integers and fractions is introduced as an example of design research 
based on the conceptual framework presented earlier. The organization of empirical 
analysis based on this framework is described. The empirical methods and techniques 
presented illustrate the innovative potential of this multilevel analytic approach, 
which is further discussed in the conclusion of the chapter. 

 Qualitative methodologies are the main focus of this book; however, in Part   VIII    , 
Udo Kelle und Nils Buchholtz point to the limitations of a purely qualitative 
approach. They critically review the continuing dispute about qualitative and 
 quantitative research methods that overshadows research in mathematics education. 
Both authors question the restriction to either quantitative or qualitative methods, 
which they fi nd particularly striking in research on teacher knowledge. They argue 
how a “mixed methods design” can enrich educational research in this domain. 
Based on data and results from an empirical study on a teacher training program in 
mathematics, they demonstrate how a mixed methods approach can mutually vali-
date qualitative and quantitative fi ndings. 

 In Part   IX    , a mixed methods approach to text analysis, “Qualitative Content 
Analysis,” is introduced. This approach is well established within the social  sciences, 
but it has only recently been applied within mathematics education. In the fi rst 
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 chapter of this part, Philipp Mayring describes the theoretical background and 
methodical procedures of this approach to text analysis. He concludes by comparing 
these procedures with similar techniques in other methodological approaches, 
refl ecting on strengths and weaknesses of each approach. In the second chapter of 
this part, Björn Schwarz addresses an example for applying qualitative content 
analytic methods in a study on professional competence for future mathematics 
teachers. First, he substantiates why this methodology was implemented into the 
study and then describes how this was done, while demonstrating the added value 
of involving inductive and deductive procedures of this methodology. 

 The idea of validation is critically refl ected on in Part   X    . Ida Ah Chee Mok and 
David Clarke argue that methodologies required by cross-cultural comparative 
research are poorly served by the use of triangulation as a mechanism of conver-
gence, but benefi t from a wider understanding of triangulation that involves comple-
mentary accounts instead. Their argument is illustrated by examples taken from the 
Learner’s Perspective Study (LPS), which examined patterns of participation in the 
mathematics classroom in 18 countries. Mok and Clarke offer a more in-depth look 
into how different forms of triangulation, including what they call cultural triangu-
lation, are able to portray the variation of real class activities, by means of the 
description of two studies, namely, a study on lesson structures of classrooms in 
Hong Kong and Shanghai and a cross-cultural comparison of learning tasks. 

 Part   XI    , on design research as a research methodology, is divided into three chap-
ters. In the fi rst chapter, Arthur Bakker and Dolly van Eerde offer an introduction to 
design-based research as a specifi c kind of this methodological approach in realistic 
mathematics education, reviewing key features of it and how validity and reliability 
are interpreted. Illustrating and refl ecting the pivotal methodical steps and the role 
of the theory of design-based research, they close with an example from statistics 
education. 

 In the second chapter of this part, Michèle Artigue considers didactical engineering 
in the French tradition as a case of design research. She describes the evolution of 
didactical engineering, its characteristics as a research methodology, and its close 
connections with the development of the theory of didactical situations. Current 
developments within this design culture are described, in particular the integration of 
a design element into the anthropological theory of didactics, and second- generation 
didactical engineering. Specifi c examples are used to illustrate methodological 
principles. 

 Educational design research can be employed at different levels, from the design 
of a single task to longer sequences of classroom activity and beyond. In the third 
chapter of Part   XI    , Erin Henrick, Paul Cobb, and Kara Jackson describe educational 
design research in the context of school system-wide instructional improvement. 
They expound the theoretical framework for design research at this level and its 
research focus on wide-scale instructional improvement. The authors discern that 
design studies at this level are interventionist in nature, and they describe how 
researchers address both the complexity of educational settings and the problems 
that various participants in those settings encounter as they endeavor to make 
improvements. Examples drawn from the MIST study (study on Middle-School 
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Mathematics and the Institutional Setting of Teaching), as one of the few design 
studies conducted at this level, are used to illustrate these points. 

 Taken together, these 11 parts provide a systematic account of a variety of direc-
tions in which qualitative research in mathematics education is moving, through an 
analysis of the essential interaction between theoretical and methodological aspects 
of this research. In each case, a description of a pragmatic example in which the 
methodology has been used brings these considerations to life, thus adumbrating 
ways in which certain methodologies bring certain issues to the fore. We summarize 
the connections between the parts in Part   XII    . The account is of necessity incom-
plete: As research in mathematics education continues to evolve, so do the tools 
with which researchers investigate their questions. Even as a snapshot of current 
research, the account is incomplete, because we have chosen to highlight develop-
ments in qualitative methodologies, with only a small glimpse into their interactions 
with their quantitative counterparts. However, the usefulness of this book lies in the 
juxtaposition, with practical examples, of accounts of theoretical and methodologi-
cal aspects of qualitative mathematics education research that, taken together, 
illustrate the current state of the art. 

     Bremen, Germany     Angelika     Bikner-Ahsbahs   
   Christine     Knipping   

   Norma     Presmeg   

    References 

 Cobb, P. (2007). Putting philosophy to work: Coping with multiple theoretical perspectives. 
In F. K. Lester (Ed.),  Second handbook of research on mathematics teaching and learning  
(Vol. 1, pp. 3–38). Charlotte, NC: Information Age. 

 Cobb, P., & Gravemeijer, K. (2008). Experimenting to support and understand learning processes. 
In A. E. Kelly, R. A. Lesh, & J. Y. Baek (Eds.),  Handbook of design research methods in educa-
tion: Innovations in science, technology, engineering, and mathematics learning and teaching  
(pp. 68–95). New York: Routledge. 

 English, L. D. (Ed.). (2002).  Handbook of international research in mathematics education . 
Mahwah, NJ: Lawrence Erlbaum. 

 Goldin, G. A. (1998). Observing mathematical problem solving through task-based interviews. 
In A. R. Teppo (Ed.),  Qualitative research methods in mathematics education. Monograph 9, 
Journal for Research in Mathematics Education  (pp. 40–62). Reston: NCTM. 

 Kelley, A. E., & Lesh, R. A. (Eds.). (2000).  Research design in mathematics education . Mahwah, 
NJ: Lawrence Erlbaum. 

 Kelly, A. E., Lesh, R. A., & Baek, J. Y. (Eds.). (2008).  Handbook of design research methods in 
education: Innovations in science, technology, engineering, and mathematics learning and 
teaching . New York: Routledge. 

 Lesh, R. (2000). Trends and shifts in research methods. In A. E. Kelley & R. A. Lesh (Eds.), 
 Research design in mathematics education  (pp. 35–44). Mahwah, NJ: Lawrence Erlbaum. 

 Lesh, R. (2002). Research design in mathematics education: Focusing on design experiments. In 
L. D. English (Ed.),  Handbook of international research in mathematics education  (pp. 27–50). 
Mahwah, NJ: Lawrence Erlbaum. 

Preface

http://dx.doi.org/10.1007/978-94-017-9181-6_Part12


xi

 Lester, F. K. (Ed.), Second handbook of research on mathematics teaching and learning. Charlotte, 
NC: Information Age. 

 Pierie, S. (1998). Working for a design for qualitative research. In A. R. Teppo (Ed.),  Qualitative 
research methods in mathematics education. Monograph 9, Journal for Research in 
Mathematics Education  (pp. 79–97). Reston: NCTM. 

 Roth, W.-M. (2005).  Doing qualitative research: Praxis of method . Rotterdam: Sense Publishers. 
 Roth, W.-M. (2006). Textbooks on qualitative research and method/methodology: Toward a praxis 

of method. Forum Qualitative Social Research, vol. 7(1).   http://www.qualitative-research.net/
index.php/fqs/article/view/79/162    . Accessed 11 Apr 2014. 

 Schoenfeld, A. H. (2002). Research methods in (mathematics) education. In L. D. English (Ed.), 
 Handbook of international research in mathematics education  (pp. 435–488). Mahwah, NJ: 
Lawrence Erlbaum. 

 Schoenfeld, A. H. (2007). Method. In F. K. Lester (Ed.),  Second handbook of research on mathe-
matics teaching and learning  (Vol. 1, pp. 69–110). Charlotte, NC: Information Age. 

 Silver, E. A., & Herbst, P. G. (2007). Theory in mathematics education scholarship. In F. K. Lester 
(Ed.),  Second handbook of research on mathematics teaching and learning  (Vol. 1, pp. 39–68). 
Charlotte, NC: Information Age. 

 Teppo, A. R. (1998) (Ed.).  Qualitative research methods in mathematics education. Monograph 9, 
Journal for Research in Mathematics Education . Reston: NCTM.   

Preface

http://www.qualitative-research.net/index.php/fqs/article/view/79/162
http://www.qualitative-research.net/index.php/fqs/article/view/79/162


         



xiii

   Contents 

   Part I Grounded Theory Methodology  

    1      Grounded Theory Methods ....................................................................  3   
    Anne R.   Teppo    

    2      To See the Wood for the Trees: The Development of Theory 
from Empirical Interview Data Using Grounded Theory ...................  23   
    Maike   Vollstedt    

    Part II Approaches to Reconstructing Argumentation  

    3      Methods for Reconstructing Processes of Argumentation 
and Participation in Primary Mathematics 
Classroom Interaction ............................................................................  51   
    Götz   Krummheuer    

    4      Reconstructing Argumentation Structures: A Perspective 
on Proving Processes in Secondary Mathematics 
Classroom Interactions ...........................................................................  75   
    Christine   Knipping  and        David   Reid    

    Part III Ideal Type Construction  

    5      Empirically Grounded Building of Ideal Types. A Methodical 
Principle of Constructing Theory in the Interpretative 
Research in Mathematics Education .....................................................  105   
    Angelika   Bikner-Ahsbahs    

    6      How Ideal Type Construction Can Be Achieved: An Example ...........  137   
    Angelika   Bikner-Ahsbahs    



xiv

    Part IV Semiotic Research  

    7      The Question of Method in a Vygotskian Semiotic Approach ............  157   
    Luis   Radford  and        Cristina   Sabena    

    Part V A Theory on Abstraction and Its Methodology  

    8      The Nested Epistemic Actions Model for Abstraction 
in Context: Theory as Methodological Tool 
and Methodological Tool as Theory ......................................................  185   
    Tommy   Dreyfus    ,     Rina   Hershkowitz,     and     Baruch   Schwarz    

    Part VI Networking of Theories  

    9      Advancing Research by Means of the Networking of Theories ..........  221   
    Ivy   Kidron     and     Angelika   Bikner-Ahsbahs    

    10     A Cross-Methodology for the Networking of Theories: 
The General Epistemic Need (GEN) as a New Concept 
at the Boundary of Two Theories ...........................................................  233   
    Angelika   Bikner-Ahsbahs     and     Ivy   Kidron    

    Part VII Multi-Level-Analysis  

    11     Understanding Learning Across Lessons in Classroom 
Communities: A Multi-leveled Analytic Approach ..............................  253   
    Geoffrey B.   Saxe    ,     Kenton de   Kirby    ,     Marie   Le    , 
    Yasmin   Sitabkhan,     and     Bona   Kang    

    Part VIII Mixed Methods  

    12     The Combination of Qualitative and Quantitative 
Research Methods in Mathematics Education: 
A “Mixed Methods” Study on the Development 
of the Professional Knowledge of Teachers ...........................................  321   
    Udo   Kelle     and     Nils   Buchholtz    

    Part IX Qualitative Content Analysis  

     13  Qualitative Content Analysis: Theoretical Background 
and Procedures    ........................................................................................  365   
    Philipp   Mayring    

Contents



xv

     14  A Study on Professional Competence of Future 
Teacher Students as an Example of a Study Using 
Qualitative Content Analysis   ..................................................................  381   
    Björn     Schwarz    

    Part X Triangulation and Cultural Studies  

     15  The Contemporary Importance of Triangulation 
in a Post-Positivist World: Examples from the Learner’s 
Perspective Study    ....................................................................................  403   
    Ida Ah Chee   Mok     and     David J.   Clarke    

    Part XI Design Research as a Research Methodology  

     16      An Introduction to Design-Based Research with an Example 
From Statistics Education ......................................................................  429   
    Arthur   Bakker     and     Dolly van   Eerde    

     17     Perspectives on Design Research: The Case of Didactical 
Engineering ..............................................................................................  467   
    Michèle   Artigue            

     18      Educational Design Research to Support System-Wide 
Instructional Improvement ....................................................................  497   
    Erin   Henrick    ,     Paul   Cobb,     and     Kara   Jackson    

    Part XII Final Considerations  

     19     Looking Back ...........................................................................................  533   
    Angelika   Bikner-Ahsbahs    ,     Christine   Knipping,     
and     Norma   Presmeg    

    Bibliography .................................................................................................... 537  

    Author Index.................................................................................................... 577  

    Subject Index ................................................................................................... 585  

  

Contents



   Part I 
   Grounded Theory Methodology        



3© Springer Science+Business Media Dordrecht 2015 
A. Bikner-Ahsbahs et al. (eds.), Approaches to Qualitative Research 
in Mathematics Education, Advances in Mathematics Education, 
DOI 10.1007/978-94-017-9181-6_1

    Chapter 1   
 Grounded Theory Methods 

             Anne     R.     Teppo    

    Abstract     The essential methods of grounded theory research, beginning with 
Glaser and Strauss’s seminal work in 1967, are described. These methods include 
concurrent data collection and analysis, coding of data into concepts and categories, 
the use of interpretative frameworks, theoretical sampling, memoing, and the 
 integration of categories into grounded theory. Variations in methods developed by 
second-generation grounded theory researchers are presented in the contexts of 
their methodological perspectives.  

  Keywords     Grounded theory  

1.1         The Development of “Grounded Theory” 

 Sociologists Barney Glaser and Anselm Strauss set out in their book  The Discovery 
of Grounded Theory  ( 1967 ) to describe a set of research methods that grew out of 
the authors’ collaborative, qualitative study of the interactions between hospital 
staff and dying patients. Their particular research approach ran counter to the then 
prevailing social science techniques that focused on theory verifi cation. Instead of 
using theory at the beginning of research to direct data collection, Glaser and 
Strauss’s method begins with joint data collection and analysis in order to generate 
theory that “emerges” and is grounded in empirical data; theory that will “fi t the 
situation being researched, and work when put into use” (Glaser and Strauss  1967 , 
p. 3). Bryant ( 2009 , para. 2) notes that the  Discovery  book “was fi rst and foremost 
a manifesto, seeking to present a genuine alternative to the dominant quantitative 
agenda of the time.” 

 The study of dying patients utilized a method of comparative analysis that was a 
standard tool in qualitative social science research in the 1960s. However, Glaser 
and Strauss ( 1967 ) developed this method further. Their purpose in using the tech-
nique went beyond creating rich descriptions  of  data to that of generating theory 
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  Independent Scholar ,   Livingston ,  MT ,  USA   
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 from  data. The end result was a systematic set of techniques labeled the “constant 
comparative method” (Glaser  1965 ). Only later did their approach become known 
as “grounded theory” (Strauss  1991 ). 

 The publication of  The Discovery of Grounded Theory  represented the authors’ 
fi rst attempt at articulating their method. As Glaser ( 1998 , p. 14) explains, “It took 
a lot of thought for Anselm [Strauss] and myself to fi gure out the ‘Discovery’ book.” 
However, their book, while it introduced the techniques, did not provide extensive 
details on how to actually conduct similar research in the fi eld. 

 Glaser and Strauss did not collaborate again after completing the study on dying 
and writing a set of four books related to this research. Throughout the years, as 
Glaser and Strauss continued to refi ne specifi c aspects of their methods through 
their work mentoring doctoral students, they developed separate variations of the 
procedures. The fi rst book to clarify and further explain the methods of grounded 
theory was Glaser’s  1978  book  Theoretical Sensitivity . Strauss, in collaboration 
with Juliet Corbin, outlined his version of grounded theory in the textbook  Basics of 
Qualitative Research  (1990), which has since been revised through a third edition 
(Corbin and Strauss  2008 ). Anselm Strauss died in 1996, while Barney Glaser 
 continues to put out books and readers on grounded theory through his publishing 
company, Sociology Press. 

 Anselm Strauss and Barney Glaser constitute the fi rst generation of grounded 
theorists. Through their mentoring of a cadre of doctoral students, they laid the 
foundation for a second generation of researchers, who have subsequently gone on 
to refi ne, extend, and develop variations of the method that refl ect changes in the 
qualitative research paradigm over the last 40 years (Morse  2009 ). 

 There are presently four seminal forms of the grounded theory method (Birks 
and Mills  2011 ); that espoused by Glaser and articulated through his writings from 
 Theoretical Sensitivity  forwards; the methods outlined by Strauss and Corbin in 
their 1990 through 2008 editions of  Basics of Qualitative Research , a Constructivist 
perspective associated with Chamaz’s work ( 2000 ,  2006 ,  2009 ), and an approach 
based on Situational Analysis (Clarke  2005 ). Further discussions of the different 
theoretical perspectives taken by these researchers are presented in Sect.  1.8  at the 
end of the chapter. 

 It is recommended that this chapter be read in parallel with Maike Vollstedt’s 
chapter (Chap.   2    ) that details the use of grounded theory methods in an empirical 
interview study. Throughout the chapter references will be made to specifi c sections 
described by Vollstedt that illustrate the topic under discussion. 

1.1.1     Overview of Research Processes 

 Within the variations in grounded theory research that exist today, there is a set of 
 essential methods  that characterizes all such research (Birks and Mills  2011 ). This 
set includes constant comparative analysis, open and intermediate coding, theoreti-
cal sampling and saturation, theoretical integration of codes and categories, and 
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memoing. Additionally, a crucial aspect of this research is the concurrent and 
 continuous nature of data generation and analysis. 

 Initially, data, such as interviews or fi eld notes, are conceptually coded through 
constant comparison. As codes are generated, categories are also created to express 
commonalities among groups of codes. As the analysis continues, decisions of 
where to select more data (theoretical sampling) are directed by key ideas about the 
data that emerge through the constant comparison of codes and categories. Coding 
of new data into codes and categories continues towards the goal of identifying a 
core category that can account for the majority of the participants’ behavior in the 
substantive area. At this stage, more abstract categories that express connections 
between the lower-level, substantive categories begin to emerge. These higher-level 
categories lead to the development of grounded hypotheses that explain relations 
among observed aspects of the area of study. Throughout the analytic process, 
memos are constantly being written to capture ideas and thoughts about codes and 
categories, relationships among concepts, emerging theory, and potential directions 
for further sampling. 

 The processes of coding data, abstracting concepts into categories, and theoreti-
cal sampling are on-going and interactive as the researcher continues to cycle 
through these steps towards the goal of developing theory grounded in the data. 
Constant comparison uses inductive reasoning to abstract concepts and categories 
from patterns identifi ed in the data, and hypotheses are deduced from these patterns 
that suggest explanations about what is going on in the substantive area. The cycle 
continues as further data collection and analysis test the validity of the emerging 
themes. 

 Theoretical saturation is reached when no new data or coding produce any 
 additional useful material. At this point, the process begins to integrate the catego-
ries and their properties into grounded theory. The memos, which have been 
 continually recording the conceptualizations of the research process, are compared 
and sorted (either manually or by computer) according to how they relate to each 
other. The writing of the fi nal product is aided by the information derived from the 
sorted memos; and the particular grounded theory that is developed is legitimized 
by how well it fi ts the substantive area, works to explain observed behavior, and 
has relevance to practitioners in the fi eld. (See Chap.   2    , Sects. 2.1 and 2.2, for a 
discussion of her decisions to use grounded theory methods to investigate a par-
ticular area of interest.)   

1.2     Place of Literature Review in Grounded Theory 

 In contrast to research designed to verify theory derived from the literature, grounded 
theory studies do not begin with a formal literature review. Glaser ( 1998 ) stresses 
that reading other studies beforehand about the substantive area may lead the 
researcher to “see” what is not there rather than what actually is. Also, once data 
generation begins, the researcher may fi nd that the categories created about the 
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substantive area are different from what might have been postulated from any 
 preconceived body of literature, and, therefore, an extensive preview may not be 
relevant to the fi nal focus of the research. 

 However, it is impossible for the researcher to enter the fi eld with an empty 
mind. He or she always brings a set of experiences and professional knowledge to 
the endeavor. In fact, it is this background that forms the basis for the researcher’s 
sensitivity or “ability to see what is in the data” (Bryant  2009 , para. 96). Birks and 
Mills ( 2011 ) suggest a “limited and purposive preliminary review” that can help 
orient the researcher to the general area of study, as well as provide some initial 
sensitivity towards conceptualizing the data. 

 As the research progresses, a literature search can provide an additional source 
of data for locating similarities and differences with the study’s grounded catego-
ries. Such comparisons can enlarge the scope of the emerging theory, increasing its 
relevance to a larger set of conditions. A literature review conducted during the fi nal 
stages of the research can be used to indicate how one’s emerging theory fi ts into 
what has already been published in the fi eld. The literature may confi rm the 
researcher’s developed theory or his or her theory may extend or go beyond that 
previously published.  

1.3      Data Analysis: Open Coding 

 Grounded theory analysis uses the technique of constant comparison to render the 
data into codes and categories that refl ect layers of abstraction based on phenomena 
and relations observed in the data. During initial coding, incidents, events and items 
of interest are identifi ed and labeled with code names that refl ect a particular con-
ceptual aspect of each of these phenomena. As analysis continues, codes having 
similar attributes are grouped together into categories representing a higher level of 
conceptual abstraction. A second phase of analysis, sometimes identifi ed as “inter-
mediate coding” (Birks and Mills  2011 ), focuses on linking categories and subcat-
egories together and articulating the relations among them. Section  1.3  discusses 
the fi rst level of open coding. Intermediate coding, and the use of a coding paradigm 
within this level of analysis, are addressed in detail in Sect.  1.4 . 

  Open coding  starts as soon as the fi rst set of data has been generated. This coding 
process consists of two analytic, meaning-making procedures, (1) asking questions 
of the data and (2) constantly comparing incidents. The goal of this process is to 
conceptualize the data into a collection of codifi ed phenomena, or “substantive 
codes” that abstractly identify particular aspects of the empirical area study. 

 The fi eld notes, observations, or documents, etc. are “fractured” into identifi able 
fragments, or  incidents . These discrete parts, which may consist of a word or phrase, 
a complete sentence, or possibly a whole paragraph, are labeled or  coded  by asking 
 sensitizing questions  such as “What is going on here?” or “What are the actors 
doing?” in order to identify concepts that stand for particular incidents. 

 The researcher codes as many incidents as he or she can, using  constant  comparison   
(in addition to asking questions) to classify data on the basis of similarities and 
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 differences. Each newly identifi ed fragment is compared to those already coded. 
Similar phenomena are given the same code name and new names are developed for 
previously unidentifi ed aspects of the data. New incidents are also  compared to those 
previously coded as the same concept to check for confl icts in the conceptualization of 
the represented phenomenon. Similar codes are grouped together to form  categories  
that abstract properties common to the collected codes. In addition,  memos , written 
during the coding process, note the original data on which each code was based and 
record researcher thoughts about salient properties linked to the conceptualization of 
that particular piece of data. (See Chap.   2    , Sect. 2.5.3 for examples of open coding.)  

1.4      Memoing 

  Memos  are continually written during the on-going data collection and analysis 
cycles in order to record ideas and insights,  as they are triggered  by particular 
aspects of data, or by comparisons or “confl icts” in the developing line of thought. 
Memos provide “moment capture” (Glaser  1998 ), enabling the researcher to 
 concretize a fl eeting idea as it occurs. They are also “the running logs of analytic 
thinking” (Corbin and Strauss  2008 ). “Memos are not so much about specifi c inci-
dents or events, but about the conceptual ideas derived from these. It is the denoting 
of concepts and their relationships that moves the research from raw data to fi nd-
ings” (Corbin and Strauss  2008 , p. 123). 

 Throughout the research process, memos create an  audit trail  of the development 
of the analyst’s thinking and the direction of theoretical sampling. They provide 
transparency to the research process; from initial concepts identifi ed during open 
coding; through the growth of categories, their properties, dimensions, and relations 
that are generated during intermediate coding; to the fi nal integration of ideas into 
theory. (See Chap.   2    , Sects. 2.5 and 2.5.3, for examples of the type of information 
noted in her memos.) 

 Birks and Mills ( 2011 , p. 55) emphasize the importance of memo writing as a 
method for keeping “accountable for your actions and decisions as the researcher 
facilitating” the research process. Memos provide opportunities to note instances 
where personal bias enters the analytic process (Corbin and Strauss  2008 ). Such 
circumstances may arise when the researcher becomes aware of an inconsistency or 
incongruence between the participants’ and his or her interpretations of particular 
phenomena or events. Memoing about these contradictions brings the bias to the 
fore and promotes conceptualization that is more accurately grounded in the data. 

1.4.1     Writing Memos and Using Diagrams 

 Glaser ( 1998 ) advocates the use of unstructured memos. Writing in correct English 
or with proper grammar is not important; the researcher should feel free to express 
his or her ideas in whatever form is comfortable and promotes the outpouring of 
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ideas. A lack of restrictive rules and attention to form helps writers overcome any 
writer’s block that may impede this essential analytic process. 

 At the same time, there are organizational precepts that help researchers manage 
and retrieve the ever-growing number of memos that accumulate as analysis 
 progresses (Corbin and Strauss  2008 ). At the very least, the researcher should date 
each memo, create a heading, and indicate the document and raw data upon which 
the memo is based. It is also useful to include short quotes from an interview or seg-
ment of the original fi eld note to remind the researcher of the data that generated the 
idea behind the memo. These data can be used later to illustrate aspects of the 
grounded theory in the fi nal written product. 

 Besides memos, diagrams can also be used to support the on-going analysis 
(Corbin and Strauss  2008 ). Diagrams, which are visual, are naturally more abstract 
than raw data and, as such, they promote thinking at a conceptual, rather than at an 
empirical level. Diagrams are particularly useful in showing relationships between 
concepts. (See Chap.   2    , Figs. 2.3 and 2.4, for examples of diagrams used to display 
relations between categories.) 

 Glaser ( 1998 ), however, cautions researchers about an over-reliance on diagrams 
as a way to explicate grounded theory. While the diagram may visualize relation-
ships, it is in the write-up, or text, where the meaning of the relationship is made 
explicit. A diagram is “an aid to comprehending the meaning of the written theory. 
It is not a theory in and of itself” (p. 169).  

1.4.2     Using Computer Programs 

 Various software programs have been designed to help  manage  qualitative data – 
allowing the researcher to store, search for, retrieve, and organize research artifacts 
such as interview data, codes, categories, and memos. However, these programs 
should be regarded as tools that facilitate, rather than replace the researcher’s ana-
lytic thinking processes (Corbin and Strauss  2008 ; Birks and Mills  2011 ). It is the 
researcher that must decide how data are to be coded and creatively determine the 
meanings that emerge from the constant comparison of data to codes and 
categories. 

 In the third edition of  Basics of Qualitative Research  (Corbin and Strauss  2008 ), 
Corbin presents examples of data management and analysis that were generated 
using a particular computer program. These data and analyses are also available on- 
line to enable the reader to “work live” with the data and practice coding techniques. 
(See Chap.   2    , Sect. 2.5.3, for examples of computer-assisted coding using the same 
program.) 

 Computer programs also facilitate the creation of an audit trail to help keep track 
of the researcher’s analytic progress. The software makes it possible to organize, 
reorganize and diagram connections between codes and categories in many differ-
ent ways as theoretical sampling and constant comparison continue. Memos, linked 
to these actions, help trace the researcher’s reasoning during the continuous and 
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concurrent analytic and conceptualization processes. In addition, the software 
 program’s ability to quickly access memos, codes, and raw data greatly enhance the 
write-up phase of the research. The writer can easily call up particular incidents 
from the raw data to use as illustrations and access memos and diagrams that 
describe specifi c relationships among categories.   

1.5     Intermediate Coding and the Use of a Coding Paradigm 

 Since Glaser and Strauss fi rst wrote  The Discovery of Grounded Theory  ( 1967 ), 
these authors, as well as the next generation of grounded theory researchers, have 
more fully articulated, described, and refi ned the basic grounded theory methods 
(Birks and Mills  2011 ). While the essential stages and processes have remained 
constant, different authors have, in some instances, employed different names to 
identify similar methods or to distinguish particular techniques. In the following 
discussions that outline essential aspects of ground theory, variations in techniques 
and terminology will be noted to clarify similarities and differences among these 
different authors. 

  Intermediate coding  is the second coding phase. During this stage, coding 
becomes more focused as the researcher identifi es a particular analytic direction. 
Categories are integrated as relationships among categories and sub categories are 
identifi ed and the properties of categories become more fully developed. Data that 
were originally fractured into substantive codes are now put back together at a more 
abstract conceptual level in order to begin to synthesize and explain phenomena 
identifi ed in the data (Birks and Mills  2011 ). 

 Various authors recommend different methods to focus the researcher’s attention 
during this phase of coding. Glaser and Holton ( 2004 , para. 55), using the term, 
“selective coding,” suggest the researcher restrict coding comparisons to those “vari-
ables that relate to the core variable” in signifi cant ways that can lead to the develop-
ment of a grounded theory. Charmaz ( 2006 , p. 58) also emphasizes a more selective 
approach to coding at this stage. Her “focused coding” describes using those “initial 
codes [that] make the most analytic sense to categorize your data  incisively and com-
pletely.” Once such codes have been selected, both authors emphasize the use of 
constant comparison to develop signifi cant analytic categories and relations. 

 Strauss ( 1987 , p. 32) describes a technique of more focused coding that operates 
in conjunction with a particular  coding paradigm. Axial coding  “consists of intense 
analysis done around [the ‘axis’ of] one category at a time, in terms of the paradigm 
items (conditions, consequences, and so forth).” In contrast to the other procedures 
described above, the inclusion of a coding paradigm that directs the researcher’s ana-
lytic focus provides a more structured approach designed to develop analytic catego-
ries aligned explicitly within a particular social science perspective. While the term 
“axial coding” is used in Strauss and Corbin’s  1990  and 1998 texts, the third edition 
(Corbin and Strauss  2008 ) places decreased emphasis on using this label to identify 
the processes of intermediate coding directed by a particular coding paradigm. 
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1.5.1     Heuristic Concepts 

 In this section the nature of the kinds of questions that might be asked of the data 
and the types of interpretations drawn from comparisons of codes and categories are 
examined more closely by considering the role that  coding paradigms  or “heuristic 
concepts” play in “the interpretation, description and explanation of the empirical 
world under study” (Kelle  2005 , para. 31). A coding paradigm, while perhaps 
implicitly invoked during open coding, provides a particular theoretical perspective 
and set of heuristic concepts that structurally guide researchers as they begin to code 
for specifi c categories and identify relationships among categories. 

 As Kelle ( 2005 , para. 39) notes, a crucial characteristic of a particular set of 
heuristic concepts is that it has “limited empirical content.” That is, “heuristic cat-
egories cannot be used to construct empirically contentful propositions without 
additional information about empirical phenomena. This makes them rather useless 
in the context of [developing hypotheses in verifi cation studies], but it is their 
 strength in the context of exploratory, interpretative research ” (emphasis added). 
Importantly, the use of low empirical content heuristic concepts makes it more 
 diffi cult for a researcher to force data to fi t pre-specifi ed categories. The heuristic 
concepts, rather, provide “a theoretical axis or a skeleton” (Kelle  2005 , para. 40) 
around which substantive data are coded to create categories and grounded theory. 
Blumer ( 1969 , pp. 147–148; quoted in Clarke  2005 , p. 77) also notes the value of 
what he terms  sensitizing concepts  in framing the direction of analysis: “Whereas 
defi nitive concepts provide prescriptions of what to see, sensitizing concepts merely 
suggest directions along which to look.” At the same time, the researcher must also 
be aware that the structure that a particular heuristic “lens” provides may preclude 
the researcher from noticing other relevant phenomena. 

 Being able to identify for oneself an appropriate set of heuristic concepts may be 
problematic, however. Glaser ( 1998 ) recommends “reading vociferously” in other 
substantive areas within the professional domain of the research study in order to 
build  theoretical sensitivity  and accumulate a repertoire of  theoretical codes . Yet the 
novice researcher remains at a disadvantage and may need a more ready-made cod-
ing paradigm with an explicit structure and set of procedural rules to move 
beyond the initial steps of coding and category construction in order to build 
grounded theory (Birks and Mills  2011 ). (See Chap.   2    , Sect. 2.3 for her discussion 
on  theoretical sensitivity and the identifi cation of sensitizing concepts that were 
appropriate to her research question; also Sect. 2.5.3.)  

1.5.2     Coding for Process 

 This section uses the coding paradigm developed by Anselm Strauss and Juliet 
Corbin (Strauss and Corbin  1990 ,  1998 ; Corbin and Strauss  2008 ) to illustrate how 
a set of heuristic concepts, framed within a specifi c theoretical tradition, provides 
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analytic structure during intermediate coding. The example highlights the ways in 
which this structure uses a particular disciplined perspective to guide the construc-
tion of grounded theory. 

 Corbin and Strauss ( 2008 , pp. 98–100) focus their coding procedures, intended 
to investigate complex social behavior, around the theoretical construct of  process  – 
defi ned as “a sequence or a series of actions/interactions/emotions taken in response 
to situations or problems, or for the purpose of reaching a goal as persons attempt to 
carry out tasks, solve certain problems, or manage events in their lives.” This notion 
of process, when framed in terms of  relational  categories, also provides a heuristic 
coding device. That is, individuals (or groups, etc.)  respond , in a goal-oriented way, 
to particular contexts or events  with  actions, interactions, and/or emotions  that result  
in specifi c consequences. Thus, analyzing data for process is a way to “capture the 
dynamic quality of inter/action and emotions” (Corbin and Strauss  2008 , p. 98). 

 Additional heuristic concepts that identify and deal with complex social process 
are operationalized through the structure given in the Conditional/Consequential 
Matrix (Corbin and Strauss  2008 , pp. 93–95). The Matrix consists of a set of con-
centric circles, each representing a level of social interaction, moving from the 
outer-most macro level (representing international or global conditions) through 
intermediate levels (such as organizational or institutional) to the micro level where 
the action/interaction/emotional responses are located. Conditions at any level may 
affect participants or organizations at any other level, moving both inwards and 
outwards across the Matrix. Importantly, the specifi c entities that constitute the con-
ditions and consequences at each level of the Matrix are not pre-determined, but 
must “emerge” from the area of investigation. In addition, the levels considered for 
analysis are determined by the “type and scope of the phenomenon being studied” 
(p. 94). Thus, while providing structure, the Matrix and its constituting concepts 
focus analysis within the particular paradigm in ways that allow the researcher to 
construct empirically grounded theory that explains the phenomena under study. 

 To actualize the coding paradigm, Corbin and Strauss ( 2008 , p. 10) suggest some 
of the following prompts when analyzing for process; “What is going on here? What 
are the problems or situations as defi ned by participants? What are the structural 
conditions that give rise to those situations? How are persons responding to these 
though inter/action and emotional response?” Answers to these questions focus the 
direction of intermediate coding. Particular incidents or pre-coded  concepts become 
abstracted and further categorized as conditions, others as consequences, etc., and 
the specifi city of the categorizations refl ects the particular  meaning  that participants 
assign to experiences (either reported on or observed) in the substantive area. 

 Although the procedural steps outlined above appear to be highly prescriptive, 
Corbin and Strauss ( 2008 ) stress that they are not intended to be “a recipe for doing 
qualitative research.” Individual analysts must always adapt particular methods to fi t 
the realities of their own work. Equally important, a researcher should carefully 
consider how any given coding paradigm aligns with his or her research goals before 
considering its application as a viable research technique. (See Chap.   2    , Sect. 2.5.2, 
for her description of the creation of a research-specifi c coding paradigm, and Sects. 
2.5.2 and 2.5.3 for examples of “axial coding.”)   
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1.6     Delimiting the Study 

 As ongoing data collection, and open and intermediate coding progress in parallel, 
the researcher begins to identify key categories, deepen descriptions of their proper-
ties and identify relations among these categories. Instead of continuing to collect 
 all  data available in the fi eld of study, the researcher can now begin to purposively 
seek out only those data that have the potential to further inform the development of 
these salient categories and their properties. The researcher begins to direct and 
delimit the work through  theoretical sampling  and the development of a  core 
 category  until the coding process yields category  saturation.  

1.6.1     Theoretical Sampling and Saturation 

 Having a research purpose of theory generation, rather than that of theory verifi ca-
tion or rich description, establishes a different set of criteria for the type of data that 
are collected. It is not necessary to collect  all  available data, or those that are con-
sidered  representative  of a general population in terms of certain properties. Rather, 
the initial groups or situations from which data are to be collected are chosen, not 
on the basis of existing theory, but because of their potential to generate theory 
about the substantive area under study. Once categories begin to develop through 
ongoing data generation and analysis, further data collection, through  theoretical 
sampling , is directed by a search to learn more about these categories. (Chapter   2    , 
Sect. 2.4 uses the term “chronological parallelism” to describe this ongoing, con-
current process of data collection, analysis and the development of theory.) 

 Theoretical sampling can be directed by questions such as, “ What  groups or 
subgroups does one turn to  next  in data collection? And for  what  theoretical pur-
pose?” (Glaser and Strauss  1967 , p. 47, their emphasis). Corbin and Strauss ( 2008 ) 
characterize theoretical sampling as “concept driven.” For theory building, further 
data collection is not about persons; decisions of what and where to sample next 
relate to  concepts . (See Chap.   2    , Sect. 2.4, for her criteria for theoretical 
sampling.) 

 On-going, simultaneous data collection, coding and category analysis lead to 
refi nements in existing categories and their properties and to further formulation of 
the emerging theory. This process, in turn, informs the direction for further theoreti-
cal sampling. “Data collection never gets too far ahead of analysis because … the 
questions to be asked in the next interview or observation are based on what was 
discovered during the previous analysis” (Corbin and Strauss  2008 , p. 145). 

 Theoretical sampling should also seek for  variability  in data. Comparisons for 
similarities and differences across sites, as well as persons, promote density and 
depth in a concept’s dimensions, properties, and its relations to other concepts. 
Glaser and Strauss ( 1967 ) suggest explicitly sampling for different kinds of data or 
using different techniques of data collection, creating  slices of data . The variety 
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offered by different slices of data provides analysts “different views or vantage 
points from which to understand a category and develop its properties” (p. 65). 

 Qualitative data may be collected from many different sources. Field evidence 
may, for example, consist of observations or interviews. Another fruitful source is 
written material and documentary data, such as letters, biographies and autobiogra-
phies, speeches, etc. The library provides an excellent source of documentary mate-
rial and may be theoretically sampled for concepts derived from analysis, just as 
with any other research site. Secondary analysis can also be carried out on  interviews 
or fi eld notes previously collected by another researcher. Additionally, theoretical 
sampling may point the researcher back to previously collected and analyzed data 
in order to reexamine old data in light of further insights developed through later 
analyses. 

 Theoretical sampling ends when categories have reached  saturation . At this 
point, no new data will yield additional useful information about the properties of 
any of the categories. Evidence of saturation of particular categories is also indi-
cated by the presence of “interchangeable indicators” that refer to particular inci-
dents all coded for the same category (Glaser  1998 ). In such cases, the particular 
evidence may be changed without affecting the conceptualization of the category.  

1.6.2     Core Category 

 As theoretical sampling and analysis continue, one or more of the developing 
 categories will emerge as a key representative of important aspects of the phenom-
ena under study. These categories form the nucleus of the emerging theory, guide 
further data collection, and become the most saturated categories under additional 
theoretical sampling. At this point a  core category  is identifi ed that “appears to have 
the greatest explanatory relevance and highest potential for linking all the other 
categories together. … [and to] convey theoretically what the research is all about” 
(Corbin and Strauss  2008 , p. 104). (See Chap.   2    , Sect. 2.5.4 for an example of core 
category selection.)   

1.7     Theoretical Integration 

 Grounded theory does not consist of a set of dense descriptions of the phenomena 
under study, nor is it merely a list of well-developed categories or fi ndings. “It is the 
overall unifying explanatory scheme that raises fi ndings to the level of theory” 
(Corbin and Strauss  2008 , p. 104). The scheme provides the “cohesiveness of 
[grounded] theory” in terms of an “overarching explanatory concept … that, taken 
together with other concepts, explains the what, how, when, where, and why of 
something” (ibid., p. 55). 
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 The fi nal phase of analysis that leads to the development of grounded theory 
involves processes of theoretical integration. Central to these processes are the iden-
tifi cation of a core category, the achievement of theoretical saturation of this and 
other important categories, and the set of analytic memos that have been continu-
ously generated throughout all phases of the research (Birks and Mills  2011 ). 
Strategies that can be used to facilitate theoretical integration include using theoreti-
cal codes (Glaser  1998 ), selective coding (Strauss and Corbin  1990 ), writing a story 
line (Birks and Mills  2011 ; Strauss and Corbin  1990 ), and sorting memos (Glaser 
 1998 ; Corbin and Strauss  2008 ). These techniques help the researcher identify and 
articulate the nature of the abstract relationships that connect the core category with 
other important categories; and, ultimately, integrate the categories and relationships 
into a coherent conceptual explanation of a particular aspect of the substantive area 
of study. It is time now to integrate the pieces. “You have fractured a story descrip-
tively and are now putting it back together conceptually” (Glaser  1998 , p. 194). 

 Glaser ( 1998 ) describes the fi nal theory-building phase in terms of the identifi ca-
tion of “theoretical codes.” In contrast to “substantive codes,” which consist of the 
categories and properties abstracted from the substantive data, theoretical codes 
“conceptualize how the substantive codes may relate to each other as hypotheses to 
be integrated into the theory” (Glaser and Holton  2004 ). Theoretical codes are for-
mal concepts drawn from existing theory related to or tangential to the researcher’s 
fi eld of study. To be appropriate for use in the integrative phase of grounded theory- 
building, these theoretical codes must be at an appropriate low-content level, and 
must earn their way into the analysis as having “emerged” from the data “as much 
as substantive codes” (Glaser  1998 ). 

 Strauss and Corbin ( 1990 ) use the term “selective coding” to identify a set of 
processes leading to theoretical integration. Central to these processes are the iden-
tifi cation of a core category and the orderly development of relationships to other 
categories. (See Chap.   2    , Sect. 2.5.4, for an example of selective coding leading to 
the identifi cation of a core category.) 

 Corbin and Strauss ( 2008 ), while no longer using the term “selective coding,” 
continue to place the selection of a core category within the theory building phase 
of the research. As with their earlier text, they also suggest that authors write a story 
line as a way to start thinking about the integration process. This story usually con-
sists of a few sentences that describe “what the research is all about.” The authors 
suggest the question, “what seems to be going on here?” as a useful prompt to facili-
tate the fl ow of ideas (Corbin and Strauss  2008 , p. 107). 

1.7.1     Sorting Memos 

 The collection of memos that has been accumulating since the beginning phase of 
open coding provides an important resource for theoretical integration. While early 
memos may be merely informal descriptions, later memos will refl ect a more mature 
perspective, “generally becoming more summary-like, abstract, and integrative” 
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(Corbin and Strauss  2008 , p. 108). Thus, when it is time to begin writing up the 
theory, the “discussions in the memos” provide a summarization and suggest “major 
themes” for the writing process (Glaser and Strauss  1967 ). 

 The process of  sorting memos  can facilitate the organization and structuring of 
the fi nal integrated theory. Glaser ( 1998 , p. 189) describes this process as a form of 
comparative analysis in which memos are sorted into piles on the basis of how they 
relate “theoretically and substantively to other memos” (p. 189). As integration 
begins to emerge, it may take several iterations of sorting, comparing, and resorting 
before all the memos fi t into an emergent theory. Corbin and Strauss ( 2008 , p. 108) 
note that, if memos have been written within a computer program, they can be 
retrieved and sorted electronically in many different ways “until a logical theoretical 
structure is constructed.” The sorted memo piles then form the outline for the fi nal 
written product, where piles may represent separate chapters, sections of a chapter, 
or paragraphs of a book or paper.  

1.7.2     Validating the Theory 

 At the end of the research process, it is important to validate the emergent grounded 
theory. Corbin and Strauss ( 2008 , p. 113) note that, while “theory is constructed 
from data, … by the time of integration, it represents an abstract rendition” of these 
data. Therefore, the researcher must be sure to compare this “abstraction” against 
the raw data to ensure it fi ts and is able “to explain most of the cases.” Alternatively, 
the researcher may ask participants in the fi eld to read what has been written and 
give their perceptions of the fi t. 

 Glaser ( 1998 , pp. 18–19) defi nes the criteria for judging grounded theory in 
terms of fi t, workability, relevance, and modifi ability.  Fit  addresses the need for a 
concept to “adequately express the pattern in the data” for which it was created. 
 Workability  refers to the theory’s ability to “suffi ciently account for how the main 
concern of the participants in a substantive area is continually resolved.”  Relevance  
indicates that the theory does indeed deal “with the main concern of the participants 
involved.”  Modifi ability  refl ects the fact that grounded theory is “never right or 
wrong;” it has the ability to be continually modifi ed as new data are introduced. 
“New data never provides a disproof, just an analytic challenge.”   

1.8      Interpretive Frameworks 

 This section briefl y examines the variations in essential grounded theory methods 
that have been developed over two generations of active researchers in terms of how 
these variations refl ect different interpretative frameworks or sets of philosophical 
assumptions. Such an examination is informative for the beginning researcher since 
“the methodology subscribed to infl uences the analysis of the data” (Birks and Mills 
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 2011 , p. 4). Being able to ground a study within a particular theoretical framework 
also enables the researcher to justify claims about the nature of the data, articulate 
his or her position as a researcher in the fi eld, and defend the legitimacy of the 
knowledge produced in the form of grounded theory (Bryant  2009 ). 

 To begin at the beginning, the description of grounded theory research, as laid 
out by Glaser and Strauss ( 1967 ), in  The Discovery of Grounded Theory  should be 
considered as a set of  methods  rather than as a  methodology  based on a particular 
philosophical or theoretical perspective. That is, while the book describes the 
 procedures used to carry out the research, the authors did not explicitly situate these 
processes within a set of principles that determine the ways in which the methods 
are to be used and interpreted (Bryant  2009 ). Questions of ontology (the study of the 
nature of reality) and epistemology (the nature of justifi able knowledge) were not 
openly addressed. 

 Glaser and Strauss conducted their investigation within the prevailing post- 
positive research paradigm, at a time when the predominate perspective in qualita-
tive research was that, while reality was assumed to exist, it could only be imperfectly 
perceived, and that the researcher was expected to be a passive, objective observer. 
Refl ecting this perspective, Glaser and Strauss ( 1967 ) viewed data as something to 
be “collected,” stressed the importance of open-mindedness in not engaging with 
relevant literature before entering the fi eld, and characterized concepts and theory 
as being “discovered” or as “emerging” from the data. 

 Since then, the second generation of grounded theorists has endeavored to 
 position the essential methods of grounded theory within the more recent post- 
modern turn. For example, Charmaz ( 2006 ) bases her version of grounded theory 
research within the constructivist perspective, which takes a relativist position. 
That is, reality is locally constructed and the researcher is seen as an active partici-
pant in the joint construction of data with those in the research site. Analyses are 
viewed “as interpretative renderings not as objective reports or the only viewpoint 
on the topic” (Charmaz  2009 , p. 131). 

 Glaser, however, has continued in his writings to avoid espousing a particular 
theoretical paradigm in the belief that doing so restricts the broad potential of 
grounded theory. His use of a language of “emergence” in the processes of data col-
lection and analysis has led others to situate him “as a critical realist researching 
within the post-positive paradigm” (Birks and Mills  2011 , p. 5). 

1.8.1     Pragmatism 

 Bryant ( 2009 ), noting the lack of theoretical grounding in the early writings of 
Glaser and Strauss, has proposed re-interpreting their methods within the pragma-
tist tradition, particularly that expressed by the contemporary pragmatist John 
Dewey (1859–1952) and the neopragmatist Richard Rorty (1931–2007). By doing 
so, “clear and concise criteria for developing and evaluating” the research tech-
niques can be addressed (ibid., para. 60), including epistemological issues, such as 
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“where codes, categories, concepts and theories come from, and the processes 
involved in their derivation and articulation” (ibid., para. 68). 

 For the pragmatist, knowledge is viewed as instrumental; a “tool” that is judged 
not in terms of “its universal validity, but [in] its usefulness in a specifi c context” 
(Bryant  2009 , para. 72). Thus, grounded theory that has  fi t ,  grab , or  works  can be 
seen as meeting the pragmatist’s criteria of a systematically generated, explanatory 
hypothesis. Theories are also regarded as provisional and can be altered upon fur-
ther inquiry (Hookway  2008 ). 

 Pragmatists consider that, “our ability to think about external things and to 
steadily improve our understanding of them rests upon our experience” (Hookway 
 2008 , p. 16). This view supports the idea of the grounded theory researcher as being 
an active participant, rather than an objective receiver of external stimuli. In addi-
tion, such a perspective supports the notion of  theoretical sensitivity , or the way in 
which we “see the data.” 

 The pragmatist tradition is especially appealing for grounded theory methods 
employed in practice-led disciplines in its emphasis on the relationship between the-
ory and practice. Because theories are judged in terms of their utility within specifi c 
contexts, they have direct relevance to those affected by the situations under study. 
Here, Glaser’s ( 1998 ) criterion of  workability  and  relevance  are particularly apt.  

1.8.2     Corbin and Strauss Circa 2008: 
Pragmatism and Symbolic Interactionism 

 Corbin and Strauss did not locate their grounded theory procedures within a particu-
lar interpretative framework until the publication of the third edition of  The Basics 
of Qualitative Research . Corbin and Strauss ( 2008 ) note that while much of the 
philosophical position described in the Introduction to this book refl ects the position 
taken by Strauss in his book  Continual Permutations of Action  ( 1993 ), in the time 
that has passed since then, Corbin has also left her stamp on this exposition. 

 The basic assumptions of Corbin and Strauss’s methodological foundation are 
derived from pragmatism and symbolic interactionism. Symbolic interactionism, as 
articulated by Blumer, states that “people act toward things based on the meaning 
those things have for them, and these meanings are derived from social interaction 
and modifi ed through interpretation” (Society for the Study of Symbolic Interaction 
 2011 ). Further foundation for Corbin and Strauss’s ( 2008 , p. 2) perspective is drawn 
from Dewey’s and Mead’s assumption that “knowledge is created through action 
and interaction.” Action and interaction also occur within social complexity. As 
Dewey states, “Neither inquiry nor the most abstractly formal set of symbols can 
escape from the cultural matrix in which they live, move and have their being” (as 
cited by Corbin and Strauss  2008 , p. 3). 

 Corbin also recognizes the infl uences on her own theoretical perspective of con-
temporary feminists, constructivists and postmodernists; in particular, the relativist 
position of constructivists in which meaning and knowledge are co-constructed by 
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the researcher and the participants. Related to feminist thinking, Corbin notes that 
“we must be self-refl exive about how we infl uence the research process and, in turn, 
how it infl uences us” (Corbin and Strauss  2008 , p. 11).  

1.8.3     Constructivist Grounded Theory 

 Methodologically, constructivist grounded theory takes the position that  individuals’ 
perceptions of reality and the meanings they ascribe to their experiences are con-
structed through human activity within particular contexts and social environments. 
This perspective affects the nature of the relationship between the researcher and the 
participants in his or her study, how data are perceived and the methods by which 
they are generated, and emphasizes the importance of a self-refl exive stance for the 
researcher throughout the research process. 

 The interview is considered an important method in constructivist research. It is 
a situation in which data are not “collected” but “generated,” and facts are not 
 “discovered” but, rather, meaning is co-constructed between the researcher and the 
informant. “Interviews are not neutral, context-free tools; rather, they provide a site 
for the interplay between two people that leads to data that is negotiated and contex-
tual” (Birks and Mills  2011 , p. 56). 

 It is impossible for the researcher to maintain the role of an unbiased, objective 
observer in any part of the research process, not just during data generation. The 
researcher’s biases and subjectivity enter into all phases of analysis. Refl exive 
memoing can help the researcher understand “the multiple perspectives of multiple 
participants” including that of him or herself (Charmaz  2009 , p. 132). Such self- 
refl ection is necessary since we are “part of our constructed theory and this theory 
refl ects the vantage points inherent in our varied experiences, whether or not we are 
aware of them” (Charmaz  2006 , p. 149).  

1.8.4     Situational Analysis 

 The variations in grounded theory methods presented above focus on social science 
research that investigates processes involving “‘the knowing subject’ as centered 
decision maker” (Clarke  2005 , p. xxix). However, such analytic approaches do not 
fully meet the needs of mathematics education research, in which  mathematics , the 
subject matter, should be an integral part of any research study.  Situational analysis , 
developed by Adele Clarke ( 2005 ), offers a promising perspective and set of ana-
lytic tools for researching the messiness and complexity of mathematics classroom 
teaching and learning, in relation to a particular topic of study. 

 Adele Clarke (a doctoral student under Anselm Strauss) developed, beginning in 
the mid 1990s, her methodological approach as a way to extend and go beyond the 
analytic heuristics of traditional grounded theory (Clarke  2005 ). Situational  analysis 
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refl ects the postmodern assumptions that all knowledge is socially and culturally 
situated and that situations are complex, messy, and interrelated. Further, inquiry is 
directed towards examining the “relations of knowledges to the sites of their 
 production and consumption practices” (Clarke  2005 , pp. xxxv, xxxiv), and that 
there can be “simultaneous ‘truths’ of multiple knowledges” (p. 19). Her methodol-
ogy draws on social interactionism and constructionism, and also incorporates 
aspects of Foucault’s notions of discursive fi elds, and ideas developed in action-
network theory. 

 Situational analysis recognizes “the analytic importance of the nonhuman” 
(Clarke  2005 , p. xxxiv). Within situations, nonhuman and human elements are 
involved in processes of “co-construction and co-constitution,” and the nonhuman 
elements “structurally condition the interactions … through their specifi c material 
properties and requirements” (Clarke  2009 , p. 203). 

 Foucault’s emphasis on “how discourses are produced and how we are consti-
tuted through them” forms an integral part of Clarke’s ( 2005 , p. 147) approach. She 
draws on Foucault’s concept of “discursive practice,” which describes processes of 
action and change in terms of how “ways of framing and representing linguistic 
conventions of meanings and habits of usage together constitute specifi c discursive 
fi elds” (p. 54). Discourses also include disciplinary elements that, as formulated by 
Foucault, represent a “series of organizing practices that produce the rules through 
which individuals … make themselves up as subjects” (p. 56). 

 Clark’s methodology is designed to address “the situation” as the basic unit of 
analysis and to consider the complexity inherent in such a unit.

  The fundamental assumptions are that everything  in  the situation  both constitutes and 
affects  most everything else in the situation in some way(s). … People and things, humans 
and nonhumans, fi elds of practice, discourses, disciplinary and other regimes/formations, 
symbols, technologies, controversies, organizations and institutions–each and all can be 
present and mutually consequential (Clarke  2009 , pp. 209–210). 

   As a way to “empirically” construct the situation of inquiry from “multiple 
angles of perception” and understand “its elements and their relations,” Clarke 
( 2005 , pp. xxii, 72) developed a form of “cartographic situational analysis,” or set 
of mapping strategies. Briefl y, the three types of maps and analyses are (p. 86):

    1.     Situational maps  as strategies for articulating the elements in the situation and 
examining relations among them   

   2.     Social worlds/arenas maps  as cartographies of collective commitments,  relations, 
and sites of action   

   3.     Positional maps  as simplifi cation strategies for plotting positions articulated and 
not articulated in discourses.    

  Situational and relational maps should not be considered theory as such. Rather 
they provide “a systematic, coherent, and potentially provocative way to enter and 
memo the considerable complexities of a project” (Clarke  2005 , p. 103). These 
maps spark deeper analyses, raising questions to be addressed and suggesting areas 
for further theoretical sampling. Over the course of the study, the researcher may 

1 Grounded Theory Methods



20

construct many different situational maps and consider different sets of relations as 
the focus of the study is identifi ed and particular elements are considered for closer 
scrutiny.   

1.9     End Comment 

 The information presented in this chapter represents a cursory introduction to 
grounded theory methods. It is recommended that readers interested in using this 
approach to research fi nd and work with an experienced grounded theory mentor. 
However, for those in a “minus-mentoring” situation (Glaser  1998 ), a good place to 
start is to deeply mine the original sources from which the material in this chapter 
was derived. Many of the authors cited, such as Clarke ( 2005 ), Charmaz ( 2006 ), 
Corbin and Strauss ( 2008 ), and Birks and Mills ( 2011 ) include extensive examples 
from actual grounded theory studies to illustrate particular techniques. See also 
Chap.   2     by Maike Vollsted in this volume.     
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    Chapter 2   
 To See the Wood for the Trees: 
The  Development of Theory   from Empirical 
 Interview    Data   Using  Grounded Theory   

             Maike     Vollstedt    

    Abstract     The way from empirical  interview   data  to the  development of theory  is 
illustrated with reference to an intercultural study. This study was located in the fi eld 
of mathematics education and focused on the development of a  theory  of  personal 
meaning . Starting from only a rough understanding of what personal  meaning  might 
be, interviews were conducted with students from lower secondary level in Germany 
and Hong Kong. Due to the setting of the study in two cultures, a pragmatic  interpreta-
tion  of  theoretical sampling  had to be taken so that as much data as possible was 
 collected to choose from throughout the  analytical process . Data  analysis  followed 
 grounded theory  according to Strauss and Corbin (Basics of qualitative research: 
Grounded theory procedures and techniques . Newbury Park: Sage, Grounded theory: 
Grundlagen qualitativer Sozialforschung [Basics of qualitative research: Grounded 
theory procedures and techniques]. Weinheim: Beltz; see also Chap.   1    ). Therefore, 
different types of  codes  (in-vivo, empirically developed, and conceptual) as well as 
different types of coding ( open ,  axial , and selected) were the result of constant 
  comparison  and writing  memos . By comparing codes and using a  coding paradigm , 
 categories  and concepts were developed so that the theory of personal meaning started 
to evolve from the data. The results of the analyzing  process  were an  empirically 
grounded  theory of personal meaning consisting of 17 different kinds of personal 
meaning on the one hand and an underlying theoretical framework that describes the 
surrounding conditions of the  construction  of personal meaning on the other hand.  

  Keywords     Grounded theory   •   Personal meaning  

     In the previous chapter, Teppo gives an introduction to  grounded theory   and its 
development into different specifi cations of the grounded  theory    methods  . In the 
fi rst section she especially focuses on the four different lines of development of the 
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 theory   of grounded theory in the different schools following the two founders 
Strauss and Glaser respectively. The prevalent form of grounded theory used in 
Germany is the one elaborated by Strauss and his disciple Corbin as presented in 
their 1990 book  Basics of Qualitative Research . Hence, I also followed their 
approach in my study so, accordingly, this article provides an example of the appli-
cation of grounded theory to mathematics educational research following Strauss 
and Corbin ( 1990 ). As I actually worked with the German translation from 1996 of 
their 1990 book, I will always give both references throughout this text. 

 The empirical  interview   study presented here was carried out in Germany and 
Hong Kong (see Vollstedt  2011b ). The aim was to fi nd out and describe what is 
personally  meaningful   for the students when they learn mathematics or engage in 
mathematical problems in a school context and, thus, develop a  theory   of personal 
 meaning   (German:  Sinnkonstruktion ). The resulting  theory   about personal meaning 
was supposed to be laid out by different kinds of personal meaning. In the  process   
of  data    analysis  , I followed  grounded theory    methods   according to Strauss and 
Corbin ( 1990 ,  1996 ). Hence, I also adopted their guidelines for the  research process   
as well as their terminology. 

 When starting an empirical ( interview  ) study,  data   often look very confusing and 
seemingly unrelated. One usually cannot see the wood for the trees at the beginning 
of  data analysis  . Therefore, we need a tool to detect a structure in the data that can 
be further worked out. Following  grounded theory   is a good possibility to fi nally see 
the wood for the trees—i.e. to develop an  empirically grounded    theory  —as it com-
bines  methodological   as well as methodical aspects (see Chap.   1    ) that provide 
guidelines throughout the  research process  . 

 This article may in some places diverge from Teppo’s (see Chap.   1    ) description 
and terminology as she gives a review of the different streams of  grounded theory   in 
its different seminal forms. In contrast, I concentrate on one specifi c line of grounded 
 theory  . Nonetheless, it is recommended to read this illustrative chapter of the part 
alongside the previous chapter of this book as I will often draw back on the  method-
ological   basis laid out by Teppo. 

2.1     Background and Focus of the Study 

 The study presented here was embedded in the Graduate Research Group on 
Educational Experience and Learner Development (German:  Bildungsgang-
forschung ) at the University of Hamburg, fi nanced by the German Research 
Foundation DFG. The group’s research focused on the question how children, 
 adolescents and young adults act in situations of learning and instruction, how they 
interpret their learning tasks, and what can be done to encourage their educational 
development. Hence, in a school context, research on Educational Experience and 
Learner Development is primarily (empirical) research in teaching and instruction. 
The emphasis is placed on the perspective of the learners and their development. At 
the time I was member of the Graduate Research Group, we were especially investi-
gating the role of  meaning   for learning and educational development. 
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 Vinner ( 2007 , p. 6) points out that humans have a “need for  meaning  ” and that 
meaningful life and meaningful learning might have the same origin although they 
seem to be different  concepts  . If meaningful learning is a special case of “man’s 
search for meaning” (ibid.), this specifi c human attitude does not disappear before 
entering the classroom. Meaning is also sought inside the classroom when students 
engage in learning and dealing with subject contents. Therefore, the question of 
meaning is posed time and again by students when they are learning mathematics. 
The demand for meaning in (mathematics) education has been detected for many 
years. Hence, meaningful learning has been identifi ed as one of the major goals of 
education (ibid.). Consequently, one of the challenges posed also—if not espe-
cially—for mathematics education is to fi nd convincing answers to the questions of 
meaning. In addition, if the aim is to make the learning of mathematics meaningful 
for the students, we need to ask what is meaningful to them rather than to impose 
some kind of meaning on them, which might be meaningful from a normative per-
spective but does not prove to be personally  meaningful  . 

 There is no commonly accepted  interpretation   of the term   meaning    in the fi eld 
of mathematics education. The diversity of  concepts   is due to a mixture of philo-
sophical and non-philosophical interpretations as the collection of articles of the 
BACOMET-group shows (Kilpatrick et al.  2005 ). Howson ( 2005 , p. 18) convinc-
ingly distinguishes between two different aspects of meaning, “namely, those 
relating to  relevance   and personal signifi cance (e.g., ‘What is the point of this for 
me?’) and those referring to the objective sense intended (i.e., signifi cation and 
referents)”. Hence, “[e]ven if students have  constructed   a certain meaning of a 
concept, that concept may still not yet be ‘meaningful’ for him or her in the sense 
of relevance to his/her life in general” (Kilpatrick et al.  2005 , p. 14). Here, the 
mathematical meaning is obviously not interchangeable with the philosophical 
kind of meaning the student relates to his/her life. 

 As my study was embedded in the Graduate Research Group, I focused on the 
student’s perspective. I therefore concentrated on Howson’s fi rst aspect of  meaning   
and asked for the kinds of meaning that relate to the individual’s  relevance   in the con-
text of learning mathematics. To emphasize the focus of the learner’s perspective over 
the, as Howson terms it, objective sense, I picked the term “ personal meaning  ” instead 
of “sense-making” to denote the  concept  . By doing so I am also aware that subject-
inherent sense-making sometimes also may be personally meaningful for the students. 
Accordingly, I did not look at what might be meaningful from a normative or domain-
specifi c perspective, but—on the contrary—I investigated the aspects the students 
judge to be meaningful for them. As Kilpatrick, Hoyles and Skovsmose pointed out 
(see above), these do not necessarily have to (but may) be the same.  

2.2     Realization of the Study 

 At the beginning of a study following  grounded theory  , there is no completed  theory   
but—on the contrary—an  open   fi eld of study whose  relevant   aspects become clearer 
and clearer throughout the  research process  . This was similar in my study. Prior to 
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it, there was neither a developed theory about what  personal meaning   in a school 
context is, nor any empirical results about how personal  meaning   is  constructed   in a 
school context, nor any different kinds or types of personal meaning. The fi eld of 
research was untilled except for a very rough understanding of personal meaning as 
described above. Therefore, the decision for reconstructive  methods   was reason-
able—especially as the concerns of reconstructive studies are to understand a cer-
tain  phenomenon   better and to generate new theory that is  empirically grounded   
(Jungwirth  2003 ). 

 To get a clearer glance at what is  meaningful   for the students in their learning 
processes, I conducted my study in two different learning cultures, Germany and 
Hong Kong. This decision offered the possibility of getting a sharper view on my 
own learning culture by being contrasted with a different setting I was not acquainted 
with. Stigler and Perry ( 1988 , p. 199) describe this with respect to teaching prac-
tices as follows:

  Cross cultural  comparison   […] leads researchers and educators to a more explicit under-
standing of their own implicit theories about how children learn mathematics. Without 
comparison, we tend not to question our own traditional teaching practices and we may not 
even be aware of the choices we have made in  constructing   the educational  process  . 

   Similar to the teaching practices, we do not question our own beliefs and about 
teaching and learning when we do not refl ect them against the background of 
another culture. Looking at another teaching and learning culture, thus, offers the 
possibility to refl ect aspects that have been taken for granted beforehand and so to 
get a clearer picture of one’s own culture, too. Hence, conducting a comparative 
study in two different cultures gives us a deeper understanding of our own teaching 
and learning culture (Jablonka  2006 ; Kaiser et al.  2006 ). Accordingly, it is a  meth-
odological   tool to see the characteristics of both cultures more clearly. My study 
was conducted in Germany and Hong Kong being representatives of the Western 
and the Confucian Heritage Culture. 1  

 One aim of the study was to develop a  theory   of  personal meaning   from empiri-
cal  interview    data  . The  theory   is elaborated by means of the  reconstruction   of differ-
ent kinds of personal  meaning   in the context of academic learning of mathematics. 

 The study is based on 34 guided interviews conducted in Germany and Hong 
Kong with students from lower secondary level. At the time they were interviewed, 
the students were 15 or 16 years old respectively. Seventeen students from each 
country participated in the study; all attended the highest school type in the respec-
tive educational system. In Hong Kong, I collaborated with schools that use English 
as medium of instruction. It was, thus, possible to conduct the interviews in English. 
The guided interviews lasted for about 35–45 min and began with a sequence of 
 stimulated recall   (Gass and Mackey  2000 ). This means that the students watched a 
fi ve- to ten-minute video sequence of the last lesson they attended. Their task was 

1   I also investigated the role of the students’ cultural background for the construction  of  personal mean-
ing  by comparing the results of the students from Germany and Hong Kong. As this part of the 
project is not related to the application of grounded theory , it will not be reported in this chapter in 
detail (for further information see Vollstedt  2011b ). 
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to refl ect on and verbalize the thoughts they had during the lesson. The subsequent 
interviews then tackled various topics that were assumed to be related to our under-
standing of  personal meaning   (see below). This understanding was at that time quite 
broad and not yet focused. The intention was to come as close as possible to 
the aspects related to learning mathematics which are personally  meaningful   for 
the  students in a school context. Students were for instance asked about their asso-
ciations of the words  mathematics  and  mathematics lessons  and about the character-
istics of a good lesson. They were interrogated about their beliefs with relation to 
mathematics, mathematics lessons and their learning of mathematics as well as 
about their feelings, their learning strategies, their goals etc. In addition, they were 
asked about their preferred learning conditions and the reasons why they learn 
mathematics, whether they see a relation between mathematics and their lives, and 
whether they might need mathematics for their dream job. All these questions were 
supposed to give information about aspects that might be  relevant   for the  construc-
tion   of personal meaning. 

 The decision to  analyze   the  data   in a  coding    process   is made for  methodological   
reasons as well as for reasons of content. From the methodological perspective, cod-
ing is a core element for the development of a  theory   which is grounded in empirical 
data. To break up and to continuously  compare   the data is equally constitutional for 
the development of a  grounded theory   as well as for the development of codes 
throughout the  analytical process  . Thus, relations between  phenomena   can be 
detected in the data; phenomena can be distinguished and sharpened. Thereby, the 
aim of this comparative analysis is to use descriptive  categories   to come to analyti-
cal  concepts   so that the relations between phenomena can be explored and clarifi ed 
(Tiefel  2005 ; see Chap.   1    ). 

 Additionally, in my study, there was also a content argument for the  coding    anal-
ysis   as  personal meaning   can be understood as an individual psychological  con-
struct  . It can be revealed by character traits and individual attitudes from which one 
can draw conclusions on the kinds of personal  meaning   preferred by the interviewed 
students. Thereby, it is of no importance at which time in the  interview   the utterance 
was made as long as the incidents mentioned were considered to be  relevant   for the 
development of the  theory  . Therefore, the sequentiality of the interviews can be 
neglected so that I chose a coding procedure instead of a sequential analysis  method   
for this study. Coding thereby is characterized as a  process   of continuous  compari-
son   of  phenomena  , codes and  categories   with the aim of reaching analytical  con-
cepts   which explore and clarify relationships between phenomena via descriptive 
categories (Tiefel  2005 ; see Chap.   1    ). 

 As the  data   of this study were collected to develop an  empirically grounded   
 theory  , I decided to use  grounded theory   following Strauss and Corbin ( 1990 , 
 1996 ). I chose their approach because they offer the most concrete guide to the 
grounded theory  method   that was available in Germany at the time the study 
was carried out. The authors point out that their outline of this method is not to 
be adhered to rigidly but it can be used rather as guidance for the  research 
 process   (ibid.). Yet, this may not be understood as the permission for undi-
rected  interpretations  . The guidelines given are more than just an enumeration 
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of recommendations as they mark some operations as obligatory. A  coding   
 procedure and the writing of  analytical memo  s for instance are among these 
(Strauss  1987 ; Strübing  2004 ; see also Chap.   1    ). 

 The following passages give a more detailed introduction to the different deci-
sions made throughout the  research process   with concrete examples from my study. 
The main focus thereby lies on the different ways of  coding  .  

2.3     Theoretical Sensitivity and  Sensitizing Concept  s 

 In a study following  grounded theory  , there are no  hypotheses   to be tested nor is there 
a fully developed  theory   of the research fi eld. In return, grounded theory postulates a 
high level of  theoretical sensitivity   of the researcher. According to Strauss and Corbin 
( 1990 , p. 42), only this “attribute of having insight, the ability to give  meaning   to 
 data  , the capacity to understand, and capability to separate the pertinent from that 
which isn’t […] allows one to develop a  theory   that is grounded,  conceptually    dense  , 
and well integrated”. To come nearer to our object of research, we need  sensitizing 
concept  s (Flick  2005 ) which are infl uenced by theoretical prior knowledge. Hence, 
researchers do not enter the fi eld of study as  tabula rasa  as the approach of grounded 
theory is often misunderstood (Strübing  2004 ; see also Chap.   1    , Sects. 1.2 and 1.5.1, 
for the place of literature review in grounded theory). 

 Strauss and Corbin ( 1990 ,  1996 ) explicitly mention literature, particularly tech-
nical literature, as one source of  theoretical    sensitivity  . Other sources are profes-
sional and personal experience as well as the intensive interaction with the  data   
throughout the  analytical process  . In my case, it seemed reasonable that  personal 
meaning   is somehow related to or infl uenced by  concepts   from educational psychol-
ogy like the basic needs for autonomy, competence and social relatedness (Ryan 
and Deci  2002 ), personal or situational interest (Krapp  2002 ), concepts from math-
ematics education like mathematical beliefs (Op‘t Eynde et al.  2002 ) or mathemati-
cal thinking styles (Borromeo Ferri  2004 ), and concepts from educational experience 
and learner development like developmental tasks (Havighurst  1972 ; Trautmann 
 2004 ). These concepts therefore were taken as  sensitizing concept  s into the analyti-
cal  process  . As Teppo (Chap.   1    ) points out, a review of related literature can also 
provide links to which the newly developed theory can be adhered.  

2.4     Interdependence of  Data    Collection  ,  Analysis  , 
and  Development of Theory   

 According to Strauss and Corbin ( 1990 ,  1996 ), a  grounded theory   is developed 
from the study of  phenomena   occurring in the respective fi eld of research. The 
 data   collected need to be  analyzed   systematically to discover, develop, and  verify   
the  theory  .
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  Therefore,  data    collection  ,  analysis  , and  theory   stand in reciprocal relationship with each 
other. One does not begin with a theory, then prove it. Rather, one begins with an area of 
study and what is  relevant   to that area is allowed to emerge. (Strauss and Corbin  1990 , 
p. 23) 

   Strübing ( 2004 ) describes this close interdependence of  data    collection   and  anal-
ysis   as functionally dependent and chronologically parallel. None of these processes 
is thereby understood as fi nal; even the  theory   developed at the end of the research-
ing  process   is characterized by tentativeness as it can be further developed in future 
research projects. The  research process   in the course of developing an  empirically 
grounded   theory then is iterative and circular (Strübing  2004 ; see Chap.   1    ). Please 
note that the procedure is repetitive and circular—but not the theory which is devel-
oped in this process. 

 This close interaction of  data    collection  ,  analysis  , and  development of theory   is 
also refl ected in the procedure of data collection and selection of cases that are to be 
analyzed. The strategy used in  grounded theory   for this procedure is called   theoreti-
cal      sampling    (see Chap.   1    , Sects. 1.4 and 1.6.1). This term should not be confused 
with representative sampling as it is used in studies with large sample sizes opting 
to test  hypotheses  . According to Strauss and Corbin ( 1990 , p. 177), theoretical sam-
pling is “sampling on the basis of  concepts   that have proven theoretical  relevance   to 
the evolving theory”. This means that the concepts are relevant with respect to the 
developing theory as they repeatedly occur in the data, or, on the contrary, are nota-
bly absent when comparing the incidents (ibid). In order to note which concepts are 
relevant,  theoretical sensitivity   is needed, i.e. sensitivity to recognize relevant indi-
cators in the data. As sensitivity increases over time, it is possible that previously 
analyzed data must be recoded with the additional knowledge gathered in the  ana-
lytical process   (ibid.; Chap.   1    , Sect. 1.6.1). Therefore, two aspects characterize 
theoretical sampling: chronological parallelism of data collection, analysis, and 
development of theory on the one hand, and a certain infl uence of the developing 
theory on the data collection on the other hand. 

 Chronological parallelism of  data    collection  ,  analysis  , and  development of theory   
is diffi cult to realize in a study that is carried out in two cultures. If the demand for 
chronological parallelism is, however, applied not to the collection of new data but to 
the choice of which cases are to be analyzed from an assorted pool of data, it still can 
be satisfi ed. This is also in line with the argumentation of Strauss and Corbin ( 1990 , 
p. 181, original emphasis), who argue that “ one can sample from previously collected 
data, as well as from data yet to be gathered ”. Following this  interpretation   of  theo-
retical    sampling  , I collected as much data as possible in both countries by having 
interviewed every student who volunteered. By this means, I generated a data set of 
17 interviews per country. In addition, I kept the videotapes of all lessons I attended 
as well as the teaching materials used. Although I was interested in the personal view 
of the students on their learning  process   of mathematics, I wanted to be able to draw 
back on these materials if necessary throughout the  analytical process  . Further, at the 
time of data collection, I took fi eld notes. The fi eld notes concentrated on my experi-
ences within the foreign culture, kept track of my understanding of the Hong Kong 
school system as well as the information I got about the teachers, and noted down 
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some experiences from the interviews. Example  2.1  above gives an idea about what 
these notes looked like. As the analysis proceeded, it turned out to be not necessary 
to come back to the additional material as the interviews proved to be a very rich 
source with respect to the focus of my study.

   After having collected so much  data  , one might be overwhelmed by it and it 
is a challenge to decide where to start the  analysis  . What should I begin with to 
find a way through the material? Or, with reference to the title of this chapter: 
I see a large conglomerate of bigger and smaller plants in front of me that I’d 
like to explore. But I can’t walk through them to understand them—there is too 
much thicket, bushes and fern. Where and how should I start to fi nd a way 
through them? 

 I chose to start with the  analysis   of interviews according to certain consider-
ations. When listening to the mp3-fi les after the  data    collection  , I wrote recapitula-
tory  memos   that summed up the topics that were talked about in the interviews. I 
always tried to keep the formulations as close as possible to the ones used by the 
interviewees. These memos were the fi rst step towards a detailed transcription and 
also served as its basis. Therefore, I also stuck to the grammatical mistakes. As a 
whole recapitulatory memo is too long to be presented here, Example  2.2  below 
gives an excerpt from the  interview   with William, a student from Hong Kong to 

Wah Yan College, class 4D/4C, Mr. Ng (approx. mid-thirties)
- 12 years of teaching experience
- School is in fact CMI (Chinese as Medium of Instruction), but from Secondary 
level on, 3 subjects are taught in English ® all are natural sciences! 
- Headmaster is one of the authors of the schoolbook that is used in class
- Filmed lesson
- Immediately, several students volunteered for the interviews! (It probably 
helped that I had my fingers crossed?!)
- School was founded in 1999, hence everything is quite new
- Class is better performing than average
- Today directly interview with Camryn (she was addressed by Mr. Ng before 
class; he said she does not like his way of teaching so talking to her might be 
interesting for my study. She denies this. We’ll see.
- Sequence of stimulated recall: Introduction to direct variations (more or less 
ex-cathedra teaching)
- Got a copy of the teacher’s version of the book together with a seating plan
- The teacher’s version of the book could theoretically be read out in class 
exactly the way it is; Mr. Ng does not do this
- Solutions are printed in red next to the question (lighter shade of grey in the 
copy)
- The students’ version of the book is similar to the teacher’s but with solutions 
at the end of the book

   Example 2.1    Field note taken on April 4, 2006 in Hong Kong       

M. Vollstedt



31

Time Main aspects
[…] […]
27:12 Anything of special interest in lesson?

Not much, only doing the exercises. It’s quite fun, solving the formula. 
Discuss with my classmate, knowing what is [quarter].a

29:58 Anything interesting in topic?
Drawing a graph to find the median is quite fun. Because drawing a 
graph, although it’s complicated, but the graph is very beautiful and it’s 
very easy to find some information. So, it’s very interesting and attracts 
me. 

31:53 Associations math?
- Receipts: I like to calculate whether it’s correct. It’s very interesting.
- Sudoku: It’s about numbers and logical thinking.
- Triangles: Calculating angles is fun and interesting.
- Economy: It’s always about math. 
- Computers: Are a calculator.
- Time: When I listen to music, it’s counting the time; when I sleep I 
calculate whether I can sleep how long; prepare my timetable.
- Volume: Bathing—I like to turn on the tub and to […] the volume, 
although it’s very difficult. 

35:31 Like math?
Most certainly. It’s interesting; the logical thinking lets me feel excited. I 
feel happy after having finished calculating a formula. I like math lessons
very much because it’s the place, the time I can interact with the math 
very much. The knowledge of math is very wide. Sometimes it’s difficult, 
but I’m keen on that. Because if I understand that, I get more things in the 
mind and brain and I feel great at that time. I don’t like using a calculator. 
Using a calculator is fast, but there isn’t a feeling of success, so I like 
calculating by myself. 
Do you also do it in class?
Yes, I try. If there’re too many numbers, I use the calculator. But if there 
are less numbers, I do it by myself.  

38:52

42:50

[…] […]

Associations math

Like math lessons?
Yes, I like it very much. One reason is: Ms. Ting is very funny, interesting.
Her  talking to  us  is sometimes some  jokes. Imagine, I solve a formula, I
can […] confidence, increase myself. 

lessons?
Math teacher: She is funny, enjoyable because everything is new.
Happy: We can freely talk: In some other lessons teachers don’t like us to 
talk, but in math we can discuss. 
Interesting, enjoyable: No need to remember things, not like history, 
geography: just calculating, observation of the graph. It’s easier, 
interesting. If you listen clearly, you can do your exercises easily. You 
only need to remember the formula.
Most of math lessons is recess. After I go out of math lessons, I feel very 
happy and have […] confidence, maybe because of the logical thinking I
do for the questions.

   Example 2.2    Excerpt from the recapitulatory  memo   of William’s  interview         

   a Expressions in square brackets were not perfectly understandable  
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illustrate what these memos looked like. The sequence is taken from the beginning 
of the guided interview following the  stimulated recall  . We shall have a more 
detailed look at the mid part of this excerpt below.

   The interviews were selected for  analysis   with reference to these recapitulatory 
 memos  . The fi rst  interview   was chosen due to the personal characteristics of the 
student; the successive interviews then were chosen either in minimal or maximal 
contrast to the students analyzed beforehand with respect to the characteristic under 
consideration. To be more precise, I started the  analytical process   with William, a 
very high-performing student from Hong Kong, who wanted to be challenged in his 
mathematics lessons (see above). The interview with William was exceptional as it 
was very long compared to the other interviews and, judging from the fi rst impres-
sion deduced from the recapitulatory memo, it was very detailed and provided lots 
of examples William used to undermine his thoughts. Due to this richness, I felt 
confi dent that it was a good interview to start with. 

 William’s classmate Vincent was similar with respect to his wish to be chal-
lenged in a mathematics lesson so that I  analyzed   his  interview   secondly. By this 
minimal contrast, it was possible to sharpen the  concepts   that were developed so far 
and get some more ideas about how they are conceptualized. In addition, new con-
cepts that were not present in William’s interview could be developed. 

 The third  analysis   dealt with Alban’s  interview  , a low-performing student 
from Hong Kong who was afraid to fail and to lose his face. This case formed a 
maximal contrast to the fi rst two with respect to the level of the students’ achieve-
ment. Hence, the  concepts   could be deepened again concerning their scope and 
new concepts were developed. Following this procedure, I fi rst analyzed all 
interviews from Hong Kong before I proceeded with the German interviews. By 
this means, I could guarantee utmost sensitivity to the  data   as I did not apply 
concepts that were developed from a person with Western cultural background in 
the context of Western lessons to ways of learning in a Confucian heritage cul-
ture. Rather, the concepts were developed from Confucian heritage data and later 
refi ned with Western data. 

 Throughout the  analytical process  , the sensitivity towards the  concepts   under 
consideration grows as more and more concepts are developed (see Chap.   1    , 
Sect. 1.3). To ensure that also concepts could be applied to interviews that were 
 analyzed   at the beginning of the analytical  process  , some of the interviews were 
 coded   again. By doing so I was able to tag codes to  phenomena   that otherwise 
would have been overlooked, as I was not sensitive enough for them in the fi rst 
coding cycle. 

 Finally,  theoretical    saturation   was reached (see Chap.   1    , Sect. 1.6.1): In the 
course of the  analytical process   of the last two interviews, no new  categories   were 
developed and the relationship between the categories seemed well established and 
validated (Strauss and Corbin  1990 ,  1996 ). Hence, I did not collect more  data   but 
decided to write down the theory as it was developed up to this point. As mentioned 
above, this does not mean that the theory is unchangeable—on the contrary: 
Although the theory of  personal meaning   may be corroborated by future research, it 
may well be the case that it can also be elaborated or extended further.  
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2.5     Data  Analysis   

 When we think about our  data   as the thick and indistinguishable conglomerate of 
trees, thicket and bushes again, the  coding   procedure in  grounded theory   is our tool 
to bushwhack deeper and deeper into it. To be more precise, we can distinguish 
between different kinds of coding steps. Teppo (Chap.   1    , Sects. 1.3 and 1.5, with 
reference to Birks and Mills  2011 ) differentiates between  open   and  intermediate   
coding. Strauss and Corbin ( 1990 ,  1996 ) on the other hand discriminate three differ-
ent types of coding: open,  axial  , and  selective   coding. 2  They also state that the deci-
sion for different types of coding is artifi cial and can hardly be made transparent in 
a coding  process  . Due to the circular design of the  research process   (ibid), coding is 
not necessarily linear. It alternates in particular between open and axial coding 
(ibid). Accordingly, the  analytical process   is marked by inductive and deductive 
thinking: The continuous interplay between deductive assumptions concerning 
the relationship between  phenomena   and the attempt to  verify   it with reference to 
the data is constitutive for the groundedness of the  theory   in empirical data (ibid). 

 This oscillating  process   is supported by  analytical memo  s and  diagrams  . They 
refl ect the  analytical process   and the relationships between the  concepts   in written 
 analysis   protocols or graphical representations respectively (ibid). Abstract thoughts 
about concrete  data   can be recorded so that they are prepared for  verifi cation   or 
falsifi cation respectively in relation to the material. In line with constant  compari-
son   of passages and concepts or  categories   while  coding   the data, the production of 
 memos   and diagrams is another essential element for the development of an  empiri-
cally grounded    theory   (see Corbin and Strauss  1990 ; see Chap.   1    , Sects. 1.1.1 and 
1.4). In this study, I wrote recapitulatory memos for every person to keep a synopsis 
of every  interview   (see above) and analytical memos for every code to refi ne the 
description more and more over time (see below). In addition, I attached memos to 
certain passages from the interviews that brought up questions that I thought might 
be answered later on in the coding process. Diagrams were developed to graphically 
represent the relationships between different levels of codes in the process of  axial   
coding (see below). 

 Several people were involved in the  coding    process  . Primarily, I worked together 
with research students. Thus, we were able to develop codes consensually as well as 
independently. The codes that were developed individually or collaboratively could 
therefore be discussed intensively. At the beginning of the coding process, there was 
no code system that could have been applied. Therefore, the fi rst codes were gener-
ated consensually. To achieve this, some interviews were  analyzed   collaboratively 
so that the developed  concepts   could intensively be discussed in little sections. We 
started in very great detail so that soon a great number of concepts was developed. 
Subsequently, the following interviews were analyzed independently so that the 
results were compared afterwards. The fi ndings showed that basically we tagged the 
same contents with codes so that the same  phenomena   were labeled as  categories  . 

2   Teppo (see Chap.  1 , Sect. 5) groups axial  and selective  coding  under the term intermediate  coding. 
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However, differences occurred whether the respective phenomenon rather belonged 
to the realm of  personal meaning   or whether it described a precondition that 
 infl uences the  construction   of a personal  meaning  . This discussion led to a more 
precise description of the categories as well as a stronger awareness that we have to 
make the distinction between personal meaning in contrast to its preliminaries. 
Please note that categories were developed with respect to several interviews, i.e. 
categories do not describe phenomena that are special for a certain student. 

 Due to reasons of effi ciency and scarce resources, I had to  code   the majority of 
the interviews on my own. However, when I came to sections in the interviews that 
seemed to be not straight forward, I sought the discussion with people who have 
been involved in the project for some time. Also, the progress of the  analytical pro-
cess   was discussed time and again with my colleagues in research colloquia where 
the whole working group attended, or smaller meetings with my supervisor or just 
a few colleagues. 

 From the technical side, the study was carried out with the help of the  software   
MAXQDA ( 1989 –2013). The program can be downloaded from   http://www.max-
qda.com/    . The full version is subject to licensing, the demo version can be tried out 
for 30 days for free. MAXQDA has been developed specifi cally to  analyze   qualita-
tive  data   and offers a wide range of  methods   for analysis. Among other features, 
 codes   can be organized into a hierarchy and complex inquiries can be made about 
the coded data to work out connections and differences between the codes. 

2.5.1     Open  Coding   

 The  data   that were  analyzed   in this study consisted of two different groups of texts: 
the transcribed interviews with students from Germany and from Hong Kong. I 
started the analysis with the interviews from the Hong Kong data set to encounter 
them as unbiased as possible and with a great  theoretical    sensitivity   (see above). 
Hence, the  category   system was developed with reference to the Hong Kong inter-
views and it was adapted and further developed with the help of the German data. I 
tried to keep the infl uence of the Western perspective on the Hong Kong data as little 
as possible. 

 Although the three different types of  coding   do not occur sequentially (see 
above),  open   coding usually is the fi rst approach to the  data  . Sensitizing questions 
and constant  comparison   are core elements of this coding step (See Chap.   1    , Sect. 
1.3, for a detailed description of open coding). Strauss and Corbin ( 1990 ,  1996 ) use 
the terms   concept    and   category    to denote a  phenomenon   that is categorized and 
conceptualized by assigning it to one code on the one hand and, on the other hand, 
concepts of higher order, i.e. concepts that are subsequently compared again so that 
they can be grouped to more abstract concepts. 

 The name of  codes  ,  concepts  , and  categories   can be derived in different ways. 
Firstly, there are codes that are developed  in vivo  (Strauss and Corbin  1990 ,  1996 ). 
These codes get their names directly or with only little variation from the  data  . 
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The concepts are directly mentioned and named by the interviewee. Secondly, there 
are codes which are also developed from the data and which are named by the 
researcher in the course of the  analytical process  . Thirdly, codes can be related to 
technical literature applied to enhance  theoretical    sensitivity   (ibid). In this case, 
theoretical concepts that are  relevant   for the research question and, hence, that are 
part of the theoretical background of the study are assigned to the data. Their names 
are taken over; these names mark the relevance of the theoretical concept for the 
theory. These codes are called  conceptual codes . The denomination of codes, con-
cepts, and categories is preliminary at fi rst and may be changed in the course or 
further analyses. Examples of the three different kinds of coding are presented in the 
illustrative part of this section below. 

 With reference to our forest metaphor,  open    coding   helps us to name the different 
kinds of plants and maybe animals we come across on our way through the con-
glomerate of trees and thicket. The result is that they are not so indistinguishable 
anymore. We begin to understand what we are exploring.  

2.5.2     Axial  Coding   

 In her overview on  intermediate    coding  , Teppo (see Chap.   1    , Sect. 1.5) gives some 
introduction to  axial   coding as well as the use of a  coding paradigm  . She also describes 
 selective   coding according to Glaser ( 2004 ) in this subsection as a way to focus the 
researcher’s attention on this part of intermediate coding. Strauss and Corbin ( 1990 , 
 1996 ), on the other hand, differentiate more strongly between axial and selective cod-
ing as separate steps in the  analytical process  . Therefore, this section will discuss the 
application of axial coding, whereas selective coding is presented below. 

 Following Strauss and Corbin ( 1990 ,  1996 ),  axial    coding   is the second step in the 
coding  process  . They suggest investigating the following elements to work out the 
relations between the  categories   with the help of a  coding paradigm   (see Chap.   1    , 
Sect. 1.5): causal conditions, context, intervening conditions, action/interaction strat-
egies, and consequences. Strauss and Corbin perceive the coding paradigm as obliga-
tory element of a  grounded theory   in contrast to the elements used. Therefore, Tiefel 
( 2005 ) for instance adapted the coding paradigm to her study with respect to a  theo-
retical   framework of learning and education. Both versions, i.e. the one by Strauss 
and Corbin as well as the one by Tiefel, however, seemed of little use for my study 
so that I also adapted the coding paradigm to come to one that matches my study 
better. I assumed that there are certain personal preliminaries like the student’s per-
sonal traits or his/her personal background that might infl uence the  construction   of 
 personal meaning  . In addition, the kind of personal  meaning   constructed by the stu-
dent might infl uence the student’s actions or judgments. Therefore, I  analyzed   the 
 phenomena   with respect to their preliminaries and consequences in the course of 
axial coding. The results were recorded in theoretical  memos   and   diagrams  .  Thus, 
the different kinds of personal meaning, which were developed as main categories, 
could be theoretically refi ned and contextually condensed. 

2 To See the Wood for the Trees: The Development of Theory…

http://dx.doi.org/10.1007/978-94-017-9181-6_1
http://dx.doi.org/10.1007/978-94-017-9181-6_1


36

 The development of main  categories   from categories works differently than the 
development of categories from  concepts   in the course of  open    coding  . In open cod-
ing, concepts were related with reference to their content. Similar  phenomena   were 
collected in categories of different levels of abstraction. In  axial   coding, we look for 
relations between categories and concepts that are proposed by the interviewees 
themselves. Hence, relations are established between a category (the main category) 
and other categories or concepts (the  subcategories  ). The differentiation between 
main categories and subcategories therefore lies on another analytical level than the 
relation between categories and concepts. 

 When thinking about our trees metaphor, with  axial    coding   we now begin to 
understand the relationship between the different plants and trees. Anemones, for 
instance, are little fl owers that widely grow in the undergrowth and underneath 
trees. They only blossom in springtime when the trees do not yet have strong leaves 
as they are in the need of much light. The “structure” of the trees and other plants 
becomes clearer and clearer—especially concerning their relations.  

2.5.3     Exemplary Illustration of  Open   and  Axial    Coding   
Using  Memos   and  Diagrams   

 Before I continue with  selective    coding  , I illustrate the  open   and  axial   coding processes 
with the help of an extract from the  interview   with William, the student from Hong 
Kong we already met above in the illustration of the recapitulatory  memo  . I also show 
how memos and  diagrams   can help in the  analytical process   and how they were used in 
the course of the  analysis  . Please note that my  interpretation   is just one possible interpre-
tation and that other interpretations may also be valid. Especially with a focus on another 
research question, one might come up with quite different  concepts   and  categories  . 

 To understand the section chosen a bit more easily, consider the following infor-
mation: The extract quoted below was preceded by the  stimulated recall   about a 
section of his last mathematics lesson in which the class learned about the median. 
In the part of the  interview   from which the section was taken, the questions dealt 
with the student’s attitude towards mathematics and mathematics lessons. In the 
interview with William, I started with the question about his associations with the 
word “mathematics”, which was followed by the section below. Questions about his 
associations with the word “mathematics lesson” and whether he liked mathematics 
lessons then succeeded (see above). It could be  reconstructed   from these and other 
parts of the interview that William liked mathematics lessons very much and he was 
eager for mathematical knowledge. He therefore wanted his teacher, Ms. Ting, to 
arrive more quickly at the classroom after the bell rang so that the lesson could start 
earlier and that they could learn more in a lesson.

    1.    Interviewer: Do you like mathematics?   
   2.    William: Oh, certainly.   
   3.    Interviewer: Ya?   
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   4.    William: Because … I say it’s interesting, the logical thinking is … let me feel 
… exciting   

   5.    … becau- … I feel successful after I fi nish … calculating a … formula … also 
feel … (3 sec)   

   6.    happy, happy because it’s quite … (5 sec) I feel successful also … (2 sec) 
when I’m   

   7.    … (3 sec) I like the mathematics lesson very much because … this the … the 
place, the   

   8.    time I can interact with the mathematics very much (2 sec) becau- I don’t 
know … the   

   9.    … knowledge of the mathematics is very wide so … learning it is … although 
is, maybe   

   10.    sometimes is diffi cult but … I’m keen on that because … if I understand that 
… what is   

   11.    that thing about … (14 sec) I get … I get more more more things in the mind 
and in the   

   12.    brain, so … (3 sec) I don’t know that word is in English but … maybe I try to 
use another   

   13.    word to explain to you, … the knowledge come into your brain and you feel 
more, you   

   14.    get more information and get more knowledge and feel great at that time … 
(3 sec) I   

   15.    don’t know that word, sorry.    

  The excerpt presented starts with the question whether William likes mathematics. 
He confi rms this question and stresses it explicitly with “certainly” (1–2  3 ). From 
this utterance, we can  reconstruct   a positive attitude towards mathematics. 
Therefore we can generate the  code    positive attitude towards mathematics  and so 
develop our fi rst  concept  . To remember later on in the coding  process   which inci-
dents we wanted to denote with this code, we should write a  code memo   containing 
a description of the  phenomenon   labeled with this code and possibly give an exam-
ple of an utterance which might stand exemplarily for this code. Although it often 
seemed straightforward what the code was about judging by its name, it later on 
frequently turned out wrong in my study. One day I was really sure about what 
concept I wanted to denote with a certain code and thought that writing a  memo   
would take too much time. Then, a couple of days later I was cross with myself for 
not having written a memo. It is often diffi cult to draw the lines between two codes 
when in doubt whether to add a new  interview   line to an existing code or whether 
to create a new one. When you cannot refer back to a defi nition in a memo, things 
turn out even worse. 

3   In the original interview , the transcript lines were numbered differently. There, every speech act 
was labeled with one number, i.e. this section was enumerated with 132–135. To make it as easy 
as possible to follow the coding  process , I chose here to number every line as presented above in 
order to fi nd the different bits labeled with codes more easily. 
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 Code  memos   should be kept up to date. They will become more and more explicit 
over time when we come across similar incidents, which also belong to a certain 
 concept  , or—even more precisely—when we detect utterances in the  data   that just 
do not belong to the  code  . It is also helpful to expand the information collected in 
the  code memo   and make notes about these concepts that are close to the one 
explained. Therefore, memos get more and more detailed over time. With reference 
to the code developed above ( positive attitude towards mathematics ), at fi rst, I just 
noted down that the interviewee mentions something positive about his or her atti-
tude towards mathematics. The illustrative line taken from the  interview   helps to get 
a better understanding of the code when referred back to later on in the  analytical 
process  . When more and more passages were coded, the information was enriched, 
and more illustrative examples were added. For instance, students did not only gen-
erally talk about liking mathematics or certain fi elds of mathematics (e.g. geometry) 
but they also like mathematics for its diffi culty and because they are challenged by 
it. I also noted down that the concepts labeled with this code referred to mathemat-
ics and not to the activity of doing mathematics (like problem solving) or to math-
ematics lessons. These instances belonged to other codes. 

 After William’s short answer, the interviewer replies with a confi rmative “Ya?” 
(3) and William elaborates more on his attitude towards mathematics. He relates it 
at fi rst to his interest in mathematics: “I say it’s interesting” (4). Here, we can use 
a  code   from our  sensitizing concept  s that we read about in technical literature: We 
can link this utterance to the  concept   of personal interest (e.g. Krapp  2002 ). Again, 
we develop a code ( personal interest in mathematics ) and write a  code memo   as 
explained above. Due to the succeeding utterance (“the logical thinking is … let 
me feel exciting”, 4), one can argue whether William’s interest results at least 
partly from his excitement to think logically. Therefore, in the code  memo   of  per-
sonal interest in mathematics  we can add this idea so that later on in the coding 
 process  , we can check whether this relation is made more explicit by other inter-
viewees or whether we can fi nd other incidents which suggest this relation. In 
addition, we can attach an  analytical memo   directly to this incident in the  interview   
(i.e. next to the transcript line) with the idea that there might be a relation between 
William’s personal interest in mathematics and his excitement about logical think-
ing. These ideas and codes about a relation between personal interest of the student 
and a positive attitude towards mathematics are very fi rst ideas of  axial   coding as 
we think about the relation of two concepts that lie apart from the grouping of simi-
lar concepts in one bigger  category  . Thus, we can see that the discrimination of the 
three different types of coding is artifi cial as at least  open   and axial coding interact 
to quite some extent. 

 William’s excitement about logical thinking, however, seems to be another  phe-
nomenon  . It shows that William enjoys when he can think logically. We can develop 
a new  code    enjoyment of logical thinking  and write a  code memo   respectively. The 
name of the code is partly inspired by the interviewee’s formulation, i.e. it is partly 
coded  in vivo . William then links the enjoyment of logical thinking to the feeling of 
success after having fi nished his calculation and the application of a formula (5). At 
this instance, again, we can generate a code (and write a corresponding  memo  ) that 

M. Vollstedt



39

comes from a  sensitizing concept  , i.e. the experience of competence as formulated 
in self-determination  theory   by Deci and Ryan ( 2002 ). We call our code  experience 
of competence by successful calculation . Then, William tells the interviewer that he 
also feels happy when he is successful with the calculation (5–6). Hence, William 
also links the experience of competence due to his successful calculation with 
enjoyment so that we get another code:  enjoyment of experience of competence . 
Now we realize that we had a similar code beforehand, the  enjoyment of logical 
thinking . Thus, we can now generate a broader code that embraces two codes: the 
 category    enjoyment  with the two  subcategories   or  concepts    enjoyment of successful 
calculation  and  enjoyment of logical thinking . 

 After some stammering containing half sentences which cannot be clearly linked 
or interpreted (“… (5 sec) I feel successful also … (2 sec) when I’m … (3 sec)” 
(6–7), William further elaborates on his attitude towards mathematics lessons. He 
explains that he likes his mathematics lessons very much as they provide the time 
when and the place where to interact with mathematical contents (7–8). William 
therefore shows a  positive attitude towards mathematics lessons . Again, we can 
combine two  concepts   in a  category  :  positive attitude towards mathematics lessons  
and  positive attitude towards mathematics  can be interpreted as two  subcategories   
of  positive attitude . In addition, William seems to enjoy interacting with the math-
ematics (8), i.e. we have our third subcategory of  enjoyment :  enjoyment of active 
engagement with tasks . 

 Then, William goes on and states that “the knowledge of the mathematics is 
very wide so … learning it is … although is, maybe sometimes is diffi cult but … 
I’m keen on that” (8–9). So, although it is sometimes diffi cult to understand, 
William likes to learn more about mathematics. Hence, he does not shy away from 
diffi cult topics; on the contrary, it seems that he likes to be challenged by mathe-
matics (“I’m keen on that”, 10). Thus, we can develop a new  code   together with 
its  memo  :  enjoyment of challenge by diffi cult mathematics . 

 In William’s last longer utterance he obviously has problems in formulating his 
thoughts. We can tell this from the long pause of 14 seconds in line 11, as well as 
the fact that he addresses his formulation problems. Still, his thoughts are under-
standable so that we can interpret them. In this section he makes a connection 
between understanding and knowledge: “if I understand that … what is that thing 
about … (14 sec) I get … I get more more more things in the mind and in the brain, 
so […] the knowledge come into your brain and […] you get more information and 
get more knowledge and feel great at that time” (10–14). In William’s opinion, 
understanding of the topics seems to be a precondition for education and for know-
ing more, probably even for becoming more intelligent. He seems to 
value the  broadness of the mathematical body of knowledge and it is his aim to get 
more knowledge. In addition, he also feels great when he learns more (13–14). 
Therefore we can generate the  codes    eagerness for knowledge  and  enjoyment of 
knowledge  (again as a  subcategory   of  enjoyment ) together with their  memos  . 

 Another instance of  enjoyment of knowledge  can be  reconstructed   from William’s 
utterance that he feels great when he gets more information and when “the knowl-
edge come into your brain” (13). William’s eagerness to know more combined with 
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his emphasis of the broadness of mathematics suggests that he values mathematics 
as a part of general knowledge that is to be aspired. Thus, a new  code   can be  math-
ematics as part of general knowledge . 

 When applying these  codes   and the  analytical memo   about the connection 
between logical thinking and personal interest in mathematics to this section using 
the  software   MAXQDA the coded passage looks as presented in Fig.  2.1  above.

   To recapitulate, in this  interview   excerpt we learn something about William’s 
personal attitudes as well as instances that are important for him in the context of 
learning mathematics. He shows the belief that mathematics may sometimes be dif-
fi cult and that mathematics lessons provide the conditions in which he can actively 
engage with mathematical contents. He has a positive attitude towards mathematics 
and he is interested in the subject as well as the contents. He likes to think logically 
and to be challenged by diffi cult topics. Finally, he is eager to learn and wants to 
develop himself. 

 Correspondingly, when we subsume our fi ndings from this  interview   excerpt, we 
come up with the following (preliminary) list of  codes   as presented in Fig.  2.2  
(given in alphabetical order).

   For  axial    coding   we now need to relate  categories   and  concepts   on a different 
level. As described above, I made changes in the  coding paradigm  , as the ele-
ments proposed by Strauss and Corbin ( 1990 ,  1996 ) did not match my research 
question. To elaborate the different kinds of  personal meaning  , we need to relate 
those aspects that are personally  meaningful   with those which are preconditions 
and consequences. 

 When we have a closer look at the  categories   developed so far in the course of 
the  analytical process  , we realize that  eagerness for knowledge ,  personal interest in 
mathematics , as well as  positive attitude towards mathematics  or  mathematics les-
sons  denote elements of William’s character. They signify features belonging to his 
personal traits. Therefore, they are elements of the preliminaries William brings to 
the  process   of  constructing    personal meaning  . On the other hand, a closer look to 
the categories grouped beneath  enjoyment  shows us that we need to distinguish 

  Fig. 2.1    Coded excerpt from William’s interview (Screenshot taken from MAXQDA)       
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between the enjoyment itself and the source from which the enjoyment origins. 
Consequently, the sources are manifold, but they all share the same consequence: 
the experience of enjoyment. In other words: The  phenomena   described by the 
source of enjoyment are personally  meaningful   for William—provided that he is 
able to realize them. He then enjoys the learning of mathematics or dealing with 
mathematical contents. 

 We can deduce two main statements from these fi ndings: The fi rst one is that the 
 theoretical   framework, which relates  personal meaning   to the surrounding condi-
tions of its  construction  , becomes clearer and clearer. We now know that we need to 
distinguish between preliminaries, elements that relate to  personal relevance  , and 
consequences. In the course of the  analytical process  , this model was again refi ned 
until the theoretical framework as presented in Fig.  2.3  was developed. With respect 
to preliminaries, we distinguish between personal background (e.g. cultural and 
socio-economic background, age, and gender) and personal traits. The latter can 
be specifi ed in more detail with the help of  concepts   that are determined in educa-
tional psychology (e.g. interest, motivation, and self-effi cacy), mathematics educa-
tion (e.g. mathematical beliefs and thinking styles) or concepts from the didactics 
of Educational Experience and Learner Development (denoted as  Bildungsgang - 
didactics  in Fig.  2.3 ) like developmental tasks.

   The second statement is that the sources of enjoyment detected seem to play a 
decisive role for the development of a  theory   of  personal meaning  , as they are 
 elements that are  meaningful   to William. Hence, they are the fi rst elements that 
give us an idea about different kinds of personal meaning. In the course of the fur-
ther   analytical process  , the different sources of enjoyment show varying degrees of 

  Fig. 2.2    List of codes in alphabetical order (Screenshot taken from MAXQDA)       
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 relevance   for different kinds of personal meaning. One source thereby might be 
 decisive for one kind of personal meaning and also relevant but not central for other 
kinds. To illustrate this with a more concrete example, let us investigate the idea of 
 challenge by diffi cult mathematics  in more detail: At the end of the analyses, this 
 phenomenon   that students want to be challenged by diffi cult topics or tasks proves 
to be important for the kind of personal meaning  experience of competence  in which 
it is relevant for the students to experience themselves as competent and successful 
(see also the need for competence as described in Self-Determination Theory 
according to Deci and Ryan  2002 ). One of the personal traits considered as relevant 
for the  construction   of this kind of personal meaning is that the student likes to be 
challenged by diffi cult mathematics as these contents especially bear the possibility 
of experiencing competence after they have been successfully solved. The second 
kind of personal meaning to which  challenge by diffi cult mathematics  was central is 
 cognitive challenge , for which it is the defi ning element. The fi nal  coding    paradigm   
is shown in Fig.  2.4  below. Relevant preliminaries for this kind of personal meaning 
were a wish for cognitive challenge and that diffi cult tasks were provided in the 
 lesson so that it was possible for the student to engage with them. Some of the stu-
dents also are very ambitious and they like competitions with their classmates. 
Consequences that derive from  cognitive challenge  are for instance that the student 
can improve his/her achievement and that he/she enjoys the challenge. Hence, the 
student can experience competence and success. Here, again, the close relationship 
between some kinds of personal meaning becomes evident.

   As only a short excerpt could be shown, it is diffi cult to clarify the steps of con-
stant  comparison   in the latter  coding    process  . Hence, from this article it hardly 
becomes clear how  categories   become more and more complex and how the ‘big 
idea’ of every category arises while the  analytical process   is proceeding. To cushion 
this, let me add some general ideas about working with  grounded theory  . When we 

  Fig. 2.3    Theoretical framework of personal meaning as developed in the course of the analytical 
process       
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use the grounded  theory    method   to develop  theory   from empirical  data  , our general 
aim is to discover elements of a theory about our research question in these data. 
The diffi culty is to decide which elements are  relevant   and how to combine them in 
such a way that a consistent theory arises. The fi rst thing is that we constantly have 
to ask ourselves about the more general idea behind what the interviewees say. This 
means that we have to generalize from the concrete expressions to deduce the more 
general idea that is relevant for our research question. So, what is behind what the 
interviewee (or the data in general) tells me? Throughout the  research process  , these 
ideas can be linked with each other or—equally or even more interesting—not 
linked. On the one hand,  concepts   can be grouped as they denote similar  phenomena   
( subcategories   in a category of higher order). On the other hand, concepts can be 
linked although they do not denote a similar idea. Then, the connection is usually 
suggested by the interviewees, who combine them in their expressions ( axial   cod-
ing). Here we have to pay attention to the links that can be developed in the  analysis   
and those that cannot be established. Lots of questions arise: Why is that so? Do the 
categories describe different ‘big ideas’? Or do my categories denote facets of an 
overarching ‘bigger idea’? Why can’t I put them in one main category? What is 
missing? And why is it missing? Do I need more (other?) data to answer this ques-
tion? So here, again, we have to look for the more general idea on category level. 

 On this level of  analysis  , we usually keep writing  memos   over memos to remem-
ber all our ideas about combinations of  categories   and also about links between cat-
egories that are not possible and why they are not possible. We formulate  hypotheses   

  Fig. 2.4    Completed coding paradigm for  Cognitive challenge        
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about them and try to fi nd more evidence or counterevidence with the help of new 
 data   or sometimes even data that have been analyzed beforehand. After some time 
and after the analysis of more data, some links between categories become more 
and more established as they occur time and again in the data; other links cannot be 
verifi ed with new data so that we have to dismiss them. You can see that, slowly, a 
closely-knit net of combinations of categories arises from the data.  

2.5.4     Selective  Coding   

 Selective  coding   describes a procedure similar to  axial   coding but it is carried out on 
a more abstract level. The aim is  theoretical   integration of the developed  categories   
into a consistent overarching theory (see Chap.   1    , Sect. 1.7). This means that we are 
looking for a  core category  , which is related to all other main categories that were 
established in axial coding. 

 Following Strauss and Corbin ( 1990 ,  1996 ),  selective    coding   is the third step in 
the coding procedure. As Teppo (Chap.   1    , Sect. 1.7, with reference to Corbin and 
Strauss  2008 ) points out, the questions that have to be answered are “what is the 
research all about” and “what seems to be going on here”. The aim in this analytic 
step is to fi nd the common thread that runs through the study. Or—in our trees and 
anemones metaphor—to detect paths that lead the way through all the trees and 
plants. We fi nally get to the point of realizing that we are investigating a complex 
conglomerate of trees, which fi nally turns out to be a beautiful forest. 

 When the  analytical process   in my study came to an end, 17 main  categories   
were developed, that could be described with reference to several  subcategories  . 
The main categories cover a broad range from the fulfi llment of duty and the 
wish for cognitive challenge when dealing with mathematics to the experience 
of social relatedness. So what is their combining element? All these instances 
are in some way or another important for the students when they are dealing 
with mathematics. In other words: All  phenomena   describe aspects or phenom-
ena in the context of learning mathematics at school that are personally  relevant   
for the individual. This  relevance   makes the phenomena personally  meaningful   
for the students. Hence, when asking the sensitizing questions of  selective    cod-
ing  , I decided in favor of the  core category    personal relevance . The different 
kinds of personal  meaning   can be characterized as those incidents that are dealt 
with in the context of learning and dealing with mathematics at school which 
are personally relevant for the students. With reference to the codes that were 
developed in the course of the analytical  process   of the study, this means that 
the main categories worked out in  axial   coding describe the different kinds of 
personal meaning. 

 Strauss and Corbin ( 1990 , p. 116) defi ne the  core category  , which is to be devel-
oped in this step, as the “central  phenomenon   around which all the other  categories   
are integrated”. It might have been developed in the course of  axial    coding   or it 
might as well arise in  selective   coding. The phenomenon being central for selective 
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coding may in some research even be contained in the formulation of the research 
question (Böhm  2005 ). 

 Personal  relevance   fulfi lls the assessment factors for a  core category   suggested 
by Strauss ( 1987  4 ). The core  category     personal relevance    is the central element of 
the developed  theory   and can easily be interwoven with the main categories in a 
close network. This is due to the fact that every main category developed in  axial   
 coding   describes another kind of  personal meaning  . Each of these categories there-
fore categorizes another specifi cation of personal relevance. Every main category, 
i.e. the different kinds of personal  meaning  , together with its  subcategories   
describes indicators for the core  phenomenon  , which frequently occur in the  data   
and form a pattern.   

2.6     Going Beyond  Grounded Theory   

 Having reached this point, I came up with a  dense    grounded theory   about  personal 
meaning   based on the construction of 15- to 16-year-old students from Germany 
and Hong Kong when they learn mathematics. I was able to describe 17 different 
kinds in rich detail. I could have stopped here—and actually the application of 
grounded  theory    methods   ends here. Moreover, I was interested in the relationship 
between the different kinds of personal  meaning  , i.e. the main  categories   of my 
theory. Is there some axis they all refer to and according to which they can be 
ordered? Is there a basic underlying, subject-independent dimension which can be 
used to work out guidelines or more general criteria to think about personal mean-
ing across different subjects? To answer these questions, I had to think about the 
different kinds of personal meaning I had worked out from a more general per-
spective. By doing so, I followed the methods laid out by Kelle and Kluge ( 1999 ). 
The two dimensions I fi nally came up with were the relatedness towards the indi-
vidual and the relatedness towards subject contents, i.e. mathematics. I was able 
to arrange all kinds of personal meaning with reference to these two dimensions. 
Then, seven different types of personal meaning could be deduced from the 
arrangement (see ibid). As the typology is not reported here in detail, see Vollstedt 
 2011a  or  2011b  for more detail. 

 The analytical elaboration of the  categories   fi nally resulted in a decisive advance-
ment of the  theory  , which gained more explicitness and density. Furthermore, it is 
possible to integrate maximum variation of the specifi cations of the  core category   
  personal relevance    into the theory as can be seen in the development of the typol-
ogy. By writing down the theory that has been developed from our  interview    data  , 
we give other people the possibility of also understanding and referring to the the-
ory we worked out.  

4   At the time of writing his introduction to  Qualitative analysis   for social sciences , Strauss ( 1987 ) used 
the term  key  category instead of core category . They denote, however, the same kind of category. 
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2.7     Conclusion 

 The aim of this chapter was to trace the  analytical process   of an empirical  interview   
study using  grounded theory  . To achieve this, an excerpt from one interview with a 
student from Hong Kong was  analyzed   and the analytical  process   was shown in as 
much detail as possible. It is, of course, not possible to illustrate every little step of 
the highly complex analytical process with such a short excerpt. Still, I tried to give 
insight into the different levels of  coding   as well as to provide examples for the deci-
sions that have to be made throughout the analysis. 

 To conclude, the basic idea of the  development of theory   using  grounded theory   
is to get the main ideas behind what the interviewees say (or our  data   provide), to 
formulate  hypotheses   about links between these ideas, and to try to establish or 
dismiss these links. To fi nally come to a  dense    theory   that is  empirically grounded  , 
a very detailed  analysis   of the data is necessary. The ideas discovered have to be knit 
together tightly with the help of empirical evidence. Eventually, we see in the data 
not only manifold expressions or  phenomena   but  concepts   and  categories   that are 
strongly interwoven to form a theory about our research question in focus. 

 In other words: We started our journey with an indistinctive conglomerate of 
plants, began with a categorization of trees, bushes and animals and fi nally reached 
a good understanding of our forest with all its paths, bigger ways and shortcuts 
through the undergrowth. Having laid out the  theory   now also puts up signposts to 
enable other people to enjoy a day in the forest without being lost, and to come back 
once in a while. Thus, in the end, it is possible to see the wood despite—or precisely 
because of—all the trees.     
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3.1         Introduction 

   Who did it a different way? 1  

   This question of a second grade mathematics teacher might serve as a catchy 
utterance that highlights my interest in the analysis of argumentation and participa-
tion. The teacher was a member of an American-German project funded by the 
Spencer Foundation (Cobb and Bauersfeld  1995 ). The research team analyzed 
 videotaped classroom situations, which had been accomplished in the following 
way: First, there were group work sessions, in which groups of children were sup-
posed to solve the problems of given work sheets. The instructions for the children 
were that they should solve as many problems as they want and that they have to 
explain to each other their ideas about the solution. After a group work session, the 
teacher initiated a whole class discussion, in which the students were asked to pres-
ent the results of their group work. After the presentation of a few solutions, the 
teacher generally asked: “Who did it a different way”. The intention of this question 
was that the second graders should present a variety of different ways of solving the 
given mathematical problems. 2  While analyzing parts of the video sequences, it was 
striking to me, that the presented ways of solving the problems mainly serve in the 
interaction as an explanation and justifi cation for the found result. That means they 
have an  argumentative  function in the sense that the students attempt to  demonstrate  
to the class what they did and to  convince  the class that their way of solving the 
problem is ‘ok’. Moreover, in the emerging sequence of presenting different solutions 
for the same problem, the question arose for me, how inventive and independent were 
the presented solutions at the end of such a round of classroom discussion. 

 Methodologically, this insight led to the search for procedures that allow the 
accomplished argumentation of the participants of a mathematics class to be ana-
lyzed and that allow a classifi cation of the originality of their contributions in the 
series of ongoing presentations of different solving methods. In the following, 
I introduce an analysis of argumentation and an analysis of participation, each 
method exemplifi ed by the same two primary mathematics classroom interactions.  

3.2     The Concepts of Argumentation and Participation 

 The two methods in question are embedded in an interaction theory of mathematics 
learning in everyday classroom situations (Krummheuer and Brandt  2001 ; 
Krummheuer and Fetzer  2005 ; Krummheuer  2013 ). This theory will not be outlined 
in detail. Here I only fi rst unfold the general theoretical view in which way the 
interactive accomplishment of an argumentation is connected with different statuses 
of students’ participation. Secondly, I propose some clarifi cations about the 
 relationship between the applied different qualitative research methods. 

1   Quoted from Wood ( 1995 ). 
2   For more details about this teaching intervention see Cobb et al. ( 1995 ). 
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 The general theoretical view concerns the interrelation between a theory of 
 interaction in mathematics classrooms and a theory of mathematics learning. With 
regard to learning mathematics one usually assumes that the sense of a mathemati-
cal argumentation is a  pre -condition for the possibility of learning mathematics and 
not only the desired  out -come. In this sense, learning mathematics is  argumentative  
learning. It is based on the students’ participation in an “accounting practice” 
(Garfi nkel  1967 ; p. 1) of evolving explanations and justifi cations, which are helpful 
and supportive in the initiation of the students’ learning processes in mathematics. 
Mathematics learning is considered to be “learning-as-participation” (Sfard  2008 ; 
see also Krummheuer  2011 ). In such situations, the participants can generate rela-
tively sophisticated arguments. Of course, it also might regularly occur, that one 
hardly can fi nd explications of elements of an argument. Both belong to everyday 
mathematics classroom situations. 

 In mathematics classroom situations, as Yackel ( 1995 ), for example, outlines, 
“explaining is not an individual but a collective activity” (p. 151). It is also charac-
teristic for any everyday classroom situation that the students contribute to these 
collective activities in different statuses. Thus, considering the role of argumenta-
tion for the learning of mathematics, it is not only of interest

•    how an argument accomplished in the course of interaction is structured but also  
•   how the teacher and the students are involved in its interactive (collective) 

production.    

 I treat the fi rst question with the theoretical approach of Toulmin, which I call 
the “analysis of argumentation”. The second issue deals with Goffman’s idea of 
the decomposition of the role of the speaker, which I call the “analysis of partici-
pation”. In the following I present these approaches by applying two scenes from 
a fi rst grade mathematics class. These scenes are taken from the video corpus of 
the project “Rekonstruktion von Formaten kollektiven Argumentierens” 
(Reconstruction of Formats of collective Argumentation) that has been funded by 
the German Research Foundation (DFG). Analyses of these scenes were pub-
lished for the fi rst time in Krummheuer and Brandt ( 2001 ) and partly in English 
in Krummheuer ( 2007 ). 

 In this project we apply different qualitative research methods, which we con-
strue in a hierarchical sequence in order to reconstruct theoretically relevant aspects 
of the classroom interaction. The basic and initial procedure is always the imple-
mentation of the  analysis of interaction  based on ethnomethodological conversation 
analysis (Schegloff  1982 ; Sacks  1998 ; Ten Have  1999 ). This method serves to 
reconstruct the process of negotiation of meaning and leads to a reliable interpreta-
tion. Due to limitations in space, this method is not outlined in this paper. On the 
basis of the results of this analysis, several other methods are applied such as the 
analysis of argumentation and analysis of participation. In the following presenta-
tion of two concrete examples, it has to take into account that, due to the hierarchi-
cal dependency on the results of the analysis of interaction, an interpretation of the 
process of negotiation of meaning of these two scenes already exists. Its results will 
be presented in the following—its deduction however will not be validated (see 
Krummheuer and Brandt  2001  and Krummheuer  2007 ). 
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3.2.1     The Example “Thirteen Pearls” 3  

3.2.1.1     The Transcript 

 The presented episode has been taken from a lesson in a fi rst grade mathematics 
class. Within this lesson the additive decomposition of two-digit numbers in the 
range from 11 to 20 will be treated. The string of pearls, which is referred to in the 
episode, contains ten black and ten white pearls lined up on a string:  ••••••••••°°°°°°°°°°.  
The episode “Thirteen Pearls” begins as follows:

 092  T  Yehes, now! I’m .. keen to see what the children say. 
 093   holds a string of pearls in the air :  •••°°°°°°°°°°  
 093.1  8:59 h 
 094  Marina  I see 
 095  Franzi  Thirteen 
 096   Marina ,  Franzi ,  Jarek and Wayne raise their hands ;  some children count while 

whispering  
 097  T   Whispering  two, three 
 098  Goran  Thirteen.  Quickly raises his hand  
 099   Julian ,  Conny and two other children raise their hands  
 100  T   Whispering  two, three, four, fi ve fi ngers I see .. six, seven, eight.  Loud 

again  Wayne? 
 101  Wayne  Thirteen 
 101.1  Marina   Takes down her arm  
 102  T  Or? 
 103  S  Uhm 
 104  T  Jarek? 
 105  Jarek  Uhm .. three plus ten 
 106  <T  Or           Marina? 
 107  <Marina      Raises her hand animatedly       ten plus, three 
 108  T  Or? Oh! The children see quite a lot, huh. It’s always the same, but they 

do see quite a lot. Julian  109 
 110  Julian  Uhm, el, naw, right eleven, plus two 
 111  T  Or? Jarek? 
 112  Jarek  Seven minus zero 
 113  T  S, seven minus zero? 
 114  S  Huh? 
 115  S  Huh? 
 116  T  Let’s try it. Come to the front. Seven minus zero?… Jarek has said 

something, and we have to check that. Come here!  117 
 118  Jarek   Goes to the front  

3   In the original German transcript we do not use the standard interpunctuation, and denote  speaking 
pauses, raisings of the pinch and so forth. In the English translation we do not use these paralin-
guistic notations. Word order and tone of voice differ too much between German and English. 
The original transcripts are reproduced in the appendix. 
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 119  T   Holds up a string of pearls in Jarek’s direction  show us seven minus 
zero. Show us seven, turn around to the class so that the children can 
see it and so that one can  compare .  Holds her own string of pearls up 
again; she is still showing thirteen  So.  Seven ? 

 120 
 121 
 122 
 122.1  Jarek   Silently counts the pearls on his string  
 122.2  T  Count aloud! 
 123  Jarek   Counts out on his string holding it up in the air  one, two, three, four, 

fi ve, six, seven  string of pearls :  •••••••  minus zero  lets go of the end he 
counted; shows   •••°°°°°°°°°°  is thirteen.  

 124 
 125 
 125.1   While the teacher is speaking Jarek returns to his table  
 126  T   Breathing astonishedly  h, ha now I understand, what Jarek did. 

 Puts her own string away and takes over Jarek’s . He claimed, he 
started from this side and counted off seven. One, two, three, four, fi ve, 
six, seven. S hows it on her string  there he said, minus zero is that. 
 Shows   •••°°°°°°°°°°  does that work? 

 127 
 128 
 129 
 130 

3.2.1.2        Analyses of the Scene 

 As mentioned above, at this point I will not perform a systematic analysis of the 
scene. Instead, while going through the episode, I would like to make some  comments 
on the emergence of the situation of argumentation, which unfolds in the course of 
interaction in two different ways in the beginning and at the end of the scene. 

   The Analysis of Argumentation 

 In the transcript, a fi rst phase can be identifi ed in the lines 92–111. The teacher holds 
up 13 pearls of a string of pearls, which consists of 20 pearls and asks the students 
to make corresponding statements. Up to line 108 there seems to be a prevailing 
content-related interpretation of the teacher’s question, which seems to have been 
stabilized by line 111. In mathematical terms, one could say that it deals with the 
additive decomposition of the number 13. The participants of the classroom situation 
would undoubtedly formulate this in a different way. Without any problem, however, 
one can reconstruct the interaction-pattern “initiation—reply—evaluation” (Mehan 
 1979 ), which is typical of the teacher-guided talk in many classroom situations. We 
see here a type of interaction process evolving, which we call a “smooth course of 
interaction” (“interaktionaler Gleichfl uss”; Krummheuer and Brandt  2001 , p. 56). 

 Before I come to an analysis of the process of argumentation, I will shortly intro-
duce the approach of Toulmin. The contributions of single persons in the interaction 
with regard to their function within a interactive accomplishment of an argumenta-
tion (Kopperschmidt  1989 ) are viewed independently from their individual  intention. 
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In the following I confi ne myself to the four central categories of an argumentation 
in the sense of Toulmin. They are

•    data  
•   conclusion  
•   warrant  
•   backing    

 Toulmin ( 1969 ) developed the following graphical layout (see above Fig   .  3.1 ).
   The general idea of an argumentation consists of tracing the statement to be 

proven the conclusion back to undoubted statements (“data”). This relationship is 
expressed in the fi rst line of the layout and can altogether be referred to as the infer-
ence of the argument. Such an inference requires a legitimation. Statements that 
contribute to this represent the warrant. Of another quality are those statements, 
which refer to the permissibility of the warrant. Toulmin ( 1969 ) calls them “back-
ings”. They represent undoubtable basic convictions. Arguments can be chained 
together in such a way that an accepted conclusion can function again as data for a 
subsequent new argument. 

 This is the case at the beginning of the scene. How is the correctness of the decom-
position of the number 13 substantiated? Up to line 111 no reasons or justifi cations 
are explicitly given and, in the way the teacher asks, are not demanded. Her call for 
another decomposition (“or”) is taken as the warrant that the given answer is correct: 
she only would intervene if this answer were wrong. With regard to Toulmin’s layout, 
at this point one can identify a chain of argumentations, in which the conclusion of 
one inference evolves into the data for a new argument (see above Fig.  3.2 ).

   This smooth course of interaction changes with Jarek’s answer “seven minus zero” 
in line 112, which can be seen as the beginning of the second phase of this episode. 
The accounting practice seems to become more differentiated. Presumably, only when 
answers are incorrect does the teacher ask for a more detailed explanation. 

data
so

since

warrant

on account

backing

conclusion
  Fig. 3.1    Toulmin’s layout of 
argumentation (In the fi gures 
in this paper, Data are 
enclosed in rectangles with 
rounded corners, Warrants 
and Backings in rectangles 
with angled corners, and 
Conclusions in plain 
rectangles)       

The teacher
holds up
13 pearls

The number
of pearls is 13

The teacher does
not intervene

3 plus 10 is
another answer

The teacher does
not intervene

11 plus 2 is
another answer

The teacher does
not intervene

etc.

  Fig. 3.2    Chain of argumentations       
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 Jarek counts the seven black pearls from the black end of the string and while 
doing so he holds the following eighth pearl in his hand. Then he says minus zero 
<124>,  lets go of the end he counted; shows  •••°°°°°°°°°° is thirteen <125>. This is 
the pattern of the string of pearls, which the teacher was holding up. Most likely, he 
understands the space between the seven black pearls and the remaining 13 pearls 
as zero and decomposes in this manner the number 20. Hereby 20 represents the 
entire string. Mathematically speaking, one could rephrase his statement as 
20 − 7 − 0 = 13, which would correspond to a decomposition of 20 = 13 + 7 + 0. 
Because of the previous strict intervention by the teacher, doubts remain about 
whether this presentation corresponds to Jarek’s original approach. 

 In terms of Toulmin’s theory of argumentation, one can see a rather sophisticated 
argument that Jarek formulates (see above Fig.  3.3 ).

   Referring back to the fi rst phase, we can reconstruct backings in neither of the 
two phases. This happens often in the discourse of primary mathematics classroom. 
We call the subset consisting of “data so conclusion, since warrant” as the “core” 
(Krummheuer  1995 , p. 243) of an argumentation. Formally, this core is the “mini-
mal form of an argumentation” (p. 243). The applied warrant provides the ground 
for an argument that certifi es the soundness of all arguments of that type.  

   The Analysis of Participation 

 Let me now come to the topic of “participation”. An important question of this type 
of analysis is: What kind of mathematical responsibility and originality has to be 
ascribed to the students’ utterances? With respect to the fi rst phase of the scene, for 
example, one has to clarify, whether all the answers of the students are based on 
their own original arithmetical calculations or whether they are rather slight modifi -
cations of solutions presented shortly before by another student. 

 In order to differentiate speakers’ utterances according to their responsibility and 
originality, we refer to Goffman’s proposal of decomposing an utterance into the 
following partial functions:

•    the syntactical form with its specifi c choice of words and its specifi c formulation 
(function of formulation) and  

•   the content-related (semantic) contribution (function of content).    

String with 20 pearls

Counting 7 pearls

There are 7 more black pearls

Through dropping the 7
black pearls one can reach
the pattern of the teacher.
The space between 2 pearls

is taken as ‘minus zero’

To the pattern of the
teacher (13 pearls) one

can say ‘seven minus zero’

  Fig. 3.3    Toulmin scheme of Jarek’s argumentation 7–0       
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 A speaker does not necessarily need to take over responsibility and originality 
for both functions but only for one or in fact also for none of them. Formally, one 
can differentiate four cases:

•    A speaking person is completely responsible (syntax and semantic) for his utter-
ance: a speaker of this kind of liability is called an “author”. He is a person who 
verbally expresses his own idea in his own words.  

•   A speaking person claims responsibility neither for the syntactical form nor for 
the semantic aspect of his statement. A speaking person in this status is called a 
“relayer”.  

•   A speaking person takes over (almost) identical formulations of parts of a prior 
utterance and tries to thus express an own, new idea. This status is called “ghostee”. 
He traduces his  own idea  in the words of somebody else.  

•   A speaking person takes over the idea of a prior utterance and tries to express it 
with his own words. This status is called “spokesman”. Such a person  paraphrases 
the contents of a prior statement with his  own words .    

 One can summarize these distinctions as shown in Fig.  3.4  below.
   The names of these four categories are taken from Levinson ( 1988 ), who further 

developed Goffman’s initial ideas. Except with the category “author”, there must be 
a person’s utterance that procedes the momentary speaker. Goffman ( 1981 ) calls 
such a setting “production format” (p 145). This expression has been altered to 
“production-design”, since in the interactional theory of mathematics learning that 
this article is based on, the notion of “format” is already occupied by the meaning 
in Bruner’s work on language acquisition (Bruner  1982 ,  1983 ; Krummheuer  1995 ). 

 In the analyses I apply fi rst the analysis of participation and then use these results 
for an analysis of argumentation pertaining to the same utterances in an interaction. 
Then the content and formulation of such an utterance can be additionally classifi ed 
according to the Toulmin-scheme. For example, a student reformulating a warrant 
in his own words, which had been produced by the teacher earlier would be classi-
fi ed as a  spokesman of a warrant . 

 I will apply this production-design to the presented example. We begin with the 
fi rst phase of the scene trying to reconstruct how much responsibility and originality 
one can ascribe to the answers of the students. We see that there are three children 
who present “thirteen” as an answer. They are Franzi <095>, Goran <098>, and 
Wayne <101>. Then Jarek follows with the answer “three plus ten” <105>, then 

Responsibility for the
content

of an utterance

Responsibility for the
formulation

of an utterance
author + +
relayer - -
ghostee + -

spokesman - +

     Fig. 3.4    Design of participation       
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Mariana with “ten plus three” <101.1>, and then Julian with “eleven plus two” 
<110>. The students who gave these answers could have mentally calculated their 
solutions in advance. The fi rst, not-trivial answer “3 + 10” by Jarek in line 105 could 
also be given without any mental calculation, though, through the splitting of the 
German word “dreizehn” ( three-ten ) into “three and ten”. This is also, additionally, 
suggested by the fact that earlier the number of visible pearls is already ratifi ed as 
13. 4  The following two answers “10 + 3” and “11 + 2” again could have been found 
by mental calculation, through logical consideration or through a “strategy of mini-
mal change”. The mental activity in the case of 10 + 3 would be to apply the com-
mutative law and in the case of 11 + 2 the strategy of regrouping (the fi rst summand 
of 10 + 3 is increased by 1 and the second summand is correspondingly decreased by 
1). I use the term “strategy of minimal change” to describe a tactical behavior of 
students, which, without much cognitive exertion, consists of applying a minimal 
change to an answer which has previously been evaluated as correct, and then to 
‘wait and see’ what the teacher thinks of it. 

 In the course of this smooth course of interaction, it remains unclear in which 
status the answering students are reacting. Obviously it does not seem necessary for 
the participants, or at least for the teacher, to make this differentiation. Either it 
might be clear for them or it might not be important for them or her at this moment., 
Except for the fi rst answer of Franzi, all the other students act by applying the strat-
egy of minimal change. We can classify Jarek by his answer “three plus ten” as a 
spokesman: he takes over the syntactic composition of the German word for 13 and 
paraphrases it by separating this word into its components “three” and “ten”. Under 
the given assumption of the application of the strategy of minimal change, we 
understand that Marian in her following answer “ten plus three” is acting in the 
status of a relayer: She takes over Jarek’s answer “three plus ten” and just reverses 
the two number words. 5  By analogy, Julian’s status, while presenting his answer 
“eleven plus two”, can be interpreted as that of a relayer—just repeating Marian’s 
solution with minimal change—or as that of a spokesman – paraphrasing Marian’s 
solution- in his own words, again making use of the assumption that he applies the 
strategy of minimal change. 

 Bringing together these results the analysis of participation looks as follows 
(Fig.  3.5 ).

4   In contrast to the English word “thirteen“the German word for 13 contains the identical names for 
3 (”drei”) and 10 “zehn”. The word for 13 is just the combination of “zehn” and “drei” to 
“dreizehn”. In colloquial German it is also common to use the word “und” (in English: “and”) for 
the arithmetic expression “plus”. 
5   As mentioned above, in this concrete situation of a smoothly running course of interaction, the 
participants by themselves keep the process of negotiation in an ambiguous state, in which it 
remains unclarifi ed, what the single students might have thought, when presenting their answers. 
That impacts our results so that we, as analysists of this situation, have to consider a certain vague-
ness in our interpretation. 
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   In contrast, I will present the analysis of participation, as Jarek argues for his 
conclusion “seven minus zero” (see below Fig.  3.6 ).

   We can sum up this table in the following way: Jarek offers an entirely new solu-
tion, which lets him assume the status of an author. The teacher repeats his answer 
with a rising pitch in her voice, which is interpreted as her criticism of the solution. 
She does this in the typical manner of a ghostee: she re-applies Jarek’s phrase, but 
ascribes to it a different semantic meaning: the answer is not right, as Jarek 
assumedly proposes. Later, the teacher attempts, to weave Jarek into her “format of 
argumentation” (see Krummheuer  1995 ) as a spokesman, but fails. Jarek counts 
seven pearls on the string, as wanted by the teacher. But he transforms her require-
ments into his own argument, and by this he creates the fi rst warrant. He  accomplishes 
the second warrant, then, in an independent and self-responsible status. 
In this phase, Jarek acts in a relatively elaborated role and, with regard to the partici-
pation in the fi rst discourse, this distinguishes this phase from the beginning of the 
scene.    

function of:
speaking person utterance argumentative

function of the
utterance

reference to a prior speaker

teacher: 
author

I’m keen to see what the children say
holds a string of pearls in the air

presenting the
problem (data)

Franzi:
author

thirteen presenting an answer
(conclusion)

Goran:
relayer

thirteen presenting an answer
(conclusion)

Franzi

Wayne:
relayer

thirteen presenting an answer
(conclusion)

Goran, Franzi

Jarek:
spokesman

three plus ten presenting an answer
(conclusion)

Wayne, Goran, Franzi

Marian:
relayer

ten plus three presenting an answer
(conclusion)

Jarek

Julian:
relayer/spokesman

eleven plus two presenting an answer
(conclusion)

Marina

  Fig. 3.5    Analysis of participation       
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3.2.2      The Example of “Mister X” 

 In the calculation game “Mister X”, the students are supposed to guess a number 
between 10 and 20, which has been noted down by one student on the backside of 
the blackboard, invisible for the class. For any suggested number that the students 
guess, the information whether the number to be guessed is higher, lower or equal, 
is noted at the blackboard. For this, a large “X” has been drawn onto the board. Left 
of this X the smaller numbers are noted, and to the right, the bigger numbers.

  In the beginning of the scene, the numbers 10 and 12 are written on the left side 
of X, and, among others, the numbers 18 and 14 are written on the right side of X 
on the blackboard. 13, the number to be determined, is written beneath X. After the 
correct number—13—has been called out and noted on the blackboard, the 
 following sequence develops: 

3.2.2.1     The Transcript 

 132.  … Why could it only be thirteen in the end? Nicole? 
 133  9:24 h 
 134  Nicole  Because  all  numbers were already in there, except thirteen 

function of:
speaking person

utterance argumentative
function of the

utterance

reference to a prior speaker

Jarek: 
author

seven minus zero \ presenting an answer
(conclusion)

teacher:
ghostee

seven minus zero / The answer is not
correct

(conclusion)

Jarek

........

Jarek
ghostee

counts out on his string holding it up in the air one
two three four five six seven

counting
(warrant 1)

teacher

Jarek
author

•••••••. minus zero lets go of the end he counted; manual
demonstration 

(warrant 2)
shows •••

  Fig. 3.6    Analysis of Jarek’s participation       
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 135  T  Nope!  Fifteen  for example 
 136  Jarek  And sixteen. 
 137  <T  There’s a different reason. There’s a different reason.  David  
 137.1  < Jarek  Sixteen 
 137.2   general restlessness in the classroom, loud coughing  
 138  >T  Because fourteen was too big, David 
 138.1  >S1  A b c d 
 138.2  >S2  Man, cut it out 
 139  T  So  stop . This is  very  important now. Again 
 139.1  Efrem  And hundred 
 140  <David  Because fourteen was too big.  Lays the upper part of his body onto the 

table.  
 141  <T   Points at the 14  yes. And?  Points at 12  
 142  David  The, twelve was too small 
 143  T  Re peat  that for us. Efrem,  Efrem , repeat that for us! 
 144  T  David just said something  very smart , you can  keep that in mind . 

Who can  repeat  that for us again, 
 145  what  David  just 
 146  T  said?  quietly   Petra  
 146.1  9:26 h 
 147a  <Petra  Because, ‘cause the fourteen was too  big , an and the 
 147.1  <T   points at 14  
 147b  >Petra  twelve was too too  small  
 147.2  >T   points at 12  
 148  T  And in between there remains only  one  
 149  Petra  Thirteen 
 150  T   Points at 13  thirteen 

3.2.2.2        The Analyses of the Scene 

   The Analysis of Argumentation 

 The statement “number 13 was the only possible solution in the end” appears as 
the conclusion of the argumentation. The fi rst argumentation by Nicole in <134> 
can be understood in the sense that 13 is the sought after number because all other 
possible numbers have already been excluded (see below Fig.  3.7 ).

   This is all that is generated with regard to this argument in this section of the 
scene. We cannot reconstruct the explication of a warrant or a backing. From 
the view of a theory of argumentation, only the warrant makes it possible to transfer 
the approval of given data to the conclusion. In other words, only through the war-
rant do accepted statements become the data of an argumentation. In the present 
case, the warrant might be very obvious so that it does not appear to be necessary to 
further mention it. To clarify our own understanding of Nicole’s argument, I would 
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like to propose an assumable warrant: If from a fi nite amount of numbers only one 
can be the solution, and all numbers except for one have already been ruled out as 
solutions, then this one number is the solution. I do not suppose that students of this 
fi rst grade can express the warrant with such explicit terms and formulations. Within 
the graphic layout, I have outlined the warrant with a dashed line in the layout to 
clarify its origin (see above Fig.  3.8 ).

   One can assume that the fi rst graders within this scene grasp this fi gure of 
 argumentation. At least during the immediate follow-up statements <135 and 136>, 
the legitimacy of such a conclusion is not  as such  doubted. Rather, the  data  that 
Nicole mentioned in <134> is being denied. On the level of its conclusions, the 
argumentation could be imagined as outlined above in Fig.  3.9 .

   However, the Toulmin categories shown with a dashed outline are not explicitly 
formulated. With the statement of the teacher in <137>, there is another reason 
since she also seems to assume that Nicole’s argument has been suffi ciently refuted 
and does not require further comment. With regard to the later exposition of the 
students’ participation in the processes of argumentation, Nicole, the teacher, and 
Jarek are actively participating. 

  Fig. 3.7    Toulmin scheme of Nina’s fi rst argumentation       

all numbers were already
in there except 13 13 is the number asked for

  Fig. 3.8    Toulmin scheme of Nina’s fi rst argumenation including assumable warrant       

all numbers were already
in there except 13

If from a finite amount
of numbers only one can
be the solution, and all
numbers except for one
have already been ruled

out as solutions, then this
one number is the solution

13 is the number asked for

  Fig. 3.9    Imagined following argumentation       

Except 13 also 15 16
have not been mentioned

It does not count; all
numbers were already

in there except 13
Nicole’s argument is not valid
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 From <138> onwards a new argumentation develops. It is expressed in <138, 
140 and 141>. In summary, the argument can be understood as follows: 12 and 14 
are noted on the blackboard as “too big” and “too small” numbers respectively; they 
can be referred to as an unquestioned fact. The number in between has to be found. 
As a layout (see above Fig.  3.10 ).

   In <147 to 148> only a few short objections occur that contain evidence of the war-
rant and the backing. Thus, only through the conjunction “and”, that is formulated by 
the teacher in <147.1>, is it possible to draw the conclusion from the data added by 
David. Within this conjunction the warrant is thus implied, which is then further elab-
orated upon in the succeeding statements. The solution number thus has to lie in 
between the already stated too big and too small numbers (see above Fig.  3.11 ).

   According to Toulmin, the legitimacy of the warrant, if need be, can be backed 
by the indication of fundamental conviction. In the given argumentation, one can 
fi nd a clue to a backing that is to be assumed: The statement “only thirteen in the 
end” refers to the discrete sequence of the positive integers as a fundamental attri-
bute that justifi es this conclusion. The clearness of the solution 13 that is asserted 
by the initial statement of the teacher is thus backed by the sequence of the natural 
numbers. 

 Looking back on the entire argumentation, several aspects seem worth mention-
ing: Within the scene, two argumentations, or cycles of argumentation are gener-
ated that exhibit very different degrees of explication according to Toulmin’s 
categories. The last argumentation is worked out relatively completely. One can 
recognize here that the teacher, surely driven by a didactical motivation, purpose-
fully contributes to this.  

  Fig. 3.10    Arguments noted on the blackboard       

14 is too big;
12 is too small

13 must be the
number asked for

  Fig. 3.11    Warrant and backing for 13 as the correct number       

14 is too big;
12 is too small

One has to look for the
numbers in between

Sequence of the
positive integers

13 must be the
number asked for
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   The Analysis of Participation 

 The teacher opens the argumentation by naming the conclusion that is still to be 
substantiated. David’s statement “because fourteen was too big” <138> is accepted 
as a fi rst answer. He formulates the statement as a justifi cation and at this point 
introduces data himself. He thus takes responsibility with regard to the phrasing 
and content function for the statement. He functions as an author. He repeats this 
data <140> following the teacher’s request <139>. In this repetition he functions 
as the imitator, whereas the responsibility for the choice of words is to be seen in 
his fi rst statement: he imitates himself, so to speak. The teacher accompanies his 
statement with gestures <141> and thereby transfers it into another form. She sup-
ports David’s idea as a spokesman. With “and” <141>, the teacher demands more 
data. The  second data, twelve is too small <142>, is only stated by David, after the 
teacher has pointed at the twelve on the blackboard <141>, which has been noted 
there as “too small”. The  teacher  thus introduces the idea of this second data to 
the process of argumentation. David transforms the gesture, which includes the 
idea of data, into words. As a spokesman, he thus introduces the idea with a new 
choice of words. 

 Petra’s statement in <147> is the repetition of David’s statements. The teacher 
had given her this task <145,146>. It is possible to reconstruct her role at this point 
as a relayer. We understand the teacher’s gestured reference toward the two numbers 
noted on the blackboard in <147.1> primarily as an underscoring of Petra’s state-
ment and thus they move within the framework of Petra’s act of imitation. 

 In <148>, the teacher takes up a new idea. She asks for the numbers in between 
12 and 14. At this point she functions as the author and with it, constructs parts of a 
backing, only complete with the naming of the number 13 by Petra in <149> and by 
the teacher in <150>. It is a little more diffi cult to classify Petra’s status with her 
statement in <149>. She clearly speaks before the teacher points to the number 
13 in <150>. In this respect, she does not just parrot the answer. Her answer resem-
bles the insertion of one word into a completion exercise, in which it is largely clear, 
what is needed to fi ll the gap. It has to be considered that the number 13 is noted on 
the blackboard, and in a way, must be spoken out loud. We usually attribute speakers 
of such one-word answers the status of an imitator (see below Fig.  3.12 ).

   We summarize the results of the analysis in the following table.    

3.2.3     Comparison of the Results 
of the Analyses of the Two Scenes 

 The two scenes belong to the same mathematics class and took place only a few 
days apart, their topics refer to the introduction into the 2-digit-integers from 10 to 
20, they are teacher-guided, in both episodes the teacher deliberately stresses the 
argumentative aspect of explaining a solution that came up. This opens the scope of 
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some refl ections concerning the accounting practice and its impact on the condi-
tions of the possibility of learning mathematics. 

 In the beginning I introduced the notion of “argumentative learning”. The 
 comparison of the results of the analyses of the two episodes is now going to focus 
on the question: how is the accounting practice interactively accomplished and how 
are the participants of the class engaged in this process? 

 Comparing analyses of the two episodes one fi nds processes of argumentation 
that are rather differently shaped.

  Fig. 3.12    Analysis of participation       

speaker:
function

statement argumentative
function of the

statement
reference to a previous speaker

teacher: 
author

why could it only be thirteen in the end unambiguousness of
the solution number

13. (conclusion)

David:
author

because fourteen was too big 14 was too big.
(data)

David:
relayer

because fourteen was too big 

David

teacher:
spokesman

points at 14 yes 14 was too big. 
(data)

David

teacher:
author

and link to still to be 
created second data 

(warrant)

teacher:
author

points at 12 12 was too low. 
(data)

David:
spokesman

the . twelve was too small 12 was too small. 
(data)

teacher

Petra:
relayer

because cause fourteen was too big, an and
twelve was too too small

upper and lower limit
(data + warrant)

David

teacher: 
author

and in between there is only one sequence of pAositive
integers (backing)

Petra:
relayer

thirteen sequence of positive
integers (backing)

teacher
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•    At the beginning of the example “thirteen pearls”, a cycle of subsequent 
 arguments emerges, in which the warrant is a non-subject-related one: The 
inference is legitimate as long as the teacher does not intervene. From the 
stance of an observer it is not possible to decide whether the students act 
according to the strategy of minimal change or presented answers based on 
personal sophisticated mathematical reasoning. With regard to Toulmin’s 
understanding of an argumentation, the related accounting practice seems 
rather incomplete: basically the arguments emerging in this practice are of the 
form “data, so conclusion”. The warrants are not content-related. So, it remains 
rather diffuse, what kind of responsibility and originality the students need to 
possess in order to successfully participate in this accounting practice. This is 
true for the students who present a solution as well as for the students who 
remain all the time in the status of a recipient. The practice seems to be con-
ducted very much as a routine.  

•   Rountinized accounting practices combined with fairly incomplete productions 
of arguments can also be reconstructed in “Mister X”. Here for certain argu-
mentations only the data are presented, and the rest of the argument remains 
implicit. The conclusion and the warrant seem self-evident. Different to the 
beginning phase of “Thirteen Pearls”, however the status of the participants 
proves to be more differentiated. One could suspect that David would not have 
generated the data of the lower limit, the number 12, without his involvement in 
the process of interaction with the teacher. It remains unclear, how much David 
grasps the  logical  necessity of the connection of the two data (higher and lower 
limit), and therefore the warrant, that is undertaken by the teacher through 
“and”. With the status of a spokesman, at this point David acts in what we per-
ceive as a relatively elaborated form of responsibility and originality. It is differ-
ent in Petra’s case: she is involved in the production of the backing, and in a 
certain sense, one would be able to assume a deeper understanding at this point. 
However, she makes her statements in the status of a relayer. This suggests that 
such a deeper understanding does not necessarily have to exist and that not so 
much the logic of the matter, but rather the logic of the interaction is dominant. 
Petra thus participates in a “well-functioning” manner and through this, might 
also contribute to the presentation of a reasonable argumentation for the silent 
and watching students. 6   

•   Finally, Jarek’s contribution to the explanation of his unique solution of the 
decomposition of the number 13 in Thirteen Pearls reveals two aspects of an 
elaborated contribution to an argumentation: fi rst, utterances will be delivered 
which cover the entire core of an argument. Second, the students participate in 
this production in the status of ghostees, spokesmen and/or authors.    

 If we would interpret the production of more complete arguments and the partici-
pation in the status of ghostee and spokesman as different grades of autonomous 

6   As a completion of our hierarchy of analyses we introduce a recipient analysis (see Krummheuer 
and Brandt  2001  and Krummheuer  2011 ). 
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action within a given structure of interaction, then it would be possible to under-
stand the two analyzed episodes as learning situations in which the students have 
arrived at different levels of autonomy with respect to their mathematical capacity 
to solve problems of the given kind. Students who can contribute to the production 
of a warrant in a common argumentation process know more and understand more 
of the subject matter than students, who can only produce the data or the conclusion. 
But this is only one side of the coin: students with the status of a spokesman and/or 
ghostee can be described as learners, who have already embarked upon a path of 
more autonomous action. Acting in the status of a relayer can be seen as the very 
fi rst step in the apprenticeship of applying specifi c mathematical knowledge in a 
sensible way. Acting in the status of an author and producing the entire core of an 
argument autonomously would be taken as an indicator that this student is not in the 
situation of learning something new (see Krummheuer  2011 ). 

 The accounting practice and the production design refer to a sub-arena of 
 everyday mathematics classroom situations that make it possible in a special way to 
grasp the conditions of making learning possible for active participation of students. 
In the process of collective argumentation, an argument is generated, and the 
actively participating student participates in its production in two respects:

•    he produces statements that can be allocated to certain categories in the sense of 
Toulmin, and  

•   through this he takes up a specifi c speaking role.      

3.3     Some Theoretical Remarks 

 The typical focus of the combined analyses demonstrated above is on micro- analytic 
processes that are elicited by the turn-taking mechanisms of each interaction  process 
(Mehan  1979 ; Schegloff  1982 ; Sacks  1998 ). This method of analysis helps to clarify 
aspects of the social conditions of (mathematics) learning on the interactional level 
of the local turn-taking organization. From a perspective of mathematics education, 
interest is sometimes targeted on more complex processes of argumentation than 
that presented above and on long-term processes of mathematics learning, as over 
an entire course or over a developmental phase of a child. In this section, I fi rst men-
tion some research that deals with the aspect of participation (Sect.  3.3.1 ). In the 
second section I refer to approaches that analyze composite argumentations consist-
ing of several Toulmin-schemes (Sect.  3.3.2 ). Most of them do not take into account 
the notion of participation. 
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3.3.1      Further Research on the “Production-Design” 
in Mathematics Classes 

 The notion of participation becomes increasingly crucial the more the theoretical 
interest moves towards a socio-constructivist conception of mathematics learning. 
There are several approaches that adhere to this general position, which Sfard ( 2008 ) 
characterizes as “participationism” (p. 76). From this stance, she claims, the metaphor 
of “learning-as-acquisition” has to be replaced by one of “learning-as- participation” 
(p. 92). She further develops her argument clarifying that mathematics and mathemat-
ics learning emerge in specifi c forms of discourse, and that a membership is won 
through “participation in communicational activities of any  collective that practices 
this discourse” (ibid. p. 91). Becoming a member of such a discourse involves the 
learning of the rules and routines of these discourses. In Sect.  3.2.2  I presented my 
ideas about this participationist view of mathematics learning based on my research. 

 Astoundingly, to my knowledge, there is hardly any discussion about research 
methods concerning the topic of participation. Birgit Brandt and I developed an 
additional method for the analysis of the recipient design (Brandt  1998 ; Krummheuer 
and Brandt  2001 ; Brandt and Tatsis  2009 ; Krummheuer  2011 ). In the work of 
Brandt and Tatsis ( 2009 ) the authors stress the issue of face-saving moments in 
classroom interaction.  

3.3.2      More Complexly Structured Argumentations 

 I restricted the analysis of argumentation to the notion of argumentative learning 
thus connecting an interaction theory of mathematics classroom processes with a 
socio-constructivist theory of mathematics learning. Toulmin’s model of argumen-
tation is not restricted to this issue. Within mathematics education Toulmin’s 
approach is often related to the widely spread discussion about proof in mathemat-
ics classes. As long as this discussion is focused on primary mathematics education, 
it usually refers to the notion of “explanation” (Whitenack and Knipping  2001 ; 
Yackel  2002 ; Fetzer  2011 ). At the secondary school level, the work about students’ 
argumentation, then, is directly related to the idea of a mathematical proof. 
For example, concerning the Pythagorean Theorem in French and German mathe-
matics classes, the work of Knipping ( 2003 ) might the mentioned. At university-
level the group around Rasmussen analyzes argumentations of university students 
during differential equations classes (Stephan and Rasmussen  2002 ). Hoyles and 
Küchemann ( 2002 ) analyze the quality of logical deduction and mathematical argu-
ments. Pedemonte ( 2007 ) is interested in the relationship of the content and struc-
ture of arguments from a cognitive point of view. A rather rhetorical research 
approach about argumentation can be found in Inglis and Mejia-Ramos  2008 ), 
whose work focuses on the warrant of an argumentation. Most of these studies ana-
lyze more complex arguments that exceed the structure of an iterated argument, as 
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exemplifi ed at the beginning of the scene “Thirteen Pearls”. Especially Knipping 
( 2010 ) reconstructs different patterns for such more complex arguments (see more 
in Knipping and Reid in this book). 

 Analyses at this more global level allow comparisons of styles of discourse in 
mathematics classes and can help to elaborate the relationship between argumenta-
tions in everyday mathematics class situation and “pure” mathematical proofs as 
they are taught in mathematics classes.       

    Appendix: Transcripts and Rules of Transcription 

    Thirteen Pearls 
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    Mister X 

   

132 L . wesh-... weshalb konnte es nur die Dreizehn sein \Nicole
133 9:25 h

134 Nicole weil   aweil alle Zahlen schon da drinne außer dreizehn
135 L nö / . fünfzehn zum Beispiel /
136 Jarek und sechzehn \
137 <L gibt nen andern Grund \ gibt nen andern Grund 

\ David \
137.1 <Jarek sechzehn
137.2 Es herrscht allgemeine Unruhe in der Klasse. Es wird laut 

gehustet.
138 <L weil vierzehn zu groß war - David
138.1 <S1 a b c d    
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138.2 <S2 Mann, hör aaauf
139 L so stop \ das is jetzt ganz wichtig \ nochma \
139.1 Efrem und hundert
140 <David weil vierzehn zu groß wa \ legt seinen Oberkörper auf den 

Tisch            + 
141 <L zeigt auf die 14ja \ .                   + und / 

zeigt auf die 12
142 David die . zwölf war zu klein \
143
144

L wieder hol + das ma Efrem \ Efrem \. wiederhol das ma
\ . der David hat was ganz Kluges gesagt \das könntihr

145 euch merken \ wer kann das nochmal wiederholen was 
146 der David gesacht hat \
147 leise Petra \
147.1 9:26 h
148.1 <Petra weil weil die vierzehn zu groß war /     un und die zwölf 

zu zu klein war \
148.2 L zeigt auf die 14ja \.                   + und / zeigt

auf die 12
149 Petra Dreizehn
150 L zeigt auf die 13 dreizehn \ +     

    Rules of Transcription 

 Column 1  396  Serially numbered lines 
 396.1  Inserted lines 

 Column 2  Time line 
 Column 3  Abbreviations for the names of the interacting people 
 Column 4  Verbal (regular font) and non-verbal ( italic font)  actions 

 /  Rising pitch 
 –  Even pitch 
 \  Falling pitch 

 ,  Breathing space 
 . .. …  Breaks of. 1, 2 or. 3 s 
 (4 s.)  Breaks of a specifi ed time span 

  bold   Accentuated word 
 s p a c e d  Spoken slowly 

 (word)  Unclear utterance 
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  (remark)   Remark, offering alternatives to unclear utterances 
 +  The indicated way of speaking ends at this symbol 
 #  There is no break, the second speaker follows immediately from the fi rst 
 <  Indicates where people are talking at the same time 
 >  The next block of simultaneous speech is indicated by a change in arrow 

direction 
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Chapter 4
Reconstructing Argumentation Structures: 
A Perspective on Proving Processes 
in Secondary Mathematics Classroom 
Interactions

Christine Knipping and David Reid

Abstract This chapter provides theoretical and methodological tools, both to recon-
struct argumentation structures in mathematical proving processes and to shed light 
on the rationales of those processes. Toulmin’s functional model of argumentation is 
used for reconstructing local arguments, and it is extended to provide a ‘global’ model 
of argumentation for reconstructing proving processes in the mathematics classroom. 
Several examples drawn from empirical research are included, illustrating each stage 
of the methods used. Comparison of argumentation structures reveals differences in 
the rationale of proving processes in different mathematics classrooms.

Keywords Argumentation • Mathematical proving processes • Comparative
methods

4.1  Introduction

This chapter describes a variant of the method of analysis of argumentation processes 
in mathematics classes described in the previous chapter, see also Krummheuer 
(1995). It builds on Toulmin’s theory of argumentation (Toulmin 1958) and  provides 
a method to reveal the rationality of arguments that are produced during proving 
processes in secondary level mathematics classrooms. The method allows the 

This chapter is adapted from Knipping and Reid (2013b).

C. Knipping (*) • D. Reid
Faculty 3 of Mathematics and Computer Science, University of Bremen,  
Bibliothekstraße 1, 28359 Bremen, Germany
e-mail: knipping@math.uni-bremen.de; dreid@math.uni-bremen.de

mailto: knipping@math.uni-bremen.de
mailto: dreid@math.uni-bremen.de


76

description of both global argumentation structures as well as local argumentations 
like those described by Krummheuer.

This chapter suggests a method by which complex argumentations in proving 
processes can be reconstructed and analyzed. A three stage process is proposed: 
reconstructing the sequencing and meaning of classroom talk; analyzing local
argumentations and global argumentation structures; and finally comparing these 
argumentation structures and revealing their rationale. The second stage involves 
two moves, first analyzing local arguments on the basis of Toulmin’s functional 
model of argumentation, and second analyzing the global argumentative structure 
of the proving process. The first stage and the first move of the second stage are 
similar to the processes of analysis of interaction and analysis of argumentation 
described by Krummheuer. We will describe some differences in our methods in 
these stages, but we will focus here mainly on the second move of the second stage, 
analysis of global argumentation structures. To illustrate patterns in the global 
analysis of the classroom talk a schematic representation of the overall argumenta-
tive structure is used.

While there is considerable methodological overlap between the methods 
described here and those described by Krummheuer, there are some differences 
arising out of our differing research contexts and interests. Proving processes in 
secondary school classrooms follow their own peculiar rationale, and our interest is 
in reconstructing and analyzing the complex argumentative structure of these class-
room conversations. Like Krummheuer we see argumentation as both a precondi-
tion for learning and a desired outcome. In the secondary classrooms we study 
mathematical proof is the topic, and so our emphasis is on argumentation as an 
outcome. We are more interested in learning argumentation than in argumentative 
learning.

In addition, we analyze both local argumentations and global argumentation 
structures, and our global analyses allow comparisons of styles of discourse in 
mathematics classes. This allows us to consider not only the “classroom culture” 
in a given classroom, but also to compare classroom cultures and to identify dif-
ferences and similarities at the level of global argumentation structures.

This chapter is organized as follows. We first discuss not only why an alterna-
tive conception of ‘rational argument’ (see Toulmin 1958), distinct from the one 
in formal logic, is important for understanding proving processes in the mathe-
matical classroom, but also how such a conception leads to a different recon-
struction of arguments found in classroom proving processes. This provides an 
alternate perspective on arguments in the context of classroom proof and prov-
ing. We then describe the theoretical and methodological grounds of Knipping’s 
(2008) method of reconstructing and analyzing argumentation structures, before 
presenting the method itself. Examples of how we apply the argumentation anal-
yses to real data will illustrate each individual stage of the method. We then 
compare global argumentation structures reconstructed from a German and a
Canadian classroom to show how this method can reveal differences in the ratio-
nale of proving processes.
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4.2  The Importance of Understanding Proving Practices 
in the Classroom

Teaching proof is considered to be challenging. Numerous empirical studies have 
documented that students up to university level have difficulties in recognizing dif-
ferent types of reasoning and producing mathematical proofs (e.g., Harel and 
Sowder 1998; Healy and Hoyles 1998; Reiss et al. 2001).1 Students find proof dif-
ficult and often do not understand why so much emphasis is put on mathematical 
proof (Moore 1994). Some research has investigated these difficulties (Chazan 
1993; Reid 1995; Pedemonte 2002a, b, 2007) and has explained aspects of the prob-
lem from an individual student’s point of view. Researchers have offered alternative 
ways of teaching proof (e.g., Garuti et al. 1998; Mariotti et al. 1997; Jahnke 1978), 
but only a few have documented students’ proving processes in alternative teaching 
environments (Balacheff 1988, 1991).
Very little research so far has looked at these difficulties with a focus on proving

practices in the classroom (Sekiguchi 1991; Herbst 1998, 2002a; Knipping 2003). 
Such a focus is important for two reasons:

• Teachers’ approaches to proof are not guided solely by logical considerations; 
pedagogical and practical considerations are also important.

• Written proofs, whether produced in classrooms or presented in texts, do not 
reflect the process of their creation, which is itself worthy of study.

Sekiguchi (1991) explores the social nature of proof in the mathematics class-
room using ethnographic methods. He confirms that proof practice in the classroom 
does not follow “the patterns of formal mathematics”, but that pedagogical and 
practical motivations shape practices in the classroom. He finds various forms of 
practices called “proof” by the participants, but his research focuses on the standard 
form for writing proofs in US classrooms, the two-column proof format (Sekiguchi
1991). Herbst (2002b) describes how this proving custom developed at the end of 
the nineteenth-century, in a historical context where the demand arose that every 
student should be able to do proofs. Herbst helps us to understand that the practice 
of producing two-column proofs was a reaction to this demand and the difficulty “to 
organize classrooms where students can be expected to produce arguments and 
proofs” (Herbst 2002b, p. 284). Thus a way of writing proofs that is peculiar to the 
school context evolved, not out of logical requirements, but out of a specific histori-
cal context, students’ difficulties, and teachers’ efforts to address the difficulties and 
challenges of engaging students in proofs.

The two-column proof format is not the only format that can be found in 
mathematics classrooms. In France and Germany (Knipping 2002, 2003, 2004), 

1 For an overview of these studies see as well Harel and Sowder 1998 or Hanna 2000.
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other formats for written proofs have evolved. Whatever format is used in 
 presenting a proof, in the classroom context writing proofs is only part of, and 
more a means to engage students in, proving (or the illusion of doing proofs), as 
Sekiguchi and Herbst demonstrate. In classrooms the process itself, embedded in
the constraints of teaching, seems to be of major importance, but arguments pro-
duced in these processes are far different from the written forms that are pro-
duced. For example, Fig. 4.1 shows a photograph of a blackboard at the end of a
lesson on the Pythagorean Theorem, in a German grade 9 upper stream second-
ary school (“Gymnasium”) class. The teacher and probably the students consid-
ered this a proof of the Pythagorean Theorem. The proof was the product of 
processes during an entire lesson. Diagrams like that presented on the left side of
the board are classic illustrations of the Pythagorean Theorem and its proof. 
They are recognized by many people, and can be found throughout the history of 
mathematics in many cultures. However, our focus in this chapter is on the proof 
written on the right side of the blackboard and the argument that led to it. The
algebraic equations written there are a very condensed form of argument, which 
leaves out many steps that have been developed in the oral part of the classroom 
proving process we will discuss later.
Because classroom proving processes are guided by more than logical consider-

ations and because the written proofs that result from classroom proving processes 
are incomplete as records of those processes, reconstructing classroom proving pro-
cesses and their overall structure requires a model that acknowledges their context
dependence. Research within and outside of mathematics education has addressed 
this concern that there is no universal way to describe and formulate context depen-
dent arguments. We will discuss this next.

Fig. 4.1 Written proof of the Pythagorean Theorem in a grade 9 class in Germany, 1998. (“4rwD”
means 4 rechtwinklige Dreiecke, i.e., 4 right angled triangles)
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4.3  Approaches to Describing Arguments

4.3.1  The Inadequacy of Logical Analysis for Reconstructing 
Proving Processes in Classrooms

In mathematics considerable attention has been paid to the nature of proofs. As 
proofs can be seen as the end product of the work of mathematicians, i.e., as expla-
nations which are accepted by the mathematical community as proofs (Balacheff
1987) one might expect that the process by which proofs come to be can be ana-
lyzed on the basis of what proofs are. Further, the final goal of teaching proof is to 
bring students to an understanding of the logic behind mathematical proofs and to 
accept the same kinds of explanations as proofs as are accepted by mathematicians.
Therefore, the misunderstanding can arise that the analysis of proof teaching in the 
classroom can be based on logical analysis of classroom arguments. This is not true 
for several reasons.
First, as discussed earlier, Sekiguchi (1991) and Herbst (1998, 2002a) illustrate 

that when teachers teach proof they do not follow “the patterns of formal mathemat-
ics”, but pedagogical and practical motivations shape their practices in the class-
room. Their practices in the classroom are a complex response to the challenge of 
teaching proofs and of engaging students in proving. In these multi-faceted pro-
cesses classroom conversations with complex argumentation structures occur that 
might appear “illogical” to a mathematician. Revealing these complex structures is 
necessary to better understand the complexity of teaching proof and proving, but 
this cannot be undertaken by means of formal logic alone.
Second, students are in the process of developing logical thinking patterns, and

so the thinking they express in classrooms will include many elements which a logi-
cal analysis would simply describe as “illogical” but which are nevertheless impor-
tant to the future development of their thinking. As learning necessarily depends on
the students’ thinking at the time, a method of analysis that cannot go beyond dis-
missing it as “illogical” is not helpful. What is needed is a conception of ‘rational 
argument’ that does not cut off students’ rationality, see also Walton (1989, 1998).

Third, logical rationality, which has historically decontextualized intellectual 
and practical rationality, is widely questioned by philosophers and historians of sci-
ence. Toulmin (1990), for example, deconstructs the logical ideal of reason as a 
historical project of Modernity that we have to appreciate, but that has been over-
come by the facts of the twentieth-century science. He argues that “the decontextu-
alizing of problems so typical of High Modernity is no longer a serious option”
(Toulmin 1990, p. 201). Instead science came to a “renewed acceptance of practice” 
(p. 192) and to a reconceptualization of rationality that does not cut “the subject off 
from practical considerations” (p. 201) in the way that formal logic does. In his 
earlier work Toulmin (1958) had enquired into different fields of argument and 
addressed the question of “What things about the forms and merits of our arguments 
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are field-invariant and what things about them are field-dependent?” (p. 15,  emphasis 
in original). Contrasting arguments in jurisprudence to formal logic he suggests that 
there is a layout of arguments that is field invariant, but that allows the characteriza-
tion of arguments related to their context of use. This layout or functional model is 
the topic of the next section.

4.3.2  Toulmin’s Functional Model of Argument

Like Krummheuer, we make use of Toulmin’s (1958) functional model of argumen-
tation, but with a different focus as we are interested in argumentation as an  outcome 
of learning. Toulmin’s model has the important characteristic that is was developed 
to reconstruct arguments in different fields, such as law or medicine. As noted 
above, logical analysis is inadequate for argumentations in mathematics classrooms, 
which perhaps bear more resemblance to argumentations in other domains such as 
law, where public discussion of facts and the relationships between them are impor-
tant. Toulmin’s model is intended to be applicable to arguments in any field.

Rejecting a mathematical logical model Toulmin (1958) investigates the 
functional structure of rational arguments in general. Therefore he asks “What,
then, is involved in establishing conclusions by the production of arguments?” 
(p. 97). Toulmin’s first answer is that facts (data) might be cited to support the 
 conclusion. He illustrates this by the following example. If we assert that ‘Harry’s 
hair is not black’, we might ground this on “our personal knowledge that it is in fact
red” (p. 97). We produce a datum that we consider as an evident fact to justify our 
assertion (conclusion). If this is accepted, this very simple step, datum – conclusion, 
can represent a rational argument.
But this step, its nature and justification, can be challenged, actually or poten-

tially, and therefore it is often explicitly justified. Instead of additional information, 
an explanation of a more general style, by rules, principles or inference-licenses has 
to be formulated (p. 98). Toulmin’s second answer addresses this type of challenge. 
A ‘warrant’ might be given to establish the “bearing on the conclusion of the data 
already produced” (p. 98). These warrants “act as bridges, and authorize the sort of 
step to which our particular argument commits us” (p. 98). In the example above the 
implicit warrant of the argument is “If anything is red, it will not also be black.”
(p. 98).While Toulmin acknowledges that the distinction between data and warrants
may not always be clear, their functions are distinct, “in one situation to convey a 
piece of information, in another to authorise a step in an argument” (p. 99). In fact, 
the same statement might serve as either datum or warrant or both at once, depend-
ing on context (p. 99), but according to Toulmin the distinction between datum, 
warrant, and the conclusion or claim provides the elements for the “skeleton of a
pattern for analyzing arguments” (p. 99, see Fig. 4.2). In the following we will use 
“claim” in cases where data and warrants have not yet been provided, and 
 “conclusion” when they have been.
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Toulmin adds several other elements to this skeleton, only one of which will be
discussed here. Both the datum and the warrant of an argument can be questioned.
If a datum requires support, a new argument in which it is the conclusion can be 
developed. If a warrant is in doubt, a statement Toulmin calls a “backing” can be
offered to support it.
Looking back at the proof in Fig. 4.1, we can analyze the last step in the  argument 

in terms of Toulmin’s model (see Fig. 4.3). In it we can see an important character-
istic of many arguments: warrants are often left implicit. In this case our awareness 
that the warrant is not included in the written proof helps us to ask the question
“Was the warrant ever stated as the proof was developed, or was it always implicit?”, 
showing once more the importance of analyzing the classroom proving process.

Toulmin states, “The data we cite if a claim is challenged depend on the warrants 
we are prepared to operate with in that field, and the warrants to which we commit 
ourselves are implicit in the particular steps from data to claims we are prepared to 
take and to admit.” (p. 100). Therefore careful analyses of the types of warrants (and
backings) that are employed explicitly or implicitly in concrete classroom situa-
tions, allow us to reconstruct the kinds of mathematical justifications students and
teacher together operate on. In particular, the comparison of warrants and backings
in different arguments can reveal what sort of argument types are used in proving 
processes in mathematics classrooms.

For example in Fig. 4.3, we have supplied an implicit warrant based on mathemat-
ical properties of addition. In a different context the warrant for this argument might 
have been geometrical, interpreting 2ab as the area of a rectangle (or two triangles), 
or syntactical not interpreting the symbols at all, operating on them purely formally. 
Any of these types of warrants (and backings) could occur in a classroom and indicate
the field of justifications in which the students and teacher operate.

Datum

Warrant

Backing

Conjecture

Fig. 4.2 Toulmin model (In our diagrams Data are enclosed in rectangles with rounded corners,
Warrants and Backings in rectangles with angled corners, and Conclusions in plain rectangles)

c2 = b2 − 2ab+ a2 + 2ab

Addition is commutative
and associative. The sum of
any term and its additive

inverse is zero.

c2 = a2 + b2

Fig. 4.3 Datum, warrant and conclusion for the final step in the written proof
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Other researchers (e.g., Inglis et al. 2007) have made use of other elements in 
Toulmin’s model, including “modal qualifiers” and “rebuttal”. Many arguments do
not establish their conclusions with complete certainty, and in such arguments we 
find qualifiers like “probably” and “possibly” as well as rebuttals that identify cases
where the conclusion does not hold. Inglis, Mejía-Ramos and Simpson consider the
arguments of postgraduate university students in mathematics and find that modal 
qualifiers play an important role in their mathematical argumentations. In our work
in schools, however, we have found that the mathematical argumentations produced 
are quite different from what advanced mathematics students produce, and we have 
not found it necessary to make use of any elements in the Toulmin model beyond
data, conclusions, warrants and backings. We have added one element, however,
which we call “refutation”. A refutation differs from a rebuttal in that a rebuttal is 
local to a step in an argument and specifies exceptions to the conclusion. A refuta-
tion completely negates some part of the argument. In a finished argumentation 
refuted conclusions would have no place, but as we are concerned with representing 
the entire argumentation that occurred, it is important for us to include refutations 
and the arguments they refute, as part of the context of the remainder of the argu-
mentation, even if there is no direct link to be made between the refuted argument
and other parts of the argumentation. Aberdein (2006) proposes extending Toulmin’s 
rebuttal element to encompass refutations, but for our purposes we prefer to limit 
rebuttals to Toulmin’s original role, of specifying circumstances where the conclu-
sion does not hold.

An important way in which we have used the Toulmin model that extends it 
 significantly, is our application of it not only to single steps in argumentations, but 
also as a tool to explore the global structure of an argumentation. In the next section 
we will describe this distinction in more detail.

4.3.3  Local and Global Arguments

Toulmin (1958) notes “an argument is like an organism. It has both a gross,
 anatomical structure and a finer, as-it-were physiological one” (p. 94). Toulmin’s 
aim is to explore the fine structure, but in considering classroom argumentations 
both argumentative forms must be reconstructed. Toulmin’s model is useful for 
reconstructing a step of an argument, which allows us to single out distinct  arguments 
in the proving process (for example as in Fig. 4.3). We will call these “argumenta-
tion steps” or local arguments. But it is also necessary to lay out the structure of the
argument as a whole (the anatomical structure), which we will call global argument 
or the argumentation “structure” of the proving process.
Global arguments in classrooms can be quite complex (as will be shown later).

The written proof in the right hand side of Fig. 4.1 provides a simple example.  
As we noted earlier, a single step of that proof is shown in Fig. 4.3. The global argu-
ment presented on the blackboard, reconstructed as a chain of argumentation steps
is shown in Fig. 4.4. The final conclusion (c2 = a2 + b2), a formulation of the 
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Pythagorean Theorem, is the target conclusion of the global argument. The  argument 
can be reconstructed as a simple chain of conclusions beginning with a datum 
“c2 = (b − a)2+4rwD” that has been taken from the drawing on the blackboard. This
datum leads to a conclusion: c2 = (b − a)2 + 2ab, but no warrant is explicitly given to 
support this inference. The information in the diagram (adjacent sides of the right 
triangle are a and b) and implicit calculations of the area of the four right triangles 
implicitly support this claim. The next two steps are also based on implicit warrants. 
In Fig. 4.4 we have reconstructed possible implicit warrants for each step; they are 
marked by a box with a dashed line. Note that the statement “c2 = (b − a)2 + 2ab” is 
not only the conclusion of one step but also the datum of another. Finally the target 
conclusion: c2 = a2 + b2 is established.

This type of argument can be characterized as a chain of statements, each one 
deduced from the preceding one on logical and mathematical grounds. This has 
been described by Duval as “Recyclage” (Duval 1995, pp. 246–248) Once a state-
ment has been established as a conclusion it functions as a datum, an established 
true fact, in the next step. Aberdein (2006) calls this way of combining single steps 
“Sequential” and he describes four other ways steps could be combined. As we will 
see in the following, our empirical research on classroom argumentation provides 
examples of Aberdein’s ways of combining steps, as well as other ways.

4.4  A Method for Reconstructing Arguments in Classrooms

As mentioned above, for reconstructing arguments in classrooms a three stage 
 process is followed:

• reconstructing the sequencing and meaning of classroom talk (including identi-
fying episodes and interpreting the transcripts);

• analyzing arguments and argumentation structures (reconstructing steps of local 
arguments and short sequences of steps which form “streams”; reconstructing 
the global structure); and

• comparing local argumentations and comparing global argumentation structures, 
and revealing their rationale.

Each of these stages is illustrated in the following, but the emphasis is on the 
second stage. We will do so by discussing episodes of the proving process that lead 
to the written proof of the Pythagorean Theorem that we have presented above  

c2 = (b−a)2+4rwD

Diagram, area of
right triangle

c2 = (b− a)2 + 2ab

Multiplying out

c2 =
b2 − 2ab+ a2 + 2ab

Associativity,
commutivity and
additive inverse

c2 = a2 + b2

Fig. 4.4 Functional reconstruction of the written proof presented in Fig. 4.1 (The target conclu-
sion is outlined with a thicker line than conclusions that are recycled as data for subsequent steps)
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(see Fig. 4.1). The teacher (T) in this class will be referred to as Mrs. Nissen,
 references (e.g. <6–21>) indicate lines of the transcript of this lesson. “N5” indi-
cates this is taken from the fifth lesson observed in Mrs. Nissen’s class. Additional
data and analysis can be found in Knipping (2003).

The choice of what part of the lesson to analyze was based on the participants’ 
own identification of what classroom conversations were seen as being proving, 
through explicit labeling of them as such. The protocols and transcripts show that it 
is generally the teacher who labels a proving phase.

4.4.1  Reconstructing the Sequencing  
and Meaning of Classroom Talk

In the following we will first describe how we reconstructed sequencing and 
meaning of classroom talk on proof and proving. This corresponds to the analysis 
of interaction that begins Krummheuer’s research method, and it serves the same 
function, to establish the ‘text’ the argumentations use. However, this stage of our 
method has a different focus, the identification of the flow and sequencing of topics 
and the reconstructing of the meanings of individual utterances in terms of their role 
in argumentation.

4.4.1.1  Layout of Episodes

The first step is dividing the proving process into episodes. This means that the gen-
eral topics emerging in the classroom talk are identified and their sequencing is recon-
structed. This allows one to get an overview of the different steps in the argumentation. 
Proving process in classrooms can occur over long periods of time, from 20 to 40 min 
or longer. Laying out different episodes of the process helps to make the argumenta-
tions in these episodes more accessible to analysis. Once the flow and sequencing of 
the emerging topics is made visible the reconstruction of the arguments can start. For 
example, the following topic episodes could be identified in lesson N5:

1. Sketch of the proof diagram <6–21>
2. Goal of the proof <21–28>
3. Meanings of a2, b2, c2 < 28–69>
 4. Calculating sub-areas of c2 < 69–100>
 5. Sascha’s Conjecture <101–129>
 6. The area of the right triangles <129–155>
7. A mistake on the board <156–175>
 8. Transforming the equations found <175–200>

Mrs. Nissen starts the lesson by sketching a drawing on the blackboard (episode 1,
see also Fig. 4.1). The class then determines the goal of the proof of the Pythagorean 
Theorem (episode 2) and discusses the meanings of a2, b2, c2,  expressions that are used 
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to state the Pythagorean Theorem and that are related to the drawing (episode 3).  
In episode 4 the teacher asks the students to calculate the sub-areas of the big square c2. 
Sascha supposes (episode 5) that any two triangles form a square, but his conjecture 
gets refuted by his peers and the teacher. Instead the class calculates the area of two 
right triangles in a general way (episode 6). By accident the teacher writes in the second
line (b − a2) on the board, but a student points out the mistake which the teacher grate-
fully corrects into (b − a)2 (episode 7). Together, the teacher and the students transform 
the equations found and deduce c² = a² + b² (episode 8).

4.4.1.2  Turn by Turn Analyses

Argumentations in classroom processes are mostly expressed orally and by a group 
of participants. Generally arguments are produced by several students together,
guided by the teacher. As Herbst showed (Herbst 2002a), it is the teacher who 
mostly takes responsibility for the structure and correctness of the argument, but
students contribute to the argument, so there is a division of labour in the class. 
Argumentations are co-produced; the teacher and the students together produce the 
overall argument. Their turns are mutually dependent on each other; their public 
meanings evolve in response to each other. The argument forms in relation to these 
emerging meanings. So, in order to reconstruct the structure of an argument first the 
meanings of each individual turn put forward in class have to be reconstructed.  
As Krummheuer and Brandt state:

Expressions do not a priori have a meaning that is shared by all participants, rather they 
only get this meaning through interaction. In concrete situations of negotiation the partici-
pants search for a shared semantic platform. [Äußerungen besitzen “a priori keine von allen 
Beteiligten geteilte gemeinsame Bedeutung, sondern erhalten diese erst in der Interaktion. 
In konkreten Situationen des Verhandelns bzw. Aushandelns wird nach einer solchen 
gemeinsamen semantischen Bedeutungsplattform gesucht”] (Krummheuer and Brandt
2001, p. 14, our translation).

Because meanings emerge through interaction, reconstructing meanings neces-
sarily involves some reconstruction of the process by which they emerge. Generally
statements of classroom talk are incomplete, ambiguous and marked by deictic2 
terms. Deictic terms are replaced as much as possible in the reconstruction of the
argumentation. For example, in Excerpt 4.1 the term “das” (“that”) can be replaced 
with ‘(b − a)’ because its meaning is apparent from earlier utterances.

2 In linguistics, a deictic term is an expression, for example a pronoun, that gets its meaning from 
its context. The meaning of “this” depends on what is being pointed to. The meaning of “I” depends 
on who is speaking. In philosophy the word “indexical” is used to express the same idea.

Excerpt 4.1 Example of an ambiguous utterance marked by a deictic term

89 Jens: Das ist also die eine Seitenlänge von diesem 
mittleren Quadrat da. Aber trotz #

Jens: So that is the side length of that 
middle square there. But, #
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Because the focus of the analysis is the argumentative structure of the classroom
talk the reconstruction of the meanings of statements in the turn by turn analysis
must consider the argumentative function of the statements: datum, conclusion, 
warrant, etc. These functionswill be identified in the next step of analysis. Utterances
are primarily reconstructed according to their function within the collectively 
emerging argumentation, not with respect to subjective intentions and meanings as 
in interaction analyses.

4.4.2  Analyzing Arguments and Argumentation Structures

In the following we will describe in detail the moves in the reconstruction of local 
arguments, then of intermediate argumentation streams, and then of global argu-
mentation structures. This method for reconstructing arguments, argumentation 
streams and argumentation structures was developed by Knipping (2003, 2008).

4.4.2.1  Functional Reconstruction of the Argumentation

Recall that arguments have in Toulmin’s model a general structure of data leading 
to conclusions, supported by warrants, which in turn can be supported by backings.
Statements are characterized as having different functions within an argumentation, 
and functional analysis can help to reveal the structure of the argumentation.

Analyzing students’ and teachers’ utterances in the class according to this func-
tional model allows us to reconstruct argumentations evolving in the classroom talk.
In our analyses only utterances that are publicly (in the class) accepted or consti-
tuted as a statement are taken into account. The teacher’s attention to some utterances
and deferment of others can play a major role in this. This is not surprising given 
Herbst’s findings that in general only the teacher takes responsibility for the truth of
statements (Herbst 2002a). Where alternative argumentations or attempts at an 
argument are publicly acknowledged, they are also considered in our analyses,
although the focus is on the main stream of the argumentation. The issue of alterna-
tive argumentations will be discussed in more detail in Sect. 4.4.3, where types of 
argumentation structures are compared.

In Knipping’s (2003, 2004) analyses of classroom processes focusing first on 
conclusions turned out to be an effective step in reconstructing argumentations. It is 
helpful to begin by identifying what statement the participants are trying to justify, 
the claim that will gain the status of a conclusion by their argument. So, before actu-
ally analyzing the complete argument we look for conclusions and claims. The fol-
lowing example illustrates such a functional reconstruction of a conclusion, or in 
fact two conclusions.
The following excerpt marks the beginning of the proving process in class. The

teacher has sketched the drawing presented in Fig. 4.1 on the blackboard and seeks
to develop a proof of the Pythagorean Theorem together with the class. As yet, no 
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written proof has been developed. The teacher asks the students to interpret the
given drawing. Jens starts (Excerpt 4.2).

Previously Adam has offered (b − a)2 as a label for the inner square in the figure 
that is on the board (see Fig. 4.1). Jens, after first being confused about this expres-
sion, makes a connection with the side length of the middle square (89). Given this
context we interpret the “das/that” as “(b − a)”. The teacher reinforces Jens’s inter-
pretation and endorses Adam’s earlier claim (90–91). Jens does not provide any 
data or warrant for his claim, on the basis of the drawing on the blackboard he seems
to consider this as a “matter of fact”, a datum. The teacher asks for an explanation,
“How did he get that? b minus a long.” (91), and reinterprets this “matter of fact” as 
a claim that needs justification. Srike provides a justification by relating (b − a) to 
the difference of the lengths of the two legs of the right triangle in the drawing and 
explains why b − a is the difference in length.

Although Jens proposed his statement as a datum, its status depends on its role in 
the public argumentation, not on the intention of its proposer. The teacher expects 
an explanation and Srike provides one, but for a different conclusion. However
Srike’s explanation is accepted as justifying both her conclusion and Jens’s original
claim. In this situation a single argumentation has two conclusions (see Fig. 4.5).
Srike’s argument is based on the data that “b and a are the legs of the triangle” 

(93/94) and that “b is the length of one leg” (93). She argues that because “a is cut 
off b” (94–97), “(b − a) is the difference of the lengths of the legs” (95–97).  

Excerpt 4.2 Transcript of the argumentation in episode 4 of lesson N5

89 Jens: Das ist also die eine Seitenlänge von
diesem mittleren Quadrat da. Aber trotz #

Jens: So this is the side length of that middle 
square there. But, #

90 L: # Also, Adam sagt, hier soll ich immer b 
minus a dran schreiben, oder soetwas 
ähnliches.

T: # So, Adam says, I should write b minus 
a on here, or something like that.

91 L: Er sagt diese vier Seiten sind alle b 
minus a lang. Wie kommt er denn darauf?
b minus a lang.

T: He says that these four sides are all b 
minus a long. So, how did he get that? b 
minus a long.

92 L.: Srike. T: Srike.
93 Srike: Wir haben ja die eine Seitenlänge

vom Dreieck b, eh die Kathete. Und dann
ist die, also

Srike: Well, we know the length b of one 
side of the triangle, in fact the adjacent side. 
And then this is therefore

94   vom anderen Dreieck die andere
Kathete a, die wird ja davon abgezogen 
und dann ist das,

   the other adjacent side a of the other 
triangle, which of course gets taken away
from it and then that is

95    was übrig bleibt dieses b minus a.    what is left, this b minus a.
96 L: Einverstanden? Immer wird von der 

grünen Strecke ’ne gelbe abgeschnitten
und es bleibt

T: Agreed? A yellow segment is always cut 
off the green, and only the remainder

97    von b nur noch der Rest über. b minus 
a. Minus a heißt das gelbe weg. So b 
minus a, ha.

   of b is still left. b minus a. Minus a 
means remove the yellow. Thus b minus a, 
ha.
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The teacher reinforces Srike’s attempt of an explanation, confirms her conclusion
(94–97) and supports her warrant by the backing “Minus means to cut off” (97). 
In the given episode the teacher and the students together construct an argument 
that, with the help of the Toulmin pattern, may be reconstructed as in Fig. 4.5. Our 
representation is somewhat different, but this argument provides an example of 
what Aberdein (2006, p. 214) calls a “linked” layout, where two or more data are
included. Aberdein did not consider the possibility that two or more conclusions 
could follow from one step, as occurs here.
It is interesting that in this case the warrant and the backing are given explicitly.

Typically, reconstructed arguments in secondary level classroom proving processes 
are often incomplete, as was the case with the written proof analyzed above. 
Krummheuer notes that in primary level classrooms, the backing is often not men-
tioned explicitly, and he calls the data, warrant and conclusion the “core” of an 
argument. Krummheuer also encounters cases where the warrant is also not given, 
as in Srike’s argument. In such cases the warrant can usually be assumed or taken as
implicit, as the transition from datum to conclusion must be justified somehow.  
In our argumentation analyses we usually do not add implicit warrants, but leave 
them implicit in the reconstruction. This is meant to illustrate the implicitness of 
both the argumentation and warrant. This allows the comparison of the degree of 
explicitness in different argumentation structures. In cases where we do want to talk
about an implicit warrant we place it in a dashed box (as in Fig. 4.6).

We have occasionally come across arguments where the datum has been left 
implicit. In such cases the warrant is present, however, so in the reconstruction the 
datum is left implicit, and the argument consists of the warrant and the conclusion 
(see Knipping 2003). As for the conclusions of arguments we have found that these 
are often formulated as questions. In the reconstruction of the argument these are 
represented by statements, so that their grammatical form is no longer visible, but 
their function in the argument is clearer. In the descriptions and comments on the 
argument this is noted and discussed.

b is the length of one leg of
the triangle (Srike, 93)

b and a are the legs of the
triangle (Srike, 93/94)

(b − a) is the side length of
the middle square
(Jens, T 89-91)

(b − a) is the difference of
the lengths of the legs

(Srike, T 95-97)

a is cut off b
(Srike, T 94-97)

Minus means to cut off
(T97)

Fig. 4.5 Functional reconstruction of the argumentation in episode 4 of lesson N5, example of a 
step of an argumentation
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In cases where statements are questioned or doubted they are often justified in 
more than one argumentation step, as in Krummheuer’s “chain of argumentations”. 
We call a chain of argumentation steps by which a target conclusion is justified an 
“argumentation stream” (AS). The target conclusion (the final conclusion of the 
argumentation) is often marked by the teacher as a goal of one stage within the
global argumentation. The example in Fig. 4.7 illustrates the last argumentation 
stream of the proving process in lesson N5. It involves both “linked” and “sequen-
tial” ways to combine steps.

4.4.2.2  Reconstructing the Argumentation Structure  
of Proving Processes in Class

As discussed earlier, the functional model of Toulmin, which is helpful for recon-
structing argumentation steps and streams, is not adequate for more complex argu-
mentation structures. Analyzing proving processes in classrooms requires a different 
model for capturing the global structure of the argumentations developed there. 
Knipping developed a schematic representation in order to illustrate the complex 
argumentation structures of this type of classroom talk, which we will present in the
following.

The argumentation structure of a classroom proving process is generally  complex. 
Argumentation streams can be parallel, as well as nested into each other. For exam-
ple, if the argumentation builds on certain statements more than on others, these will 
be justified and explained in more detail, leading to multiple arguments in support 
of them embedded within the larger argument to which they are important.

The length of the
difference in distance
is the difference in the
lengths of the distances

Fig. 4.6 Example of the 
representation of an implicit 
warrant, episode 4  
of lesson N5

The outer square is c2.
(S 50,T/S 58-62, T 66/67)

The outer square consists of
the square(b− a)2 and four

right triangles.
(S 70, T 72-82, BB)

The area of the rectangles is
2ab. (T,S 148-154, BB)

(b− a)2 = b2 − 2ab+ a2

(S,T 186-192, T 154/155)

c2 = b2 − 2ab+ a2 + 2ab
(S,T 190-193)

Equal terms on both sides of
an equation cancel out.

(S, T 197/198)

a2 + b2 = c2

(S,T 27/28, 178-183,
199-200)

Fig. 4.7 Example of the second half of the argumentation in lesson N5. “BB” means black board.
Transcript line numbers refer to Knipping (2003)
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To address this complexity Knipping developed a schematic representation that 
allows the description of argumentations at different levels of detail. This approach 
differs from Aberdein’s (2006) as he reduces the complexity of the argumentation 
by a process of folding that results in a single step that includes all the assumptions 
(initial data and warrants) of the full argumentation, but which hides the relation-
ships between these assumptions. Knipping’s approach also differs from that taken
by van Eemeren et al. (1987) who developed two different ways of representing the 
structures of everyday written argumentations, in that she makes the role of war-
rants more visible. We will illustrate below how Knipping’s method makes the
global argumentation visible while preserving the relationships in the local steps.

In the schematic representation shown in Figs. 4.8 and 4.9 all statements in the 
overall argumentation are represented by rectangles, circles and diamonds. The 
 different symbols not only represent the different functions of the statements (datum, 
conclusion, warrant) but also the status that the statements have within the global 
structure of the argumentation. For example, the target conclusion is represented by 
a black rectangle. White rectangles represent target conclusions of intermediate
stages within the global argumentation; they indicate end points of stages. These 
can become starting points, therefore data, in the next stage of the argumentation. 
Three statements (the three white rectangles in Fig. 4.8) have the status of data in 
the argumentation stream shown, but they are at the same time conclusions of earlier 
argumentation streams. Once their truth was established they became data for a 
subsequent argumentation stream, the one being presented in Fig. 4.8. Conclusions 
or data which do not have the status of an intermediate target are represented by 
circles. Warrants and backings are symbolized by diamonds.

In Knipping (2003) the overall structures of argumentations were analyzed by 
means of such schemes. She compared argumentation structures in different  proving 

Fig. 4.8 The method of reconstructing a global argumentation

Data or Conclusions

Warrants or Backings

Target-conclusion

Intermediate conclusions Refutations

Fig. 4.9 Symbols used in argumentation structure diagrams
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processes on the basis of the schematic representations and attempted to reconstruct 
their peculiar rationale. In the next section we will use some results of our research 
to illustrate the utility of this method for describing complex argumentations and 
their rationale. The processes that we have studied occurred in junior high school 
contexts where proof was an explicit goal of the lessons observed (see Knipping 
2003; Reid and Knipping 2010).

4.4.3  Comparing Global Argumentation Structures

There is no established theoretical framework for investigating classroom proving
processes. Therefore no model for the explanation of these processes can be formu-
lated before researching the empirical field, but still a sound methodology of discov-
ery is necessary. Analyzing argumentation in the primary mathematics classroom, 
Krummheuer (2007) considers comparison as a methodological principle that 
 provides a reliable method of this sort and that can give “direction to a novel 
 theoretical construction” (p. 71). This methodological principle underlies the com-
parisons that we undertake in our research on proving processes in classrooms
(Knipping 2003, 2008; Reid and Knipping 2010).
As with Glaser and Strauss (1967), for Krummheuer comparative analysis repre-

sents a central activity that allows empirical control of the heuristic generation of 
theory. In this approach comparisons occur continuously, “the comparison of inter-
pretations of different observed parts of reality represents a main activity on nearly 
every level of analysis: from the first interpreting approach to the later more theo-
retical reflection” (Krummheuer 2007, p. 71, describing Strauss and Corbin).  
The aim of these comparisons is “conceptual representativeness” (see Strauss and 
Corbin 1990) that is to ground theoretical concepts within the data. This concept 
differs from the one in quantitative research, where representativeness on the level 
of the sampling is the goal.

Knipping (2003) compares argumentations at two levels. Local argumentations 
are compared by analyzing and classifying the warrants (and backings) used accord-
ing to the field of justification they belong to. Global argumentations are compared
according to their overall structures. Here we will focus on comparing global argu-
mentation structures, to show how they reveal elements of the rationale underlying 
the proving process. Two types of structures from our research will be used here as 
examples. We call them source-structure and spiral-structure (See Reid and 
Knipping 2010 for more detailed descriptions. Knipping 2003 and Reid and 
Knipping 2010 also describe two other structures. The four structures identified so 
far in our work only begin to describe the variety possible in classroom proving
processes.). While the structures themselves are grounded in the data, the metaphors 
we use to describe them reflect our later interpretations.
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4.4.3.1  Source-Structure

In proving discourses with a source like argumentation structure, arguments and
ideas arise from a variety of origins, like water welling up from many springs. This
is illustrated by Fig. 4.10, which is the global argumentation structure for lesson N5 
from Mrs. Nissen’s class (Knipping 2003). The structure has the following charac-
teristic features:

• Parallel arguments for the same conclusion (AS-1 and AS-2).
• Argumentation steps that have more than one datum, each of which is the conclu-

sion of an argumentation stream (AS-8).
• The presence of refutations in the argumentation structure (AS-3, AS-6).

By a parallel argumentation we mean argumentation streams in a proving 
 process in which different arguments can be found supporting the same conclusion. 
This happens, for example, if substantially different arguments are produced for the 
same conclusion. Both AS-1 and AS-2 support the conclusion that the side of the
outer square is c (see Fig. 4.1).

Several argumentation streams can support a single conclusion without being 
parallel. The conclusion of each one can act as a datum for a subsequent step that 
requires the data from all of them. We are especially interested in noting cases 
where the data in a linked argumentation step are conclusions from a number of

AS-1

AS-2

AS-3

AS-4

AS-5

AS-6

AS-7

AS-8

Fig. 4.10 Source-structure
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argumentation streams. For example, the conclusions of AS-4, AS-5 and AS7 act as 
data for AS-8. Details of these three conclusions and AS-8 are shown in Figs. 4.7 
and 4.8.
There are two refutations within this argumentation structure. In AS-3 Maren, in

the process of describing the area of the outer square c2, assumes that the area of the 
inner square is b2. The teacher contradicts her, refuting Maren’s suggestion visually.
The teacher then develops together with the class an argument that the side length 
of the inner square is b − a (AS-5) and therefore the inner square’s area must be 
(b − a)2. Sascha’s conjecture (AS-6) is the other example of a refutation. Sascha 
claims that two of the triangles form a square which the teacher refutes by having 
the class put together the cut-out triangles. However, she says “I really like your
idea, I think ideas that lead to the right result in detours are wonderful” giving value
to Sascha’s conjecture even though she refuted it.
The source-structure is also characterized by argumentation steps that lack

explicit warrants. Argumentation steps without explicit warrants are evident in 
AS-2, AS-3, AS-4 and AS-5. While this also occurs in other types of argumentation 
structures it is more frequent in the source-structure. We speculate that this is 
because of the encouraging in the source structure of conjectures, which may be 
offered with some supporting data, but which are not further developed. A similar 
phenomenon occurs in another structure we have identified, the gathering-structure 
(Reid and Knipping 2010). That structure involves the gathering of a large amount 
of data to support several related conclusions. Again the emphasis is on collecting 
information (data and conclusions) rather than on the connections between them. In 
the other structures we have studied (see below) there is much more emphasis on the 
transitions, and so there are more explicit warrants.

We noted above that the source-structure has several characteristic features, 
which we have described in the argumentation structure of Mrs. Nissen’s lesson 5.
In another classroom we have observed lessons that have another structure, the 
spiral- structure, which shares the same characteristic features, but differs in the way 
they occur in the global argument.

4.4.3.2  Spiral-Structure

In a proving process with a spiral argumentation structure the final conclusion is 
proven in many ways. First one approach is taken, then another and another. Each
approach can stand on its own, independent of the others. The global argumentation 
structure depicted in Fig. 4.11 shows a spiral argumentation structure from Mrs.
James’s grade 9 (age 14–15 years) classroom in Canada (see Reid and Knipping 
2010). The class was trying to explain why two diagonals that are perpendicular and 
bisect each other define a rhombus (see Fig. 4.12). The students had discovered and 
verified empirically that the quadrilateral produced is a rhombus using dynamic 
geometry software and the proving process led by the teacher was framed as an 
attempt to explain this finding using triangle congruence properties.
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Several features characteristic of the spiral argumentation structure are evident in 
Fig. 4.11:

• Parallel arguments for the same conclusion (AS-B, AS-D, AS-E).
• Argumentation steps that have more than one datum, each of which is the conclu-
sion of an argumentation stream (the final conclusions of AS-B and AS-E).

• The presence of refutations in the argumentation structure (AS-D).

D A

BC

E

Fig. 4.12 Diagram from
Mrs. James’s classroom
(reconstruction)

AS-A

AS-B
AS-D

AS-C AS-E

Fig. 4.11 Spiral-structure
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In the argumentation structure there are three parallel arguments AS-B, AS-D,
and AS-E. They all lead to one conclusion, that the four sides are congruent, which 
acts as the datum for the final conclusion that the quadrilateral is a rhombus.  
In AS-B the congruency of the sides is shown by showing that the four triangles
formed by the diagonals are congruent. InAS-D a student offers an alternative argu-
ment, based on the idea that the quadrilateral cannot be shown to be a square  
(see below). This argument is listened to attentively by the teacher, who eventually 
refutes it. Finally, in AS-E the teacher offers an alternative argument implicitly 
based on using the Pythagorean Theorem instead of triangle congruency to establish 
that the four sides are equal.
In the argumentation structure from Mrs. James’s classroom there are two

 argumentation streams that involve steps that have more than one datum, which are 
in turn conclusions of argumentation streams. In AS-E four data that are  conclusions 
of short arguments combine to establish that the sides are congruent. The teacher 
assigns two arbitrary numbers 10 and 3 to the legs of triangle AEB (see Fig. 4.12) 

and this leads to the conclusion that the length ofAB is 10 32 2+ . The Pythagorean 
theorem is used implicitly as the warrant. The same procedure is then used to 
find the length of BC, and to conclude that AB=BC on that basis. A third argument

leads to the conclusion that CD is also 10 32 2+ . The final datum is the fact that 

all the triangles are right triangles. These four data are taken together to conclude
that the four sides AB, BC, CD, and DA are congruent. In AS-B two data are used
to establish the conclusion that the sides are congruent. The first is the culmination 
of a chain of data/conclusions leading to the conclusion that the four triangles AEB,
BEC, CED, and DEA are congruent. The second is the conclusion of a shorter argu-
ment, establishing that the sides of the rhombus are corresponding sides of the con-
gruent triangles.
The single refutation in this argumentation structure occurs in AS-D. Unlike the

refutations we have discussed in the source-structure, above, what is refuted is not a 
datum or a warrant, but rather the applicability of the warrant to the argument (see 
Reid et al. 2008 for details. Verheij 2006 discusses analogous types of rebuttals.).  
A student, Kaylee, asserts that the diagonals must define a rhombus because in order 
to define a square the diagonals would have to be the same length. Mrs. James does
not refute the fact that if the diagonals were the same length, as well as being per-
pendicular and bisecting each other, they would define a square. Instead she points 
out that other quadrilaterals might also be possible that have not been considered 
and excluded. Here the refutation is directed at the warrant, but does not refute it 
(as it is correct). Instead it suggests that the warrant is insufficient in the logic the 
teacher expects mathematical arguments to follow. Although she refutes Kaylee’s 
argument, Mrs. James values it, commenting, “You’re on the start, but I’m not sure
that you’ve clinched it. I’m not sure you’ve got that final part, but … you’re three 
quarters of the way there my dear.”

While representing the argumentation structures of proving processes is useful as 
a way of identifying and structuring the important elements in it, we gain more from 
comparisons of argumentation structures. For example, Knipping (2002, 2003, 
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2004) found that in the six classrooms she observed, the proving processes either 
had argumentations with the source-structure, or another structure that she calls the 
reservoir-structure. The reservoir-structure differs from the source-structure in 
many ways. Most notably, in the reservoir-structure the reasoning sometimes moves
backwards in the logical structure and then forward again. Initial deductions lead to
desired conclusions that then demand further support by data. This need is made 
explicit by identifying possible data that, if they could be established, would lead to 
the desired conclusion. Also, because transitions are a focus in the proving process, 
the reservoir-structure has more explicit warrants.

The different structures in the lessons Knipping observed revealed interesting 
differences in the nature of proof teaching in the two contexts in which they were 
found. In the next section we will compare the source-structure with the spiral 
structure.

4.4.3.3 Comparing Source-and-Spiral Argumentation Structures

Both the source-structure and the spiral-structure were observed in proving
processes in which the teacher took a prominent role in guiding the process.
Arguments were co-produced by teachers and students, but the teacher was in con-
trol of the emerging overall structure. Therefore it is not surprising that these argu-
mentation structures have several similar characteristic features including parallel 
arguments, argumentation steps that have more than one datum, the presence of 
refutations, and argumentation streams that do not connect to the main structure. 
However, they differ in how these features play out in the global structure.

One of the main distinctions between the spiral-structure and the source- structure 
is the location of the parallel arguments. In the source-structure the parallel argu-
ments occur at the start of the proving process (AS-1 and AS-2 in Fig. 4.10). The 
teacher invites input at this stage, but once the basis for the proof is established, the 
teacher guides the class to the conclusion through an argumentation that no longer 
has parallel arguments. In the spiral-structure, however, the conclusions of the par-
allel arguments are almost the final conclusion in the entire structure. In fact, two of 
the three parallel arguments in Fig. 4.11 (AS-B and AS-E) could stand alone as
proofs of the conclusion. Having proven the result in one way, the teacher goes back
and proves it again in a different way. And she values students’ attempts to prove the 
conclusion using other approaches.
The source-structure and the spiral-structure differ also in the kinds of refuta-

tions they involve and in the inclusion or omission of warrants. Recall that in the 
source type argumentation structure shown in Fig. 4.10, the refutations are refuta-
tions of data.When interpreting the figure on the blackboard students propose state-
ments that the teacher refutes. In contrast, the refutation in the spiral type 
argumentation structure shown in Fig. 4.11 is a refutation of an argument. The data 
and warrant are accepted but their adequacy to justify the conclusion is refuted.  
In the source structure we see also many steps that omit warrants, while most steps 
in the spiral structure include warrants. The notable exceptions are in AS-A and 
AS-E. We will discuss some possible reasons for this later.
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Although the source and spiral argumentation structures have the same 
 characteristic features, they differ in the placement of the parallel arguments and in 
the nature of the refutations they include. These differences result in fundamentally 
different argumentation structures. It is through comparisons of structures that such 
differences become apparent. While reconstructing argumentation structures and 
comparing them allows us to identify important features and differences, it does not 
explain why they occur. To try to explain these differences, we need to return to the 
data and consider the nature of the local arguments that make up the global
structure.
In the proving process in Mrs. Nissen’s classroom, the figure on the blackboard

is the starting point. Almost all the steps in the argument consist of establishing data 
that is depicted in the figure. For example, the part of AS-5 shown in Fig. 4.5 estab-
lishes that the side of the inner square is b − a. The three sub-conclusions of AS-4, 
AS-5 andAS-7 are all present implicitly in the figure, and unpacking that data is the
main focus of the proving process. This explains the focus on data, which we see in 
the lack of warrants and in the refutation of inaccurate data. Once all the necessary
data has been unpacked, the final steps of the argument are straightforward and
algebraic. They are what is written on the blackboard at the end, as the written
proof, and notably, the warrants that are expressed verbally in the class are not 
included when the proof is written down. Again the focus is on the data, rather than 
on the arguments and their warrants. When we consider the nature of the omitted 
warrants this makes sense, as they are either visual (based on features of the figure
on the blackboard) or algebraic procedures well known to everyone in the class-
room. In the first case it is hard to imagine how the warrants could be formulated in 
words or symbols, and in the second case the teacher is simply modeling the stan-
dard mathematical practice of omitting from proofs any warrants that the reader can 
be expected to provide.
In Mrs. James’s lesson, the argumentation begins with the given data: the

 diagonals are perpendicular and meet at their midpoints. From this data the figure is 
constructed. There are not many explicit warrants in this argumentation stream (AS- A). 
As in Mrs. Nissen’s lesson, if the warrants were made explicit they would either be
visual or refer to conventions well known to the students. In the other streams,
 however, there is a focus on the arguments themselves and warrants become more 
explicit. Duval’s “recyclage” is evident in AS-B where almost all the data are
 recycled conclusions of previous steps, and in which most steps have explicit 
warrants. In AS-D we see the focus on the argument in the refutation of it, as
opposed to the refutation of data in the source structure. Even in AS-E, where there 
are many omitted warrants and a configuration similar to the source structure 
 overall, with the final conclusion depending on more than one datum, the fact that 
the teacher offers this alternative approach to establishing the final conclusion 
 indicates a focus on arguments rather than data and conclusions.

Examining the argumentation structures in these two classrooms allows us to 
describe their characteristic features, and by comparing them we can understand the 
different ways these features occur. We see the parallel arguments, refutations and 
omitted warrants in both, but we see these features occurring differently. Looking
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more closely at the features of the local arguments helps to explain these  differences, 
and reveals an importance distinction between the rationales of the proving pro-
cesses taking place. In Mrs. Nissen’s class we find in the local arguments a focus on
interpreting the given figure. The activity is essentially one of unpacking the data in
the figure and expressing it verbally. It is not clear how this could be transferred to 
proving another theorem, unless a similar complex figure were provided. We sus-
pect this is inevitable in a class focussing on the Pythagorean Theorem. Historically, 
mathematics educators have struggled with the problem of using mathematically 
significant theorems as a context for learning proving. The proofs of such theorems 
are usually sufficiently complex that it is unreasonable to expect students in schools 
to discover them, unless the teacher provides so much guidance that the students’ 
contributions are limited to activities such as unpacking a diagram, as in Mrs.
Nissen’s class. Herbst (2002b) describes how this struggle affected the evolution of 
proof teaching in the US.
In contrast, in Mrs. James’s class the focus is more on proving. The result itself

is relatively uninteresting, but the recycling of conclusions as data, the provision of 
warrants, the fact that the same result can be proven in different ways, and bringing 
different prior knowledge to bear, are all important. Student contributions are val-
ued, even when flawed, and the argumentation, especially in AS-B, served as a
model for the students when proving similar claims in subsequent lessons.

The source structure and the spiral structure are interesting to compare because 
they have many characteristic features in common, including parallel arguments, 
argumentation steps that have more than one datum, refutations, and unconnected 
argumentation streams. There are differences in how these features play out in the 
global structures, however, and to explain these we focus again on local arguments.

4.5  Conclusion

Toulmin’s functional model of argument allows us to reconstruct arguments in 
mathematics classrooms not only at the local level, as Krummheuer does, but also 
at the global level. By examining argumentation structures (the metaphoric anato-
mies of proving processes) we can describe their characteristic features, and by 
comparing structures we can understand the different ways these features occur in 
an argumentation structure. To better understand the differences we observe, and to 
shed light on the rationales of the proving processes we return to the local argu-
ments, to physiology in our metaphor. Attention to both the local and the global 
levels are essential to understanding proving processes in the classroom.
Toulmin’s model can also be used to look at both argumentation for learning and

learning of argumentation. Krummheuer’s work shows how it is applied in primary
classrooms to study mathematical argumentation as a pre-condition for learning 
mathematics, that is, argumentative learning. We focus instead on mathematical 
argumentation as the desired outcome of learning in secondary level classrooms, 
and hence on learning of argumentation.
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Krummheuer’s use of the Toulmin model allows him to examine argumentation 
in a single classroom very closely, and to relate argumentation to participation. Our 
approach instead provides a more global picture of the argumentation, permitting 
comparisons between classrooms. Of interest for future research is the combination 
of these foci, looking at how argumentative learning comes into the learning of
argumentation.

We are also interested in bringing together research on argumentation and 
research on the emergence of disparity in achievement in mathematics classrooms 
(Knipping 2012). Sociological research in mathematics education (Lubienski 2000) 
has shown that students of different social backgrounds participate differently in
classroom activities, and have different success in school mathematics. We have 
used concepts from Bernstein (2000) to describe some mechanisms related to the 
emergence of disparities in mathematics classrooms (e.g., Knipping and Reid 
2013a; Knipping et al. 2011). We are only beginning to develop methods for 
researching argumentation together with social disparity (see Cramer 2014). 
Krummheuer’s methodological integration of research on argumentation with 
 participation should be useful in this context as this allows for the analysis of situa-
tions in which participation in argumentation leads to different levels of autonomy 
and different roles in the classroom.
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    Chapter 5   
 Empirically Grounded Building of Ideal 
Types. A Methodical Principle of Constructing 
Theory in the Interpretative Research 
in Mathematics Education 

             Angelika     Bikner-Ahsbahs    

    Abstract     The central question of this article is: How can the development of ideal 
types contribute to the empirically based construction of theories in the interpretive 
research of mathematics education? First we specify and localize the theoretical 
understanding used and then clarify the term ‘ideal type’ distinguishing between 
three kinds of ideal types: the ideal type of action, the personal, and the situational 
ideal type. With the help of examples from empirical research, we show how the 
construction of ideal types can be used as a methodical principle of theory construc-
tion. In so doing, common features and different heuristics of empirically-based 
theory construction are reconstructed.  

  Keywords     Theories   •   Ideal type construction   •   Interpretative research  

5.1        Introduction 

 Theory construction is always the construction of something new, and therefore not 
directly open to methodological approaches (cf. Kelle  1997 , p. 182). In this respect, 
methods of qualitative analysis of empirical data can serve as heuristics for theory 
construction. In this article I show how the development of ideal types can be 
regarded as a methodical principle which “points the way” for an empirically-based 
theorizing (cf. Weber  1922 , p. 190, own translation). Selected examples of empirical 
research will illustrate a number of principles and heuristics of theory construction 
in the development of ideal types. But fi rst of all, I put forward a theory concept 
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which fi ts this kind of qualitative research. I then go on to clarify the term  ideal type  
and its relevance for interpretive understanding in everyday situations and in 
science.  

5.2     Theories and Their Signifi cance 

 A look at the encyclopedia of epistemology (Seiffert and Radnitzky  1989 ) reveals 
there can be no consistent meaning of theory. This encyclopedia distinguishes three 
different theory concepts: “ Theory  as a scientifi c doctrinal system without consider-
ing the underlying methods or its object” (Seiffert and Radnitzky  1989 , p. 368, own 
translation), 1  “Theory […] as assured knowledge arising from the interaction of 
experience and thinking—determined in accordance with the methods described in 
the theory or methodology of the inductive sciences” (ibid., p. 368, own translation) 2  
and “Theory in contrast to practice” 3  (ibid., p. 368, own translation). The aim of 
interpretive empirical research is the data-based construction of theory. These 
empirically based theories cannot belong to the fi rst sort. But they cannot belong to 
the second sort either, as these theories are not obtained inductively but abductively 4  
(Kelle  1997 , p. 161ff.; Beck and Jungwirth  1999 ; Voigt  2000 ). Subsumption under 
the third category seems possible, but being a quite common category it does not 
formulate an adequately differentiated approach to the meaning of theory and, 
hence, does not offer a classifi cation of theories that assists in building a suitable 
theory concept. 

 Mason and Waywood apply their distinction of theory levels exclusively to the 
research of mathematics education. They distinguish between “background 
 theories”, “implicit theories” and “foreground theories” (Mason and Waywood 
 1996 , p. 1056). 

 “Background theories” are general theories on problems met in mathematics 
education, so-called “theories of mathematics education” (Mason and Waywood 
 1996 , p. 1058). They involve a characteristic language and they fi x the general 
framework for adequate research questions and aims. They determine which topics 
may become objects of research and which methods will be accepted. They are 

1   German expression: “ Theorie  als wissenschaftliches Lehrgebäude, ohne Rücksicht auf die 
Methode(n), mit denen es gewonnen wurde oder auf seinen Gegenstand.” 
2   Germen expression “ Theorie  […] als gesichertes Wissen, das aus dem Zusammenwirken von 
Erfahrung und Denken—und zwar nach ganz bestimmten in der Theorie bzw. Methodologie der 
induktiven Wissenschaften beschriebenen Methoden—entsteht.” 
3   German expression: “Theorie im Gegensatz zur Praxis.” 
4   This means the problem we are faced with when our observations cannot be explained by known 
theories. Explaining an observation by the construction of a new theory is done by abduction: the 
use of newly created theory elements on a trial basis which would explain unexpected or unsatis-
factorily explained observations. But this, of course, does not say anything about the quality of 
such theory elements. Only a process consisting of examinations and modifi cations of the theory 
elements will as a rule lead to their acceptance. 

A. Bikner-Ahsbahs



107

based on a certain world view, e.g. whether the world is taken as objectively given 
or rather interpreted subjectively, whether the behavior of the actors and the data 
about the actors in the fi eld can be seen independently from the context or whether 
mathematical knowledge can be seen as being constructed individually, socially, or 
rather accessed through cultural acquisition. Such theoretical presumptions may be 
implicit. It is the aim of many—but not all—research directions to make this back-
ground as explicit as possible, and consequently communicable. Even background 
theories that are not made explicit eventually do become visible, e.g. in methodical 
research procedures, in the presentation of results, and by the kind of results 
themselves. 

 “Implicit theories” are normally not explicitly available, yet they still fi nd a place 
in the research process. For example, in their respective research domains, scholars 
could have an implicit theory of knowledge development, of suitable research 
behavior, of what constitutes the correct representation of research results or 
research products, of what research is, could be or means, of the role theories play 
within this research process, and of the notion of theory itself. As a consequence 
implicit theories are everyday theories of scientists. They do not necessarily have to 
be commensurate with background theory but do nevertheless infl uence the research 
process. This becomes apparent for instance from a study by Maier and Beck ( 2001 ) 
on the development processes of theories, which as a by-product illustrates the 
nature of such implicit theory through feedback processes with the authors (p. 42ff.). 
The aim of their study, though, was not to reconstruct implicit theories, but rather to 
reconstruct the development processes of so-called “foreground” theories, which 
can be compared with object related theories—theories of medium scope on a 
research object that is exactly localized. (Kelle  1997 , p. 280; Krummheuer and 
Brandt  2001 , p. 198ff.). 

 “Foreground theories” are explicit theories relating to research objects which 
have been developed within a research area and which describe, explain or predict 
facts. Mason and Waywood characterize these theories as “theories within mathe-
matics education” (Mason and Waywood  1996 , p. 1060) which in the research 
 process are applied, extended, consolidated and developed, and that may have dif-
ferent functions. Explanatory theories offer to explain how and why something has 
happened or has been observed. Descriptive theories offer a theoretical frame of 
ideas with whose help an action can be observed and traced in a certain way (cf. 
Maier and Beck  2001 , p. 43). Predictive theories indicate what may be observed 
under a certain set of conditions. 

 The theoretical background assumptions which I refer to in this article are those 
of interpretive education research as developed in the German-speaking research 
within mathematics education over the past 30 years. (cf. Jungwirth  2003 ). Their 
assumptions are rooted in selected works on symbolic interactionism, grounded 
theory, objective hermeneutics, and ethnomethodology and phenomenology (Beck 
and Maier  1993 ,  1994a ,  b ; Beck and Jungwirth  1999 ; Helle  2001 ; Krummheuer and 
Voigt  1991 ; Krummheuer and Naujok  1999 ; Maier and Voigt  1991 ,  1994 ; Maier 
and Beck  2001 ). It is a basic assumption of interpretive research that the world has 
already been pre-interpreted by the people who live in it, and that empirical research 

5 Empirically Grounded Building of Ideal Types. A Methodical Principle…



108

investigates a question on the basis of reconstructions of these interpretations— 
consequently on the basis of second-order interpretations. The paradigmatic basis is 
formed by “orientation to change” (Ulich  1976 , p. 26ff., own translation). This 
means that we do not primarily look into the features a person or a situation  has , i.e. 
 possesses,  but how such features  evolve , how they  are established , how they  develop , 
how they  are stabilized  or  disrupted . 

 A wider consensus in interpretive research is the hypothesis that a person’s inter-
pretations infl uence his or her own behavior in a crucial way (cf. Helle  2001 , p. 57). 
Whether these interpretations are understood as creative new constructions or as 
reconstructions of already preformed social knowledge or social structures cannot 
be determined in the context of mathematics education research. Both are permit-
ted, as are conceptions connecting the two. Papers on hermeneutic sociology of 
knowledge, for example, criticize strict objective hermeneutics with its basic 
assumption of an all-determining existence of latent objective meaning structures, 
because the theory that human behavior is completely determined by social struc-
tures leaves no place for new constructions; neither in science—where this theory 
should be applied as strictly as in the area of research—nor in the research area itself 
(cf. Schröer  1994 , p. 10ff.). They therefore propose to start from a complementary 
conception, i.e. from reconstructions of social structures on the part of the protago-
nists, on the one hand, and the possibility of creative new constructions on the part 
of individuals, on the other (Schröer  1994 ). 

 How do “foreground” theories actually develop within interpretive research of 
mathematics education, and how are they characterized?  

5.3     The Notion of Theory in Interpretative 
Mathematics Education Research 

 In general, interpretive mathematics education claims to make clear its theoretical 
frame and the background theories used. Following the review of the state of dis-
course by Maier and Beck ( 2001 ), the particular notion of theories, understood as 
“foreground-theories”, develops with all its functions and meanings intertwined 
with research practice, too. To explore this notion of theory within interpretive 
research in mathematics education, Maier and Beck investigated 20 reports of 
empirical research with regard to the process of theory development, complemented 
by feedback from the authors. It was their aim to reconstruct the genesis of theories 
in this research area in order to develop an initial approach for an empirically 
founded “theory of theory development” and thus also to arrive at a conceptual 
clarifi cation of “theory” in interpretive research within mathematics education. 
Following the study of Maier and Beck, theory is understood as follows:

  […] an intellectual construction by means of which a more or less greater sphere of reality may 
either be described consistently and systematically or is understood comprehensively and in a 
differentiated way (where the starting point of view is always selective). Understanding cannot 
strictly be separated from explaining. (Maier and Beck  2001 , p. 43, own translation) 
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   In addition to this, Beck and Maier draw distinctions among “foreground”- 
theories, according to which interpretive research on mathematics education can be 
theory-guided or theory-developing (Beck and Maier  1994b ). Theory-guided 
empirical research works out existing theories for a defi ned research area. This kind 
of research claims to come to a better understanding of a determined part of reality 
on the basis of given “foreground” theories. Theory-developing empirical research, 
however, claims to construct new theory features. According to the categorization 
by Beck and Maier, theory-developing research can take place either in the “cate-
gory developing” or “systematic-extensional” way. But I think this differentiation 
falls short because the feature  systematic-extensional  actually characterizes the 
research process, which is in fact systematic—in the sense of methodically 
refl ected—and extensional in the sense of an extensive variants genesis. The feature 
 categories developing  is oriented on the product, namely the evolving categories. 
And on top of that, the category  developing research  may also take a systematic- 
extensional course. Products of developing research that do not consist of categories 
as a rule include reconstructed regularities or patterns. Therefore, I propose the 
distinguishing of the features  category developing  and  pattern reconstructing . In the 
following section, I present three examples of theory-constructing research in order 
to clarify the distinction between the  categories developing  and  pattern reconstruct-
ing  interpretations.  

5.4     Theory-Developing Research 

 A strong focus in empirical research within mathematics education is on learning 
processes in the context of ordinary mathematics classes. One problem of empir-
ical research in ordinary mathematics classes is the complexity of their objects. 
Theory features which describe or explain specifi c phenomena of this fi eld there-
fore often concentrate on clearly defi ned parts of mathematics classes that are 
analyzed in detail on the basis of a limited amount of data (Beck and Maier 
 1994a ,  b ). The aim of such analyses is extending interpretations beyond the 
respective intentions and situations (Beck and Maier  1994a , p. 44ff.). End stages 
of systematic interpretation sequences which often take place in groups are 
hypotheses of interpretation (Beck and Jungwirth  1999 ) which initially register 
typicalities (Beck and Maier  1994a , p. 64) and later bring these typicalities 
together in a theoretical but empirically founded way to obtain theory elements. 
This is how Voigt—on the basis of transcripts of inquiring-developing mathemat-
ics classes—develops interaction patterns and routines which describe how 
teachers and learners force each other into action and thereby create a bond. 
Voigt develops a description scheme by which the emergence of inquiring-devel-
oping teaching sequences can be understood (Voigt  1984a ,  b ). Later on Voigt 
complements this view of mathematics lessons which is restricted to social inter-
actions by a more content specifi c perspective by asking how themes are socially 
constituted in class (Voigt  1995 ). 

5 Empirically Grounded Building of Ideal Types. A Methodical Principle…



110

 Krummheuer’s objective is to develop a theory of learning in mathematics classes 
from the perspective of social interactions. In his research he tries to fi nd out what 
it takes to achieve learning mathematics in a process of social interactions, and how 
this can be described. To this end, i.e., he transfers Bruner’s format concept 
 developed in language-acquisition research to the learning of mathematics in 
 argumentative learning processes and develops related formats of argumentation. 
Argumentation formats are exemplary social interactions, directed at subject 
 learning, that do not necessarily keep learners in dependency like interaction pat-
terns, but by means of which the learners may experience an increase in indepen-
dence (Krummheuer  1992 ). On the basis of argumentation and participation 
analyses which follow on analyses of social interaction, in collaboration with Brandt 
Krummheuer extends his research from a dyadic to a polyadic point of view of 
social interactions and reconstructs features of “interactive thickening”—i.e., 
 teaching situations at elementary school level, where fruitful learning conditions for 
argumentative learning come together in polyadic learning processes (Krummheuer 
and Brandt  2001 ). 

 Voigt and Krummheuer investigate specifi c phenomena in ordinary mathematics 
classes in order to describe them with the help of a concept scheme, or to make them 
comprehensible in their regularity. The concepts used are partly borrowed from 
other theories and adapted to the special conditions of the respective research, or 
newly formulated according to the subject in question. That does not mean that in 
this case an exclusive categorization in existing theories is effected. According to 
Maier and Beck ( 2001 , p. 42ff), Voigt rather describes this process as a reciprocally 
stimulating and forward-moving process of abductive constructions on the basis of 
empirical data, and set in relation to existing research and theoretical approaches 
where some ideas have only been recognized in connection with the literature 
 subsequent to the theory construction processes. Main features of this research are 
abductively gained theory elements. For example, via the acquiring process pattern 
Voigt can explain how specifi c “seemingly open” processes in ordinary mathemat-
ics classes are steered and subsequently lead to the acquisition result desired by the 
teacher (Voigt  1984a ). Via the concept of interactive thickening, Krummheuer and 
Brandt are able to identify situations in classes which have signifi cant learning 
potential (Krummheuer and Brandt  2001 ). 

 In his research on how pupils understand teachers’ instructions and explana-
tions in ordinary mathematics lessons, Maier ( 1995 ) presents a slightly different 
theory. Together with his working group, on the basis of systematic-extensional 
interpretations he develops a category system consisting of two characteristic 
dimensions: a mental and a modal dimension. These are then analyzed in their 
respective different forms. According to Maier, pupil understanding entails a 
mental feature, that is an intellectual construction, which may be distinct in a 
conceptual, process-related, relational, argumentative, elaborative, and refl exive 
way; and a modal feature which characterizes the manner of pupil understanding 
as implicit or explicit on the one hand and as verbal or symbolic language under-
standing on the other. Subsequently, an evaluation model of pupil understanding 
is developed and validated with  additional data. The linking of category system 
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and evaluation model eventually results in a theory offer which can be used as a 
basis for an analysis of understanding products in dependence on the subject’s 
standards, teacher intentions, and the offers of meaning, and which can also 
explain digressions from what has been understood from the lessons’ meaning 
offer (Maier  1995 ). 

 Representative of other work in this fi eld, these three short summaries of empiri-
cal research on interpretive research in mathematics education describe two  different 
types of theory-constructing empirical research: one is the category-developing 
research, which organizes the research fi eld with help of a feature space, and the 
other, a pattern-reconstructing research, which reconstructs patterns to describe 
typical phenomena in this fi eld. 

 A common feature of all theory-constructing work is that it does not only 
reconstruct what a particular teacher means in a particular situation, but rather 
that it works out—independently of situation—what is typical of a particular 
situation with regard to a specifi c problem and puts aside everything else, i.e., it 
is performed on a level of abstraction (Schreiber  1980 ). According to the above-
mentioned research, the identifi cation of typical features may happen in two 
quite different ways. Maier organizes the interpreted comprehension processes 
by means of characteristic dimensions and so obtains an organizational frame-
work that can be used for the analysis of comprehension processes, on the one 
hand, but also for meaning offers during lessons on the other. An analysis of 
individual cases enables him to get to the bottom of infl uences, especially when 
the profi les of meaning offer and pupil understanding do not resonate. In con-
trast, Voigt reconstructs the characteristic features of particular process patterns, 
i.e., he sees these patterns into real processes and works out typical features as 
patterns on the basis of empirical data. This way he obtains  characterizations of 
ideal types  (I explain this expression in the following passage), of particular pro-
cesses, however without calling the research process  empirically based construc-
tion of ideal types. Interactive thickening  and  argumentation formats  can also be 
regarded as ideal type descriptions. With the aid of these ideal type characteriza-
tions, Voigt and Krummheuer are able to conceive complex teaching phenomena. 
Now two questions arise:

 –    What is meant by an ideal type characterization (of a situation)?  
 –   How can ideal type construction and ideal type characterizations be used specifi -

cally to construct concepts and develop theories in mathematics education?     

5.5     Looking Back: The Roots of the Ideal Type Concept 

 The ideal type concept comes from Max Weber. Connected to this concept was the 
attempt to develop a conceptual tool for an interpretive sociology allowing selective 
conceptual descriptions of social processes that are embedded in complex contexts 
of meaning and therefore may be explained complexly in their complexity (Weber 
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 1921 /1984, p. 38;  1922 /1985, p. 194ff.;  1949 , p. 93ff.). “But what was meant and 
what can be meant by that  theoretical  concept can be made unambiguously clear 
 only  through precise, ideal-typical constructs” (Weber  1949 , p. 95) 5  (emphasis 
included by the author according to the original text). As Weber well notices, this 
runs the risk of becoming out of touch with reality and therefore he requires a link 
with reality. According to Weber, an ideal typical construct (which I call an ideal 
type concept) is a concept by means of which social circumstances may be exam-
ined, but which itself only roughly describes real circumstances because “Only 
those rational constructions are social types of real events which can be observed in 
reality by at least some kind of approximation […]” 6  (Weber  1921 /1984, p. 29, own 
translation). In consequence, ideal types are constructions of real events and thus 
approximations of reality: in their pure form, though, they merely represent 
 constructs of ideas. According to Weber: The ideal type

  […] is a conceptual construct (Gedankenbild) which is neither historical reality nor even 
the ‘true’ reality. It is even less fi tted to serve as a schema under which a real situation or 
action is to be subsumed as one instance. It has the signifi cance of a purely ideal limiting 
concept with which the real situation or action is compared and surveyed for the explication 
of certain of its signifi cant components. Such concepts are constructs in terms of which we 
formulate relationships by the application of the category of objective possibility. By means 
of this category, the adequacy of our imagination, oriented and disciplined by reality, is 
judged. (Weber  1949 , p. 93) 7  

   The ideal type is gained

  […] formed by the one-sided  accentuation  of one or more points of view and by the synthe-
sis of a great many diffuse, discrete, more or less present and occasionally absent  concrete 
individual  phenomena, which are arranged according to those one-sidedly emphasized 
viewpoints into a unifi ed  analytical  construct (Gedankenbild). In its conceptual purity, this 
mental construct (Gedankenbild) cannot be found empirically anywhere in reality. It is a 
 Utopia . (Weber  1949 , p. 90) 8  

5   German expression: “Was aber unter jenem t h e o r e t i s c h en Begriff gedacht w i r d und 
gedacht werden kann, das ist n u r durch scharfe, das heißt idealtypische Begriffsbildung eindeutig 
klar zu machen” (Weber  1922 /1985, p. 196). 
6   German expression: “Nur solche rationale Konstruktionen sind soziale Typen realen Geschehens, 
welche in der Realität wenigstens in irgendeiner Annäherung beobachtet werden können […]” 
(Weber  1921 /1984, p. 29, own translation). 
7   German expression: “[…] ist ein Gedankenbild, welches nicht die historische Wirklichkeit oder 
gar die  < < eigentliche > >  Wirklichkeit i s t, welches noch viel weniger dazu da ist, als ein Schema 
zu dienen, in welches die Wirklichkeit als E x e m p l a r eingeordnet werden sollte, sondern 
welches die Bedeutung eines rein idealen G r e n z b egriffes hat, an welchem die Wirklichkeit zur 
Verdeutlichung bestimmter bedeutsamer Bestandteile ihres empirischen Gehaltes g e m e s s e n, 
mit dem sie verglichen wird. Solche Begriffe sind Gebilde, in welchen wir Zusammenhänge unter 
Verwendung der Kategorie der objektiven Möglichkeit konstruieren, die unsere, an der Wirklichkeit 
orientierte und geschulte P h a n t a s I e als adäquat b e u r t e i l t” (Weber  1922 /1985, p. 194). 
8   German expression: “[…] durch einseitige S t e i g e r u n g e i n e s oder e i n i g e r Gesichtspunkte 
und durch Zusammenschluß einer Fülle von diffus und diskret, hier mehr, dort weniger, stellen-
weise gar nicht, vorhandener E i n z e l erscheinungen, die sich jenen einseitig herausgehobenen 
Gesichtspunkten fügen, zu einem in sich einheitlichen G e d a n k e n bilde. In seiner begriffl ichen 
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   Ideal types are indeed understood as constructs of ideas, but as per Weber ideal 
type construction is oriented towards a “potential lifeworld idea” 9  (Weiß  1975 , 
p. 74, own translation), which exists in single components in reality (potentially) 
and towards which acting in life practice is already oriented. (Weber  1922 /1985, 
p. 190; cf.  1949 , p. 89) According to this, an ideal type is a construction that takes 
up elements from reality. In order to anchor ideal type construction in an empirical 
way, Weber requests meaning adequacy and causal adequacy. Meaning adequacy 
means that the ideal type has to be seen in a meaning context of life practice, and 
causal adequacy means there has to be a real chance that an acting type—only those 
ideal types are meant by Weber—could develop in reality approximately in the 
described way. Therefore a good basis for action must be evident for its develop-
ment (Weber  1921 /1984, pp. 29, 27ff.; Weiß  1975 , pp. 61, 68). 

 Weber does not use ideal types to fi le reality in them, but as idealized construc-
tions (resulting in concepts), making use of them to examine real divergences from 
these constructions (Weber  1921 /1984, pp. 22, 13). His focus on scientifi c research 
is not the construction process of ideal types but the ideal type analysis, “for exam-
ple when explaining  panic on the stock exchange  at fi rst it is advisable to fi nd out 
how action would have been developed in the absence of infl uence by irrational 
affects and afterwards those irrational components are noted as  disturbances ” 10  
(Weber  1921 /1984, p. 21, own translation, emphasis included by the author accord-
ing to the original text). 

 Weber’s ideal type analysis is based on his idea about sociology as a science to 
understand social acting: “Sociology […] means: a science that wants to understand 
interpretively social acting and therefore explain causally its course and infl uences. 
 Acting  is meant to describe a human behavior (it doesn’t matter whether outwardly 
acting, neglecting or tolerating) if and inasmuch as the acting person or persons 
associate a subjective  meaning  with it. But  social  acting is called an acting which is 
related to  other persons’  behavior in its meaning meant by the acting person(s) and 
thus orientates in its course” 11  (Weber  1921 /1984, p. 19, own translation, emphasis 
included by the author according to the original text). Consequently today, a 

Reinheit ist dieses Gedankenbild nirgends in der Wirklichkeit empirisch vorfi ndbar, es ist eine 
U t o p i a […]” (Weber  1922 /1985, p. 191). 
9   German expression: “potentiell lebensweltlichen Idee” (Weiß  1975 , p. 74). 
10   German expression: “z.B. wird bei einer Erklärung der  > >  Börsenpanik  < <  zweckmäßigerweise 
zunächst festgestellt: wie ohne Beeinfl ussung durch irrationale Affekte das Handeln abgelaufen 
wäre, und dann werden jene irrationalen Komponenten als  > >  Störungen  < <  eingetragen” (Weber 
 1921 /1984, p. 21). 
11   German expression: “Soziologie […] soll heißen: eine Wissenschaft, welche soziales Handeln 
deutend verstehen und dadurch in seinem Ablauf und seinen Wirkungen ursächlich erklären will. 
 > >  Handeln  < <  soll dabei ein menschliches Verhalten (einerlei ob äußerliches Tun, Unterlassen 
oder Dulden) heißen, wenn und insofern als der oder die Handelnden mit ihm einen subjektiven 
Sinn verbinden.  > >  Soziales  < <  Handeln aber soll ein solches Handeln heißen, welches seinem von 
dem oder den Handelnden gemeinten Sinn nach auf das Verhalten anderer bezogen wird und daran 
in seinem Ablauf orientiert ist” (Weber  1921 /1984, p. 19). 
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 fundamental feature of a sociology of understanding entails understanding via 
 reconstructing analysis of social acting from the subjects’ perspective. 

 According to Weber meaning comprehension is a feature of daily-life orienta-
tion, and the understanding of meaning comprehension is an orientation feature of 
methodical understanding of interpretative sociology. Weber distinguishes two 
interpretations of meaning ( Sinn ), by which he means the real subjective supposed 
meaning of an acting person or a group of acting persons, or a subjectively meant 
meaning of an imagined acting type. The subjectively intended meaning is always a 
factual meaning that determines action (cf. Weiß  1975 , p. 59). That means that an 
acting person does not necessarily have to be absolutely aware of his or her motive 
for acting: motives result from the meaning relationship: “A motive is a meaning 
relationship that presents itself to the acting or observing person as a meaningful 
reason for a certain behavior” 12  (Weber according to Weiß  1975 , p. 48, own transla-
tion). Therefore, identifying motives for acting can be approached by the observer 
through reconstructing meaningful reasons. 

 Following Weber, real acting is accompanied by only vaguely determined acting 
reasons, and may therefore only be construed in an understanding way. He does not 
perceive this aspect as a fault in sociological research that has to be avoided, but as 
a specifi c feature which is distinctly different from the approach of concentrating on 
functional orders met in natural science:

  In the realm of social constructions […] we are indeed able,  beyond  the mere observation 
of functional contexts and rules, to achieve something that is eternally beyond the reach of 
>> natural science <<: we are able to >> understand << the behavior of the  individuals  
involved, whereas we cannot, for example, understand the behavior of cells, which can only 
be seized functionally and be determined according to its procedure” 13  (Weber  1921 /1984, 
p. 32ff., own translation, emphasis included by the author according to the original text) 

   Understanding may now be on one hand “the construed grasping of the really 
intended” (own translation, ibid., p. 25) meaning

•    “of an average or approximately” (own translation, ibid., p. 25) intended mean-
ing in a number of cases or on the other hand  

•   “of the scientifi cally constructed (>> ideal type <<) sense or meaning relation-
ship for a pure type (ideal type) of a frequent” (Weber  1921 /1984, p. 25, own 
translation, emphasis included by the author according to the original text).    

 Weber distinguishes between two kinds of understanding. Current understand-
ing, which means immediate understanding, and explaining understanding, which 

12   German expression: “Ein Motiv heißt Sinnzusammenhang, welcher dem Handelnden oder dem 
Beobachtenden als sinnhafter Grund eines Verhaltens erscheint” (Weber according to Weiß  1975 , 
p. 48). 
13   German expression: “Wir sind ja bei sozialen Gebilden […] in der Lage: über die bloße 
Feststellung von funktionalen Zusammenhängen und Regeln hinaus etwas allen  > >  Natur-
wissenschaften  < <  ewig Unzugängliches zu leisten: eben das  > >  Verstehen  < <  des Verhaltens der 
beteiligten Einzelnen, während wir das Verhalten z.B. von Zellen nicht verstehen, sondern nur 
funktionell erfassen und dann nach Regeln seines Ablaufs feststellen können.” (Weber  1921 /1984, 
p. 32ff.) 
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means construing the understanding of a motivation-based meaning relationship, 
construing of actions by indication of acting reasons from a meaning relationship. 
Ideal types describe possibilities of acting but not actual acting determined in 
advance. 

 According to Weber, ideal types are not theories in themselves. “This procedure 
can be indispensable for heuristic as well as expository purposes. The ideal typical 
concept will help to develop our skill in imputation in research, it is no “hypothesis” 
but it offers guidance to the construction of hypotheses. It is not a description of 
reality but it aims to give unambiguous means of expression to such a description” 
(Weber  1949 , p. 90). 14  

 Ideal types are according to Weber methodical tools and not theory components 
of interpretive sociology. Weber does not properly formulate the methodical proce-
dure for constructing ideal types; his descriptions remain vague. He does, though, 
indicate features and criteria for ideal type construction, which Gerhard uses later as 
guidelines for the development of a data-based ideal type construction, namely, the 
process-structure analysis (Gerhard  1991a ,  b ). 

 It is only Schütz who takes up Weber’s ideas of interpretive sociology and works 
them out on the basis of phenomenological observations (Schütz  1932 ). In so doing, 
he shows that the notion of ideal type construction is not only a method of scientifi c 
research, but may also be seen as tool for everyday understanding.  

5.6     Ideal Type Construction: Method 
of Everyday Understanding 

 Starting from the general thesis of intersubjectivity that postulates the experiences 
of another person are structured in the same way as one’s own experience and that, 
on the other hand, another person’s experience takes place concurrently with own 
experience, Schütz describes from a phenomenological perspective how the social 
world may be thought to be constructed layer by layer from the experience of a 
single person (Schütz  1932 ). Schütz builds on Weber’s conceptualization, specify-
ing it and—according to Gerhard—remedying three of its weak points:

 –    Although taking meaning orientation in daily life as a starting point, Weber fails 
to explicate how meaning construction takes place.  

 –   Weber leaves open the question of how it is possible to understand the  other .  
 –   Weber does not carry out any detailed differentiation between subjective and 

objective meaning in the sense of the subjectively-meant meaning of another 

14   German Expression: “Für die F o r s c h u n g will der idealtypische Begriff das Zurechnungsurteil 
schulen: er ist keine  > >  Hypothese  < < , aber er will der Hypothesenbildung die Richtung weisen. 
Er ist nicht eine D a r s t e l l u n g des Wirklichen, aber er will der Darstellung eindeutige 
Ausdrucksmittel verleihen” (Weber,  1922 /1985, p. 190). 
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person or the probable meaning or context of meaning supposed by an observer. 
(cf. Gerhard  2001 , p. 407ff.)    

 A central result of Schütz’s ( 1932 ) analyses is the realization that acting is always 
oriented to a drafted plan. Drafts for action are based on interpretive schemata 
resulting from previous experiences. They are based on  because  motives and are 
oriented towards  in-order-to  motives. The meaning orientation of action is fi rmly 
anchored in such motivation contexts. According to Schütz, courses of action may 
be anticipated and new experiences may be structured with help of experience based 
patterns sequences. In this way, an interpretation background for further experi-
ences is gradually built up layer by layer. 

 Schütz assigns two completely different worlds to Weber’s differentiation 
between current and explanatory understanding. Understanding in every-day life is 
always current understanding, whereas understanding in sociology is explanatory 
understanding (Schütz  1932 , p. 29;  1967 , p. 31). Moreover, understanding another 
person is in both worlds always an understanding of the  other  (“Fremdverstehen”). 
Understanding of the  other  is made possible as a result of activating interpretation 
patterns that correspond with those activated in others. According to Schütz, a 
meaning context may only be approximately reconstructed by another person. 
Schütz equates an  objective meaning  to a meaning context that can be understood 
detached from current time and action: “Nevertheless, it is exhausted in the ordering 
of the interpreter’s experiences of the product within the total meaning-context of 
the interpretive act. (Schütz  1967 , p. 134; cf.  1932 , p. 152). Whereas subjective 
meaning is always tied to the relevance of the here and now that means

  […] that every interpretation of subjective meaning involves a reference to a particular 
person. Furthermore, it must be a person of whom the interpreter has some kind of experi-
ence (Erfahrung) and whose subjective states he can run through in simultaneity or quasi- 
simultaneity, whereas objective meaning is abstracted from and independent of particular 
persons. 15  (Schütz  1967 , p. 135) 

   Thus, the subjective meaning of another person is made experiencable through a 
shared “we-relationship” (“Wir-Beziehung”) (Schütz  1932 , pp. 132, 183;  1967 , 
p. 164). The more I know about the other person, the more comprehensively I can 
learn about the subjective meaning of the other—albeit only in approximation. 
A we-relationship develops from a life together in a shared meaning context in 
“simultaneousness” (Gleichzeitigkeit) (Schütz  1932 , p. 151;  1967 , p. 134). Schütz 
distinguishes between two experimental spheres: the world of one’s consociates and 
the world of one’s contemporaries. The world of consociates consists of those per-
sons with whom we are in a we-relationship. According to Schütz, the world of 
contemporaries is a limit concept (Schütz  1932 , p. 197;  1967 , p. 176f). “In particular, 
the greater my awareness of the we-relationship, the less is my involvement in it, and 
the less am I genuinely related to my partner” (Schütz  1967 , p. 167; cf.  1932  p. 185). 

15   German Expression: “[…] dass jede Deutung des subjektiven Sinnes seines Erzeugnisses auf ein 
besonderes Du verweist, von welchem der Deutende Erfahrung hat und dessen aufbauende 
Bewußtseinsakte er in Gleichzeitigkeit oder Quasigleichzeitigkeit nachvollziehen kann, indessen 
der objektive Sinn von jedem Du losgelöst und unabhängig ist” (Schütz  1932 , p. 152f). 
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 Life in the world of consociates means that motives and actions may be aligned 
in interaction with the consociate, that meaning constructions may be coordinated 
with the other. That is already different for an observer in the world of contempo-
raries. “When I start asking questions of the person observed, I am no longer a mere 
observer” 16  (Schütz  1967 , p. 174). 

 For the observer of a person or a we-relationship, it is only possible to infer an 
interpretation on the basis of own interpretation patterns. 

 Besides near-relationships, everyone enters into social relationships of great 
 distance. For example, school pupils have such a reserved relationship to teachers 
who do not teach them. This relationship is one of a world of contemporaries. 
Consequently, my world of contemporaries encompasses all persons with whom I 
do not share a life context but to whom I have a relationship all the same. Meaning 
contexts in the world of contemporaries are reconstructed on the basis of interpreta-
tion patterns that have been built in consociate world relationships. Construction of 
meaning in the world of contemporaries is always construction of objective mean-
ing, and that derives from ideal-type construction. “However, it is due to this very 
abstraction from subjective context of meaning that they exhibit the property which 
we have called their  again and again  character. They are treated as typical con-
scious experiences of  someone  and, as such as basically homogeneous and 
repeatable” 17  (Schütz  1967 , p. 184). 

 This means that repeating or fundamentally repeatable procedures become estab-
lished as  procedure type  in consciousness. Typical acting is presumed to have 
invariant “in-order-to” and “because” motives. Thus, a  personal ideal-type , i.e. a 
state of consciousness, is constructed which we may presume has respective 
“because”- and “in-order-to” motives as its subjective meaning context. (Schütz 
 1932 , p. 213ff.;  1967 , p. 188ff.). Hence, a procedure type presents the objective 
meaning context for a personal ideal-type. It is the similar and always recurring of 
the other that leads to an ideal-type construction.

  This synthesis is a synthesis of recognition in which I monothetically bring within one view 
my own conscious experiences of someone else. Indeed, these experiences of mine may 
have been of more than one person. And they may have been of defi nite individuals or of 
anonymous >> people <<. It is in this synthesis of recognition that the personal ideal type 
is constituted. (Schütz  1967 , p. 184; cf.  1932 , p. 206) 

   “The contemporary alter ego is therefore anonymous in the sense that its exis-
tence is only the individuation of a type, an individuation which is merely suppos-
able or possible” (Schütz  1967 , p. 194f.; cf.  1932 , p. 218). 

 These pre-experienced ideal-types form an interpretation pattern not only for 
meaning constructions in the world of contemporaries but also for meaning context 

16   German Expression: “Das Du ist für den Beobachter als Beobachter wesensmäßig unbefragbar” 
(Schütz  1932 , p. 193). 
17   Schütz writes: “[…] weil sie aber losgelöst von dem subjektiven Sinnzusammenhang, in dem sie 
sich konstituieren, betrachtet werden, weisen sie die Idealität des “Immer wieder” auf. Sie werden 
als typisch fremde Bewusstseinserlebnisse erfasst und sind als solche prinzipiell iterierbar” (Schütz 
 1932 , p. 206). 
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in the world of consociates (Schütz  1932 , p. 218;  1967 , p. 192). If a personal ideal- 
type exists, then this ideal-type is connected with a procedure type. This way a 
 typical acting in the world of contemporaries in a “Du”-relationship is expected 
when another person is seen as representative of a personal ideal-type. If for exam-
ple a person is looking through a stack of exercise books in front of her, then one 
may assume it is a teacher correcting pupils’ work. But if we know that the person 
teaches mathematics, we may then suppose that she is correcting mathematics work 
and checking students’ solutions for mathematical problems. 

 According to Schütz, there is in everyday life a stock of ideal-type constructions 
as an explanatory basis for explanations of both the world of contemporaries and the 
world of consociates. These two worlds are not at all to be seen as dichotomous. 
Starting from the world of consociates, interpretation patterns build up with increas-
ing distance and become ideal-type constructions (Schütz  1932 , p. 221;  1967 , 
p. 194). 

 Observation in the world of contemporaries—the original task of social 
 sciences—can only be effected on the basis of interpretation patterns in the world of 
contemporaries and standardized “in-order-to” and “because” -motives as typifying 
constructions. According to Schütz, these constructions must not be confused with 
the world of consociates. Furthermore, the ideal-types constructed by scholars are 
not necessarily ideal-type constructions of the protagonists themselves. Therefore, 
the meaning adequacy and causal adequacy of ideal-type constructions must be 
ensured, or as Schütz puts it: “This postulate states that, given a social relationship 
between contemporaries, the personal ideal types of the partners and their typical 
conscious experiences must be congruent with one another and compatible with the 
ideal-typical relationship itself” (Schütz  1967 , p. 206; cf.  1932 , p. 235). 

 Thus, the constructed ideal-types must not contradict the scholar’s experience 
background (meaning adequacy) (Schütz  1932 , p. 267ff.;  1967 , p. 234ff.), and they 
must, as already required by Weber, be found approximately in the social world to 
serve as a rational background (causal adequacy) (cf. Schütz  1932 , pp. 256ff., 
262ff.;  1967 , p. 229ff.). 

 Looking back, Schütz questions whether social collectives may be classifi ed in 
an ideal-type way. He subsequently rejects such a postulate, pointing out that one 
may not impute a subjective meaning relationship to a collective. But he does admit 
that such ideal type constructions may be thought of as patterns of high anonymity 
which suppose the layer-by-layer constitution of ideal-types in everyday life to be 
given and do not ask for a subjective meaning context (Schütz  1932 , p. 277;  1967 , 
p. 242). Following this, it becomes clear that Schütz reduces the meaning constitu-
tion of the social world to subjective meaning constructions; that he allows ideal- 
types but does not explain how the construction of those ideal-types may come 
about. 

 A critical point in Schütz’s work on ideal-type construction in everyday life 
refers to the question how ideal-types can become an intersubjective part of the 
world of contemporaries when they are construed exclusively in peoples’ minds 
(cf. Srubar  1979 , p. 43). Srubar explains that in Schütz’s analysis the construction of 
ideal-types is based on the fundamental repeatability of actions and that is founded 
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on experiences in the world of consociates. But how are ideal-types  constituted as 
carriers of intersubjective meaning in everyday life? Srubar suggests to distinguish 
two times, the  constituted  time, that is the individually and subjectively experienced 
time which may be shared in the consociate world, but not in the world of contem-
poraries, and the  produced  time which is experienced in a world of contemporaries, 
which “[…] is fi xed by the course of social processes” (Srubar  1979 , p. 54, own 
translation). 18  Srubar does not conceive produced time as measurable physical time; 
but what is exactly meant by produced time is more paraphrased than fi xed pre-
cisely. He perceives produced time as a time-related experience background which 
is fi xed by regular social (action) processes in the world of contemporaries. “It [the 
produced time] affects the sphere of everyday reality as an anonymous outer con-
straint” (ibid., p. 54, own translation), 19  which can, though, also be changed. The 
daily rhythm which is marked by work, e.g. regularities in everyday school life and 
the regular order of a mathematics lesson, form produced time as a time-related 
experience background for individual time experience. Hence, repetitions of 
sequences of events may not only be experienced in the constituted time but also in 
the produced time, whereby the latter may be experienced intersubjectively. While 
working on new material in a mathematics lesson the process sequence  presentation 
of problem—activities of pupils—collecting and assessing of results—setting of 
homework  can be infl uenced by previous lessons and as produced time fi x the frame 
for individual experiences. Jointly experienced, socially fi xed or collectively pro-
duced courses of events or processes may thus become an ideal-type framework of 
experience of the world of contemporaries which is—up to a certain degree—shared 
intersubjectively but also individually fi xed. Repeating processes in the social world 
may be tied together with procedural types and personal ideal-types as a typical 
frame experience. In the abovementioned introductory lesson, a  personal ideal-type 
could describe a female pupil who takes up the mathematical problem, works on it, 
produces solutions, gets marks and writes her homework in her exercise book. 

 Scientifi c constructions of ideal-type situations from repeated social actions in 
teaching practice could be equivalents of procedural types of a collective character 
in the world of contemporaries, as these social actions are fi xed from outside and are 
at the same time repeatedly produced in a collective way. Such ideal-type situations, 
in the following passage also called situational types, which means situation-related 
ideal-types or ideal-type characterizations of situations, would describe typical not 
only sporadically appearing conditions for possible procedural types. 

 Now, if it is true that people shape their experiences and acting in the worlds of 
consociates and contemporaries by creating ideal types and that produced time fi xes 
the frame for constituted time, i.e. for constructions of subjective meaning, then it 
absolutely makes sense to ask for situational ideal types in teaching practice, to 
reconstruct them systematically and to use them as a means of constructing theory. 
As a consequence, it would be possible to describe and explanatorily understand 

18   German Expression: “durch den Ablauf sozialer Prozesse gesetzt wird” (Schütz  1932 , p. 235). 
19   German Expression: “Sie [die produzierte Zeit] wirkt sich im Bereich der Alltagswirklichkeit als 
anonymer äußerer Zwang aus” (Schütz  1932 , p. 235). 

5 Empirically Grounded Building of Ideal Types. A Methodical Principle…



120

typical sets of conditions. Such situational ideal types form pre-structured offers for 
teachers because they provide identifi cation patterns for a teaching practice oriented 
to worlds of consociates/contemporaries, they provide understanding complexes, 
and offer sensitizing orientation possibilities for practical acting. It is not intended 
that teachers implement these theory components in practice, but to encourage them 
to use the pre-structured situational ideal types as guidelines for practical acting in 
classes. However, it may sometimes be necessary to avoid an orientation in the 
direction of a situational ideal type. Theories which have been constructed with help 
of such situational ideal types serve as a sort of spectacles through which teachers 
may observe their teaching as a collective acting structure, and, based on this back-
ground, they may develop their own meaning constructions and create their own 
theory-led acting. 

 In the following, I describe how ideal types may be constructed based on data, 
and with help of examples illustrate how the results of these construction processes 
can contribute to the development of theories in mathematics education.  

5.7     Empirically Based Ideal Type Construction: 
A New Beginning 

 As Gerhard ( 2001 ) describes, Weber does emphasize the signifi cance of ideal type 
construction for empirical sociology, yet he gained ideal types himself from his 
historical constructions, and not in a methodically controlled way from selectively 
collected data. The data-based ideal type construction and analysis, “die sich heute 
auf Weber beruft, betritt Neuland, das Weber zwar entdeckt, aber nicht in seinen 
eigenen Projekten empirischer Sozialforschung erkundet hat. Webers eigene 
Arbeiten, die Idealtypen verwandten, waren bekanntlich historische 
Rekonstruktionen [which nowadays refers to Weber, enters unknown territory that 
had been discovered by Weber but that he has not explored in his own projects of 
empirical social research. Weber’s own works using ideal types were—as  everybody 
knows—historical reconstructions]” (Gerhard  2001 , p. 11, own translation). 

 With help of a data-based ideal type analysis, Gerhard investigates “patient- 
careers” (Gerhard  1991a ,  b ) of persons with a kidney disease. It justifi es this kind of 
biography research with its historical relation, because on the one hand biographies 
are embedded in historical current events, and on the other hand biographical histo-
ries as historical processes depend on a time structure of their own. Both justify a 
use of ideal types following Weber, particularly as the necessary individual case 
analyses necessitate investigation from the perspective of the acting persons them-
selves (Gerhard  1986 , p. 63). Gerhard explicitly carries on with Weber’s work, and 
following Weber’s instructions she works out a method of data-based ideal type 
analysis, process structure analysis, which consists of four steps.

•     Case reconstruction and case contrasting : fi rst, the biographical data are recon-
structed as individual cases (case reconstruction), and afterwards a link is estab-
lished on the principle of minimum and maximum contrasting.  
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•    Determination of pure cases : In a second step, pure courses are gained 
 theoretically and empirical cases are identifi ed which represent these pure cases 
as well as possible. These empirical cases are the so-called prototypes.  

•    Comprehending of individual cases : Following Weber, Gerhard confronts the 
individual cases with the ideal type in order to work out each individual case’s 
own work in comparison to the ideal type and to comprehend the events in an 
explaining way.  

•    Comprehending of structures : the fourth and fi nal step is about comprehending 
structures, i.e. the question which social structures cause certain events.     

5.8     Ideal Type Construction in Research of Mathematics 
Education 

 Ideal type construction is not a new phenomenon in mathematics education. Strunz 
( 1968 ) describes four ideal type approaches to mathematics (Strunz  1968 , p. 313ff.), 
and Kaiser gains ideal type descriptions of English and German mathematics 
 lessons from an ethnographically oriented study on mathematics classes in both 
countries (Kaiser  1999 ). A methodically transparent ideal type construction based 
on the idealization of empirical data as a means of theory construction was not taken 
up in interpretative research of mathematics education until recently. 

 Concentrating on the aspect of ideal type construction, initially I describe 
Knipping’s ( 2003 ) study and make clear what has to be understood by an idealiza-
tion of ideal type construction. Taking this as an example, I want to show an ideal 
type construction’s function to show the direction to hypothesis generation. It will 
become clear that the process of ideal type construction may be understood as a fi rst 
step to theory development that is an ideal type concept construction, and that with 
these ideal types a further analysis of empirical data that continues the process of 
theory development is possible. Subsequently, I present various forms of ideal type 
construction taken from my project  Mathematikinteresse zwischen Subjekt und 
Situation  [Interest in mathematics between subject and situation] (Bikner-Ahsbahs 
 2005 ; Bikner-Ahsbahs and Halverscheid  2014 ) and describe how with the help of 
ideal type construction sub-theories may be developed and in the end brought 
together to a more comprehensive theoretical view, a fi rst approach to a subject- 
related theory of interest-dense situations. 

5.8.1     Ideal Type Construction by Idealizing of Prototypes 

 Knipping ( 2003 ) compares teaching processes of German and French mathematics 
lessons on proof processes of Pythagoras’ theorem by analyzing the contexts of the 
proof processes and by analyzing the argumentation processes. Here she orients 
towards Gerhard (see also Kluge  1999 ; Gerhard  1991a ,  b ,  2001 ). 
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 First, proof types and task types are gained from the context analyses of the 
 individual cases. These form the basis for a comparing context analysis of the cases’ 
proof processes. By case comparison and case contrasting, Knipping comes to a 
case cluster. She chooses prototypes for each of the two groups that represent them 
best. The comparison of cases with the respective prototypes leads to a further ideal-
izing of these prototypes in separation from the respective case regarding the func-
tions of proof processes. The ideal type constructions of the proof contexts of 
 realizing that  and  giving reasons for  are based on this analysis. In a methodically 
totally analogous way, via local and global argumentation analysis of oral and writ-
ten proof discourses she gains two ideal type characterizations of proof discourses, 
namely  watching interpretation  and  public explanation . Despite independently 
effected context and argumentation analyses, interestingly the same distribution of 
groups are yielded in those cases. 

 Knipping analyzed a series of cases, arranged them and chose prototypes for the 
respective groups. Comparing analyses of prototypes to the cases leads to an ideal-
ization of prototypes—and this is where Knipping obtains characteristic feature 
structures. She uses the respective feature structure as fulfi llment norm for a con-
structed case. This way, for each group she obtains a pure case, which may be 
described approximately by the real cases, but where she at the same time disre-
gards consistency distracting features. Idealizations to construct ideal types are 
effected on the base of empirical cases, i.e. “effected in a way

•    that a constructed  pure  case is added to an amount of accepted real cases,  
•   that the constructed case may be described approximately by the real cases,  
•   that consistency distracting parts are left outside the new total amount” (Bikner- 

Ahsbahs  2005 , p. 86; see also Schreiber  1980 , p. 46).    

 From the cluster results, Knipping obtains two pairs of amounts of accepted real 
cases where the respective pure case is added. The total amounts are only observed 
regarding the main features. 

 In her analyses, Knipping works out a number of features from proof contexts 
and proof processes and uses them as base for the construction of ideal types. The 
respective feature contexts and the constructed ideal type characterizations may be 
regarded as fi rst components of a theory on proof processes in teaching practice, 
because by ideal type descriptions typical features of proof processes in mathemat-
ics lessons are conceptualized. 

 But how beyond this can these ideal types, as Weber formulated, “[…] offer(s) 
guidance to the construction of hypotheses.” (Weber  1922 , p. 190;  1949 , p. 90) and 
in this way lead to the construction of a broader theory? 

 A basis for that may be, e.g., the empirical distribution of cases on the four 
groups which have been led to characterization of ideal types, because interestingly 
in Knipping’s research ( 2003 ) the observed German classes regarding the context 
excel in an ideal-type way by the function of  recognizing that  and regarding the 
proof discourses by  clearly interpreting,  whereas the observed French lessons may 
be characterized regarding the contexts by the function of  explaining why  and 
regarding the proof discourses by a  public explaining . Exactly this fact may 
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 encourage the construction of hypotheses or formulation of further questions which 
might point the way for a theory development of proof processes in mathematics 
lessons. It is very much the question, e.g. whether both types of proof contexts may 
be structurally interlocked with both types of proof discourses, and what might be 
the consequences. Does, e.g., the fi xing of the context alignment suggest a deter-
mined way of argumentation? If yes, why? Or formulated differently: which struc-
tural features of proof contexts and proof discourses lead to such a dichotomy? 

 To investigate this question in an empirically based way we could, to start with, 
of course search selectively for examples to prove the opposite, i.e. for cases that do 
not match this dichotomy. In the event such cases cannot be found, then it would 
seem to suggest that proof contexts and proof discourses should indeed be observed 
as being closely interlocked with each other. When such cases  are  found, then more 
exact analyses of those so-called counter-examples might on the backdrop of the 
ideal types gained by Knipping contribute to clarifying why there is a dichotomy in 
the cases of Knipping’s research or why these so-called counter-examples drop out 
of dichotomy. 

 Only via a thorough working out of the four ideal types was Knipping able to lay 
the foundations for a theory on proof processes in mathematics lessons, because on 
this basis it is now possible to formulate questions to point the way for further 
 theory development. 

 Knipping’s example makes clear that on the one hand theory components slip 
into the construction of ideal types, and that on the other hand (dichotomous) distri-
butions of empirical cases may be there that prompt further questions and initiate a 
search for counter-examples. And that, in turn, contributes to arriving at a theoreti-
cal understanding of determined facts. Hence, ideal type characterizations present 
concepts that are gained empirically, that condense theoretical understanding, and 
point the way to a further theory development on the basis of empirical data.  

5.8.2     Ideal Type Construction: Principle 
of Factual Theory Construction 

 My research project  interest in mathematics between subject and situation  (Bikner- 
Ahsbahs  2005 ) explores teaching situations that are in a determined way suited to 
support interest development in mathematics lessons and researching how these 
situations develop. On the basis of research results from the psychologically  oriented 
interest research linked with empirical analyses of teaching sequences, 
I found features of situations that may describe situations of a special interest qual-
ity. I call such situations  interest-dense . Interest-dense situations are given when the 
learners become involved in solving mathematical problems ( to be involved in the 
situation ), when one after another they construct continuing deepened meanings 
( knowledge dynamics of the situation ), and when the meaning or the signifi cance of 
the situation has to be searched for in mathematics ( mathematical signifi cance of 
the situation ). A situation possesses interest density when it is interest-dense 
(Bikner-Ahsbahs  2005 ; Bikner-Ahsbahs and Halverscheid  2014 ). 
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 The data stem from video recordings of the complete lessons of a sixth grade 
class over the course of half a year. Among these data, interest-dense situations are 
identifi ed and analyzed regarding the geneses of interest density. Central principle 
of this analysis is case comparison and case contrasting. Thematically completed 
teaching episodes serve as cases, whereby above all non-interest-dense situations 
are also included. 

 With the help of interpretative sequence analyses on three levels, the level of 
social interactions, the level of epistemic processes and the level of value assign-
ment or value construction, three sub-theories of interest-dense situations are gained 
and subsequently brought together. An essential stage of the four theory stages is 
the construction of ideal types. Basic theoretical insights are condensed to situa-
tional ideal types, and these ideal types present the conceptual base of the subse-
quent theory. In the process, ideal-type construction is not understood as method but 
rather as methodical principle. The respective process of ideal-type construction is 
adapted to the subject’s specifi c features and the available data.  

5.8.3     A Model of Polar Ideal-Type Construction 

 On the level of social interactions, initially scenes are chosen where the construction 
of an interest-dense situation is successful. These scenes are compared to each other 
and to scenes that start similarly but where the construction of interest density fails. 
From that, features are gained that may particularly hinder support of the construc-
tion of interest density. These features enter the construction of two ideal-type inter-
action structures, the expectation 20 -dominant interaction structure and the 
expectation-recessive interaction structure. These interaction structures are devel-
oped in a cyclic process of comparative analyses. Each analysis series consists of 
the following four stages:

•    Individual case analyses, i.e. analysis of single interest-dense scenes.  
•   Comparing analyses of interest-dense scenes.  
•   Comparison of a genesis of an interest-dense scene with a similarly starting 

scene where the genesis of interest density fails.  
•   Construction of an interpretation hypothesis according to the question: What 

actually contributes to the success or failure of interest density construction?    

 From the ideal-typical vantage point, the expectation-dominant interaction struc-
ture hinders the construction of interest density, whereas the expectation-recessive 
interaction structure is connected to successful genesis of interest-density. 

 In addition to these ideal type interaction structures, a feature space is subse-
quently constructed—in literature this action is called subscription (Kluge  1999 , 
p. 61). The corresponding features are the  teachers’ behavior  with the expressions 
 expectation-run  and  situation-run  and the  students’ behavior  with the expressions 

20   By expectation we here always speak of mathematical-in content teaching expectations. 
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 expectation-dependent  and  expectation-independent.  At the same time, expectation- 
dependent students’ behavior and expectation-run teachers’ behavior interlock to an 
expectation-dominant interaction structure with the function to (re-)produce the 
 textual teaching expectations; and expectation-independent students’ behavior and 
situation-run teachers’ behavior combine to an expectation-recessive interaction 
structure with the function to produce mathematics-related student contributions 
from the students’ perspective. 

 As in Knipping’s research, a dichotomous distribution of the investigated  episodes 
may here be found, too. However this distribution is based on a dichotomous selec-
tion of the scenes. The process of theory development is in this case stimulated by 
the fact that the free parts of the feature space are fi lled by empirical cases, and the 
respective scenes are analyzed regarding a possible genesis of interest density. 

 These analyses lead to a description of both interaction structures as states of an 
interactive balance from which the other interaction forms seem to develop. This 
balance metaphor now clarifi es an essential difference between the two interaction 
structures: the expectation-recessive interaction structure might be described as 
state of an unstable, and the expectation-dominant interaction structure as state of a 
steady balance, because the expectation-recessive interaction structure is, in con-
trast to the expectation-dominant one, a fragile interaction form that might easily be 
disturbed in its fl ow. If, e.g., the teacher’s behavior changes from a situation-run to 
an expectation-run teacher’s behavior, then students mostly adapt themselves imme-
diately: An expectation-dominant interaction structure is created that even by a 
 sudden change in the teacher’s or students’ behavior is not limited essentially in its 
fl ow. The reason for this stability probably lies in the partially implicit but secure 
knowledge that the (re-)production of content-related teaching-expectations leads 
(certainly) to a solution of the problem, whereas a focus on production of students’ 
ideas may be problem-oriented, but it is not at all sure that the solution of the prob-
lem comes nearer. That way a permanent adjustment and adaptation of teacher and 
student to each other is necessary in order to maintain this interaction form. 
The expectation-recessive interaction structure is consequently fraught with many 
more imponderables and uncertainties than the expectation-dominant interaction 
structure, and that makes up its fragile character. 

 As non-interest-dense situations, from an idealized vantage point, may also 
develop expectation-recessively, the emergence of the expectation-recessive 
 interaction structure may at best be considered as a necessary but not at all suffi cient 
criterion for the creation of an interest-dense situation. This result leads now to the 
question of further creation conditions of interest-dense situations and motivates an 
analysis on either level. 

 The method of polar ideal-type construction is oriented to the construction of 
so-called extreme types. It is the obvious thing when constitution conditions of 
polar situations are demanded. In the following examples, ideal types are  constructed 
in the perspective of epistemic processes and in perspective of valuation construc-
tions. As in this construction process no polar scenes can be found in the data, 
according to Gerhard ( 2001 ) in these cases ideal types are constructed by forming 
groups.  
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5.8.4     Construction of Epistemic Action Types 

 In the data there are two different types of interest-dense situations. Ad hoc interest- 
dense situations are initiated by students. The genesis process of interest density is 
in this respect not directly accessible and may also not be reconstructed on the basis 
of video recordings. Generative-interest-dense situations are teacher-initiated and 
reconstructable in their genesis process. The analysis of generative-interest-dense 
situations seems initially to be more fruitful for theory development because the 
course of recognition development is understandable. The following analysis of ad 
hoc interest-dense situations on the basis of acquired results leads to a deeper under-
standing of generation conditions of interest density. 

 So recognition does show and develop in shape of signs—e.g., words, sentences, 
diagrams—but the epistemic step behind it arises from the meaning of signs, and the 
recognition development in an interaction process takes place in a continuing interpre-
tation process. To show this in the analysis of investigated teaching units, we differen-
tiate between signs, intended sign signifi cance and interpreted sign signifi cance. 21  

 The    analysis starts with an interpretative sequence analysis (Beck and Maier 
 1994b ; Krummheuer and Voigt  1991 ; Krummheuer  1992 ; Krummheuer and Naujok 
 1999 ). From this, the insight is gained that essential parts of the epistemic processes 
may be described with the epistemic actions of gathering and connecting meanings 
and structure-seeing. On the basis of the analysis, the investigated episodes are pre-
sented with the help of further signs condensed to a manageable degree and com-
pared with each other. A grouping of generative-interest-dense situations in 
minimum and maximum distinctions leads to three groups whose typical phase 
 profi les are constructed and presented with help of pictographs. By case comparison 
and case contrasting the common features are afterwards elaborated from an ideal-
izing vantage point and a typical profi le of each group (re-)constructed. This results 
in three action types: the  graded,  the  helical,  and the  merging type . 

 The characterizations  graded, helical  and  merging  describe how social construc-
tion of new meanings happens. In the case of the graded phase type, e.g., this 
 happens (usually) in (three) stages, i.e. initially meanings, examples, e.g., are gath-
ered (stage 1), then they are linked to each other or to other meanings (stage 2), and 
fi nally structures are made out of the examples and descriptions on the board or in 
the exercise book (stage 3). Prototypical situations here are chosen to describe ideal-
type phases and not, as Knipping did, used as means of ideal-type construction. 

 The procedure to construct epistemic phase types, the  semiotic sequence analy-
sis  (Bikner-Ahsbahs  2006 ) consists of three steps:

•    Sequential reconstruction of recognition processes  
•   Comparison of condensed phase descriptions  
•   Comparison of pictographs    

21   Peirce’s triadic sign concept (Peirce 1897; CP 2.228 according to Hoffmann  2005 , p. 40ff.; CP 
2.308 according to Nöth  2000 , p. 62) which distinguishes among object, sign, and interpretant was 
used and adapted to analyzing social interaction in class (Bikner-Ahsbahs  2005 , p. 66ff.) 
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 How does the further process of theory construction take place? I confi ne myself 
to a few aspects. 

 Generative interest-dense situations are compared with ad hoc interest-dense and 
non-interest-dense situations. Here it is shown that certainly all interest-dense situ-
ations lead into phases of structure-seeing, but that the epistemic processes in ad hoc 
interest-dense situations do not take an exemplary course, and that is a clue to a very 
narrow acting scope for the teacher. What are the consequences? The condition of 
interest density in ad hoc interest-dense situations may obviously only be main-
tained if the teacher acts situation-run, i.e. he or she is prepared to face the 
situation. 

 Epistemic action types, too, may be understood as condensed conceptual descrip-
tions of fi rst theory components, namely in the different ways epistemic processes 
are constructed. Here, the three epistemic actions play a central role. The fi nal com-
parison of phase types among themselves and with non-interest-dense situations 
fi nally leads to the central question as to which features of epistemic processes 
might in a special way be responsible for the fact that creating interest density fails 
or succeeds. 

 Non-interest-dense situations differ from interest-dense situations in the fact that 
epistemic processes are extensively limited to gathering and connecting meanings. 
This raises the question why structure-seeing in interest-dense situations does not 
normally take place distinctly, and is mostly not achieved at all. On the whole three 
reasons are reconstructed.

•    The range of the collected examples is in non-interest-dense situations narrower 
than in interest-dense situations, i.e., the gathering and connecting phases turn 
out to be an insuffi cient basis for structure recognition.  

•   The construction of an interest-dense situation often gets stuck because there is 
nobody who might be able to anticipate the mathematical-theoretical direction 
from the perspective of students’ comments and to offer support. That means in 
many cases that especially the teacher ignores or rejects productive ideas that 
might lead to structure-seeing, or he stops the process in an expectation-run way. 
This is exactly not the case in interest-dense situations.  

•   Finally, fi nding something new means in many cases having to express what is 
new with an insuffi cient vocabulary. This leads occasionally to apparent contra-
dictions or tricky situations that may be remedied through the teacher’s verbal 
support.     

5.8.5     Construction of Production Types 

 Basis for the construction of a third sub-theory is the question how a situation attains 
mathematical signifi cance, and in which way this contributes to a genesis of interest- 
dense situations. First of all I clarify what makes up mathematical signifi cance. 

 The mathematical signifi cance of a situation is observed as a potential to initiate 
interest relations. By reconstructing processes of value construction, a condition 
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structure is found that may be seen as an essential structure for the production of 
mathematical signifi cance in the various situations. 

 Like the previous processes of ideal type construction, this process starts with 
individual case analyses of interest-dense situations and their comparison. They 
show that all interest-dense situations lead to assessment situations. Assessed are 
mathematically substantial ideas, and therefore the performances of all involved idea 
producers and vice versa. Here, acknowledgement of an idea means at the same time 
acknowledgement of the idea producers’ performance, and vice versa. We therefore 
may assume an interdependent value-related relation between idea and idea pro-
ducer. The question now is how these value-related relationships are constructed as 
these assessment situations are approaching. Analyses of previous processes show 
that the explicit assessments at the end of interest-dense situations are not at all the 
only value attributions. They are preceded by already interactively produced or 
implicitly expressed value constructions during the interaction process. Most of the 
interactively produced value attributions arise from a process of mutual increasingly 
emotionally loaded value assigning reactions. Now the question is: which teaching 
features enable this? And why do interaction processes concentrate, bundled up like 
that, on the development of mathematically substantial ideas, the idea products. 

 On the whole, it becomes clear that the group of values assists to produce mathe-
matically substantial ideas of its own, to bundle up the collective interaction process 
and get it going. Its basis is a kind of implicit social contract: the students produce 
their own ideas for the mathematical questions, and the teacher organizes the lesson 
in such a way that their own idea productions are possible. But what does this kind of 
lesson organization look like? Analyses show that two different kinds of moderate 
indistinctnesses are basically accepted in these processes:  moderate interpretation 
indistinctness  and  moderate participation indistinctness . The acceptance of interpre-
tation indistinctnesses enables students to proceed more easily from previous contri-
butions with their own individual ideas and to expect acceptance of their ideas; and 
the acceptance of moderate participation indistinctness enables students to spontane-
ously voice their opinion, to explicate emotionally assessing relations, and to main-
tain their point of view concerning contents and processes without having been 
explicitly asked to do so by the teacher. The formal discussion runs in parallel but 
takes up spontaneous remarks. These conditions represent promising prerequisites 
for developments of value-related relations to mathematical contents, because the 
students may voice spontaneously and free of suppression their own ideas, suggest 
further ideas, take up others, develop and improve, and thus become active partici-
pants in the production of mathematically consistent and applicable ideas. At the 
same time, they have the chance to present themselves and their relation to the subject 
in an emotionally assessing way and visible for everybody. Now the question is how 
these relations become apparent and how this is linked to the respective situations? 

 For this purpose, all interest-dense situations are compared to each other regard-
ing minimal and maximal differences in respect of the gained fi ndings. The result 
leads to four groups. By an idealizing comparison within these groups and between 
these groups, four ideal type production methods of mathematically substantial 
ideas, the production types, are reconstructed, which describe a frame for different 
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person-object relations and varying conditions for students’ participation. These 
production types are the  idea competition , the  innovational idea production , the 
 experts show  and the  quality control . In a process of quality control, e.g., the simpli-
fi ed version of the mastered division rules for fractions is tested: At fi rst an intensive 
search is conducted for examples to prove the opposite, and afterwards the new 
operation is compared to other operations, e.g., the multiplication rule, and tested 
once more before being accepted. In quality control, therefore, an idea regarded as 
substantial is being tested in-depth for quality. The students involved may present 
themselves as experienced inventors of examples, counter examples, questions and 
provoking remarks, as clarifying searchers for answers, or as distributors of quality 
seals. 

 The production types now describe various qualities of mathematical signifi -
cances, i.e. to initiate different potentials of interest relations. A retrospective com-
parison of empirical cases with the production types now shows that there are 
prototypes for the production types, but that the different empirical cases of interest- 
dense situations do differ considerably and vary considerably from the production 
types. Interest-dense situations certainly refer to qualities of mathematical signifi -
cances in the shape of special production ways, but the potential to initiate interest 
relations is even in interest-dense situations not as a rule completely exhausted. 
Theoretically, the potential would be exhausted if the specifi c idealized way to pro-
duce a mathematical idea was realized (at least almost). 

 The difference between interest-dense situations and non-interest-dense situa-
tions is that in non-interest-dense situations the specifi c ways of producing substan-
tial mathematical ideas do not occur. One hindrance to developing such production 
types is, e.g., effected by not accepting interpretation indistinctnesses, but each 
single contribution has to be specifi ed before the interaction process may continue. 
This disturbs the idea fl ow considerably, and hinders students from contributing to 
the development of an idea which they would otherwise be able to do. 

 The various production types now represent a differentiating offer for students to 
contribute to producing mathematically substantial ideas. This is shown, e.g., by the 
fact that in situations of different production ways, different pupils contribute to the 
process. An evaluation of the results against the backdrop of psychological interest 
theories suggests that by an active participation of students in interest-dense situa-
tions interest is really developed or further developed. But up to now this is not 
answered by the theory that has been developed. This can only be clarifi ed by a 
further theory development in the direction of an interlocking with individual paral-
lel processes of interest development.  

5.8.6     Ideal Type Construction with Ideal Types 

 In the last step of theory development, the results of the three analyses are brought 
together. We ask for the context of social interactions, epistemic processes and the 
production methods regarding genesis and stabilization of interest-dense situations, 
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what characterizes interest-dense situations, and how is the interest supporting 
 quality expressed therein? 

 An expectation-recessive interaction structure is a necessary condition for the 
development of interest-density on the whole. The teacher must be able to focus 
immediately on ad-hoc interest-dense situations so that the state of interest-density is 
kept. Whereas, concerning generative-interest-dense situations the teacher has lee-
way. Generative-interest-dense situations now divide into three different, typical 
course types, the graded, the helical and the merging type. The course types fi nally 
differentiate further into three possible production types. But the empirical data indi-
cate that not every production type may develop in every course type, e.g., the expert 
show only appears in the graded or merging type and not in the helical type, whereas 
innovational idea production may only be observed as helical type (Table  5.1 ). 
Are such results features of the observed class, or is the connection of determined 
course and production types fundamentally not possible? Which structural connec-
tions between course and production may be possible? What does the connection 
between course and production actually entail?  

 If we now combine the epistemic action types with production types in a cross 
tabulation and assume an expectation-recessive interaction structure, then we obtain 
an overview of possible ideal-types of interest-dense situations which may be char-
acterized by typical descriptions of students’ participation. An idea competition, 
e.g., appears either as graded or as helical process, and this is expressed in different 
action forms. Table  5.1  shows the results of ideal type construction by ideal types. 

 We get 12 fi elds of possible ideal types of generative-interest-dense situations 
that are characterized by typical action-participations. This result is a step towards 
a development of a typology of interest-dense situations. But the available data are 

    Table 5.1    Types of generative interest-dense situations   

  

Epistemic
action types

Production
types

“helical” “graded” “merging”

“innovational
idea production“

critical-struggling co-
construction ? ?

“idea competition“ reflexive-competing-
examining construction

moderately-competing
construction

prepared-merging
construction

“experts show“ ad-hoc expert
presentation

Categorized 
presentation and
re-construction

merging new- and re-
presentations

“quality control“ ? critically testing new-
and re-construction

merging expert’s 
presentations

Legend:                          uncertain, empirically not verified ideal type

possible, empirically not verified ideal type

?
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not suffi cient to fi ll all the fi elds empirically or even just to answer the questions 
whether all fi elds may be fi lled empirically, which of the fi elds remain (almost) 
empty, and which of them could be grouped to a common ideal type in a meaningful 
way. On the basis of the existing data, the step may be thought over theoretically but 
not carried out empirically.   

5.9     Summary and Conclusion 

 Scientifi c ideal type construction in the interpretative research of mathematics 
 education may be understood as an idealized interpretation of patterns in the world 
of contemporaries. The examples of empirical research show that in this way com-
plex facts of the world of contemporaries may be conceptualized. The theory devel-
opment process involving empirically-based ideal type constructions entails two 
phases reciprocally building on each other: ideal type construction with the aim of 
interpretative evaluation of empirical data. The results are ideal type characteriza-
tions that condense the evaluation results conceptually. These ideal types now pres-
ent the conceptual base for a further theory development. How we proceed in detail 
methodically is not stated because ideal type construction is not an evaluation 
method, but a methodical principle that supports empirically based theory construc-
tion. The specifi c methodical procedure to be taken as a basis for ideal type con-
struction and theory construction has to be developed individually in the respective 
research process itself. Here, there are common features and principles of different 
heuristics, depending on the individual situation and available data. Common fea-
tures are the functions of ideal type constructions, on the one hand to condense theo-
retical insights in ideal type characterizations into concepts (in order) to constitute, 
on the other hand, a basis which shows the direction for theory construction. 
A common principle of empirically based ideal type construction is case compari-
son and case contrasting. The choice of heuristics for a theory construction on the 
basis of empirically based ideal type construction is object and data dependent. 
Therefore there may be many and very different heuristics, as the following list of 
heuristics used in empirical research with the described examples shows:

•    Is the construction of personal ideal types, of action types or situational ideal 
types useful?  

•   Is there a polar situation?  
•   Is a grouping procedure appropriate?  
•   Are there appropriate prototypes?  
•   May a feature space be (re-)constructed?  
•   May the fi elds of a feature space be empirically fi lled?  
•   Which contexts may be expected from it?  
•   How may the cases be distributed among the ideal type groups?  
•   Which structures are taken as a basis for such distributions?  
•   Do these cases consist of long processes so that they should be presented in a 

condensed way?  

5 Empirically Grounded Building of Ideal Types. A Methodical Principle…



132

•   Is there a structural context of already constructed ideal types?  
•   Is it practical to construct new ideal types by already existing ideal types?  
•   Is it practical to summarize ideal types to one type?    

 The abovementioned examples show that situational ideal types may conceptual-
ize complex teaching situations in their typicality. We therefore hope that by means 
of theory development by ideal type construction we may come to teaching theories 
of mathematics education which are able to describe the complex contexts of math-
ematics lessons in a theoretically adequate way. In addition, situational ideal types 
provide recognition patterns for typical teaching situations and may therefore 
become a basis for teaching analyses in science and teacher training. Theory con-
struction by means of ideal type construction could therefore become a fruitful 
methodical principle of interpretative research in mathematics education and might 
contribute to the development of theories in mathematics education by analyzing 
teaching practice for teaching practice.     

  Acknowledgement   I thank Julitta von Deetzen and Dan Smith (from Language Associates) for 
their support in translating the original paper.  
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    Chapter 6   
 How Ideal Type Construction Can 
Be Achieved: An Example 

             Angelika     Bikner-Ahsbahs    

    Abstract     This chapter of the part presents an example of an ideal type construction 
of epistemic processes focusing on interest-dense situations. The ideal type con-
struction consists of four steps. The fi rst step starts with reconstructing empirical 
cases of epistemic processes by data aggregation; it yields to pictographs that repre-
sent the investigated episodes in terms of phase structures. In the second step, these 
structures are grouped according to high homogeneity within and heterogeneity 
between the groups to shape the base for disclosing the situational key features of 
each group. In the third step these key features are used to create ideal types of the 
epistemic processes as “pure cases”. Finally the paper illustrates the fourth step 
describing how these types may contribute to gaining theoretical insight into the 
dynamic of the epistemic processes investigated.  

  Keywords     Interest-dense situations   •   Ideal type construction   •   Epistemic process   
•   Interpretive research  

6.1        Introduction 

 In this chapter, I present an example about ideal type construction to elucidate in what 
way and what for this methodology may be used in research. The example is taken from 
the project “Math interest between subject and situation” (Bikner- Ahsbahs  2003 ,  2005 , 
 2006 ). It has already been used to illustrate the additional value of building ideal types 
for reconstructing students’ ways of coming to know and the researcher’s way of con-
structing knowledge of the very same research  process in Bikner-Ahsbahs ( 2008 ). The 
current paper also shows how ideal type  construction assists in structuring such epis-
temic processes but it focuses more on the methodical steps, specifi cally on showing the 
added value of the ideal type’s function of leading the way to theorizing (cf. Weber 
 1922 , p. 190;  1949 , p. 90; see Chap.   5    ). Two different forms of theorizing are presented 
revealing new results about the specifi city of the interest-dense situations investigated. 
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 Interest-dense situations may occur in mathematics classes when students fulfi ll 
three conditions while working collectively on a mathematical problem: the students are 
deeply involved in solving the problem; they deepen their insights by progressing and 
further constructing mathematical meanings; and they either explicitly or implicitly 
value highly the mathematics they are working on. An interest- dense situation can either 
be initiated ad-hoc by interest on the part of the student or, alternatively, generated by the 
behavior of the teacher: the latter is called a ‘generative interest-dense situation’ and can 
be achieved when the teacher guides the epistemic process towards transferring the 
responsibility of constructing knowledge to the students. In all interest-dense situations, 
the teacher is guided by the situation of student knowledge construction and not by his 
own content expectations (cf. Chap.   5    , Bikner-Ahsbahs & Halverscheid  2014 ). 

 In the example I address the empirically based ideal type construction of epis-
temic processes in generative interest-dense situations. The data source consists of 
the transcripts of all the generative interest-dense situations that occurred in the 
course of the abovementioned project (Bikner-Ahsbahs  2005 ). Methodological 
background is an adapted version of the empirically grounded ideal type construc-
tion that Gerhard ( 1986 ,  1991 ,  2001 ) has worked out by grounding it on Weber’s 
( 1949 /translated from Weber 1922; Weber  1921 ) description of ideal types. The 
methodology in this example will be based on a process of grouping cases (cf. 
Kluge  1999 , p. 26ff.); it follows four steps (cf. Chap.   5    ):

    1.     Re-constructing the cases : the epistemic process of each situation is recon-
structed and aggregated twice: by building a condensed process diagram, which 
then is compressed into a phase diagram represented by pictographs.   

   2.     Grouping the cases according to maximum homogeneity within each group and 
heterogeneity among the groups : The phase diagrams are compared, contrasted, 
and grouped as described.   

   3.     Building ideal types as pure cases  through idealizing main features of the groups, 
and at the same time disregarding less important aspects.   

   4.     Building theoretical knowledge  by comparing the ideal types among each other 
and analyzing the empirical cases against the background of ideal types.    

  The fi rst step refl ects the way data are approached and phenomena are  identifi ed. 
Before doing so in the example to be presented, I will portray some additional meth-
odological and theoretical considerations of the abovementioned project.  

6.2    Methodological and Theoretical Considerations 

 The background theory (Mason and Waywood  1996 ) of the project is interpre-
tive research of social interaction in classrooms. Interpretive research assumes 
that the social everyday world is constituted by the individuals’ interpretations 
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of their own and others’ actions and mutually orienting their acting towards 
those of others (cf. Treibel  2000 , p. 113).

  According to this assumption, mathematical meanings emerge through interpretations of 
actions. These interpretations orientate themselves mutually towards the other participants’ 
actions and interpretations. Thus, mathematical meaning is a product of social interaction. 
Primarily, it is part of the interaction space and not of an individual. These meanings are the 
sequential steps which together assemble the process of social constructions of mathemati-
cal meanings. (Bikner-Ahsbahs  2006 , p. 161) 

   If they are accepted, these mathematical meanings are perceived as knowl-
edge elements, being viable in the local situation. In this sense, knowledge is of 
situated existence; it may be further developed, and changed later, and some-
times it may even be false. This is what is meant by the expression  a mathemati-
cal meaning is taken as shared through a process of negotiation  (see Krummheuer 
 1992 ,  1995 ). 

 Through re-interpreting the actions and utterances of the students, a researcher is 
able to reconstruct the epistemic process. In this paper, this is done through the use 
of Peirce’s sign concept in a way that is adapted to the conceptualization of knowl-
edge construction within social interaction. According to Peirce, a sign z is always 
related to an object o and an interpretant i: “A sign … is something which stands to 
somebody for something in some respect” (Fig.  6.1 ) (Peirce; see Zeman  1977 , 
p. 24). Hence, the interpretant provides a special view on the object given by 
the sign.

   Originally, a sign is meant to mediate between object and interpretant, which 
itself is a sign. However, a person who sets the sign often has another object in 
mind than the person who interprets this sign. This divergence can be grasped by 
Peirce’s distinction between the “dynamic” and the “immediate” object (Hoffmann 
 2005 , p. 51). The dynamic object is a kind of limit concept made up of all ade-
quate interpretations possible. The immediate object is the one the actual interpre-
tant refers to: for example, the mathematical object that a learner speaks of in a 
learning situation, which may be different from that of the mathematical culture. 
In the fi rst step of ideal type construction, the development of immediate objects 
is re-constructed—and thus results in a description of the epistemic process. Such 
a process will now be illustrated by a specifi c example following the four above-
mentioned steps.  

Sign z

Object o Interpretant i

  Fig. 6.1    Peirce’s triadic sign 
relation (cf. Hoffmann  2004 , 
p. 198)       
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6.3     Example: Constructing Ideal Types of Epistemic 
Processes 

6.3.1     Step 1: Re-constructing the Cases Illustrated 
by an Epistemic Process as a Case for Ideal 
Type Construction 

 In a grade 6 class the teacher poses a prison story: “In a prison there are as many 
offi cers as there are cells. All the prison cells and the prison offi cers are numbered; 
every prison offi cer passes all the cells and makes a cross on the door if the cell 
number is divisible by his own number. The prisoners with cell doors that have 
exactly three crosses are set free. Which numbers are meant?” (cf. Bikner-Ahsbahs 
 2006 , p. 164). The teacher has written a table on the blackboard (see Table  6.1 ) in 
which the class had explored the task situation making crosses as the offi cers do. 
The students have written this table down in their paper notebooks. 

 The solving of this task was taken as the initial interest-dense situation to 
be  analysed in order to reconstruct its epistemic process. This initial analysis served 
as a starting point for structuring the entire analysis process for all the cases. This 
fi rst analysis provided an epistemic action model that consists of three epistemic 
actions and was to serve as the main tool for analyzing the subsequent situations. 
The tool was checked, revised, and further developed by additional analyses. In this 
chapter, I cannot show all the aspects that appeared in this process: we will focus 
solely on the process of ideal type construction. Since this initial analysis deter-
mined a great deal of the subsequent analysis process, it will be used to illustrate 
how the re- construction of the cases was worked out. 

 By means of analyzing the following fi rst three utterances we clarify how 
Peirce’s sign concept is used for analyzing data (see Fig.  6.3 ). Then, two subse-
quent scenes are presented to illustrate the reconstruction of the epistemic process 
and its main epistemic actions: gathering and connecting mathematical meanings 
and structure-seeing. Using symbols (Table  6.3 ), the epistemic process is con-
densed in a diagram (Fig.  6.5 ), and reconstructing this case is completed by build-
ing its phase diagram represented by pictographs (Fig.  6.6 ). 

6.3.1.1    Approaching the Empirical Case with Peirce’s Sign Concept 

 [See transcription key in the appendix.]

    1.    T: well now let’s look, at o-u-r- table’, which n-u-mbers have THREE crosses (..)   
   2.    Sven: shall we write’ them down’ the numbers’   
   3.    T: yeah we want to NAME them fi rst’ which [numbers] we’ll FIND those we 

want to SEEK ' em together now here (.) Marcus. (cf. Bikner-Ahsbahs  2005 , 
p. 205;  2008  p. 111)     
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 The fi rst sign z 1  = “well now let’s look, at o-u-r- table’, which n-u-mbers [cell 
numbers] have THREE crosses (..)” is the statement made by the teacher in line 1. 
He wants the students to “look at our table” and fi nd the (cell) numbers with three 
crosses. The object o 0  of z 1  is the set of all these numbers in the Table  6.1  (Fig.  6.2 ).

    The interpretant of the fi rst sign z 1  is Sven’s response: i 1  = “shall we write’ them 
down’ the numbers’”. The interpretation space I(1) of i 1  contains all possible inter-
pretations I k  (k = 1,…,n). Sven might have understood that the teacher wants him to 
write down the numbers. On the other hand, Sven probably does not know what to 
do since he fi nishes his answer with raising his voice. He might be uncertain and 
wants to know exactly what the teacher expects. Such an open kind of question is 
probably unusual and therefore confuses him; he seems disorientated. The immedi-
ate mathematical object o 1  concerning the I k , is “dealing with the numbers with 
three crosses”. i 1  now is taken as the next sign z 2  and o 1  is the guideline object. The 
next interpretant i 2  is the teacher’s response. Its interpretation space I(2) might 
include that the student needs clarifi cation. His affi rmation: “yeah” indicates some 
understanding, and then a defi nition is given in respect of what dealing with the 
numbers with three crosses mean: naming them, fi nding them, and more immedi-
ately “we wish to SEEK 'em together”. Dealing with the numbers (o 1 ) is now clari-
fi ed as “o 2 : seeking, fi nding and naming the numbers orally altogether”. In the 
following scene students begin to offer examples.  

      Table 6.1    Cell numbers, the offi cers’ numbers, and their crosses (Bikner-Ahsbahs  2006 , p. 163)   

 Offi cer no. 

 Cell no. 

 1  2  3  4  5  6  7  8  9  10  Up to 20 

 1  x  x  x  x  x  x  x  x  x  x 
 2  x  x  x  x  x 
 3  x  x  x 
 4  x  x 
 5  x  x 
 6  x 
 7  x 
 8  x 
 9  x 
 10  x 

Sign z1

Object o1 Interpretant i1

Object o0 of z1

Interpretation space I(1) = {I1, I2, ... , In}

  Fig. 6.2    Triadic division of one interaction (cf. Bikner-Ahsbahs  2005 , p. 198;  2008 , p. 111)       
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6.3.1.2     The Epistemic Actions of  Gathering  and  Connecting  
Mathematical Meanings 

   Scene: “the FOUR”. (cf. Bikner-Ahsbahs  2005 , p. 207) 

   4    Marcus: four   
   5    T: the FOUR’ (.) mhm   
   6    /S: yes   
   7    T: (writes 4 on the board) Lisa   
   8    Lisa: six   
   9    T: six. (begins to write)   
   10    /S + S: n-o-o   
   11    /S + S: n-o-o   
   12    /S + S: she s got FOUR already   
   13    /T: she s got four I hear’   
   14    S: yes     

 In the project, this scene has been analysed by means of Peirce’s sign concept. 
Figure  6.3  shows how broad interpretation spaces can be at the beginning, and how 
they converge to one interpretation. In line 4, Marcus is offering the vague proposal 
that 4 is a possible object (as a number with three crosses) (4). This offer is ques-
tioned (5) and therefore a possible example, it then is confi rmed (6) and fi nally 
accepted (7) as an example. Then Lisa proposes 6 as another example (8), but 6 is 
rejected (10, 11) and therefore it becomes a possible counterexample which is sub-
stantiated and fi nally (12–14) confi rmed. In similar ways, the numbers 1 and 9 are 
 gathered  as examples and other numbers are  gathered  as counterexamples.

   The gathered numbers are now written on the blackboard. The teacher also asks 
the students to enter the offi cers’ numbers in the new table (see Table  6.2 ), i.e. he 
asks them to  connect  both kinds of numbers. This is easy for those numbers that 
were already in the Table  6.1 , but more diffi cult for those which are missing. This 
begins with number 49, which does not appear in the given table (Table  6.1 ). The 
students cannot just read the offi cers’ numbers: they have to connect the features of 
the number 49 to those they have gathered before. Therefore, 49 is intensively inves-
tigated and fi nally approved as a number belonging to those with three crosses, 
because the offi cers’ numbers are 49, 7 and 1. Some of the students have meanwhile 
enlarged the original table. What they found was now completed in the table at the 
blackboard (Table  6.2 ).

   What we fi nd here are two different kinds of epistemic actions which constitute 
progressing in the epistemic process:  gathering  and  connecting  mathematical mean-
ings. Through gathering, the students provide the material which then they work 
with, in that they try to fi nd connections among them; for example, how the offi cers’ 
numbers are connected with the cell numbers. In the next section the epistemic 
action of structure-seeing and the way it appears will be illustrated by another scene 
in the solving process.  
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  Fig. 6.3    Analysis diagram of the scene “The FOUR” (cf. Bikner-Ahsbahs  2005 , p. 208;  2008 , 114)       
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     Table 6.2    The second table on the blackboard (cf. Bikner-Ahsbahs  2005 , p. 214;  2008 , p. 121)   

  Cells with three crosses of offi cer number   4  9  25  49 
 1  1   1  1 
 2  3  5  7 
 4  9  25  49 

  Fig. 6.4    Analysis diagram of the scene “the middle times itself” (cf. Bikner-Ahsbahs  2005 , p. 215; 
 2008 , p. 118f.)       
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6.3.1.3    The Epistemic Action of  Structure-Seeing  

 Working in groups, the students now address the teacher’s question as to what can 
be discovered in the given new table (Table  6.2 ). Eagerly, the students begin to seek 
connections. “there is always the number one”, “the number at the top and below are 
the same” are two discoveries which the teacher immediately confi rms. In line 147 
of the next scene, the situation changes because the teacher now stops checking the 
results and reduces his participation. This leaves room to the students to take over 
responsibility for the ensuing discourse (see Fig.  6.4 ).

   Scene: “the middle times itself” (cf. Bikner-Ahsbahs  2005 , p. 214) 

   147    Jani: and the, divided by so or, so where at the bottom or in the middle down 
there that can be divided by that   

   148    /S: yes   
   149    L: mhm   
   150    S: yes   
   151    (further hands shoot up)   
   152    (fi ngers snapping)   
   153    L: yeah’   
   154    Rahel: so the one in the middle is the one has to times it with itself   
   155    /S: the one above   
   156    /Rahel: two times two is four three times three is nine   
   157    /L: aaha.   
   158    S: yes exactly like it is with seven.   
   159    T: if you times the one with itself then you get the number at the top and the 

one at the bottom, mhm.    

  From line 130 on, Anne and Josa fi rst observe a regularity: there are the same 
numbers at the top and at the bottom. This regularity is just a connection. Later, 
 structure-seeing  occurs on two occasions. Jani (147) realizes that the numbers at the 
top and the bottom are divisible by the ones in the middle. This immediately is con-
fi rmed by her classmates and the teacher (148–150). Then Rahel initiates a change 
of view and together with another student creates the rule: if one times the middle 
number with itself then one gets the number at the top (cf. 154). Jani’s broken lan-
guage in line 147 indicates that the law is still emerging, whereas Rahel creates the 
rule fl uently. Immediately, the students check and specify Rahel’s rule (155, 156 
and 157). This specifi cation begins with the smallest number 2 and is then done with 
two subsequently bigger numbers 3 and 7; hence, this process could in principle be 
continued. Then the teacher takes up the rule and expresses it in more general terms 
(159). He fi nishes with agreement. 

 During the initial analysis, the three main epistemic actions  collectively  gathering 
meaning ,  connecting meaning  and  structure-seeing  were carried out. Gathering 
meanings refers to single features such as examples, or counterexamples. Connecting 
mathematical meanings refers to a small number of examples being related to each 
other. The structure, that now appears is a (new) entity made up of relationships 
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within a set of mathematical knowledge elements. Signs, indicating structure- seeing, 
refer to a structure or a set of examples (even potentially infi nite), which all share 
the same structure (Rahel’s rule).  

6.3.1.4    Representing the Course of the Epistemic Process 

 These epistemic actions are now represented by codes (Table  6.3 ), offering a brief 
overview of transcripts comprising more than a thousand lines by condensed 
process diagrams. Figure  6.5  represents the course of the epistemic process of the 
episode described above as example.

   In the scene above, the teacher initiates gathering examples and counterexamples 
for numbers with three crosses as a collective action in a process of social interac-
tion. The examples are 4, 9 und 25, and as counterexamples the students found 6 and 
10, but also 16 and others. 

 In the condensed process diagram (Fig.  6.5 ) we can observe three different 
phases, all of which are initiated by the teacher. The fi rst phase (phase I) consists 
mainly of gathering actions: examples and counterexamples are gathered to which 
the teacher reacts by understanding what the students relate. The second phase 
(phase II) follows after a writing process. It mainly consists of connecting actions. 
The third one (phase IIIa) mainly comprises seeing, concretizing and specifying 
structures. It is interrupted by a short situation in which the teacher creates a factor 
diagram of the numbers in question and tries to push the epistemic process. This 
factor diagram forms the basis for continuing the discourse about numbers with 
three crosses in phase IIIb, and results in the insight that these numbers all are 
squares of prime numbers. This insight is a result of making conjectures about the 
features of the numbers which were tested by means of fi nding examples and coun-
terexamples, and could ultimately be explained.

Gathering meaning:

Connecting meaning:

Structure seeing:

Structure seeing and making them more concrete:

Structure seeing and reasoning:

Teacher actions: initiation

Student actions : gathering examples, 
counterexamples

    Table 6.3    Codes for epistemic actions (cf. Bikner-Ahsbahs  2006 , p. 165)       
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6.3.1.5       A Pictograph Representing the Phase Structure 

 The fi rst step of data aggregation led to a condensed process diagram (Fig.  6.5 ); the 
second led to a phase structure represented by a pictograph (Fig.  6.6 ). In every 
phase the activity is mainly built by the actions represented in the pictograph in 
Fig.  6.6 . In phase I, the students gather examples and counter examples of numbers 
with exactly three crosses. In phase II, the examples are connected with each other 
and with other pieces of knowledge. During phase IIIa, the fi rst pattern rules are 
found. This phase is interrupted by a phase in which the teacher initiates small 
pieces of knowledge. In the fi nal phase IIIb, further patterns and laws are sought, 
identifi ed and named, but also validated and substantiated. The learning episode 
results in fi nding that the numbers with three crosses are exactly the squares of 
prime numbers.

   This phase structure describes an epistemic process sequenced, or graded, by 
the actions  gathering meaning ,  connecting meaning , and  structure-seeing , and 
every phase is initiated—in this case by the teacher. Gathering actions provides the 
material for further work, thus preparing for connecting actions. Connecting actions 
establish relationships, which in turn provide the material for further work in that 
these relationships undergo a re-structuring. In this way, structure-seeing is pre-
pared. The structures are then checked and validated.   

6.3.2    Step 2: Grouping the Cases 

 Every interest-dense situation is investigated in the way described in step 1, leading 
to different pictographs. These pictographs aggregate all the information from the 
analyses carried out beforehand. In this step, they are compared and contrasted, and 
fi nally classifi ed into three groups of different process structures. Group 1 (Fig.  6.7 ) 
is distinguished from the others in the way epistemic actions lead to structure- 
seeing. This appears in a  graded  way, with phases that mainly consist of just one 
kind of epistemic action, and each phase is initiated in one way or another. The 

  Fig. 6.6    Pictograph of the phase structure (cf. Bikner-Ahsbahs  2005 , p. 222;  2008 , p. 129)       
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  Fig. 6.7    Pictographs of the phase structures of group 1 (cf. Bikner-Ahsbahs  2005 , p. 222;  2008 , 
p. 132f)       

  Fig. 6.8    One example pictograph of the phase structures of group 2 (cf. Bikner-Ahsbahs  2005 , 
p. 247–248; Bikner-Ahsbahs  2008 , p. 133)       

second pictograph of Fig.  6.7  is a prototype of this group, although there may be a 
variety of different forms. A common feature of group 2 (Fig.  6.8 ) is that gathering 
and connecting are intertwined, and ideally structure-seeing is not initiated but 
seems to be a consequence of the students’ deep involvement in the process in which 
they gather mathematical meanings and spontaneously connect them up, i.e. they 
approach structure-seeing in a  helical  way. Group 3 (Fig.  6.9 ) is different from the 
other two in that there is a separated preparation of groups or individuals working 
on the task before the different perspectives are merged. During this merging pro-
cess, the epistemic actions do not have a clear structure: they may lead to structure- 
seeing or even start with structure-seeing.
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6.3.3         Step 3: Building Ideal Types 

 We now reconsider the groups and the underlying results of the reconstruction of the 
cases, and we idealize their features solely in respect of the specifi c dynamics of the 
epistemic process. This way we build ideal types as situational types with a precise 
rationality of the dynamics of the epistemic process in mathematics classes (cf. 
Bikner-Ahsbahs  2005 , p. 195ff.). Key tools are the three epistemic actions which 
were reconstructed during the process of analysis of the cases. 

  The grade-structured  type (idealized from group 1): Whenever an epistemic pro-
cess starts, it begins by the teacher initiating a process of gathering mathematical 
meanings. The students then join in all together until no more mathematical 
 meanings that are relevant for solving the task can be found and the students get 
stuck. Then the teacher initiates the connection of mathematical meanings in the 
way they are needed to solve the task or answer the question. This act of initiating 
offered by the teacher prepares the basis for structure-seeing. However, the phase of 
structure- seeing is likewise initiated by the teacher; for example, by asking a typical 
question such as “what pattern can you fi nd?”, and can start via connecting actions. 
The dynamic of this epistemic process is graded and stabilized by a clear  expectation 
about the kind of epistemic action within every phase, and by the teacher, who orga-
nizes the phases by suitable acts of initiating. In every phase, the way the students 
participate is determined, but within the respective phase the students are free to 
follow their line of thought in the respective epistemic action. In a graded type, 
teacher’s and students’ actions are clearly determined and directed at answering the 
question or solving the task. Structure-seeing is prepared stepwise. First, single 
knowledge elements are gathered and then connected. This results in the experienc-
ing of relationships, which in the third phase are looked at with the aim of recogniz-
ing patterns. (cf. Bikner-Ahsbahs  2005 , p. 223f.) 

  The helical-structured type  (idealized from group 2): The dynamics of the 
 epistemic process in this type are different from the graded one. The starting point is 
also a question or a task in which the students become involved. They begin to gather 
mathematical meanings, which they immediately intertwine with connecting actions. 
Gathering-connecting actions assemble and activate more and more  mathematical 
meanings. Initiation is not needed since activities of this kind may be repeated and, 
in the course of being repeated, are further developed until the students are able to 
see structures that are validated, and proven. These structures may provide new 
material, which in turn is investigated again by gathering-connecting actions leading 

  Fig. 6.9    One example pictograph of the phase structures of group 3 (Bikner-Ahsbahs  2005 , 
p. 254;  2008 , p. 135)       
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to seeing further structures. This recursive process of  gathering- connecting action 
stabilizes the dynamics of the epistemic process and provides new material, which 
again may form the basis for a subsequent phase of structure- seeing. Thus, a  helical-
structured  type of epistemic processes is shaped. From the beginning, relationships 
are built and intensively broadened and  re-structured until entities of relations appear 
as structures to the students. Since all the students have access to the same material 
they all are able to think along with this process and  re- construct the structures their 
classmates have pointed out. (cf. Bikner-Ahsbahs  2005 , p. 249f.) 

  The merging-structured  type (idealized from group 3): The students start by 
working alone or in small groups. This is organized by the teacher either as home-
work or during the lesson in school. Afterwards, the insights developed by the stu-
dents are presented and allowed to fl ow together. The students are expected to 
present their lines of thought, question the other presentations, and discuss the 
results altogether. As in the other types, the epistemic process fi nishes with a phase 
of seeing, validating and proving structures. When the students come together they 
exchange the knowledge they gained, which may start by presenting observed struc-
tures or lead to structure-seeing in the course of presentation and refl ections. (cf. 
Bikner-Ahsbahs  2005 , p. 256f.) 

 In the ideal types, all the investigated situations pass through gathering and con-
necting actions and lead to phases of structure-seeing. This seems to be made pos-
sible by allowing the students to gather and connect mathematical meanings in their 
own time and for as long as they need. It takes only one student to recognize a 
structure for the other classmates to be able to catch on and immediately reconstruct 
the structure. Hence, structure-seeing is a result of a social process of constructing 
knowledge. The basic assumption underlying the three ideal types is that students 
are engaged in the specifi c dynamics of the epistemic process and behave according 
to its affordances. Structure-seeing, testing and validating the structure do not occur 
before gathering and connecting actions are somehow theoretically saturated in 
respect of the given task or question.  

6.3.4    Step 4: Building Theoretical Knowledge 

 Following Weber ( 1922 , p. 190;  1949 , p. 90), the ideal types are used as theoretical 
constructs in step four. They refl ect real learning episodes, but which themselves 
cannot be regarded as real because they are considered to appear according to a 
specifi c pure rationality (see Chap.   5    ). However, they may guide the understanding 
of a specifi c situation. For example the real episode “numbers with three crosses” 
can be compared and contrasted with the graded type as it refers to the same group. 
Its three phases are orchestrated by tables. The fi rst table refl ects the story, and is 
explored by gathering actions. Building a new table that consists only of the numbers 
with three crosses and their factors is a new step that calls for connecting actions. 
This is initiated by the teacher. Finally, one has to take a step back and look at the 
new table to fi nd patterns. The teacher’s initiation in this point helps the students to 
adapt their views and understand the structure of the table. However in phase IIIa of 
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the investigated real situation, the students still did not realize that the three crosses 
appear only with squares of prime numbers. Therefore, the third phase in the epis-
temic process was interrupted because the teacher directed the students towards the 
solution by the use of the factor diagram which they had learnt before. Thus, the 
students produced what the teacher had in mind. However, when the teacher asked 
the students to check whether the squares of further (prime) numbers were exactly 
the numbers with three crosses, the students were lost. When the teacher stopped 
directing the students to proceed the way he wanted them to, but left room for 
exploration, the students were able to see the results as a new structure in phase IIIb. 
Only then were they able to check it with further numbers and then prove the rule by 
the use of a factor diagram. This difference to the graded-structured type supports the 
theory building process because it gives evidence why the rationality of the graded 
type was not followed and the fi nal result was not understood: just forcing the students 
to produce the result the teacher wanted did not lead to any in-depth insights, because 
gathering and connecting meanings were not yet saturated for structure-seeing. 

 We now follow another direction in building theory and consider all three ideal 
types looking for common categories or underlying dimensions (cf. Kluge  1999 , 
p. 93ff.). In the  grade-structured  type, the interaction is organised by the teacher 
initiating the phases. The students act according to the teacher’s directions, but 
within the phases they are ( locally ) free to follow their own line of thought. The 
 helical-structured  type is not organised by the teacher, but ( globally ) self-regulated 
by the students throughout the whole process. In the  merging-structured  type, the 
organisation and the kind of interaction is even planned beforehand by the teacher. 
Only in the preparation phase are the students free to follow their own line of 
thought. In the merging phase, the students are supposed to present their thoughts, 
ask questions, and discuss their results. In the graded type, the teacher’s planning is 
reduced to preparing the material to be worked with and becoming clear about his 
three-step initiations. However, exactly at which point in time teacher initiations are 
needed is not clear beforehand: it depends on the epistemic process, and it has to be 
decided locally. Therefore, we can distinguish three different forms of organization 
which seem to be deeply linked to dynamic forms of fruitful epistemic processes. 
They are shaped by two dimensions: on the one hand, students’ self-regulated epis-
temic actions, that can be  local  (graded type),  global  (helical type) or are  merged —
appearing globally in the preparation phase and locally during the presentation 
(merging type) and, on the other hand, the teacher’s inducing of (specifi c) epistemic 
actions, that can be  left aside  (helical type), that can be  organised locally  (graded 
type), or  globally  (merging type).   

6.4    What Can Be Learnt from This Example? 

 First of all, ideal types are limit constructs, i.e. they are theoretical concepts offering 
a clear and precise rationality that does not exist in reality. However, ideal types 
refl ect specifi c aspects of the empirical world which serve as a means for investigat-
ing data and result in building theoretical elements. This may happen on two levels: 
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either ideal types are used to more deeply understand the single cases, or all the 
ideal types are used to explore whether there is a feature space in which they can be 
embedded. As described in the previous chapter, this feature space is relevant 
because it may disclose ideal types that have not yet been reconstructed or dimen-
sion to describe epistemic processes. Hence, it may offer predictions or structure a 
specifi c area of investigation. 

 The example described in this paper also shows how the ideal types are used to 
deepen understanding of the empirical cases. For instance, the epistemic processes 
of the prototypes of the graded type are all shaped by a specifi c way of dealing with 
a task. Gathering is enacted by exploring a situation given by a task like collecting 
numbers with three crosses from the table. Connecting actions are enacted by build-
ing a sub-situation from the previous one, like building a new table that only consists 
of the numbers with three crosses and their factors. Both situations are still deeply 
connected to the original story of the task. In the second phase, decontextualization 
may begin naturally, but when the teacher asks students to look for patterns it is initi-
ated explicitly. Thus, the three-step initiation of the graded type may offer a teaching 
heuristic of how to shape a fruitful epistemic process towards structure-seeing.      

   Appendix: Transcription Key 

 S(s), T  Student(s), teacher 
 EXACT  Emphasized or with a loud voice 
 e-x-a-c-t  Prolonged 
 exact.  Dropping the voice 
 exact´  Raising the voice 
 ,exact  With a new onset 
 (.),(..)…  1, 2 … sec pause 
 (....)  More than 3 sec pause 
 ( gets up )  Nonverbal activity 
 /S  Interrupts the previous speaker 
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    Chapter 7   
 The Question of Method in a Vygotskian 
Semiotic Approach 

                Luis     Radford      and     Cristina     Sabena    

    Abstract     In this chapter we present the main ideas of an educational Vygotskian 
semiotic approach, emphasizing in particular some crucial questions about its meth-
ods of inquiry. We resort, on the one hand, to Leont’ev’s (1978) work on activity, 
and, on the other hand, to Vygotsky’s cultural psychology. Considering a theory as 
an interrelated triplet of “components” (P, M, Q), where P stands for principles, M 
stands for methodology, and Q for research questions, in the fi rst part of the chapter 
we present a brief sketch of the Vygotskian semiotic approach through the lenses of 
the aforementioned components. We refer in particular to two methodological con-
structs that have been built to account for multimodal sensuous actions: the semiotic 
node and the semiotic bundle. To illustrate the semiotic approach, in the second part 
of the chapter we discuss an example from a classroom activity concerning pattern 
generalization. This example constituted an important step in developing the semi-
otic approach under consideration. The example is about the role of words, gestures, 
and rhythm in the students’ process of objectifying (i.e., noticing or becoming 
aware of) mathematical relationships. We discuss how a “crude fact” that was not 
anticipated led to a transformation of the theory, and in particular its methods and 
research questions.  
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7.1       Introduction 

    Mathematics education researchers resort to procedures to describe the phenomena 
they investigate and also to make claims about their objects of study. Naturally, 
since the procedures allow researchers to argue and reach conclusions, their “appro-
priateness” is of paramount importance: to a large extent, the cogency of an investi-
gation depends on the persuasiveness of the procedures. 

 One of the most vigorous debates in the history of mathematics education has 
consequently been the one revolving around the  nature  of these procedures. Should 
we understand these procedures in the sense of the natural sciences? Or should we 
rather understand them in the sense of the social sciences? The choice is not simple. It 
entails adopting a view of the nature of the  phenomena  dealt with. In other words, the 
question about the nature of the procedures goes beyond the procedures themselves. 

 In the fi rst case, procedures are generally understood as based on, or following, 
 models  of scientifi c practice. The testing of the models—e.g., models of didactical 
situations—and replicability of results become central questions. Naturally, within 
this approach, it is assumed that educational phenomena are amenable to be mod-
eled. That is, there are some regularities that remain constant in the observed phe-
nomena; furthermore these regularities can be grasped (even if only approximately) 
if the proper tools are employed. In this case, one of the tasks of mathematics educa-
tion is to grasp such regularities (Brousseau  2005 ). 

 In the second case, procedures are not understood as models. This is the view 
that the social sciences—at least in some of their recent trends (e.g., Atkinson and 
Hammersley  1994 ; Shweder and LeVine  1984 )—tend to adopt. The nature of the 
social phenomena is considered to be non-amenable to be modeled or factored out 
in terms of controllable variables. Deeply sensitive to their context (social, cultural, 
historical, etc.), social phenomena (which includes educational phenomena, e.g., 
teaching and learning) are assumed to be messy by nature. You may try to remove 
the redundant, the apparently unnecessary, the fuzzy, and what will remain will still 
be redundant and fuzzy, not because you did not do your job well, but because it is 
the phenomenon’s real nature. 

 By virtue of their radical differences, both research paradigms convey different 
ideas of the searchable and have recourse to different procedures or methods. The 
semiotic approach that we discuss in this chapter belongs to the social science para-
digm. As such, it conceives of the educational phenomena as messy and context sensi-
tive. Its claims are not backed up by some immutable laws whose existence is asserted 
by a confrontation of the laws and empirical facts. Rather, general assertions are sus-
tained by actual references that may guide further action through a refl ective stance. 

 The focus of the semiotic approach that we discuss in this paper is on the phe-
nomenon of teaching and learning—a phenomenon embedded in the idea of class-
room activity. 

 In the sense that the semiotic approach does not aim to uncover hidden laws 
behind teachers’ and students’ actions, the approach could be said to be interpreta-
tive. But it is more than that. We do not register the educational phenomenon in 
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order to offer plausible interpretations of it. Although we provide interpretations, 
we also design the classroom activities, and by designing them, we alter and trans-
form the manners in which teaching and learning co-occur. 

 In this chapter, we present the main ideas of our semiotic approach, emphasizing 
in particular some crucial questions about our methods of inquiry. In Sect.  7.2  we 
discuss the concept of method as a central problem of scientifi c inquiry. We draw on 
Vygotsky’s idea of method—an idea that tormented him throughout his short life and 
to which he continuously returned as he moved progressively away from the infl uence 
of refl exology and instrumentation to a more encompassing view of humans and the 
human mind. In Sects.  7.3  and  7.4  we present the theoretical underpinnings of our 
semiotic methodology, which we illustrate in Sect.  7.5  through a classroom example.  

7.2     Method as the Central Problem of Scientifi c Inquiry 

 In trying to provide scientifi c accounts of human phenomena, a method of enquiry 
has to be devised. “Finding a method,” Vygotsky ( 1993 ) says, “is one of the most 
important tasks of the researcher” (p. 27). Now, it would be a mistake to think that 
methods precede the inquiry or research that they are supposed to support. In gen-
eral, a method “is simultaneously a prerequisite and product, a tool and a result of 
the research” (Vygotsky  1993 , p. 27). 

 This concept of method, as simple as it may appear, only makes sense within a 
theoretical general view of  what  is studied and  how  it can be studied. For Vygotsky, 
who followed Marx’s Hegelian view of reality, both the object of study (reality) and 
the manner in which it can be studied are always in motion. They come to form 
a dialectical unity where the components affect each other in a dynamic way. It is 
hence unimaginable that a method could precede in its entirety the investigation, 
which is in itself an activity in continuous movement. 

 But a method is more than something that comes into existence in the course of 
research. Method, as Vygotsky understood it, is not the mere systematic application of 
a set of principles. Nor is it simply a way of doing something—a technique. Method 
comes from the Greek  methodos , a word made up of  meta —“after”—and  hodos —
“a traveling”—meaning hence “a following after” (Online etymology dictionary 
 2013 ). A method’s main characteristic is to be inquisitional and refl ective, that is, a 
philosophical practice. It is in this non-instrumentalist Vygotskian sense that we 
understand method here and that method can be said to be at the heart of a theory. 

 Let us notice that the sought object in the “following after” of a method is not 
merely something that is there, waiting to be discovered. By asking questions—
research questions—theories fabricate those objects. They also fabricate the evi-
dence that shows the objects in accordance with the procedures that theories follow 
in their persuasive endeavour. 

 This does not mean, however, that theories fabricate their objects and methods as 
they wish. This would amount to a blunt and self-defeating relativism. What it does 
mean is that methods are rooted in theoretical principles that convey worldviews. 
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Let us give a short example. In his  Genetic Epistemology , Piaget ( 1970 ) resorts to 
methods that, at fi rst sight, seem extremely simple and even merely instrumental: a 
few objects and a child who is required to answer some questions or to solve some 
problems in laboratory interviews. The design of the task and the setting into motion 
of the child’s activity (along with the supposedly neutral role of the observing 
researcher) unavoidably embodies a worldview of human intelligence and its main 
traits—e.g., that intelligence and its development can be accounted for in terms of 
problem solving procedures and their underpinning formal logical meanings. Piaget’s 
methods crystalize aspects of a general Western worldview: one in which, since 
Kant, reason appears as a regulative entity of human experience supplemented with 
the nineteenth century understanding of evolution. As Walkerdine ( 1997 ) notes:

  In the work of Piaget, an evolutionary model was used in which scientifi c and mathematical 
reasoning were understood as the pinnacle of an evolutionary process of adaptation. The 
model viewed the physical world as governed by logicomathematical laws, which came to 
form the basis of children’s development of rationality. (p. 59)   

 Infused with such a worldview, Piaget’s investigative procedures turn to fi nd 
traces of logical thinking behind the child’s action and utterances:

  Piaget examines a child’s protocol and picks out the signifi cant underlying propositions 
(which he can then order in the logical parlance of  p ’s and  q ’s); the mental action refl ected 
in the protocol is a series of operations performed on the propositions. The individual has 
reached formal operations when he can systematically and exhaustively explore the rela-
tions between propositions describing a phenomenon. (Gardner  1970 , p. 359)   

 Piaget’s tasks are designed in a way to elicit logical propositions and their com-
bination in the child’s actions and discourse. It is in this sense that theories fabricate 
their objects of investigation and the evidence to sustain their claims. 

 We should not be led to think though that methods remain caught in their own 
endeavours and are blind to other possibilities. We have insisted on the fact that 
methods are not merely instrumental procedures to follow. Methods are part of a 
refl ective, philosophical practice. And as such, they are prone, at least in principle, 
to continuously examine their results and the worldviews that they purport. There is 
also another source of change and transformation: since methods embody 
 crystallization of cultural worldviews and since worldviews within a given culture 
are not homogeneous, methods do not go generally undisputed. Thus, anthropolo-
gist Lévi- Strauss criticized Piaget for resorting to a rather artifi cial methodology:

  What I do ask, and I formulate this question rather naively in ethnological terms, is whether 
Piaget’s research techniques aren’t rather artifi cial in character. His experiments are set up 
in advance, prefabricated, which does not seem to me to be the best way to understand the 
mind in all its spontaneity. (Grinevald  1983 , p. 84)   

 Let us summarize. Methods are a central element of scientifi c enquiry. But methods 
cannot be reduced to a pure instrumental sequence of steps defi ned in advance and 
to be followed blindly. Methods convey worldviews. That is, they make assump-
tions about  what  is to be known and  how  it can be known. And because what distin-
guishes a scientifi c inquiry from other inquiries, we suggest, is its systematic and 
explicit character, the scientifi c inquiry has to be as precise as possible about the prin-
ciples it adopts. These principles wrap already the raw material to be studied with 
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 categorial substance—that is, with conceptual categories that already infuse the objects 
of study with scientifi c value and understanding. “We study [a] given particular gas not 
as such, but from a special viewpoint” (Vygotsky  1997 , p. 318). This is why

  The material of science is not raw, but logically elaborated, natural material which has 
been selected according to a certain feature. Physical body, movement, matter – these are 
all abstractions. The fact itself of naming a fact by a word means to frame this fact in a 
concept, to single out one of its aspects; it is an act toward understanding this fact by 
including it into a category of phenomena which have been empirically studied before. 
(Vygotsky  1997 , p. 249)   

 In previous work (Radford  2008a ), to try to better understand theories in mathe-
matics education, and to avoid forgetting the philosophical or refl ective nature of 
their methods, we have suggested that it may be worthwhile to think of theories as 
dynamic entities composed of interrelated “parts.” These parts are: (1) the principles 
that are assumed by the theory and that defi ne the spectrum of  what  is to be known 
and  how  it can be known; (2) the methodology or method (that is, the refl ective pro-
cedures through which the inquisitive endeavour is carried out); and (3) the research 
questions that the theory strives to answer or investigate. In short, a theory, we sug-
gest, is a triplet T = (P, M, Q), where P stands for principles, M stands for methodol-
ogy, and Q for research questions. This analytic description of theories does not 
mean, as the previous discussion suggests, that the different parts of the theory are 
independent of each other. They are interconnected and evolve in a dynamic way. 
Thus, a result may require a new or deeper interpretation for which new theoretical 
principles have to be elaborated, or it may require the development of new method-
ologies. A new result may also lead one to ask new research questions. 

 In the following section, we discuss some aspects of our semiotic approach. We 
start by addressing the links between semiotics and education.  

7.3     A Vygotskian Semiotic Approach 

 The semiotic approach that we outline seeks to answer questions about teaching and 
learning. At fi rst sight, it may seem curious to resort to semiotics to answer educa-
tional questions. Indeed, semiotics, in its different trends and developments, is not a 
theory of teaching, nor is it a theory of learning. Semiotics was developed in close 
relation to phenomenological concerns—e.g. Peirce ( 1958 ), Husserl ( 1970 ), Hegel 
( 2009 ), and around questions of language—e.g., Saussure ( 1916 ). Where is the con-
nection? Semiotics is a theory of how signs signify. It is a theory of signifi cation. It 
can provide insights into the manner in which educational practices work, for as 
Walkerdine ( 1997 ) noted, “All practices are produced through the exchange of signs 
and are both material and discursive” (p. 63). 

 As a cursory glimpse at a classroom would show, there is indeed a tremendous array 
of signs (some of them written and oral, but also embodied signs such as gestures and 
body posture) and artifacts in circulation in a teaching and learning activity. And this 
would be even more evident in a mathematics classroom, where recourse to concrete 
objects (e.g., plastic geometric shapes, blocks, etc.) is often made. 
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 Since semiotics is not a theory of knowing or a theory of learning, to be success-
fully used in education, semiotics has to be  integrated  into an educational theory. 
This integration cannot be a mere juxtaposition of semiotic concepts and educa-
tional ones (Radford  2013a ). Since theories are based in theoretical principles and 
specifi c methodologies, there is a limit to the integration that can be achieved—for 
a typology, see Prediger et al. ( 2008 ). This integration depends strongly on the  com-
patibility  of the principles of the theories (Radford  2008a ). 

 The problem of integration of theories does not concern mathematics education 
only. Vygotsky criticized the efforts made by Luria and other Russian scholars who 
were attempting to combine Freud’s work and Marxist psychology and the contra-
dictions that such an endeavour caused. As a result of a direct fusing of these theo-
ries, a series of contradictions appeared. Since these contradictions were unavoidable, 
they were merely excluded, leading to a strange situation that Vygotsky ( 1997 ) 
summarizes as follows:

  Very fl agrant, sharp contradictions which strike the eye are removed in a very elementary way: 
they are simply excluded from the system, are declared to be exaggerations, etc. Thus, Freudian 
theory is de-sexualized as pansexualism obviously does not square with Marx’s philosophy. No 
problem, we are told – we will accept Freudian theory without the doctrine of sexuality. But 
this doctrine forms the very nerve, soul, center of the whole system. Can we accept a system 
without its center? After all, Freudian theory without the doctrine of the sexual nature of the 
unconscious is like Christianity without Christ or Buddhism with Allah. (p. 261)   

 The integration of education and semiotics requires us to be careful so that we do 
not denaturalize the theories we try to connect. In our case, we resort, on the one 
hand, to Leont’ev’s ( 1978 ) Hegelian phenomenological account of knowledge and 
knowing, and on the other hand, to Vygotsky’s cultural psychology. The former 
provides us with a historical conception of signifi cation from which learning can be 
defi ned as a social semiotic process that is always in the making, unsettled and 
unsettleable. The latter provides us with a psychological account of signs. In contra-
distinction to Saussure’s ( 1916 ) and Peirce’s ( 1958 ) semiotics, Vygotsky’s semiot-
ics does not resort to a representational idea of signs. His concept of sign is rather 
located within his work in special education: a sign is an auxiliary means to orga-
nize our behavior. Signs are tools of refl ection that allows individuals to plan action. 
Thus the knot in the handkerchief serves the purpose of a recall that moves the 
individual into action. The Vygotskian concept of sign provides us with clues to 
understand the actual processes of teaching and learning. 

 What follows is a succinct account of the main ideas of the resulting semiotic 
approach to mathematics teaching and learning. 

7.3.1    Knowledge 

  Grosso modo , there are two main philosophical traditions that have inspired theories 
of knowledge in the Western World. The fi rst one is the rationalist tradition, epito-
mized by Kant, in which knowledge is considered to be the result of the doings and 
meditations of a subject whose mind obeys logical drives—either already there 
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(“within our own soul,” as Leibniz ( 1949 , p. 15) used to say) or developmentally (as 
in Piaget’s ( 1970 )  Genetic Epistemology ). The second tradition is the dialectical- 
materialist one developed by Hegel and Marx, where knowledge is not the result of 
logical drives but the result of individuals’ sensuous refl ections and material deeds 
in cultural, historical, and political contexts. In opposition to the rationalist tradi-
tion, in the dialectical-materialist view knowledge is not something that we repre-
sent. Actually, knowledge cannot be represented, for knowledge is always in motion. 
Knowledge is  pure possibility . It is constituted of culturally and historically encoded 
forms of refl ection and action that, instead of lending themselves to representation, 
are sources for action (Radford  2013b ). Numbers, for instance, are not things or 
essences to be represented. They are possibilities for action (e.g., to count or to carry 
out complex calculations). 

 As pure possibility, knowledge cannot be an object of consciousness. To become 
an object of consciousness and thought, knowledge has to be set into motion. 
Knowledge has to be fi lled up with concrete determinations. And this can only hap-
pen through activity—sensuous and material activity. This is what students and 
teachers do when they participate in classroom activity. 

 Let us refer to a short example to illustrate these ideas. The example is about 
pattern generalization. 

 Pattern generalization is a cultural activity at the heart of many ancient civiliza-
tions. The Pythagoreans and the Babylonians, for instance, practiced it, where it 
started as an endeavour motivated to answer concrete counting processes or sense- 
making investigations. These endeavours became encoded ways of refl ecting and 
acting that were refi ned in the course of cultural history (Diophantus, Fermat, etc.). 

 In contemporary curricula, in particular in the English-speaking countries, pat-
tern generalization appears often as a road to algebra. It is within this pedagogical 
intention that we have resorted to it. 

 As an object of knowledge, pattern generalization is not something to be repre-
sented. It is something to be known. However, from the students’ viewpoint, pattern 
generalization (in fact all mathematical content to be known) appears, fi rst, as pure 
possibility (a possibility to do something, to solve some problems or to argue about 
something). And in order for it to be known, it has to be set into motion. Knowledge 
has to evolve and to  appear  in concrete practice. By being fi lled up with some con-
ceptual content, what appears is not knowledge in its entirety, but a concrete instance 
of it. Hegel ( 2009 ) called it the  singular . We have, then: (1) the  general , which is 
knowledge as such (in this case pattern generalization), (2) the  activity  through 
which knowledge is brought forward or actualized, and (3) knowledge in motion, 
fi lled up with conceptual content, that is, the  singular . Figure  7.1  provides a dia-
gram of these three elements.

  Fig. 7.1    The singular as knowledge actualized in activity       
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   What Fig.  7.1  expresses is the mediated nature of knowledge. We do not have 
access to knowledge but through mediation. As pure possibility, knowledge cannot 
be fully accounted for by any one of its instances (the singulars). Not even the most 
perfect triangle reveals the depth of the concept of triangle, not because we will 
always make unnoticeable mistakes in drawing a triangle or because there would be 
triangles with other shapes different from the one we drew. The reason is this: The 
concept of triangle cannot be revealed in its representation, because the concept is 
not representable. The concept is knowledge, that is possibility, and as such cannot 
be represented; it can only be actualized in the activity that fi lls it up with particular 
conceptual content. 

 The singular as actualization of knowledge in activity should not be seen as 
something static or as an end point, but as an  event . It is rather an “unfi nished and 
inherently open-ended event” (Roth  2013 ). It is a process—a  semiotic process  
through and through. Not only because in the activity that actualizes knowledge and 
transforms it into an event students and teachers resort to discursive, embodied, and 
material signs and artifacts, but, overall (and indeed this is the real reason), because 
in mobilizing signs students and teachers engage in processes of signifi cation. The 
singular is a semiotic event. 

 From a semiotic viewpoint, there is something extremely important to under-
stand about the activity that actualizes knowledge. This activity is, essentially, an 
activity of signifi cation. In fact, the activity through which knowledge is actualized 
is an activity of confl icting signifi cations. The teacher is aware of the aim of the 
activity. In our example, the aim (or in Leont’ev’s terminology, the  object  of the 
activity) is to make the students aware of the historically and culturally constituted 
way of thinking and refl ecting about pattern generalization. Before engaging in the 
activity, the students do not know about such a way of refl ecting and thinking—at 
least not in all the scientifi c-cultural curricular details. If the students knew, there 
would not be learning on the horizon. The activity would be an exercise activity—
i.e., practicing something already known. The epistemological asymmetry that 
underpins teaching and learning activity (Roth and Radford  2011 ) infuses the activ-
ity with its inherent contradictions. The idea of contradiction has to be understood 
here in its dialectical sense, namely as precisely what drives the activity further.  

7.3.2    Learning 

 Now, the fact that the students do not know yet the aim of the activity (e.g., how to 
generalize a pattern algebraically) does not mean that they cannot engage in the 
activity. In fact, they resort to what they already know. This is why it is not surpris-
ing that, when students engage in algebraic pattern activity, they resort to arithmetic 
generalizations. 

 The confl icting signifi cations that are at the heart of the activity can be formu-
lated in the following terms. The aim of the activity (knowing how to generalize 
patterns algebraically) is dynamically and variously refracted in the students’ and 
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teachers’ consciousness as the activity unfolds. The confl icting signifi cations move 
(in a dialectical sense), creating tensions that, at moments, may be partially resolved 
or intensifi ed. Attenuated or not, these tensions do not disappear. They constitute 
mobile  wholes  made up of different perspectives and positions that each participant 
of the activity brings in. 

 The attuning of inter-subjective perspectives is the requisite for learning to occur. 
It does not mean that teachers and students have to agree on, say, the manner in 
which a pattern can be generalized. Attuning refers also to matters of deep disagree-
ment and unresolved tensions. 

 In previous work we have suggested that learning can be studied through  pro-
cesses of objectifi cation , that is “those processes through which students gradually 
become acquainted with historically constituted cultural meanings and forms of 
reasoning and action” (Radford  2010 , p. 3). In light of the previous discussion we 
want to stress that  acquaintance  does not mean  agreement . It means  understand-
ing —a socially responsible and conceptually articulated understanding of some-
thing even if we do not agree with it.   

7.4     The Methodology of Our Semiotic Approach 

 We are now in a position to describe the chief elements of our methodology. Because 
knowledge is pure possibility, for it to become the object of students’ conscious-
ness, it has to be set into motion through activity. The fi rst problem is hence the 
 design  of the activity. 

 We spend a great deal of time working with teachers designing teaching-learning 
activities. The curricular goals are taken as the basis of the activities. They are very 
general—e.g., to think algebraically about pattern generalization, to solve equations 
algebraically, to think probabilistically, to argue and prove, etc. 

 These aims are general and need more specifi cation. The specifi cation depends 
on the curricular requirements. In our research with young and adolescent students 
about pattern generalization, some of the specifi cations refer to a focus on func-
tional relationships between variables in fi gural sequences and the building of for-
mulas for remote terms—using the standard algebraic symbolism or a conjunction 
of other semiotic systems (Sabena et al.  2005    ). 

 The specifi cations shape the conceptual content of the activity through which 
knowledge will be instantiated. An a priori epistemological analysis (Artigue  1995 ) 
helps us structure the activity: we carefully select the questions and problems and 
their order in the activity. The fi rst questions are easy, to ensure that students embark 
in the activity; bit by bit the questions become more and more complex, leading the 
students to mobilize the mathematical content in depth—for some examples see 
Radford and Demers ( 2004 ), and Radford et al. ( 2009 ). 

 Because leaning is a social phenomenon, classroom interaction is a central 
 element of the activities we design (Radford  2011 ). Usually, the classroom is 
divided into small groups. The teacher circulates among the groups and engages in 
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 discussions with the students (Radford  2013b ). Naturally, it is impossible to predict 
the manner in which interaction will occur. The activity that mediates and actualizes 
knowledge is unpredictable. Although planned, this activity is an  event —something 
unrepeatable and always new. This is why we see the classroom as a dynamic  system 
going through states out of which the confl icting signifi cations arise. 

 The role that we ascribe to the teacher is particularly different from the one we 
fi nd in most other educational approaches. Indeed, for us, the teacher is not a coach 
or a guide or a helper or an observer—or worse, someone who transmits knowledge. 
Her main role is  ethical  (Radford and Roth  2011 ). The teacher is part of the activity 
that mediates and actualizes knowledge. She is part of the whole ensemble of class-
room consciousness trying to get attuned with each other. Much like the students, 
she brings to this activity her idiosyncratic way of thinking and understanding math-
ematics. It is out of the personal efforts of all members of the activity that the activ-
ity eventfully realizes the general in the singular. 

 In coming to understand others and the mathematical task at hand, teachers and 
students engage hence in activity. They do not engage in a purely meditative man-
ner, but in a sensuous and material way. They resort to a wide range of semiotic 
systems through which they come to form their intentions and ideas against the 
background of culturally and historically constituted ways of thinking and acting. In 
the course of the objectifi cation processes, students and teachers produce multi-
modal actions. Through these actions complex meanings are formed in an inter- 
subjective way. 

 Since “the method must be adequate to the subject studied” (Vygotsky  1993 , 
p. 27), to investigate these processes of objectifi cation and signifi cation, we use 
fi ne-grained video-analysis. 

 One or more video-cameras are used to register the teacher’s and students’ small 
group activities and classroom discussions. Videos are fully transcribed, and com-
plemented with written materials produced during the activity (students’ sheets, 
fi eld notes by the researcher, etc.). From video and the transcript, episodes are 
selected, which are helpful in answering the specifi c research questions (Q) of the 
study. These episodes are carefully analysed over and over in detail, and confronted 
with the theoretical assumptions (P). 

 This kind of analysis is consonant with microethnographic methodologies 
(Streeck and Mehus  2005 ), since it “encompasses a collection of techniques and 
analyses tracing the moment-by-moment bodily and situated activity of subjects 
engaged in certain events and interactions” (Nemirovsky et al.  2012 , p. 294), in 
which a particular attention is given to “talk, gesture, facial expression, body pos-
ture, drawing of symbols, manipulation of tools, pointing, pace, and gaze” (ibid.): 
they constitute semiotic resources through which the students’ and teacher’s math-
ematical activity develops. 

 Our semiotic approach also allows us to theoretically include embodied means of 
expression, as semiotic resources in learning processes, and to look at their relation-
ship with the traditionally studied semiotic systems (e.g. written mathematical sym-
bolism). In looking at the different semiotic resources in an integrated and systemic 
way, attention is paid to relationships, dialectics, and dynamics between them. Some 
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of these relationships may concern different kinds of resources in the same time 
moment: for example, they may concern co-occurrences of words and gestures. 

 However, in opposition to pure semiotic approaches and microethnographic 
methodologies, we are not interested in the semiotic resources per se. We are inter-
ested in the manner in which teachers and students resort to the semiotic resources 
in processes of learning, that, as mentioned previously, we theorize as processes of 
objectifi cation. The methodological problem for us is, hence, to account for the 
manner in which the whole range of semiotic resources are used by teachers and 
students in the course of the social processes of objectifi cation through which stu-
dents become aware of the cultural logic and meanings of thinking and doing 
mathematically. 

 In order to provide description and interpretation of learning as a sign-mediated 
activity, two methodological constructs have been developed: the concept of semi-
otic node and the concept of semiotic bundle. 

 A  semiotic node  is a part of the students’ and teachers’ joint activity where 
embodied and other signs from various semiotic systems are put to work together in 
processes of objectifi cation. In other words, a semiotic node refers to segments of 
activity where students and teachers bring forward possible mathematical interpre-
tations and courses of action against the backdrop of culturally and historically 
constituted forms of thinking and doing (Radford et al.  2003 ). The central idea is 
that mathematics learning is a refl ective activity that involves consciousness. And 
consciousness, from the dialectical materialist viewpoint we adopt here, is inti-
mately related to our use of semiotic systems and artifacts. In the course of the 
process of objectifi cation—in particular, in those crucial moments in which the stu-
dents gain an awareness and understanding of cultural mathematical meanings—
“signs play different and complementary roles” (Radford  2009 , p. 474). Through 
the concept of semiotic node we explore focal points of the activity that mediates 
knowledge and where episodes of objectifi cation occur. Semiotic nodes provide us 
with relevant segments of the semiotic activity where learning is taking place. 

 In this sense, semiotic nodes are methodological tools to study learning. Through 
the teacher’s and students’ use of various semiotic resources, we can have, method-
ologically speaking, an idea of the students’ refl ective learning activity and the kind 
of interpretations and meanings that the students produce. 

 The evolution of semiotic nodes provides us with a more general view of the 
manner in which learning is occurring. To investigate the evolution of semiotic 
nodes, we have introduced the concept of  semiotic contraction . A semiotic contrac-
tion refers to the reorganization of semiotic resources that occurs as a result of the 
students’ increased consciousness of mathematical meanings and interpretations. 
Contraction “makes it possible to cleanse the remnants of the evolving mathemati-
cal experience in order to highlight the central elements that constitute it” (Radford 
 2008b , p. 94). Thus, fewer gestures may be required as the students refi ne their ideas 
and become more and more conscious of mathematical structures and ideas. 

 The concept of  semiotic bundle  offers also a synchronic and a diachronic 
approach to the investigation of learning. Here, the focus is in the evolution of signs. 
This notion has been elaborated by Arzarello    ( 2006    ), Arzarello et al. ( 2009 ) in order 
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to give account of the multimodality of mathematics learning and teaching  processes. 
The term “multimodality” comes from neuroscientifi c studies that have highlighted 
the role of the brain’s sensory-motor system in conceptual knowledge and have 
proposed a multimodal model for brain functioning, instead of a modular model 
(Gallese and Lakoff  2005 ). On the other hand, “multimodality” is also used in com-
munication design to speak of the multiple modes we use to communicate and 
express meanings to our interlocutors: e.g. words, sounds, fi gures, etc. Within this 
perspective, a semiotic bundle has been defi ned as

  a  system of signs  […] that is produced by one or more interacting subjects and that evolves 
in time. Typically, a semiotic bundle is made of the signs that are produced by a student or 
by a group of students while solving a problem and/or discussing a mathematical question. 
Possibly the teacher too participates to this production and so the semiotic bundle may 
include also the signs produced by the teacher. (Arzarello et al.  2009 , p. 100)   

 Focusing the attention on a wide variety of means of expression, from the stan-
dard mathematical symbols (e.g., algebraic representations) to the embodied ones 
(such as gestures, gazes, and so on), and considering all of them as semiotic 
resources in teaching and learning processes, the semiotic bundle construct widens 
the range of semiotic resources that are traditionally discussed in mathematics edu-
cation literature (e.g., Duval  2006 ; Ernest  2006 ). 

 In order to clarify the notion of semiotic bundle, we can consider for instance the 
set of words, the set of gestures, and that of written signs (e.g. algebraic symbols) that 
are used in a certain mathematical activity. The three sets, which are used along the 
mathematical activity, constitute the semiotic bundle: the interpretation of one kind 
of resources (e.g. speech) can be fully done only taking into account also the other 
resources (gestures and written signs). In this sense, the semiotic bundle considers 
the semiotic resources in a unifying analysis tool. Of course, depending of the needs 
of analysis, each semiotic set can also be analysed in a separated way. But since dif-
ferent semiotic sets very often intertwine, a global view on them is necessary. 

 The semiotic bundle can be an analytical tool in order to detect cases of semiotic 
nodes, when the attention focuses on  synchronic  relationships between signs used to 
accomplish an objectifi cation process. 

 Besides the synchronic view, the semiotic bundle offers the possibility of per-
forming a  diachronic analysis , that is to say of studying the evolution of semiotic 
resources in the passing of time, and the evolution of their mutual relationships. With 
this view, genetic phenomena regarding signs may be observed, when some signs are 
transformed into another kind of signs (e.g., of gestures giving origin to written 
drawing in pre-algebraic context, see Sabena et al.  2012 ). A diachronic view has 
allowed researchers in gesture studies to elaborate the notion of “catchment”. 
McNeill and colleagues identifi ed a catchment when some gesture form features 
recur in at least two (not necessarily consecutive) gestures (McNeill  2005 ; McNeill 
et al.  2001 ). According to their framework, they interpreted catchments as indicating 
discourse cohesion, due to the recurrence of consistent visuospatial imagery in the 
speaker’s thinking. In our semiotic frame, catchments may be of great importance 
since they can give us clues about the evolutions of meanings in students’ multimodal 
discourses and in their objectifying processes (for an example about catchments in 
structuring a mathematical argument, see Arzarello and Sabena  2014 ). 
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 To illustrate our methodology, in the remainder of the chapter we show an exam-
ple that constituted an important step in developing our semiotic approach. It 
showed us that, as quoted above, a method can be “simultaneously a prerequisite 
and product, a tool and a result of the research” (Vygotsky  1993 , p. 27). 

 The example is about the role of words, gestures and rhythm in objectifying (i.e., 
noticing or becoming aware of) mathematical relationships; the analysis has been 
reported previously (Sabena et al.  2005 ; Radford et al.  2006 ,  2007 ). 

 During our research activity, we did not anticipate rhythm as playing a subtle and 
profound semiotic role in mathematics cognition. Watching a video clip over and 
over within the possibilities of a low motion and frame-to-frame analysis, and 
focusing on students’ words and gestures, we began to notice that rhythm was play-
ing a fundamental role as a semiotic resource in the students’ activity. This “crude 
fact” was theorized through the principles of the theory: we realized that rhythm 
was a fundamental semiotic means of knowledge objectifi cation. That is, through an 
apparently unconscious recourse to rhythm, the students started perceiving, behind 
the mathematical signs, a general mathematical structure. 

 Dedicated software developed in linguistic research allowed us to carry out a 
pitch and prosodic analysis to confi rm the role of rhythm. To be duly interpreted, the 
new results required a refi nement of the theoretical principles. We gained a new 
theoretical sensitivity that allowed us to be alert to phenomena that escaped our 
research lenses before. The methodology of analysis also evolved, with the refi ne-
ment of both the technical means (e.g. the use of the new software), and a more 
sensitive research eye. We call the resulting methodology a  multi-semiotic method-
ology  (Radford et al.  2006 ), and we illustrate it in the next section, with reference to 
the specifi c example.  

7.5      Multi-Semiotic Analysis: An Example Concerning 
Pattern Generalization 

 To illustrate our semiotic approach, we refer to a classroom activity concerning pat-
tern generalization as a way to approach algebraic thinking. 

 The data come from a 5-year longitudinal research program, and were collected 
during classroom lessons that are part of the regular school mathematics program in 
a French-Language school in Ontario. As described above, lessons are jointly 
designed by the teacher and our research team. The students spend substantial peri-
ods of time working together in small groups of 3 or 4, with the teacher interacting 
continuously with the different groups. At some points, the teacher conducts gen-
eral discussions allowing the students to expose, compare, and confront their differ-
ent solutions. 

 We focus on a classical pattern problem that Grade 9 students had to investigate 
in a math lesson. The problem deals with the study of an elementary sequence that 
is visually depicted (see Fig.  7.2 ). In the fi rst part of the lesson, the students were 
required to continue the sequence, drawing Terms 4 and 5 and then to fi nd out the 
number of circles on Terms 10 and 100. In the second part, the students were asked 
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to write a message explaining how to calculate the number of circles in any term 
and, in the third part, to write an algebraic formula.

   We provide a multi-semiotic microanalysis of the work done on the fi rst and in 
the second part of the math lesson by one group of students formed by Jay, Mimi, 
and Rita. Referring to the fi rst part, we illustrate in particular how words and ges-
tures play a crucial role in allowing the students to perceive the terms as divided into 
two rows. In the course of the students’ joint activity, knowledge as pure possibility 
becomes actualized in the form of a factual generalization (Radford  2003 ), i.e. a 
generalization of actions in the form of an operational schema that applies to any 
concrete term, regardless of its position in the sequence. Referring to the second 
part, we show how rhythm serves as a subtle semiotic device that helps the students 
notice a regularity that proved to be crucial to convey a sensuous meaning of 
 mathematical generality. 

7.5.1     Words-Gesture Combinations in the Production 
of a Factual Generalization 

 At the beginning of the activity, the students count the number of circles in the 
terms, and realize that it increases by two each time. Then, in order to draw Term 4, 
they use gestures and speech through which they identify the two rows of the terms 
and their numerosity as key-elements in the problem solution:

   1. Rita    You have fi ve here… (pointing to Term 3 on the sheet)   
  2. Mimi     So, yeah, you have fi ve on top (she points to the sheet, placing her hand 

in a horizontal position, in the space in which Jay is beginning to draw 
Term 4; see Fig.  7.3 ) and six on the… (she points again to the sheet, 
placing her hand a bit lower)

      3. Jay     Why are you putting…? Oh yeah, yeah, there will be eleven, I think 
(He starts drawing Term 4)   

  4. Rita    Yep   
  5. Mimi    But you must go six on the bottom … (Jay has just fi nished drawing the 

fi rst row of circles) and fi ve on the top (Jay fi nishes drawing the second 
row)   

   Although Jay materially undertakes the task of drawing Terms 4 and 5, each stu-
dent is engaged in the action. In line 1, Rita is not merely informing her group- mates 
that Term 4 contains a row of fi ve circles. In fact, through a deictic gesture she is sug-
gesting a qualitative and quantitative way to apprehend the next terms. Pointing to a 

  Fig. 7.2    The three fi rst terms 
of the sequence       
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specifi c part of Term 3, which is given on the sheet, but referring in her speech to Term 
4, Rita provides a link between the two terms. Through gesture and speech she is sug-
gesting a specifi c way to build Term 4. This is an example of a process of perceptual 
semiosis: a process in which perception is continuously refi ned through signs. 

 This grasping of the term is easily adopted by Mimi, and properly described 
through the spatial deictics “top” and “bottom” (lines 2 and 5). It amounts to shift-
ing from blunt counting to a scheme of counting. This scheme is the fi rst step in the 
process through which knowledge as pure possibility is endowed with concrete 
determinations. From something fuzzy and general, knowledge becomes shaped, 
refi ned, and specifi ed. It does not become a thing or an object (as in other accounts 
of objectifi cation). The schema is possibility transformed into action, the result 
being an open event itself in movement and open to further transformation. In dia-
lectical logic, the schema is an example of the ascent from the abstract to the con-
crete (Radford  2013b ). 

 In line 2, Mimi’s words are accompanied by two corresponding deictic gestures, 
which allow her to participate in the drawing process and depict the spatial position 
of the rows in an iconic way. In line 5, Mimi does not make any gestures; rather, her 
words are perfectly synchronized with Jay’s action, almost directing him in the 
action of drawing: in fact, to complete her sentence with the description of the sec-
ond row, Mimi waits until Jay fi nishes drawing the fi rst row of circles. 

 The gesture-speech combination referring to the spatial location “top” and “bot-
tom” is soon after enacted by Jay to explain why he thinks that Term 10 will have 
23 chips and Term 100 will have 203 chips:

     6. Jay    Ok. Term 4 has fi ve on top, right? (with his pencil, he points to the top 
row of Term 4, moving his pencil from the left to the right, Fig.  7.4 , left)

        7. Mimi    Yeah…   

  Fig. 7.3    Mimi’s fi rst gesture on line 2       
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    8. Jay    …and it has six on the bottom (he points to the bottom row using a 
similar gesture as in line 7, Fig.  7.4 , right).   

    9. Mimi    (pointing to the circles while counting) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. 
(Pause) […] Oh yeah. Term 10 would have …   

  10. Jay    10 there would be like …   
  11. Mimi    There would be  eleven  (Fig.  7.5 , left: she is making a quick gesture that 

points to the air. Jay is placing his hand in a horizontal position) and 
there would be  ten  (Fig.  7.5 , right: she is making the same quick gesture 
but higher up. Jay is shifting his hand lower down) right?

      12. Jay    Eleven (Fig.  7.6 : similar gesture but more evident, with the whole hand) 
and twelve (same gesture but lower).

      13. Mimi    Eleven and twelve. So it would make twenty-three, yeah.   
  14. Jay    100 would have one-hundred and one and one-hundred and two 

(Fig.  7.7 : same gestures as the previous ones, but in the space in front 
of his face).

      15. Mimi    Ok. Cool. Got it now. I just wanted to know how you got that.   

  Fig. 7.4     Left , Jay’s moving gesture (line 6).  Right , Jays’ second gesture (line 8)       

  Fig. 7.5    Synchronization between the two students’ gestures       
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   As we can see in the transcript and related pictures, both Jay and Mimi enact the 
same gesture-speech combination at different times. The repeated enactment, which 
shows a gesture catchment, allows the students to shift from the given drawings 
(representing Terms 3 and 4) to imagined ones (referring to Terms 10 and 100). This 
shifting is carried out while preserving a certain schema in the grasping of the term, 
as an important means for accomplishing a factual generalization of the pattern 
(which can be a fi rst step in the algebraic generalization process). 

 In Jay’s fi rst utterance (lines 6 and 8), the deictic gestures appear endowed with 
a dynamic feature that clearly depicts the geometric grasping of the term as made up 
of two horizontal rows. Its goal is to clear away any ambiguity about the referent of 
the discourse, in order to explain a strategy. Term 4 is perceptively present on the 
scene, and indeed materially touched by Jay through his pencil. Talking about Term 

  Fig. 7.6    Synchronization between the students’ gestures       

  Fig. 7.7    Synchronization between gestures       
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10, Mimi (line 11) performs two gestures that keep certain specifi c aspects of those 
of Jay, that is, one gesture for each row, and the vertical shift. But now, because the 
referred term is not available in the perceptual fi eld, the gestures are made in the air. 
Also Jay’s last gestures (line 13), referring to Term 100, appear in the air in the 
space in front of him, as if pointing to the rows of a non visible term. Indeed, if we 
pay attention to the position of his hands when he refers to the different terms, we 
can notice a progressive detachment from the sheet (Fig.  7.8 ).

   Furthermore, from the micro-analysis of the video, carried out with slow motion 
devices, we can detect that Jay is following Mimi’s argument so closely that his 
gestures appear perfectly synchronous with his mate’s words and gestures (see line 
11 and Fig.  7.5 ). 

 The previous episodes show key instances of a process of objectifi cation through 
which the students become aware of a culturally and historically constituted manner 
of thinking about sequences. More specifi cally, through a sensuous coordination of 
gestures and speech, the students make apparent key traits of Term 100—a term that 
is not directly perceivable. The tight coordination between gestures and speech 
takes place in a particular segment of the students’ mathematical activity, leading to 
the objectifi cation of knowledge: it constitutes a semiotic node. In the considered 
episode, gestures play a specifi c role in the knowledge objectifi cation: the indexical-
ity of the repeated gestures undergoes a gradual shift from an  existential signifi ca-
tion  (referring to Terms 3 and 4, materially present on the sheet) to an  imaginative  
mode of signifi cation (referring to Terms 10 and 100). 

 Notice that the objectifying gestures undergo a process of simplifi cation that 
involves the loss of movement (along the rows of the term) and a shortening of their 
duration. A progressive simplifi cation is also evident in the uttered words: from line 
ten onward, the deictic terms disappear, leaving barely numerical semantic content, 
organized by the conjunction “and”. Even if Terms 10 and 100 are not materially 
present, the students can  imagine  them very precisely and would be able to draw 
them; but, having reached a certain stage in the process of objectifi cation, they do 
not need to specify all the details, and the reference to the form of the term can 
smoothly remain implicit in their speech. We have referred to this simplifi cation of 
the students’ semiotic activity as a  semiotic contraction  (Radford  2008b ).  

  Fig. 7.8    The detachment of gestures       

 

L. Radford and C. Sabena



175

7.5.2    Words, Gesture and Rhythm: Refi ning the Generalization 

 The genesis of algebraic generalizations entails the awareness that something stays 
the same and that something else changes. In order to perceive the general, the stu-
dents have to make choices: they have to bring to the fore some aspects of the terms 
(emphasis) and leave some other aspects behind (de-emphasis). In this striving, all 
the resources at students’ disposal may be of great help—even rhythm, with its com-
bination of sound and silence. While we were conducting our video-analysis of the 
second part of the activity, and were focusing on words and gestures, rhythm came 
unexpectedly to the fore as another important semiotic means of objectifi cation. 

 Rhythm creates the expectation of a forthcoming event (You  1994 ) and consti-
tutes a crucial semiotic device in making apparent the perception of an order that 
goes beyond the particular terms. It emerged in a moment in which the students 
were stuck in discussing Mimi’s hypothesis that to fi nd out the number of circles in 
any term of the sequence you need to add three to the number of the term. Since Joy 
refuses this hypothesis, on the base that it does not hold for Term 100 (where there 
are 203 chips), Mimi said:

   16a. Mimi     You know what I mean? Like… for Term 1 (pointing gesture to Term 
1) you will add like (making another gesture, see Fig.  7.9 )…

       To explore the role that digit 3 may play, in line 16a Mimi makes two gestures, 
each one coordinated with word-expressions of differing values. The fi rst couple 
gesture/word has an indexical-associative meaning: it indicates the fi rst circle on the 
top of the fi rst row and associates it with Fig.  7.1  (see Fig.  7.9 , left bottom). The 
second couple achieves a meaningful link between digit 3 and three “remarkable” 

  Fig. 7.9    Gestures in line 16a       
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circles in the term. The resulting geometric-numeric link is linguistically specifi ed 
in additive terms (“you will add”) (see Fig.  7.9 , right bottom). 

 Although Mimi has not mentioned or pointed to the fi rst circle on the bottom 
row, the circle has been noticed. That is, although the fi rst circle of the bottom has 
remained outside the realms of word and gesture, it has fallen into the realm of 
vision. Indeed, right after fi nishing her previous utterance, Mimi starts with a deci-
sive “OK!” that announces the recapitulation of what has been said and the opening 
up towards a deeper level of objectifi cation, a level where all the circles of the terms 
will become objects of discourse, gesture and vision. She says:

   16b. Mimi    OK! It would be like one (indexical gesture on Term 1), one (indexical 
gesture on Term 1), plus three (grouping gesture); this (making the 
same set of gestures but now on Term 2) would be two, two, plus 
three; this (making the same set of gestures but now on Term 3) would 
be three, three, plus three.   

   Making two indexical gestures and one “grouping gesture” that surrounds the 
three last circles on Term 1, Mimi renders a specifi c confi guration apparent to her-
self and to her group-mates. This set of three gestures is repeated as she moves to 
Term 2 and Term 3. The gestures are accompanied by the same sentence structure 
(see Fig.  7.10 ). Through a coordination of gestures and words, Mimi thereby objec-
tifi es (i.e., notices) a general structure in a dynamic way and moves from particular 
terms towards a grasping of the general term of the sequence. Notice that, in our 
interpretation, gestures and words are not uttered once the idea has been formed. On 
the contrary, the idea is taking place  while  Mimi is gesturing and talking. We move 
away here from rationalist interpretations where gestures and words would appear 
and be used after the idea is formed. In other words, communication does not follow 
understanding and interpretation. Mimi is talking here to her teammates and to her-
self, at the same time.

   In the course of our data analysis, a closer attention to the previous passage sug-
gested that the coming into existence of the refi ned students’ schema is much more 
than a matter of coordinating word and gesture. There was another important ele-
ment, concerning the rhythmical way in which words and gestures were performed. 

  Fig. 7.10    On the  left , Mimi making the (fi rst) indexical gesture on Term 1. On the  right , the new 
spatial perception of the terms as a result of the process of knowledge objectifi cation       
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 After listening to the audio recording, to get a better idea of the manner in which 
the students emphasize and de-emphasize the various features of the terms through 
rhythm, we conducted a prosodic analysis of Mimi’s key utterance in line 16b (“one 
plus one plus three” etc.). Prosody refers to all those vocal features to which speak-
ers resort in order to mark, in a distinctive way, the ideas conveyed in conversation. 
Typical prosodic elements include intonation, prominence (as indicated by the dura-
tion of words) and perceived pitch. 

 Our prosodic investigation was carried out using Praat (  www.praat.org    )—a soft-
ware devoted to voice analysis. Our prosodic analysis focused on the temporal dis-
tribution of words and word intensity. In the top part of Fig.  7.11 , the waveform 
shows a visual distribution of words in time; the curve at the bottom shows the 
intensity of uttered words (measured in dB).

   The waveform allows us to neatly differentiate two kinds of rhythms: within and 
between terms. The fi rst type of rhythm, generated through word intensity and 
pauses between words, helps the students to make apparent a structure within each 
term. In conjunction with words and gestures (the hand performing the same kind of 
gesture on each term), this rhythm organizes the way of counting. The other type of 
rhythm appears as a result of generated “transitions” between the counting pro-
cesses carried out by Mimi when she goes from one term to the next. To generate 
these transitions, at the lexical level, Mimi uses the same expression, namely “this 
would be”, the semantic value of which indicates the hypothetical nature of the 
emerging counting schema. At the temporal level, this expression allows Mimi to 
accomplish a separation between the counted terms. At the kinesthetic level, the 
transition corresponds to the shifting of the hand from one term to the next. 
Figure  7.12  provides us with a precise idea of the within and between terms’ rhythm.

   Using a matrix system of reference a ij  for the terms of Fig.  7.12 , the data in row 
3 indicate that a 33  < a 32 , a 38  < a 37 , a 313  < a 312 , i.e. the data show that the time elapsed 
between the additive preposition “plus” and the uttered number prior to it is consis-
tently shorter than the elapsed time between the two uttered numbers before “plus”. 
Thus, while the elapsed time between the second “one” and “plus” is 0.360 s (a 33 ), 
the elapsed time between “one” and “one” is 0.508 s (a 32 ). It is also interesting to 
note that, in the case of Terms 1 and 2, the elapsed time between “plus” and the 

  Fig. 7.11    Prosodic analysis of Mimi’s utterance conducted with Praat       
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 following word is shorter than the time between “plus” and the uttered number 
before it (i.e. a 34  < a 33 , a 39  < a 38 ). The rhythmic distribution of words hence suggests 
that the preposition “plus” does not merely play the role of an arithmetic operation. 
By emphasizing and de-emphasizing aspects of the terms, it plays a key prosodic 
role in the constitution of the counting schema. 

 Note that the temporal distribution of words of the two fi rst speech segments 
(0.157 ≤ t ≤ 1.348; 2.161 ≤ t ≤ 3.463) is quite similar to that of the third speech seg-
ment (4.793 ≤ t ≤ 5.633)   . However, the data indicate that the duration of the latter 
(0.840 s) is shorter than the duration of the former (i.e. 1.191 and 1.302; see row 5). 

 The students did not need to go beyond Term 3 to come up with the refi ned 
counting schema. One of the reasons for this may be that the generalized structure 
was recognized during the investigation of the two fi rst terms and the third term 
hence played the role of verifi cation. 

 The previous data help us understand the students’ mechanisms of emphasizing 
and de-emphasizing features of the terms. The prosodic analysis sheds light on the 
articulated ways in which rhythm is used as a semiotic device in the students’ phe-
nomenological apprehension of the general. This is why it may be worthwhile to 
think of algebraic generalization as a process similar to the creation of a sculpture or 
of a painting. Some elements are brought to the fore; others are left in the back. Both 
are important, for it is through their  contrast  that one notices what has to be noticed. 
Rhythm accentuates this contrast in the students’ semiotic activity. It heightens the 
constant and the variable as well as their relationships in the act of generalization.   

7.6    Concluding Remarks 

 In this chapter we discussed some aspects of the methodology of our semiotic 
approach. Drawing on Vygotsky’s idea of method we argued that a method is not an 
instrument or a mere sequence of actions to be followed. A method is rather a refl ex-
ive and critical endeavour—a philosophical practice. As such a method conveys 
a worldview that provides ideas about the entities or phenomena that can be 

  Fig. 7.12    Intensity and time data of Mimi’s utterance, as derived from Praat prosodic analysis. 
 Rows 1  and  2  show the intensity (dB) and time position of words (s), both measured at the middle 
of the duration of the word.  Row 3  gives the elapsed time between consecutive words.  Row 4  gives 
the total time of the speech segments       
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investigated and how they can be investigated. These ideas are translated into theo-
retical principles in a particular language and meanings through which research 
questions can be expressed. This is why methods work in tandem with theoretical 
principles and research questions and that a theory can be considered as an interre-
lated triplet of “parts”: (P, M, Q), where P stands for principles, M stands for meth-
odology, and Q for research questions. 

 The principles P should clarify our assumptions and ideas about knowledge and 
learning. We presented a succinct sketch of them in the fi rst part of the chapter. 
Following Hegel’s dialectical materialism, we suggested that, from the students’ 
viewpoint, knowledge appears as pure possibility. However, for knowledge to 
become an object of consciousness and thought, it has to be set in motion and fi lled 
up with conceptual determinations. This is what teaching-learning activity does. In 
the course of the activity (in Leont’ev’s ( 1978 ) sense), knowledge becomes actual-
ized or realized. However, knowledge’s actualization is not a thing. Its actualization 
is an  event . 

 In the example that we discussed in the chapter, knowledge is the pure possibility 
of thinking, refl ecting, and solving pattern generalization problems in a cultural and 
historical manner that has been refi ned through centuries by previous generations. 

 From the students’ viewpoint, the algebraic manner of thinking about patterns is 
there, as pure possibility. It becomes actualized as the students engage in sensuous, 
material activity. In the course of the activity through which knowledge is actual-
ized, knowledge reveals itself and can become an object of consciousness and 
thought. In our example, its sensuous and material revelation occurred through the 
formation of a schema. Let us insist on the idea that the schema is not an objectifi ed 
thing, but an event: the schema is possibility transformed into action, the result 
being an open event itself in movement and open to further transformation. 

 Within this context, the account of learning rests on the account of how knowl-
edge is transformed from pure possibility into an object of consciousness. The 
method is the critical and refl exive endeavour through which this transformation is 
investigated. Because the activity that mediates and actualizes knowledge into a 
singular event is an intersubjective, sensuous, and material activity, we trace all 
signs that intervene in the activity—traditional written signs, but also corporeal 
signs, such as gestures and posture (e.g. position of the hands and the fi ngers). 

 Through fi ne-grained semiotic analyses we accounted for the manner in which 
signs signifi ed in the mediating activity. We discussed how we became conscious of 
the importance of rhythm in mathematics cognition, and how a “crude fact” led to a 
transformation of our theory, and in particular its methods and research questions. 
We mentioned in particular two methodological constructs that have been built to 
help us disentangle the intricacies of multimodal sensuous actions: the semiotic 
node and the semiotic bundle. The former provides us with a synchronic tool to 
focus on the manner in which students endow with meaning their actions in coming 
to discern mathematical relationships and structures in their work. The latter pro-
vides us with a diachronic tool to follow the evolution of signs’ interrelationships in 
the course of the activity. For instance, if we carefully analyse the excerpts pre-
sented here by looking at the diachronic evolution of the semiotic bundle, we can 
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observe how the catchment develops and how meanings are emerging along with 
the evolution. This evolution signals the key moments of the students’ objectifi cation 
process in the pattern generalization activity.     

  Acknowledgments   This article is a result of a research programs funded by the Social Sciences 
and Humanities Research Council of Canada/Le conseil de recherches en sciences humaines du 
Canada (SSHRC/CRSH). A previous analysis of the classroom episode was presented in the paper 
by Radford, Bardini, and Sabena ( 2007 ).  

   References 

   Artigue, M. (1995). The role of epistemology in the analysis of teaching/learning relationships in 
mathematics education. In Y. M. Pothier (Ed.),  Proceedings of the annual meeting of the 
Canadian Mathematics Education Study Group  (pp. 7–21). University of Western Ontario.  

   Arzarello, F. (2006). Semiosis as a multimodal process.  Relime,  Vol Especial, pp. 267–299.  
    Arzarello, F., & Sabena, C. (2014). Analytic-structural functions of gestures in mathematical argu-

mentation processes. In L. D. Edwards, F. Ferrara, & D. Moore-Russo (Eds.),  Emerging per-
spectives on gesture and embodiment  (pp. 75–103). Charlotte, NC: Information Age Publishing.  

     Arzarello, F., Paola, D., Robutti, O., & Sabena, C. (2009). Gestures as semiotic resources in the 
mathematics classroom.  Educational Studies in Mathematics, 70 (2), 97–109.  

    Atkinson, P., & Hammersley, M. (1994). Ethnography and participant observation. In N. K. Denzin 
& Y. S. Lincoln (Eds.),  Handbook of qualitative research  (pp. 248–261). Thousand Oaks/London/
New Delhi: Sage.  

    Brousseau, G. (2005). Réponses orales à Régis Gras [Oral answers to Régis Gras]. In M. Salin, 
P. Clanché, & B. Sarrazy (Eds.),  Sur la théorie des situations didactiques  (pp. 43–47). Grenoble: 
La pensée sauvage.  

    Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. 
 Educational Studies in Mathematics, 61 , 103–131.  

    Ernest, P. (2006). A semiotic perspective of mathematical activity.  Educational Studies in Mathematics, 
61 , 67–101.  

    Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in 
conceptual knowledge.  Cognitive Neuropsychology, 22 , 455–479.  

    Gardner, H. (1970). Piaget and Lévi-strauss: The quest for mind.  Social Research, 37 (3), 
348–365.  

    Grinevald, J. (1983). Lévi-Strauss’ reaction: An interview with Claude Lévi-Strauss by Jacques 
Grinevald.  New Ideas in Psychology, 1 (1), 81–86.  

    Hegel, G. (2009).  Hegel’s logic.  (trans: Wallace, W.). Pacifi ca: MIA. (Original work published 
1830)  

    Husserl, E. (1970).  Logical investigations . London: Routledge & K. Paul.  
    Leibniz, G. W. (1949).  New essays concerning human understanding . La Salle, IL: The Open Court. 

(Original work published 1705).  
     Leont’ev, A. N. (1978).  Activity, consciousness, and personality . Englewood Cliffs, NJ: 

Prentice-Hall.  
    McNeill, D. (2005).  Gesture and thought . Chicago: University of Chicago Press.  
    McNeill, D., Quek, F., McCullough, K.-E., Duncan, S., Furuyama, N., Bryll, R., Ma, X.-F., & 

Ansari, R. (2001). Catchments, prosody, and discourse.  Gesture, 1 , 9–33.  
    Nemirovsky, R., Rasmussen, C., Sweeney, G., & Wawro, M. (2012). When the classroom fl oor 

becomes the complex plane: Addition and multiplication as ways of bodily navigation.  Journal 
of the Learning Sciences, 21 (2), 287–323.  

L. Radford and C. Sabena



181

   Online Etymology Dictionary. (2013). Retrieved 5 Aug 2013, from   http://www.etymonline.com/
index.php?l=p&p=12.      

     Peirce, C. S. (1958).  Collected papers  (Vol. I–VIII). Cambridge, MA: Harvard University Press.  
     Piaget, J. (1970).  Genetic epistemology . New York: W. W. Norton.  
    Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for 

connecting theoretical approaches: First steps towards a conceptual framework.  ZDM–The 
International Journal on Mathematics Education, 40 (2), 165–178.  

    Radford, L. (2003). Gestures, speech and the sprouting of signs.  Mathematical Thinking and Learning, 
5 (1), 37–70.  

     Radford, L. (2008a). Connecting theories in mathematics education: Challenges and possibilities. 
 Zentralblatt für Didaktik der Mathematik – The International Journal on Mathematics 
Education, 40 (2), 317–327.  

     Radford, L. (2008b). Iconicity and contraction: A semiotic investigation of forms of algebraic gen-
eralizations of patterns in different contexts.  ZDM—The International Journal on Mathematics 
Education, 40 (1), 83–96.  

    Radford, L. (2009). “No! He starts walking backwards!”: Interpreting motion graphs and the ques-
tion of space, place and distance.  ZDM—The International Journal on Mathematics Education, 
41 , 467–480.  

    Radford, L. (2010). The eye as a theoretician: Seeing structures in generalizing activities.  For the 
Learning of Mathematics, 30 (2), 2–7.  

    Radford, L. (2011). Classroom interaction: Why is it good, really?  Educational Studies in Mathematics, 
76 , 101–115.  

    Radford, L. (2013a). On semiotics and education.  Éducation et Didactique, 7 (1), 185–204.  
      Radford, L. (2013b). Three key concepts of the theory of objectifi cation: Knowledge, knowing, 

and learning.  Journal of Research in Mathematics Education, 2 (1), 7–44.  
   Radford, L., & Demers, S. (2004).  Communication et apprentissage. Repères conceptuels et pra-

tiques pour la salle de classe de mathématiques  [Communication and learning. Conceptual and 
practical references for the mathematics classroom] .  Ottawa: Centre franco-ontarien des res-
sources pédagogiques.  

    Radford, L., & Roth, W.-M. (2011). Intercorporeality and ethical commitment: An activity per-
spective on classroom interaction.  Educational Studies in Mathematics, 77 (2–3), 227–245.  

   Radford, L., Demers, S., Guzmán, J., & Cerulli, M. (2003). Calculators, graphs, gestures, and the 
production meaning. In P. Pateman, B. Dougherty, & J. Zilliox (Eds.),  Proceedings of the 27 
conference of the international group for the psychology of mathematics education (PME27- 
PMENA25)  (Vol. 4, pp. 55–62). Honolulu (Hawaii): University of Hawaii.  

     Radford, L., Bardini, C., & Sabena, C. (2006). Rhythm and the grasping of the general. In 
J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.),  Proceedings of the 30th  conference 
of the international group for the psychology of mathematics education  (Vol. 4, pp. 393–400). 
Prague: Charles University, PME.  

     Radford, L., Bardini, C., & Sabena, C. (2007). Perceiving the general: The multisemiotic dimension 
of students’ algebraic activity.  Journal for Research in Mathematics Education, 38 , 507–530.  

   Radford, L., Demers, I., & Miranda, S. (2009).  Processus d'abstraction en mathématiques  
[Processes of abstraction in mathematics] .  Ottawa: Centre franco-ontarien de ressources péda-
gogiques, Imprimeur de la Reine pour l’Ontario.  

    Roth, W. M. (2013). To event: Toward a post-constructivist of theorizing and researching the living 
curriculum as event-in-the making.  Curriculum Inquiry, 43 (3), 388–417.  

    Roth, W.-M., & Radford, L. (2011).  A cultural historical perspective on teaching and learning . 
Rotterdam: Sense.  

    Sabena, C., Radford, L., & Bardini, C. (2005). Synchronizing gestures, words and actions in pat-
tern generalizations. In H. L. Chick, & J. L. Vincent (Eds.),  Proceedings of the 29th conference 
of the international group for the psychology of mathematics education  (Vol. 4, pp. 129–136). 
University of Melbourne, Australia.  

7 The Question of Method in a Vygotskian Semiotic Approach

http://www.etymonline.com/index.php?l=p&p=12
http://www.etymonline.com/index.php?l=p&p=12


182

    Sabena, C., Robutti, O., Ferrara, F., & Arzarello, F. (2012). The development of a semiotic frame 
to analyse teaching and learning processes: Examples in pre- and post-algebraic contexts. In 
L. Coulange, J.-P. Drouhard, J.-L. Dorier, & A. Robert (Eds.),  Recherches en Didactique des 
Mathématiques, Numéro spécial hors-série, Enseignement de l’algèbre élémentaire: bilan et 
perspectives  (pp. 231–245). Grenoble: La Pensée Sauvage.  

    Saussure, F. (1916).  Cours de linguistique générale  [Lectures on general linguistics]. Paris: Payot.  
    Shweder, R., & LeVine, R. (1984).  Culture theory. Essays on mind, self, and emotion . Cambridge: 

Cambridge University Press.  
    Streeck, J., & Mehus, S. (2005). Microethnography: The study of practices. In K. L. Fitch & R. E. 

Sanders (Eds.),  Handbook of language and social interaction  (pp. 381–404). Mahwah, NJ: 
Lawrence Erlbaum.  

    Vygotsky, L. S. (1987).  Collected works  (Vol. 1). New York: Plenum Press.  
       Vygotsky, L. S. (1993).  Collected works  (Vol. 2). New York: Plenum Press.  
      Vygotsky, L. S. (1997).  Collected works  (Vol. 3). New York: Plenum Press.  
     Walkerdine, V. (1997). Redefi ning the subject in situated cognition theory. In D. Kirshner & J. A. 

Whitson (Eds.),  Situated cognition  (pp. 57–70). Mahwah, NJ: Lawrence Erlbaum.  
    You, H. (1994). Defi ning rhythm: Aspects of an anthropology of rhythm.  Culture, Medicine and 

Psychiatry, 18 , 361–384.    

L. Radford and C. Sabena



   Part V 
   A Theory on Abstraction and Its 

Methodology        



185© Springer Science+Business Media Dordrecht 2015 
A. Bikner-Ahsbahs et al. (eds.), Approaches to Qualitative Research 
in Mathematics Education, Advances in Mathematics Education, 
DOI 10.1007/978-94-017-9181-6_8

    Chapter 8   
 The Nested Epistemic Actions Model 
for Abstraction in Context: Theory 
as Methodological Tool and Methodological 
Tool as Theory 

             Tommy     Dreyfus     ,     Rina     Hershkowitz     , and     Baruch     Schwarz    

    Abstract     Understanding how students construct abstract mathematical knowledge 
is a central concern of research in mathematics education. Abstraction in Context 
(AiC) is a theoretical framework for studying students’ processes of constructing 
abstract mathematical knowledge as it occurs in a context that includes specifi c 
mathematical, curricular and social components as well as a particular learning 
environment. The emergence of constructs that are new to a student is described and 
analyzed, according to AiC, by means of a model with three observable epistemic 
actions: Recognizing, Building-with and Constructing–the RBC-model. While 
being part of the theoretical framework, the RBC-model also serves as the main 
methodological tool of AiC. 
 In the fi rst section of this chapter, we give an outline of the theoretical aspects of 
AiC as background to the description of the elements of our methodology in the 
second section, and their application to a specifi c example in the third section. In the 
concluding section, we close the circle by exhibiting the strong relationship of the-
ory and methodology in AiC as it is mediated by the RBC-model.  
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8.1        Theory 

 In this section, we give a summary of the theoretical aspects of AiC. We refer the 
interested reader to the literature for more extensive treatments (Hershkowitz et al. 
 2001 ; Schwarz et al.  2009 ). Our approach took shape in the course of research that 
accompanied innovative curriculum development, when questions arose such as 
“What did students learn and consolidate, and how? What mathematical concepts 
and strategies remain with them?” A more subtle issue has to do with the particu-
larities of typical mathematical curricula in which ideas fostered in certain activities 
are solicited as elements in a reorganized structure: archetypical reorganizations are 
about the passage from the realm of numbers to the realm of algebra, and from 
algebra to functions and their representations. Although students may learn ideas 
that designers did not intend to foster, the structures of mathematical curricula 
impose constraints and open affordances for certain types of learning processes. 

 The salient characteristics of the mathematical curricula and classroom learning 
environments in which we study abstraction are as follows:

•    Curricula are organized as  successions of activities  and themes proposed along 
these activities very often  transform  previous ones. Hence curricula express an 
 intention of continuous transformation .  

•   Our theory of abstraction takes into account the particularities of contexts: The 
“C” in AiC implies that the role of mathematical, curricular, historical and social 
context is central to AiC. In particular, the social and interactional context may 
vary considerably according to the teacher’s decisions.  

•   Nevertheless, there is an underlying expectation of students’ responsibility for 
their own learning in an environment that encourages inquiry. Students have the 
responsibility to report and justify their work and their conclusions to their peers 
and their teacher, for example during whole class discussions.    

 In classrooms, abstraction often takes place in interacting small groups of two to 
four students. Hence, we focus on small groups as well as individuals and two dual 
issues are central in our approach: On the one hand, we look at what is shared–
shared meanings or knowledge to consider what allows groups to continue further 
constructing knowledge in the same topic together (Hershkowitz et al.  2007 ). 
On the other hand, we try to discern agencies as we look at who initiates, how labor 
is divided and whether responsibilities are taken by different students. 

 This attention to a special kind of curriculum and to the emergence of learning 
processes within various contexts led us to theoretical forefathers that belong to 
 different traditions, Freudenthal and Davydov. Freudenthal ( 1991 ) provided what 
many mathematicians have in mind when they think of abstraction. Freudenthal has 
brought forward some of the most important insights to mathematics education in 
general, and to mathematical abstraction in particular. These insights constitute a 
cultural legacy that led his collaborators to the idea of “vertical mathematization”. 
Vertical mathematization points to a process that typically consists of the reorgani-
zation of previous mathematical constructs within mathematics and by  mathematical 
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means by which students construct a new abstract construct. As researchers in 
mathematics education, we preferred the expression “vertical reorganisation” to the 
expression “vertical mathematization” to discern between what is intended by the 
teacher–the mathematization, and what often happens–a reorganisation, which is a 
radical change which sometimes does not coincide with what is intended. In vertical 
reorganisation, previous constructs serve as building blocks in the process of con-
structing. Often these building blocks are not only reorganised but also integrated 
and interwoven, thus adding a layer of depth to the learner’s knowledge, and giving 
expression to the composite nature of the mathematics. Sequences of problem situ-
ations provide opportunities to capitalise on the new constructs repeatedly, and to 
turn them into building blocks for further constructing actions, where each construct 
includes ‘pockets’ of past constructs on one hand, and is itself a potential compo-
nent for new constructs. 

 Davydov was one of the most prominent followers of the historical cultural the-
ory of human development initiated by Vygotsky. For Davydov ( 1990 ), scientifi c 
knowledge is not a simple expansion of people’s everyday experience. It requires 
the cultivation of particular ways of thinking, which permit the internal connections 
of ideas and their essence to emerge, thus enriching rather than impoverishing real-
ity. According to Davydov’s “method of ascent to the concrete”, abstraction starts 
from an initial, simple, undeveloped and vague fi rst form, which often lacks consis-
tency. The development of abstraction proceeds from analysis, at the initial stage of 
the abstraction, to synthesis. It is a dialectical process that ends with a more consis-
tent and elaborated form. It does not proceed from concrete to abstract but from an 
undeveloped to a developed form. As such, abstraction clearly contrasts with  gener-
alization , which is an extension to less specifi c criteria–an extension, which is not 
more developed and therefore does not require reorganization. 

 The reference to both Freudenthal and Davydov’s theories of abstraction in AiC 
expresses an effort to bridge between the cognitive and socio-cultural dimensions: On 
the one hand, Freudenthal, an eminent mathematician infl uenced by Piagetian ideas, 
saw mathematization as a refl ective effort done by the student toward a construct 
foreseen beforehand by the mathematician. Davydov’s approach is socio- cultural. 
His analyses of abstraction uncover dialectical processes often occurring in interac-
tions between the adult and the student. The bridge between those two  perspectives 
consists of the necessary design effort for providing opportunities for abstraction to 
occur. The design is accountable for what the mathematician and the mathematics 
educator intend to “instill”. This design hopefully opens the door for negotiations of 
meaning in interactions, possibly leading to abstractions as desirable constructs. 

 AiC adopts the views of vertical mathematization and ascent to the concrete and 
builds on them to defi ne abstraction as a process of vertically reorganizing some of 
the learner’s previous mathematical constructs within mathematics and by mathemat-
ical means so as to lead to a construct that is new to the learner. Activity theory pro-
poses an adequate framework to consider processes that are fundamentally cognitive 
while taking into account the mathematical, historical, social and learning contexts in 
which these processes occur. In this, AiC follows Giest ( 2005 ), who considers activ-
ity theory as a theoretical basis, which has an underlying  constructivist philosophy. 
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 According to activity theory, outcomes of previous activities naturally turn to 
artifacts in further ones, a feature that is crucial in tracing the genesis and the devel-
opment of abstraction through a succession of activities. The kinds of action that are 
relevant to abstraction are epistemic actions – actions that pertain to the knowing of 
the participants and that are observable by participants and researchers. 

 We postulate that the genesis of an abstraction passes through a three-stage 
 process, which includes the need for a new construct, the emergence of the new 
construct, and the consolidation of that construct. We will exhibit the crucial role of 
epistemic actions for the second and third stages below. The nature of the fi rst stage 
is well expressed by Kidron and Monaghan ( 2009 ) when dealing with the need that 
pushes students to engage in abstraction, a need that emerges from a suitable design 
and from an initial vagueness for the learner:

  The learners’ need for new knowledge is inherent to the task design but this need is an impor-
tant stage of the process of abstraction and must precede the constructing process, the verti-
cal reorganization of prior existing constructs. This need for a new construct permits the link 
between the past knowledge and the future construction. Without the Davydovian analysis, 
this need, which must precede the constructing process, could be viewed naively and 
mechanically, but with Davydov’s dialectic analysis the abstraction proceeds from an initial 
unrefi ned fi rst form to a fi nal coherent construct in a two-way relationship between the con-
crete and the abstract–the learner needs the knowledge to make sense of a situation. At the 
moment when a learner realizes the need for a new construct, the learner already has an ini-
tial vague form of the future construct as a result of prior knowledge. Realizing the need for 
the new construct, the learner enters a second stage in which s/he is ready to build with her/
his prior knowledge in order to develop the initial form to a consistent and elaborate higher 
form, the new construct, which provides a scientifi c explanation of the reality. (pp. 86–87)   

 As mentioned above, a central component of AiC is a theoretical-methodological 
model, according to which the emergence of a new construct is described and ana-
lyzed by means of three observable epistemic actions: recognizing (R), building- 
with (B) and constructing (C). Recognizing refers to the learner seeing the relevance 
of a specifi c previous construct to the situation or problem at hand. Building-with 
comprises the use and combination of recognized constructs, in order to achieve a 
localized goal such as the actualization of a strategy, a justifi cation or the solution 
of a problem. The model suggests constructing as the central epistemic action of 
mathematical abstraction. Constructing consists of assembling and integrating pre-
vious constructs by vertical mathematization to produce a new construct. It refers to 
the fi rst time the new construct is expressed or used by the learner. Hence, while the 
term  constructing  refers to the epistemic action – a process – the term  construct  
refers to an outcome of such action. This defi nition of constructing does not imply 
that the learner has acquired the new construct once and forever; the learner may not 
even be fully aware of his new construct, and the learner’s construct is often fragile 
and context dependent. Constructing does not refer to the construct becoming freely 
and fl exibly available to the learner. Becoming freely and fl exibly available pertains 
to consolidation. 

 Consolidation is a never-ending process through which students become aware 
of their construct, the use of the construct becomes more immediate and  self- evident, 
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the student’s confi dence in using the construct increases, and the  student demon-
strates more and more fl exibility in using the construct (Dreyfus and Tsamir  2004 ). 
Consolidation of a construct is likely to occur whenever a construct that emerged in 
one activity is built-with in further activities, possibly in the course of a further 
constructing action. These further activities may lead to new constructs. Hence con-
solidation connects successive constructing actions and is closely related to the 
design of sequences of activities. 

 In processes of abstraction, the epistemic actions are nested. C-actions depend 
on R- and B-actions; the R- and B-actions are the building blocks of the C-action; 
at the same time, the C-action is more than the collection of all R- and B-actions 
that make up the C-action, in the same sense as the whole is more than the sum 
of its parts. The C-action draws its power from the mathematical connections, 
which link these building blocks and make them into a single whole unity. It is 
in this sense that we say that R- and B-actions are constitutive of and nested in 
the C-action. Similarly, R-actions are nested within B-actions since building-
with a previous construct necessitates recognising this construct, at least implic-
itly. Moreover, a lower level C-action may be nested in a more global one, if the 
former is made for the sake of the latter. This nested character was observed in 
the classrooms and in interviews in which we studied abstraction and it substan-
tiated our theoretical tenets according to which the curriculum was intended to 
afford a continuous transformation of  constructs. Given these characteristics, we 
named the model the  dynamically nested epistemic actions model of abstraction 
in context , more simply the RBC-model, or RBC + C model using the second C 
in order to point at the important role of consolidation. The RBC-model is the 
theoretical and micro-analytic lens, through which we observe and analyse the 
dynamics of abstraction in context. We will, in the concluding section, come 
back to the RBC-model in order to show how the model as a part of the theory 
interacts with the same model as methodological tool, and hence theory and 
methodology mutually depend on each other, infl uence each other and undergo 
successive refi nements.  

8.2    The AiC Methodology 

 In this section, we give a concise description of the methodology of AiC, its ele-
ments, its tools and its methods. We decided to keep this description concise since 
in our opinion, methodological tools and methods – those of AiC as well as those of 
any other theoretical framework—obtain their signifi cance only through their appli-
cation to specifi c cases; our main intention, in this chapter, is therefore to show the 
application of the methodology to a specifi c set of data; this application will be 
exemplifi ed in the next section, accompanied by frequent reference back to the 
 present section. 
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8.2.1    Design for Abstraction 

 The importance of design in our theory is considerable. It constrains the kinds of 
actions participants may carry out, and affords the ones that seem desirable to the 
designer and teacher. Of course, students’ actions are never determined by the 
design, and there is always a gap between intended actions and actions enacted. But 
the diminution of this gap is of crucial importance for abstraction to occur. The 
design is a challenging task and it is often an integral part of the research project 
(   Kouropatov and Dreyfus  2013 ), or the project is a design-research-redesign project 
(Hershkowitz et al.  2002 ). Often also, a particular design that has been successful in 
some condition is taken over from elsewhere. For example, in a recent study on the 
tension between the discrete and the continuous in a differential equations course, 
the design, and even the data, were taken as is from a research study in a different 
country in which only one member in the team had been involved in the past (Tabach 
et al.  2014 ). The diffi culty involved in the design originates from the fact that it has 
to comply with an intention of continuous transformation of constructs. This requires 
the elaboration of sequences of activities that offer the students opportunities to 
learn well defi ned mathematical ideas (e.g., how a solution to a fi rst order differen-
tial equation can be approximated by discrete steps and that the approximation 
improves as the steps become smaller; the notion of integral as an accumulating 
quantity; that algebra is a tool for justifi cation, etc.). It also requires the elaboration 
of further activities to apply these ideas as tools in familiar contexts or as tools in 
contexts that necessitate the elaboration of new ideas. What is common to all these 
learning aims is that they include adding new connections between students’ previ-
ous knowledge, hence adding depth to the students’ understanding, integrating their 
knowledge in ways not available to them before. In brief, the design intends to  create 
a didactical hierarchy aimed at vertical reorganization of students’ knowledge. 

 Beyond these very general remarks, designs may considerably vary to afford 
intended abstractions. However, in several research studies using AiC to study 
abstraction, some design principles have been articulated: In addition to creating a 
collaborative situation, some of these principles are triggering a cognitive confl ict, 
asking for hypotheses and providing tools for testing them, and refl ective argumen-
tation (Prusak et al.  2012 ). Also, the sequence of activities often alternates contexts 
in which small groups work or argue together with teacher-led (refl ective) 
discussions.  

8.2.2    A Priori Analysis 

 In a move pertaining to design but specialized on its epistemological aspects, an 
effort is then made to foresee trajectories of students’ learning: an a priori  analysis  
of the activities (e.g., Ron et al.  2010 ). Assumptions are fi rst made about the previ-
ous knowledge of the students. Then possible paths to deal with the activities and 
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answer the questions they raise are examined. The most relevant question asked in 
the a priori analysis is what knowledge is helpful or even necessary to deal with the 
task and to complete it to the designer’s or teacher’s satisfaction. We are particularly 
interested in knowledge that has not been relevant in previous activities carried out 
by the students. With respect to knowledge that has not been relevant in previous 
activities and is helpful or necessary in the current one, we assume that the designer 
or teacher intended this knowledge to be constructed by the students in the current 
activity. The aim of the a priori analysis is to identify such elements of knowledge 
intended by the design, typically concepts or strategies thought of in terms of the 
content domain of mathematics. It is our working assumption that the new  constructs, 
which emerge for the students when dealing with the task, are in close correspon-
dence with the knowledge elements identifi ed in the a priori analysis, if the design 
and the a priori analysis are adapted to the learner. Nevertheless, students’ con-
structs are of course to be distinguished from the knowledge elements intended by 
the design. 

 The selection of knowledge elements in the a priori analysis has a considerable 
infl uence on the a posteriori RBC-analysis that is being carried out later. It can 
therefore not be left vague or undetermined. Therefore, two or three researchers in 
a team usually carry out a priori analyses independently, and then differences are 
ironed out until there is agreement among the researchers. For each knowledge ele-
ment, we do not only give a defi nition in terms of the mathematical meaning of the 
element in the context in which it is being used, but also an operational defi nition. 
The operational defi nition is methodologically important: It fi xes under what cir-
cumstances the researcher will say that a student is using or expressing a construct 
that represents this knowledge element. Hence, the operational defi nition will take 
into account the defi nition of constructing, namely that constructing refers to the 
fi rst time a new construct is expressed or used by the learner. Examples for knowl-
edge elements with their general as well as their operational defi nitions will be 
given in the next section. 

 The result of the a priori analysis is not or not only a list of knowledge elements 
but rather a structure of knowledge elements, with some elements being contained 
in (or part of) others, and some being prerequisite for others. Often, there is an over-
arching knowledge element, within which all others are included. An example for 
this is the Seals activity (Dreyfus et al.  2001 ), The Seals activity was intended for 
grade 7 students, whose previous learning experiences did not include tasks where 
algebra was used as a tool for justifi cation; and while they had learned and gained 
experience with the simple distributive law  a ( c  +  d ) =  ac  +  ad , they had never had a 
need or occasion to similarly expand ( a  +  b )( c  +  d ) (the extended distributive law). 
The Seals activity presented the students with numerical examples of “seals” of the 
form shown in Fig.  8.1 , and asked them to fi nd as many properties as possible of 
such seals. After some exploration, they were led to focus on the property that the 
difference between the product of the elements in the minor diagonal and the prod-
uct of the elements in the major diagonal is always 12, and asked to justify this 
phenomenon. This was intended to (and did in many cases) lead student groups to 
use algebra as a tool for justifi cation and develop the extended distributive law in the 
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process. Hence the a priori analysis resulted in algebra as a tool for justifi cation as 
the overarching knowledge element and, nested within it, the extended distributive 
law as a further knowledge element. By the way, this overarching knowledge 
 element was clearly recognized by the researchers only after we analyzed several 
groups solving the activity and observed diffi culties some of them experienced in 
solving the task.

   One aim of the a priori analysis is to focus, at least initially, the researchers’ 
attention on the intended constructs, on which the RBC micro-analysis of students’ 
constructing of knowledge is then based. Sometimes the a priori analysis, as meticu-
lous as it may be, may miss the necessity of certain knowledge elements for 
 performing a task or may fail to predict some of the students’ ways of going about a 
task. In such cases, the a posteriori analysis of the data according to the RBC-model 
will be used to provide improvements to the a priori analysis. Hence, the a priori 
analysis serves as a working hypothesis that may later be confi rmed or modifi ed by 
the micro-analysis of the data.  

8.2.3    Data Collection and Preliminary Analysis 

 The setting of a specifi c research study occasionally infl uences the decision on 
which students to focus the data collection. In individual or small group interview 
studies, data from all students are collected. In studies that take place in classrooms, 
the potential volume of data is enormous, and it is mandatory to make a choice. We 
then select a few focus groups or focus students for close observation. Group work 
of the focus students, as well as whole classroom discussions, are videotaped and 
audio-taped. Tapes are transcribed, in some cases with intonation signs. The analy-
sis uses all student productions (worksheets), the transcripts, and researchers’ fi eld 
notes. Since meaning making in mathematics is very often achieved in multi-modal 
channels (Radford  2009 ), the videotapes are important for example for gestures, 
facial expressions, as well as to identify in a group of students who wrote or drew 
what when (for which purpose we have recently started using  Livescribe  pens as 
well (Hickman and Monaghan  2013 ). It is very often helpful to complete the data 
collection with interviews of the teacher as well as of some focus students. 

 The analysis of whole classroom discussions according to the RBC-model is 
delicate because, in such a context, the interventions of individual students may be 
sporadic. However, whole classroom discussions can complete analyses in a succes-
sion of activities. (See also comments in the concluding section.) 

X X+2

X+6 X+8

  Fig. 8.1    The “seal”        
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 We prepare our analysis by reading the entire transcript and often viewing the 
videos in order to get an overview of the entire learning process; usually, we fi rst 
prune the transcript to leave relevant data, then split the pruned transcript into 
 episodes (Chi  1997 ) the end of an episode being determined by either cognition, 
content or external factors that infl uence content or cognition. Cognition means 
that a change occurs in students’ orientation, in questions asked or approached by 
the students, or in the methods they use to attempt making progress. A change in 
 content is often indicated by the transition to a new task or subtask. External fac-
tors, like the teacher calling attention to a whole class discussion, frequently have 
a similar effect of introducing a break or change or orientation. Among all epi-
sodes, we then identify those, in which it appears that new knowledge may have 
emerged for one or several focus students. Later stages of our analysis will begin 
from these episodes.  

8.2.4    Need 

 Although the RBC-model focuses by defi nition on epistemological aspects of math-
ematical activity, abstraction stems from a need and overt expressions of this need 
may sometimes be identifi ed in the preliminary analysis: enthusiasm, uncertainty, 
surprise, curiosity or baffl ement, for example as the consequence of a cognitive 
confl ict, are emotional states whose appearance are good threads to begin with to 
identify and explain the emergence of a constructing action. Similarly, learners may 
express the need to justify for themselves or for others a mathematical fact or an 
idea that they just discovered. 

 As researchers, we also have the task of identifying needs whose manifestation 
is subliminal, and often these can be detected. There are many possible indicators 
for a need as a precursor of constructing: Student’s questions, manifestations of 
uncertainty, of surprise or even just a request for time of refl ection that is related to 
the situation at hand, are all indicators of a possible need for a specifi c construct, 
even though the student is at this stage unlikely to be aware of this. Of course, this 
manifestation may remain undeveloped. Also, one cannot establish whether the 
above behaviors really express a need or a whimsical emotional expression lacking 
clear volition. A brief analysis of the episode generally clarifi es this issue. Besides 
these emotional expressions as indicators of a need, natural places at which to look 
are self-regulatory or self-monitoring manifestations: the learner’s explicit orienta-
tion in the problem space (e.g., by attempting to establish what has been achieved 
and what still needs to be achieved). 

 However, in some cases, constructing actions can occur without the researchers 
having been able to pinpoint a specifi c need for a new construct. Kidron et al. ( 2010 ) 
have shown that in some situations constructing actions can occur on the basis of a 
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general epistemic need rather than on the basis of a specifi c need for a new con-
struct, and that this general need is closely connected to Davydov’s description of 
abstraction as a transition from the vague to the precise.  

8.2.5    Analysis According to the RBC-Model 

 After the preliminary analysis and the possible identifi cation of episodes where a 
need is detectable, one can turn to the heart of the method, the analysis of the 
 episodes with R, B and C epistemic actions as building blocks of the process of 
abstraction. The goal in this RBC analysis is twofold: fi rst, to unveil the processes 
by which the students’ new constructs emerge as a vertical reorganization of previ-
ous constructs in the current context; second, to contribute to the refi nement of AiC 
through the unfolding of the processes that occurred during the episodes (as will be 
shown further on). 

 The operational defi nitions generated in the a priori analysis are crucial for the 
RBC analysis. A construct’s operational defi nition provides clear criteria for assess-
ing whether a student’s utterance or action provides evidence that a constructing 
action for the said construct has occurred. Sometimes, such an action or utterance 
by the students will occur during or immediately after the student’s constructing 
action and sometimes only at a later stage. This may depend on how involved the 
student is in interaction with other students, with the teacher, or with the interviewer 
at the critical junctures. This does, of course, not mean that students less involved in 
the interaction do not construct; it only means that the researchers may not have 
immediate access to these students’ constructs, and need to work on the basis of 
their later actions or utterances. 

 The analysis by the RBC + C model is a micro-analysis that proceeds utterance 
by utterance through the analyzed episodes. This often enables us to fi nd the exact 
moment where a constructing action has been completed, sometimes by direct evi-
dence and sometimes by concluding back from the evidence to earlier utterances. It 
also enables us to follow the constructing process and the way epistemic actions are 
nested in each other. This fi ts exactly our defi nition of abstraction: The three epis-
temic actions are the windows through which we can evaluate the main building 
blocks of the process of abstraction, and the micro-analysis enables us to trace these 
epistemic actions and the “mathematical glue” which ties them together. 

 In order to achieve this goal, researchers might begin by identifying a construct-
ing action that has occurred, mark the relevant action/s or utterance/s in the tran-
script as the end of the constructing action of the said construct and begin to work 
backwards through the transcript to identify the recognizing and building-with 
actions that contribute to the said constructing action. Other researchers trace the 
epistemic actions in more fl exible way: After reading and obtaining a general over-
view of the episode they go forward and backward, being led by their need to under-
stand and interpret. 
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 The researcher can usually identify recognizing actions quite easily on the basis 
of an action on or an explicit mention of a previous construct by the learner. 
The recognized previous construct may then become one of the building blocks 
being reorganized during a constructing action. Evidence for recognizing actions is 
usually rather obvious, and our experience shows that disagreements arise rarely 
with respect to the constructs being recognized by the learners and the evidence that 
shows that they are recognized. We stress explicitly that recognizing does not refer 
to a potential new construct that may emerge from the current activity but to previ-
ous constructs available to the learner. 

 Similarly, building-with actions refer to making use of previous constructs 
 having been recognized by the learner as relevant to the problems situation at hand, 
and not a potential new construct that may emerge from the current activity; indeed, 
such a potential new construct, having not yet been expressed or used even once by 
the learner, cannot yet possibly be available to this learner. Building-with refers to 
explicit actions of computing, sketching, justifying, reasoning, etc. with previous 
constructs. For this very reason, building-with actions are similarly easy to identify 
as recognizing actions. Here also, our experience shows that disagreements are rare 
and novice researchers need only moderate training. Building-with actions also help 
the researcher to assess which recognizing actions are relevant, according to whether 
the recognized previous construct has been used in one of the building-with actions. 
A previous construct that is recognized but not used in any way does not play a 
relevant role in the constructing action. 

 If working backward through the transcript, the goal of the researcher is to iden-
tify and mark all actions and utterances that contribute to the emergence of the 
emerging construct. These utterances and actions need not be, and except in simple 
cases are not, contiguous and some may have occurred much earlier, long before the 
place where the end of the constructing action has been identifi ed. Even so, this 
central part of the analysis frequently allows us to fi nd the roots of the constructing 
action as well as its parts, and allows the researcher to produce a fi ne-grained 
description of how the construct emerged by vertically reorganizing previous 
 constructs by means of recognizing and building-with actions. In some cases (e.g., 
Kidron et al.  2011 ), we have even been able to identify quite early seeds for a con-
structing action, for example the observation by students of phenomenological pat-
terns that at the time of observation did not lead anywhere but later supported the 
initiation of a constructing action. 

 We have often found it convenient to represent a process of abstraction in a table 
such as Table  8.1 . For purposes of demonstration, we assume that the activity under 
discussion relates to only two new constructs C 1  and C 2 , and one previous construct 
C a . (In concrete examples, we tend to give meaningful indices to the constructs – see 
the next section for examples.) The table is an extension of the transcript. Its left-
most column numbers the utterances; the second column shows the names of two 
students, A, B and the teacher T. The third column would contain the utterances 
(omitted here). A column with comments on gestures, timing etc. might be added. 
The fourth column in Table  8.1  exhibits the analysis of constructing action C 1  and 
the fi fth one that of C 2 . In these two last columns, we enter R- and B-actions with 
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previous constructs, denoting clearly which previous construct the action refers to. 
In the C 1 –column, only R a  and B a  actions (with C a ) are possible. In the C 2 –column, 
R a , B a , R 1  and B 1  are possible. We again stress that in column C k , actions R k  and B k  
cannot possibly occur since the constructing action of C k  has not ended and hence 
C k  is not available to the student. In rows that contribute to the constructing action 
C k , the corresponding cells of column C k  are shaded. An utterance may contribute 
to more than one constructing action. The end of a constructing action is marked by 
a bold horizontal separation below the relevant cell. (For a detailed example of 
using such a table for the analysis of a constructing action, see Dreyfus et al.  2001 .)

   The preceding description shows that a construct has to be recognized as relevant 
before being used to build-with. Hence an R k  action is usually nested within any B k  
action. It similarly follows that the R- and B-actions with previous constructs are 
nested in C-actions, for example, R a , B a , R 1  and B 1  are all nested in C 2 . Constructing 
actions can go on in parallel, as in the table, where constructing C 2  begins before 
constructing C 1  has been completed. Parallel constructing actions can interact, 
branch and combine in rather complex ways (Dreyfus and Kidron  2006 ). 

 Colleagues and research students alike often ask us how to distinguish construct-
ing actions from building-with actions. This question is eminently justifi ed since 
there is no analytic way to distinguish them by mechanical analysis. The decision 
whether a task requires building-with or constructing from a learner depends not 
only on the task but also on the learner’s personal history: If the sequence of learner 
actions and utterances when dealing with the task expresses vertical reorganization 
and hence the emergence of a construct that is new to the learner, then the action is 

     Table 8.1    A hypothetical table of epistemic actions   

 No.  Name  Utterance  C 1   C 2  

 1  A  … 
 2  B 
 3  A 
 4  B  R a  
 5  T 
 6  B 
 7  A 
 8  B  B a  
 9  A  R a B a  
 10  B  R a  
 11  A  B a   B a  
 12  A  R 1  

 13  B  B 1  
 14  A  B 1  
 15  B  B a  B 1  
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a constructing action; otherwise, it is a building-with action. Someone might argue 
that this may introduce ambiguities into the RBC-analysis since different research-
ers may interpret a sequence of actions and utterances differently; we agree that 
there is a measure of interpretation involved, but our experience shows that differ-
ences of interpretation are rare and can be successfully resolved in interaction 
between researchers. 

 Students’ constructs as revealed by the RBC-analysis can be expected ones that 
correspond closely to the knowledge elements identifi ed in the a priori analysis, or 
they can be quite unexpected ones. This is fortunate, as good design for learning 
should not look like conveyor belt production in factories. Instead of considering 
unexpected knowledge elements as design failures, one should consider them as 
ways students handle opportunities for learning provided to them. An example for 
an unexpected construct will be presented below. In fact, students’ constructs may, 
and often will correspond partially to the intended knowledge elements. Occasionally, 
this will lead to a modifi cation of the a priori analysis, not in the sense of making it 
into an a posteriori analysis but rather in the sense of correcting what could or 
should have been expected. In other words, we as researchers have in quite a few 
cases used the data to discover that our analysis was not as fi ne-tuned or as reason-
able as might be expected and to learn from the students’ actions what might have 
been expected a priori. On other occasions, some students’ constructs will be only 
partially correct from the mathematical point of view or suffi cient to achieve only 
partially the tasks set by the activities. In this case, we speak of partially correct 
constructs – PaCCs (Ron et al.  2010 ). PaCCs are, by defi nition, partial with refer-
ence to an intended knowledge element and curriculum, and not in some absolute 
sense. PaCCs are examples of manifestations that were not considered in the fi rst 
articulation of the RBC theory but that were incorporated in a refi nement of the 
theory through further experiments.  

8.2.6    Consolidation 

 Our theoretical approach to abstraction as based on activity theory lends itself 
 naturally to the consideration of abstraction as including not only constructing pro-
cesses but also the use of the resulting constructs further on. This implies that a 
student may be considered as having participated in a constructing action without 
fully being aware of it. Alternatively, the student may have fully taken responsibility 
for her constructing but may not have properly used the resulting construct further 
on. Examining student actions after the emergence of a construct is the focus of 
consolidation. In order to investigate consolidation, our analysis hence typically 
works forward from the moment the C-action has ended and identifi es R- and 
B-actions with this construct. These are most frequently found either as B-actions 
carried out to deal with a task that does not lead to a new construct or, more 
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interestingly, as R- or B-actions serving as part of a constructing action of a further 
construct as R 1  and B 1  have served in the constructing of C 2  in Table  8.1 . 

 A fi rst step in the analysis of consolidation of a construct is therefore to identify 
all R- and B-actions with this construct, a step that is necessary anyway for the pur-
pose of analyzing the constructing of further constructs. The second step in the 
analysis of consolidation is to determine whether and in what way these R- and 
B-actions provide evidence of the student’s confi dence in using the construct, of the 
immediacy with which the student uses the construct, of the self-evidence the con-
struct has for the student, of the fl exibility the student demonstrates in using the 
construct and the student’s awareness of the construct. Each of these separately (and 
a fortiori some or all of them together) provides evidence for the continuing consoli-
dation of the construct.  

8.2.7    Who Is Constructing? 

 Just as choices have to be made which data to collect, choices sometimes have to be 
made, which data to analyze. While no such decision needs to be taken when 
 analyzing an interview with a single student, this situation is prone to excessive 
researcher intervention, for example when the student gets stuck, or simply in order 
to make the student express her thoughts. We therefore tend to work with small 
groups of students. However, even when a pair of students is collaborating in an 
interview situation, one student may be leading, or the pair may be interacting in a 
symmetric manner. In each case, the researcher has to decide whether to analyze 
constructing actions of the pair as a whole or of each student separately; in some 
cases, it may be impossible to separate the epistemic actions of the students or infor-
mation about one of the students may be sparse. The situation clearly gets more 
complex when groups have three or four participants; it gets even more complex, 
when the group works in a classroom. This is a big challenge because of the many 
variables that play a role in a whole class situation and the potentially messy data. 
Hence we had to deal with the question of what constitutes knowledge shared by a 
group of individual students as they construct and consolidate it in the classroom 
(Hershkowitz et al.  2007 ). In this setting, we emphasize the interactive fl ow of 
knowledge from one student to the others in the group, until they reach a shared 
knowledge—a common basis of knowledge, which allows them to continue 
 constructing further knowledge in the same topic together.   

8.3     A Focus Group in a Classroom as an Example 

 In this section, we provide an example whose purpose it is to illustrate the use of the 
methodology set forth in the previous section. The example is taken from a research 
project (Hershkowitz et al.  2007 ) whose main goal was to investigate aspects of 
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small groups’ knowledge constructing in working classrooms. The topic chosen for 
instruction was elementary probability. Five grade 8 classes in different schools and 
their teachers participated in the project. 

 The probability unit deals with concepts and problem-solving aspects of empiri-
cal versus theoretical probability, and one- and two-dimensional sample spaces. 
This overall construct of probability includes three stages:

   A.    Sample spaces in one dimension (1D), for example the probability of obtaining 
3 when rolling a die; theoretical probability as the ratio of the number of relevant 
outcomes to the number of all possible outcomes; experience with the fact that 
empirical probability values tend to the theoretical value as the number of trials 
increases.   

  B.    Sample spaces in two dimensions (2D), where all simple events are equiproba-
ble and can be counted and organized into a table, and the probabilities of the 
compound events can hence be found by inspection, for example, the probability 
of obtaining at least one 3 when two dice are rolled simultaneously.   

  C.    Sample spaces in 2D, where each dimension has two possibilities whose prob-
abilities are not necessarily equal.     

8.3.1    Design for Abstraction 

 The project team designed a ten-lesson probability unit with the specifi c aim of 
giving students opportunities for constructing knowledge related to stages A, B, and 
C above, and to cooperate in constructing knowledge. The underlying design prin-
ciples include a didactical hierarchy with occasions for hypothesizing, for facing 
confl icts, and for arguing (Hadas et al.  2008 ). 

 The unit is structured hierarchically in such a way that each stage (and often each 
task) introduces new elements, which evolve from the previous stages (globally) and 
tasks (locally). The global aspect of the didactic hierarchy principle can be demon-
strated by the appearance of the calculation of probability values as a relevant ratio 
at each stage of the unit. It is refl ected in the tools used for presenting the probability 
values: In stage A, the students present the probability values of 1D events on a 
chance bar (a [0,1] number segment). In Stage B, the students deal with situations 
involving the probability of 2D events such as two dice or a spinner and a die; a table 
model based on the equiprobability of the simple events represented by the table 
cells is introduced as a tool for fi nding such probabilities. In Stage C, the students 
deal with binomial but not necessarily equiprobable 2D events using an area model 
for probabilities in the resulting four-event sample space. Stage C is designed on the 
shoulders of Stages A and B, which are interwoven together with the two dimen-
sions being represented by two orthogonal chance bars generating a square. The unit 
area of the square represents the probability of the sample space as a whole, while 
the area of each of the four rectangle-cells in the square represents the probabilities 
of the four events. This briefl y illustrates the didactical hierarchy design principle. 
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 We demonstrate the other three design principles using the fi rst two tasks of 
Stage B. These tasks are presented in Fig.  8.2 . The hypothesizing principle is most 
explicit in Task 2a. Experience in teaching probability led the designers to expect 
that some students will hypothesize equal probabilities for all differences, and that 
many of the others are likely to hypothesize that the probability is decreasing and, 
in particular, that the probability of difference 0 is larger than the probability of 
 difference 1. Making use of this expectation for creating a situation favorable for 
constructing one of the central knowledge elements in 2D probability, the design 
continued after Task 2b, in the following lesson, by means of a computer simulation 
that creates a histogram for the differences; this histogram is likely to generate a 
confl ict between what students expect based on their hypotheses and what the com-
puter simulation shows–hence realizing the confl ict principle. This confl ict caused 
by the refutation of their hypothesis by computer experiment is a highly fertile situ-
ation for constructing knowledge about the probabilities of events in context of the 
2D sample space of two dice. This is a suitable moment to encourage students to 
argue their reasons for and against the hypothesis and to evaluate the cogency of 
different, sometimes contradictory arguments, thus engaging also the argumenta-
tion principle in support of constructing knowledge. It will be shown below that this 
specifi c case closely relates to the hierarchy of knowledge elements produced by the 
a priori analysis hence demonstrating also the local aspect of the hierarchy 
principle.   

Task 1

1a Joe and Ruth roll two white dice. They decide that Ruth wins if the numbers of dots on 
the two dice are equal and Joe wins if the numbers are different.

Do you think the game is fair? Explain!

1b The rule of the game is changed: Joe wins if the dice show consecutive numbers. 
Do you think the game is fair?

1ci How many possible outcomes are there when rolling two dice?

1cii Reconsider your answers to Tasks 1a and 1b: Are the games fair?

1d Suppose Joeand Ruth play with one red die and one white die. Does this change the 
answers to 1a, 1b and 1c?

Task 2

We again roll two white dice. This time, we observe the difference between the larger 
number of dots and the smaller number of dots on the two dice. (If the numbers of dots 
on the two dice are equal, the difference is 0.)

2a Make a hypothesis whether all differences have equal probability. Explain!

2b How many differences are there?

  Fig. 8.2    Tasks 1 and 2 of Stage B       
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8.3.2    A Priori Analysis 

 The RBC + C analysis will be exemplifi ed below using data from students’ work on 
the tasks at the beginning of Stage B of the learning unit (see Fig.  8.2 ). A prelimi-
nary knowledge element from Stage A that may become relevant here is E PV1  (PV1 
stands for  probability value in 1D situations ): When all possible outcomes are 
known, the theoretical probability value can be computed as the ratio of the number 
of relevant outcomes to the number of all possible outcomes. We note that this 
knowledge element is built on and includes knowledge elements such as  event  or 
 outcome ,  relevant outcome , and  all possible outcomes . Obviously, additional knowl-
edge about dice having six faces numbered 1–6 and about differences and fractions 
are needed to deal with the activity but these are assumed to be generally known to 
students in grade 8 and we do not list them. 

 Four basic probability concepts are considered here as the main knowledge 
 elements that underlie the learning design and may be expected to be constructed by 
the students when working on Tasks 1 and 2:  simple event, compound event, sample 
space  and  probability value . The simple event element has two constituent elements, 
 pair  and  order.  Figure  8.3  presents the knowledge elements as well as the relation-
ships between them. For example, the probability of a 2D compound event is calcu-
lated as the ratio between the number of simple events in the compound event and 
the number of simple events in the sample space. Hence, the probability value 
 element contains the compound event element and the sample space element as con-
stituents, while both the compound event element and the sample space  element 
contain the simple event element as constituent. These knowledge elements will 
below be defi ned operationally in such a way that the researcher can tell from stu-
dents’ actions and utterances whether or not they are using these elements. We note 
that strictly speaking, students are never constructing a knowledge element  E   X   or 
building-with a knowledge element  E   X  ; rather, in the constructing action, constructs 
emerge for the students that (hopefully) correspond at least partly to knowledge ele-
ments intended by the designer. This is what we will, for simplicity, refer to as “a 

  Fig. 8.3    The knowledge 
elements       

Probability Value EPV

Compound Event ECE Sample Space ESS

Pair EP Order EO

Simple Event ESE
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student constructed or built-with  E   X  ”; however, we always take this to mean that the 
student constructed or built-with his or her personal construct corresponding to  E   X  .

    Simple event E   SE   A 2D simple event  E   SE   is an ordered pair of 1D simple events, 
for example getting 3 on the fi rst die and 4 on the second die. When tracing the 
process of constructing the simple event element we shall focus on two constituent 
elements, Pair  E   P   and Order  E   O  . We shall say that students have constructed the pair 
element when they, by their words or actions, relate to the occurrence of the two 1D 
simple events as to a single event. We shall say that students have constructed the 
order element if they relate to pairs like ( □ , Δ ) and ( Δ , □ ) as to two distinct events. 
The order element can be constructed only if the pair element has been 
constructed. 

  Compound event E   CE   A compound event is a set of simple events, which share a 
common attribute, for example “the two dice show a difference of 3”. We shall say 
that students have constructed the compound event element, if they organize or list 
all relevant simple events in a systematic way, with the aim of fi nding their number, 
depending on what they consider as a simple event. In particular, if students did not 
construct the order element, but count all the non-ordered relevant pairs, we shall 
say that they have constructed the compound event element. This is a refl ection of 
our approach, which considers processes of constructing knowledge from the stu-
dent’s existing perspective rather than from an expert’s perspective. 

  Sample space E   SS   The sample space is the set of all possible simple events. We 
shall say that students have constructed the sample space element, if they carry out 
actions to organize or list all events of the sample space in a systematic way, with 
the aim of fi nding their number, depending as above on what they consider as a 
simple event. 

  Probability value E   PV   The probability of a 2D compound event is calculated as 
the ratio between the number of simple events in the compound event and the num-
ber of simple events in the sample space. We shall say that students have constructed 
the probability value element if they calculate the probability of a compound event 
as the ratio between the number of simple events in the compound event and the 
number of simple events in the sample space. 

 Our list of knowledge elements is, of course, incomplete. On one hand, it is 
based on the didactical decisions for the design of the probability unit. On the other 
hand, the aim of the research to analyze knowledge constructing processes, dictates 
concentrating on knowledge elements that were observed in the students’ work. 
Thus both, the design and research considerations have infl uenced the list of ele-
ments and its organization. 

 The designers’ intention was that dealing with Tasks 1 and 2 may be expected to 
lead to a need for constructing of E P  and at least partially constructing  E   SS   (for 
example Task 1c) and  E   CE  . The intention of Task 1d is to motivate students to deal 
with the dilemma of  E   O  . Task 2 represents a more sophisticated situation since there 
are six different differences, each of which is a complex event with a different prob-
ability whose calculation requires  E   PV  .  
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8.3.3    Data Collection and Preliminary Analysis 

 In all lessons taught in the framework of the project, researchers were present and 
documented the lesson by means of two video cameras. One camera was directed at 
a focus group of students (the same group in each lesson) and the second camera at 
the teacher and the whole class activity. The researchers also took fi eld notes and 
collected students’ completed worksheets and written tests. 

 In the specifi c lesson serving as example here, the focus group consisted of three 
girls, Noam, Rachel and Yael. We consider the focus group while all students in the 
class were working in small groups as part of the regular class work. We present parts 
of the analysis of the work of the focus group on Tasks 1 and 2. The preliminary analy-
sis of the data yielded a division into three episodes as used in the next subsection.  

8.3.4     Analysis According to the RBC-Model, 
Including Need and Consolidation 

 The need for a new construct, its emergence and its consolidation are three inter-
linked stages that form part of a process of abstraction for this target knowledge. 
Although these three stages have in the previous section been treated separately for 
added clarity, they are in practice closely interwoven and are therefore presented 
here in combination. 

8.3.4.1    Episode 1: Constructing  E   P   

 After a brief introduction during which she reminds the students of the notions of 
frequency and relative frequency, the teacher distributes the worksheets with Tasks 
1 and 2. Rachel reads 1a aloud. Noam and Yael immediately agree that the game is 
not fair, that Ruth’s chances are lower, with Noam even saying 1 in 6 and Yael, 
counting 1 + 2 + 3 + 4 + 5 + 6 = 21 and adding another 6 arriving at 6 out of 27. This 
provokes Noam to ask for clarifi cation. 

  [21] Noam    What are you doing? Eh?   
  [22] Yael    I did: What are the chances? One one, two two, three three, four four, 

fi ve fi ve, six six. And he has one two, one three, one four, and two 
one, two two. No two one and one two are the same thing… one two, 
one three, one four, fi ve plus 4 is nine, nine plus three is twelve   

  [23] Rachel    I don’t understand what you are doing. What are you doing?   
  [24] Yael    Because I have to know what is our whole. It’s like, what results can 

be, what results might occur? … It’s either (1, 1) (2, 2) (3, 3) (4, 4) 
(5, 5) (6, 6) or … (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) and then 2.   

  [25] Noam    Yael, I don’t understand at all what you are doing.   
  [26] Rachel    Yes, me neither.   
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   Yael clearly and repeatedly refers to pairs of numbers [22] as simple events, is 
already busy enumerating, more or less systematically, all the relevant events for 
calculating Ruth’s and Joe’s chances to win [22, 24], and asks explicitly what are all 
possible simple events [24]. 

 Using the operational defi nition for  E   P   given above, we interpret that Yael has 
constructed a suitable construct for  E   P   in the context of two dice before [21], and 
without providing any explicit evidence for the constructing action to the 
researcher. She is already recognizing and building-with  E   P   in [22, 24] and 
beyond. This is the reason why we have freely used the notation (a, b) for pairs 
from [24] onward, although the parentheses can hardly be heard in the students’ 
utterances. 

 Using the operational defi nitions for  E   CE   and  E   SS   we conclude that Yael is in the 
process of constructing these elements: She is attempting to organize lists of all 
relevant simple events, with the aim of fi nding their number, but does not yet do this 
quite systematically. 

 We also note that Yael gives a brief indication of being aware of the issue of order 
(of the elements of a pair) in [22] and, in fact, negates order; she may be in the pro-
cess of constructing what might be called an “anti-order” construct, which, of 
course, does not form part of our list of knowledge elements. 

 There is no parallel evidence for Rachel and Noam; quite the contrary, their 
questions seem to indicate that they may not yet have constructed a view of events 
as pairs of numbers ( E   P  ), and they do not appear to understand what, how, and why 
Yael is counting [21, 23, 25, 26]. 
 Yael seems to realize this and repeats

   [27] Yael    Listen, there are some possibilities that 1 will appear: (1, 2) (1, 3) (1, 4) 
(1, 5) (1, 6) and we fi nished with 1, now 2: (2, 3) (2, 4) (2, 5) (2, 6).   

  [28] Rachel    O.K., O.K., we understood that, but why are you adding? I don’t 
understand.   

   We observe that Yael’s [27] is more explanatory and more systematic than [24], 
and interpret this has showing that she has now constructed  E   SS  . Although there is 
no explicit evidence from Rachel’s [28] that she has now constructed  E   P  , the fact 
that her question has changed from a vague expression of unease [23, 26] to a pre-
cise question about Yael’s counting system [28] may indicate this. And indeed, as 
will be shown in Episode 2 below, Rachel acts as if building-with  E   P  , while she and 
Yael continue to discuss the numbers 6, 15 and 21 of simple events for Ruth, Joe and 
the total, respectively, in [29–57]. During this entire excerpt, events as pairs are 
mentioned only a single time, and even then by Yael and not by Rachel. Nevertheless, 
in [64] Rachel provides explicit evidence for having constructed  E   P  .

   [58] Noam    See ‘cause you didn’t … you did like one side on the die is 3 and the 
other side is 4 and you did like 3 plus 4 and that’s like …   

  [59] Yael    I didn’t do 3 plus 4. I’ll tell you exactly what I did.   
  [60] Noam    No wait a second, second. This is what I understood from what you did   
  [61] Yael    I’ll tell you what I did.   
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  [62] Noam    One minute! No! You have to do 3 and 4; it is one possibility, and 4 
and 5 is a second possibility, so it is two [possibilities].   

  [63] Yael    What?   
  [64] Rachel    That is what she did; (3, 4) is one possibility and (5, 4) is one 

possibility.   

   Rachel [64] explains that this is exactly what Yael did, by repeating Noam’s 
 explanation. Here Rachel uses  E   P  , which she had presumably constructed earlier, to 
build-with it her explanation. She thus provides evidence that she is already consoli-
dating  E   P  . This excerpt also allows us to follow in some detail Noam’s constructing 
of  E   P  . Her transition from “3 plus 4” in [58] to “3 and 4; it is one possibility” 
in [62], may be interpreted as the moment she begins to see the pair (3, 4) as a unit 
and hence has constructed  E   P  . She still expresses this fact rather clumsily, and this 
illustrates well “the fi rst time the new construct is expressed or used by the learner”, 
which forms part of our defi nition of constructing and indicates that her construct is 
still fragile. This fragility has disappeared by 109 where Noam builds-with and thus 
consolidates  E   P   when explaining what is the meaning of the difference in Task 2.

   [109] Noam    If we look on the difference of one die and the other die: (2, 2), then 
the difference is 0.   

   In summary, we conclude from the data that the three students constructed and 
began consolidating  E   P  . While Yael’s process of constructing was quick to the point 
of being immediate (and hence not observable until after the effect) and Rachel’s 
process of constructing was hidden because she did not express it, Noam’s was 
explicit, even for this very simple construct. 

 The question arises, in what sense the three students shared the knowledge they 
have constructed. The knowledge fl ow started from Yael. The constructs of the two 
other students emerged fi rst through interacting questions and explanations from 
Yael to the two others, and then through the explanations of Yael and Rachel to 
Noam. At this point in time, it seems that  E   P   has become a shared common basis of 
knowledge for the group, which they can use together for further constructing. From 
observations of later activities, we have evidence that  E   P   was consolidated and 
remained available as part of the group’s shared knowledge. The article by 
Hershkowitz et al. ( 2007 ) presents a more detailed analysis of the sharing aspects of 
this focus group’s constructing processes.  

8.3.4.2    Episode 2: Partially Constructing  E   CE   and  E   SS   

 The knowledge elements  E   SS  ,  E   CE   and  E   PV   for the 2D case as needed in Stage B are 
all generalizations of the corresponding 1D knowledge elements, which the students 
met, and presumably constructed, in Stage A. While the generalizations might seem 
straightforward, they are not necessarily so for students, and may therefore require 
processes of abstraction. For the three students in our report, the generalization of 
 E   PV   was indeed automatic and never formed the topic of specifi c attention. However, 
the generalization of  E   SS   and  E   CE   was associated with considerable diffi culty, at least 
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for Rachel and Noam. As in Episode 1, Noam lagged behind, and we will focus on 
Rachel and use her process of constructing  E   SS   (she constructed  E   CE   concurrently) 
and use it to illustrate additional methodological aspects of AiC. 

 Chronologically, Episode 2 develops partially in parallel to Episode 1. We 
 differentiate between the two episodes in order to clearly separate the constructing 
of  E   P  , which is a prerequisite for the constructing of  E   CE   and  E   SS  , and because the 
constructing process of  E   P   is quite different in nature from that of  E   CE   and  E   SS  . 

 As described in Episode 1, while working on Task 1 Yael is counting events [22, 
24] and explains that she is trying to fi nd all the possible simple events in the sample 
space (in her words, “the whole” [24]) in order to calculate the required probabili-
ties. Rachel, who has already constructed  E   P  , still does not follow why and how Yael 
is counting [28], and Yael explains again:

   [32] Yael    What is my whole? This is my whole ‘cause… O.K., look! There are 
6 out of… 5 + 4 is 9, and 3 is 12, and 2 and 1 is 15, and the 6 is…   

  [33] Rachel    21   

   Rachel adds the numbers; however, she still wonders about the meaning of the 
number 21, as we conclude from

   [41] Yael    I know that I am right. His frequency is 15 out of 21…   
  [42] Rachel    What?   

   and later
   [48] Rachel    Why 21?   

   and

   [51] Rachel    What is 21? I don’t understand what 21 is! [laughs with 
embarrassment]   

  [52] Yael    O.K., there are 6 possibilities that we will get the same number on 
the dice.   

  [53] Rachel    True!   
  [54] Yael    Then 15 plus 6 is 21.   
  [55] Rachel    Ah, O.K.   
   …
   [69] Noam    Why 21?   
  [70] Yael    Ufff !!   
  [71] Rachel    Because there are 15 possibilities for him and for her 6 possibilities 

and 15 plus 6 is 21.   
  [72] Yael    It is the whole, all the possibilities that can occur on the dice, two 

dice.   
  [73] Noam    Ah, you roll…   
  [74] Yael    Then, 6 divided by 21, it’s her frequency, and 15 divided by 21 it’s 

his frequency.   
  [75] Rachel    [dictating the answer to Question 1a] No, because the chance of two 

equal numbers is 6 divided by 21 and the chance of different num-
bers is 15 divided by 21.   
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   We omitted the segment [56–68] from here since most if it was discussed in 
Episode 1; in this segment, Rachel speaks only in [64] explaining to Yael what 
Noam meant – and this has to do with  E   P  , rather than with the constructs of interest 
presently. 

 In [69]–[75], Rachel and Yael, together and in similarly lucid language, explain 
the meaning of the number 21 to Noam. Based on this, we infer that Rachel’s con-
struct for  E   SS   emerged previously, and given what she asked in [51], this can only 
have happened in [52]–[55]. In other words, we interpret her “True!” in [53] and her 
“O.K.” in [55] as expressions of her constructing action. This interpretation is 
strengthened by the fact that Rachel does not shy away from admitting her lack of 
understanding ([23], [26], [28], [42], [48], [51]). The evidence of Rachel’s con-
structing  E   CE   is similar: It occurred no later than [52]–[55] for the same reasons as 
 E   SS  . However, it is more diffi cult to locate precisely in a specifi c segment of the 
transcript because Rachel asked no questions expressing its lack. We can therefore 
locate the end of Rachel’s process of constructing  E   SS   in [55] but fi nd it diffi cult to 
locate its beginning. There are three distinct possibilities, between which we cannot 
decide on the basis of the empirical evidence. In other research studies, we have 
found that all three of these possibilities actually do occur. One possibility is that 
constructing  E   CE   precedes constructing  E   SS  , i.e. that Rachel’s process of construct-
ing  E   CE   has ended before [51]. Another is that the two processes partially overlap, 
with constructing  E   SS   beginning after constructing  E   CE   begins but before it ends, and 
constructing  E   CE   ending before constructing  E   SS   ends. The third one, and the one that 
seems to us most likely, is that constructing  E   CE   occurs within constructing  E   SS  , 
in other words that one constructing action is nested in another one. In some cases, 
such nesting occurs by necessity because the construct nested inside the other one 
is unavailable to the students and necessary for constructing the other one (see e.g., 
Dreyfus et al.  2001 ). This is not the case here; it is conceivable and has happened in 
our research project that students construct  E   SS   before they construct  E   CE  , that they 
construct  E   CE   before they construct  E   SS  , or that the two constructing actions  partially 
overlap. 

 When explaining  E   SS   [71, 75], Rachel refers to the compound events “Ruth wins” 
and “Joe wins”, which have 6 and 15 elements respectively, i.e. she recognizes these 
compound events as relevant for the sample space; she also builds-with them the 
sample space, which consists of the union of these two compound events. She thus 
recognizes and builds-with her construct for compound event. Similarly but less 
explicitly, she recognizes and builds-with her construct for simple event, without 
which the compound events do not exist. We stress again that the R- and B-actions 
nested in C SS  are not R- and B-actions with the SS construct currently being 
 constructed but rather R- and B-actions with the previous constructs:  R   P  ,  B   P  ,  R   CE  , 
and  B   CE  . 

 We are, of course, aware that these actions are all implicit and hence interpreted 
into [52]–[55]; however, given the lucid explicit explanation Rachel gives to Noam 
in [71, 75], we feel justifi ed to make this interpretation. Moreover, since we con-
sider Rachel’s constructing actions of  E   CE   and  E   SS   as terminated in [55], her explana-
tion to Noam is an opportunity for her to formulate the constructs in her own words, 
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linguistically correct and elaborate, which we consider as her beginning to consoli-
date the constructs  E   CE   and  E   SS  . Searching forward through Rachel’s activity on 
further tasks in the next lessons, for example a task with two spinners, we fi nd fur-
ther evidence for consolidation of these constructs. We are also able to observe how 
the constructs for  E   P   , E   CE   and  E   SS   become increasingly self-evident for Rachel and 
how she uses them with increasing fl exibility, for example in other physical con-
texts. A brief example will be given in Episode 3. However, giving more detailed 
examples for this would require lots of additional space without adding much more 
to the explanation of our methodology. 

 If, on the other hand, we search backward through the transcript for expressions 
by Rachel of a need for the SS construct, we fi nd a clear need for it in Rachel’s 
insistent and repeated questions in [42], [48] and [51]. We note that the questions 
become more explicit and clearer as her thinking proceeds. Even in its clearest 
form, however, Rachel’s question asks what is the meaning of 21 rather than what is 
a sample space. This is only natural since only in very rare cases can learners be 
expected to ask for something they do not yet know about. This is why we interpret 
questions of the type Rachel asked as a clear expression of need for a new 
construct. 

 Finally, we observe that from an expert’s point of view, Rachel’s (and Yael’s) 
results are wrong. In fact, there are 36 possible events in the sample space for two 
cubes, not only 21. They do not take into account that (1, 2) and (2, 1) are different 
events. This is, of course, due to the fact that Yael and Rachel have constructed and 
work with a construct for simple event that includes a construct for Pair ( E   P  ) but 
does not include a construct for Order ( E   O  ). Their construct for simple event is 
therefore only partially correct and since the simple event construct is a crucial 
constituent of the compound event construct and of the sample space construct, 
Rachel’s (and Yael’s) construct for sample space is also only partially correct. Ron 
et al. ( 2010 ) give a detailed treatment of partially correct constructs, together with a 
methodology for identifying them.  

8.3.4.3    Episode 3: The differences’ Task (Task 2) 

 The students in our focus group quickly agree that the game in Question 1b (Fig.  8.2 ) 
is not fair either, because Ruth has six winning possibilities and Joe has only 5, that 
the answer to Question 1ci is 21, and that playing with coloured dice does not make 
a difference. Yael and Rachel give these answers. Noam reads the questions and 
occasionally asks for clarifi cation. This changes when they start thinking about 
Question 2. From the start, Noam contributes. She reads the question [107] and is 
the fi rst to build-with  E   P   the difference between a pair of numbers on the two dice 
[109, see above]. Possibly, the fact that she is now sharing the  E   P   construct with her 
peers gives her some self-confi dence and motivation. 

 When Yael points out that “difference 1” is a compound event [115] and uses this 
to reformulate the question more concretely [119], Noam immediately produces an 
answer [120–126].
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   [115] Yael     If you get (1, 2), the difference is 1 and if you get (2, 3) the differ-
ence is also 1.   

  [119] Yael    Are the probabilities of 1 and 4 equal?   
  [120] Noam    I understand. No!   
  [121] Yael    Are the probabilities of 1, 2, 3, 4 equal?   
  [122] Noam    We understand! NO!   
  [123] Yael    How do you know? Did you calculate it?   
  [124] Noam    No! Because they are not equal.   
  [125] Yael    How do you know?   
  [126] Noam     If we say difference of 4 … or we say difference of 5 there is only 

one.   
  [127] Yael     One moment! Let’s take 1, then we have (1, 2) (2, 3) (3, 4) (4, 5) 

(5, 6) and the same number (1, 1) (2, 2) (3, 3) (4, 4) (5, 5) (6, 6).   
  [128] Rachel    What’s the connection?   
  [129] Yael    Well, I check the probability of 0 and the probability of 1.   

   This is a case where the designer intended no new constructs but R- and B-actions 
were required to achieve a local goal. While Yael and Rachel [127–129] behave 
accordingly, building-with their existing constructs ( E   CE   , E   SS  ) to count how many 
pairs fi t each difference in order to compute probabilities ( E   PV  ), Noam uses only her 
compound event construct in order to construct a new strategy to achieve the same 
goal, namely comparing the frequencies of the compound events. She concludes 
that different frequencies mean different probabilities, without any need for 
 calculating the probability value itself. We consider this strategy to be a new 
 construct that has emerged for Noam. It is an unexpected and somewhat non- 
conventional construct, which the researchers did not include in the a priori analy-
sis. We have met other such unconventional unexpected student constructs in other 
research  studies (Ron et al.  2011 ). 

 In other cases, there are good reasons for the researchers to modify or refi ne the 
a priori analysis in order to include unexpected constructs; one example for this 
has been implicitly mentioned above: Yael (and many other students’) construct 
for simple event did not take the order element into account. We therefore modi-
fi ed our original operational defi nition for the compound event element  E   CE   by 
adding, “if students did not construct the order element, but count all the 
 non-ordered relevant pairs, we shall say that they have constructed the compound 
event element”. 

 We note that when the three students summarize and write down their con-
clusions, which are identical, the difference in the approaches taken by Rachel 
and Noam leads to an argument between them that reaches far beyond the con-
structs under consideration here into constructs related to what it takes to justify 
a claim: For Noam, examples are suffi cient to conclude that different differ-
ences have different probabilities. Rachel does not agree; she thinks that exam-
ples are not suffi cient:

   [143] Noam    No, let’s give examples.   
  [144] Rachel    It decreases, you understand?   
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  [145] Noam     Come on, let’s give simple examples, O.K.? Let’s give examples!   
  [146] Rachel    No! Because the difference between 0 and 1…   
  [147] Noam    It IS an example, you dupe!   
  [148] Rachel     [writes] Because as the difference grows, the probability becomes 

smaller.   

   In summary, we note that each student constructed her individual knowledge in 
her own way and time. While Yael and Rachel reached a stage where they shared 
their knowledge with respect to all constructs under discussion here, we have no 
evidence that Noam has constructs corresponding to  E   SS   and  E   PV  , and the strategy 
she constructed in Episode 3 may even point to the fact that she was lacking a 
 construct for  E   SS  . However, this strategy constitutes an unexpected construct for 
Noam that could potentially be useful to build-with in other situation. All three stu-
dents shared their lack of knowledge concerning the element  E   O   and hence all their 
other constructs were partial.   

8.3.5    Additional Methodological Comments 

 There are a number of additional aspects of our methodology, which we were not 
able to demonstrate in this chapter because their presentation would require infor-
mation about additional research studies and additional data and therefore be quite 
onerous in terms of additional space. We will therefore only comment on these 
aspects, referring the reader to other publications for more detailed information. 

8.3.5.1    Knowledge Construction and Social Interaction 

 The study used for illustrative purposes above exhibits important aspects of the role 
of social context in knowledge constructing processes, including the role of the fl ow 
of knowledge between individuals during the interaction, which have been  discussed 
in more depth by Hershkowitz et al. ( 2007 ). However, our previous study dealing 
with the relationship between peer interaction and the construction of knowledge 
(Dreyfus et al.  2001 ) already proposed a methodology using two parallel analyses 
of the protocols of the work of student pairs, an analysis of the epistemic actions of 
abstraction as well as an analysis of the peer interaction. The parallel analyses led to 
the identifi cation of types of social interaction that support processes of abstraction. 
We also found an excellent fi t between episodes defi ned for the epistemic actions 
analysis and episodes defi ned for the peer interaction analysis.  

8.3.5.2    Tools as Contextual Elements in Knowledge Construction 

 Artifacts such as manipulative or computerized learnware are another element of 
the context that has been shown to possibly have a crucial role in the construction of 
knowledge. For example, following the students’ work on Task 2 above and a 

T. Dreyfus et al.



211

 computer simulation of the situation in Task 2 that led to confl ict, teachers were 
asked to present the sample space of two dice as a six by six table of all simple 
events. This helped many students construct  E   O  . 

 In a more substantial study on the infl uence of tools, Weiss ( 2011 ) has analyzed 
the role of an analogical model in knowledge construction during model-based 
tasks. The tasks were in the area of fraction comparison and the analogical model 
was the tower of bars. From the methodological point of view, the study by Weiss 
required not only an RBC analysis but also an analysis based on the Emergent 
Models approach of Gravemeijer ( 1999 ), which is rooted in the Realistic 
Mathematics Education philosophy of the Freudenthal tradition and makes use of 
vertical mathematization. This double analysis has led to the identifi cation of deep 
theoretical relationships between AiC and RME. 

 In a different study, Kidron and Dreyfus ( 2010 ) describe how instrumentation led 
to cognitive constructing actions and how the roles of the learner and a computer 
algebra system (CAS) intertwine, giving the CAS a major infl uence on interactions 
between different parallel constructing actions.  

8.3.5.3    Revision of the Instructional Design on the Basis of RBC Analysis 

 Finally, the micro-analytic nature of the research methodology described in this 
chapter allows the researcher to observe constructing actions very closely. One of 
the related practical considerations is that this allows educators to identify problems 
in the micro-design of an educational intervention. Kouropatov and Dreyfus ( 2014 ) 
briefl y describe an example of a revision of the micro-design of an activity in the 
realm of the integral as accumulation.    

8.4    The Relationship of Theory and Methodology in AiC 

 The fl ow of theoretical and methodological paradigms that determine the frames for 
research in science and mathematics learning recently became richer, more diver-
gent and more sophisticated. In addition, it seems that more than in the past, 
researchers today do not feel obliged to and/or satisfi ed with sticking to one 
 methodological paradigm. Research trends in our area are nowadays characterized 
by fl exibility and creativity in combining research methods and methodological 
tools that fi t the researchers’ theoretical framework and meet their goals and needs 
to explain and answer some ‘big questions’ emerging from their explorations. 

 In this section we discuss issues concerning the contour lines between the 
 theoretical framework of AiC and the methods and methodological tools within AiC 
research. Hershkowitz ( 2009 ) argues that “these boundaries (the above mentioned 
contour lines) are fl exible and even a bit vague in the sense that the same scheme or 
model may serve as a theoretical framework in one piece of research, as a method-
ological tool in a second one, and as both of them in a third piece of research” 
(p. 273). There are many examples for this in AiC. One is the notion of nesting, 
which was originally meant for R-actions being nested in B-actions and B-actions 
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in C-actions, but empirical results showed that C-actions may be nested in higher 
level C-actions and this led us to expand both, our theoretical conception of nesting 
and our methodology for describing it (Dreyfus et al.  2001 ). A second example is a 
refi ned classifi cation of B-actions into subcategories, distinguishing, for example, 
actions that provide an orientation in the student’s problem space from actions that 
aim at solving a problem; this again led to an expansion of both, our theoretical 
conception of B-actions and our methodology for identifying them (Dreyfus and 
Kidron  2006 ). A third example is provided by the notion of PaCCs (Ron et al.  2010 ); 
introducing this notion led us to systematically carry out a priori analyses 
(a  methodological tool), which in turn enriched the theoretical framework, as well 
as required a different method of analyzing the epistemic actions in order to identify 
PaCCs. Instead of providing more brief pointers to such local examples, we will in 
the remainder of this section discuss in some detail the most substantial and deepest 
case of intertwined growth of theory and methodology, which is related to the role 
of the social context in the construction of knowledge. This will also give us an 
opportunity to briefl y review the history of AiC and conclude the paper with an 
outlook. 

 At the beginning of the AiC research work, we came up with a fi rst hypothesis 
for the model using both theoretical considerations and the analysis of considerable 
amounts of data in parallel. In this undertaking, we were led by the need to give 
theoretical expression to the specifi c characteristics of our data, which pointed to 
constructing of knowledge by means of mathematical thinking. In the process, we 
took into account and incorporated elements of existing theories. As we described 
in the theory section, abstracting was taken as human activity of mathematization, 
specifi cally vertical reorganization of previous mathematical constructs, interweav-
ing them into one process of mathematical thinking with the purpose of construct-
ing a new mathematical construct—Abstraction in Context has emerged. 

 At that stage, the researchers found themselves in a circular situation where 
 theory stemmed from the analysis of data, and the analyzed data and its interpre-
tation served as evidence for validating the theory. We were quite aware of this 
situation and explained: “This defi nition (of abstraction) is a result of the dialecti-
cal bottom- up approach . . . a product of our oscillations between theoretical 
perspective on abstraction and experimental observations of students’ actions, 
actions we judged to be evidence of abstraction” (Hershkowitz et al.  2001 , p. 202). 
It is clear that for analyzing the above actions, the researchers had to use some 
basic methodologies, which fi t protocol analyses of an individual and the more 
complicated analysis of cognitive and interactive work within dyads and groups. 
The three epistemic actions, recognizing, building-with and constructing, and the 
dynamically nested relationships between them were hypothesized as the main 
building blocks of the model. These building blocks and the dynamic relation-
ships among them express the vertical reorganization within the theory, and at the 
same time are validated by being used as the lens and compass to describe and 
interpret the data analyses themselves. Such a situation held for the fi rst steps 
towards the validation of the model as a theoretical framework and as a method-
ological tool as well. 
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 In these fi rst steps, the research context and the theory itself were expanded. 
As an example let’s follow the development of the socio-interactive dimension: 
In our fi rst AiC research we interviewed individual grade 9 students. Along the 
interview the student has an interaction with the interviewer only (Hershkowitz 
et al.  2001 ). In our second AiC research (Dreyfus et al.  2001 ) we interviewed dyads 
of students; the interaction between students turned out to be a main factor in the 
 process of knowledge construction and therefore took its role in the theory, specifi -
cally as part of the context. The methodology changed as well: The interviewer 
became an observer, and a graphic tool for demonstrating the RBC fl ow together 
with the interaction fl ow was invented. 

 In these as well as the following stages of development, the RBC + C model has 
been validated, both as a theoretical framework and as a methodological tool, in 
various social settings and learning environments. The settings considered 
include (teacher-led) classroom discussion, small-group problem-solving pro-
cesses (see the examples in Sect.  8.3 ), tutoring situations and individual activities 
(e.g., introspective self-reports of single learners; see Kidron  2008 ). The age range 
of the learners extends from elementary school to adult experts and the longitudinal 
dimension varied. And, indeed, research made it clear that the RBC + C model is 
an appropriate tool/theory/theoretical tool/methodology to describe abstraction 
and provide insight into processes of abstraction in a wide range of situations of 
abstraction and consolidation on a medium-term timescale, where consolidation is 
a process by which the construct becomes progressively more self-evident, the 
student’s awareness of the construct increases and the use of the construct becomes 
more fl exible (Dreyfus et al.  2006 ; Hershkowitz et al.  2007 ). More than 10 years of 
research and more than 40 research publications, contributed by more than a few 
people, separate the ‘birth’ of the AiC framework from today’s RBC + C model, as 
an empirically based theoretical framework. 

 We give a small number of illustrative examples for the linked expansion of 
theory and methodology from more recent research. Tabach et al. ( 2006 ) present an 
example of knowledge constructing within the context of peer learning in a working 
classroom. It shows how the design of the tasks and the computerized tools  available 
to the students afford the constructing of conceptual knowledge (the phenomenon of 
exponential growth and variation, as it is expressed in its numerical and graphical 
representations). The researchers traced the constructing of knowledge through a 
series of dyadic sessions for several months in a classroom environment, and 
 analyzed three sessions with intervals of a few months between them. The analysis 
showed that knowledge is constructed cumulatively, each activity allowing for con-
solidating previous constructs. This pattern indicates the nature of the processes 
involved in creating a new abstract entity: knowledge constructing and consolidat-
ing are dialectical processes, developing over time, even over time intervals that 
seemed to break the continuity. Hence, the main function of the RBC + C model in 
this research was to serve as a methodological tool to illustrate construction and 
consolidation processes. In addition, the data of this specifi c study served, in turn, 
to let a new methodological characteristic emerge: The RBC + C model is an appro-
priate tool for analyzing construction of knowledge over long intervals of time. 
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 Wood et al. ( 2006 ) examined “the relationship between the patterns of interac-
tion that exist in the classroom and children’s expressed mathematical thinking” 
(p. 228) in classes from different cultures, and for this aim the RBC-model served 
as the “conceptual framework employed to examine the quality of students’ 
expressed thinking” (p. 225). We think that the term conceptual framework, when 
applied to a certain model, expresses the fl exibility with which this model may be 
applied as a framework for both theory and methodology. And indeed in Wood 
et al.’s research, it seems that on the one hand the authors believe theoretically that 
the model with its three epistemic actions expresses quite accurately the level of 
mathematical thinking that children have; on the other hand they used the model as 
a methodological tool for analyzing the protocols of the class members and identi-
fying the levels of thinking expressed by class members. They accumulated these 
data for the purpose of quantitative analyses of the levels of thinking expressed by 
the class members in discussions in the different classrooms. This research shows 
some maturation of the model as a theoretical framework and as a methodology. 
The authors needed two conceptual frameworks in their study and the model is one 
of them. The model is not any more the focus of the study. It allows the researchers 
to determine levels of thinking that are available for inspection in the classroom. 

 Finally, Dooley’s classroom research ( 2007 ) concerns what she calls collective 
abstraction processes, which emerged in one lesson, mostly during the last phase of 
the lesson, where a whole-class interaction took place. The researcher’s aim was to 
show how the class community, as one entity, reaches ‘sophisticated constructs’. 
She explained: “One pupil’s ‘recognizing’ led to ‘building with’ by another and to 
‘constructing’ of new ideas and strategies by others” (p. 1658). Again, this is a  situation 
where the researcher uses the RBC-model as a methodological tool to explore the 
existence and nature of collective abstraction, and by doing this she confi rms the 
RBC-model as a conceptual framework for this type of collective abstraction as well. 

 The RBC + C model may exemplify the fl exible contour lines between a model 
as theory and a model as methodological tool: the model aims to serve as a frame-
work for describing, analyzing and interpreting a human mental activity. The model 
is appropriate for exploring individual student mental activity as well as for explor-
ing collective mental activity that is distributed in a group or a classroom among 
different individuals. 

 The model with its three epistemic actions, has a very general nature, general in 
the sense that it can be used in many and varied contexts. The nested relationships 
among the epistemic actions of the RBC + C model are global and the three actions 
of the model are observable and can be identifi ed. Therefore the model lends itself 
easily to be adapted and to contribute to research in many different contexts of 
 constructing abstract knowledge. 

 The research by Dooley raises questions that are at the heart of classroom research 
more generally. For example, in a study that focuses on “the travel of ideas” in the 
classroom, Saxe et al. ( 2009 ) claim that “developing methods to understand the 
travel of ideas is foundational to understanding learning in classroom communities” 
(p. 221), where the individuals in the classroom have a main role in the travel of 
ideas. Researchers who plan to observe and analyze in detail micro-processes of 
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constructing knowledge, or argumentation, or any other learning processes which are 
related to the classroom activity in a given context, along a time segment that may 
range from minutes to weeks, and do not want to ignore the researched  phenomena 
as it is expressed by the individuals, face great diffi culties: The observation and 
documentation processes are complicated, data are messy and massive and there are 
no systematic clear-cut methodologies for analyzing them (Schoenfeld  1992 ). 

 It seems that there is no theoretical problem in conducting such classroom research, 
which analyses in parallel the knowledge-constructing processes in the different social 
settings, which are formed in a natural way in the classroom, including the paths of 
such processes within individuals and among them, and then interweaving the analy-
ses together. This seems the optimal way for gaining insight into processes of 
 constructing knowledge in the everyday classroom. But will the ‘heavy battery’ 
needed for documenting all of the above not affect the natural learning environment in 
the classroom? And what about creating the methodologies for  analyzing the huge 
volume of the accumulated data needed for interweaving the  fi ndings together? 

 Looking back on our ‘research journey’ with AiC, we discern a trend from inves-
tigating an individual learner or dyad with an interviewer in a laboratory setting via 
investigating small focus groups in a working classroom, to investigating students’ 
processes of constructing knowledge, and shifts of the constructed knowledge in a 
working mathematical classroom. The fi rst phase served to develop the AiC theory 
and the RBC + C model, whereby we used the RBC + C model in two parallel roles: 
as a methodological tool for analyzing the data and for validating the theory as 
explained in the concluding section of this chapter. In the second phase, we applied 
the RBC + C model for analyzing students’ abstraction processes as they worked in 
a group in a working classroom. In the third and current phase, we aim to develop a 
methodology to coordinate analyses of the individual, the group and the classroom 
collective in a working mathematical classroom (Tabach et al.  2014 ; Hershkowitz et 
al.  2014 ). For this purpose, we combine AiC with another theoretical framework, 
Documenting Collective Activity (Rasmussen and Stephan  2008 ), which serves to 
analyze whole class discussions. We hope that observing different kinds of interac-
tions and learning settings in the classroom in parallel on one hand, and overcoming 
the methodological problems of analyzing, interpreting and interweaving the fi nd-
ings of the different research settings on the other, may give researchers a coherent 
and  meaningful insight into natural processes of learning activities (in the widest 
sense) in the classroom.     
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    Chapter 9   
 Advancing Research by Means 
of the Networking of Theories 

             Ivy     Kidron      and     Angelika     Bikner-Ahsbahs    

    Abstract     Networking different theories is a rather new and promising way of 
doing research. This chapter presents the concept of the networking of different 
theories and its methodology, including networking strategies like research heuris-
tics and cross-methodologies. The variety of networking is outlined by illustrating 
examples, and methodological refl ections on the diffi culties and benefi ts that 
accompany the networking are described.  

  Keywords     Networking of theories   •   Networking strategies  

9.1         Introduction 

 Recent research in mathematics education aims to understand how theories can be 
connected successfully while respecting their underlying conceptual and method-
ological assumptions, a process called “networking of theories”. This process also 
demonstrates that taking into account the diversity of theories in mathematics edu-
cation permits a better grasp of the complexity of learning and teaching processes 
(Bikner-Ahsbahs and Prediger  2010 ). Networking of theories not only aims at clari-
fying the notion of theory and working with different theories: it is essentially a 
methodological approach for theoretical and empirical research that connects differ-
ent theories to broaden and deepen insight into problems. Research on networking 
informs methodological principles of how different theories can be used and what 
kind of benefi t can be obtained by the use of different theories. 
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9.1.1     The Evolution of Networking 

 In their introduction paper to the proceedings of the theory group at CERME 4, 
Artigue et al. ( 2005 ) wrote that “the central term that emerged from the working 
group was  networking ” (p. 1242). They added that

  as a research community, we need to be aware that discussion between researchers from 
different research communities is insuffi cient to achieve networking. Collaboration between 
teams using different theories with different underlying assumptions is called for in order to 
identify the issues and the questions. (p. 1242) 

   Networking has become the topic of a working group at CERME5 (Arzarello 
et al.  2007 ), CERME6 (Prediger et al.  2009 ) and CERME7 (Kidron et al.  2011b ) 
leading to several publications (see Radford  2008 ; Sriraman and English  2010 ; 
Prediger et al.  2008 ; Kidron  2008 ). Networking of theories was also discussed at a 
Research Forum at PME 34 (Bikner-Ahsbahs et al.  2010 ), at the colloquium in honor 
of Artigue (Kynigos  2012 ; Kidron  2012 ) as well as in ICMI 12 (Bikner- Ahsbahs 
et al.  2012 ; Kidron and Monaghan  2012 ). 

 Considering the evolution of our own experience in networking theories we point 
out that this chapter is the fruit of our personal involvement in the networking enter-
prise. In the next sections, this personal involvement and the way we collaborate 
between teams of the Networking Theories Group (cf. Bikner-Ahsbahs et al.  2014 ) 
will be explained as part of the methodology.  

9.1.2     Why Networking? 

 We may well ask about the reasons for dealing with the complementary infl uence of 
different theoretical approaches on the research process in mathematics education. 
Teaching and learning processes and their environmental conditions and infl uences 
are at the center of interest in mathematics education. Due to their complexity, we 
might need different types of theories (Boero et al.  2002 ) and ways for approaching 
these processes in research. But different theoretical frameworks might provide dif-
ferent insights for instance into the description of processes that accompany the 
emergence of new mathematical knowledge structures. Hence, it is important to 
know how these different results can be linked. Sometimes data from empirical 
research are diffi cult to discuss and interpret within a single theoretical frame 
(Arzarello and Olivero  2006 ). In this case alien theories might offer a complemen-
tary way of analyses. The networking of theories broadens this view in regarding 
the diversity of theories as providing a potential to deepen our understanding of, for 
example, teaching and learning processes (Prediger et al.  2008 ). Radford ( 2008 ) 
also points to the rapid contemporary growth of forms of communication, increas-
ing international scientifi c cooperation and that “such [networking of theories] 
efforts may refl ect direct or indirect actions to cope with some of the needs that were 
brought to the fore by the new educational, political, and economical structures of 
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the European Union and its institutionalizing forms of academic research” 
(comment by Radford in Bikner-Ahsbahs et al.  2010 , p. 169).   

9.2     Language for Networking 

9.2.1     The Semiosphere 

 Radford ( 2008 ) elaborates a meta-language for networking. Referring to Lotman 
( 1990 ) he describes the idea of  semiosphere  as “an uneven multi-cultural space of 
meaning-making and understanding generated by individuals as they come to know 
and interact with each other” (Radford  2008 , p. 318). In the  semiosphere , he considers 
a theory be a dynamic interrelated triplet (P, M, Q) formed by a system of theoretical 
principles (P), methodologies (M), and a set of paradigmatic research questions (Q). 
The fruitfulness of strategies for networking depends to an important extent on how 
“close” or “far” the networked theories are located in the semiosphere. Referring to 
Lotman ( 1990 , p. 125), Radford points out that “one of the striking characteristics of 
the semiosphere is its heterogeneity” (Radford  2008 , p. 318). The semiosphere is a 
multi-cultural space of theory cultures that is dynamically changing:

  Theory cultures constantly produce, re-produce and develop their identities, but at the same 
time they establish boundaries that separate their cultures from the others and immunize 
their cores. However, the boundary is also the place of exchange between the cultures. As 
Lotman ( 1990 ) stated, creative ideas normally are not born in the centre but in the periph-
ery, at the boundaries of the cultures. Networking crosses these boundaries and therefore is 
a way of renewing theories in different ways. The semiosphere’s main function is providing 
possibilities for dialogue, thus creating connections that are benefi cial in different ways, 
such as deepening the identity of a theory, integrating different theories into a new one or 
just locally, or creating new kinds of research questions. According to this background, 
research about the networking of theories means investigating the theories within the 
semiosphere. In this way, sources and limits for the dialogue are uncovered through com-
mon research of different researchers representing their theory cultures. Dialogue in this 
sense links theories. (Bikner-Ahsbahs et al.  2010 , p. 146). 

   These links can be made by building relationships between the principles, meth-
odologies, and paradigmatic questions of the different theories involved into the 
specifi c networking study.  

9.2.2     The Essence of Networking and Its Limits 

 In the paper by Radford ( 2008 ) we read that the conceptualization of theories in 
terms of triplets can also shed some light on the question of the limits of networking 
theories. Radford points out that although connections are always possible, there is 
nonetheless a limit to what can be connected. This limit is determined by the goal of 
the connection, but also by the specifi cities of the components (P, M, Q) of the 
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theories that are being connected. This limit has to do with the boundary of each 
theory under consideration. We would like to use Artigue’s word  decentration  for 
describing the effort that is needed when, working collaboratively (Kidron et al. 
 2008 ), we in the Networking Theories Group tried to understand our respective 
didactical cultures, to identify interesting similarities and complementarities between 
our perspectives, and boundary concepts that could support connections. As noted by 
Artigue, this effort requires from each of us a costly effort of decentration. She also 
added that the cost of this effort provides evidence for the strength of the coherences 
underlying our respective didactical cultures. Artigue’s view of  decentration  while 
retaining the specifi city of each theoretical framework with its basic assumptions is 
the essence of networking. This  decentration  consists of the ability to better under-
stand the limits of our respective tools and what could be offered by networking them 
in ways that would not destroy their internal coherence.   

9.3     Methodological Considerations 

 A methodology of networking consists of two main parts: the process of the net-
working of theories as it is, for example, implemented in empirical research, and 
refl ections about the networking process concerning its benefi t, limits, diffi culties, 
methodological potential etc. In the fi rst part, networking methods and techniques 
are invested to undertake this networking process depending on the research goal. 
This often is done by a cross-methodology that involves networking strategies. 

9.3.1     Networking Strategies: The Spectrum 
of Networking Theories 

 Not every case of networking represents an effort towards integrating theories. 
Prediger et al. ( 2008 , p. 170) conducted a case study based on empirical examples 
and thus gained a landscape of networking strategies that are linearly ordered 
according to their degree of integration (Fig.  9.1 ). Networking strategies are heuris-
tics that aim at building relations between different theories and thus advancing 

  Fig. 9.1    A landscape for connecting theoretical approaches (Prediger et al.  2008 , p. 170)       
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them in the direction of integration while at the same time respecting their identities. 
This is done by the four pairs of strategies in between the two ideal poles of ignoring 
all but one’s own theory and the attempt to unify all theories (Fig.  9.1 ). The net-
working approach does not regard these two poles as useful; rather it acknowledges 
the diversity of theories within mathematics education as a rich resource for the 
development of theories in the community of mathematics education.

   When working with the networking of theories, researchers must  understand  the 
alien theories involved and communicate their own ones to  help  colleagues  under-
stand  their principles, methodologies and paradigmatic question (Fig.  9.1 ). On this 
basis, similarities and differences by  comparing  and  contrasting  can be identifi ed. 
 Combining  is done when theories are juxtaposed leading for example to comple-
mentary views. By  coordinating , the connection between theories becomes tighter 
while common frameworks and methodologies for research can be built. Finally 
 local integration  and  synthesizing  aim at connecting at least part of the theories on 
the level of methodologies or principles (for an overview see Prediger et al.  2008 ; 
and Bikner-Ahsbahs and Prediger  2010 ). Bikner-Ahsbahs et al. ( 2010 ) briefl y 
describe these strategies in the following way:

  The fi rst strategy pair in the landscape above describes that mutual understanding of theories 
is necessary when researchers start to practice networking; the second pair focuses on strate-
gies of comparison; the third pair grasps the step that has to be gone towards other theories 
when linking them; and the fourth describes the balance of reducing theories by integrating 
at least parts of one theory into another one and building new theories that subsume others. 
Even if researchers want to integrate theoretical parts only locally into a new theoretical view 
they have to deeply understand the other theories before using the strategies of comparing, 
contrasting, coordinating and combining them in the course of integration. (p. 147) 

   Especially the notion of the fourth pair of strategies has developed over time. 
As a result of research on networking, the meaning of local integration is much 
more widely understood today than at the beginning. Local integrations may appear 
if new concepts such as the Epistemological Gap (Arzarello et al.  2009a ) or the 
General Epistemic Need (Kidron et al.  2010 ,  2011a ) at the boundary of theories are 
integrated into different theories.  

9.3.2     Cross-Methodologies for Networking 

 We use the term cross-methodology for special techniques and methods employed 
to enhance and enable networking, such as cross-experimentation between research 
teams and cross-case analysis in which material gained in one theory team is experi-
mented with or analyzed by another theoretical view. This methodology allows 
respecting the identity of each theory while at the same time links are explored. 
How far this methodology drives the networking process towards integration is 
deeply dependent on the goal and the theories involved. 

 A complete cross–methodology consists of fi ve subsequent stages requiring the 
involvement of networking strategies towards local integration. At a fi rst stage, the 
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researchers decide for instance about the common data which will be analyzed or 
what kind of task is developed. Secondly, each team processes separately on the 
decision made for example by analyzing the data with its own theoretical lens. 
Thirdly, the results are exchanged and a discussion between the teams follows this 
process. Fourth, the teams rework their analyses, task design etc. and complemen-
tary, overlapping or contradicting insights gained in this process are considered. 
In the fi nal stage the researchers’ new results are exchanged again leading to a 
consensus about the outcomes or insights which have been gained.   

9.4     Different Cases of Networking 

 We differentiate between different kinds of interest in the effort of networking theo-
ries. In some cases, the goal is to investigate the complementary insights that are 
offered when we analyze given data with different theories (Kidron  2008 ). In some 
other cases, the researchers start with an empirical phenomenon with the aim of devel-
oping their understanding of it better by means of connecting two or more different 
perspectives (Arzarello et al.  2009a ). In some further cases, the aim of networking is 
to satisfy the need for an enlarged framework in relation to some new domain of 
research (Lagrange and Monaghan  2010 ). In such cases, each theoretical tool turns 
out to be insuffi cient to properly analyze the data. In other cases, the interest in the rich 
diversity of theories is to explore the insights offered by each theory to the others and 
at the same time also to explore the limits of such an effort (Kidron et al.  2008 ). 

 In the second chapter of this part, the readers will be offered a detailed descrip-
tion of a case of networking in which both authors have been intensively involved. 
In the next subsections we present several networking cases which show how 
networking as a methodology may vary depending on the respective aims in the 
effort of networking. 

  Case 1: Networking Two Theoretical Approaches Enriches Research 
 The goal of Arzarello et al. ( 2009b ) paper is to show how networking different 
theories can help researchers in entering more deeply into their research questions. 
More precisely, the authors illustrate the limits of two theoretical approaches when 
used alone to analyze a classroom teaching situation, and the benefi ts of networking. 
As a result, data analysis and the understanding of learning processes are strongly 
enriched. The main question faced in the authors’ research concerns how mathemat-
ical knowledge about the growth of the exponential function is achieved in a specifi c 
socially-supported learning process environment. The authors describe the starting 
point of their networking process as follows:

  The same teacher-student interaction is analysed from two theoretical perspectives that on 
the surface seem to be in confl ict: the  interest-dense situation  [Bikner-Ahsbahs  2003 ,  2005 , 
 2006 ] and the  semiotic bundle  analysis [Arzarello  2006 ]. (…) Using the former, it appears 
that the thought process of a student is disturbed by the social interaction with the teacher. 
However, no disturbances appear using the latter. (emphases as in the original, p. 1545) 
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   The authors demonstrated that through “adding an epistemological perspective 
this confl ict was cleared away” (Arzarello et al.  2009a , p. 1545) since the new 
concept of the epistemological gap provided a common view and thus deepened the 
insight from both theoretical perspectives. This case is an example of local integra-
tion, a networking strategy in the landscape offered in Fig.  9.1 , which appeared, as 
a new concept could be integrated into the two theoretical lenses. (cf. Arzarello 
et al.  2009a , p. 1545)  

  Case 2: Three Theories and Their Complementary Role 
 Coordinating and combining as another strategy in the landscape in Fig.  9.1  is used 
by Kidron ( 2008 ), who investigates the contributions of three theoretical frameworks 
to a research process and the complementary role played by each. Her research pro-
cess addresses the conceptualization of the notion of limit by means of the discrete 
continuous interplay. Kidron discerns that the different theoretical approaches inter-
twine. Moreover, she realizes that the research study demanded the contribution of 
more than one theoretical approach to the research process and that the differences 
between the frameworks could serve as a basis for complementarities. Indeed, con-
cerns about students’ cognition might be expressed in different ways when different 
frameworks are employed. In Kidron’s paper, different ways to express concerns 
about cognition are presented: “cognitive diffi culties that are inherent to the episte-
mological nature of the mathematical domain” (p. 198), inner details of the learner’s 
epistemic actions in their cognitive processes, instrumental mediation and its infl u-
ence on the learner’s cognitive processes. Each way highlights a specifi c aspect that 
relates to cognitive processes. The different ways complement each other.  

  Case 3: Clarifying the Role of Concepts in Theories Through Networking 
 The aim of networking in this case is different than the aims in the two previous 
cases. In the study by Kidron et al. ( 2008 ), the goal was not to investigate the kind 
of complementarity that could result from studying the same data from different 
theoretical perspectives.

  The analysis presented in this paper constitutes a theoretical attempt at comparison of three 
theoretical frameworks: the theory of didactic situations (TDS) (Brousseau  1997 ), the 
nested epistemic actions (RBC + C) model for abstraction in context (AiC) (Schwarz et al. 
2008 [the right year is  2009 ]), and the theory of interest-dense situations (Bikner-Ahsbahs 
 2003  [ 2005 ]). The aim of the present paper is to compare, combine and contrast these three 
theoretical approaches. We provide a concrete example in which we observe how network-
ing permits to deepen the analysis of a given situation by a combined use of the three dif-
ferent theoretical frameworks. As an example to talk about networking we decide to exhibit, 
compare and contrast how social interactions, a phenomenon which is more and more con-
sidered as an essential dimension of mathematics learning processes, are taken into account 
by these different theoretical frameworks. (Kidron et al.  2008 , p. 248) 

   The authors identifi ed not only connections and contrasts between the three 
frameworks but also the additional insights which each of these frameworks can 
provide to each of the others. An interesting point is that the different views the 
three theories have in relation to social interactions force the authors to reconsider 
the theories in all their details. The reason for this is that the social interactions, as 
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seen by the different frameworks, intertwine with the other characteristics of the 
frameworks. This interesting point is well explained by Radford in his commentary 
(Bikner-Ahsbahs et al.  2010 ):

  The semantic value of a theoretical term (e.g.  social interaction ) in a theory results from its 
position in the main web of dynamic interconnections that characterize the theory as a 
whole. There is hence something positional or hierarchical about theoretical constructs that 
makes them impossible to be extracted from the whole, contrary to, e.g. the unproblematic 
way we extract a weed from the grass. (p. 169) 

     Case 4: The ReMath Example of a Multi-Design Project 
 Another case of networking is offered by the ReMath project (Artigue et al.  2009 ) 
starting from a given set of theories and aiming at designing a theoretically inte-
grated development of digital artifacts. This is done by using concrete empirical 
research to develop conceptual and methodological tools for coordinating and 
combining theoretical approaches. The TELMA (Artigue  2009 , p. 494) and the 
ReMath project (Artigue et al.  2009 ) illustrate how a productive “dialogue between 
theories” can be established through the development of appropriate methodologies.

  ReMath aimed at coordinating and combining theoretical approaches. The language used in 
the presentation of the project was indeed a language of theoretical integration, as it was 
planned to achieve it through a cyclic process combining the progressive elaboration of an 
integrated theoretical framework, the design of six dynamic digital artifacts (DDA), and 
their experimentation in realistic contexts. (Bikner-Ahsbahs et al.  2010 , p. 149) 

   The method of cross-experimentation was used in this project according to the 
following aim: each research team was designing and carrying out research based 
on the use of a digital medium that had been designed and developed by another 
team and vice-versa. This method was developed in TELMA (Artigue and Cerulli 
 2008 ) and further developed and used in the ReMath project (see for example 
Artigue et al.  2009 ; Maracci et al.  2013 ; Artigue et al.  2010 ).   

9.5     Methodological Refl ections: Diffi culties That Accompany 
the Networking 

 Different cases of networking according to the different aims of networking present us 
with different variations of the methodology of networking which aim to permit a fruit-
ful dialogue between theories. Kidron and Monaghan ( 2012 ) consider the complexity 
of dialogue between theorists and the benefi ts and diffi culties that are related to this 
complexity. One main diffi culty relates to the relevance of data and its appropriateness 
to the different foci of attention that characterize the different theories. In all the cases 
of networking in which both of us were involved, we observed  diffi culties already in 
the fi rst stage of designing common activities or selecting data towards the analysis 
which will permit the networking. As noted by Radford ( 2008 ) “It is through a meth-
odological design that data is fi rst produced; then the methodology helps the researcher 
to ‘select‘ some data among the data that was produced but also helps the researcher to 
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‘forget’ or to leave some other data unattended” (p. 321). Different theories have 
 different priorities with regard to the focus of analysis. Thus, there is an essential 
 difference in the focus of analysis which infl uences the essence: if we focus for  example 
on the social process, as a consequence, the analysis is in terms of and within the social 
process. The different priorities in the focus of the analysis might fi nd their expression 
in the way the different frameworks have different cognitive and social strengths. 
Another main diffi culty resides in the use of language, especially the plurality of 
 meanings of a single word like milieu, institution, epistemic action. In the detailed 
example given in the next chapter of this part we will demonstrate how two theories 
might use the same words “epistemic actions” but with different meanings.  

9.6     Benefi ts of Networking: Advancing Research by Means 
of the Networking of Theories 

 As Radford ( 2008 ) stresses one of the interesting aspects in the networking of theo-
ries is that it not only leads to a deeper acquaintance and understanding of the other 
theories with which our theory is dialoguing; it also leads to a better understanding 
of our own theory as well. According to Kidron and Monaghan ( 2012 ), the diffi cul-
ties that accompany networking theories point to benefi ts like a better understanding 
of the potential of each frame but also its limits. Kidron and Monaghan consider the 
complexity of dialogue between theorists and the benefi ts and diffi culties that are 
related to this complexity. Kidron et al. ( 2008 ) also realized the complexity and the 
benefi ts of defi ning the relevant data and its appropriateness to the different foci of 
attention. Defi ning the relevant data that is requested for each analysis,

  we certainly understand better today the functionalities each of us gives to the theoretical 
constructs she/he uses, how she/he uses them and what she/he is able to produce thanks to 
them; we also see better the limits of our respective tools and what could be offered by 
networking them in ways that would not destroy their internal coherence. (Kidron et al 
 2008 , p. 263) 

   In the detailed example of a specifi c case of networking that will be described in 
Chap.   10    , we illustrate diffi culties but also benefi ts that accompanied the effort of 
designing common activities towards the analysis which will permit the networking 
between a cognitive theoretical approach and a social approach.     
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    Chapter 10   
 A Cross-Methodology for the Networking 
of Theories: The General Epistemic Need 
(GEN) as a New Concept at the Boundary 
of Two Theories 

             Angelika     Bikner-Ahsbahs      and     Ivy     Kidron    

    Abstract     This example illustrates how research including the networking of two 
epistemic actions models from different theoretical perspectives is conducted and 
yields a new concept at the boundary of the two theoretical approaches. It illustrates 
a cross-methodology and the networking strategies described in the previous 
chapter of this part. The cross-methodology comprises fi ve cross-over stages that 
 systematically link the research process from the two perspectives in every methodi-
cal step and reveal an in-depth comprehension of the new concept from the two 
perspectives.  

  Keywords     Networking of theories   •   Interest-dense situations   •   Abstraction in 
 context   •   General epistemic need   •   Cross-methodology  

10.1       Introduction 

 In this chapter we present an excerpt from the project “Effective knowledge con-
struction in interest-dense situations” 1  to illustrate how a networking methodology 
led to enriching results (Kidron et al.  2010 ,  2011 ). From the beginning, the project 
aimed at the networking of two theories to gain insight into processes of 
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 constructing knowledge  which merge individual and social views and which are 
characterized by the term  epistemic . The two theories are Abstraction in Context 
(AiC) and the Theory of Interest-dense Situation (IDS), which both use similar 
epistemic actions models for analyzing processes of constructing knowledge, but 
which pursue different principles and methodologies. The project was conducted by 
a German research team, the IDS-team, and two Israeli research teams that we con-
sider as the AiC-team. The networking of the two epistemic actions models pro-
vided a fruitful constellation to disclose mechanisms of how the individual and 
social construction of knowledge can be merged. Referring to Radford’s ( 2008 ) 
theory concept (cf. chapter 9), this presentation will fi rst dwell on describing the 
main  principles , characteristics and some  methodological  aspects of the two theo-
ries specifi cally concerning the two epistemic models. Then the methodology that 
was used to network the two models will be outlined and illustrated by a concrete 
example of data analysis. 

10.1.1     Abstraction in Context 

 The theory of Abstraction in Context (Hershkowitz et al.  2001 ; Schwarz et al.  2009 ; 
Dreyfus and Kidron  2014 ) describes abstraction processes from an individual point 
of view and in a given context as a reorganization of existing knowledge. Abstraction 
processes are initiated by a need for a new construct, e.g., a need to fi nd a suitable 
function: this need directs an epistemic process. This epistemic process can be cap-
tured and investigated by an epistemic action model, which permits a micro analysis 
of the process of constructing a new construct. In the fi nal phase of abstraction, this 
new construct is consolidated. These processes of abstraction deeply depend on the 
context in which they arise.  Context  is everything that does not belong to an epis-
temic action, for example the learner’s biography, the task, the material available, 
the social context and also the social actions. New constructs are obtained through 
carrying out the three  nested epistemic actions  recognizing (R), building-with (B) 
and constructing (C) that shape the epistemic action model. These actions are men-
tal actions which contribute to gaining new insight. They can be observed while 
solving tasks through producing text, practical and communicative actions. 
 R ecognizing happens when a previous construct is activated as relevant for solving 
the problem at hand. Through  B uilding-with, these previous constructs are used to 
reach relevant insight by connecting the previous constructs in a relevant direction 
for solving the task.  C onstructing involves recognizing and building-with actions 
and yields new constructs. In the third phase, recognizing and building-with actions 
are also used to  C onsolidate (+C) the new constructs and to prepare new construct-
ing processes. These four actions together shape the epistemic actions model, to 
which the AiC-team briefl y refers by the abbreviation RBC + C-model. 
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 Methodologically, the AiC-team (cf. Dreyfus and Kidron  2014 ; Dreyfus, 
Hershkowitz, & Schwarz, Chap.   8     in this book) focuses mainly on cognitive aspects 
of epistemic processes while students solve mathematical tasks. A priori analyses 
reveal hypotheses about constructs that might be observed during the solving 
processes. A posteriori analyses investigate video data of these processes by the use 
of the epistemic action model as a methodical tool to disclose how the epistemic 
process within the specifi c context happens, how constructs appear or why they 
might not occur.  

10.1.2     The Theory of Interest-Dense Situations 

 This approach (Bikner-Ahsbahs  2003 ,  2005 ; Bikner-Ahsbahs and Halverscheid 
 2014 ) is based on an interpretive view of people interacting with each other with a 
focus on solving a mathematical task. This view entails that people understand 
other people through interpreting the other people’s actions. This interpretation 
is indicated by the subsequent reacting actions (Jungwirth  2003 ). Interpretation is 
the only way for researchers to access people’s meaning-making in empirical 
research analyses. However, in contrast to people’s interpretation in everyday-
situations, empirical analyses in interpretive research are methodically controlled 
re-interpretation of the participants’ interpretations (Jungwirth  2003 , cf. Part II and 
Part III in this book). 

 The theory of interest-dense situations focuses on the construction of knowledge 
as an epistemic process in social interactions which emerges when different people 
together solve a mathematics task. Interest-dense situations can be characterized 
through three features: the participating students become deeply involved in the social 
interactions of solving the problem, they further develop and further deepen the epis-
temic process, and value highly the mathematics they work on. In all interest- dense 
situations the students follow their own train of thought, and if a teacher is present he/
she focuses on following the students. The dynamics of the epistemic process of 
interest-dense situations can be described and investigated by an epistemic actions 
model (GCSt-model) which consists of three collective epistemic actions:  gathering  
mathematical meanings that is animated by the task,  connecting  mathematical mean-
ings by bringing these gathered meanings together to solve the task and  structure-
seeing , which means seeing patterns as a unity with a potential to concretize this 
pattern by many examples. Theoretically, a saturation of gathering and connecting 
meanings is necessary to make structure-seeing emerge. Theoretically this saturation 
can be observed in all interest-dense situations. Interest-dense situations are likely to 
initiate situational interest expressed by the students’ deep involvement in solving the 
task and indicating meaningfulness to the work at hand (Mitchell  1993 ). Every inter-
est-dense situation identifi ed so far leads to structure-seeing; but these structures need 
not necessarily be new, they also can be recognized in unfamiliar contexts.  
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10.1.3     General Description of the Cross-Methodology 
of Networking the Two Theories 

 The two approaches share a certain view on knowing and therefore the networking 
of the two theories could fruitfully be done. Knowing emerges when students elabo-
rate vague mathematical ideas within solving mathematical problems. This is done 
by  epistemic actions , i.e. actions which lead to constructing mathematical knowl-
edge. However, the two theories differ in what they call an epistemic action. AiC 
defi nes an epistemic action as a mental action that individuals pass through while 
solving a task: this action is a constituent for abstracting. Social interactions might 
be seen as a part of the context. In contrast, in IDS, epistemic actions are constituted 
within collective processes of social interactions while solving a task. Individuals 
contribute to these actions as they participate in these solving processes. Knowledge 
construction is constituted through negotiating mathematical meanings within 
social interaction. 

 This description of the different meanings of epistemic actions already shows 
the complementary nature of the two approaches in solving a task: AiC focuses on 
the individual’s construction of knowledge: social actions may contribute to this 
process; IDS focuses on the social construction of knowledge in social interac-
tions: the individual’s actions may contribute to this process. This complementary 
nature fi rst appeared as a diffi culty in the analyses but as soon as we became aware 
of this complementarity the two epistemic actions models turned out to become 
the motive to undertake a deep networking process on which the project “effective 
knowledge construction in interest-dense situations” was built. In this project 
three mathematical tasks were designed for pairs of students in grade 10 from 
Germany and Israel to investigate their epistemic processes. Already in this 
designing process the teams met diffi culties on how open the tasks should be. 
Besides other aims, more specifi c aims in this process were to fi nd out how the 
need for a new construct arises, what drives the students to proceed with solving 
the task even when the process is long, and what obstacles or constraints are met 
and how this is related to acting. 

 The methodologies which were developed can be distinguished into two 
 within- methodologies, which according to Radford’s ( 2008 ) notion of theories 
are specifi c for each of the two teams and their theories, and one between-
methodology through which the networking of the theories was conducted 
(cf. Mok and Clarke, Chap.   15    ). In Radford’s words: the between-methodology 
establishes a “semiospheric methodology” of connecting the theories involved 
(cf. Radford’s comments in Bikner-Ahsbahs et al.  2010 , p. 170; Radford  2008 ). 
It is a cross-methodology based on fi ve cross-over procedural stages which guide 
the networking strategy of  coordinating  (cf. Chap.   9    ) and may lead to the strategy 
of  local integration  (cf. Chap.   9    ). It will now be described, and later illustrated by 
an example. 

 The project pursued fi ve methodical steps: task development, piloting tasks, data 
collection and data processing, data analysis, and refl ection on the networking process. 
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Every step was conducted by a series of  fi ve cross-over stages  guiding the research 
towards common results:

•     deciding cooperatively  about what will be done, for example deciding about the 
part of the transcript to be analyzed;  

•    separate processing , for example analyzing separately;  
•    exchange of the results and working with alien results , for example exchanging 

the analysis results and commenting them;  
•    reworking home results , for example re-analyzing the part of the transcript, and  
•   fi nally a collaborative meeting aimed at  building consensus  about the work done.    

 These cross-over stages are based on the networking assumption of respecting 
the theories’ identities, but also allow to stepwise link the results leading to their 
possible local integration. Since qualitative research must respect the quality criteria 
of content sensitivity these fi ve stages were adapted to the methodical steps of the 
project. Sometimes cyclic processes of exchange and separate re-working processes 
were repeated several times before the next stage could be reached. Not only the 
between-methodology was further developed; each research group also developed 
their methods and techniques as part of their within-methodology further. 

 In order to make the networking methodology, and its benefi ts and diffi culties, 
explicit, every networking project is fi nalized by common refl ections on the meth-
odology and the results gained.   

10.2     An Illustrative Example: 
Investigating the General Epistemic Need 

 On the basis of data from the pilot study, we investigated in more detail the need for 
a new construct connecting it to situational interest. In some cases, the need for a 
new construct could not exactly be identifi ed as predicted. In the paper by Kidron 
et al. ( 2010 ) an epistemic need that is more general than the need for a new con-
struct, the General Epistemic Need (GEN), is described as

  a need to progress, to reinforce a vague image into a more defi nite one. Hence, it [this action] 
is a constructing action according to Davydov’s [ 1972 /1990] view of abstraction: the transition 
from an initial vague to a more precise notion (of infi nite process and of limit). (p. 175) 

   It seems to be initiated by the features of the situation, and can be described as 
the students’ need to proceed in an epistemic process looking for ideas to solve a 
task. It is expressed by individuals but can also be shared as a driving force for 
 coming to know in social interaction. It can become more specifi c, for example as a 
need to be more precise, shown by the students’ actions to make things more  precise, 
and, thus, can be observed. 

 The GEN, as it emerged in the study by (Kidron et al.  2010 ), was described as 
the driving force that makes students progress in learning processes according to 
the challenge they meet within a situation, individually and socially. Later, Kidron 
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et al. ( 2011 ) offered a fi rst discussion how a GEN leads to a need for a new  construct. 
The analyses in the present paper portray a revised version of those in Kidron et al. 
( 2011 ) with a focus on cross-methodology. We describe the subsequent cross- 
analysis on the concept of GEN as part of this methodology. The analyses aimed at 
further investigating the GEN and checking whether our hypotheses about its 
 relevance for epistemic processes could be confi rmed. 

10.2.1     The Task and Its Setting 

 In an interview situation, the two grade-10 students, T and M, work on a continued 
fraction task (Fig.  10.1 ). Due to the criteria of IDS, the interviewer’s role is not to 
guide and intervene but to support the students only when they get stuck, with weak 

How can we interpret the continued fraction?

1. Construct a sequence of fractions representing the continued fraction, like 

this: 
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=
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2. Add 3 more terms: Calculate: ( )4f , ( )5f , ( )6f
3. Look at the seven terms you calculated and at the way you calculated them. 

Can you find a pattern when passing from one term to the next one?
4. Explain the pattern - why does it work?
5. Add more terms to the sequence, using the pattern you found, until you have 

20 terms in the sequence. Fill in the following table. Use a calculator to 
represent the fractions of the sequence as decimal fractions. Copy all the digits 
from the calculator pane.

6. Look at the sequence in the table and write a conjecture.
7. Write your conjecture from 6. by means of x. Now justify your conjecture. 
8. How does this justify the conjecture in 6? 

1+
1+

1+
1+

2
2
2

  Fig. 10.1    The continuous fraction task (cf. Kidron et al.  2011 , p. 2452)       
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hints just to help the students continue and fi nd their own line of thought. In the task, 
the students were asked to calculate the fi rst seven fraction; and fi nd an expression 
 f ( x ) for the  x th fraction, beginning with  f (0) = 1.

   A table was prepared for the fi rst 20 fractions to be written as simple frac-
tions and decimal numbers (Table  10.1 ) . f(0), f(1), f(2)  already were included in 
the table (Table  10.1 ). Based on these preparation tasks, the students were asked 
to fi nd  patterns, make conjectures, and explain why these conjectures are true 
(Fig.  10.1 ).

    We now illustrate the cross-analysis as part of the cross-methodology.  

10.2.2     Beginning a Cross-Analysis 

 Our cross-analysis used the video and the transcript of T’s and M’s epistemic 
process as they worked on the task described above. The fi rst  crossing stage  
referred to the  common decision  on a piece of data. The IDS-team normally 
analyzes the whole transcript from the beginning in a sequential way, whereas 
the AiC- team prefers to concentrate on specifi c parts of the process of construct-
ing of knowledge, especially on actions that indicate the central stage of the 
emergence of a new construct. In the situation to be presented, the decision was 
made to focus on utterances 1333 up to 1512 of the transcript (available from 
the researchers). 

 In order to share the same data base, the AiC team also looked at the whole tran-
script up to line 1333 in detail but still focused more on the chosen part. As a fi rst 
step both teams undertook separate analyses of the lines before they exchanged and 
re-analyzed them, and fi nally discussed the results. In the utterances 719–1353 the 
students had investigated the decimal fractions and observed a mathematical pattern 
about the growth of the numbers of ninths/zeros after the decimal comma, which 
they called “space of place” as represented in Fig.  10.2 . 

 What was important is the fact that this term resulted from the need to share 
interpretations, since it was very complicated to always describe what was meant 
when referring to this pattern. This need also seemed to result from a view on the 
pattern that was neither coherent nor consistent, varying between two interpreta-

Translation of the text:
The number of zeros/ninths after
the comma are in a specific
Space of Places the same. If
one turns from one to the next
Space of Places the number of
ninths/zeros increases by one
nine/zero.

  Fig. 10.2    The students’ defi nition of the space of places       
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    Table 10.1    Representing  f (x) as simple fractions and decimal fractions by the students       
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tions of the space of places “as an interval on the  x -axis, which numbers the  elements, 
specifi cally the interval in which the number of nines/zeros remains the same” 
(Kidron et al.  2011 , p. 2453); and as a “part of the decimal expansion of  f ( x ), specifi -
cally the part containing the nines (or zeros)” (ibid.). Despite its fuzzy meaning, this 
term helped the students to communicate. The AiC team indicated the space of 
places as a seed for a later constructing process and identifi ed evidence for this 
interpretation in the students’ double interpretation that “reinforces our interpreta-
tion of the SP [Space of Places] as a seed for later constructing, as something that is 
not precise and needs to be elaborated” (ibid., p. 2453).  

10.2.3     Separate Analysis from the AiC-View 

 The cross-over stage of  separate processing  in this section is described by the use 
of the analysis of the AiC-team that has already been published (Kidron et al.  2011 , 
see pp. 2453–2455). 

 As mentioned earlier, the AiC researchers observed some phenomenological 
identifi cation of patterns. These patterns were regarded as seeds for constructing 
actions that take place later. By  phenomenological  the AiC researchers refer to the 
fact that the elements of the sequence are viewed as strings of digits rather than as 
numbers. In this fi rst phase, the researchers noticed some indication for need in the 
efforts of the students to clarify the notion of Space of Places (SP) and to assign it a 
name. Expressing the same result, the same idea of SP in different ways was a clear 
indication for a GEN. The AiC researchers observed one specifi c aspect of the 
GEN: “the need to understand the present situation in terms of the previous knowl-
edge or previous experience, to engage with the challenges offered by the task” 
(Kidron et al.  2011 , p. 2453). Then, they noted how this need and the limitation of 
the previous knowledge (especially, when the previous knowledge was adequate to 
empirical computations while the strings of digits were explicitly written and 
observed) led to another specifi c aspect of the GEN: “The need to be more general” 
and “The need to clarify” (ibid.). The essential point was that these specifi c aspects 
of the GEN led to the emergence of the need for a new construct. This need appears 
in the next phase, in which the researchers observed a striking change in the students’ 
way of thinking: they start giving reasons rather than only phenomenological 
descriptions. This change might be interpreted as a consequence of the interviewer’s 
initiative of asking questions concerning the SP for f(1000) and f(1000000).

  The students express their need to understand the new situation in terms of their previous 
empirical experience, and express their thinking that they need to do all the 1000 computa-
tions [….] The limitation that results (‘we cannot do all the 1,000 computations’) leads to the 
‘ need to be more general ’ and to apply their patterns in a more general way. (ibid., p. 2453) 

   In response to the next initiative of the interviewer “How would it work and go 
on?” (line 1424) the students again experience a limitation in their previous experi-
ence which “leads them to the need to think in a more general way. This need 
directed the students towards the beginning of a constructing phase in which infi nity 
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plays a role.” (ibid., p. 2454). The AiC researchers paid attention to the important 
role of the interviewer, but at the same time to the fact that the notion of infi nity was 
expressed on the students’ initiative. “The students express a need to understand the 
meaning of ‘infi nite[ly many] zeros,’ […] ‘and infi nite[ly many] nines’ ” (ibid., 
p. 2454) and at the same time the meaning of keeping “closer to zero,” “to two” (line 
1427). As a consequence, the researchers observe four constructing actions that 
relate to convergence. 
 A fi rst constructing action, C 0 :  “Convergence as very close to.”  appears in

   1418. T    Yes ,so it is very close to two already   

   and is clearer in

   1427. T     and it keeps on leaning closer to zero- ,closer to two, both numbers   

   Then, we observe the construct C 1 :  the Potential Infi nite process view  in 1427 above 
but also later in

   1473. T     If one looks at it precisely ,it never reaches two ,even if there are infi nite 
nines ,after it there always comes ,seven three two ,whatever. ,can be 
anything (.) ,the following numbers ,we have not even looked at them yet 
,could be that they have a pattern too ,but ,I don’t- ,personally I don’t see 
anything there (M laughs).   

   Immediately follows C 2 :  Infi nite as “a façon de parler: very, very large but fi nite ” 
and C 3 ,  the strange infi nite object is legitimate only in the mathematical world , for 
example in

   1437. T    If- ,if you insert infi nity, it theoretically equals two   
  1457. T    Yes ,otherwise we just write f of infi nity equals two   

   The students wrote “f(∞) = 2” on their worksheet. This led to another aspect of 
C 3 :  Transition from infi nite as potential infi nite, as “a façon de parler” to infi nite as 
a legitimate object in the mathematical world.  

 Constructions C 1 , C 2 , C 3  as observed in the AiC a posteriori analysis are in accord 
with its a priori analysis of the knowledge elements intended by the design. The AiC 
a priori analysis in the present study also identifi ed different stages, from the intui-
tive notion of limit as a process to a conception of limit as an object that could partly 
be observed in the data. 

 C 1 , C 2 , C 3  develop in parallel for a long time from 1425 to 1473. “At the same 
time when the potential infi nite process view is expressed the student also identifi ed 
an expression of the kind: let us manipulate the infi nite as a legitimate object as we 
have done previously for large but fi nite numbers. This experience seemed too com-
plex to have so different (and somewhat contradictory) constructions in parallel. 
Therefore, the research team inferred that this situation leads to a feeling of unease, 
of confusion which is expressed in  

 1473. T    If one looks at it precisely ,it never reaches two ,even if there are infi nite 
nines ,after it there always comes ,seven three two ,whatever. ,can be 
anything (.) ,the following numbers ,we have not even looked at them 
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yet ,could be that they have a pattern too ,but ,I don’t- ,personally I don’t 
see anything there.   

   A need for a new construct is then expressed in

   1478. T    The best would be of course if we had a functional equation right’ (.) ,thus 
if one could say exactly ,f of x exquals (...)   

   The AiC researchers consider this need as a consequence of the limitations of the 
students’ previous experience—they are no longer able to use what they know from 
the fi nite case. Therefore, a need for a new view is expressed. This need leads to the 
construction C 4 :  Transition from a numerical way of thinking (with empirical results 
calculated by the students) to a more general way of thinking (which does not 
depend on specifi c cases) . “A new construct is needed to permit this transition. The 
need for this new construct is explicitly expressed in 1478.” (ibid., p. 2455) 

 During this search, the students continue their “new” (since 1354) approach of 
giving reasons rather than only describing phenomena. This new approach, in which 
the students explain their way of thinking, demonstrates the passage from the seeds 
of constructing to the beginning of the construction process.  

10.2.4     A Re-Analysis from the IDS-View and Its Results 

 The cross-over stage of  reworking home results  is now portrayed by summarizing 
the re-analyses of the IDS-team as has already partly been published by Kidron 
et al. ( 2011 , see pp. 2455–2458). The IDS-team reconstructed what they call the 
 fl ow of mathematical ideas  that produces mathematical knowledge. This  fl ow of 
ideas  is regarded as a

  horizontal scanning of the mathematical [neighbouring, incl. by the authors] aspects of a 
problem expressed in the utterances towards oneself and the other in order to describe, 
concretize, understand, progress, …, but also to inform the other, to take up her idea and 
develop it further, negotiate, explain, … It is an evolution of ideas associated with a given 
mathematical problem, building on previous experiences. (Kidron et al.  2011 , p. 2455; cf. 
notion of travel of ideas by Saxe et al.  2009 ) 

   It is built by the epistemic actions of  gathering  and  connecting mathematical 
meanings, and structure-seeing.  IDS analyses of the epistemic process in the 
 episode resulted in the diagram of Fig   .  10.3  with six idealized phases represented by 
pictographs (cf. Bikner-Ahsbahs  2006 ). Every phase is initiated by the interviewer 
(represented by the arrows). Phase I mainly involves gathering actions, in phase II, 
III and VI gathering and connecting actions are merged. In phase IV and V, structure- 
seeing occurred, followed by making the structures concrete and validating them 
(the meaning of the symbols are described in Bikner-Ahsbahs  2006 , cf. Chapter   6    ).

   The analyses below start with line 1397 in phase III (1397–1423) of the  transcript. 
We illustrate three different kinds of fl ow of ideas which are concerned with approx-
imating the number 2 by the continuous fractions, how this fl ow is driven by a GEN, 
and how the GEN is transformed into more specifi c epistemic needs, and fi nally into 
the need for a new construct (which is a concept coming from AiC). 
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  A fl ow of ideas may prepare structure seeing : This fl ow refers to what the digits 
of  f ( x ) for  x  = 1000000 may look like. Beforehand, the students had emphasized the 
power law for the length of the Space of Places (SP) was a conjecture which only 
may offer estimations. Now they include it as a means for further investigation.

   1397. I    And ,f of ,one million’   
  1398. T    Ohm   
  1399. M    (sighs) F of one million   
  1400. /T    we would have to cal- calculate now ,what’s the root of one million ,and 

then round it down   
  1401. /M    what kind of’   
  1402. I    You- ,you really don’t need to do it accurate now now   
  1403. /M    no ,now we are doing it (laughs)   
  1404. /I    (spoken simultaneously) ok.   
  1405. M    Thousand   
  1406. /T    (spoken simultaneously) is thousand ,so exact thousand the set ,of the 

space of places   
  1407. I    Hmmh   
  1408. T    So th-   
  1409. I    And how would f of one million and one look like’   
  1410. T    Ohm that would still be a spa- ,that is just the set of the space of places   
  1411. /M    so one (looks at the calculator) ,ah never mind   
  1412. /T    we just can’t the- ,still thousand ,until ,one thousand and one results   
  1413. /M    But what we do know in any case is ,that eeh there is a one before the 

decimal point ,well not for one thousand and one ,for thou- for one-   
  1414. /T    No ,for one thousand and one there is a one in front of the decimal 

point ,well no wait yes ,a two   
  1415. /M    That’s an odd number ,yes   

  Fig. 10.3    Phase diagram of the analyzed scene (1333–1512). (Kidron et al.  2011 , p. 2455). The 
diagram in Fig.  10.3  consists of pictographs, phase I (the points indicate gathering meanings): 
1333–1353, phase II (the sign of the open rectangle indicate connecting meanings, the included 
points gathering meaning): 1354–1401, phase III (this pictograph begins with a kind of the letter S 
for seeing a structure which e.g. is made concrete or checked by gathering and worked out or 
justifi ed by connecting actions): 1402–1423, phase IV: 1424–1454, phase V: 1455–1466, phase VI: 
1468–1512 (cf. Kidron et al.  2011 , p. 2455)       
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  1416. T    Two point, ,zero zero zero zero zero   
  1417. /M    Yes because it’s an odd eeh ,place   
  1418. /T    Yes ,so it’s very close to two already   
  1419. /M    yes   
  1420. /T    Those are then about a hundred zero or so (laughs) ,and then comes 

some ,different number   

   T expresses the need to apply the power law to  f (1000000) (line 1400) but 
 f (1000000) cannot be computed. The interviewer seems to fear the students are on 
the wrong track and allows them to be less accurate. However, M expresses his 
interest to go on (1403). We take his utterance as evidence that he does not want 
the fl ow of ideas to be disturbed, and therefore as an expression of the GEN to 
proceed. He calculates the root of one million (1405) as an application of the 
power law but still the string of  f (1000000) remains vague. This vagueness causes 
a need for certitude as M assures what is certainly known, the “one before the 
decimal point” (1413). This need for certitude is shared by T since he immedi-
ately  corrects the utterance of his peer by indicating the reason that this is an odd 
number (1414), which convinces M (1415). Concerning the fl ow of ideas, an 
interesting instance happens now. T illustrates the string of digits (1416) as 
 2.00000 , hence, connects the digit 2 with the idea of the Space of Places as a 
string of zeros. Comparing this with the number 2 it is only a tiny step to see a fi rst 
structure of  2 as a limit number  (1418). This is expressed by “very close to two 
already” (1418, 1419) and strengthened by speculating that there are 100 zeros 
and then different digits (1420). 

 This  fl ow of ideas  can be described by scanning (that is gathering) ideas about 
how the decimal number  f (1000000) might look including actions of connecting 
and structure seeing. It produced the idea of approximation to 2 that is then elabo-
rated by another fl ow of ideas initiated by the interviewer by asking “and how would 
it work then” (1424). This fl ow leads to structure-seeing. 

  A fl ow of ideas may allow structure seeing:  This fl ow is just listed as steps and 
interpreted according to the theoretical frame (cf. Kidron et al.  2011 , p. 2456):

    1.    s tructure seeing : “it keeps on going” (1425) (seed for infi nite as a process),   
   2.    concretizing this structure: “an infi nite number” (1426) (length of the decimal number),   
   3.    structure-seeing: “leaning … closer to two, both numbers” (1427), (because of 

the leaning-key-idea of approximation, grasping the convergence to 2, and 
 referring to both numbers that converge from both sides),   

   4.    connecting two structures from 1. and 3.: “but no never becomes 2” (1429) 
(sequential process of potential infi nity),   

   5.    concretizing by connecting: “there are always infi nite zeros” (1429) (the value of 
the digits connected to the process directs the view to the actual infi nite),   

   6.    inferring from 5. “it’s infi nite that’s just it” (1430) (the length of the decimal 
number),   

   7.    Connecting: “at the end there are infi nite zeros, or infi nite nines, and there is 
something” (1431) (the image of the infi nite length here is rooted in the experi-
ence of the fi nite).    
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   A fl ow of ideas may result in dispersing views : Whereas before, the fl ow of ideas 
was concerned with the infi nite length of the decimal numbers and the convergence 
to the number 2, the students now take infi nite as an actual value of  x  writing  f (∞). 
This cannot be computed, therefore, the students argue hypothetically: if “we insert 
infi nity” (T, 1435), “will always be the same” (M, 1436), “if you insert infi nity ,it 
theoretically equals two” (T, 1437), “then it would be two” (M, 1438). “one point 
nine period” (M, 1440), “equals two then” (M, 1442), “equals about two” T, 1443), 
“equals two” (M, 1444), “so close- ,ah ok” (T, 1445). (cf. Kidron et al.  2011 , 
p. 2457) 

 In the hypothetical argumentation, the fl ow of ideas leads to dispersing individ-
ual views. T imagines potential infi nity (1437, 1443, 1445) whereas M talks about 
actual infi nity (1434, 1442, 1444). Since these views are incompatible, they cannot 
be merged. A need for certitude makes them refer to what the teacher has told them. 
M recognizes an argumentation for 1.9999… =2 given by their teacher as relevant, 
which they both recall by the manipulations as they have learnt it in school. The 
fi nal structure about the convergence to 2 has been written as represented in Fig.  10.4 .

    The GEN can be transformed into more specifi c epistemic needs:  The fl ow of 
ideas can lead to the experience of limitations, for example when the students 
reach a point where they do not have the tools to continue solving the problem or 
when different forms of understanding cannot be overcome. Limitations do not 
necessarily force the students to give up; they can be a source for transforming the 
GEN into a more specifi c epistemic need which often is expressed by fulfi lling this 
need. This was shown in several ways (cf. Kidron et al.  2011 , p. 2457 ff.), for 
example by  changing the conditions  as a reaction on the need to progress which 
cannot be  fulfi lled or by g oing back to a clear situation  as a reaction to the need 
for certitude. 

 Although the IDS principles were different from the AiC principles the IDS team 
has gained results that validated those of the other team:

•     Taking a more general view  is a reaction initiated by a need to be more general. 
This need occurred after the students experienced limitations like “one can’t say 
anything else” (in 1359) about 1000 and 1001. The need for being more general 
was expressed by a reference to their power law “wait we have our theory” 
(1360) which made them change their view.  

Translation of the text:
The distinction to 2 becomes
smaller and smaller when y
grows. If one increases the
value of x until infinite one will
minimize also the distinction. It
goes to zero. Thus, the
distinction at f(∞) equals zero.

  Fig. 10.4    The students’ justifi cation that the continuous fraction converges to 2       
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•    Finally the students expressed the need for a new construct (NNC)  in 1478 as a 
need for a function, T: “   It would be the best if we had a function equation right’ 
(.) ,well if one could say exactly ,f of x equals (…) ,wait ,what’s that’ (points at 
the sheet) ,no ,that’s not a sum (not understandable)” (1478); /M: “but we had- 
,oh well a function equation (holds his head) ,we do have a func-” (1479); /T: 
“yes ,we only have a function equation ,depending ,on the previous number 
value” (1480). This need seems to be a reaction of a deep personal irritation 
when the GEN drives the students to proceed but they do not at all know how to 
go on: “personally I don’t see anything there” (1473).    

  Situational interest may empower the students’ to act epistemically:  In 1468 T 
values the demand to justify their conjecture as being “more diffi cult”. In 1469 the 
interviewer acknowledges “I fi nd your last aspect just now most interesting”. This 
kind of valuing infl uences the students to confi rm: “Yes ,that’s really is interesting 
how-” (1470). T adds what is interesting: “yes ,so theoretically it keeps on  leaning 
closer  to  two” (1471). It is the kind of approximation that is most interesting. The 
attempt to justify this approximation results in the experience of diffi culties for the 
students, which in turn provokes T to express a need for a new construct “it would 
be best if we had a function equation…” (1478) which he values highly contrasting 
it with the reason why the expression they have is insuffi cient. This need is socially 
shared because both students agree upon fulfi lling it together: “right’,shall we try to 
discover something like that ,cause that would be” (1485), “one that depends on x 
right’ ” (1486), “Yes ,so f of” (1487). This shows “deep involvement, accompanied 
by meaningfulness and ending up with valuing highly what the students do not yet 
have[:] expressing a  need for a new construct (NNC)  driven by situational interest” 
(Kidron et al.  2011 , p. 2459).   

10.3     Methodological Refl ections 
About the Networking Process 

 The concept of GEN emerged when the AiC team tried to identify the need for a new 
construct but could not fi nd it. This diffi culty was overcome by learning from the 
IDS team that there might be a more general epistemic need that drives the epistemic 
process. At the same time, the IDS team had diffi culty identifying situational interest 
and learned from the AiC team that it may be a driving force with roots in epistemic 
needs. Both teams agreed upon the relevance of the general epistemic need for epis-
temic processes, but sometimes this GEN remained implicit. This diffi culty was 
solved by postulating its existence, and starting to investigate it; thus, both analyses 
disclosed evidence for the relevance of the concept. For the AiC team, with the the-
ory based on Davydov’s ( 1972 ) ideas it was clear that the constructing process starts 
from vague and undeveloped ideas towards more defi nite ones which might be elab-
orated as new constructs. But, with the notion of GEN, the AiC team was able to 
consider seeds as the starting points of constructing processes in which the GEN 
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sometimes is transformed into the NNC. This may happen when the students meet 
limitations in solving a problem which are experienced as personally disturbing. 

 The IDS team also investigated the role of the GEN ,  but it was focused on the 
role it plays in the support of situational interest. It turned out that the GEN and the 
situational interest mutually inform each other and, hence, together are driving 
forces for epistemic processes. The results described above were considered as 
 evidence that the GEN can turn into more specifi c needs which are fulfi lled by epis-
temic actions, for example to make things more precise if the need to be more pre-
cise is experienced or to argue hypothetically if there is a need to proceed but the 
mathematical objects cannot be computed. A GEN becoming more specifi c  supports 
overcoming the experience of a gap of knowing: given this overcoming is success-
ful, the experience of competence may enhance situational interest, which in turn 
may support the GEN and fi nally lead to the need for a new construct. 

 The collective and the individual process of constructing knowledge is linked by 
the fl ow of ideas as a process of social construction of knowledge that provides a 
source for individual constructions of knowledge which in turn contributes to the 
fl ow of ideas. While solving a problem, a GEN may drive a fl ow of ideas providing 
material for an individual  recognizing  an idea as a relevant previous construct which 
may be further elaborated within social interaction; collectively  connecting  ideas 
may provide the bases for individual  building-with  actions and leading to  seeing  a 
 structure  within social interactions or individually  constructing  a new construct. 

 The described cross-methodology afforded to employ networking strategies 
(see Chap.   9    ), i.e. to  understand  the other theory and  make  one’s own  understand-
able  through offering analyses of the same transcript.  Comparing  and  contrasting  
also took place, but implicitly. It became more explicit when the groups met diffi -
culties in the analyses of the transcripts. Through the fi ve cross-over stages in the 
between- methodology, it was possible to  coordinate  the networking process, and 
led to a new kind of concept of which both theories could make sense. This concept 
of GEN at the theories’ boundary was then  locally integrated  into both approaches. 
Hence, the networking of the two theories involved all the networking strategies 
except synthesizing. However, what is also important is the fact that the two teams 
learned from each other, and in this way deepened their within-analyses, hence, 
according to Radford ( 2008 ), they improved their theoretical approaches.      

    Transcription Key 

 S(s), T  student(s), teacher 
 EXECT  loud voice 
  exect   with stressed voice 
 e-x-a-c-t  prolonged 
 exact.  dropping the voice 
 exact´  raising the voice 

(continued)

A. Bikner-Ahsbahs and I. Kidron

http://dx.doi.org/10.1007/978-94-017-9181-6_9


249

 ,exact  with a new onset 
 exact-  voice remains suspended 
 (.),(..)(…)  1, 2, 3 s pause 
 (....)  more than 3 s pause 
 (5 s)  5 s pause, if necessary 
 (gets up)  nonverbal activity, the duration of non 

verbal activity need not be fi xed unless 
it is special, a pause of 2 s afterwards 
(..), interpreted ( slow ) 

 (exact??)  assumed utterance 
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    Chapter 11   
 Understanding Learning Across Lessons 
in Classroom Communities: A Multi-leveled 
Analytic Approach 

             Geoffrey     B.     Saxe     ,     Kenton     de     Kirby     ,     Marie     Le     ,     Yasmin     Sitabkhan     , 
and     Bona     Kang    

    Abstract     This chapter presents a  methodology   for studying classroom communities 
as microcultures, with a focus on processes of teaching and learning over signifi -
cant spans of time. In Sect. 11.1, we present a conceptual  framework   that treats 
classroom activity at two levels of analysis,  collective   and individual. Both levels 
are geared for understanding the reproduction and alteration of a  common ground   
of talk and action through time. Key concerns are the emergence of collective 
norms and individuals’ use of representational  forms   to serve varied functions 
in classroom communicative and problem solving activity. In Sect. 11.2, we show 
how the conceptual framework was used to organize two related programs of 
empirical research. First, we present  design research   that led to a 19-lesson 
sequence on  integers   and  fractions  , which uses the  number line   as a central repre-
sentational form. Second, we use the framework to organize an empirical analysis 
of a single classroom community over the 19-lesson sequence. We illustrate empirical 
 techniques   for capturing the reproduction and alteration of a common ground 
with shifting lesson topics. The chapter concludes with an analysis of the way the 
analytic approach illuminates core processes of teaching and learning and the utility 
of the approach for future work.  
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     Our purpose in this chapter is to present a  methodology   that can advance our under-
standing of the dynamics of teaching and learning in classrooms. Our methodologi-
cal goals are unusual but important—to develop productive ways of analyzing 
classroom communities as microcultures, and then to develop techniques to study 
processes of teaching and learning over signifi cant spans of time (across lessons). We 
regard the cross-lesson cultural focus as under studied and under theorized, and, in 
this regard, our chapter is intended to support new conceptual and empirical efforts. 1  

 In our methodological treatment, we distinguish between a conceptual  framework   
and empirical  techniques  , both elements of a general  methodology  . We take a con-
ceptual framework to be a working theory that elevates some phenomena as central 
while backgrounding others. Empirical techniques, on the other hand, provide ways 
of generating data relevant to a working theory, allowing researchers to explore 
conjectures, tease apart rival hypotheses, and refi ne theories. 

 The chapter is organized in two sections. In Sect.  11.1 , we describe our concep-
tual  framework   for a cross-lesson treatment of classroom communities. We argue 
that a cross-lesson treatment requires two mutually constitutive levels of analysis: 
One level focuses on  collective   (or joint) activity, and the other on individual activ-
ity. We introduce these two levels in the analysis of excerpts from a fourth grade 
classroom that participated in our  design research   project, Learning Mathematics 
through Representations ( LMR  ). We show how these two levels of analysis illumi-
nate the dynamics entailed in teaching and learning as lessons progress. 

 In Sect.  11.2 , we illustrate two sets of empirical  techniques   for the cross-lesson 
study of classrooms, each guided by our conceptual  framework  . The fi rst set was 
used as a part of  design research   that led to a strong 19-lesson sequence particularly 
well suited for our cross-lesson analysis. We used a second set of empirical tech-
niques to analyze a single classroom community and its implementation of the 
designed sequence across the 19 lessons. 

11.1              A Conceptual  Framework   for Analyzing the Generation 
of  Common Ground   

 We consider two mutually constitutive levels of analysis in the conceptual 
 framework   that we elaborate:  collective   and individual. At the collective activity 
level, our treatment builds on several core and related ideas concerning communi-
cation. A central idea is that in communications with one another people do not 
have direct access to one another’s intended meanings. Hence individuals face  coor-
dination problem  s (   Lewis  1969 ) in joint activity—the challenge of interpreting the 

1   There are notable exceptions that do incorporate cross-lesson perspectives. One example is Paul 
Cobb, Kay McClain, and Koeno Gravemeijer’s  on statistical reasoning about data in the middle 
school grades (Cobb  1999 ; McClain et al.  2000 ). The project is the focus of a special issue of  The 
Journal of the Learning Sciences.  Anna Sfard and Kay McClain served as Editors of the special 
issue (Sfard and McClain  2002 ), and convergent analyses produced from a range of methodological 
perspectives (Cobb  2002 ; Forman and Ansell  2002 ; Macbeth  2002 ; McClain  2002 ; Saxe  2002 ; 
Schliemann  2002 ; Sfard  2002 ). 
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communicative displays of others in talk, text, or action. To address the communicative 
challenge, interlocutors behave cooperatively: They tailor their displays to their 
audience and assume that others are doing the same, as they make inferences and 
presuppositions about the other’s intents (Grice  1989 ). The result of such exchanges 
is often an appearance of shared meanings in collective activity, but in fact, these 
meanings can only be “taken as shared” (whether the presupposed meanings are 
accurate or not) because individuals can never know one another’s minds in any 
direct sense (Bauersfeld  1994 ,  1995 ; Cobb et al.  1992 ; von Glasersfeld  1984 ,  1987 ). 

 In our exposition of the individual activity level, we build upon a second line of 
scholarly tradition that treats cognition as a dynamic process, requiring a genetic 
method for its study and analysis. The genetic method is well represented in Piaget’s 
treatment of the equilibration of cognitive structures (Piaget  1970 ,  1977 ), Vygotsky’s 
treatment of mediation and the development of higher cognitive  functions   (Vygotsky 
 1978 ,  1986 ), and Werner’s treatment of symbol formation and his orthogenetic principle 
(Langer  1970 ; Werner  1948 ; Werner and Kaplan  1963 ). Though emphases and con-
structs differ across these scholars, all share a concern with understanding individu-
als’ progressive differentiation and integration of knowledge and activity. 

 Most centrally, we use a recent framework that coordinates an analysis of  collective   
activity and individual development over signifi cant spans of time. The framework was 
developed through an analysis of a remote Papua New Guinea cultural group with a 
focus on a 60-year span of local history studying the cultural development of mathe-
matical ideas (Saxe  2012 ). In the New Guinea work, the focus was on the emergence 
of  forms   of mathematical representations and their shifting functions through historical 
time as local people (the Oksapmin) engaged with shifting collective problems of daily 
life. In the present work, we draw on Saxe’s framework on the cultural development of 
mathematical ideas, adapting it to an analysis of classrooms, which we treat as micro-
cultural communities engaged with shifting collective problems. 

11.1.1     Core Constructs 

 In our conceptual  framework   specialized for the study of classroom communities, 
we use the term  common ground   (a term borrowed from Clark  1996 ) to index our 
focus on a taken-as-shared public discourse (Sfard  2008 ). We take the production of 
common ground to occur at both  collective   and individual  level  s. Figure  11.1  shows 
the constructs we use at each level.

   At the  collective   level, we take  common ground   to be the production of taken-as- 
shared norms (Yackel and Cobb  1996 ) that support the coordinated actions of 
 participants in joint activity (Fig.  11.1 , left branch). 2  These include norms for par-
ticipation, like norms for turn-taking or contributing to a classroom discussion. 
They also include  sociomathematical norms   for mathematical argumentation and 
justifi cation that may emerge in particular communities. 

2   We take for granted that norms have no stable existence beyond the participation of individual 
actors. However, as a heuristic, we consider norms as a collective  level construct. 
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 At the individual  level  , we focus on the cognitive work of individual actors. Here, 
we take  common ground   to be generated as individuals produce and interpret displays 
of mathematical thinking, making use of representational  forms   (linguistic, graphical, 
gestural) to serve communicative and problem solving functions (Fig.  11.1 , right 
branch). As individuals solve problems in their public displays, their actions contribute 
to the common ground of the classroom community. To understand this cognitive work 
and its history in classroom communities requires analyses of the  microgenesis  ,  socio-
genesis  , and  ontogenesis   of relations between representational forms and the functions 
that those forms serve, a focus that we will elaborate in subsequent sections. 

 When analyzed as a “snapshot” of a classroom community,  common ground   may 
appear fi xed at both  collective   and individual  level  s. But we fi nd problematic an approach 
that objectifi es common ground as a state rather than a process. Norms have no objective 
status. They are descriptions of community expectations that are exhibited through 
patterns of behavior. Far from static, these patterns and expectations are continually 
reproduced and altered in the fl ow of activity. Similarly, at the individual level the  func-
tions   of representational forms may appear fi xed and stable over time, but we note 
that forms have no inherent functions; representational forms take on functions only in 
activity. Furthermore, multiple forms can be used to serve the same function, and a 
single form can be used to serve multiple functions. So, at both collective and individual 
levels, common ground is a moving target, and we refer throughout the chapter to 
common ground as being reproduced and altered in activity, an expression that captures 
its dynamism and emergent properties. It also motivates a cross-lesson perspective 
on common ground—processes of  reproduction and alteration as lesson topics shift.  

11.1.2     The Reproduction and Alteration of a  Common 
Ground  : An Illustrative Exchange 

 To illustrate the framework, we draw on an observation in a fourth grade classroom 
engaged with an  LMR   lesson on  integers  . In this episode, we note that students are 
able to communicate with one another successfully so that learning is seemingly 

  Fig. 11.1    Common ground 
at  collective   and individual 
 level  s of analysis       
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achieved, despite some threats to communication like the expression of confl icting 
ideas, elliptical references to mathematical defi nitions, and use of negative integers 
(numbers that have no material embodiments). The example provides a particularly 
clear illustration of the way individuals draw upon and contribute to a  common 
ground   of talk and action. 

 In this episode, the class is engaged with a challenging mathematical problem, 
depicted in Fig.  11.2a : Place −1,000 and −1,001 on a  number line   for which only 0 
and 1,000 are marked. The class has solved the problem by placing both −1,000 and 
−1,001 on the white board as depicted in Fig.  11.2b .

   Now, Ms. R elaborates the problem by placing an unlabeled tick mark at the 
position of −2,000, asking what the value is (see Fig.  11.3a ). Carol, a student who 
is already at the board, refl ects, subtly making a counting motion with her hand to 
the unlabeled tick mark (translating the −1,000 to −1,001  interval      to the unlabeled 
tick mark); she then reports that the tick mark should be −1,006 or −1,007 as indi-
cated in Fig.  11.3b . Although there are some elements of Carol’s solution that 
appear to respect canons of the  number line   (e.g., respecting the  order      of numbers 
on the line), Carol’s solution is a curious one. It is unclear whether Ms. R or the 
class has insight into Carol’s rationale, threatening breakdown of communication 
between Carol and the class. Now there is confl ict with chatter in the class and 
hands raised. 3 

   Kail now comes to the board and voices her disagreement with Carol, indicating 
that the label for the unlabeled tick mark should be −2,000 (not −1,006 or −1,007). 
To support her judgment, Kail makes reference to a mathematical  defi nition   established 

3   An analysis of a video record revealed that Carol appears to take the distance between −1,000 and 
her mark of −1,001 as a unit  interval  (see Fig.  11.3 ). She translates that interval  to the unlabeled 
tick mark about 6 or 7 times, yielding the label “–1,006 or −1,007.” 

(b) The placement of -1,000 and -1,001

0 1,000-1,000

-1,001

0 1,000

(a) Place -1,000 and -1,001

  Fig. 11.2    ( a ) A problem of the day for the seventh lesson on  integers  : “Place −1,000 and −1,001 
on the  number line   below” and ( b ) the class’ solution       

(a) Ms. R's question: What's the name 
of the unlabeled tick mark?

0 1,000-1,000

-1,001

?

(b) Carol's answer: -1,006 or -1,007

0 1,000-1,000

-1,001

-1,006
or

-1,007

   Fig. 11.3    ( a ) Ms. R’s question and ( b ) Carol’s answer       
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in a prior lesson, gesturing to the  interval      between the unmarked point (−2,000) and 
−1,000 and then to the other interval between −1,000 and 0, as depicted in Fig.  11.4a , 
saying that, “they are consistent,” a term used repeatedly in prior lessons. Some stu-
dents voice their agreement with Kail, and Kail proceeds to label −2,000 in its place.

   Ms. R gives Carol another opportunity to justify her thinking in light of Kail’s 
alternative. Carol struggles, appears unsure, but despite the class support for Kail’s 
solution, Carol is unrelenting in her assertion that the unlabeled mark should be 
called −1,006 or −1,007. Although students (and teacher) do appear to have a host 
of compatible presuppositions about  number line  s that supports a level of commu-
nication, what is salient at the moment are two contradictory names for the unla-
beled point: Carol’s insistence on −1,006 or −1,007 as contrasted with Kail’s 
insistence that the point should be called −2,000. 

 Ms. R invites Pierre to the board perhaps to help the class work towards a  collec-
tive   resolution. Pierre thinks, grabs a yellow wooden Cuisenaire™ rod (C-rod), and 
fi ts it between the  interval      from 0 and 1,000 and again at the interval between −1,000 
and −2,000 as shown in Fig.  11.4b . 4  Corroborating Kail’s solution but using a dif-
ferent approach, he explains, “this (the interval between 0 and 1,000) is the same 
thing as this (the interval between −1,000 and −2,000). {…} therefore, this {points 
to the tick mark} is −2,000.” At Ms. R’s urging, the class notes that the yellow rod 
is equivalent to a value of 1,000 units on the line. 

 After refl ecting on Pierre’s C-rod display, Carol now appears to have an epiphany. 
She announces that after listening to the discussion, she agrees that the tick mark 
should be labeled as −2,000. In a move that shows that she grasps his explanation, 
Carol grabs a yellow C-rod, places it at the  interval      between −1,000 and 0, then 
moves the rod to the interval between 0 and 1,000, saying that “this is the same as 
this.” Carol then, responding to Ms. R’s request, further illustrates her grasp of Kail 
and Pierre’s solution, additionally placing 2,000 on the  number line   using the yellow 
C-rod (Fig.  11.4c ). 

 In this episode, we found that students were able to communicate with one 
another successfully, despite numerous threats of breakdown (which does often 
occur). How was this successful communication achieved? In the next section, we 
draw upon our prior distinction between  collective   and individual  level  s of analysis 
to understand how the classroom community drew upon and contributed to a  com-
mon ground   of talk and action.  

4   Cuisenaire™ rods are manipulative wooden rods used in Ms. R’s classroom. 

  Fig. 11.4    Kail and Pierre’s uptake on Carol’s placement, and the shift in Carol’s thinking       
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11.1.3     Analyzing  Common Ground   at  Collective   
and Individual  Level  s 

 To understand more about the process whereby a  common ground   of talk was 
generated in the  integers   discussion in Ms. R’s classroom, we argue that two 
levels of analysis are needed, one at the  collective   and the other at the individual 
 level  . We take these levels to be mutually constitutive, with the collective providing 
form and social meaning for individual activity, and individuals’ actions creating the 
collective. 

11.1.3.1     The  Collective   Level 

 At the  collective   level, our focus is on norms, taken-as-shared expectations about 
the range of appropriate actions and communications in the classroom community. 
We take norms to constitute part of the  common ground   of talk and action that sup-
ports successful sense making of the intended meaning of others’ displays. At the 
same time, because norms are inherently fl uid, they are also part of the generation 
and re-generation of a common ground in collective life. In this chapter, we focus 
on  participation norms   and  sociomathematical norms   (Valentine et al.  2005 ; Yackel 
and Cobb  1996 ). 

 Consider fi rst  participation norms   that capture expectations and obligations for 
how individuals participate in discussion, like norms for taking turns in conversa-
tional moves or displaying one’s thinking clearly to an audience, akin to Gricean 
maxims (cf. Grice  1989 ; Keller  1994 ). Let’s return to the short excerpt from Ms. R’s 
classroom and an illustration of a norm for which we found considerable support: 
One’s display should be clearly visible and audible to the class as a whole. 

 One illustration for the display norm comes when Pierre approaches the board to 
share his solution. As he begins talking and making marks, Ms. R repeatedly asks 
him to “tell us, not the board.” Once Pierre has turned around to address the class 
and speaks louder, Ms. R allows him to continue his explanation. On other occa-
sions we see students themselves enacting the public display norm. Consider the 
interchange between Carol and Kail. They were both standing at the board, having 
just offered different solutions. At Ms. R’s request, Carol attempts to justify her 
original solution in response to Kail’s objections. She begins talking and moves in 
closer to Kail to point to certain features of the inscription. She then gestures to Kail 
to move backwards (pictured in Fig.  11.5 ), presumably positioning herself so that 
she “has the fl oor” and the class can better see her display (see Davies, and Harré 
 1990 ; Harré et al.  2009 ).

   Pierre and Ms. R’s interaction and Carol and Kail’s interaction both reproduce 
this display norm, in the sense that they are drawing upon expectations for behavior 
that undoubtedly have their origins in the history of this classroom community. 
At the same time, these exchanges are also contributing to the evolution of this 
norm, carrying it forward in ways that are inherently unique to present circumstances, 
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and in ways that may reverberate in future lessons. Hence, Pierre and Ms. R, and 
Carol and Kail, are simultaneously drawing on and contributing to  common ground   
at the  collective   level. 

 By its very nature, this specifi c display norm (dictating that one’s display should 
be clearly visible and audible to the class as a whole) would make it more likely that 
individuals will grasp each other’s intended meanings. Pierre’s way of making his 
thinking accessible to the class afforded Carol’s refl ection on new ways to solve the 
problem. This apparent norm for participation is therefore part of the  common 
ground   that enables successful communication in this episode. 

 Now consider  sociomathematical norms  . Unlike  participation norms  , sociomath-
ematical norms are specifi c to mathematical explanation and argumentation, capturing 
a set of  collective   expectations for how individuals should explain their thinking and 
justify their solutions (Yackel and Cobb  1996 ). In the case of Ms. R’s classroom, we 
fi nd that from early on in the lesson series, Ms. R worked with the class to formulate 
mathematical defi nitions of key ideas and displayed these defi nitions on a public 
poster (in Fig.  11.5  the poster is visible to the right of the students). Ms. R elevated 
terms like “consistent” as key to the use of  unit    interval  s and  multiunit      intervals in 
both generating labels for unlabeled tick marks and creating points for numbers on 
the  number line   (like labels for the position of −2,000). It was the classroom com-
munity’s taken-as-shared expectation that such terms would be used in mathematical 
explanation and argumentation. 

 We see evidence of the enactment of this norm in students’ elliptical references 
to “consistent.” For example, recall that Kail argued that the unlabeled tick mark 
would be −2,000 because “it’s consistent,” gesturing toward the  interval      between 0 
and −1,000 and the adjacent interval between −1,000 and the unlabeled point. 
Responding to Carol’s subsequent defense of her solution, Ms. R said to the class 
that “we’re forgetting a very important principle” and called Pierre up to the board, 
repeatedly asking him to articulate this principle. Pierre’s mention of “consistent” is 
emphatically repeated by Ms. R. Carol herself appealed to “consistent” in explaining 

  Fig. 11.5    Carol positioning Kail so that the class will be better able to see her (Carol’s) display       
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why she changed her mind about the value of the unlabeled tick mark, and why she 
was persuaded by Kail and Pierre’s explanations. Based on these observations, we 
surmise that use of the word ‘consistent’ and appeals to the idea it indexes are a 
valued form of explanation and argumentation in Ms. R’s class. 

 Like the participation norm, this sociomathematical norm is part of the  common 
ground   that supported successful communication and learning in this episode. 
We observe that students appeal to “consistent” as a valued resource for explanation 
and justifi cation, and in a way that assumes the import of the term is familiar to their 
audience. In enacting this norm, members of the class were able to convey intended 
meanings, negotiate different solutions and, ultimately, to persuade each other. This 
sociomathematical norm, which undoubtedly has a history in prior lessons, is repro-
duced in this episode. At the same time, students are extending the norm to a new 
and challenging problem, making it part of the common ground that the classroom 
community is working to construct. 

 As we have emphasized, the status of norms as an object of inquiry is not fi xed. 
Their existence is fl eeting, appearing only in the productive and interpretive actions 
of individuals. For this reason, we take norms to be reproduced and altered in activ-
ity. Thus, an analysis of norms, whether participation or sociomathematical, requires 
an analysis over time (or lessons). The norms that we have pointed to in this section 
no doubt have origins in prior lessons and have projections into future lessons. 
In Sect.  11.2 , we take up empirical  techniques   geared for exploring origins of norms 
in Ms. R’s classroom community.  

11.1.3.2     The Individual  Level   

 At the individual  level  , we focus on how individuals’ public displays tailor repre-
sentational  forms   to serve varied functions in classroom communities. At this level, 
 common ground   is reproduced and altered in individuals’ construction of form- 
function relations through time. 

 Figure  11.6  contains exemplars of  forms   (left) and functions (right) that we have 
observed in  LMR   lessons. The forms depicted in Fig.  11.6  include geometric forms 
such as elements of the  number line  , including the line, arrowheads, tick marks as 
well as kinds of intervals ( unit    interval  s,  multiunit      intervals) 5 ; numeric forms like 
number words and written numerals; manipulative forms like C- rods   of ten different 
color-coded lengths, like the yellow rod referred to the exchange in Ms. R’s class-
room; and they also include mathematical defi nitions introduced in the lessons, such 
as defi nitions for unit  interval     , multiunit interval, and  order      (recall reference to 
“consistent” linked to a  defi nition   introduced in Ms. R’s classroom).

5   We note that conventions vary in the use of forms . For example, in the United States in elementary 
mathematics classrooms,  s contain arrows on the left and right ends, indicating that lines are 
extended in both directions. In contrast in other countries, number lines are sometimes depicted as 
rays, with arrowheads on the right end only. 
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   Like the  forms   depicted in Fig.  11.6 , the possible functions that these forms 
afford are varied and many. Examples include (a) expressing the numerical value of 
a tick mark with an integer value, as in the interchange between Carol, Kail, and 
Pierre (−1,006 or −2,000), and (b) estimating a place for a number on the line, as 
when the class positioned −1,001 on the line (however imprecisely). 

 The lines connecting  forms   and functions in Fig.  11.6  show that forms may be 
tailored to serve multiple functions, and the listed functions may be served by any 

  Fig. 11.6    Some exemplar  forms  , functions, and form-function relations       
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number of forms, often used in concert with each other. For example, recall students’ 
use of different forms to serve the same function in the prior exchange: Carol used 
a  unit    interval   form (the  interval      between −1,000 and −1,001) to express the value 
of the unlabeled tick mark as an integer (−1,006 or −1,007). By contrast, Kail and 
Pierre used a  multiunit      interval form to express the value of the same tick mark as 
−2,000. At the same time, we might imagine that a geometric form on the  number 
line   can be used to serve any number of functions. One can imagine, for example, 
how a unit interval might enter into naming an equivalent  fraction   through partitioning 
it into equivalent lengths (subunits), and at the same time enter into the estimation 
of where an integer is located on the same line as Carol did in her display. 

 Three genetic strands are needed to understand the generation of a  common 
ground   of  forms   and functions from the perspective of individual activity. A  micro-
genetic   strand allows for analysis of the construction of representations, as individu-
als tailor representational forms to serve functions. An  ontogenetic   strand allows for 
the analysis of continuities and discontinuities as individuals reproduce and alter 
form-function relations in their own learning trajectories. Finally, a  sociogenetic   
strand allows for the analysis of distributions in individuals’ use of forms to serve 
functions in a community, both at a single moment in time and as distributions shift. 
Although the genetic strands are grounded in the same activity, we consider each 
strand separately for purposes of analysis. 

   Microgenesis 

 The  microgenesis   of representations involves tailoring  forms   to serve functions as 
problems are conceptualized and accomplished, often in public displays. In this process, 
individuals draw upon a  common ground   of representational forms and functions, 
reproducing and altering them as they work to communicate and address recurring 
problems. Thus, a microgenetic analysis illuminates the way individuals contribute to 
the generation of a common ground. As an illustration, let’s consider the classroom 
episode described previously and Carol’s microgenetic construction (represented in 
Fig.  11.7 ) in which she called Ms. R’s unlabeled point, “−1,006 or −1,007.”

  Fig. 11.7    Carol’s  microgenetic   construction       
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   Figure  11.8  contains a schematic of what we regard as key elements of Carol’s 
 microgenetic   construction. In the middle section of the fi gure we show Carol’s public 
display that named a point on the line. To the right we depict Carol’s audience—
those to whom Carol is making efforts to communicate, adjusting her talk and 
actions to what she conceives as the communicative constrains of the situation. 
To the left is the process whereby Carol draws upon what she takes to be shared 
 forms   of representation and orchestrates them to serve the function of naming the 
unlabeled point on the line in a way that communicates to others. In this process she 
turns the  interval      from −1,001 to −1,000 (a mathematical form) into a means by 
iterating it successively to the left as she accomplishes a sequence of emergent goals 
linked to her approach to naming the unlabeled tick mark. The process is one in 
which she both reproduces a host of aspects of the class’  common ground   of talk—
number words and  unit    interval  s—but also alters them to suit the function of naming 
the unlabeled mark.

   Two features are noteworthy in Carol’s construction, features that are generally 
true of  microgenetic   constructions. First, Carol’s microgenetic construction is a 
 process of recruiting  forms   with no inherent functions. The initial marking of the 
−1,001 point by the class served a function (estimating the position of a point) that 
was not directly related to the function that it served for Carol: to name an unlabeled 
tick mark. Rather, Carol herself turned the  unit    interval   of −1,001 to −1,000 into a 
means to locate the unlabeled point. 

 Second, the representation itself is coherent. It emerges out of Carol’s structuring 
the  unit   distance (−1,001 to −1,000) in what we take to be a successive iteration; 
each  translation   is produced such that the left end point of one imaginary translation 
is the right end point of the subsequent translation. Further, each translation is accu-
mulated and coordinated with numerical units and number word  forms  , such that six 
translations is equivalent to the value of 6 on the  number line  . 

 As we noted earlier, individuals’  microgenetic   constructions in public displays, 
like Carol’s, contribute to the reproduction and alteration of a  common ground  . 
In Carol’s microgenetic construction of a form-function relation (a  unit    interval   
form to name a tick mark), she reproduces  translation   approaches that she has 

  Fig. 11.8    Schematic of Carol’s  microgenetic   process of naming the unlabeled point       
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observed in prior classroom activities, though her particular display is also an 
alteration. Her display makes use of a particular unit  interval      on the line on the 
whiteboard, an interval quite imperfectly drawn, and produces a novel solution, 
naming the tick mark at the −2,000 position as “−1,006 or −1,007.” Further, her 
display creates a context for subsequent displays of her classmates, which also 
become ingredient to the reproduction and alteration of a common ground of the 
classroom community.  

   Ontogenesis 

 The  ontogenesis   of  form-function relations   involves continuities and discontinuities 
in learning trajectories of individuals. Of particular interest are individuals’ use of 
forms that are familiar to them ( continuity  ) to serve new functions ( discontinuity  ) in 
activity, and individuals’ use of new forms (discontinuity) to serve developmentally 
prior functions (continuity). Such continuities and discontinuities in individuals’ 
learning trajectories shape their  microgenetic   displays. For this reason, students’ 
ontogenetic trajectories have implications for the  common ground   of the classroom 
community. Thus, ontogenetic analyses illuminate shifts in microgenetic processes, 
and by extension, the reproduction and alteration of a common ground. 

 To illustrate, at the point of the featured episode from Ms. R’s class, students 
have participated in a number of prior lessons, and in the process have created their 
own learning trajectories, drawing upon what they had learned to fashion solutions 
to novel problems. From an  ontogenetic   perspective, the problem discussed by Kail, 
Carol, and Pierre represents a signifi cant moment. After all, it was only in the prior 
lesson that negative numbers were introduced, and the problem they are solving is 
the fi rst involving both large intervals (e.g. from 0 to −1,000) and small intervals 
(e.g. from −1,000 to −1,001) on the same representation. This problem takes stu-
dents into new territory, calling upon them to substantially extend and coordinate 
their understandings of numerical  order     ,  unit    interval  s, and  multiunit      intervals. Even 
within the boundaries of a single episode of problem solving, we can gain some 
insight into construction of learning trajectories. Carol in particular provides a use-
ful case in illustrating ontogenetic shifts in  form-function relations  . 

 Carol’s apparent shift in thinking—albeit over a short frame of time and in the 
context of a single problem—nonetheless represents an important  ontogenetic   
development. Her initial strategy was to use the  unit    interval   between −1,000 and 
−1,001 as a key resource, which she iterated until she reached the unlabeled tick 
mark. After watching Kail and Pierre’s displays and hearing their reasoning, she 
suddenly expressed agreement that the unlabeled tick mark should be labeled as 
−2,000 instead of −1,006. She gives voice to her new understanding, which clearly 
builds on her classmates’ explanations. Recall that she grabs a yellow Cuisenaire™ 
rod, places it at the  interval      between −1,000 and 0, then moves the rod to the interval 
between 0 and 1,000, saying that “this is the same as this.” In characterizing this 
ontogenetic development, we would say that Carol shifted in the representational 
form she uses to serve the function of labeling the unlabeled tick mark. 
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 We can also begin to frame questions about the  ontogenetic   process that underlies 
the shift in her thinking. In particular, we can inquire about why Carol abandoned 
her original answer of −1,006. Certainly, the social forces at play—the pushback 
she received from her classmates—constitute part of the story. Still, Carol initially 
attempted to refute Kail’s argument, demonstrating her willingness to resist being 
challenged. We take her initial resistance as an indication that a purely social expla-
nation is inadequate. Indeed, what is missing from this explanation is an account of 
why she became dissatisfi ed with her original thinking and came to understand 
Kail’s alternative as a better solution. Because our discussion here is limited to the 
data of her public communications in this episode, we could only speculate about 
this aspect of her ontogenetic process. 

 Inquiring into Carol’s  ontogenetic   process also entails identifying the conceptual 
resources she may have for constructing a new solution that stands in contrast to her 
initial thinking. What understandings might she have developed in prior lessons that 
would support her in making sense of Kail and Pierre’s displays? We know, for 
instance, that in prior lessons Carol has displayed knowledge of units, multiunits, 
and C- rods  , and the ways in which they can be used as resources in problem solving. 
In all likelihood, she brought this knowledge to bear on understanding and evaluating 
Kail and Pierre’s displays.  

   Sociogenesis 

 Sociogenetic processes also involve  microgenetic   constructions of  forms   and func-
tions produced in individual activities. But  sociogenetic   analyses require attention 
to the way microgenetic constructions are distributed over individuals. That is, a 
sociogenetic analysis considers how individual displays are part of a wider distribu-
tion of form-function relations, as well as how such distributions shift over time. 
Thus, a sociogenetic analysis illuminates the reproduction and alteration of a  com-
mon ground   of form-function relations, taking multiple individuals into account in 
a classroom community. Let’s return to the interchange in Ms. R’s classroom to 
illustrate. 

 Consider that Carol’s  microgenetic   construction of −1,006 or −1,007 was not the 
only way in which  forms   and functions were elaborated to name the unlabeled point. 
Indeed, Kail’s microgenetic construction (Fig.  11.9a ) provides an interesting con-
trast. Recall that moments after Carol’s display, Kail came to the board to correct 
what she perceived to be an error in Carol’s answer. She immediately asserts the 
product of her microgenetic construction, which is a label of −2,000 for the unla-
beled tick mark. She then gives the class a window into the microgenetic process 
through which she reached this answer. She points out that the  interval      between the 
unmarked point and −1,000 is the same size as the interval between −1,000 and 0. 
Like Carol, Kail also used a given interval on the line as a resource in her problem 
solving. However, Kail’s use of the interval from 0 and −1,000, which she conceptu-
alizes as a value of 1,000, results in a different solution. In this move, her construc-
tion avoids the imprecise measurement of Carol’s  unit    interval   of −1,001 to −1,000.
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   Pierre also produced a  microgenetic   construction that corroborated Kail’s analysis, 
but he used a different form. Recall that, after Kail made her display, Carol remained 
unconvinced of the solution of −2,000 and Ms. R called Pierre up to the board. 
Pierre grabbed a C-rod fi tted to the  interval      from 0 to 1,000. He translated the rod, 
placing it over the interval from −1,000 to the unlabeled tick mark. He explained, 
“this (the interval between 0 and 1,000) is the same thing as this (the interval 
between −1,000 and −2,000) {…} therefore, this {points to the unlabeled tick mark} 
is −2,000.” 

 Carol’s, Kail’s, and Pierre’s displays were public constructions that made use of 
different  forms   to serve similar functions during the same interactional exchange. 
There may well be many unnamed students who also engaged in varied  microge-
netic   constructions that were undocumented in students’ displays. To understand a 
 common ground   of talk and action at the level of individual activity, we need to 
move beyond a level of analyzing the microgenetic processes of single construc-
tions of form-function relations. Rather, what is needed is an analysis of the distri-
bution of form-function constructions across individuals. 

 The distributional properties of  form-function relations   are not fi xed in a class-
room community but are themselves in motion, shifting through time. Indeed, if we 
were to examine an interchange during a subsequent lesson, we would likely observe 
shifts in the distribution of forms students used and the functions that they used 
them to serve. For example, we might fi nd that a preponderance of (but not all) 
students are using a newly introduced form to serve a familiar function. We might 
also fi nd that some students are tailoring familiar forms to serve new functions, 
adapting them to novel problems. To understand the shifting  common ground   of talk 
and action requires approaches to capturing both the character of such distributional 
shifts and the dynamics that lead to them. 

 There are multiple sources that could lead to distributional shifts in  form- function 
relations   over time. One source is the emergence of novel problems in the classroom 
community. As we mentioned, the problem of placing negative numbers and intervals 
of such discrepant sizes was relatively novel to students. To solve this problem and 
explain their reasoning, Carol, Kail, and Pierre each had to adapt familiar forms to suit 
this new mathematical context, tailoring them into problem solving and communica-
tive resources in new ways. In doing so, they appeared at once attentive to valued forms 
in the history of the classroom community—with Kail’s elliptical reference to a math-
ematical  defi nition   (“consistent”) and Pierre’s use of the yellow C-rod—but at the same 
time altered the use of these forms relative to their treatment of the problem. 

0 1,000-1,000

(a) Kail's translation of a multiunit 
fingers measure

0 1,000-1,000-2,000

(b) Pierre's displacement of a C-rod

-2,000

  Fig. 11.9    The alternate  microgenetic   constructions of ( a ) Kail and ( b ) Pierre       
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 Another source contributing to distributional shifts are the  social position  s that 
individuals take up in the classroom community. In their displays, individuals posi-
tion themselves and are positioned by others. Let’s consider Carol’s epiphany at the 
end of the classroom episode. It may well be that Carol regards Kail and Pierre as 
mathematically competent and her refl ections on their displays and eventual epiph-
any were infl uenced by her regard for them. In this shift, Carol draws upon the 
C-rod form and  multiunit      form to confi rm the name for the unlabeled mark as 
−2,000. What is revealed here is a shift in the distribution of  form-function relations   
in the classroom community, possibly linked to students’ social positions. These 
kinds of shifts capture the reproduction and alteration of a  common ground   of form-
function relations in a classroom community.  

   The Interplay Between Micro-, Onto-, and  Sociogenetic   Developments 
in  Collective   Activities 

 We have argued in the prior pages that  microgenetic  ,  ontogenetic  , and  sociogenetic   
processes do not occur in isolation from one another. To the contrary, they are intrin-
sically related. Each microgenetic construction is a point in an individual's ontoge-
netic development as the individual adapts  forms   to serve communicative and 
problem solving functions. Further, in a microgenetic act, the individual draws from 
and contributes to the sociogenesis of form-function relations. Indeed, over a period 
of time in any community, multiple individuals are reproducing and altering form-
function relations as they produce displays and interpret displays of others. These 
many microgenetic acts, spread across a community, result in continuities and dis-
continuities in the sometimes stable and other times shifting distributions of form- 
function relations. 

 We close our discussion of the individual  level   of analysis with a schematization 
contained in Fig.  11.10 . The schematization captures not only the intrinsic relations 
between micro-, socio-, and  ontogenetic   processes in activity, but also their inter-
play through time. The horizontal organization of the fi gure presents three individu-
als, I1, I2, and I3. The vertical organization depicts three time periods, past, present, 
and future. To understand the interplay between the genetic processes, consider fi rst 
the  microgenetic   act of Student #2 (middle row) in the present time (middle col-
umn), depicted as microgenesis2b (in bold). In that microgenetic act, Student #2 is 
engaged in solving a problem in a public display by drawing on prior  forms   and 
functions, as when Carol draws upon and translates the  unit    interval   form to label a 
point on the  number line  . Also in present time, students #1 (upper row) and #3 
(lower row) are solving the same problem (microgenesis2a and microgenesis2c); 
these varied constructions are enabled and constrained by students’ own prior 
ontogenetic constructions (microgenetic constructions 1a, 1b, and 1c) and their 
efforts to link their displays to the interpretive efforts of their interlocutors. The 
three microgenetic displays (microgenesis2a, microgenesis2b, and microgenesis2c) 
constitute the distribution of form-function relations in the community in present 
time, distributions that have roots in past time and have implications for the future 
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( sociogenesis  ). Together, they are a constitutive dynamic that results in the reproduction 
and alteration of a  common ground   through time in communities.

11.1.3.3         A Final Note on  Collective   and Individual Activity 

 In our analytic approach to the reproduction and alteration of a  common ground  , 
individual and  collective   activity become part of the same frame for analysis. On 
the one hand, collective activities are constituted by the concerted work of indi-
viduals at moments in the  microgenesis  ,  sociogenesis  , and  ontogenesis   of  form-
function relations  . On the other hand, individuals’ activities take on social meaning 
in relation to social norms, conventions, artifacts and institutions. The refl exive 
process in which individual and collective activity take form in relation to one 
another leads to both continuities and discontinuities in the reproduction and alter-
ation of a common ground. This shifting common ground is constituted by both the 
elaboration of form-function relations and the reproduction and alteration of col-
lective norms.    

  Fig. 11.10    The interplay between micro-, onto-, and  sociogenetic   processes through time in a 
classroom community (Figure adapted from Saxe  2012 , p 326)       
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11.2        An Illustration of Empirical  Techniques  : The Learning 
Mathematics Through Representations Project 

 We partition our description of empirical  techniques   into two sub-sections, both of 
which are grounded in the conceptual  framework   described in Sect.  11.1 . First, we 
illustrate empirical techniques for our approach to  design research   (for a more gen-
eral discussion of design research in educational research see Cobb et al.  2003 ; 
Lehrer and Schauble  2004 ). Our main goal was to make research- informed design 
choices in constructing a lesson sequence. Throughout, our intention was to support 
a  common ground   of talk and action. Second, we illustrate empirical techniques 
for analyzing how a common ground is reproduced and altered over time in 
classroom communities. To this end, we draw upon extended observations from 
Ms. R’s classroom. 

11.2.1     Empirical Techniques Used to Inform Design Choices 
for the  LMR   Lesson Sequence 

 Our fi rst application of the framework is in  design research   that would culminate in 
the  LMR   lesson sequence. We detail how the conceptual  framework   informed key 
design choices through the use of a broad range of empirical  techniques  , and we 
review key aspects of the product of this work: a complete version of the lessons. 

11.2.1.1     Preliminaries 

 At the outset of the  design research  , it was our intention to develop a lesson sequence 
for the upper elementary grades. The targeted domains were  integers   and  fractions  , 
hard-to-learn ideas central to the transition between elementary and secondary 
mathematics. We were well aware of critiques of curricular and instructional 
approaches to integers and fractions and our concern was to address them. For 
example, coverage of these domains in instruction is diffuse—many topical issues 
are covered, but the coverage often lacks depth (Schmidt et al.  1997 ). Further, inte-
gers and fractions are often treated as entirely separate topics, even though they are 
deeply related. 

 To address the problems of diffuse and superfi cial treatment of  integers   and  frac-
tions  , we planned to develop a curricular approach that would engage a classroom 
community with a progressive elaboration of a  common ground   of talk and action. 
In accord with the discussion presented in Sect.  11.1 , we would need to be attentive 
to  collective   and individual  level  s of activity to inform design choices, and empiri-
cal  techniques   would need to be geared accordingly. At the individual level, our 
focus would be on supporting the micro-, onto-, and  sociogenesis   of  form-function 
relations   in students’ generation (and re-generation) of a rich common ground 
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through a central mathematical terrain. At the collective level, our focus would 
be on supporting productive interactions ( participation norms  ) and conceptually 
oriented argumentation ( sociomathematical norms  ) in the community (part and 
parcel to a rich common ground). 

 A foundational design choice that we considered early in the  LMR   development 
effort was whether to use the  number line   as a principal representational form 
through the lessons. There were strong reasons for using the number line. Across 
lessons, the number line could support  continuity   of representational  forms   
(curricular coherence) in the context of  discontinuity   of topics across domains of 
 integers   and  fractions   6  (Wu  2008 ,  2011 ). Consider, for example, Fig.  11.11 , which 
contains the key number line elements that supported our curricular approach. 
As indicated in the fi gure, we planned to treat the number line as a coordination of 
two ideas at the crux of a linear measurement model of number:  Order      relations and 
metric relations, with order defi ned on the line as an increase in magnitude from left to 
right, and metric relations defi ned in terms of line segments or intervals on the line. 

6   Throughout the chapter we make use of the term “fractions ” where “rational number” would 
often be more appropriate. We take “fractions” to be forms  of representing rational numbers—
a number expressed with a numerator  and denominator  (common fraction, mixed numbers) or a 
number expressed as a decimal (decimal fraction), and rational numbers to be the numbers 
expressed by these representational forms. For simplicity, we use the expression “fractions” to 
refer sometimes to rational numbers and other times to the representational form of common frac-
tions (including proper and improper common fractions). 

  Fig. 11.11    Core ideas defi nitional to  number line   representations       
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For integers, these topics would engage issues of order and different kinds of units 
(units and multiunits); they would also engage related properties of  symmetry      of 
positive and negative integers and  absolute value      and origin. Fractions would addi-
tionally entail a treatment of subunits and a related host of topics rooted in a treat-
ment of subunits (e.g., equivalent  fraction   s  , benchmark fractions, fractions less than 
one, fractions greater than one). In this way, using the number line as a consistent 
representational context promised to support continuity across lessons as topics 
shifted, fostering a  common ground   of talk and action through some diffi cult math-
ematical terrain.

11.2.1.2        Empirical Techniques and Design Choices 

 We drew upon a host of empirical  techniques   to evaluate the utility of the  number 
line   as a central representational form across lessons and to inform various second-
ary but no less important design choices. At the highest level, our empirical tech-
niques included various study designs; these consisted of interview, tutorial, 
classroom, and effi cacy studies, each of which had a role in supporting particular 
design choices. Further, within each study type, we created data collection tech-
niques (e.g., approaches to video recording) and  data reduction   techniques (e.g., 
approaches to the analysis of video  records  , qualitative and quantitative methods for 
analysis). 

 Table  11.1  provides an overview of our  design research   that led to our lessons. 
The fi rst column describes our empirical  techniques   in the form of different study 
types. The second column describes the purpose of each study type and how the 
empirical techniques extended the conceptual  framework  . The third column 
 summarizes major fi ndings of each study type, and the fi nal column lists key design 
choices that followed from the fi ndings.

     Interview Studies 

 The interview studies were designed to reveal patterns in students’  microgenetic   
constructions as they made use of  number line    forms   to serve problem solving func-
tions in varied contexts. All studies were conducted with samples of fi fth grade 
students from urban classrooms, and they used a clinical interview format in which 
a researcher presented number line problems to students. While several interview 
studies were conducted, here we illustrate fi ndings from two studies that focused on 
 integers   (see Saxe et al.  2013 ). 

 In one study, we examined students’  microgenetic   constructions on non-routine 
 number line   problems (n = 24). We had good reasons to expect that non-routine 
problems would reveal student understandings and confusions in ways that more 
routine problems would not (Ginsburg  1997 ; Piaget  1979 ). Such tasks would prob-
lematize students’ well-used procedures for problem solving that bypass conceptual 
analysis. For the purposes of this study, we defi ned non-routine problems as featuring 
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number line representations in which only two numbers are marked, and students 
were required to place a third number (see Fig.  11.12 ). Problems were of two types: 
One in which two consecutive numbers created a  unit    interval   (Fig.  11.12a ), and the 
other in which two nonconsecutive numbers created a  multiunit       interval      (Fig.  11.12b, c ). 
To solve the task in Fig.  11.12a  (unit interval given), students needed to treat the 8,9 
interval as a unit interval, placing 11 at the appropriate position. To solve the task in 
Fig.  11.12b  (multiunit interval given), students needed to treat the 7,9 interval as a 
multiunit interval, placing 11 at the appropriate position. To solve the task in 
Fig.  11.12c , students once again needed to treat the 7,9 interval as a multiunit 
interval, but now must partition a multiunit interval into unit intervals.

   A central fi nding of the study was that the non-routine problems illuminated 
strengths and diffi culties in students’  microgenetic   constructions. On all versions of 
our tasks, all students placed numbers in the correct  order     , and most (90 %) com-
pleted the  unit    interval    translation   tasks correctly (tasks like Fig.  11.12a ). However, 
when students were given a  multiunit       interval      (tasks like Fig.  11.12b, c ), their solu-
tions were often incorrect, and the most common incorrect solution was to treat the 
given multiunit interval as a unit interval, not differentiating the two. Thus the com-
mon solution to Fig.  11.12b  was to place 11 at the location for 13. The common 
solution to Fig.  11.12c  was to place 10 at the location for 11. This study demon-
strated that while the  number line   supported some student intuitions (e.g., order, 
unit translations), confusions surfaced in other areas, and non-routine number lines 

  Fig. 11.12    Examples of tasks used in interview study 1       
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were particularly well suited to revealing the diffi culty that many students had in 
coordinating multiunit intervals with unit intervals. 

 In another interview  study  , we examined how a familiar measurement context, a 
narrative about a racecourse in the form of a  number line  , can support students’ 
 microgenetic   constructions. Of particular interest was whether the racecourse might 
support students’ differentiation and coordination of units and multiunits. To this 
end, we assigned one group of 5th grade students (n = 24) to a condition in which 
they placed numbers on conventional number lines, and the second group of fi fth 
graders (n = 24) were assigned to a condition in which they placed cartoon charac-
ters on number lines represented as ‘racecourses’ (Fig.  11.13 ). Most students in 
both groups placed consecutive whole numbers (e.g., 5, 6, 7) at appropriate linear 
distances, but the racecourse group was more likely to place non-consecutive whole 
numbers at appropriate linear distances (e.g., partial consecutive sequences such as 
9, 12, 13 or non-consecutive sequences such as 7, 11, 14). These results indicate that 
students’ differentiation and coordination of units and multiunits was aided by the 
addition of the racecourse context.

   Overall, interview  study   fi ndings informed design choices in the development of 
the lesson sequence. Both studies corroborated our sense that the  number line   would 
be a useful representational context. Prompted by the fi rst study, we decided to con-
sistently feature non-routine number line problems in the lessons. These problems 
elicited student thinking and revealed students’ diffi culty with differentiating and 
coordinating units and multiunits. Further, because of the challenges that students 
had with coordinating units with multiunits, we would design problems geared for 
supporting the differentiation and coordination of these ideas, like those featuring a 
racecourse context.  

   Tutorial Studies 

 To explore ways of supporting  ontogenetic   progression towards a generative use of 
units and multiunits on the  number line  , we designed a tutorial study (see Saxe et al., 
 2010 ). Our overarching concern was to explore ways of supporting learning through 
the generation of a  common ground   of talk and action between tutor and student. 
At the individual  level  , our concern shifted from  microgenesis   to ontogenesis. 

  Fig. 11.13    Examples of the racecourse and number line tasks       
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We wanted to know if student intuitions about the number line representation could 
be used as a productive foundation for the development of rich and generative 
understandings. Our tack was to introduce particular  forms  —defi nitions and 
C- rods  —and attempt to support students in using these forms in a coherent and 
coordinated way to serve an expanding repertoire of functions, both in solving 
 problems and justifying their reasoning. At the same time, the tutorial study was 
also motivated by our concern with the functioning of common ground at the 
  collective   level. We were interested in how ways of using these forms might become 
constitutive of the  sociomathematical norms   that emerged between tutor and 
 student, and in turn how these norms might support learning. 

 The tutorial was organized as a sequence of 13  number line   tasks partitioned in 
two sessions. To evaluate the effi cacy of the tutorial design, we conducted an experi-
mental study. We administered a pretest to fi fth grade students and also asked teach-
ers to rate students’ overall performance in mathematics. Using these two indicators 
of student knowledge, we then created two matched groups through random assign-
ment: a tutorial group (n = 19) and a control group (n = 19). 

 Recall from the interview studies that many fi fth grade students did not coordinate 
 unit   and multi-unit intervals. This motivated us to provide students with two kinds of 
mathematical  forms  —Cuisenaire™ rods (C- rods  ) and mathematical defi nitions—to 
support their thinking and communication. We chose C-rods because they can serve 
as models of linear magnitudes off and on the  number line  . Each rod color is a unique 
length, and thus there are stable relationships between rods of different colors; for 
example, a single purple rod is the same length as two red rods. The tutorial sequence 
was organized such that tasks called for the use of rods to serve progressively dif-
ferentiated functions. In the initial phase, student and tutor solved modeling prob-
lems using unit  interval  s (rods with the value of 1), like marking the length of four 
red rods on an open number line with only zero represented and no other tick marks. 
A subsequent problem engaged student and tutor with modeling problems of multi-
unit intervals—for example, marking the length of six red rods using purple rods. 
As students used rods to record specifi ed lengths, the rods served as the functional 
equivalent of units or multiunits, supporting students as they calibrated the line with 
tick marks. As the tutorial progressed, the tasks engaged students with units and 
multiunits defi ned on the line itself, with C-rods shifting in function to measurement 
tools; later tutorial problems did not make use of rods at all. 

 The second type of form built into the tutorial was defi nitional  forms  . The tutorial 
was structured as a communication  game   of sorts, in which tutor and student worked 
to resolve any discrepant solutions that emerged between them. As shown in Fig.  11.14 , 
the tutor and the student played a game in which each was required to mark the same 
position on a  number line   but could not see one another’s activities. After solving the 
problem independently, the tutor and student compared their solutions, constructing 
agreements on a public sheet. The agreement sheet served as a public record that tutor 
and tutee could refer to when resolving discrepancies and solving additional tasks. 
One agreement, for example, was Order: On the number line, numbers increase in 
value from left to right and decrease in value from right to left.

   As shown in Fig.  11.15 , pre-/posttest contrasts showed that the students who 
were tutored gained more than controls, with a large effect size. Most notably, tutorial 
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  Fig. 11.14    Illustrations of written agreements       

  Fig. 11.15    Contrasts between pretest and posttest performances for tutorial and control groups       
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students’ use of agreements predicted their learning gains. There was a strong cor-
relation between students’ uses of appropriate agreements when reasoning about 
their solution and their gains in scores from pretest to posttest.

   From these results, we concluded that the problem sequence, the C- rods  , and the 
defi nitional  forms   contributed to a supportive context for students’  ontogenetic   
development. Over the course of the tutorial, these forms supported students 
in making the kinds of coordinations that proved diffi cult in the interview studies. 
We also concluded that particular uses of the defi nitional forms and C-rods func-
tioned effectively as socio-mathematical norms, fostering not only clear communi-
cation between tutor and student, but also generative understandings that guided 
problem solving. Based on the overall effectiveness of the tutorial, and these con-
clusions in particular, we made a number of design choices that guided the develop-
ment of our lesson sequence. For one, both C-rods and defi nitional forms would 
feature prominently in the lessons. C-rods would be introduced and re-introduced as 
lesson topics shifted, acting as resources to ease students through diffi cult transi-
tions. Defi nitional forms would be a critical feature of the lessons, helping to create 
coherence and  continuity   and to support a generative understanding of big ideas. 
Additionally, the lessons would feature a sequence of problems that would support 
the progressive elaboration of these big ideas.  

   Classroom Studies 

 The purpose of the classroom  studies   was to engage in a process of iterative  refi ne-
ment   of preliminary lessons with a concern to support teachers’ and students’ gen-
eration of a  common ground   of talk and action as lesson topics shifted. At the 
 collective   level, our intention was to support useful sociomathematical and  partici-
pation norms  . At the individual  level  , our intention was to support the micro-, onto-, 
and  sociogenesis   of  form-function relations   that refl ected rich understandings. 
At the conclusion of the process, our plan was to have produced a full lesson set in 
which design choices were guided by these intentions and informed by systematic 
research. The classroom studies were completed in several phases. 

   Preliminary Classroom  Studies   

 Even prior to the interview and tutorial studies summarized in Table  11.1 , we 
worked with sixth grade teachers and their classrooms. In these early classroom 
 studies  , we designed pilot lessons and studied their implementation. We were sensi-
tive to pedagogical and developmental issues at both  collective   and individual  level  s. 
At the collective level, we explored problem types and lesson structures that would 
support an entire classroom community in building norms for participating in a rich 
mathematical discourse. At the individual level, we were particularly interested in 
ways students were producing  microgenetic   constructions of  form-function rela-
tions   and ways in which distributions of form-function relations in the classroom 
were reproduced and altered in  sociogenetic   processes. Analyses that resulted from 
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these early classroom studies are reported in prior publications (Saxe et al.  2009 ; 
Saxe et al.  2007 ). These early studies set the stage for the interview and tutorial 
studies previously described, and they also became valuable resources as we crafted 
blueprints of the  LMR   lesson sequence.  

    LMR   Classroom  Studies  : Preliminary Lessons and Their Iterative  Refi nement   

 With the completion of the early classroom research and the subsequent interview 
and tutorial studies, we developed preliminary lesson plans and recruited two highly 
recommended elementary school teachers as collaborators (one fourth and the other 
fi fth grade). We presented the teachers with drafts of lessons that were informed by 
our prior research efforts, and then began, in collaboration with them, a process of 
iterative  refi nement  . Our collaboration also extended to outside consultants: 
Deborah Ball (mathematics educator) and Hyman Bass (mathematician), a consul-
tation that originated through their Elementary Mathematics Laboratory at the Park 
City Mathematics Institute prior to  LMR   funding. 

 Building upon our prior research, we guided lesson construction with a concern 
to cover key mathematical content and at the same time support the generation of a 
 common ground  . At the  collective   level, a concern was to produce lesson structures 
and problem types that supported norms for participation and for mathematical 
argumentation informed by the prior research. At the individual  level  , an overarch-
ing concern was to produce lesson structures, problem types, and representational 
 forms   (mathematical defi nitions, C- rods  ) that would support public displays of 
 student thinking. In turn, students’ displays over the lessons could support teachers’ 
insight into students’ ways of construing and accomplishing problems (in  microge-
netic   processes), students’ developmental trajectories in using new mathematical 
forms and functions (in  ontogenetic   processes), and the way the classroom popula-
tion as a whole was or was not shifting in approaches to conceptualizing and accom-
plishing problems as lesson topics progressed ( sociogenetic   processes). 

 As we cycled through one to three lessons per meeting with partner teachers, our 
process of iterative  refi nement   proceeded as follows: (a) We engaged our partner 
teachers in discussions, refi ning our preliminary blueprints so that they became 
workable lessons; (b) we observed and videotaped teachers’ implementation of les-
sons in classrooms, using observations and joint debriefi ngs to further refi ne lessons; 
(c) we re-drafted lesson plans that would eventually become principal components 
of our Teacher’s Guide to the Lessons. 

 Through our 2-year period of lesson  refi nement  , we maintained the overarching 
intention to support the elaboration of a  common ground   through the lessons at both 
individual and  collective   levels. But many of our ideas about how to implement this 
intention evolved. Some of the refi nements were major. For example, we developed 
new lessons to address key transitions from one topic to another. Additional major 
revisions cut through all lessons: We modifi ed the lesson structure used across 
lessons to more effectively engage students, and we developed a poster on which the 
teacher would record defi nitions throughout the entire lesson sequence. Other 
changes were structurally minor but no less signifi cant: (1) For some lessons, we 
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created new defi nitions (or modifi ed included defi nitions) to support the crystallization 
of key ideas. (2) We tailored language used in defi nitions so that it was more acces-
sible to students. (3) We developed differentiated partner worksheets with problems 
at multiple levels of diffi culty in  order      to support the participation of all students. 

 To evaluate the promise of the lessons in our two partner teachers’ classrooms, 
we developed a preliminary  assessment   of students’ understanding of  integers   and 
 fractions  . We administered pretests and posttests in each domain at our last iteration 
of the respective integers and fractions units. With the impressive gains we found in 
both of our partner teachers’ classrooms for each  unit  , we sought to fi eld test the 
lessons with teachers unfamiliar with the curriculum.  

   Support for Use of the Lesson Sequence with New Teachers 

 We recruited two additional teachers who had no familiarity with the lessons. 
We piloted an approach to professional development with these teachers, and 
through this process, we gained insight on what needed refi nement in our approach 
to supporting teachers’ use of the lessons. We also gained insight on how the lessons 
were occasionally transformed by teachers in ways that were at odds with our inten-
tions. With this information, we returned to refi ne our approach to teacher training 
and further adjusted the lessons to support their use in classrooms.   

   Effi cacy study 

 To evaluate the implementation and impact of the  LMR   curriculum, we conducted 
an effi cacy  study   that made use of a quasi-experimental design (Saxe et al.  2013 ). 
We sampled classrooms from school districts that were all using the same elemen-
tary mathematics curriculum, Everyday Mathematics. We matched classrooms on a 
number of variables (demographics, language background, teacher professional 
experience) and then assigned 11 classrooms to an LMR implementation group and 
10 classrooms to a non-LMR implementation group. We engaged the LMR teachers 
in several training sessions in the use of the 19 LMR lessons, and then studied their 
use in the Fall of 2010. Of principal concern in these analyses was to evaluate 
whether students in LMR classrooms showed greater growth in  integers   and  frac-
tions   knowledge than students in comparison classrooms. Further, we also wanted 
to evaluate whether greater or lesser performing students differentially benefi tted by 
the LMR lessons, and whether students in LMR classrooms, regardless of their 
entry-level understandings of integers and fractions, showed similar growth curves 
relative to comparison students. 

   Student  Assessment   Instrument 

 We built upon and refi ned the instrument that we had used in our classroom  studies   
to assess students’ understanding of  integers   and  fractions  . In this process, we gen-
erated three  forms   of an  assessment   instrument (about 30 items on each instrument 
with 18 common items). The instrument was composed of items drawn from our 
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assessment used in the classroom studies, as well as released items from varied 
standardized assessments, including the National Assessment of Educational 
Progress (NAEP) and the California Standards Tests (CST). It also included items 
drawn from the Everyday Mathematics curriculum. In the design of the instrument, 
we selected integers and fractions items that included both  number line   representa-
tions and those that did not. We expected to fi nd that students in  LMR   classrooms 
would not only show greater gains on problems that made use of number line repre-
sentations, but that they would also extend that knowledge to problems that did not 
involve number lines.  

   Student Assessments and Growth 

 To assess students’ growth through the intervention and carry over through the win-
ter and spring, we administered the  assessment   to  LMR   students on four occasions 
and to Comparison students on three occasions:

•    Prior to the start of the  LMR   lessons in September (LMR and Comparison 
classrooms)  

•   After the  integers   but before the  fractions    unit   ( LMR   only)  
•   At the end of  LMR    fractions    unit   in December (LMR and Comparison 

classrooms)  
•   At the end of the school year in May ( LMR   and Comparison classrooms)    

 We used Item Response Theory to calibrate item diffi culty over the assessments. 
The result yielded multi-leveled data: Students nested in classrooms (see Saxe et al. 
 2013 ). We used Hierarchical Linear Models (HLMs) to analyze growth curves of 
students to evaluate intervention effects. Our fi ndings can be summarized as 
follows:

•    HLM analyses documented greater achievement for  LMR   students than com-
parison students on both the end-of-unit and the end-of year assessments of  inte-
gers   and  fractions   knowledge, showing a moderate to large effect size.  

•   Gains for  LMR   students occurred on item types that included  number line   repre-
sentations and those that did not.  

•   The growth rates of  LMR   students were similar regardless of entering ability 
level.    

 These fi ndings confi rmed our expectations and demonstrated the effi cacy of the 
 LMR   sequence in supporting teaching and learning in the domains of  integers   and 
 fractions  .     

11.2.2     The Complete Lesson Series 

 We now describe the complete  LMR   lesson sequence, beginning with a broad over-
view of the lessons. We then detail the ways that the lessons supported a  common 
ground   in classroom communities. 
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 Figures  11.16  and  11.17  contain overviews of the lessons on  integers   and  fractions  . 
In each fi gure, we present a thumbnail sketch of each lesson; we indicate the lesson 
topic as well as how the topics are addressed in the  number line   context through 
depictions of lesson-specifi c problems. The leftmost column in the fi gures reveals 
the broader grouping of topics. For example, in Fig.  11.16 , Lessons 1–5 cover posi-
tive integers and 6–8 cover negative integers, with an integers review provided in 
lesson 9. Some core ideas covered across the topics are also indicated in the fi gures. 
Thus,  order      and intervals are the core ideas for Integers Lessons 1–3, coordinating 
 unit   and  multiunit      intervals for Lessons 4 and 5, and  symmetry      and  absolute value      
for Lessons 7 and 8. For fractions (Fig.  11.17 ), Lessons 1–5 cover part-whole relations 
and 6–9 cover multiplicative relations, with a fractions review given in Lesson 10.

  Fig. 11.16    Integers lessons in the  LMR   sequence       
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11.2.2.1        Supports for a  Common Ground   of Talk and Action 
with Shifting Lesson Topics 

 Across the lessons, the problems we developed were intended to support a good 
deal of discussion. Recall the discussion recounted in Sect.  11.1  in which Ms. R’s 
class engaged with the problem of marking −1,001 on a  number line   on which only 
the positions of 0 and 1,000 were given (Lesson 7). In such discussions, the prob-
lems were intended as occasions for students to surface their thinking in public 
displays, thereby provoking confl ict between alternative solutions and encouraging 

  Fig. 11.17    Fractions lessons in the  LMR   sequence       
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resolution, a process that could support the generation of  common ground  . However, 
we realized this process alone would not ensure the construction of rich mathematical 
insights. Indeed, the  design research   led us to build in multiple supports to facilitate 
a common ground of rich mathematical talk. These supports were of four principal 
kinds, and we review each below. 

   Ordering of Lesson Topic 

 Faced with the challenge of how to support a classroom community’s maintenance 
of a  common ground   with shifting lesson topics, we ordered lesson topics so that 
central ideas built upon one another. With each new lesson topic, our concern was 
that students and teachers would be able to draw upon ideas from prior lessons as 
resources to construct new ways of communicating and solving problems. To illus-
trate, consider Integers Lessons 2 through 4, which covered some of the core, gen-
erative ideas in positive  integers   (depicted in Fig.  11.16 ). 

 Lesson 2 introduced the idea of  interval      and later  unit    interval  . In this progres-
sion, the idea of interval was used as a foundation to defi ne a unit interval, the inter-
val between 0 and 1. Later in the lesson, the idea was further extended to any 
distance of 1 on the  number line  , like the 4,5 or 5,6 distances. With an establishment 
of a  common ground   related to a unit interval in Lesson 2, Lesson 3 then further 
differentiated the idea of interval, building upon the idea of unit interval as founda-
tional to the idea of  multiunit      interval. Multiunits are defi ned as multiples of unit 
intervals, like intervals of 2, 3, 4, etc. This idea then serves as a foundation for stu-
dents’ understanding of arithmetic series (e.g., 0, 2, 4, 6…; 0, 3, 6, 9…).  

   Defi nitions and Principles 

 Over the course of the lessons, key generative ideas were introduced in the form of 
explicitly formulated  number line   defi nitions and principles. The defi nitions and 
principles were progressively introduced and displayed on large posters in front of 
the class. The complete set of defi nitions used for  integers   lessons are contained in 
Fig.  11.18 , and those for  fractions   are contained in Fig.  11.19 . The defi nitions and 
principles were intended as resources to support the generation of a  common ground   
as topics shifted. They supported a common lexicon that indexed key ideas that 
students used in communication and problem solving. They also supported the reso-
lution of discrepant solutions.

    The introduction of defi nitions and principles was coordinated with the sequenc-
ing of topics in the lesson sequence in  order      to maximize their utility in communica-
tion and problem solving. Like the lessons, the defi nitions and principles built upon 
one another; subsequent defi nitions often followed as entailments of prior defi ni-
tions. For example, the  defi nition   for  unit    interval   was presented in Integers Lesson 
2: the distance of 1 on a  number line  . The defi nition of  multiunit       interval      followed 
in Integers Lesson 3 as a logical extension: the multiple of a unit interval. In turn, 
these defi nitions led to the principle for positive  integers  , every (whole) number has 
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-4 -3 -2 -1 0 1 2 3 4

Name Definition Example

-4 -3 -2 -1 1 2 3 4

Greater

Less

Negatives

0

Positives

Order Numbers increase in 
value from left to right. 
Numbers decrease 
from right to left.

0 is a 
number

0 is a number, so it 
has a place on the 
number line.

0 1 2 3 4

0 1 2 3 4 5 6 7 8

same

1 1 1

3 2

Unit
Interval

A unit interval is the 
distance from 0 to 1 
or any distance of 1.

The distance between 
any two numbers on 
the number line.

Interval

0 1 3 4

2

Multiunit 
Interval A multiple of a unit 

interval.

Symmetry
For every positive 
number, there is a 
negative number that 
is the same distance 
from 0.

Every number has a 
place on the line, but 
not all need to be 
shown.

Every number 
has a place

0 3
6 9

1 1 1

3 3 3

Absolute 
Value The distance of a 

number from 0. -4 -3 -2 -1 0 1 2 3 4

Circle two numbers with the same absolute value.

|3| = 3|-3| = 3

0 5-13 13-5

  Fig. 11.18    Integers defi nitions and principles used in the  LMR   lessons       

a place. The subsequent defi nitions led to the introduction of negative integers (defi -
nitions of  symmetry      and  absolute value     ). At the beginning of the  fractions   unit, the 
defi nition of  subunit      built upon the prior defi nitions of unit and multiunit. 7   

7   From this point we refer to “defi nitions and principles” simply as defi nitions, even though some 
of the ideas to which “defi nitions” refer are actually in the form of principles (e.g.,  every number 
has a place   but doesn’t need to be shown ). 
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26
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8
7

6
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Name Definition Example

Subunit
Dividing a unit into 
equal distances 
creates subunits.

Length of 
the subunit

The more subunits 
in a unit the shorter 
the subunits are.

Denominator The number of 
subunits in a unit.

0 1 2

Unit

denominator = 4

Numerator The number of 
subunits.

Fraction numerator
denominator

Mixed 
Number

A whole number 
and a fraction.

Whole 
Numbers as 
Fractions

A whole number can 
be written as a 
fraction

Equivalent 
Fractions

Fractions that are 
in the same place 
but with different 
subunits.

Benchmarks

0, 1/2, and 1 are 
benchmarks. You can 
tell ABOUT how big a 
fraction is by 
comparing the 
numerator and 
denominator.

0 1 2

Subunit

Unit

  Fig. 11.19    Fractions defi nitions and principles used in the  LMR   lessons       
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   Cuisenaire™ Rods (C- Rods  ) 

 The productive use of C- rods   in both the tutorial and classroom  studies   by students 
and teachers led us to incorporate them at challenging transitions in the lesson 
sequence. In the lessons, we used C-rods of different kinds, including large/magne-
tized rods, translucent rods, and small wooden rods. The different rod types allowed 
them to be used in different contexts in the classroom—on the whiteboard, on the 
overhead projector, and at students’ desks. All C-rods are graded in size with rela-
tive sizes indexed by rod color (as depicted in Fig.  11.20 ); the white is the shortest 
and each consecutive rod length adds the length of another white rod. The size ratios 
afford the additive and multiplicative composition and decomposition of length. 8 

   We expected rods to be helpful at key transitions because they could support 
student thinking (serving  functions   like defi ning and measuring units, multiunits, 
and subunits) and render it more visible to others, properties that would support the 
generation of a  common ground   related to complex ideas. Recall, for example, the 
heated discussion in Ms. R’s classroom in Integers Lesson 7, when the class was 
moving from positive to negative  integers   and to labeling points for values with  unit   
lengths impossible to discriminate by perception. To solve the problem, Pierre used 
the yellow C-rod on the white board to represent a  multiunit      length of 1,000 units, 
asserting that the unlabeled point on the  number line   is −2,000. This use of the 
C-rod supported Carol’s epiphany that her initial answer of −1,006 or −1,007 was 
not correct. 

 Another example of the use of C- rods   to support a diffi cult transition comes 
from Fractions Lesson 3. In this lesson, students are engaged with the transition 
from identifying  unit    fractions   (fractions with a  numerator      of 1) to non-unit fractions, 

8   For example, for additive relations, the length of 1 red (2 units) plus 1 white (1 unit ) equals 1 light 
green (3 units); inversely, the length of 1 light green (3 units) minus the length of 1 red (2 units) 
equals the length of 1 white (1 unit). Similarly, the rods can be used to express multiplicative 
relations: 1 light green is the length of three whites, and 1 white is 1/3 the length of the light green. 

  Fig. 11.20    C- rods   used to 
support  common ground         
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fractions in which the numerator is greater than 1. We used C-rods to support this 
transition, designing problems in which the use of C-rods would support the parti-
tioning of units into subunits (e.g., a partition of a unit into three congruent parts 
[subunits] to create thirds) and then the use of multiple subunits to create a non-
unit fraction (to locate 2/3 by using two 1/3 subunits).  

   Recurrent Lesson Structure 

 For students and teacher to generate a  common ground   in classrooms requires that 
they participate actively in attempting to get across their communicative intentions 
and in actively making sense of the communicative intentions of others. Indeed, the 
supports that we built into the lessons for generating a common ground—the order-
ing of lessons, the support for defi nitions, the use of C- rods  —all require a back and 
forth of refl ective talk. 

 To privilege a back and forth of refl ective communications in classroom dis-
course, we settled on a recurrent fi ve-phase structure for lessons (depicted in 
Fig.  11.21 ). Each lesson begins with independent work on opening problems 
(opening problem phase), which support student initial refl ection on core ideas 
targeted in the lesson prior to whole class discussion. What follows is a whole 
class discussion that provides opportunities for students to share their refl ec-
tions and engage with others’ communicative displays (opening discussion 
phase). Subsequently, students communicate about and solve problems in dyads 
(partner work phase). Students then return to whole class communicative inter-
actions in which problematic ideas are surfaced and resolved in talk guided by 
the teacher (closing discussion phase). In the fi nal phase, students make use of 
the knowledge generated in the class to individually solve closing problems 
(closing problem phase); their solutions afford the teacher a window into student 
thinking that can inform further efforts to support  common ground   in subse-
quent lessons.

  Fig. 11.21    Five phase lesson 
structure used in  LMR   
lessons       
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11.2.3          Empirical Techniques Used to Analyze the Reproduction 
and Alteration of a  Common Ground   of Talk and Action 
in a Classroom Community 

 We now turn to the use of the  LMR   lesson sequence as a context to explore empirical 
 techniques   that can illuminate dynamics of the reproduction and alteration of a 
 common ground   within a classroom  microculture   over time. Guided by our concep-
tual  framework  , we sought to capture this process at both  collective   and indi-
vidual  level  s. We selected a single classroom community that we treat as a 
laboratory, illustrating both data collection techniques and techniques for reduction 
and analysis. 

11.2.3.1    Empirical Techniques: Data Collection 

 Figure  11.22  provides a bird’s eye view of the data sources from Ms. R’s classroom, 
the classroom that we selected to serve as our laboratory. 9  Some of these data were 
collected as a part of the  LMR   effi cacy  study   reviewed previously, like the  assess-
ment   of students’  integers   and fractions knowledge (pre, interim, post, and fi nal 
assessment) as well as video of selected lessons. But while such data sources would 
help us evaluate the effi cacy of the lessons relative to comparison classrooms, these 
data were too sparse in themselves. They could not inform an analysis of shifting 
 common ground  . For this reason, we collected more intensive data in our laboratory 
classroom. The complete set of data sources are detailed below.

9   There were two classrooms that we treated as laboratories, Ms. R. ’s and another, both of whom 
were partner teachers who participated in the development of the LMR  lessons (see classroom 
studies  reviewed earlier). Our choice of Ms. R’s classroom over the other teacher’s classroom was 
arbitrary. 

  Fig. 11.22    Data collection techniques used in Ms. R’s case study classroom       
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     Video Records (of Lessons) 

 Video records were collected during all 19 lessons using at least one high-defi nition, 
digital video camera and tripod. 10  During whole class discussion, the camera was 
placed in the rear of the classroom and oriented toward the teacher and the white-
board or overhead projector. While students were working at their desks, the camera 
operator followed the teacher as she circulated around the class observing students’ 
work and offering assistance. 

 For four focal lessons (Integers Lesson 5 and 7; Fractions Lesson 4 and 6), an 
additional camera and tripod was used. During whole class discussion, this camera 
was oriented towards students, who were either sitting at their desks or at the foot of 
the whiteboard. As students were engaged in work at their desks, additional cameras 
captured small working groups of preselected students.  

   Assessment of Integers and Fractions Knowledge 

 Ms. R, like all of the  LMR   teachers, implemented the 19-lesson sequence during 
the Fall semester, 2010. We targeted four points for  assessment  , each point with a 
different function in mind (see Fig.  11.22 ). A pre-assessment was administered to 
assess students’ baseline knowledge of  integers   and  fractions   prior to the use of the 
LMR  unit  . The interim assessment was administered after the 9 lessons on integers, 
but before the 10 lessons on fractions; the test was used to assess gains on integers 
but to also determine whether lessons supported an understanding of fractions, even 
without formal instruction on the topic. The post-assessment was administered just 
after completion of the fractions unit to assess immediate gains in both integers and 
fractions domains. The fi nal assessment was administered at the end of the school 
year, about 5 months after the LMR unit was implemented to assess whether any 
gains documented on the post-assessment were evident several months after the 
LMR curriculum was used. Each assessment lasted about 30 min. 11  

 We included in the  assessments   approximately the same number of items presented 
in  number line   and non-number line formats for both  integers   and fraction domains. 
In this regard, we anticipated the concern that since the focus of  LMR   lessons was 
using the number line format, students’ progress may well be limited to the number 
line representation. To determine whether that was the case, we included non-number 

10   Depending upon the focus of videotaping, we used between one and fi ve cameras in the classroom 
on a given day. When multiple cameras were used, the focus was on teacher and the class (two cam-
eras) and teacher, class, and partner work (fi ve cameras). One of our team members led the develop-
ment of a video manual to organize positioning of cameras to maximize coverage (Katherine Lewis). 
11   Though we administered four assessments, we made use of three different forms , with the post-
assessment  and fi nal assessment being the same form. Each of the three measures consisted of 
about 30 items. 18 problems were shared across measures (to enable scaling using an IRT model). 
On each of the assessments, we included number line  and non-number line items for both fractions  
and integers . Of particular interest was whether learning gains for students in Ms. R’s class and all 
LMR  classrooms might be limited to number line items or whether student learning might be 
refl ected on both number line and non-number line items. 
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line items. Because the curricular focus was on generative understandings, we 
expected that student gains would not be limited to number line representations.  

   After Class Interviews 

 Following the four focal lessons mentioned above, another source of data was 
obtained through after class  interviews   with select students. During the initial phase 
of the lesson, while students were engaged with solving the opening problems, three 
interviewers circulated around the class. Each interviewer attempted to identify two 
students who incorrectly solved one of the problems. Once a student was identifi ed, 
the interviewer knelt down next to the student and asked him or her for an explana-
tion, taking notes on the student’s solution and how he or she justifi ed it. 

 After the lesson concluded, each of the identifi ed students was interviewed using 
a structured protocol. This protocol was constructed with the intention of under-
standing the role of principles and defi nitions in the students’ thinking. First, the 
interviewer presented the student with a new copy of the opening problems and 
asked him or her to attempt one of them a second time (the problem the student had 
answered incorrectly). Whether or not the second solution was correct, the student 
was then asked a series of probes about his or her use of principles in solving the 
problem, or if principles could be used to justify the solution. Next, the student was 
presented with a counter suggestion. Students whose second attempt at the problem 
was correct were given an incorrect counter suggestion, and vice versa. A series of 
probes followed the student’s reaction, once again targeting the student’s ability to 
make connections between the different solutions and the  number line   principles.  

   Sociogram 

 Sociogram data were collected prior to the lessons to provide evidence of students’ 
initial  social position  s. Students were asked to name classmates they would like to 
sit next to in math, as well as those from whom they would ask for help in math. 
These two questions were designed to gather information about different kinds of 
social standing: the general social status of individual students, and the social status 
of individual students specifi cally with regard to math. The different types of justi-
fi cations children gave for their nominations helped to corroborate that students 
thought about these two questions differently. Sociogram data were collected again 
midway through the lessons in  order      to determine shifts in social positions upon the 
completion of the Integers Unit.  

   Teacher Interviews 

 After the lessons were taught, Ms. R was interviewed about two students in her 
class, Carol and Kail. These two focal students were chosen because they frequently 
participated in class discussions, and as a result we could more clearly observe the 
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evolution of their mathematical ideas over time. The interview was meant to gather 
information on the teacher’s perspective of shifts and changes in these students’ 
learning over the course of the  LMR   lessons. Questions asked were related to per-
formance in LMR, participation in class discussions, and ways in which the students 
managed their learning. A secondary goal of the interview was to get a sense of the 
teacher’s goals for creating norms for participation.   

11.2.3.2    Empirical Techniques: Data Reduction and Analytic Approach 

 The data sources provided an extraordinarily rich corpus of materials for analysis. 
But a host of challenges arose as we considered ways of reducing these so that they 
could leverage our efforts to understand the reproduction and alteration of a  com-
mon ground   over lessons. Preliminary challenges involved addressing the core 
questions of where to begin our analysis (should one data source be privileged over 
others?), and with a data source selected, how to begin to reduce that data source 
into productive units of analysis. 

 Where to begin? Our central research concern was to understand the reproduc-
tion and alteration of a  common ground   of mathematical talk over the lessons, and 
there seemed no better starting point than the video  records   of interaction over the 
19 lessons, with other data sources to be drawn into our analyses to explore and 
constrain conjectures about  collective   norms and genetic processes. But to make 
progress in the analysis of the enormous video record (about 20 hours of video), we 
needed a “road map” of the continuities and discontinuities in the use of representa-
tional  forms   that could orient us to processes of reproduction and alteration of a 
common ground over the lessons. 

 How might we create a “road map”? We viewed the answer to this question as 
key to productive work in the analysis of a  common ground   over the lessons at both 
the individual and  collective   levels. We appreciated that video  records   of the sort 
that we collected from Ms. R’s classroom are often mistakenly regarded as data. 
As many investigators have pointed out, they are data only in a very weak sense 
(Erickson  2006 ). They constitute only the pointing of a camera and pressing an on- 
switch. Thus a major challenge is how to turn video records into data that would 
allow for insight into the shifting common ground over these many hours of video. 
Such a transformation requires the construction of analytic units, their operational-
ization, and their application. 

 We considered varied possible alternatives for analytic units to track  com-
mon ground   in mathematical talk over lessons. We ultimately chose to focus on 
one set of representational  forms   that in retrospect seems quite natural: refer-
ences to defi nitions by teacher and students. We chose to focus on defi nitional 
forms for several key reasons: (1) Defi nitional forms were a distinguishing fea-
ture of the lesson sequence design; (2) they were developed with the explicit 
goal of supporting communication across shifting lesson topics; (3) they cap-
tured central mathematical ideas of the lessons; (4) their appearance in public 
displays could be readily documented. A systematic focus on teacher’s and stu-
dents’ references to defi nitions and principles over the lessons could provide 
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just the sort of leverage needed to begin an analysis of the reproduction and 
alteration of common ground, but it only partly answered our “how to begin?” 
question. 

 Having decided to focus on defi nitional  forms  , we lacked clarity on how to imple-
ment a coding of the video  records   across lessons. As a solution, we turned to video 
software that would support this effort. The software that we used was StudioCode. 
The software enabled us to code each occasion for which an individual referred to a 
 defi nition   (by naming it) in public discourse. The coding produced with the software 
provided a way to visualize the distribution of defi nition use in each lesson and shift in 
defi nition references across lessons. Such a visual representation provided a bird’s eye 
view of broad continuities and discontinuities in patterns of defi nition use and at the 
same time supported our efforts to dig deeper into the video record of the 19 lessons at 
key segments. We developed conjectures about why the contours of defi nition refer-
ences took the form that they did, identifi ed parts of the video for close analysis, and 
brought our additional data sources to bear as we worked through these conjectures. 

 The visual representation that we produced with the software is contained in 
Fig.  11.23 . In the fi gure all 19 lessons are represented serially, from left to right. 
Each row corresponds to a single  defi nition   or principle, and the rows are organized 
from top to bottom by the  order      in which the defi nitions and principles were intro-
duced in the lesson sequence. Each column corresponds to a lesson, and columns 
are blocked into  integers   and  fractions   lessons, each with dedicated subtopics. Each 
tick mark in the  timeline   corresponds to a single reference by an individual (student 
or Ms. R) to a defi nition or principle. 12 

12   In our coding procedure, we noted that sometimes references to defi nitions varied from their 
canonical forms  inscribed on the poster in front of the class. For example, the following variants 
were also coded as “unit  interval ”: “unit,” “interval  of one,” “distance of one.” We used this 
scheme to code all references to defi nitions or principles across all 19 lessons for both partner 
teachers. We established the reliability of the references to the defi nitions in one partner teacher’s 
classroom by having two coders independently re-code reference to defi nitions/principles for 
20 % of the video data evenly distributed across all of the lessons. We computed percent agree-
ment to be 86 %. 
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  Fig. 11.23    Timeline for references to defi nitions and principles in Ms. R’s classroom over the 19 
 LMR   lessons (opening and closing discussions only)       
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   To illustrate the  timeline  ’s organization, consider the fi rst row, references to 
 order     , the fi rst  defi nition   introduced in the lesson series. The tick marks that popu-
late the order row indicate each time that order was mentioned in each lesson’s 
opening/closing discussion (represented by the columns, with varying column 
widths corresponding to varying durations of lessons). Thus, one can note that refer-
ences to order were dense in the middle of Integers Lesson 1 and reference to order 
continued through every  integers   lesson with the exception of Lesson 4. 

 With the  timeline   generated, our fi rst step was to consider some of the timeline’s 
contours that capture frequency patterns in students’ and teacher’s references to 
defi nitions and principles. We note three contours below, and we use these contours 
to guide inquiry in subsequent sections.

   Contour #1. High overall density of references. Over the entire  timeline  , we fi nd 
many references to defi nitions. Indeed, for every lesson column, we fi nd at least 
some references, and, across the set of  integers   lessons, we counted 378 refer-
ences, and across the  fractions   lessons, we counted 536 references. Clearly, there 
was a great deal of  defi nition   use, especially given that the timeline only refl ects 
opening and closing discussions.  

  Contour #2. Pockets of densities. The density of references to any specifi c  defi nition   
was not equally distributed across lessons. Some, like  interval     , had pockets of 
greater reference when they were fi rst introduced. For example, references to 
interval was exceptionally dense in Integers Lesson 2, the fi rst lesson in which it 
appears. A similar trend appears for other defi nitions as well, like  unit    interval  , 
 absolute value     ,  subunit     , and benchmarks.  

  Contour #3. Continuity in use of defi nitions over lessons. Some defi nitions contin-
ued to be referenced over the course of many lessons. For example,  unit    interval   
received a great deal of use in Integers Lesson 2, and then was reproduced 
throughout subsequent lessons on  integers   and continued through many of the 
 fractions   lessons. Others did not.    

 Our second step was to make use of empirical  techniques   to explore how the 
contours emerged through the lessons. These contours became points of entry for 
our analyses of dynamic processes in the reproduction and alteration of a  common 
ground  . Employing the conceptual  framework   articulated in Sect.  11.1 , we began a 
coordinated analysis at  collective   and individual  level  s to illuminate processes of 
reproduction and alteration in the public displays of  form-function relations   that 
resulted in these contours. 

   Collective Level: A Focus on Emergent Norms in the Classroom Community 

 Recall from Sect.  11.1  that a  collective   level analysis requires a focus on sociomath-
ematical and  participation norms   that emerge in a classroom. Motivated by our con-
cerns to understand patterns in references to mathematical defi nitions, our illustrative 
analysis focuses on  sociomathematical norms  . In  order      to posit and corroborate 
conjectures about sociomathematical norms, we conducted observational analyses 
of key segments of video that included reference to defi nitions and principles. 
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 What emerged from our analysis were two  sociomathematical norms  : The fi rst 
norm entails the use of mathematical defi nitions when explaining thinking or justi-
fying reasoning. This norm we argue helps explain the fi rst contour, why  defi nition   
use is so dense over the lessons. The second norm engages the way defi nitions 
are used in public displays: Defi nitions should be either connected to particular 
problem contexts or follow entailments of other defi nitions. This norm illuminates 
the second contour, the periods of frequent references during which teachers and 
students are beginning to negotiate how to use particular defi nitions. 

   Sociomathematical Norm #1. Use Defi nitions to Support Your Ideas: Especially 
When Explaining Thinking or Justifying Reasoning 

 Guided by the  timeline  , we began by noting the enormity of references to defi ni-
tions (Contour #1). To understand what was occurring in talk during these refer-
ences, we examined coded instances. We discovered that the specifi c contexts of 
these references were varied. Some occurred as Ms. R and her class were engaged 
with discussions of the defi nitions poster (see Fig.  11.24 ). But others occurred in 
classroom discussions as students justifi ed their claims, or as Ms. R pushed stu-
dents to consider how a  defi nition   was relevant to problem solutions. In spite of the 
variation in contexts, we observed consistently that Ms. R was both actively using 
defi nitions and actively supporting their use by students in their public displays and 
argumentation. This led us to conjecture that the use of defi nitions to justify rea-
soning and argumentation constituted a sociomathematical norm in Ms. R’s class-
room. We also found that students appeared responsive to this norm of defi nition 
use. Such a sociomathematical norm would partially explain the overall density of 
defi nition use over the lessons.

   Consider more specifi cally the ways that Ms. R supported this norm. Sometimes 
Ms. R made meta-discursive comments about the importance of defi nitions, like 
exclaiming “awesome word!” when referring to the  defi nition   of a  subunit     . Other 
times when students used a defi nition, she noted with pleasure students’ references to 
defi nitions. Still other times, she would prompt students to use a defi nitional term in 
talk, with a marked intonation, starting a sentence for them to complete. For example, 
she attempted to elicit the name of the  unit    interval   defi nition saying that, “This  inter-
val      is a ___.” (pointing to the interval between 3 and 4 on the board), or “an interval of 
one is called a ____”. Finally, prior to posting a defi nition on the classroom poster, she 
spent preparatory time creating a context to motivate the need for a defi nition. 

 Yet another source of evidence that Ms. R supported students’ references to defi -
nitions (as normative) comes from ways that she treated their absence in students’ 
talk. Sometimes she re-voiced a student’s talk to include references to defi nitions. 
Other times, Ms. R treated a student’s lack of reference to a  defi nition   as a breach, 
offering the student an opportunity to reformulate their own thinking in accord with 
the sociomathematical norm. 

 Ms. R’s valuing of  defi nition   use can help to explain the relative density of refer-
ences to defi nitions across the lessons. But there was more to defi nition use than 
simply praising their appearance in student talk or providing occasions for invoking 
them. Ms. R also supported norms for how to use defi nitions.  
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   Sociomathematical Norm #2. When Defi nitions Are Used, Connect Them 
to a Particular Problem Context and/or to Other Defi nitions 

 Guided by the  timeline  , we began by exploring what was occurring in talk during 
the initial fl urries of  defi nition   use that constitute the second contour. Our process 
was iterative. We fi rst considered the initial references to one defi nition and devel-
oped a conjecture about what interactional work was occurring between teacher and 
students that might explain the density of defi nition use during these episodes. With 
this conjecture in mind, we then considered additional defi nitions and refi ned our 
conjecture. This process led us to posit a sociomathematical norm of “connected-
ness” that led to repeated reference to defi nitions: When public displays are made 
involving references to defi nitions, they should be either connected to particular 
problem contexts or to other defi nitions. 

 In the episodes of high density, we found that Ms. R was initiating the negotia-
tion of connectedness as a sociomathematical norm. For example, to support con-
nectedness, Ms. R pursued two approaches to elaborating defi nitions that build 
upon one another: formal defi nitions and ostensive defi nitions. Formal defi nitions 
provide articulations in speech and writing of the criteria for what is included and 
what is not included in a target category. Ostensive defi nitions present (or point to) 
particular instances of the idea. The fl urry of references to defi nitions was in part 
accounted for by Ms. R’s rapid back and forth between formal and ostensive 
defi nitions. 

 To illustrate, we consider her introduction of two defi nitions— interval      and  unit   
 interval  —that occurred towards the beginning of the lesson sequence. Early in 
Integers Lesson 2, Ms. R draws a  number line   on the board and labels 0 through 4 
(Fig.  11.25a ). She asks whether anyone has heard of the word “interval” before and 

(a) (b)

(c) (d)

  Fig. 11.25    Students’ participation in movement between formal and ostensive defi nitions       
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tells the class that it is a word they will be learning about. Her focus returns to the 
number line on the white board and she asks what would be the distance from 1 to 
3 (Fig.  11.25b ). She reiterates a student’s answer, calling it a “distance” of two. She 
then asks if anyone can fi nd another “interval” of 2 (referring back to the prior 
ostensive  defi nition   of an interval of 2). Once a few more have been identifi ed by 
students (Fig.  11.25c ), she asks for someone to identify an interval of 3. When a 
student says “four to one” (Fig.  11.25d ), Ms. R reinforces the answer and responds 
“he went four to one; we can also say one to four,” pointing to the equivalence of 
two statements that are each ostensive defi nitions of an interval of 3. In her sum-
mary of the discussion to the class, she offers a formal defi nition, saying that “inter-
val just means the distance between one number and another number.”

   Upon inspection, we fi nd that Ms. R’s introduction of the defi nitions for  interval      
is rich. She orchestrates the discussion by supporting a dynamic back-and-forth 
movement between the word form, “interval,” and formal and ostensive defi nitions 
of it. She begins by casting the word as an important learning goal but immediately 
moves away from it, asking what might seem like an unrelated question about the 
distance from one to three. Without making explicit the connection between this 
“distance” and the idea of an interval, she asks students for another exemplar (osten-
sive  defi nition  ), this time phrasing the question to include the word form “interval.” 
Only once a number of intervals have been identifi ed does she make explicit the 
relation between “distance” and “interval,” formulating a formal defi nition for the 
term. In addition to this back-and-forth movement from word form to exemplar, 
there is also movement from one exemplar to another. Even after repeated instances 
of an interval of 2 are identifi ed, Ms. R doesn't yet offer a defi nition. She also asks 
for students to name intervals of 3 and implies that the same interval can be named 
in 2 different ways (as “four to one” or “one to four”). 

 In this episode we also fi nd that Ms. R promotes connections between defi nitions, 
in this case between  interval      and  unit    interval  . After the discussion of interval, Ms. R 
introduces the idea of unit interval by stating, “there's a special type of interval that we 
have to know,” and marks the interval from 0 to 1 and asks for its size, which she also 
does for the intervals from 2 to 3 and 3 to 4. An interval of one, she says, has “a special 
name.” She points out that “an interval can be any number. I can do an interval of 50, I 
can do an interval of 63, I can do an interval of 1,000,402, I can do an interval of 4, but 
a unit interval can only be an interval of…” and the class responds in chorus: “One!” 

 Here, Ms. R is supporting students in making connections between a formal  defi -
nition   ( interval     ) and another formal defi nition ( unit    interval  ), as well as what counts 
as an exemplar of each (ostensive defi nition). In this process, she follows an entail-
ment of the class’ constructed defi nition of interval to generate a defi nition of a unit 
interval. Unit interval is defi ned in terms of the established defi nition of interval. 
A key idea is that unit intervals are a subset of intervals and, accordingly, the defi ni-
tion of an interval is more inclusive than the defi nition of unit interval. 

 Our focus on the  collective   level of activity—the  sociomathematical norms   of 
 defi nition   use and connectedness of ideas, like the interplay between ostensive and 
formal defi nitions in collective activity—is central to understanding the reproduction 
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and alteration of a  common ground   of talk and action in Ms. R’s classroom. Further, 
this level captures an important explanation for the fi rst two contours—the great 
number of references to defi nitions through the lessons (Contour #1), and the con-
centration of references early in the use of particular defi nitions or “pockets of density” 
(Contour #2). But we have yet to explore the  functions   that Ms. R and individual 
students were using defi nitional forms to serve. To explore the relations between 
defi nitional forms and their functions, we shift to the level of individual activity, 
turning our attention to the micro-, onto-, and  sociogenesis   of form- function rela-
tions with particular attention to Contour #3, the  continuity   in references to defi ni-
tions over lessons.   

   Individual Level: A Focus on the  Microgenesis  ,  Ontogenesis  , and  Sociogenesis   
of  Form-Function Relations   

 Recall from Sect.  11.1  that an individual  level   analysis of  common ground   entails 
a focus on how individuals tailor  forms   to serve mathematical functions in com-
munication and problem solving. In turning our attention to empirical  techniques   
that illuminate the individual level, we seek to explain the third contour—the 
recurring references to the same  defi nition   over the course of lessons. In our previ-
ous analysis of the  timeline   (Fig.  11.23 ), we noted that references to defi nitions 
like  order     ,  interval     , and  unit    interval   were introduced in earlier lessons but were 
also referenced repeatedly through later lessons, even as mathematical topics 
shifted. At fi rst blush, the recurrence of principles may present a puzzle: Why do 
certain defi nitions continue to reappear long after they are introduced? This puzzle 
led us to consider whether these defi nitions are being repurposed, which would 
explain their continued relevance across shifting mathematical terrain. To explore 
this conjecture about recurring references to defi nitions introduced early in the 
sequence (Contour #3), we needed empirical techniques to illuminate the functions 
that forms serve in activity. 

 We began our inquiry by selecting a single defi nitional form,  unit    interval  . The 
unit  interval      is a core, generative idea in the  defi nition   of a  number line  . It is also 
constitutive of additional core, generative defi nitions that lesson topics address, 
including defi nitions like  multiunit     ,  subunit     , and equivalent  fraction   s   (see defi ni-
tions of these terms in Figs.  11.18  and  11.19 ). Further, we noted that references to 
the unit interval refl ect the third contour. Indeed, the dedicated  timeline   contained in 
Fig.  11.26  shows references throughout the entire lesson sequence, long after the 
defi nition was initially introduced. In some  fractions   lessons it was referenced with 
considerable frequency.

   In the sections that follow, we illustrate a set of empirical  techniques   that are 
geared for explaining the presence of continued references to the  unit    interval    defi -
nition  . In this effort, we build on the treatment of the micro-, onto-, and  sociogen-
esis   of relations between defi nitional  forms   and the functions that they serve in 
activity. 
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   Microgenesis: Empirical Techniques and the  Unit    Interval   

 In Sect  11.1  we noted that, in the course of problem solving, individuals produce 
 microgenetic   constructions by tailoring representational  forms   like defi nitions, 
 number line  s, and C- rods   to accomplish emerging goals. Microgenetic construc-
tions are pervasive in our video  records   and in other data sources. In this section, we 
analyze a single classroom episode. Our intention in this analysis is to reveal the 
intrinsic property of microgenesis that makes it possible for the  unit    interval   to shift 
in function over time. Our analysis will illustrate that microgenetic constructions 
inherently reproduce aspects of prior forms or functions and, at the same time, gen-
erate alterations or variants. In what follows, we illustrate, during an  integers   lesson, 
how a variant form-function relation emerges in the process of microgenesis. 

 Our illustrative case occurs during Integers Lesson 4, not long after  unit    interval   
was defi ned in the class. By this point in the lesson sequence, we expected that indi-
viduals would use references to the  defi nition   in ways that were consistent with the 
original defi nition but that would also introduce productive alterations. In this epi-
sode, the class is collaboratively solving a problem. Students have been asked to 
place 7 on a  number line   where 0, 3, and 6 are marked (as depicted in Fig.  11.27a ).

   During the whole class discussion of the problem, a student, Carol, has come to 
the board and subdivided the  interval      between 0 and 3 into smaller, equally spaced 
segments using tick marks, which she labels “1” and “2” (Fig.  11.27b ). Ms. R then 
calls on Ravena to help move the class towards a solution. In Ravena’s display, she 
promptly places the numeral 7 at approximately the correct location, apparently 

  Fig. 11.26    References to the  unit    interval    defi nition   across  integers   and  fractions   lessons       

(a) (b)

(c)

  Fig. 11.27    Place 7 on the  number line  : Two students’  microgenetic   constructions involving the 
 unit    interval         
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making use of Carol’s generated  unit    interval   to do so, the 0 to 1 interval (see Fig.  11.27c ). 
Interestingly, she does not use C- rods   or other measurement tools, nor does she 
insert tick marks at 4 or 5. She appears to have made a mental  translation   of the 
unit interval distance created by Carol in  order      to approximate the location of 7 on 
the line. 

 What is signifi cant about Ravena’s  microgenetic   construction is the novel 
 function that the  unit    interval   serves. There is nothing explicit in the way that the 
unit  interval      was defi ned that indicated the unit interval could be translated to locate 
a number. What we see in Ravena’s construction is perhaps a productive alteration 
that she tailors to the particular problem at hand. 

 Ravena’s novel alteration of the  unit    interval   is one of myriad alterations in  form- 
function relations   produced in students’ and Ms. R’s activities over the course of the 
lessons. Microgenetic constructions like Ravena’s help maintain a common com-
municative ground with others, insofar as they reproduce aspects of the prior  defi ni-
tion   that are familiar to the classroom community. But such constructions also 
introduce novelty as an adaption to new  collective   problems that may become more 
frequent as lessons progress. Over time, such alterations would allow defi nitional 
forms like the unit  interval      to remain relevant across shifting problems and topics. 
This continued relevance would of course make it far more likely that earlier defi ni-
tional forms would be referenced across lessons (Contour #3).  

   Ontogenesis: Empirical Techniques and the  Unit    Interval   

 We now shift our analytic lens to  ontogenesis  : the development of individuals’ 
thinking and constructive activity over time. Microgenetic constructions do not 
occur in a vacuum. Rather, they are situated in a sequence of prior constructions that 
constitute an individual’s ontogenetic trajectory. Thus, each  microgenetic   construc-
tion produced by an individual is both enabled and constrained by their prior con-
structions—enabled in the sense that prior constructions provide a frame for current 
activity, and constrained in that subsequent constructions operate within limits set 
by prior ones. Put another way, individuals reproduce and alter their own prior con-
structions. They both create novel  functions   for forms that they already know and 
recruit new forms to serve functions that they already understand. An analysis of the 
form-function shifts that are inherent in ontogenesis can further illuminate the third 
contour, explaining how a  defi nition   like the  unit    interval   could remain relevant 
across shifting topics. 

 To illustrate empirical  techniques   to study the  ontogenesis   of  form-function rela-
tions   in ways that further illuminate the third contour, we make use of two data 
sources. We fi rst consider our after lesson  interviews  , and the way that they illumi-
nate shifts in function of the  unit    interval   through a lesson for an individual student. 
We then turn to our pre-, interim, post-, and fi nal assessments of students’ progress; 
we focus on a single item that captures each student’s use of the unit  interval      to 
name a point on the  number line   with an improper  fraction   over the course of the 
entire lesson sequence. 
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   After Class Interviews: Ravena’s After Class Interview and Shifts 
in Thinking Through the Lesson 

 As described in our section on data sources, the after class interview was a structured 
protocol that explored short-term  ontogenetic   changes in students’ thinking over the 
course of the lesson. The procedure included two phases. The fi rst phase occurred 
while the lesson was in progress, just as students were completing the solutions to the 
opening problems. As our research team members observed targeted students fi nishing, 
they quietly kneeled down and quickly queried students on their solution processes. 
The second phase occurred just after the math lesson concluded and consisted of a 
videotaped after class interview in which students were asked to solve the same prob-
lem again. Possible discrepancies between the student’s initial and after class thinking 
about the problems were then discussed between the interviewer and student. 

 We selected Ravena’s after class interview from Fractions Lesson 4 as an illus-
trative case (the same “Ravena” that we described in the prior section on  microgen-
esis  ). In our analysis, we have two purposes: To illustrate the affordances of the after 
class interview technique in illuminating the form-function  shifts   in students’  onto-
genetic   developments and to show how such data can be used to support an explana-
tion of Contour #3 from an ontogenetic perspective. 

 Recall that in Integers Lesson 4, Ravena produced a  microgenetic   construction in 
which she repurposed the  unit    interval    defi nition   so that it served a  translation   func-
tion, providing a means to locate a positive integer on a  number line  . In turning to 
an  ontogenetic   analysis, we consider a problem from Fractions Lesson 4 where 
translating the unit  interval      could also be a viable strategy for Ravena. But now our 
focus is on how Ravena reproduced and altered her own prior constructions. 

 The opening problem in Fractions Lesson 4 asked students to locate the mixed 
number 1 1/3 on a  number line   in which only 0 and 1 are labeled (see Fig.  11.28 ). 
The problem is particularly challenging because there is no tick mark that defi nes 
the 1 to 2  interval     . To produce a correct solution to the problem, students (and 
Ravena specifi cally) would need to understand a new set of  functions   for the  unit   
 interval  , functions that entail coordinating translations and subdivisions.

    Ravena’s initial solution during opening problem phase of the lesson.  In the 
opening problem phase, Ravena’s solution of the problem (see Fig.  11.29a ) was to 
mark 1/3 (not 1 1/3, as the problem calls for) by partitioning the  unit    interval   into 
three equal subunits and labeling the fi rst as 1/3 (see Fig.  11.29b ). In doing so, she 
produced a  microgenetic   construction in which she used the unit  interval      to serve 
the function of  subdivision  , generating the location for a fraction on the  number line  . 
At the same time, Ravena did not make use of the  translation   function that she used in 
the  integers   lessons, reviewed in the prior section. A coordination of subdivision and 
translation would have allowed her to locate the correct position of 1 1/3.

  Fig. 11.28    An opening 
problem for Fractions Lesson 
4: Locating a mixed number 
on the  number line         
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    Ravena’s revised solution during the after class interview.  In the after class interview, 
we found that Ravena was able to (partially) coordinate the  functions   of  subdivision   
and  translation   in her effort to locate the mixed number, 1 1/3. She located 1 1/3 
between 1 and 2, and she also used equal intervals in her partitioning. However, 
Ravena subdivided the  interval      between 1 and 2 into four subunits rather than three, 
and she had diffi culty labeling the subunits (see Fig.  11.29c ). 

 Our analysis of Ravena’s after class interview reveals the way that she drew upon 
and extended her prior  microgenetic   constructions to support her solution to a novel 
problem. In her after class solution, she translated the  unit    interval   to create the 
 interval      from 1 to 2, much as she had during the Integers lessons. She also subdi-
vided the unit interval as she had done in the opening problem and earlier  fractions   
lessons (see her solution to the Opening Problem). Her after class solution refl ected 
an adaptation in which she coordinated these  translation   and  subdivision    functions  , 
now used to locate a mixed number on the  number line  . This coordination, however, 
remains incomplete. She did not accomplish the subdivision of the 1,2 interval in a 
way that would allow her to identify the appropriate point. Thus, Ravena’s prior 
 ontogenetic   constructions enabled new advances, but they also constrained her abil-
ity to fully coordinate functions in a way that would lead to a correct solution. 

 Such short-term case studies of individual students provide rich material to 
explore  ontogenetic   trajectories; indeed, they can contribute to our understanding of 
processes involved in repurposing  forms   to serve novel functions over a single les-
son. But such case studies are limited to short time spans. We now turn to a comple-
mentary data set that allows us to explore shifts in each student’s thinking over a 
greater span of time, an approach that makes use of a different set of techniques.  

   Student  Assessment   Instrument to Document Longer-Term  Ontogenetic   Shifts: 
Pre-, Interim-, Post-, and Final Assessments 

 For the longer-term  ontogenetic   analysis, we made use of the student  assessment   instru-
ment previously referenced in our effi cacy  study  . Rather than focus on a total score on 
the assessment, our concern now was to make use of these assessment data to document 
shifts in the function of the  unit    interval   in students’ ontogenetic trajectories over the 
lesson sequence. To this end, we focused on a single item. We looked for evidence of 
shifting  functions   of the unit  interval      in each student’s responses across four points in 
time: prior to the  LMR   intervention (pre-assessment), after the  integers   lessons but 
before the  fractions   lessons (interim assessment), immediately following the fractions 
intervention (post-assessment), and at the end of the school year (fi nal assessment). 

(a) (b) (c)

  Fig. 11.29    The opening problem and Ravena’s solution and her subsequent solution in the after 
class interview       
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 Figure  11.30  contains the selected item. The item asked students to label a point 
as an improper  fraction   on the  number line  , with possible solutions presented in 
multiple-choice answer format. We deliberately selected each possible multiple- 
choice answer based upon observations from the classroom  studies   described earlier, 
when students were solving and justifying solutions to similar problems. Of particular 
interest for the present analysis is students’ choice of the  denominator     , 7 (in 8/7 and 
1/7) or 8 (in 8/8 and 1/8), and what we surmise the choice suggests about the func-
tion of the  unit    interval   in students’ solutions.

   Note that for the  number line   contained in Fig.  11.30  there are eight equal-size 
intervals, one of which extends beyond the longer (0–1)  unit    interval  . Based upon 
classroom observations, we anticipated the problem would present an intellectual 
challenge for students and that their answer choices would refl ect an  ontogenetic   
trajectory in the  functions   that they use the unit  interval      to serve. At a less sophisti-
cated level, students would not differentiate between equal-size intervals within the 
unit interval and those beyond the unit interval. Instead, students would treat all 
equal-size intervals in the same way—as subunits—leading to a  denominator      of 8. 
Over the course of the  fractions   lessons, however, students would shift in the func-
tion that they used the unit interval to serve. This shift would be marked by students’ 
use of the unit interval as a boundary in the construction of subunits and lead to 
choice of 7 as the denominator. 

 Figure  11.31  contains a representation of each student’s solutions to the problem 
at pre, interim, post, and fi nal assessments. To support qualitative analysis, we orga-
nized each student’s trajectory as a single line. The vertical axis of the graph repre-
sents the four different solutions, where the top two solutions feature 7 as the 
 denominator      (8/7 and 1/7), and the bottom two solutions feature 8 as the denomina-
tor (1/8 and 8/8). The horizontal axis of the graph represents the four points of 
 assessment  : pre-assessment (prior to  LMR   instruction), interim assessment (after 
 integers   but before  fractions   lessons), post-assessment (just after the fractions  unit  ) 
and fi nal assessment (at the end of the school year). The numbers that populate the 
graph are student identifi cation numbers and their associated lines represent the 
trajectories of the individual student.

   The graph reveals three noteworthy features relevant to shifts in function of the 
 unit    interval  . First, as expected, almost all students (10 of 13) begin by using 8 as the 

  Fig. 11.30    A recurring  number line   item used on pre-assessment   , interim assessment, post-assessment, 
and fi nal assessment (correct answer: (b) 8/7)       
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  Fig. 11.31    Ontogenetic trajectories in Ms. R’s class on a  fractions    assessment   item: “What is the 
number the arrow is pointing to? Circle the answer: 8/8, 8/7, 1/8, 1/7.” (Numbers in the graph 
represent student identifi cation numbers.)       
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 denominator     ; by post and fi nal  assessment   all students shift to 7 as the denominator. 
We take such cross-lesson trajectories to indicate that students are constructing new 
 functions   for the unit  interval      as they repeatedly engage with labeling the denominator 
for an improper  fraction  . 

 Second, at the interim  assessment  , several students have already made the shift 
to 7 as the  denominator     . At fi rst blush, this may be surprising. Recall that between 
the pre and interim assessments,  LMR   lessons covered  integers  , not  fractions  . 
Why might students have shifted, absent the introduction of the  subunit       defi nition   
in the lesson sequence? One plausible conjecture is that students extended their 
developing understanding of the  unit    interval   in identifying an improper  fraction  , 
building upon whatever instruction they had on fractions prior to the LMR inte-
gers lessons. 

 Third, after the  unit   on  fractions   (post-assessment   ), all students had shifted to 
8/7, the correct answer. 13  In this answer, the  numerator      refl ects the total number of 
subunits (8) from 0 to the unlabeled tick mark. We take this shift in answer choices 
as indicating an  ontogenetic   trajectory, one in which the unit  interval   serves a chang-
ing function in students’ constructions of numerator as well as the  denominator     . 

 Considered together, these three features capture a long-term shift in function of 
the  unit    interval  . The shift sheds further light on the third contour—the repeated use 
of a defi nitional form through the lesson sequence. Students appeared to be building 
upon the  defi nition   of the unit  interval      in their construction of subunits and the iden-
tifi cation of an improper  fraction   on the  number line  . This classroom-wide shift in 
function allowed the unit interval to remain relevant long after it was originally 
introduced in the  integers   lessons.   

   Sociogenesis: Empirical Techniques and the  Unit    Interval   

 Recall from Sect.  11.1  that our treatment of  sociogenesis   focuses on the population- 
wide distributional properties of  form-function relations  . At any one time in a com-
munity, numerous form-function relations are generated across the constructive 
activity of individual actors. Individuals may be using different forms to serve the 
same function, or the same form to serve different functions. Hence, certain form- 
function relations will be more widespread than others during a given  interval      of 
time. Furthermore, these distributions of form-function relations inevitably shift 
over time. For example, formerly widespread form-function relations may fall into 
abeyance; new functions for familiar forms may spread; and familiar functions may 
become increasingly accomplished by new forms. This focus on population-wide 
distributions marks a departure from processes of  microgenesis   and  ontogenesis  , 
which are limited in scope to the constructive activities of particular individuals. 

13   The graph also refl ects students’ performances on the fi nal assessment , about 16 weeks after 
LMR  instruction. We fi nd that most students reproduced their post-assessment solutions to the 
problem, 8/7, while three shifted to 1/7 as the solution. No students reverted to a solution for which 
8 was the denominator . 
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 A  sociogenetic   approach to an analysis of Ms. R’s classroom community leads 
us to inquire into the character of distributions of  form-function relations   and shifts 
in these distributions over time. Further, the approach would also lead to an analysis 
of the processes that support and constrain such distributional shifts. Attempts to 
make progress in this inquiry create an empirical challenge: How might we craft 
empirical  techniques   that provide information on shifting distributions of form- 
function relations as well as illuminate factors that support continuities and discon-
tinuities in distributions through time? 

   Documenting Shifts in the Distributions of  Form-Function Relations   

 In this section we focus on patterns in the co-occurrence of references to defi nitional 
 forms   across lessons. We conjectured that the co-occurrence of defi nitional forms 
might provide a window into shifting functions of the  unit    interval   through the lessons. 
Our assumption was that, when the unit  interval      is used in the context of a  defi nition   
like  multiunit     , it might be serving a different function than when it occurs in the 
context of a reference to  subunit     . 

 Figure  11.32  contains the  timeline   (presented previously) but now with several 
features made salient. Consider the different patterns of co-occurrence of selected 
defi nitional  forms   in Integers Lesson 4, Fractions Lesson 3, and Fractions Lesson 6. 
Across the three lessons (marked by bolded rectangles for emphasis), the fi gure 
captures the shifting contexts of the  unit    interval  ’s co-occurrence with defi nitions of 
 multiunit       interval     ,  subunit      interval,  numerator     ,  denominator     , and equivalent  frac-
tion   s  . These shifting defi nitional contexts for the unit interval suggest that it is serv-
ing different functions in public discourse over time.

   To focus more closely on these changing distributional contexts and their impli-
cations for shifts in function of the  unit    interval  , we generated a bar chart contained 
in Fig.  11.33 . To produce the chart, we calculated the proportions of references in 
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each targeted lesson using data contained in the time line. 14  The bar chart further 
reveals shifting patterns of co-occurrence of the unit  interval      with the other targeted 
defi nitions, including  multiunit      interval,  subunit      interval,  numerator     ,  denominator     , 
and equivalent  fraction   s  . These shifting defi nitional contexts, based upon what we 
know about the lesson topics, imply shifts in the function the unit interval is serving: 
In Integers Lesson 4, we fi nd that of the targeted defi nitional  forms  , the only refer-
enced  defi nition   that accompanies the unit interval is the multiunit interval. In con-
trast, in Fractions Lesson 3, a lesson in which the focus is on identifying  fractions   
greater than 1 on the  number line  , the distribution of references shifts. Now, the unit 
interval is still referenced, but there are many more references to the other  defi nitional 
forms (and an absence of references to multiunit). Denominator appears with the 
greatest frequency, but there are also references to subunit and numerator. In 
Fractions Lesson 6, when equivalent fractions are introduced, the distribution again 
shifts markedly. Now, in this lesson, the focus is on the construction of equivalent 
fractions, using subunit as a means of generating new fraction names for the same 
point (and again, with no reference at all to multiunit).

   To corroborate our conjecture that shifting patterns in the co-occurrence of the 
 unit    interval   with other defi nitions refl ect shifts in the function that the unit  interval      

14   To determine proportions, we counted the number of total references to each of the fi ve defi ni-
tions for each lesson. In this computation, we divided the number of references by the total number 
of references for each lesson. Note that total number of references to the selected defi nitions (n) 
differs markedly by lesson. There are two reasons for these differences. First, other defi nitions 
were referenced in the lessons, and so the number of instances does not refl ect the total number of 
instances referenced in a given lesson. Second, Ms. R decided to devote two math periods to F-3; 
as a result, more references were made to defi nitions for that lesson than the other two lessons. 
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serves, we turned to video  records   of lessons. What we found did indeed corroborate 
our conjecture. In Integers Lesson 4, for example, some students used the unit interval 
(in coordination with references to multiunits) to translate distances that had a value 
of 1 on a line to label unidentifi ed points. In contrast, in Fractions Lesson 3, when 
trying to label a point greater than 1 with an improper  fraction  , some students used 
the unit interval as a means to compute both the  denominator      and the  numerator     . 
Then, in Fractions Lesson 6, the unit interval was repeatedly partitioned to identify 
equivalent  fraction   s   on the  number line  . 15  Thus, inspection of video records pro-
vided additional support for our interpretation of the shifting patterns of the co-
occurrence of references to defi nitional  forms  —that these patterns refl ected shifting 
functions of the unit interval in classroom discourse.  

   Explaining Shifts in the Distributions of  Form-Function Relations   

 What might contribute to the shifts in function of the  unit    interval   in Ms. R’s class-
room community? We have already remarked that the  sociomathematical norms   in 
Ms. R’s classroom support  defi nition   use. We have also already demonstrated the 
important role of the shifting topics in the  LMR   curriculum. Beyond these factors, 
what other elements of  collective   life could infl uence shifting distributions of  form- 
function relations  ? 

 In this section, we examine  social position  s of participants in the classroom com-
munity as a possible answer. To capture social positions in Ms. R’s classroom, we 
employed a  sociogram   to capture how Ms. R’s students view one another’s mathe-
matical competence. We conjectured that students’ understanding of one another’s 
competence may well be implicated in whether and how they take up  form-function 
relations   that appear in one another’s public displays. This uptake would then con-
tribute to the shifting distributions of form-function relations in the classroom 
community. 

 Figure  11.34  displays the results of the procedures that we used to generate the 
 sociogram   data. The left column contains the students’ answers to the question, 
“who would you seek math help from?” The right column contains the names of the 
students they would target for help. Thus, the number of convergent lines on names 
in the right column provides an index of the “ social position  ” of students with 
respect to perceived competence in math. We observed that several students are 
nominated numerous times by others.

   As evidence of the potential utility of the  sociogram   in explaining the shifting 
distribution of  form-function relations   in a  sociogenetic   analysis, we return to the 
initial excerpt from Ms. R’s classroom. Recall that Carol appeared to shift in her 

15   We note an issue that is important but that we have not taken up in our analysis of sociogenesis:  
In Ms. R’s classroom during any particular lesson, students may well have been using the same 
form, like the unit  interval , to serve different functions  in classroom displays during the same 
period of time (like a whole class discussion). Our coding schemes did not allow us to document 
these form-function distributions. Variant functions for the same form are to be expected in socio-
genetic processes, and we expect that these phenomena were very much a part of the nuance of 
classroom discourse in Ms. R’s community. 
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thinking over the course of the episode. Although she initially used the  unit    interval   
to provide a value for an unlabeled tick mark on the  number line   (−1,006 or −1,007 
for the position of −2,000), she ultimately shifted to using a  multiunit       interval      
(1,000) to serve the same function, achieving a more adequate solution. Recall also 
that the shift occurred after Carol observed public displays of Kail and Pierre, each 
of whom objected to Carol’s answer (which was produced through the  translation   of 
a unit interval). In contrast to Carol’s display, Kail and Pierre’s displays made use of 
a multiunit interval (multiunit interval of 1,000). 

 We believe that it is more than coincidental that Carol nominated Kail as some-
one she should go to for help in math (see  sociogram  , Fig.  11.34 ). We suspect that 
Carol’s view of Kail’s mathematical competence may have shaped her refl ections 
on Kail’s solution and ultimately contributed to a reconsideration of her own solution 
approach. We are certainly aware that there are other factors that mediated Carol’s 
shift including her interpretation of Kail’s and Pierre’s displays, an interpretation 

  Fig. 11.34    Sociogram showing who students would prefer to seek mathematical help from on a 
hard problem (direction of preference,  left  to  right )       
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that initially privileged her own solution as the more appropriate. Indeed, we noted 
that Carol does not immediately defer to Kail, reiterating publically her own solu-
tion with a logic that makes sense to her. However, it may well be the  social position   
she accords to Kail that pushes her to reconsider, and it is her reconsideration that 
leads to her epiphany.       

11.3     Final Thoughts and Next Steps 

 In this chapter, we addressed two challenges. The fi rst was to extend a framework 
for the study of the cultural development of mathematical ideas (Saxe  2012 ) to the 
analysis of classroom communities. We presented this extension in the fi rst section 
of the chapter, directing it towards a central but under-conceptualized (and under- 
studied) dimension of teaching-learning interactions: the reproduction and altera-
tion of a  common ground   of talk and action over lessons in classroom communities. 
In the extension of the framework, we treated classroom communities as microcul-
tures reproducing and altering a common ground of mathematical talk and action as 
topics shifted over lessons. To accomplish this, we specialized, refi ned, and elabo-
rated constructs used in cultural treatments of cognition, adapting them to the world 
of classrooms. 

 The second challenge was to explore the utility of the framework through the 
development and deployment of a coordinated set of empirical  techniques  . To 
address this challenge, we engaged in two related strands of empirical inquiry that 
we described in the second section of the chapter. One strand was preparatory. It 
involved a coordinated set of interview, tutorial, and classroom  studies   that sup-
ported the development of  LMR  ’s 19-lesson sequence. The central interest of the 
LMR team was to generate a lesson series that would afford  continuity   over lessons 
through the use of the  number line   and related defi nitional  forms  . Throughout, our 
focus was on the framework-motivated construct of  common ground  , central to pro-
cesses of teaching and learning in whole class discussions. The experimental study 
corroborated the utility of the design approach by demonstrating strong effects on 
student learning when compared to students in classrooms that were implementing 
a well-regarded (non-LMR) curriculum. 

 The other strand of the chapter on empirical  techniques   focused on an analysis of 
the lessons themselves as they came to life in a classroom community. Our goal was 
to understand the reproduction and alteration of a  common ground   as lesson topics 
shifted, drawing upon data sources generated in a single classroom. To leverage our 
empirical inquiry, we focused on the defi nitional  forms   that the lessons supported 
and the variant functions that the defi nitions were used to serve. Using our archive 
of video  records   along with video analysis software, we produced a  timeline   of 
references to defi nitional forms during whole class discussions. The timeline sup-
ported a two-pronged investigation. First, we pursued an analysis of  collective   
activity: the emergence, reproduction, and alteration of norms that regulated joint 
activity in the classroom. Guided by trends in the timeline, we developed  conjectures 
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about the emergence of  sociomathematical norms   and supported them with close 
analysis of video records. Second, we pursued an analysis of individual activity. 
We coordinated (a)  microgenetic   analyses of references to defi nitions in our video 
records and after class  interviews  , (b)  ontogenetic   analyses that drew particularly 
upon our pre, interim, post, and fi nal assessments, and (c)  sociogenetic   analyses that 
drew on the shifting distribution of form-function relations in the classroom com-
munity as well as analyses of  social position  s of students that may have supported 
the reproduction and alteration of particular form-function relations. 

 We now bring our inquiry to a close, revisiting our orchestration of key con-
structs of the framework. We represent those constructs in Fig.  11.35 . Featured in 
the fi gure is a display of the reproduction and alteration of a  common ground   
through time, including the intrinsic role of  collective   and individual activity, as 
well as associated constructs of  sociomathematical norms   and genetic processes.

   The fi gure schematizes two sequential time periods in a classroom, Times 1 and 2, 
the temporal dimension being at the crux of our analytic approach. The two time 
periods can be conceptualized as two consecutive lessons, two consecutive phases 
within a single lesson, or two durations of time within a lesson phase. Regardless of 

  Fig. 11.35    A schematization of individual and  collective   activity over lessons       
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the  unit   of time, the fi gure depicts a  common ground   emerging through time as a 
result of an interplay between  collective   and individual activity. 

 At Time 1, the fi gure portrays a nexus of relations constitutive of a  common 
ground   as  collective   and individual activity become reciprocally constituted. The 
collective activity of classroom life (e.g., the  sociomathematical norms   like the use 
of defi nitions in argumentation,  social position  s like who is “good” at math, public 
displays of  form-function relations   used in the community) affords social meaning 
for the constructive activity of individuals. At the same time, individual activity is 
constitutive of collective activity. In the fi gure, Student1, Student2, Student3, and 
the teacher are producing public displays of their  microgenetic   constructions, tailor-
ing forms to serve communicative and problem solving functions (and at the same 
time contributing to the reproduction and alteration of collective norms). 

 At Time 2, the fi gure shows a reproduction and alteration of a  common ground  . 
Although the actors remain the same, the conditions of activity have changed with 
shifting topics or problems. To illustrate, consider the  unit   of time to be a lesson in 
the  LMR   sequence: A problem may have changed from labeling a whole number on 
the  number line   to labeling a negative integer on the line. In such changing condi-
tions, we may fi nd both  continuity   and  discontinuity   across time periods. At the 
 collective   level, we expect to fi nd both the reproduction and alteration of norms, as 
students explain their thinking to one another and justify their claims with refer-
ences to defi nitions. At the individual  level  , students at Time 2 may be introduced to 
new defi nitional  forms   to solve problems in their  microgenetic   activity. Individuals 
at Time 2 are also drawing on their prior constructions, creating continuity and dis-
continuity in their  ontogenetic   developments. Finally, the directional line at the bot-
tom of the fi gure represents the  sociogenesis   of forms and functions. In their 
constructions, teacher and students are at once drawing upon form-function rela-
tions used previously while at the same time, they are contributing to the reproduc-
tion and alteration of form-function relations and their distribution in the 
community. 

 A lingering and important question in our chapter is whether the general treat-
ment that we have offered has legs: Is the analytic approach and  methodology   that 
we have elaborated applicable to the study of other classrooms beyond those imple-
menting the  LMR   curriculum? As we alluded to at the beginning of Sect.  11.2 , in 
the construction of the lesson sequence we included features that afforded system-
atic inquiry about the interplay between processes of teaching and learning in class-
room communities, like the defi nitional  forms   that leveraged our analysis of the 
reproduction and alteration of a  common ground  . Given the leverage afforded by the 
LMR lessons, we ask the question, is the conceptual and methodological progress 
that we have made inextricably linked to the LMR lesson sequence alone? 

 We are cautiously optimistic that the framework and techniques for cross-lesson 
analyses will be useful for other projects. Indeed, one can ask about any classroom 
community an important question at the crux of teaching-learning interactions: 
What is the character of the  common ground   that is being reproduced and altered 
across lessons? To what extent are students and teachers operating on one another’s 
meanings in ways that both lead to a productive common ground and seed the 
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 construction of new generative ideas? At the same time, we expect that researchers 
studying classrooms will develop new focal points for analysis and will need to cre-
ate new empirical  techniques   that differ from those we have developed. Indeed, we 
regard the methodological approach that we have developed as a useful starting 
point, opening up new conceptual and empirical territory in classroom research.     
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    Abstract     Research about education in mathematics is infl uenced by the ongoing 
dispute about qualitative and quantitative research methods. Especially in the 
domain of professional knowledge of teachers one can fi nd a clear distinction 
between qualitative, interpretive studies on the one hand and large-scale quantitative 
assessment studies on the other hand. Thereby the question of how professional 
knowledge of teachers can be measured and whether the applied constructs are 
developed on a solid theoretical base is heavily debated. Most studies in this area 
limit themselves to the use of either qualitative or quantitative methods and data. In 
this chapter we discuss the limitations of such mono-method studies and we show 
how a combination of research methods within a “mixed methods design” can over-
come these problems. Thereby we lay special emphasis on different possibilities a 
mixed methods approach offers for a mutual validation of both qualitative and quan-
titative fi ndings. For this purpose, we draw on data and results coming from an 
empirical study about a teacher training program in mathematics, where quantita-
tive data measuring the development of professional knowledge of student teachers 
were related to qualitative in-depth interviews about the training program.  
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12.1         Introduction 

 The dispute about qualitative and quantitative research methods and about possibili-
ties to combine these methods is a crucial and up to date topic in the fi eld of research 
in mathematics education. Current discussions do not only touch questions about 
the practical implementation of qualitative and quantitative research designs and 
about their empirical outcomes—there are also deeper epistemological questions at 
stake, as Philipp Mayring pointed out in a plenary lecture at the 44th annual meeting 
of the German Society of Didactics of Mathematics (GDM) in Munich (Mayring 
 2010 ), thereby drawing on the well-known expression of “Science Wars” (Bammé 
 2004 ). Although in empirical research in the social sciences qualitative and quanti-
tative methods are often used simultaneously within the same research project, the 
differing methodological approaches underlying qualitative and quantitative 
research are still an important topic within methodological debates in the fi eld of 
mathematics education. 

 With the well-known large-scale comparative studies such as TIMSS (Baumert 
et al.  2000a ,  b ) or PISA (Baumert et al.  2001 ) in the 1990s and 2000s in Germany 
a vivid and ongoing discussion about methodological and epistemological funda-
mentals and tenets of different empirical research methods, which is taking place 
all over the social sciences, has also reached the fi eld of mathematics education. 
Recent years saw a growing empirical research interest in the domains of teacher 
education and teacher training programs, a development also sparked by certain 
large-scale comparative studies like the international comparative IEA study 
TEDS-M (Blömeke et al.  2010a ,  b ) or the national COACTIV study (Kunter et al. 
 2011 ), which follow the tradition of PISA. Meanwhile, there is a variety of quan-
titatively and qualitatively oriented approaches in research on the so-called pro-
fessional knowledge of teachers and a methodological dispute takes place about 
these different approaches. By now, only few empirical studies in mathematics 
education try to combine qualitative and quantitative research methods in a com-
mon design. The aim of this chapter is to discuss the advantages as well as the 
challenges of such an approach. 

 In the fi rst two sections of the chapter we describe some crucial aspects of the 
dispute over “qual” and “quan” and discuss the methodological background of the 
qualitative-quantitative divide fi rst in the social sciences in general and secondly in 
research on mathematics education. In both areas much of the (often justifi ed) 
methodological criticism of both sides is not used in a productive manner, that 
means: the criticism of the other side is not taken seriously as an inducement to 
deal with the weaknesses of one’s own approach but answered in a “tit for tat” way 
by pointing to the shortcomings of the other side. 

 “Mixed methods” is a brand name for a methodological movement which offers 
ways out of the described dead end streets of endless methodological warfare and 
which now looks back on 20 years of practical research experiences and method-
ological debate. In section four we discuss terminological distinctions relevant for 
mixed methods research, in particular the distinction between the integration of 
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different types of data and analysis techniques on the one hand and the integration 
of qualitative and quantitative sub-studies within one research design on the other 
hand. To conceptualize the latter, the notion of triangulation is of great importance. 
We describe two types of triangulation, namely triangulation for the sake of mutual 
validation and triangulation as a mutual supplementation of research results which 
provides a more complete picture of the research domain. 

 At the core of mixed methodology is the idea that both qualitative and quantita-
tive research methods have specifi c limitations with respect to certain research 
questions and research domains. In the fi fth section of the chapter we discuss the 
most important strengths and weaknesses of both qualitative and quantitative meth-
ods and how they can be balanced by drawing on different types of mixed methods 
designs. Thereafter we describe the implementation of a mixed methods approach 
in research on mathematics education with the help of a practical example. This 
example makes clear how qualitative methods are helpful for the interpretation of 
quantitative results and how they may provide extensive background information 
for the evaluation of educational processes in mathematics teacher education on the 
level of performance tests. It also shows that “mixed methods” does not mean to 
merely make concessions to both camps in the ongoing qual-quan-debate, but rather 
to develop a complex methodology bringing about a variety of new challenges.  

12.2     “Mixed Methods”: Challenging the Qualitative- 
Quantitative Divide in Social and Educational Research 

 Looking at current methodological writings one may think that the long-lasting 
“paradigm wars” (Gage  1989 ) between the quantitative and the qualitative methods 
tradition have lost much of their attraction in the past years, especially since the 
advent of a movement in educational research to end paradigm wars, which now has 
also infl uenced other social science disciplines, e.g. sociology and psychology. At 
present this movement is widely known under the label “mixed methods” which 
means the integration of qualitative and quantitative methods (Tashakkori and 
Teddlie  2003 ,  2010 ). The experience of research practitioners that both qualitative 
and quantitative methods can be necessary in empirical research can already be 
learnt from famous social studies from the 1930s onwards—among them the 
“Hawthorne Study” (Roethlisberger and Dickson  1939 ) or the “Marienthalstudie” 
(an investigation among Austrian unemployed workers shortly after the great 
depression; Jahoda et al.  1982 /1933). However, until nowadays it remains still dif-
fi cult to obtain methodological advice on how qualitative and quantitative fi ndings 
can be related to each other in order to achieve valid research results. This may be 
due to the fact that “paradigm warriors” often restrict their arguments to general 
epistemological ideas on the nature of reality (emphasizing, for example, that there 
are “multiple realities”) , whereas “pacifi sts” or “integrationists” (e.g. Bryman 
 1988 ; Brannen  1992 ; Cresswell  1994 ; Tashakkori and Teddlie  1998 ,  2003 ,  2010 ) 
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have mainly developed methodological guidelines for method integration and 
regard theoretical and substantive aspects as a matter to be decided according to the 
requirements of each respective research project. However, the efforts to combine 
qualitative and quantitative methods often lack a solid methodological basis in 
research practice, as meta-analyses about mixed method studies have shown 
(Bryman  2005 ,  2008 ): researchers frequently combine quantitative and qualitative 
methods without providing a clear rationale for their choice of methods. And quali-
tative and quantitative fi ndings are often not integrated in a coherent way when 
results from such research projects are presented. That makes clear that the mixing 
of methods in a certain research design is a challenging task: it is never suffi cient 
simply to piece together different types of data and analysis methods. On the con-
trary, researchers must make sure that the different data and methods used are 
related to an overarching conceptual framework, so that the mixing of methods does 
not break the research question, research topics and theoretical base of the project 
into unrelated parts. Furthermore, in order to relate qualitative and quantitative data, 
methods and research results to each other in a meaningful way, the research logic 
as well as the specifi c methodological problems of weaknesses of either tradition 
must be taken into account. 

 Reasons for the unsatisfactory situation that in many mixed methods studies 
methods are only juxtaposed but not truly integrated do not only lie in a lack of 
competencies of empirical researchers but also in the state of the methodological 
discussions about mixed methods. In this debate it is often emphasized that the use 
of methods should be predominantly infl uenced by substantive research questions, 
and not by methodological and epistemological considerations alone. Moreover, it 
is often maintained that all methods have specifi c limitations as well as particular 
strengths, and that they should be combined in order to compensate for their mutual 
and overlapping weaknesses (Johnson and Turner  2003 , p. 299). However, crucial 
questions regarding the relation between research domains, research questions and 
research methods have been still not addressed suffi ciently in methodological dis-
cussions. For which types of research questions are qualitative and quantitative 
methods suited better? What are the typical weaknesses and strengths of qualitative 
and quantitative methods in relation to particular research domains? To develop 
mixed methods approaches it would be thus helpful not to simply dismiss the debate 
between qualitative and quantitative approaches as an outmoded “paradigm war” 
but to use criticisms coming from the both sides in this debate in a productive way. 
For this purpose we must look at the rational arguments behind the polemic attacks 
which relate to real shortcomings of either tradition (for details cf. Kelle  2006 ). 

 A crucial limitation of quantitative research, for instance, stems from the require-
ment to construct precise and clear cut hypotheses before data are collected. The 
reason for this requirement is clear. For serious statistical analyses standardized data 
are needed. To collect such data one has to have a clear cut idea about the entities 
one is observing and their attributes. Quantitative research is thus strongly tied to a 
hypothetico-deductive (HD-) approach: research is conceptualized as a process 
whereby elaborated hypotheses are fi rst deduced from theories, then operational-
ized and subsequently tested with the help of empirical data. Qualitative critics of 

U. Kelle and N. Buchholtz



325

this approach point out correctly that in certain areas of investigation social researchers 
do not have enough theory and precise concepts at hand to construct instruments for 
the categorization of phenomena in the fi eld. In such areas it would require the 
availability of culture-specifi c knowledge to operationalize theoretical concepts and 
to develop measurement instruments. A meticulously constructed questionnaire, for 
instance, may yield an invalid and highly misleading picture of the investigated 
domain if research subjects understand a question in a different way than the 
researchers, or if the topics treated are not relevant for the respondents. On the other 
hand, from the beginning of the qualitative tradition, statisticians blamed qualitative 
researchers for not providing a basis for sound generalizations because of the lack 
of representativeness of small N studies. In qualitative studies case numbers are 
often small and one may get the impression that they are somewhat arbitrarily 
selected—this raises doubts about the generalizability or (to use a more careful 
word: “transferability,” cf. Guba  1981 ) of fi ndings. Furthermore quantitatively 
minded critics have often noticed with unease that data in qualitative research seem 
to lack objectivity and are not collected following an explicit theoretical rationale. 

 There is an extended discussion about epistemological implications of such argu-
ments and this methodological dispute as well as proposals how to overcome such 
differences (which may seem irreconcilable at least at fi rst sight) can be found in 
almost all social science disciplines, and consequently also in research on mathe-
matics education. In the following we want to trace this dispute and discuss strate-
gies of how basic arguments from it can be used in a productive manner for the 
application of mixed methods designs.  

12.3     The Dispute About “Quan” and “Qual” and Mixed 
Methods in Research on Mathematics Education 

 In the 1960s and 1970s a methodological shift took place in research on mathemat-
ics education. Up to this point, Piaget’s developmental psychology (Piaget and 
Szeminska  1965 ) was dominant and empirical research focused on (qualitative) 
observations. But as early as in 1962 Bruner noticed a “revival” of interest in cogni-
tive processes, which later led to the so-called cognitive revolution in psychology 
that stimulated standardization of research methods and set in motion a movement 
towards quantitative research:

  The past few years have witnessed a notable increase in interest in and investigation of the 
cognitive processes – the means whereby organisms achieve, retain and transform informa-
tion. This increase in interest and effort should, we suppose, be counted as a “revival,” since 
there was an earlier time (the years before the First World War), when the Higher Mental 
Processes constituted a core topic within psychology. (Bruner et al.  1962 , p. vii) 

   In the 1980s and 1990s, due to the growing importance of cognitive processes for 
psychological research, theories from cognitive psychology (for example Anderson 
 1980 ) began to play a more important role in mathematics education. And with this 
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a broader discussion started between more elaborated constructivist qualitative 
approaches in research on the one hand and adherents of critical rationalism on the 
other hand who normally favored quantitative methods (e.g. Brezinka  1968 ). 
However, the integration of qualitative and quantitative methods was not a topic at 
that time, although some American researchers already tried to combine methods in 
small N studies in research about teachers’ professional knowledge (Carpenter et al. 
 1988 ,  1989 ; Carpenter and Fennema  1992 ; Fennema et al.  1996 ). In an overview 
about methodological research at that time, Wellenreuther ( 1997 ) distinguished 
between four different research approaches: (1) diagnostic/descriptive research 
about learning behavior, attitudes and strategies, (2) research about mathematics 
instruction (teaching and behavior of students), (3) experimental research as pro-
spective research and (4) developmental research. The author related each of these 
approaches either to the constructivist or to the rationalist paradigm and argued for 
a methodological pluralism in research on mathematics education. In particular, he 
criticized the prevailing dominance of qualitative research in that fi eld; especially 
since such qualitative studies often led to empirical results that were not empirically 
testable. However, Wellenreuther did not bring up the possibility to integrate quali-
tative and quantitative research methods to overcome such problems. Others men-
tioned this option only as a possible combination of methods in the context of the 
same research paradigm. Beck and Maier for example proposed a supplementary 
use of interviews in research on mathematics education in the following way:

  To get valid test results, many projects make the attempt to combine several methodological 
instruments. One method is supposed to complete or control the fi ndings that were obtained 
with the help of the other method(s). However, no objection, as long as the various methods 
are based on a unifi ed paradigm. 1     (Beck and Maier  1993 , p. 174, translated by N. Buchholtz) 

   In the late 1990s the TIMSS study (Baumert et al.  2000a ,  b ) had a great infl uence 
on the German debate about mathematics education. Thereby, the methodological 
discussion between proponents of quantitative approaches and followers of qualitative 
methods began to escalate. At that time, Kaiser maintained the possibilities and 
limitations of different research approaches in the fi eld of empirical research, espe-
cially for international comparative studies (Kaiser  2000 ). In doing so, she identi-
fi ed problems and limitations of both quantitative and qualitative approaches: 
According to Kaiser, large-scale studies were criticized for the fact that (1) their 
results depend on the selection of the items used, (2) that curricular validity cannot 
be guaranteed and (3) that the applied tests claim to measure one single latent ability 
(i.e. mathematical literacy). This assumption of unidimensionality, however, could 
be merely a product of the research methodology applied. It is still a substantive 
question, whether certain heterogeneous mathematical skills can be subsumed 
under a single ability at all. On the other hand, qualitative studies were criticized 
since (1) they often do not comply adequately with the usual methodological stan-
dards of qualitative research and since (2) often data are not satisfactorily connected 

1   Beck and Maier distinguish slightly differently between the “normative” and the “interpretive 
paradigm” going back on Wilson ( 1970 ). 
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to theoretical assumptions. For this reason, Kaiser recommends the  integration  of 
the different methodological approaches:

  In the analysis of the capabilities of quantitative-statistical studies the interpretation of the 
data more than once referred to accompanying qualitative investigations. Without these 
investigations a substantial interpretation of the data would not have been possible. […] 
This makes clear that international comparative studies, which intend to produce more than 
just rankings and which intend to explain the background of their results require an integra-
tion of both types of methodological approaches. (Kaiser  2000 , p. 188f, translated by 
N. Buchholtz) 

   Recent critiques of quantitative approaches in research on mathematics educa-
tion were formulated by researchers who work in the fi eld of qualitative research 
(Jahnke and Meyerhöfer  2006 ; Hopmann et al.  2007 ) shortly after the publication 
of results of the fi rst PISA studies (Baumert et al.  2001 ) in the last decade. Putting 
aside a more general discomfort with a “culture industry” produced by the increased 
requirement for large-scale studies (Mayerhöfer  2006 ), substantial criticism is pri-
marily aimed at technical and methodological mistakes of these studies. In particu-
lar, technical fl aws in the formulation of the items used to describe the tasks the 
respondents had to perform are bemoaned (Hagemeister  1999 ; Bender  2004 ,  2005 , 
 2006 ; Kießwetter  2002 ). Wuttke ( 2006 ) calls attention to the lack of transparency 
of the analytical methods, since the manuals describing the data analysis published 
by the PISA consortium are inadequately formulated and fl awed in his opinion. 
Meyerhöfer ( 2004a ,  b ) mentions the problem that systematic guessing may affect 
the results of quantitative analyses and criticizes the arbitrary nature of profi ciency 
scaling. Another point of contention refers to questions of measurement. In par-
ticular, qualitatively oriented researchers criticize that the edumetric scaling prag-
matism of quantitative approaches (see Baumert et al.  2000a , p. 67) leads to 
arbitrarily constructed instruments. Furthermore, critics complain about the lack of 
theoretical considerations about how to measure mathematical or didactical knowl-
edge, so that only isolated aspects of the underlying constructs could be assessed. 
Drawing on theoretical considerations, Jablonka ( 2006 ) and Gellert ( 2006 ) main-
tain that studies like PISA are not able to measure mathematical skills in a valid 
manner, since the test construct “mathematical literacy” is insuffi ciently designed. 
Especially its connection to the didactical theory of the mathematician Hans 
Freudenthal ( 1983 ), which (according to the editors) represents the underlying 
theoretical approach (Deutsches PISA Konsortium  2000 ) is said to be defi cient. 
According to critics, the lack of validity of the construct of mathematical compe-
tence which the studies intend to measure can be seen from the restrictions regarding 
test items. In order to provide a questionnaire which respondents are able to work 
on in a limited amount of time, the underlying theoretical constructs usually have 
to be transferred to sometimes rather simple tasks in the process of operationalization. 
As Bender ( 2006 ) states:

  The teaching and learning of mathematics and the terminology developed for this purpose 
by the didactics of mathematics are much more complex than comparable concepts in those 
empirical sciences for which statistical methods had been developed in the fi rst place such 
as medicine, psychology, economics, etc. In these disciplines a statement such as 
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"Intelligence is, what the intelligence test measures" may be considered as a good working 
basis. One may address PISA in a similar way, defi ning "mathematical competence as that 
what the PISA test measures" […], etc. One would then talk about "mathematical compe-
tence as defi ned by PISA," etc., and everyone would understand the meaning of such an 
expression which carries a remarkably reduced meaning compared to what ordinary math-
ematics educators see as "mathematical competence", […] or "mathematical literacy” […]. 
(Bender  2006 , p. 235, translated by N. Buchholtz) 

   In response to such criticisms, researchers involved in large-scale studies have 
sometimes accused their critics of mere misunderstandings (Baumert et al.  2000c ) 
but have also made attempts to newly interpret the measured psychological con-
structs and the potential of the used tasks (Neubrand  2004 ) as well as to explain its 
validity in relation to curricula (Baumert et al.  2000c ). The discussion between 
adherents of different methodological approaches is still ongoing (Wuttke  2009 ; 
Jahnke  2009 ,  2010 ). 

 As far as the relation between qualitative and quantitative methods is concerned 
we thus fi nd in the fi eld of mathematics education the same dissatisfying situation as 
in other social science disciplines. Adherents of both camps in the debate denounce 
the respective other sides for their methodological shortcomings and thereby they 
often answer the other side’s criticism in a tit-for-tat manner. Critical arguments are 
not utilized as a means to detect limitations and blind spots of the own approach and 
to improve and to develop one’s own methods; the potential of a controversial debate 
is not harnessed. Especially the insight coming from the discussion about mixed 
methods that qualitative and quantitative methods have complementary strengths and 
weaknesses which could be balanced out in a design using both approaches is rarely 
referred to. At present most studies about mathematics education, especially in the 
area of education and professional competence of teachers, still utilize either exclu-
sively qualitative or quantitative methods (for example Blömeke et al.  2010a ,  b ; 
Eilerts  2009 ; Schwarz  2013 ). Only in recent years a few attempts have been made to 
combine the two different methodological approaches in order to achieve multi-per-
spectivity (e.g. Kuntze  2011 ; Klieme and Bos  2000 ; Schulz  2010 ; Kaiser and 
Buchholtz  2014 ). Schulz ( 2010 ), for example, uses a mixed methods research design 
in a study in Luxemburg to capture innovation processes in mathematics teaching 
and the implementation of competence orientation. In an evaluation study about the 
effects of innovative approaches in mathematics teacher education Kaiser and 
Buchholtz ( 2014 ) relate results of a quantitative longitudinal study to fi ndings of a 
qualitative-based interview study. Nevertheless, the mixed methods methodology is 
particularly suitable and extremely fruitful when applied in research in mathematics 
education, because shortcomings, which also arise specifi cally in the area of mathe-
matics educational research, can be overcome by combining qualitative and quantita-
tive methods. Despite the discussion on the subject and theory of mathematics 
education we can identify the specifi c task of research in mathematics education 
according to Wittmann ( 1995 ) and Steinbring ( 1998 ) in an analytical research dimen-
sion next to a constructive research dimension, which aims to develop learning envi-
ronments based on theoretical knowledge. The analytical dimension of research 
focuses on the study of social and mathematical  processes of mediation and in rela-
tion to school practice on the observation and analysis of learning processes of 
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students. The strengths of a mixed methods approach in research are particularly 
evident here: If, for example, a new learning environment is studied in school prac-
tice, there is usually little knowledge at hand about its effects at the beginning, and 
so it is very diffi cult to articulate good hypotheses for monitoring quantitative 
research before entering the empirical fi eld. Exploratory qualitative studies in which 
the effects of learning environments are observed can therefore help to generate 
hypotheses that can be examined afterwards with the help of large quantitative stud-
ies. Furthermore, qualitative studies can be used to deepen the fi ndings from quanti-
tative monitoring studies because there are many theories in mathematics education 
that can be applied at the micro level. In the long term, qualitative studies may thus 
support the development of new learning environments that can also be empirically 
investigated using quantitative methods.  

12.4     Basic Methodological Concepts of Method Integration 

 Discomfort with the problems of (qualitative and quantitative) “Mono-method- 
research” is widespread, not only in the fi eld of mathematics education. The specifi c 
limitations and weaknesses of qualitative and quantitative approaches can often be 
identifi ed easily. Researchers, however, who undertake assiduous efforts to com-
pensate for these weaknesses by drawing on the strengths of the respective other 
tradition in a mixed methods study will often fi nd that good advice about how quali-
tative and quantitative methods can be combined in research practice may be 
diffi cult to fi nd. Mixed methods is a relatively new and quickly expanding fi eld; 
researchers who work in it still struggle for a common terminology. Thus a 
newcomer drawing on the available collected readings or handbooks (e.g. Tashakkori 
and Teddlie  2010 ) may get confused from the variety of differing approaches, 
concepts and nomenclatures. Unfortunately, there is still a lack of consensus about 
the exact terminology and nomenclature of different “mixed methods,” “multiple 
method” or “multimethod designs” which are used in research practice. 

 To gain a fi rst overview over the fi eld it is essential to be clear about whether 
one talks about a  combination of methods and techniques during data collection 
and analysis  or about the  integration of methodological approaches within one 
research design.  

12.4.1     Combination of Methods and Techniques During 
Data Collection and Analysis 

 Quantitative research usually means the statistical analysis of collected standardized 
data, for instance, with the help of questionnaires or by other highly structured tech-
niques; in qualitative research non-standardized data are obtained through open 
interviews or by writing fi eld notes which are analyzed with the help of non- numerical 
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(interpretive, hermeneutic) methods. Since the early times of social research many 
attempts have been made to blend these different techniques of data collection and 
analysis: one may, for instance, analyze non-standardized data (e.g. newspaper arti-
cles) with statistical methods by counting words or occurrences of words etc. Or one 
may include open ended questions providing qualitative data into a standardized 
questionnaire. Such a mixture of qualitative and quantitative research techniques is 
not free from methodological risks, especially if one tries to analyze the same data 
with separate techniques. Different methods entail separate methodological stan-
dards and quality criteria—a good qualitative interview requires openness towards 
the (possibly idiosyncratic) perspectives and parlances of the actors in the fi eld, 
whereas a main purpose of quantitative data collection is to obtain comparable and 
repeatable bits of information. Context-relatedness of data is a crucial issue for quali-
tative researchers and the idea to isolate words from their context to count them, for 
instance, may sound odd in the framework of an interpretive approach. Consequently, 
blended techniques of that kind frequently tend to become either methodological 
oxymora or lead to the development of distinct research methodologies with own 
quality criteria and methodological standards like, for instance, Quantitative Content 
Analysis (Krippendorff  2004 ).  

12.4.2     Integration of Methodological Approaches 
Within one Research Design 

 For that reason the term “mixed methods” is mainly used to denote empirical stud-
ies which comprise different small sub-studies in order to answer specifi c ques-
tions which can be combined in order to answer the project’s general research 
question. Normally in each of the sub-studies one type of data is analyzed with one 
(qualitative or quantitative) method. Qualitative and quantitative data are then col-
lected and analyzed separately and results from that are related to each other, 
although the collection and analysis of the different data sets can have an impact on 
each other: researchers, for instance, may draw a small qualitative sample from a 
huge representative quantitative sample. Depending on the research purpose there 
are various possibilities to combine quantitative and qualitative sub-studies to a 
mixed methods design. Until now a variety of proposals have been made to classify 
types of combinations and designs (for an overview see Nastasi et al.  2010 , p. 311 
ff.); for a broad overview about the topic area it is helpful to draw on the straight-
forward notation system proposed by Morse ( 2003 ) which refers to the type of 
methods employed in the sub-studies (“qual” and “quan”), to the timing (whether 
the sub-studies are conducted sequentially, depicted by an arrow “→”, or whether 
they take place at the same time, marked by a “+”) and to the possible dominance 
of one approach (which is signifi ed by the use of big letters). “Qual → QUAN” thus 
denotes a design, whereby a small qualitative study is followed by a great quantita-
tive study (the latter more important for the research purpose). “QUAN + QUAL” 
would be used to describe a design comprising a qualitative and a quantitative 
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sub-study carried out simultaneously, whereby both studies have comparable 
importance for the research question. We describe such a design with the help of an 
empirical example in Sect.  12.6 . 

 A competent construction and use of such designs is dependent on the ability to 
draw adequate inferences from the results of the respective sub-studies and to 
integrate these inferences into a common framework. Thus the integration of 
research results forms a crucial part of method integration. To understand the prob-
lems connected with this task it is helpful to draw on the methodological concept of 
“triangulation.” This term was initially borrowed from the fi eld of trigonometry for 
use in quantitative psychological research. Later on it was used to denote the com-
bination of different kinds of research methods and has become a popular term also 
in the methodological debate surrounding mixed methodology (cf. Denzin  1978 ; 
Fielding and Fielding  1986 ; Lamnek  1995 ; Flick  1991 ,  1992 ,  1998 ; Erzberger and 
Kelle  2003 ; Kelle and Erzberger  2004 ). 

 In its methodological debate in the social sciences the term triangulation has 
acquired two different meanings – both of them remote from its original trigono-
metrical understanding: triangulation as a mutual validation of research results and 
triangulation as an integration of complementary perspectives on the subject under 
investigation in order to achieve a more complete image of the research domain (see 
also Erzberger and Kelle  2003 ). 

 In the 1950s the term was used for the fi rst time to describe a research strategy 
that employs different measurement operations or empirical results to answer a 
certain research question. In the context of a theory of psychological testing, 
Campbell and Fiske ( 1959 ) proposed to supplement or to further test empirical 
results by the use of different instruments. According to these authors, “multitrait-
multimethod matrices” should be constructed using correlation coeffi cients between 
scores obtained through different tests. These matrices should then serve as a means 
to determine the degree of convergence as an indicator for the validity of research 
results: “Validation is typically convergent, a confi rmation by independent measure-
ment procedures” (Campbell and Fiske  1959 , p. 81). In their book about unobtru-
sive measures Webb and his colleagues picked up Campbell’s and Fiske’s idea and 
transferred it to a broader methodological framework (cf. Webb et al.  1966 ) arguing 
that the collection of data from different sources and their analysis using different 
strategies would improve the validity of results: “Ideally, we should like to converge 
data from several different data classes, as well as converge with multiple variants 
from within a single class” (Webb et al.  1966 , p. 35). This idea was picked up by a 
dedicated advocate of qualitative methods in social research: Norman Denzin used 
the argument of Webb and colleagues that a hypothesis which had survived a series 
of tests with different methods could be regarded as more valid than a hypothesis 
tested only with the help of a single method. Since different methods entail different 
weaknesses and strengths, Denzin opted for “ methodological triangulation ” which 
consists of a “complex process of playing each method off against the other so as to 
maximize the validity of fi eld efforts” (Denzin  1978 , p. 304) leading to a reduction 
of “threats to internal and external validity” (p. 308). The idea that the convergence 
of results of different measurement operations would enhance the validity of 
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research fi ndings led to the adoption of the term triangulation in the methodological 
debate in the social sciences. But the concept of triangulation as a means of mutual 
validation has also been criticized as being inadequate by many authors (see for 
instance Fielding and Fielding  1986 ; Flick  1991 ,  1992 ,  1998 ; Rossman and Wilson 
 1985 ,  1994 ; Lamnek  1995 ). Since in the 1980s qualitative methods became more 
accepted in the social sciences in general (however, as has been discussed above, 
not in the fi eld of mathematics education) the idea gained acceptance that different 
methods of social research refl ect different and even diverging epistemological 
standpoints and can relate to different empirical phenomena and that it thus may be 
diffi cult to simply compare research results acquired by means of different methods 
in order to check their validity. 

 This view stimulated an alternative understanding of triangulation: the use of 
different methods to investigate a certain domain of reality can be compared with 
the examination of a physical object from two different viewpoints or angles. Both 
viewpoints provide different pictures of this object which may not be useful to vali-
date each other, but which may yield a fuller and more complete picture of the 
phenomenon concerned if brought together. To use another metaphor: empirical 
research results obtained with different methods are like the pieces of a jigsaw puz-
zle which provide a full image of a certain object if put together in the correct way. 

 These differing understandings of “triangulation” show the limitations of this 
notion as well as its systematic ambiguities. In navigation and land surveying it 
denotes a clearly defi ned technique of determining the spatial position of a point C 
by measuring angles to it from two points A and B with a known distance [AB] 
between them. The point C can be fi xed as the third point of a triangle with the 
known side [AB] and two known angles α and β (Fig   .  12.1 ).

   In social and behavioural research, however, terms like “spatial position of a 
point” or “angle” are not defi ned and represent metaphors at best: the “determina-
tion of a point by measuring angles from different points” can be understood, for 
instance, in a way that

    1.    The s ame phenomenon  is investigated with the help of different methods,   
   2.     Different aspects of the investigated phenomenon  or even  different phenomena  

are examined with the help of different methods.     

 This differentiation is not a mere play of words: only methods which refer to 
the same phenomena can yield results which may be used for mutual validation 

  Fig. 12.1    Triangulation in 
trigonometry       
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of methods. Different results would indicate validity problems here; but if separate 
aspects of the investigated phenomenon or even separate phenomena were exam-
ined with different methods we would expect different (but certainly not contra-
dictory) results. 

 To make sense of abstract methodological considerations and concepts we 
have to relate them to research practice – if we look at concrete research projects 
applying mixed methods designs we will fi nd that each of the following four 
outcomes can arise (cf. Erzberger and Prein  1997 ; Erzberger  1998 ; Kelle  2001 ; 
Kelle and Erzberger  2004 ):

    1.    qualitative and quantitative results  converge ,   
   2.    qualitative and quantitative results relate to different objects or phenomena, but 

are  complementary  to each other and thus can be used to  supplement  each other,   
   3.    qualitative and quantitative results are  divergent  or  contradictory ,   
   4.    qualitative and quantitative results refer to unrelated phenomena.    

  This makes clear that both types of triangulation are applicable and can make 
sense within a mixed methods design:  triangulation as validation  may lead to con-
vergent qualitative and quantitative fi ndings or it may result in divergent fi ndings 
which point to validity problems;  triangulation as investigating different aspects of 
the research subject  may yield complementary results (if applied successful) or it 
may render unrelated results (if this triangulation strategy fails).   

12.5     Capabilities and Functions of Mixed Methods Designs 

 Whether method integration is used for mutual validation of methods and results or 
whether it aims at the examination of different aspects of the research subject, the 
main rationale behind it is always the search for a compensation for the limitations 
of qualitative or quantitative methods by drawing on the strengths of the respective 
other tradition. But which specifi c strengths and weaknesses of qualitative and 
quantitative research can be balanced in a mixed methods design? 

12.5.1     Strengths and Challenges of Quantitative Methods 

 The standardization inherent in quantitative methods aims at data which fulfi ll the 
classical requirements of reliability (replicability) and objectivity (observer- 
neutrality). Standardization thus is a necessary prerequisite for quantifi cation: by 
ensuring that objects are counted which are equal with regard to certain attributes 
the risk of “comparing apples with pears” can be minimized. Furthermore, this 
allows for the examination of large numbers of cases in a straightforward manner. 
If the sample is drawn according to specifi c rules, error margins of statistical results 
can be determined by using well known concepts and formulas from sampling 
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theory providing a theoretically grounded basis for generalizations. For many ele-
ments of quantitative research explicit rules can be formulated, and it is in principle 
possible to structure the research process according to an overarching schedule, 
starting with the defi nition of the problem and the search for explaining theories 
that may account for it (although by doing research in the real world one should 
always be prepared to experience nasty surprises when following a strict research 
agenda). Quantitative research is ideally suited for a theory driven, “hypothetico-
deductive (HD-)” approach, whereby precise hypotheses are formulated at the 
onset, then operational defi nitions are formulated for the concepts these hypothe-
ses comprise, measurement instruments are constructed and data are collected and 
analyzed subsequently. Quantitative methods can be appropriate tools to examine 
clear cut causal statements like “Does the teaching method X improve student’s 
achievement, measured by their fi nal grades of the course or with the help of a 
specifi c measurement instrument?” 

 But these obvious strengths of quantitative research can easily turn into draw-
backs, if theories applicable to the fi eld and clear cut hypotheses derived from 
them are not available. This situation does not only occur if the researchers’ theo-
retical knowledge is too limited or if the corresponding discipline has not yet 
developed a satisfactory body of theories. Achieving certain goals in education 
requires social action and interaction, and the understanding of such social phe-
nomena always requires knowledge about context-bound patterns, structures and 
rules which form an integral part of culturally specifi c stocks of everyday knowl-
edge in particular life worlds. Such “local” knowledge can relate to a certain cul-
ture, to a specifi c organization and even to a very small group. In developing 
theories, in formulating hypotheses and in constructing research instruments like 
standardized questionnaires social and educational researchers employing an 
HD-approach often utilize their personal common sense knowledge (cf. Kelle and 
Lüdemann  1998 ). In many cases, these  heuristics of common sense knowledge  
causes no harm, especially if research takes place within the researcher’s own 
culture. But, since a great deal of common sense knowledge is self-evident or 
implicit, the application of this heuristic is usually not discussed explicitly– 
instead it serves as a “shadow methodology”. 

 The use of this shadow methodology may become hazardous, if the socio- cultural 
background of researchers and respondents differs. If respondents belong to another 
social class, gender or ethnic group, researchers often have no access to culture- 
specifi c stocks of knowledge to formulate hypotheses, to defi ne variables and to 
construct research instruments. 2  

2   It should be clear from the preceding discussion that this is not so much a problem of quantitative 
research  per se —it may occur if one strictly follows a hypothetico-deductive approach (which is 
for many reasons advisable if quantitative methods are applied)  and  if researchers lack empirically 
contentful hypotheses, workable theories and/or specifi c knowledge about the domain under study. 
The latter is often not so much the fault of uninformed researchers but a consequence of the fact 
that social action is often structured by culture-bound rules and “local knowledge”. 
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 Certain methodological problems of quantitative research may arise from that. 
First of all, such insuffi cient knowledge may result in  problems of theory building  
and hypothesis construction, leading to  misspecifi cation  of statistical models. 
That means that

    1.    important explaining variables are omitted with low levels of explained variance 
as a consequence,   

   2.    intervening variables are neglected or functional relations between certain vari-
ables are not correctly specifi ed so that causal processes underlying the investi-
gated phenomena are not adequately understood.    

  Furthermore, limited socio-cultural and local knowledge also leads to another 
problem one often faces in quantitative surveys. There one is often confronted with 
statistical distributions and correlations which are diffi cult to understand and inter-
pret on the basis of known theories (often in the social and educational sciences 
theories at hand are far too general to account for certain interesting and unexpected 
fi ndings). In a study about the effects of a certain teaching method one may fi nd, for 
instance, that the method has, contrary to expectations, only very limited or tempo-
rary effects. In classical HD-design data that may explain this unexpected fi nding 
are only available, if researchers were able to foresee such a possibility as a hypoth-
esis before data collection took place. 

 Insuffi cient knowledge about investigated life worlds, organizations or groups 
may also lead to  problems of operationalization  and  measurement : a carefully 
designed questionnaire may yield invalid data, if respondents do not understand 
questions in the same way as the researchers, or if the mentioned issues are not 
relevant for them. Problems of that kind do not only refer to the meaning of words 
or phrases or to the relevance of themes of a questionnaire, but to the whole process 
of data collection, which is not a mere process of information exchange, but a com-
plex social interaction, which can be defi ned and framed in highly different ways by 
the persons involved. Mutual understanding in a research interview or the answer-
ing of questions in self-administered questionnaires depends (as any other form of 
communication does) on the ability of the participants to interpret the motives of 
their counterparts and to identify and understand their expectations. Respondents 
may have a variety of motives beside the purpose of merely helping researchers with 
information, they may hide their own motives, conceal facts, hold back information 
etc. Interviewing can be a diffi cult social interaction with a high risk for 
 misunderstanding and confl ict. Unintended misunderstandings, accidental mis-
takes, willful omissions or deceits or the consequences of social desirability will 
lead to invalid and biased data, which are sometimes impossible to detect. In some 
cases high item nonresponse rates or suspicious distributions of certain variables 
give clues to such processes which usually remain hidden in standardized data col-
lection and can only be analyzed and described in detail if qualitative data material 
(verbatim transcripts of standardized interviews, cognitive interviews about the 
process of answering a questionnaire etc.) is available.  
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12.5.2     Strengths and Challenges of Qualitative Methods 

 Qualitative research allows for the exploration of previously unknown social life 
worlds. Thereby researchers can get access to knowledge from the investigated fi eld 
and may discover social rules and structures about which they had no idea before 
(and about which they were not able to formulate hypotheses before entering their 
empirical fi eld). Qualitative methods are powerful tools for exploration, detection 
and discovery which help to construct new theoretical concepts, categories and 
sometimes even whole theories about the domain under study. This strength has a 
price as well: if researchers aim at the discovery of issues they do not even have a 
dream of in the onset of a project, data collection becomes tedious and its success 
incalculable. Qualitative research relies on unstandardized data which have to be 
interpreted, paraphrased or categorized in a sometimes painstaking and always time 
consuming process. Contrary to quantitative surveys researchers cannot conduct hun-
dreds or thousands of interviews, but have to restrict themselves to a carefully 
selected choice of cases. This immediately raises questions about the generalizability 
of fi ndings and about the intersubjectivity of interpretations. The analysis of unstan-
dardized data is a process highly dependent on the individual researcher and it is 
often doubtful whether someone else would draw the same conclusions from a 
certain body of unstandardized data. For many social and educational scientists this 
is a source of constant and serious trouble, which was already brought to a point by 
the sociologist Lundberg in a review of famous qualitative studies of the 1920s:

  The scientifi c value of all these (studies) depends, of course, upon the validity of the subjec-
tive interpretations of the authors as well as the extent to which the cases selected are typical. 
Neither the validity of the sample nor of the interpretations are objectively demonstrable on 
account of the informality of the method. ( Lundberg,    1929 /1942, p. 169) 

   First attempts of qualitative researchers to counter such a criticism in the 1930s 
and 40s were deeply infl uenced by sociological structuralism (nowadays, arguments 
of this kind are still put forward by adherents of structuralist qualitative approaches 
like conversation analysis or German “objective hermeneutics”). Florian Znaniecki, 
for instance, argued in 1934 that qualitative analysis rests on a kind of generaliza-
tion superior to statistical inference which does not depend on the mere number of 
cases, “ but on the strength of the theoretical reasoning ” (Seale  1999 , p. 109). The 
underlying idea is that some general social process or social structure is at work in 
every single case which can be revealed by a deep, penetrating and elaborated anal-
ysis which helps to identify essential structural characteristics and to exclude acci-
dental aspects even if idiosyncratic cases are investigated. This idea, proposed by 
Znaniecki to justify small N-studies, can be even traced back to Emile Durkheim 
who claimed that all social facts and entities are brought about by evolutionary pro-
cesses, such that simple forms of social life always contain essential structures 
shared also by more complex forms (cf. Seale  1999 , p.112). 

 Znaniecki had proposed a strategy of theory building and theory testing whereby 
hypotheses are formulated on the basis of single cases and then tested by searching 
for “contradictory instances” (Znaniecki  1934 , p. 279ff.). Although this is an 
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attempt to employ a falsifi cationist approach in line with the HD model to qualitative 
research (see also Hammersley  1990 , p. 604) this concept has provoked serious 
criticism, since it “presupposes that there are scientifi c laws of human social life 
(and deterministic rather than probabilistic ones at that)” (ibid.) This idea is not 
very common in the social sciences nowadays, especially not among qualitative 
oriented researchers. According to Znaniecki, extremely small numbers of cases 
are fully suffi cient to construct and test hypotheses since it is the task of social 
research to identify the universal “static” laws (Znaniecki  1934 , p. 279) which gov-
ern each single case. This method, however, must fail if one takes the (more realis-
tic) stance that regularities in the social sciences are probabilistic in nature. 
Furthermore, micro-sociological approaches like symbolic interactionism which 
formulated basic theoretical tenets of qualitative research are hardly compatible 
with the idea of a stable social order reigned by ahistoric universal social laws—
this tradition rather emphasizes the role of interpretation in social interaction and 
the resulting complexity, variability and uniqueness of social phenomena and the 
context-boundedness and fl exibility of social rules. Social processes as well as 
human history as a whole are considered as contingent und unpredictable: “uncer-
tainty, contingency, and transformation are part and parcel of the process of joint 
action.” (Blumer  1928 , p. 72). 

 In the 1980s qualitative researchers who follow post-structuralist or post-modern 
approaches like Norman Denzin, Egon Guba or Yvonna Lincoln have radicalized 
this conception by claiming that the principle of context-boundedness of social 
phenomena must lead to a general renouncement of all attempts of generalization in 
social research (Lincoln and Guba  1985 ). However, taking this claim serious would 
mean to exclude a great variety of phenomena from qualitative inquiry. Typical 
macro-social phenomena (cultural norms, for instance) can hardly be investigated 
without any reference to the idea of (at least limited and context-related) generaliza-
tion. This is even more the case if one adheres to the interpretivist postulate that social 
order is highly fl exible and evolves through processes of interpretation in micro-
social contexts. The resulting pluralization and heterogeneity of social structures 
and patterns of action poses serious challenges for any methodological approach 
which relies on the investigation of a small number of cases. 

 Of course, the investigation of a single person, group and organization can be a 
research goal justifi ed in itself, but at the same time poses the danger of focusing on 
marginal cases. A crucial question here would be: to which kinds of people or orga-
nizations does the knowledge derived from a certain study also apply? To address 
that question, the term “transferability” was proposed as an alternative to “general-
izability” in the context of qualitative research. However, transferability and gener-
alizability are notions closely related to each other, especially since the latter term 
does not necessarily imply generalization towards  universal laws  valid in all places 
at all times. Any research project aiming at the investigation of cultures, societies, 
organizations etc. as limited wholes situated in concrete spatiotemporal contexts has 
to address questions of limited generalization (or “transferability” if one prefers that 
term), for instance:  Do certain problems experienced by teachers at a particular 
school refl ect deeper lying problems of the whole organization or of schools in a 
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certain state or country or are these problems only an expression of the situation in 
that specifi c school ?  Are certain rules of behavior followed by members of a small 
gang of youths generally accepted habits in a certain youth culture ? One need not 
cling to the idea of universal social laws to largely benefi t from quantitative methods 
in an inquiry of social life worlds, organizations or groups where heterogeneous 
norms and patterns of action play an important role. 

 This point was already made by one of the founders of symbolic interactionism, 
Herbert Blumer, who countered the critique of sociological structuralists that statisti-
cal methods are unable to disclose universal laws with the argument that statistical 
methods take into account the  “complexity, variability or uniqueness”  of social phe-
nomena (Blumer  1928 , p. 47ff.). The interpretive tradition in the social sciences can 
thus provide arguments in favor of  “the importance of statistical analysis”  
(Hammersley  1989 , p. 219): quantitative research can capture social heterogeneity by 
providing information about great numbers of persons or situations. Mixed methods 
designs offer different possibilities to deal with the sometimes limited transferability 
of qualitative fi ndings, for instance by using large scale quantitative surveys to further 
examine qualitative fi ndings based on small numbers of observations and interviews 
(cf. Barton and Lazarsfeld  1969 ). This strategy, already proposed by Paul Lazarsfeld 
and Allan Barton decades ago, is often wrongly accused of restricting qualitative 
research to unsystematic pilot studies. But qualitative sub- studies will only yield use-
ful results if they are carried out in a structured and methodical way so that empirical 
descriptions and theoretical hypotheses can be really grounded in the (possibly small 
number of) investigated cases. This can hardly be accomplished within a casual pilot 
study but requires a considerable amount of resources in terms of time and person-
power whereby the selection of cases is of utmost importance. 

 The qualitative tradition nowadays offers different forms of a methodologically 
controlled purposive selection of cases like “theoretical sampling” (Glaser and 
Strauss  1967 ). The idea underlying theoretical sampling, the maximization and 
minimization of differences, is also used with other forms of qualitative sampling, 
for instance in the search for extreme, deviant or typical cases (Patton  2002 ; cf. also 
Silverman  2000 , p. 102ff. or Gobo  2004 ). Quantitative research may inform all 
types of purposeful qualitative sampling. A quantitative sub-study in a mixed methods 
design may, for instance, give an overview about the distribution of certain prob-
lems, structures or patterns of action relevant for the overall research question. Or it 
can provide a sampling frame which allows for the comfortable selection of typical, 
deviant or extreme cases.  

12.5.3     Types of Mixed Methods Designs and Their Function 
in the Research Process 

 In the contemporary debate about mixed methods or multimethodology it is often 
maintained that mixed methods is “a strategy for overcoming each method’s 
weaknesses and limitations by deliberately combining different types of methods” 
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(Brewer and Hunter  1989 , p. 11; see also Hunter and Brewer  2003 ). However, this 
debate still provides only sparse information about which mixed methods design 
could overcome which weaknesses of mono-method research. A complete over-
view about all problems that may occur in mono-method studies and their possi-
ble solutions within a mixed methods design would clearly go beyond the scope 
of this chapter—but the following remarks may show how the most basic of the 
problems mentioned above can be addressed within a simultaneous or sequential 
mixed methods design. 

 In a  sequential qualitative-quantitative design  (QUAL → QUAN) a qualitative 
study helps to identify core issues and to develop theoretical concepts and hypoth-
eses, which can be further examined in a subsequent quantitative study. This design 
helps to overcome two shortcomings of qualitative or quantitative mono-method 
research: in regard to qualitative research the limited transferability of fi ndings from 
small N studies, and in respect to quantitative research the mentioned problems of 
the heuristics of common sense knowledge (a lack of context-related local or 
culture- specifi c knowledge). By starting the research process with a qualitative sub- 
study, researchers may get access to local knowledge of the fi eld which helps to 
develop theoretical concepts and hypotheses suited for the domain and to construct 
standardized research instruments later on which grasp relevant phenomena by 
meaningful and relevant items. 

 It can also be sensible to reverse the order of qualitative and quantitative meth-
ods in a sequential design. In a  sequential qualitative-quantitative design  
(QUAN → QUAL) a quantitative study is performed to identify problem areas and 
research questions which can be further investigated with the help of qualitative 
data and methods. Typical problems of quantitative research which can be treated 
in this way are the incomprehensibility of statistical fi ndings (which often can be 
only adequately understood if additional context-related knowledge from a qualita-
tive study is available). Furthermore, the quantitative sub-study in such a design 
can guide systematic case comparison in the subsequent qualitative study by help-
ing to identify criteria for the selection of cases and by providing a “qualitative 
sampling frame.” In this way an important threat for validity of qualitative research 
can be addressed—a focus on remote and marginal cases. And a further problem 
often experienced in qualitative research can be treated within this design: since a 
large scale quantitative study can capture heterogeneity in the fi eld by describing 
the distribution of predefi ned phenomena, such quantitative data may help to avoid 
a qualitative study with an “oversized scope,” that means a study with a research 
domain too heterogeneous to be captured by a small qualitative sample. To take an 
easy example: a qualitative study about the infl uence of family forms on the aca-
demic achievement of students nowadays must take into account more different 
forms of families than a similar study in a traditional rural community in the begin-
ning of the twentieth century. By drawing on statistical information about the dis-
tribution of different family forms researchers can learn about minimal requirements 
for qualitative sampling and may downsize the research question and research 
domain (to a limited number of family forms with a certain social background) 
such that it can be covered by the planned investigation. 
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 A  parallel qualitative-quantitative design  (QUAL + QUAN) can fulfi ll similar 
functions than a sequential design yet in a sometimes restricted manner: the quali-
tative sub-study can provide information which supports the interpretation of sta-
tistical fi ndings, the development of explanations and the identifi cation of 
additional variables which help to explain variance in the quantitative data. 
However, a disadvantage of a parallel design is that qualitative sampling and data 
collection as well as the construction of the standardized research instrument in 
the quantitative sub- study cannot be supported by information coming from the 
respective other sub- study—data from the qualitative sub-study may thus often 
provide only limited answers to questions coming from the quantitative study 
since they were not collected for that purpose. A great benefi t of a parallel quali-
tative-quantitative design, however, is that it can help to identify measurement 
problems and methodological artifacts of both qualitative and quantitative data, 
since data from the same persons can be obtained with the help of different (quali-
tative and quantitative) techniques.   

12.6      An Example of a Mixed Methods Research Design 
in Mathematics Education 

 To illustrate possibilities for the integration of qualitative and quantitative methods 
in research on mathematics education we now present an example from a mixed 
methods study in this fi eld. In the following we fi rst describe the research design 
and the methodological approaches applied in the “Teacher Education and 
Development Study TEDS-Telekom” (Buchholtz and Blömeke  2012 ; Kaiser and 
Buchholtz  2014 ; Buchholtz and Kaiser  2013 ), an evaluation study subsidized by the 
German Telekom Foundation. Thereafter we present some selected results from the 
study to demonstrate how qualitative and quantitative fi ndings can be related to each 
other and thus help to overcome the limits of the respective other method. 

12.6.1     Research Purpose and Mixed Methods Design 
of the TEDS-Telekom Study 

 Two teams of researchers at the universities of Giessen and Siegen developed a 
research and development program called “ Mathematik Neu Denken ” (“ Thinking 
mathematics in a new way ”) to restructure the teacher training program in math-
ematics (Beutelspacher et al.  2011 ). The project aimed at a long-term quality 
improvement of the training of future mathematics teachers for the higher track 
schools (“Gymnasium”). Courses normally attended both by teacher students and 
by students aiming for a general degree in mathematics were split into teacher 
students’ courses on the one hand and courses for other students on the other hand. 
This project aimed at the integration of university mathematics and “elementary 
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mathematics from an advanced standpoint” (Klein  1932 ), the latter seeking for a 
comprehension-oriented teaching of basic mathematical concepts in academic 
courses in order to enable student teachers to grasp elementary mathematical ideas 
for teaching (see also Kirsch  1977 ). A further important goal of the project was 
the early integration of mathematics didactics into teacher education. In particular 
the introductory courses of analysis and linear algebra were restructured by 
enriching their curricula with content about teaching and elementary mathematics 
from an advanced standpoint. Each university thereby implemented the program 
in a slightly different way (Siegen focused on analysis, Giessen on linear algebra/
analytic geometry). 

 The main purpose of the TEDS-Telekom study is to evaluate this innovative 
approach from an external point of view. By now one can fi nd only very few 
reliable empirical research results upon the effects of university teaching programs 
in general. However, when analyzing complex learning environments like univer-
sity teacher training programs under the perspective of an evaluation, issues on the 
macro as well as on the micro-level are of particular interest. Thus, an evaluation 
aims on the macro-level initially on a standardized comparison between universi-
ties with and without a specifi c treatment. The research focuses in the fi rst place on 
the question of how the student teachers’ professional competencies develop in a 
longitudinal observation, i.e. the impact of the intervention regarding the develop-
ment of mathematical, didactical and pedagogical knowledge of the prospective 
teachers together with the development of the teacher students’ corresponding 
beliefs. To answer this research question in TEDS-Telekom a standardized ques-
tionnaire was developed in a quantitative sub-study to measure the prospective 
teachers’ professional knowledge in their fi rst, second and fourth semester. 
However, since it is not certain whether with a comparison of the development of 
knowledge the impact of the intervention is suffi ciently analyzed in detail, the 
study also focuses on the micro-level by attempting to identify the concrete ele-
ments of the program which actually infl uence the individual development of 
students’ competencies. Yet, there exist no suffi ciently reliable instruments to also 
carry out standardized surveys in this area. On the contrary: Since the quantitative 
approach of the study is restricted to a mere description of individual competence 
development and cannot provide results about the impact of specifi c aspects of 
the teacher training program on the individual acquisition of competence, the 
methodological approach of the study had to be enriched. 

 In a qualitative sub-study of TEDS-Telekom, problem-centered interviews 
(Witzel  2000 ) with prospective teachers of the universities involved were carried 
out to gain an in-depth understanding of the effects of didactical efforts at the dif-
ferent universities taking part in the study. In addition the interviews should help 
to investigate the infl uence the separate teaching and learning conditions had on 
the individual internal perception of the prospective teachers and on their accep-
tance of particular components of teacher education. These interviews were con-
ducted shortly after the last survey with voluntary student teachers who participated 
in all three surveys of the questionnaire. The aim was to be able to relate results 
of both the quantitative and qualitative sub-studies to each other at a later stage of 
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the research process (for example by assigning the results of students who have 
participated in both sub-studies by an individually generated personal code in the 
two sub-studies). This mixed methods design can be described in terms of Morse 
( 2003 ) with (QUAN + QUAL) since quantitative and qualitative sub-studies were 
carried out independently and simultaneously. Through this “blind spots” of 
(qualitative and quantitative) mono-methods should be detected and a broader 
range of effects of the reconstructed teacher training program should be captured 
(“triangulation as the investigation of different aspects of the research subject”).  

12.6.2     The Quantitative Sub-Study 

 The quantitative sub-study of the TEDS-Telekom evaluation study is theoretically 
based on the conceptualization of professional competence of prospective mathe-
matics teachers as a multi-dimensional construct, as it has been developed in gen-
eral by Weinert ( 1999 ) and by Bromme for teaching ( 1992 ,  1997 ). Thereby we 
drew on approaches from the international comparative study “Teacher Education 
and Development Study – Learning to Teach Mathematics” (TEDS-M; Blömeke 
et al.  2010a ,  b ) as an external reference framework. According to this approach, 
professional competence includes subject-related and interdisciplinary cognitive 
dispositions of performance, as well as affective-motivational beliefs as part of a 
teacher’s personality. Due to the feasibility of the study, TEDS-Telekom had to be 
restricted to the analysis of cognitive components of professional competence 
(professional knowledge of teachers as outlined by Shulman ( 1986 ) and Bromme 
( 1992 ,  1997 )). In the realm of personality features the study focuses on beliefs 
concerning the subject and its teaching and learning. 

 The evaluation study concentrated on the following dimensions of professional 
competence (see Fig.  12.2 ):

•     academic mathematical content knowledge (MCK) in the area analysis and 
linear algebra/analytic geometry;  

•   mathematical content knowledge in the domain of elementary mathematics 
from an advanced standpoint (cf. Klein  1932  and Kirsch  1977 ); pedagogical 
content knowledge in mathematics or didactics of mathematics referring to 
upper secondary level (MPCK);  

•   general pedagogical knowledge focusing on action-related aspects, such as the 
structuring of teaching, motivation, classroom management, assessment and 
dealing with heterogeneity;  

•   beliefs about mathematics as a science and about learning and teaching of math-
ematics according to Grigutsch et al. ( 1998 );    

 In order to capture the achievements of fi rst-year student cohorts at the respective 
universities as well as the development of these achievements, the quantitative sub- 
study of the TEDS-Telekom study was designed as a real longitudinal study. The 
assessment of students by means of a 90-min paper-and-pencil test took place at the 
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beginning and the end of the fi rst year (December 2008 and July 2009) and at the 
end of the second year (July 2010). In the quantitative sub-study the main hypoth-
eses regarding the evaluation of test results predicted a reasonable improvement of 
the achievement from the beginning of the fi rst half term (semester) until the end of 
the fourth semester. In addition, it was assumed that the degree of achievement 
increase would be different depending on the level of achievement at the beginning, 
on the students’ learning preconditions and on the learning opportunities provided 
by the universities (which represented the innovative potential of the study pro-
grams). Comparative reference groups at other universities which also agreed to 
evaluate their teacher training program set an external benchmark. All in all, fi rst-
year cohorts at fi ve universities (Giessen and Siegen as the innovative programs, 
Bielefeld, Essen and Paderborn as external reference universities without a specifi c 
treatment) were analyzed, including also students aiming at a general degree in 
mathematics. In total more than 400 students participated in the study. Since the 
implementation of the TEDS Telekom study was depending on situational condi-
tions such as size of classes and access to the prospective teachers, the study has an 
unbalanced, non-representative sample. Some students could not be reached again 
and participated only in one or two measurements, other students participated at a 
later measurement point. To account for the panel attrition occurring in the longitu-
dinal design the fi rst statistical analyses were restricted to those 115 fi rst-year stu-
dents who did participate in all three measurements. However, it is planned to 
extend these analyses to those participants who did not participate in each wave. 
Table  12.1  gives an overview about the sub-samples.

   As an indicator of the school-related precognition, data about the kind of math-
ematics courses attended during the last 2 years of high school were collected (cf. 
Briedis et al.  2008 ). The options “Basic course” (courses on a basic high school 
mathematical level), “Advanced course” (courses on an advanced high school math-
ematical level that exceeded the basic class) and “neither basic nor advanced course” 

  Fig. 12.2    Model of professional competence in the “TEDS-Telekom-study”       
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(in some federal states of Germany the mathematics courses are named differently 
and thus cannot be distinguished) were given. Basic and Advanced courses differ in 
the depth of the content and also in the amount of attended lessons per week (e.g. 
the Advanced course treats the quotient rule of derivation while the Basic course 
only treats product- and chain rule). Table  12.2  shows the proportions of students 
having attended the specifi c courses in high-school.

   The comparison shows that the group of non-teaching students is better prepared 
for mathematics. In the teaching groups there are substantial proportions of students 
who have only attended a Basic course in mathematics at school and therefore have 
less good preconditions (see also Köller et al.  1999 ), especially in Siegen. This per-
centage is even larger in the Gießen and Siegen groups than in the reference group. 3  

 The items for the measurement of mathematical content knowledge (MCK) and 
mathematical pedagogical content knowledge (MPCK) were developed by the 
research team at the University of Hamburg (see also Buchholtz et al.  2012 ). All 
items were revised in workshops by experts in mathematics didactics from universi-
ties participating in the study. The items relating to pedagogy had been developed by 
the working group at Humboldt University of Berlin (see also König and Blömeke 
 2010 ). The test also contained items from the TEDS-M study so that results of the 
evaluation study could be evaluated and interpreted with reference to an external 

3   A methodological adjustment of the treatment groups by measures of treatment evaluation (e.g. 
propensity score matching) has been omitted so far as the use of elaborate statistical methods to 
determine treatment effects appeared disproportionate due to the small group sizes. Furthermore, 
the group differences in  Abitur  grades are not signifi cant and the relationship of school-related 
pre-cognitions considering the attendance at Advanced or Basic course merely refl ects the pre- 
cognitions of local convenience samples. 

   Table 12.1    Comparison of sub-samples considering gender, age and  Abitur -grade   

 Reference group  N 
 Female 
students (%)  Average age (SD) 

 Average  Abitur  
grade a  (SD) 

 Gießen  32  59.4  20.4 (1.78)  2.16 (0.54) 
 Siegen  14  64.3  19.9 (2.20)  2.19 (0.50) 
 Teaching  39  48.7  20.4 (1.68)  2.23 (0.54) 
 Non-teaching  30  13.3  20.2 (1.76)  2.01 (0.49) 

   a The grades can differ from 1.0 (best grade) to 4.0 (worst grade)  

   Table 12.2    Comparison of sub-samples considering school-related precognition   

 Reference group  N  Advanced course (%)  Basic course (%) 
 Neither Basic nor 
Advanced (%) 

 Gießen  32  71.9  28.1  0.0 
 Siegen  14  57.1  35.7  7.1 
 Teaching  39  76.9  20.5  2.6 
 Non-teaching  30  96.7  0.0  3.3 
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standard later on. To give an example one of the TEDS-M 2008 items used in the 
TEDS-Telekom study is presented in Fig.  12.3  together with the respective solution 
frequencies 4 : the task US25 refers to the content area of academic mathematical 
knowledge about linear algebra and analytic geometry and requires basic knowledge 
about the geometry of the plane and the space. The number of points that satisfy the 
equation 3x = 6 in the plane is a straight line; in space it would be a plane.

   In TEDS-M 2008 72 % of the German prospective teachers were able to solve 
item A correctly and item B was correctly answered by 68 %. The student teachers 
of the University of Giessen solved both items with 75 % at approximately the same 
height, as well as the comparative teacher training group (71.4 % for item A and 
61.9 % for item B). From the student teachers of the University of Siegen only 50 % 
could provide the correct answer, which may indicate the different focus of the 
implementation of the teacher training program at both universities. 

 To evaluate the results of the tests in comparison with large-scale studies like 
PISA or TEDS-M 2008, models of multidimensional-IRT (Rost  2004 ; Hartig and 
Kühnbach  2006 ) were used. At present, longitudinal data from each survey are 
available. For fi rst results of the three evaluations and for curricular validity of the 
instrument see Kaiser and Buchholtz ( 2014 ) or Buchholtz and Kaiser ( 2013 ).  

12.6.3     The Qualitative Sub-Study 

 In order to investigate the infl uence of institutional conditions and of various aspects 
of didactics of higher education on the individual acquisition of competence from a 
different, more qualitatively-oriented point of view, problem-centered guided 

4   It needs to be noted that performance on the level of individual items can vary due to chance and 
thus should not be over-interpreted. 

A point A straight line A plane Else

A) The solution of 3x = 6 in the plane � � � �

B) The solution of 3x = 6 in space � � � �

US25) We know that there is only one point on the number line
that satisfies the equation

3x = 6, namely x = 2.

Let us now transfer the equation to a plane with coordinates x and y,
and then to space, with coordinates x, y and z. What is the set of 
points that satisfy the equation there? 

Tick one box per row.

  Fig. 12.3    TEDS-M 2008-item       
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interviews (Witzel  2000 ) were carried out with 19 prospective teachers from all 
participating universities simultaneously with the third wave of the quantitative 
survey. At each university, they were chosen randomly from the group of prospective 
teachers that indicated their willingness to participate in the interviews voluntarily. 
These interviews were conducted by using a guideline containing several aspects of 
perception and estimation of university teaching experienced by the students during 
the introductory stage of their training. The different aspects covered in the inter-
views related to the different sub-dimensions of professional competence of math-
ematics teachers that were also used in the quantitative sub-study:

•    Integration of visualization, examples and example-bound argumentations and 
real-world applications in mathematical lectures in the area of MCK;  

•   integration of elementary mathematics from an advanced standpoint in mathe-
matical lectures;  

•   interweaving of mathematical and mathematics didactical content in university 
courses in the area of MPCK;  

•   beliefs about teaching and learning of mathematics and their infl uence on the 
acquisition of competence.    

 The interviews are analyzed by means of “qualitative content analysis” (Mayring 
 2008 ; for fi rst results from this analyses see Buchholtz and Blömeke  2012 ). 

 The focus of the qualitative content analysis lies on the empirical, methodologi-
cally controlled analysis of texts within their context of communication, following 
content analytical rules and step by step models in a process of interpretation 
(Mayring  2000 ). The method comprises a clear, theory-guided procedure that allows 
for a systematic empirical examination of emerging categories and hypotheses. 
Figure  12.4  shows a model for qualitative content analysis according to Mayring 
( 2008 ) modifi ed for the purpose of our study.

   The process starts with the research question—in our case, the research ques-
tion referred to the individual acquisition of professional competence in the restruc-
tured teacher training program. The objects of the analysis were problem-centered 
interviews with students from the participating universities. Based on the research 
question, structural selection criteria were formulated which corresponded to the 
interview guideline questions, referring, for example, to the initial study phase or 
to the integration of visualization, applications, and elementary mathematics in 
mathematical lectures. In the deductive step of category development, several dif-
ferent categories for evaluation were formulated based on these selection criteria, 
like for example “motivation for studying” or “experiences with visualizations.” 
Subsequently, a selection of cases was coded with the help of these categories. 
Coding here means assigning text passages and statements from the interviews to 
individual categories. In this process the existing categories were modifi ed and 
revised. At the same time, new categories were formulated from the material in an 
inductive or abductive manner. The combination of inductive, abductive and deduc-
tive category building led to an explicit description of the categories in coding 
manuals. These were used to analyze and subsequently interpret the whole data 
material from the interviews, using the software MaxQDA, a qualitative data analysis 
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software for the systematical evaluation and interpretation of textual data. Through 
the whole process of analysis and category building the emerging categories were 
related to the initial research questions.  

12.6.4     Triangulation in the Mixed Methods Design: Relating 
Quantitative and Qualitative Findings to Each Other 

 How can the results of the quantitative study be related to the fi ndings from the 
qualitative interviews? Concerning the quantitative sub-study of the TEDS-Telekom 
study, statements about the achievement of the different groups at the different 
points of measurement can be made via description and through the comparison of 
group means. These results provide only partial answers to the research question of 
the impact of the innovative programs, insofar as they enable comparison of the 
development of the prospective teachers’ achievement at different universities in a 
descriptive manner. With the help of the qualitative sub-study one can identify 
institutional infl uences on the individual acquisition of skills, as well as describe 
individual experiences of the student teachers in the acquisition of competence and 

1. Object of research and 
research question

2. Formulation of selection 
criteria

3. Formulation of categories

4a. Coding of selection of 
cases

4b. Modification of
categories

5. Formulation of coding 
manuals

deductive

inductive

6. Analysis of the whole 
material

  Fig. 12.4    Modifi ed model of the procedure of qualitative content analysis (cf. Mayring  2008 )       
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perceptions of their study conditions during their fi rst four semesters. Obviously, 
both sub-studies used their respective methods to focus on different aspects of the 
outcomes of the teacher training program and therefore yielded different (but 
complementary) results. 

 For relating the qualitative and quantitative fi ndings to each other, issues had to 
be identifi ed which could be related to both qualitative and quantitative data, for 
example different achievements of student teachers at different universities. Which 
elements of the program contributed to the success or failure in terms of an increase 
of the teacher students’ competencies? In respect to such questions the quantitative 
data provided results which could be interpreted in different ways and helped to 
develop new hypotheses about potential infl uences of the teacher training program 
on the acquisition of professional knowledge. These hypotheses could be examined 
empirically with the help of the qualitative interviews. In this way information 
about certain aspects of professional competence development could be obtained, 
which allow for a fuller understanding of quantitative results. Thereby, qualitative 
data helped to make quantitative fi ndings more comprehensible. Furthermore, 
qualitative data also provided information about additional factors which infl uenced 
the acquisition of professional knowledge and which could not be identifi ed exclu-
sively by standardized paper-and-pencil tests. Given the current state of research 
and debate, the qualitative fi ndings can also be used to derive new hypotheses – for 
example hypotheses about different learning strategies pursued by student teachers 
who may benefi t in various ways from the institutional learning conditions provided 
by their universities. Such hypotheses can be subsequently examined with the help 
of the quantitative data. The design of our study thus helped to relate qualitative and 
quantitative results to each other via triangulation (cf. Fig.  12.5 ).

   The integration of quantitative and qualitative fi ndings in the TEDS Telekom 
study can be further clarifi ed with the help of some examples from the data which 
concern students’ mathematical content knowledge (MCK). We thereby focus on 
the possibilities offered by the mixed-method design for obtaining  complementary  
research results which can be used to  supplement  each other. 

 In Fig.  12.6 , the ability parameters estimated through IRT scaling are presented 
graphically. The WLEs ( weighted likelihood estimates,  Warm  1989 ) of all measure-
ment points were transformed to an average value of M = 100 and a standard deviation 
of SD = 20. The quantitative data showed that the reference group of the students 
aiming not at the teaching profession shows the best achievements in the area of 
MCK. This indicates that the knowledge measured by the corresponding test items 
is highly dependent on the expertise in mathematics. The mathematical content 
knowledge of all fi rst-year student teacher groups increased signifi cantly during 
their fi rst 2 years although site-specifi c differences could be identifi ed. Students at 
the University of Giessen showed a signifi cant increase in MCK between the second 
and third point of measurement. In Giessen, the courses on analysis have to be 
attended in the second year, while at the other universities these courses are usually 
taken by students in the fi rst year. Although only the fi rst year courses on linear 
algebra were restructured, the achievement increase between the second and the 
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quantitative analysis
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qualitative content analysis
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  Fig. 12.5    Model of triangulation in the parallel mixed-method design       

  Fig. 12.6    Ability parameters 
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third point of measurement was considerably high. These results suggest that the 
used test items are strongly infl uenced by the knowledge that is gained in the courses 
on analysis. Compared to the students in Giessen, the fi rst-year student teachers in 
Siegen as well as the student teachers from the reference universities showed sig-
nifi cant performance improvements in the fi eld of MCK already between the fi rst 
and second point of measurement. In total the student teachers from Giessen and 
Siegen show almost the same achievement in MCK at the third point of measure-
ment as the student teachers from the reference group.

   These results are surprising, looking both at the student teachers’ pre-conditions 
in the different universities and the curriculum covered in their courses. On the one 
hand, the students’ cognitive dispositions at the beginning of their study (less the 
degrees of the entrance qualifi cation for higher education, in Germany the so-
called “ Abitur ” but the attended mathematics courses in high school) indicated that 
the groups of the student teachers in Giessen and Siegen had less good pre-condi-
tions than the students at the reference universities. On the other hand, the courses 
for the student teachers covered less academic mathematics, because they were 
enriched with teaching content. The students therefore had fewer opportunities to 
learn the academic mathematics than in the reference groups. Nevertheless, these 
student teachers reached comparable high achievements than students at the other 
universities which would be a success of the innovative program and which also 
indicates that the process of selection in the fi rst year at university did not take 
place in the usual way (see for details Kaiser and Buchholtz  2014 ). Thus the 
hypothesis from these fi ndings can be derived that student teachers benefi t in a 
specifi c way from a modifi ed treatment of mathematics in the mathematical courses 
by improving their competencies. But what did the program do to establish math-
ematical courses that facilitate the acquisition of knowledge in the fi eld of MCK, 
especially in the courses on analysis? 

 Following the idea of triangulation as the investigation of different aspects of the 
research subject, qualitative and quantitative data was combined to gain a deeper 
understanding of the development of professional competence and the different 
results regarding achievements. In order to obtain a fuller picture of the effects of a 
modifi ed treatment of mathematical content within courses about analysis, ques-
tions about the acquisition of mathematical content knowledge were focused during 
the analysis of the qualitative interviews. The student teachers were asked in 
particular to describe those learning opportunities in academic mathematics courses 
from which they had benefi tted most. Furthermore the students were asked which 
issues need to be addressed in order to ensure a more comprehension- oriented 
university teaching. 

 Due to the limited space we restrict the discussion to a single topic covered by 
the guided interviews, namely  “integration of visualization in mathematical 
lectures .” Thereby we concentrate on student teachers from the University of Giessen, 
where most of the respondents´ statements refer to the course of analysis which is 
offered only in the second year and was not included into the restructuring measures 
of mathematics teacher education: That means the analysis course is taught in the 
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traditional abstract way and is attended by the prospective teachers together with the 
mathematics students not aiming at the teaching profession (for details cf. Kaiser 
and Buchholtz  2014 ).

  If now I‘m thinking back on school, [in analysis] we had a bit the evaluation of functions, a 
bit derivations. And actually in analysis—the time at school, now I do not remember it so 
well—but I think there were hardly any proofs. That is precisely the opposite at the univer-
sity, there are defi nitions, proofs … And analysis in the university context actually consists 
only of proofs and defi nitions. […] No, there were clearly dropouts. Due to analysis there 
were clearly dropouts, but I can imagine, if we have had that in the fi rst semester, the drop-
out rate would have been even higher. (Prospective teacher, female, 26, grade 1.3) 

 The terminology of analysis remained abstract, 75 % of it I would even not know what to 
do with, what does it mean, for what I am actually doing that … That was just stupefying 
learned by heart and simply written down, that what the professor wanted to hear. 
(Prospective teacher, male, 21, grade 2.2) 

 It extends, the learning process extends. At home I sit down and work upon it by exemplifi -
cation, so that I can understand it by myself. And so it takes much longer. If that would have 
been contributed by the lecture, one would not need to work on exemplifi cation afterwards 
on one’s own. (Prospective teacher, female, 26, grade 1.3) 

   The statements clearly demonstrate that a high grade of abstraction in mathemat-
ics lectures may cause obstacles for understanding and in the worst case even cause 
some students to cancel their studies. Considering knowledge gain, it shows that if 
the content remains abstract, what has been learned will be forgotten immediately. 
The prospective teachers obviously need a more illustrative way of teaching math-
ematical content, which often cannot be realized in university courses attended both 
by prospective teachers and mathematics students not aiming at becoming a teacher:

  At the end actually, because there are so many prospective teachers, I personally think it 
would be wonderful if it would really be possible to separate Bachelor [(i.e. non-teacher) 
students] and prospective teachers, completely, and not only for selected courses. And the 
Bachelor [students] do not need these references of reality, the exemplifi cation as strongly 
as prospective teachers need it. I think, because, the Bachelor [students] do not teach that 
later. (Prospective teacher, female, 26, grade 1.3) 

   Obviously, the lecturers at the University of Giessen were successful with their 
fi rst-year course on linear algebra for teacher students and succeeded at least partly 
in the overcoming of comprehension problems by embedding exemplifi cation into 
the mathematical content courses. Many of the interviewees made clear that this 
exemplifi cation had a key role for their own understanding. Respondents even rec-
ognized the signifi cance of visualizing and illustrating mathematical concepts via 
analogies, metaphors and examples for teaching mathematics at school.

  In [linear] algebra, concerning vector spaces, it was beautifully made clear, that a vector is 
not just an arrow which is just drawn, but that it has a direction and which properties it has. 
Because, one has quasi developed an imagination of it, how it looks like. And therefore later 
it is good for the students, one can better explain it. (Prospective teacher, male, 21, grade 2.2) 

 I now also try to apply the exemplifi cation in the private tutoring center, where I work. I try 
to put this also into the foreground. Because the experience, the short experience, that 
I could make now, has shown that the more exemplifying the beginning is, the more the 
pupils are willing to get to work on theory. (Prospective teacher, male, 21, grade 2.2) 
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   The teaching of mathematical content in an understanding-oriented way may 
foster learning on the one hand, but is on the other hand also very time-consum-
ing because the pace of learning may be reduced. But students do not consider 
that as impairing.

  Yes, exemplifi cation I think is quite important, in order to have reference, so that one knows 
what one is doing there. If you have an image right in front of your eyes, then the theory 
remains more rooted in your head, later it is like this at school. And yes, then it is okay for 
me, if then in only one week lecture can be worked on only the half, but one knows: the 
students do understand it now. (Prospective teacher, female, 20, grade 1.8) 

 Yes, I just say, I personally think it makes more sense to work on less content, but to understand 
it, instead of working on more content of which one does not know anything at the end after 
having struggled through. (Prospective teacher, male, 20, grade 1.8) 

   It can be assumed, that the particular courses offered at the universities of 
Giessen and Siegen have a strong infl uence on the knowledge development of 
prospective teachers. One reason for that might be a slower pacing and the 
empathic, exemplifying way of teaching applied in the courses. Such a style of 
teaching in mathematics courses has obviously a motivating effect—this could be 
confi rmed by statements from the qualitative interviews which represented the 
perspective of students. These students did not experience the sometimes slower 
pace of learning as an obstacle, but to the contrary, as strengthening their learning 
efforts. The student teachers from the University of Giessen also distinguish 
between the course on linear algebra and analysis; they assess teaching in the lat-
ter as being less helpful, while in the former they experienced comprehension-
oriented teaching. The pure transmission of factual knowledge in academic 
teacher education may of cause lead to high achievement scores in performance 
tests as the quantitative fi ndings suggest (which show a signifi cant increase 
between the second and third survey), but not to fi nally sustainable results and 
even may cause students with comprehension problems to give up their studies. 
Nevertheless, the teacher students from Giessen with comparable low previous 
competencies and knowledge in mathematics who took part in the new course do 
not show signifi cant performance defi cits in the area of mathematical content 
knowledge compared to the reference universities. Student teachers obviously did 
well with the modifi ed treatment of academic mathematical knowledge and 
increased their achievement independently from the way the subject matter was 
taught. However, the restructuring of the introductory courses may have stronger 
impacts on endurance, motivation, beliefs, and sustainable learning, which have to 
be further investigated, especially for students with restrained pre-conditions. In 
order to relate the fi ndings of the qualitative and quantitative sub-studies more 
intensively to each other and to further examine the hypotheses derived from the 
quantitative fi ndings, the interviews have to be further analyzed focusing on expe-
riences of student teachers with comprehension-problems. At the current state of 
research it can be assumed that these students can deal better with the traditional 
way of teaching in the second year, because their experiences with comprehen-
sion-oriented teaching in the fi rst year prepared them for that what follows.   
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12.7     Different Functions of Mixed Methods Designs: 
An Overview 

 Mixed methods designs provide important tools to overcome limitations of both 
qualitative and quantitative mono-method research:

•    a quantitative study can help to corroborate fi ndings from a qualitative study and 
to transfer these fi ndings to other domains,  

•   results from the qualitative part of a mixed methods design can help to understand 
previously incomprehensible statistical fi ndings,  

•   qualitative research can help to discover a lack of validity of quantitative mea-
surement operations and instruments,  

•   results from qualitative interviews can help to identify unobserved heterogeneity 
in quantitative data as well as previously unknown explaining variables and mis- 
specifi ed models,  

•   in a sequential quantitative-qualitative design quantitative research can help to 
guide the selection of cases in qualitative small-N studies,    

 Thus quantitative and qualitative methods can fulfi ll different yet complemen-
tary purposes within mixed method designs: 

 Quantitative methods can give an overview about the domain under study and 
can describe its heterogeneity, whereas qualitative methods can be used to gain 
access to specifi c knowledge in the fi eld in order to develop theoretical concepts and 
explanations which cover phenomena which are relevant for the research domain. 
Quantitative and qualitative methods thus cannot substitute for each other but help 
to illuminate different aspects of the investigated phenomena: quantitative methods, 
for instance, may describe the actions of large numbers of different actors, whereas 
qualitative methods provide information about possible reasons for these actions. In 
such cases qualitative and quantitative methods help to answer different questions: 
the results of statistical analyses show  what kinds of actions  social actors typically 
perform (use specifi c techniques of calculation, methods of teaching, etc.), while 
the analysis of qualitative data helps to answer  why- questions (e.g.  for what pur-
poses  do teachers use specifi c methods of teaching, how do they perceive and defi ne 
their situation, which norms do they acknowledge? etc.). Here qualitative and quan-
titative results are not interchangeable. It is not possible to analyze the aggregated 
results of actions (e.g. the results of performance tests of large numbers of pupils) 
with the help of qualitative interview data, whereas local knowledge typical for a 
certain culture or life world often cannot be investigated using standardized ques-
tionnaires, since the researchers do not have suffi cient knowledge to construct such 
research instruments. 

 Since the application of qualitative methods to a yet unknown fi eld carries the 
danger that researchers focus on remote phenomena and marginal cases, an impor-
tant function of quantitative methods in mixed methods research is to guide the 
selection of cases in the qualitative sub-study. Using a metaphor from geography 
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and geology one could say that quantitative methods provide us with a general 
picture of the surface of the research fi eld, while qualitative research can be used to 
drill deep holes into the fi eld yielding the information necessary for in-depth expla-
nations. The problem of hazardous generalizations from small N studies can be 
further mitigated if quantitative methods are used for the corroboration of results 
coming from a qualitative study. Best practice in mixed method research thus 
comprises a chain of alternating steps of qualitative and quantitative research. 
Quantitative methods can be used to describe the investigated phenomena and 
explananda on an aggregated level and to guide qualitative sampling. Qualitative 
research provides information necessary for elaborated explanatory arguments 
which can be further examined by subsequent quantitative research. Thereby further 
quantitative studies may lead to new questions which require additional qualitative 
research and so forth. 

 In our study presented as an example the re-orientation of the mathematics 
teacher training at various German universities on the basis of a mixed methods 
research approach is being investigated. Of particular interest hereby is the com-
parative development of the student teachers performance. The development of 
diagnostic tools for performance measurement in the context of quantitative research 
methods here makes an important contribution. The results of the quantitative- 
oriented sub-study showed a different performance development at the different 
universities, including the level of initial pre-cognitions of the student teachers. But 
the question, which factors of the re-orientation of the mathematics teacher training 
may be responsible for the different performance development, could rather be 
examined by an analysis of interviews with student teachers of the respective uni-
versities about the institutional framework of their studies, evaluated by qualitative 
research methods. Within the qualitative sub-study, which focuses on the percep-
tions of student teachers of their studies, by this on the one hand the quantitative 
results can be partially explained; on the other hand the qualitative sub-study pro-
vides independent fi ndings about individual cases, which afterwards can be checked 
for the whole group on the basis of the quantitative data. In this way, within the 
research design a multi-step process is initiated, in which qualitative and quantita-
tive research methods complement each other. 

 Methodological rules for the integration of qualitative and quantitative methods 
can certainly not serve as recipes to be exactly followed in a step-by-step manner. 
At most, they are general guidelines whose signifi cance varies according to the 
research question at hand and the empirical domain under investigation, and depend-
ing on the specifi c methods employed.

    1.    The selection of adequate methods should not be made mainly on the basis of 
sympathies towards a certain methodological camp or school. Methods are tools 
for the answering of research questions and not  vice versa.  Consequently, 
decisions about the applied methods should not be made before the research 
questions are formulated   

   2.    Each method is well suited to specifi c empirical domains, while there are other 
empirical fi elds of interest where the same method will not yield meaningful results.   
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   3.    There is not one single methodological model of method integration available 
(that claims, for instance, that qualitative and quantitative empirical investigation 
must always lead to convergent or complementary results). The model of triangu-
lation for mutual validation as well as the complementarity model both have 
strengths and weaknesses depending on the research questions posed and the 
empirical domains under investigation. Consequently, the aim of method integra-
tion, be it the mutual validation of data and methods or the complementarity of 
research results, has to be determined on the basis of theoretical and substantive 
considerations for each research project.   

   4.    If method integration is carried out with the purpose of mutual validation, con-
vergence of research results may provide good arguments for their validity, but 
can never fully prove this validity, for it is always possible that all the convergent 
results are biased for the same reason and in the same direction.   

   5.    The crucial function of method integration performed for the purpose of comple-
mentary results is to provide additional data material in an empirical research 
domain where one single method is insuffi cient for the investigation of the 
complete empirical basis of a theoretical assumption.   

   6.    If the qualitative and quantitative methods applied simultaneously lead to diver-
gent results, in principle two explanations are possible: either the divergence is 
the result of mistakes made when applying one (or both) methods and thus 
represents a methodological artifact, or the initial theoretical assumptions have 
to be modifi ed and revised.         
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    Chapter 13   
 Qualitative Content Analysis: 
Theoretical Background and Procedures 

             Philipp     Mayring    

    Abstract     Qualitative Content Analysis designates a bundle of text analysis 
 procedures integrating qualitative and quantitative steps of analysis, which makes it 
an approach of mixed methods. This contribution defi nes it with a background of 
quantitative content analysis and compares it with other social science text analysis 
approaches (e.g. Grounded Theory). The basic theoretical and methodological 
assumptions are elaborated: reference to a communication model, rule orientation 
of analysis, theoretical background of those content analytical rules, categories in 
the center of the procedure, necessity of pilot testing of categories and rules, neces-
sity of intra- and inter-coder reliability checks. Then the two main procedures, 
inductive category formation and deductive category assignment, are described by 
step models. Finally the procedures are compared with similar techniques 
(e.g. codebook analysis) and strengths and weaknesses are discussed.  

  Keywords     Qualitative content analysis  

13.1        Methodological Background of Qualitative 
Content Analysis 

 The techniques of Qualitative Content Analysis have become a standard procedure 
of text analysis within the social sciences. In their bibliometrical analysis of the 
Social Sciences Citation Index (SSCI, 1991–1998), Titscher et al. ( 2000 ) found 
Qualitative Content Analysis in seventh place (after Grounded Theory, Ethnography, 
Standardized Content Analysis, Critical Discourse Analysis, Conversation Analysis 
and Membership Categorization Device). On a predominantly German language 
database (Psyndex, Sociofi le, WISO-Social Science and MLA International 
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Bibliography) they found qualitative, open content analysis in fi rst place. A reason 
for this could be that it can be located between open hermeneutic approaches and 
quantitative measurement. Thus Hussy et al. ( 2010 ) discuss it as hybrid qualitative–
quantitative approach within the mixed methods approach. 

 But how could qualitative and quantitative methodologies come together? 
In social sciences a “science war” is diagnosed (Ross  1996 ). On the one hand stands 
a rigid positivist conception of research with quantitative, experimental methodol-
ogy; on the other hand an open, explorative, descriptive, interpretive conception 
working with qualitative methods. Norman Denzin has subtitled his  Qualitative 
Manifesto  (Denzin  2010 ) as “a call to arms”, so it seems for him impossible to over-
come the contradiction. 

 If we are looking at approaches to text analysis, we can differentiate the two 
positions as coming from different epistemological backgrounds (cf. Guba and 
Lincoln  2005 ):

 –    The hermeneutical position, embedded within a constructivistic theory, tries to 
understand the meaning of the text as interaction between the preconceptions of 
the reader and the intentions of the text producer. Within the hermeneutical circle 
the preconceptions are refi ned and further developed in confrontation with the 
text. The result of the analysis remains relative to the reading situation and the 
reader.  

 –   The positivistic position tries to measure, to record and quantify obvious aspects 
of the text. Those aspects of the text can be detected automatically, and their 
frequencies can be analyzed statistically. The results of the analysis claim 
objectivity.    

 A strict adherence to one of these positions overlooks the possible convergences: 
the social constructivist theory formulates the possibility of agreement between dif-
ferent individual meaning constructions and allows by that the concept of a socially 
shared quasi-objective reality. Modern hermeneutical approaches try to formulate 
rules of interpretation. By this the analysis gains objectivity. On the other hand, 
positivistic positions had been refi ned to post-positivism, or critical rationalism 
(Popper). Here only an approximation of reality, by critical efforts of researchers to 
refute hypotheses, is held to be possible; again there is the notion of an agreement 
process in talking about reality rather than a naive copy of reality. 

 If there are possibilities of bringing together opposing positions in the  qualitative–
quantitative debate, the fl oor is open for models of combination and integration, 
now discussed under the label of mixed methods (cf. Mayring et al.  2007 ; Creswell 
and Clark  2010 ). Qualitative Content Analysis tries to establish such a mixed meth-
ods approach in text analysis. We combine two fundamental steps of analysis: the 
fi rst is a qualitative-interpretative step following a hermeneutical logic in assigning 
categories to text passages; the second is a quantitative analysis of  frequencies of 
those assignments (if the same categories are coded in several text passages) 
(cf. Mayring  2002 ).  
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13.2     Development and Defi nition of Content Analysis 

 Following this background to the procedures of Qualitative Content Analysis, we 
fi rst defi ne and characterize the basic ideas of (quantitative) Content Analysis. 
There is general agreement that the aim of content analysis is to analyze material 
derived from any kind of communication, but content analysis has not concerned 
itself solely with analyzing the content. On this point even the defi nition by the 
author of the fi rst textbook on content analysis, Bernhard Berelson, is not precise: 
“Content analysis is a research technique for the objective, systematic, and quantita-
tive description of the manifest content of communication” (Berelson  1952 , p. 18). 
Not only description of content, but also formal aspects of communication and 
underlying meaning structures have become the object of analysis. Thus scripts of 
dialogues with psychotherapy patients are scrutinized for formal characteristics 
such as sentence corrections, incomplete sentences, word repetitions, “ers” and 
“erms”, etc., in order to register indications of a patient’s anxiety level (Pool  1959 ). 
Even American propaganda research during the Second World War, which was 
directed by Harold D. Lasswell and contributed signifi cantly to the development of 
content analysis, does not restrict itself to the actual contents of communication. 
In fact, many analysts are altogether suspicious of the concept “content”, as they are 
more interested in the latent meanings than in the overt communicative content. 
Thus Budd et al. ( 1967 ) defi ne as follows: “Content analysis is a systematic tech-
nique for analyzing message content and message handling” (p. 2), while George 
( 1959 ) points in a different direction when he calls it “a diagnostic tool for making 
specifi c inferences about some aspects of the speaker’s purposive behaviour” (p. 7); 
or, again, in a more generalized form, Krippendorff ( 1969 ): “Content analysis may 
therefore be redefi ned as the use of replicable and valid methods for making specifi c 
inferences from texts to other states or properties of its source” (p. 11). As can be 
seen from this, content analysis has long ceased to concern itself solely with con-
tent. Pool ( 1959 ), in summary, identifi es three objectives:

 –    describing texts;  
 –   drawing inferences from texts to their antecedents;  
 –   drawing inferences from texts to their effects.    

 With this background two main techniques of quantitative content analysis have 
been developed. First, and primarily,  frequency analyses  and techniques derived 
from them. The simplest method of content-analytical procedure is to count certain 
elements in the material and compare them in their frequency with the occurrence 
of other elements. Of special importance here is the use of comprehensive category 
systems (so-called “dictionaries”), which are supposed to include all aspects of a 
text and form the basis for a computer count of language material. The General 
Inquirer (Stone et al.  1966 ) seems to have been the fi rst attempt in this direction. 
Dictionaries now exist, for instance, for psychologically relevant issues (e.g. 
 Harvard Psychological Dictionary ), the latest editions of which can be conveniently 
used on a PC (cf. Weber  1990 ). On this basis frequencies are computed and  analyzed 
statistically. The dictionary must also of course be able to recognize different 
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 grammatical forms of a word within the context of a sentence. This, however, can 
cause problems:

 –    multiplicity of meaning (e.g. “madly” in the colloquial meaning, say, of “very”; 
or “madly” as pertaining to psychological disturbance);  

 –   the nuances and connotations conferred on terms by the context;  
 –   contextual modifi cation of meaning (for instance in the case of “no anxiety”, “lit-

tle anxiety” and “a lot of anxiety”, “anxiety” will be counted once in each case);  
 –   the contextual relationship of the term counted (e.g. with “I am afraid of X” or 

“X is afraid of me”, “afraid” is counted once in each case);  
 –   the problem of pro-forms (e.g. with “I didn’t notice any of that” the computer 

does not know what “of that” refers to);  
 –   dialect expressions (which occur in interview scripts regularly) need a great deal 

of re-working.    

 Several more problems could be added to the list. Attempts have in fact been 
made to check and control contextual infl uences of this kind (e.g. KWIC – Key 
Word In Context program, cf. Weber  1990 ). For this a list of the text passages within 
which a category was found, that is, the category in its different contexts, is drawn 
up for each concept or term counted. This, however, only makes it possible to rec-
ognize the problem, not to solve it. In any case, lists such as this are diffi cult to 
process with large quantities of text. One example of a more complex frequency 
analysis is the Gottschalk–Gleser Speech Content Analysis for the measurement of 
affective states (anxiety, aggressivity) (Gottschalk and Gleser  1969 ), which has also 
been adapted for the German language (Schoefer  1980 ). 

 This brings us to the second group of tested techniques of content analysis: 
  contingency analyses . The development of such techniques goes back above all to 
Charles Osgood (Osgood  1959 ). The objective here is to establish whether particu-
lar text elements (e.g. central concepts) occur with particular frequency in the same 
context and are connected with one another in any way in the text, that is, are con-
tingent. The intention is that by discovering many such contingencies one may 
extract from the material a structure of text elements associated with one another. 
Examples of this are the classical contingency analysis of Osgood ( 1959 ) or seman-
tic fi eld analysis (Weymann  1973 ). 

 However, there are fundamental criticisms of quantitative content analysis to the 
extent that, today, one can say that the methodology discussion has reached a point 
of stagnation. An increasing number of critical voices describe the technique as 
inadequate and unable to fulfi ll requirements. The joke about “discontent analysis” 
can be heard with increasing frequency. Koch et al. ( 1974 ), for example, tested six 
fairly recent journalistic content analyses from German-speaking countries accord-
ing to customary standards of quality. From them, content analysis gets a bad report: 
“If conclusions are drawn on the basis of the work reviewed here, then it must be 
stated that up to now no one has succeeded in developing a handy instrument for 
describing and analysing news publications with the help of content analysis” 
(Koch et al.  1974 , p. 83). Manfred Ruehl also denies that content analysis has a 
chance of achieving “social-scientifi c status capable of gaining general  acceptability” 

P. Mayring



369

(Ruehl  1976 , p. 377). It achieves only superfi cial polish through quantitative tech-
niques, and has pushed the problem of sense and meaning to one side, he argues. 
“The results of content analysis remain highly pseudo- and parascientifi c … as long 
as content analysts do not know how to equip their scientifi c criteria better for meth-
odological testing” (Ruehl  1976 , pp. 376–377). The fact that the quantifi cation 
approach and orientation to manifest content tend to sidestep the problem of what 
language symbols actually mean is reason enough also for Ingunde Fuehlau to 
declare that content analysis is a failure: “This is why content analysis, if pursued 
strictly according to its own tenets, must inevitably lead to distorted results. If the 
method was stringently applied which actually is almost never really the case — it 
must either produce irrelevant descriptions of the subject — albeit in a very “objec-
tive manner” — or on the other hand meaningful descriptions of communication 
content, to which, however, if judged according to its own criteria, it can only assign 
a highly subject value. In either case, therefore, it fails as a method” (Fuehlau  1978 , 
pp. 15–16; cf. also Fuehlau  1982 ).  

13.3     Basics of Qualitative Content Analysis 

 Qualitative Content Analysis tries to retain the strengths of quantitative analysis and 
against this background to develop techniques of systematic qualitatively oriented 
text analysis. The following points are central: 

13.3.1     Embedding of the Material Within 
the Communicative Context 

    A particular advantage of the content-analytical procedure as compared with other 
approaches to text analysis is the fact that it has a fi rm basis in the communicative 
sciences. The material is always understood as relating to a particular context of 
communication. The interpreter must specify which part of the communication 
 process he wishes his conclusions from the material analysis to relate to. This 
content- analytical particularity should be retained at all costs for qualitative content 
analysis because many quantitative content analyses have neglected this point. The 
text is thus always interpreted within its context, i.e. the material is examined with 
regard to its origin and effect.  

13.3.2     Systematic, Rule-Bound Procedure 

 Preserving the systematic procedure of content analysis is one of the main concerns 
of the methods suggested here. Systematic procedure in this connection means, fi rst 
and foremost, orientation towards rules of text analysis laid down in advance. 
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Several points need to be made in this regard. The establishing of a concrete 
 procedural model of analysis is of central importance. Content analysis is not a 
standardized instrument that always remains the same; it must be fi tted to suit the 
particular object or material in question and constructed especially for the issue at 
hand. This is laid down in advance in a procedural model (examples of such models 
will be found below) which defi ne the individual steps of analysis and stipulate their 
order. But it is also continually necessary to establish additional rules. It is an axiom 
precisely of content analysis, in contrast to “free analysis”, that every analytical step 
and every decision in the evaluation process should be based on a systematic and 
tested rule. Finally, the systematic quality of content analysis is refl ected also in its 
method of “dissection” or line-by-line analysis rather than a more holistic 
interpretation. 

 The defi nition of content-analytical units (recording units, context units, record-
ing unit) should in principle be retained also in qualitative analysis. Concretely this 
entails deciding in advance how the material is to be approached, which parts are to 
be analyzed in what sequence, what conditions must obtain in order for an encoding 
to be carried out. In the process of inductive category formation it can be useful to 
keep such content-analytical units very open-ended. Despite this, however, the 
 process here also is characterized by dissection of the material carried out 
 progressively from one passage to the next. Certainly, it is precisely this last point 
which has frequently been criticized by some proponents of the qualitative approach. 
Latent structures of meaning cannot be revealed in this way, they say. One answer 
to this, in the case of such an analytical objective, is to defi ne the units more broadly. 
Nevertheless, it is important that such units be theoretically well founded, in order 
to allow other analysts access to the logic and method of the analysis. The system 
should be so described that another interpreter may carry out the analysis in a 
 similar way.  

13.3.3     Categories as the Focus of Analysis 

 The category system is the central point in quantitative content analysis. Even with 
qualitative analysis, however, an attempt should be made to concretize the objec-
tives of the analysis in category form. The category system constitutes the central 
instrument of analysis. It also contributes to the inter-subjectivity of the procedure, 
helping to make it possible for others to reconstruct or repeat the analysis. In this 
connection qualitative content analysis will have to pay particular attention to cate-
gory construction and substantiation. However, precious little help is given in this 
respect by standard works on content analysis. Krippendorff thus writes: “How cat-
egories are defi ned … is an art. Little is written about it” (Krippendorff  2004 , p. 76). 
That of course is unsatisfactory. It is precisely the methods described in this work 
which may be of further assistance in this regard. 
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 On this point also, some proponents of qualitative analysis make the objection 
that orientation to categories entails an analytically dissecting procedure which 
impedes more holistic comprehension of the material. In answer to this it can be 
said that qualitative content analysis also provides methods which accord promi-
nence to synthetic category construction, that is, where the category system actually 
constitutes the fi ndings of the analysis. This is the case for inductive category for-
mation procedures and summarizing content analysis (see below). On the other 
hand, working with a category system is an important contribution to the compara-
bility of fi ndings and the evaluation of analysis reliability.  

13.3.4     Object Reference in Place of Formal Techniques 

 On the other hand the methods of qualitative content analysis should not simply be 
techniques to be employed anywhere and everywhere. The alliance with the indi-
vidual object of analysis is an especially important concern. This is seen in the fact 
that the procedures discussed here are oriented to the way language material is 
ordinarily experienced and dealt with in everyday life. The three basic techniques of 
summary, explication and structuring (see Sect. 4) are based on it. This clearly dem-
onstrates that it is the object of analysis which is paramount. The methods are not 
intended to be conceived of as techniques which can be blindly and automatically 
transferred from one object to the other. The appropriateness of the method must be 
demonstrated with regard to the particular material in each individual case. This is 
why the methods suggested here must themselves always be adapted to suit the 
individual study.  

13.3.5     Pilot Testing of the System of Categories 
and the Content Analytical Rules 

 Qualitatively oriented content analysis does not use fully standardized instruments. 
The category system and the related content analytical rules usually are developed 
for the specifi c material in respect to the specifi c research question. Initially that 
means a disadvantage compared with quantitative research and is why methods 
should be tested in a pilot study. After working through a substantial part of the 
material the coder is requested to stop coding and revise the category system and the 
coding rules. Are they adequate to the material and the research question? If a revi-
sion is done as consequence, the coding process has to start from the beginning. In 
the procedural models (see below), these steps are included through the presence of 
reverse loops. What is important in this is that the trial runs are also documented in 
the research report.  
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13.3.6     Theory-Guided Character of the Analysis 

 It must by now have become clear that qualitative content analysis is not a rigidly 
delineated technique, but a process in which new decisions regarding basic proce-
dure and individual stages of analysis constantly have to be made. What are such 
decisions based upon? In qualitatively oriented research it is repeatedly stressed that 
here theoretical arguments must be used. Technical fuzziness is compensated for by 
theoretical stringency. This applies above all to the explication of the particular 
issue, but it also concerns detailed analyses. Theory-guidedness means that in all 
procedural decisions systematic reference is made to the latest research on the par-
ticular subject and on comparable subject fi elds. In qualitative content analysis 
content-related arguments should always be given preference over procedural 
arguments.  

13.3.7     Integrating Quantitative Steps of Analysis 

 As has already been emphasized above, efforts are made to combine qualitative and 
quantitative methods. Putting it more exactly, the chief task is to determine those 
points in the analytical process at which quantitative measures can be sensibly 
brought in. Reasons for their use should then be carefully explained and the results 
should be analyzed in detail. Quantitative steps of analysis will always gain particu-
lar importance when generalization of the results is required. In case study proce-
dures it is important to show that a certain case recurs in similar form with particular 
frequency. But within content-analytical category systems, too, registration of how 
often a category occurs may give added weight to its meaning and importance. 
Of course, this must be given adequate justifi cation in the respective case. A pre-
cisely based qualitative assignment of categories to a certain material (e.g. through 
the structuring method, cf. below) can also be supplemented by more complex sta-
tistical evaluation techniques, as far as these are appropriate to the purpose of analy-
sis and suited to the object involved.  

13.3.8     Quality Criteria 

 It is precisely because here the harsh methodological standards of quantitative 
 content analysis have been softened and applied more fl exibly in some respects that 
the assessment of results according to quality criteria such as objectivity, reliability 
and validity is especially important even in qualitative content analysis. For quanti-
tative content analysis it is inter-coder agreement which is of particular signifi cance. 
Several content analysts work on the same material independently of one another 
and their fi ndings are compared. In general this should also be attempted with 
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qualitative content analysis, although negative fi ndings do not necessarily have to 
lead to the immediate abandoning of the analysis. Here the main point, again, is to 
understand and interpret unreliabilities. Such a search for sources of error is espe-
cially important during the pilot phase, as it can lead to the instruments of analysis 
being modifi ed. That is to say, it can lead to inquiry into arguments for reliability 
and validity while the process of analysis is actually going on, instead of leaving 
this exclusively to a single assessment at the close of the analysis.   

13.4     Basic Procedures or Techniques of Qualitative 
Content Analysis 

 From an analysis of common qualitative oriented text analysis techniques (cf. 
Mayring  2010a ,  b ) we can show that they can be reduced to three fundamental 
forms of interpreting: summary (text reduction), explication and structuring:

•     Reducing procedures:  The object of the analysis is to reduce the material such 
that the essential contents remain, in order to create through abstraction a com-
prehensive overview of the base material which is nevertheless still an image 
of it.  

•    Explicating procedures:  The object of the analysis is to provide additional 
material on individual doubtful text components (terms, sentences, …) with a 
view to increasing understanding, explaining, interpreting the particular passage 
of text.  

•    Structuring procedures:  The object of the analysis is to fi lter out particular 
aspects of the material, to give a cross-section through the material according to 
pre-determined ordering criteria, or to assess the material according to certain 
criteria. In those procedures the categories are formulated in advance in the sense 
of a deductive category assignment.    

 These basic forms, however, must be further differentiated before an exact 
description of procedures is possible. In addition to the usual summaries, the same 
ongoing process is useful for inductive category formation; a criterion for the cate-
gories is defi ned and aspects of this criterion are stepwise gathered in the material. 
Forms of explication are possible which use the textual context for the elucidation 
of a particular text passage (narrow context analysis); however, the most common 
method of hermeneutical interpretation is to use further material beyond the textual 
context for explication (broad context analysis). With structuring, too, subgroups 
must be distinguished. The categories which are brought deductively to the material 
can consist of a list of aspects (nominal scale). Or the categories form an ordinal 
scale (e.g. more – less) and serve as a rating procedure for the text. In addition, some 
mixed procedures have been described (Mayring  2010a ,  2013 ). One such is that in 
content structuring or theme analysis the material is deductively ordered to catego-
ries and within each category material an inductive process of category formation is 

13 Qualitative Content Analysis: Theoretical Background and Procedures



374

performed. Type analysis is a similar procedure where categories in the fi rst step 
have to meet a typologizing criterion (typical types, extreme types, frequent types, 
theoretical types). In category refi nement a deductive category system is modifi ed 
and supplemented with new categories in an inductive way. Parallel forms execute 
several procedures in one passage through the material. 

 Through this differentiation we arrive at ten distinct forms of analysis:

 Reductive:  (1) Summary  (2) Inductive category formation 
 Explicating:  (3) Narrow context analysis  (4) Broad context analysis 
 Structuring/Deductive:  (5) Nominal categories  (6) Ordinal categories 
 Mixed:  (7) Content structuring  (8) Type analysis 

 (9) Category refi nement  (10) Parallel forms 

   These procedures have been described extensively elsewhere (Mayring  2010a , 
 2013 ). We now demonstrate two central techniques of Qualitative Content Analysis: 
inductive category formation and deductive category assignment (structuring). 

13.4.1     Inductive Category Formation 

 On the basis of summarizing qualitative content analysis a technique for inductive 
category formation can be developed. We have heard that category defi nition is a 
central step in content analysis, a very sensitive process, “an art” (Krippendorff 
 2004 ). There are two possible procedures: deductive category defi nition tries to 
develop categories out of theoretical considerations, with theories or theoretical 
concepts used in a process of operationalization in direction of the material; induc-
tive category formation develops categories directly out of the material. For qualita-
tive content analysis the second is very fruitful. The ongoing inductive process has 
great importance within qualitative research. It aims at a true description without 
bias due to the preconceptions of the researcher, an understanding of the material in 
terms of the material. Inductive category formation is a central process within the 
approach of Grounded Theory (Strauss  1987 ; Strauss and Corbin  1990 ), which they 
call “open coding”. They developed many rules of thumb for open coding, and they 
recommended a systematic, line-by-line procedure. For content analysis, neverthe-
less, inductive category formation has to be more systematic. And it can use the 
same logic, the same reductive procedures, as in summarizing content analysis. The 
following process model (Fig.  13.1 ) will now be explained.

   Within the logic of content analysis, the level or theme of categories to be devel-
oped must be defi ned previously. There has to be a criterion for the selection process 
in category formation. This is a deductive element and is established within theo-
retical considerations about the subject matter and the aims of analysis. The second 
basic content analytical rule for inductive category formation is the establishment of 
the abstraction level. This comes from summarizing content analysis which reduces 
the material from one abstraction level to the next. If this level is not defi ned the 
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categories remain chaotic, out of order. After those two rules are determined, the 
material is worked through line by line. The fi rst time material fi tting the category 
defi nition is found, a category has to be constructed. A term or short sentence which 
stands as near as possible to the material serves as category label. The next time a 
passage fi tting the category defi nition is found it has to be checked whether if it falls 
under the previous category, in which case it can be subsumed under this category 
(a reductive process); if not, a new category has to be formulated. 

 After working through a good deal of material (c. 10–50 %) no new categories 
are to be found. This is the moment for a revision of the whole category system. 
It has to be checked whether the logic of categories is clear (e.g. no overlaps) and 
whether the level of abstraction is adequate to the subject matter and aims of analy-
sis. Perhaps the category defi nition has to be changed. If there are any changes in the 
category system, of course the complete material has to be worked through once 
again. After this analysis we have a set of categories to a specifi c topic, connected 
with specifi c passages in the material. The further analysis can go different ways: 
the whole system of categories can be interpreted in terms of the aims of the analy-
sis and used theories; or the links between categories and passages in the material 
can be analyzed quantitatively (e.g. we can look at those categories occurring most 
frequently in the material). 

Establishment of a selection criterion      
Category definition                                             
Level of abstraction 

Subject matter, theory, aims of analysis

Working through the material line by line     
Category formulation                            
Subsumption or new category formulation 

Revision of the categories                                  
after 10–50% of the material

Final working through the material

Building of main categories if useful 

Analysis, category frequencies, interpretation

  Fig. 13.1    Process model of 
inductive category formation       
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 For example, in a study on learning emotions (Glaeser-Zikuda and Mayring 
 2003 ) we analyzed open-ended interviews and daily diaries on concrete learning 
experiences of 24 students of eighth grade. With inductive category formation we 
built up categories concerning positive learning experiences. We generalized those 
categories on a medium level of abstraction. Here are the most frequent categories:

 C1: Happy about the interesting learning activities today  (21 occurrences) 
 C2: Happy to master the subject and having understood everything  (21 occurrences) 
 C3: Amazing subjects in the lesson (literature, poems)  (16 occurrences) 
 C4: Enjoyed the positive feedback by the teacher  (14 occurrences) 
 C5: Nice group work or partner work  (11 occurrences) 
 C6: Interesting problems (electricity) in the lesson  (3 occurrences) 

   Those inductive categories give an impression about positive emotions in learn-
ing processes. In a second step we found two main categories within this list: posi-
tive emotions about the learning processes (C1, C2, C4, C5) and positive emotions 
about the learning content (C3, C6). We then compared the occurrences of those 
main categories between the two groups of high and low achievers and found a cor-
relation between positive emotions about learning processes and high classroom 
achievement. That means that it seems to be more important for good teaching to 
associate positive emotionality with successful learning processes than with learn-
ing content.  

13.4.2     Deductive Category Assignment (Structuring) 

 This is the content-analytical method which is probably most often used. It has the 
goal of extracting a certain structure from the material. This structure is brought to 
bear on the material in the form of a category system. All text components addressed 
by the categories are then extracted from the material systematically. If one wishes 
to describe the structuring procedure quite generally, a few points are especially 
important: the fundamental structuring dimensions must be exactly determined; 
they must derive from the research question and must be theoretically based; these 
structuring dimensions can be further subdivided, split up into individual features 
or values; the dimensions and values are then brought together to form a category 
system. 

 The particular categorization of a given material component is something that 
must be determined precisely. A procedure for this, based on everyday life pro-
cesses of categorization, has proven useful (cf. Ulich et al.  1985 ). Within develop-
mental psychology (learning of categories in speech development) and within 
general psychology (categorization theories, cf. Murphy  2002 ) it has been shown 
that categories are imagined in form of explicit defi nitions, prototypes and demarca-
tion rules. So a category can be defi ned best if all three determining approaches 
are used:
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•     Defi nition of the categories  
 It is precisely determined which text components belong in a given category.  

•    Anchor samples  
 Concrete passages belonging in particular categories are cited as typical exam-
ples to illustrate the character of those categories.  

•    Coding rules  
 Where there are problems of delineation between categories, rules are formu-
lated for the purpose of unambiguous assignment to a particular category.    

 Test extracts are taken from the material to check whether the categories are at 
all applicable and whether the defi nitions, anchor samples and coding rules make 
category assignment possible. This trial run-through, like the main run-through 
proper, is subdivided into two steps of operation. First of all the text passages in the 
material are marked in which the category concerned is addressed. These “points of 
discovery” (cf. Hausser et al.  1982 ) can be marked by noting the category number 
in the margin of the text or through differently colored underlinings in the text itself. 
In the second step the material thus marked is processed in accordance with the 
structuring intention (see below) and copied out of the text. As a rule this trial run- 
through results in a revision and partial reformulation of the category system and its 
defi nitions. Now the main material run-through can fi nally begin, again split up into 
the two stages of marking the points of discovery and extracting and processing 
them. This general description of a structuring content analysis can be shown in a 
procedural model (Fig.  13.2 ).

   To further explain the procedure for all techniques of Qualitative Content 
Analysis, rules of interpretation have been formulated. Those step-models and 
 content analytical rules are explained in detail in Mayring ( 2010a ,  2013 ). Here we 
just demonstrate the idea of rule-orientated text analysis. 

 In the above-mentioned study on learning emotions (Glaeser-Zikuda and 
Mayring  2003 ), we developed a category system with 3-point ordinal scales (much – 
some – no) for four central learning emotions: joy, interest, anxiety and boredom. 
We established a coding guideline containing defi nitions, anchor examples and cod-
ing rules for those 12 categories. Every student was coded one value (much – some – 
no) for the four emotions. We divided the sample into high and low achievers and 
compared the emotion results. In the material (interview, learning diary) of high 
achievers, signifi cantly more joy was coded (p < 0.05; Mann–Whitney-U = 42.00), 
more interest (p < 0.05, Mann–Whitney-U = 12.50), but no signifi cant difference in 
boredom was found. 

 To conduct a qualitative content analysis (inductive or deductive) it would be 
very helpful to use computer software, because most of the texts today are already 
data fi les and because normally we are handling huge amounts of texts. There are 
several programs available (Computer Assisted Qualitative Data Analysis, 
CAQDAS) and it is possible to use them for Qualitative Content Analysis, even if 
they are more orientated on Grounded Theory. But it is not easy to implement all 
content analytical steps and procedures adequately. So in the meantime we have 
developed special open access software which supports exactly the steps of qualita-
tive content analysis (  www.qcamap.org    ).   
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13.5     Final Appraisal of the Qualitative Content Analysis 

 First, compare the procedures of Qualitative Content Analysis with similar 
approaches of qualitative oriented social science text analysis (cf. Mayring  2010b ). 

 Within media analysis, David Altheide ( 1996 ) has developed a procedure (“eth-
nographic content analysis”) working with deductive categories (codes), which 
were refi ned in the process of analysis. Then he summarizes the results for each 
category. This has similarities with our approach but is not so rule-oriented as 
Qualitative Content Analysis. In the USA there exists an approach coming from 
quantitative content analysis which is called Codebook Analysis (Neuendorf  2002 ). 
It is a deductive category application procedure, which defi nes all categories in the 
codebook and gives examples from the text. But this defi nition is not so systematic 
as the coding scheme (defi nitions, anchor examples and coding rules) in our proce-
dure. In some ways similar is Thematic Text Analysis (Stone  1997 ), which looks in 
the text for central themes, using theoretical preconceptions or empirical word fre-
quencies and word contingencies. In both cases Qualitative Content Analysis 
defi nes the procedure more precisely. The related concept of Theme Analysis cov-
ers more free, phenomenological procedures (Meier et al.  2008 ). Some similarities 
can be found between Qualitative Content Analysis and text analysis following Berg 

Definition of the category system (main 
categories and subcategories) from theory and 
state of the art

Subject matter, theory, aims of analysis

Definition of the coding guideline, containing for 
all categories: definitions, anchor examples and 
coding rules

Revision of the categories and coding scheme                                 
after 10–50% of the material

Final working through the material

Analysis, category frequencies and contingencies 
interpretation

Material run-through, preliminary codings, 
completion of anchor examples, coding rules

  Fig. 13.2    Process model of 
deductive category 
application (structuring)       
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( 2004 ). He describes deductive (“analytic”) and inductive (“grounded”)  categories 
which have to be defi ned explicitly, but it remains unclear how this has to be done. 

 In comparison with those text analytical approaches, Qualitative Content 
Analysis seems to be most broad (describing a wide set of different procedures) and 
most exact (prescribing clear step models and analytical rules). So Steigleder 
( 2008 ), after a praxis test of Qualitative Content Analysis, comes to the conclusion 
that “it has proven its worth in many studies. With its different techniques of analy-
sis and its methodological concept it is excellently adapted to analyse qualitatively 
collected material” (Steigleder  2008 , p. 197). But it should not be argued that 
Qualitative Content Analysis is the only legitimate text analysis procedure. 
It depends on the concrete research question and the quality of the material which 
procedure should be chosen. If use of the strict category relatedness and rule orien-
tation of Qualitative Content Analysis neglects important deeper aspects of the 
material (e.g. repressions in the sense of psychoanalysis), then other procedures 
(e.g. psychoanalytical text interpretation) would be more adequate.     
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    Chapter 14   
 A Study on Professional Competence of Future 
Teacher Students as an Example of a Study 
Using Qualitative Content Analysis 

                Björn     Schwarz    

    Abstract     Subsequent to the general description of Qualitative Content Analysis as 
described in the preceding chapter of Philipp Mayring this chapter aims to give a 
concrete example of a study based, from a methodical point of view, on Qualitative 
Content Analysis. The study described for this purpose focuses on structures of 
professional competence of future mathematics teachers. Based on the concept of 
competence by Weinert (( 2001 ). Concept of competence: A conceptual clarifi ca-
tion. In D. Simone Rychen & L. Hersh Salganik (Eds.),  Defi ning and selecting key 
competencies  (pp. 45–65). Seattle et al.: Hogrefe & Huber.) and common distinc-
tions of teachers’ professional knowledge (e.g. Shulman,  Educational Researcher, 
15 (2), 4–14,  1986 ) a questionnaire was developed and evaluated by means of 
Qualitative Content Analysis. This chapter emphasises the methodical aspects of the 
study and only subordinately considers its results.  

  Keywords     Qualitative content analysis   •   Professional competence  

14.1         Introduction 

 This chapter describes a qualitative study which uses the methodical approach of 
 Qualitative Content Analysis   in order to illustrate the general presentation of 
Qualitative Content Analysis by Philipp Mayring in the preceding chapter (Chap. 
  13    ). The study thereby focuses on the  professional competence   of  future mathemat-
ics teachers   and Qualitative Content Analysis was used for evaluating the future 
teachers’ written answers to open questions. This chapter addresses the methodical 
approach of the study, rather than a detailed description of the study as a whole 
which can be found in Schwarz ( 2013 ). Hence in the next section only a brief sketch 
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of the theoretical framework is given. The main part of the chapter focuses on the 
data- evaluation   within the framework of Qualitative Content Analysis. In this 
 context then fi rst the question why and second the question how Qualitative Content 
Analysis was applied in this study are discussed before this chapter closes with a 
summary.  

14.2     Theoretical Framework and Research 
Question of the Study 

 The problem of how to describe teachers’ professional competence is neither a new 
nor an already solved issue. Instead many different approaches have been developed 
with different emphases or from different perspectives (for an overview see for 
example Baumert and Kunter  2006 ). Furthermore several recent large scale 
 comparative studies have been carried out in order to evaluate the effi ciency of 
 teacher education   (e.g. the international comparative studies about the education of 
future mathematics teachers TEDS-M (for future primary teachers, Blömeke et al. 
 2010a ; for future secondary teachers, Blömeke et al.  2010b ) and MT21 (Blömeke 
et al.  2008 ), for further research with regard to the effi ciency of teacher education 
see Blömeke ( 2004 )) or to evaluate the professional competence of practicing teach-
ers (e.g. with regard to German mathematics teachers COACTIV (Kunter et al. 
 2011 )). Despite their individual differences with regard to their conceptualisations 
all these studies more or less share an underlying understanding of the concept of 
competence based on the approach of  competence   formulated by Weinert ( 2001 ). 
His understanding is the following:

  The theoretical construct of action competence comprehensively combines those intellec-
tual abilities, content-specifi c knowledge, cognitive skills, domain-specifi c strategies, rou-
tines and subroutines, motivational tendencies, volitional control systems, personal value 
orientations, and social behaviors into a complex system. Together, this system specifi es the 
prerequisites required to fulfi ll the demands of a particular professional position, of a social 
role, or a personal project. (p. 51) 

   One immediately identifi es the fundamental distinction between a cognitive part 
and a more affective part in this understanding of competence, both of which again 
can be conceptualized in many different ways. Prominent examples of the cognitive 
part, with regard to teachers, are the distinctions of different areas of  teachers’ 
knowledge   formulated by Shulman ( 1986 ) and their subsequent serial works and 
concretisations (e.g. Bromme  1997,   1994 ). 

 The study described in this chapter arises from the research context of  MT21   
(“Mathematics Teaching in the 21 st  Century”) and was conceptualized as a national 
supplementary study to MT21. MT21 in general was an international comparative 
study about the effi ciency of teacher education which was conducted in six coun-
tries. It thereby approached the research topic by a multi-dimensional approach 
including the individual perspective of teacher education as one dimension. With 
regard to this dimension in MT21 all phases of teacher education were taken into 
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account and respectively future teachers in the beginning, in the middle and at the 
end of their education were asked to participate in the study (Blömeke et al.  2008 ). 
While on one hand, in line with MT21, the study described here also focuses on 
future teachers of mathematics, on the other hand in contrast to the wider defi ned 
group of participants in MT21 the study focuses only on future teacher students who 
are still in their fi rst phase of teacher education taking place at a university. 

 With regard to its theoretical conceptions the study, like MT21, starts from the 
concept of competence by Weinert ( 2001 ) as described above with its distinction 
between cognitive and affective parts. To provide a more detailed concretisation 
and operationalization of this concept with regard to future mathematics teachers 
the study exclusively focuses on content-related parts of the  future mathematics 
teachers  ’ professional competence. More specifi cally, this means taking into con-
sideration, for the cognitive side of competence, the areas of  content knowledge 
  and  didactical knowledge   (in a sense of a combination of pedagogical content 
knowledge and curricular knowledge) related to the work of Shulman ( 1986 ) and 
Bromme ( 1997 ,  1994 ), and for the affective side of competence a focus on  mathe-
matical beliefs   (Grigutsch et al.  1998 ; Pehkonen and Törner  1996 ). These selected 
parts of professional competence are then further divided into subareas. So for 
example didactical knowledge is divided into the subareas of teaching-related 
didactical knowledge on one side and learning-process-related didactical knowl-
edge on the other side. Beliefs are divided into beliefs focusing on mathematics 
itself on the one hand and beliefs focusing on the teaching and learning of mathe-
matics on the other hand. 

 Taking this theoretical framework as a basis, the research question then is: What 
kind of structures can be reconstructed between the selected parts of professional 
competence for future mathematics teachers? Structures here more precisely can be 
understood as frequent common appearances of manifestations of the different 
areas of professional competence. In this context the methodical approach of the 
study is described in order to illustrate the use of Qualitative Content Analysis.  

14.3      Why Was Qualitative Content Analysis Chosen? 

 Some fundamental methodical decisions with regard to the design of the study are 
described below. As these characteristics of the study are not exclusively related to 
Qualitative Content Analysis but are of a more general nature they are only shortly 
sketched in order to set the focus of this paper on the use of a Qualitative Content 
Analysis. 

 So starting with basal methodical characteristics of the study, the fi rst of these 
fundamental decisions was whether the study should be qualitative or quantitative 
in nature. Here the aim of the study dictated the decision for  qualitative research  . 
The study was not intended to identify relations within the professional competence 
of the future mathematics teachers in the sense of statistical correlations between 
dimensions of competence. Instead the research goal was to be able to fi nd and 
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describe on a more detailed level characteristics of the structures that existed 
between components of professional competence. It was accepted that this goal of 
more detailed descriptions would yield only hypotheses (for example the hypothe-
sis that there is an infl uence of future teachers’ individual representations of areas 
of content knowledge on the application of this content knowledge in the context of 
pedagogical content knowledge, see below) rather than representative results, 
which, however, could be used as a starting point for a subsequent quantitative 
study (Mayring  2008 ; Flick  2006 ). Against this background of the choice of quali-
tative research, the decision was made to use a questionnaire in order to be able to 
survey more future mathematics teachers than would have been possible using an 
interview approach. Thus, a  questionnaire   with fi ve 1  tasks was developed with each 
task assigned to a mathematical and school related background, for example focus-
sing on a task for pupils or a mathematical theorem discussed in school. Furthermore, 
each task consisted of several subtasks, each of which was assigned to one of the 
parts of professional competence as described above. 2  With regard to the underly-
ing areas of mathematics, all tasks were assigned to either the area of  mathematical 
modelling   (Kaiser et al.  2011 ) or to the area of  argumentation and proof   (Hanna 
 2000 ) in order to try to fi nd areas which represent both a more dynamic and a more 
static side of mathematics (cf. Grigutsch et al.  1998 ). Following the qualitative 
fundamental structure of the study then all subtasks were open. The questionnaire 
was answered by 79 future teachers who were students in either an earlier or later 
phase of their university studies, and who intended to teach in either primary or 
secondary schools. 

 Given these fundamental methodical characteristics of the study it was decided 
to analyse the data with a Qualitative Content Analysis according to Mayring (see 
Chap.   13    , also Mayring  2000 ). A fi rst and central reason for the decision was that 
fundamental possibilities for analysing the data offered by  Qualitative Content 
Analysis  , in comparison to other methods, fi t very well with the aims of the study. 
The study was intended to search for structures within the professional competence 
of future teachers, which precisely equates to structuring as the third of the “Basic 
procedures or techniques of Qualitative Content Analysis” (Chap.   13    , Sect. 13.4) 
named by Mayring. More precisely the approach of scaling structuring (cf. ibid., 
Mayring  2008 ) was used as it was meaningful to introduce the idea of scales for 
describing the formations of the future  teachers  ’ areas of professional competence. 
The latter results from the study’s focus on different areas of knowledge and beliefs, 
that is on areas of professional competence that can be held in different degrees 
(namely one could know more or less or has a stronger or less strong belief or stron-
ger or less strong affi rmation or disaffi rmation towards something). The possibility 

1   Only four of these fi ve tasks formed the basis for the fi nal data evaluation. For details see Schwarz 
( 2013 ). 
2   Often within one task more than one subtask was assigned to a respective part of professional 
competence. In summary 20 subtasks were evaluated of which nine focused on didactical knowl-
edge, fi ve on content knowledge and six on beliefs. 
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of distinguishing between different degrees implies  ordinal scales   which therefore 
were often used in the study. 

 This using of ordinal scales thereby especially offered advantages when answers 
were to be distinguished in a hierarchic way as ordinal scales allowed coding beyond 
a dichotomous distinction of the answers. Instead fi ner grades between different 
answers could be distinguished. An example for this is the coding of a subtask 
focussing on mathematical content knowledge. With regard to future teachers’ 
 professional competence one might agree that there is a difference between answers 
which contain a substantial mathematical mistake and answers which contain a 
minor mathematical mistake such as a calculation error. A coding using ordinal 
scales here allowed a distinction between such answers, in contrast to a coding 
which only distinguishes between right and wrong answers and therefore would 
cover both kinds of answers as wrong and thereby treat them equally. Another 
example can be found when two answers are both correct but one is more elaborated 
or covers more relevant aspects than the other answer. Then again a dichotomous 
distinction between the answers would both equally cover them as right while the 
use of ordinal scales instead offers the possibility of evaluating one answer as of a 
higher adequateness than the other. Nevertheless in addition to the use of ordinal 
scales also nominal scales were used when a distinction between different answers 
without grading them was more appropriate. 

 A second also central reason for the decision to choose  Qualitative Content 
Analysis   was the already existing theory about the different areas of professional 
competence, for example with regard to didactical or mathematical knowledge or 
with regard to different beliefs on mathematics and the teaching and learning of 
mathematics. Therefore analysing the future teachers’ answers on the open questions 
required two aspects. On the one hand all qualitative analysis of data in general con-
tains an act of individual interpretation of the material in the sense that different 
persons can have different connotations or a different understanding of the same 
material. In this regard it was necessary to interpret the future teachers’ answers as 
they were formulated in an open way. But, on the other hand, there is already an 
existing theory about what the future teachers are writing about. So despite the need 
of interpreting the future teachers’ answers it was also an appropriate methodological 
decision to follow precise rules when evaluating them in order to take this theory 
into account. This for example covers the evaluation of how adequate an answer is. 
Thus in the case of the study, necessary consideration of existing theories while 
analysing the qualitative data was also offered by Qualitative Content Analysis. 
More specifi cally, this method is even centrally characterized by aspects which allow 
a controlled data evaluation based on and considering existing theory, namely aspects 
of “systematic, rule-bound procedure” (Chap.   13    , Sect. 13.3), “categories as the 
focus of analysis” (ibid.), and the “theory-guided character of the analysis” (ibid.). 

 The third, and fi nal, reason for choosing Qualitative Content Analysis was 
related to the practical requirement of evaluating quite a large amount of data. This 
amount directly resulted from the aim of enriching the qualitative study’s results by 
considering—for a qualitative study—a quite big sample of 79 future teachers. 
Thus, a methodical approach was necessary which on the one hand in line with 
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the previous reason allows a rule-bound categorization of the material, but furthermore 
also is “economical” on the other hand in order to, at the same time, facilitate the 
evaluation of all questionnaires. Both aspects are fulfi lled by Qualitative Content 
Analysis as they were even the starting point for developing this method (cf. ibid.). 

 One of the fundamental “Basics of  Qualitative Content Analysis  ” (ibid.), even 
the fi rst Mayring names in the homonymous section of his chapter, is the “embed-
ding of the material within the communicative context” (ibid.). That means that “the 
material is always understood as relating to a particular context of communication” 
(ibid.) and “examined with regard to its origin and effect” (ibid.). Often this means 
that the researcher analyses communication that took place between one or more 
senders and one or more recipients. Mayring ( 2008 ) thereby describes a communi-
cation model basing on the model of Lagerberg ( 1975 ). Therein “source of informa-
tion”, “sender”, “product”, “receivers” and “target group” (ibid., p. 275) are 
distinguished. Mayring ( 2008 , p. 50 ff.) extends this model and especially empha-
sizes background variables of the participants involved in the communication, the 
role of the researcher as an analyser of the product, information about the context in 
which the communication takes place, and an analysis of the communicated text. 
This communication model generally enables the interpreter to “specify which part 
of the communication process he wishes his conclusions from the material analysis 
to relate to” (Chap.   13    , Sect  13.3 ). Transferred to this study the act of communica-
tion based on the fulfi lling of the questionnaires by the future teachers 3  and the fol-
lowing reading of the questionnaires by the researchers. This means that the text 
was not produced by the senders for a target group and in addition is analysed by the 
researchers. Rather here the target group, the actual receiver, and the researcher 
accord in the sense that the  questionnaires   were originally written by the future 
teachers as senders in order to be analysed by the researchers. Hence furthermore 
the reader of the study in addition can be seen as part of the target group and as a 
receiver. Regarding the background of the senders, the future teachers knew that the 
questionnaire was part of a study, so here the senders explicitly took part in the act 
of communication under the perspective of participating in a study. Therefore one 
can assume that the future teachers as senders did not connect any further intentions 
with the communication going beyond participating in the study. All senders 
 furthermore have a common background insofar as they all are mathematics teacher 
students and in contrast differ in their background for example with regard to 
the phase of their study or the school level they later want to teach in. The context 
of the communication then is the framework of university teacher education for 
future mathematics teachers. Regarding the transmitted product, in this case it was 
fi xed already by the senders as the future teachers in the act of communication 
wrote down their answers. This is also important as it can be expected that the 
necessity of writing down an answer instead of verbally formulating it infl uences 
the characteristics of this answers, for example with regard to the elaboration or 
length of an answer. In summary using this communication model the study is an 
attempt to evaluate a product in order to formulate hypotheses about the profes-
sional competence of the group of senders of the product. 

3   This also includes considerations of the future teachers about how to solve the task which under 
the perspective of describing the act of communication can be seen as internal argumentations. 
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 A further aspect which combines more practical and more theoretical aspects of 
analysing data is the question of a possible segmentation of the data.    Having any 
kind of material to be analysed there is always the necessity of “deciding in advance 
how the material is to be approached, which parts are to be analyzed in what 
sequence” (ibid.). This leads to the “defi nition of content-analytical units” (ibid.) 
which in general also represents the “systematic quality of content analysis” (ibid.). 
In this study the segmentation of the material in units could be directly derived 
from the research question mediated by the structure of the questionnaire. The 
theoretical- based distinction between different areas of professional competence in 
the research question corresponds with the concept of separate subtasks in the 
questionnaire. Each subtask thereby is related to one of the areas of professional 
competence. The segmentation into different units of interpretation then follows 
the structure of the questionnaire with these different subtasks. Thus each answer 
to a subtask is taken as one unit of analysis. Also the sequence of interpreting the 
different answers could be adopted from the structure of the questionnaire. In this 
regard the answers were evaluated following their position in the questionnaire. 
This way, the coder knew what the future teacher had answered in the preceding 
subtasks referring to the same content. Therefore the coder could consider possible 
implicit references to previous answers when interpreting the actual answer.  

14.4     How Was Qualitative Content Analysis 
Used in This Study? 

 This section specifi es the particular methods used in this study to evaluate the 
 collected data. The choice of methods refl ect the position that there is not  the  method 
of Qualitative Content Analysis but a compilation of possible forms of analysis 
covered by Qualitative Content Analysis. Furthermore “the methods […] must 
themselves always be adapted to suit the individual study” (ibid.). Thus the follow-
ing concrete example of using Qualitative Content Analysis like all forms of using 
this form of data evaluation needs to be considered within the context of its particu-
lar theoretical framework and research question. 

 The fi rst part of data evaluation was carried out using the scheme of “deductive 
category application” (ibid., Sect.   13.4    ) described by Mayring (ibid.). First, before 
the actual coding of the data began,    manuals were formulated that contained all 
relevant information for the coders. According to Mayring (ibid.) these manuals 
consist of a defi nition of the possible values of each category, as precise as possible 
formulated coding-rules for each value and fi nally so-called anchor examples for 
each value taken from the data that illustrate either very typical or border examples 
for a respective value. Data evaluation was then carried out by   deductive    coding 4  of 
all subtasks by two independent coders. 

4   In this chapter the following terminology is used: The  process  of allocating one of the possible 
values of a category to a certain future teachers’ answer is called coding. If this coding is done by 
using a deductively developed coding manual, it is called deductive coding, while it is called 
inductive coding whenever an inductively developed coding manual is used. The  result  of coding 
all future teachers’ answers to one subtask according to a certain coding manual is called a code of 
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 With regard to deductive coding, one of the “especially important” (ibid.) aspects 
for Mayring is that “the fundamental  structuring dimensions   must be exactly deter-
mined; they must derive from the research question and must be theoretically 
based.” (ibid.). In this study these dimensions directly arose from the research 
 question and the related theoretical framework. As described above, the study is 
theoretically based on the distinction between different areas of future teachers’ 
professional competence, more precisely, the areas of content-knowledge and 
didactical knowledge and mathematical beliefs. Therefore it was meaningful to con-
ceptualize these areas of professional competence—or more precisely, the corre-
sponding subareas as described above—as the fundamental dimensions for 
structuring. The detailed differentiation of these dimensions into particular catego-
ries for coding then was derived from the questionnaire. As every subtask was coded 
separately the precise defi nition of the different categories followed from the foci of 
the subtasks. For every subtask its theoretical based reference point served as cate-
gory for the coding of the subtask. Thus in summary the theoretical basis of the 
categories followed from the theoretically-based development of the questionnaire. 

 Also the various values of a category and its belonging defi nitions and coding 
rules were developed theory-based. As every  category   is related to a certain subtask, 
the conceptualisation of the values of a category can be derived from the theory 
about the topic the subtask focuses on. For example the values of a category belong-
ing to a question on mathematical content knowledge could be developed by 
 considering which characteristics form a more or less adequate answer with regard 
to the mathematical theory about the subtask’s topic. 

 It is important to be aware that although Qualitative Content Analysis is strongly 
rule-guided and follows documented procedures for data evaluation it still is a 
qualitative method which involves interpreting the data. Therefore as Mayring (ibid., 
Sect.   13.3    ) points out an important quality criterion for the evaluation of data within the 
framework of Qualitative Content Analysis is  intercoder-reliability   as a measure of 
how strongly different coders agree in their estimation of the same data. It can be 
expected that this intercoder-reliability is connected to the precision of the coding 
 manuals in a sense that more precise coding manuals allow a more distinct coding and 
thus a higher accordance of the codes of different coders. Nevertheless as all coding 
contains an act of interpretation one can not expect a full accordance of  different 
coders. In this context often the intercoder-reliability is summarized by a measure like 
Cohen’s Kappa (Mayring  2000 ; for Cohen’s Kappa, Bortz  2005 , Bortz et al.  2000 ) and 
as full accordance can not be expected Mayring ( 2000 ) advises 0.7 as a suffi cient value. 

 In this study, in order to raise the inter-coding agreement, the two independent 
coders were well familiarized with the theoretical background of the study and 
hence Cohen’s Kappa of 0.7 was reached in all but one subtask. In order to come to 
one conclusive code which can be used for the following analyses at the end of the 
fi rst part of the data evaluation deviant codes made during the deductive coding 
were discussed between the coders and one code was consensually decided 
(cf. Schmidt  1997 ). As expected, the necessity of interpretation or in other words the 

the subtask. A code resulting from deductive coding is called a deductively defi ned code while a 
code resulting from inductive coding is called an inductively defi ned code. 
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possibility of formulating a non-ambiguous  coding manual   that allows for a high 
agreement between different coders strongly depends on the underlying content of 
the respectively coded subtask. For example, higher coder agreement will occur the 
more precisely one can estimate the correctness of a mathematical answer or the 
adequateness of a didactical refl ection. On the other hand, lower agreement between 
coders occurs whenever more interpretation is required in estimating the future 
teachers’ answers to questions concerning beliefs or knowledge. 

 To further illustrate this issue of inter-coder agreement as well as to clarify the 
study’s process of data evaluation, the following example presents a particular sub-
task and its deductively developed coding manual. Starting point is a reality-related 
mathematical task (Fig.  14.1 ) which originally was designed as an exercise for 
pupils (basically see Cukrowicz et al.  2002 , p. 29). It was used in and therefore 
taken from both the SINUS-project in Hamburg (Kaiser et al.  2003 , p. 98) and the 
study of Maaß ( 2004 , p. 337) and again served in these studies as an exercise which 
was given to pupils in order to analyse their solution approaches.

   The reality-related task for the pupils thereby apparently has no distinct solution. 
Anyhow furthermore it is not impossible to formulate any answer to the question 
based on the given information either (in contrast to so-called “captain-exercises”, 
cf. Stern  1992 ). Rather it is possible to meaningfully apply the information given in 
the task in order to answer the question. In the questionnaire, to probe for mathe-
matical content knowledge, the future teachers were asked, “How would you answer 
this question?” (subtask 2a): Figure  14.2  describes the deductively developed 
  coding manual   for subtask 2a 5 .

   With a value of Cohens’s Kappa of .962 this subtask was one of the subtasks in 
which the coders mostly agreed when independently coding which most likely was 
based on the possibility of a quite clear distinction between different future teachers’ 
answers. As expected, this accordance between the coders goes down somewhat 
when the future teachers’ answers can be interpreted more differently, as with the 

5   It should be kept in mind that all coding manuals were formulated in order to be most applicatory 
for the coders and not in order to be most suitable for publication. 

Within an investigation the following problem was given 
to pupils in class 8:

Violet collects different seashells from a beach and puts 

three of them on a scale at home. They weigh 27g all 

together. After that she puts two more seashells on the 

scale. Which weight does the scale indicate now? 

Explain your answer.

  Fig. 14.1    Starting point for the tasks for the future teachers in the questionnaire described in the 
following focusing on a reality-related task for pupils (Basically see Cukrowicz et al.  2002 , p. 29, 
see also Kaiser et al.  2003 , p. 98 and Maaß  2004 , p. 337) (translated)       
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case of evaluating how adequate a future teachers’ answer is with regard to  didactical 
knowledge or in the case of evaluating an answer related to beliefs. However also in 
these cases a theory-led distinction between different answers could be formulated 
upfront with regard to the respective theory. In the case of didactical knowledge, for 
example, content-related didactical analyses about respective topics or didactical 
principles formed the basis for formulating deductively developed coding manuals 
which distinguish between more and less adequate answers. With regard to a 
 distinction between different answers related to beliefs, for example, the relevant 
theory about different categorizations of mathematical beliefs could serve as a 
 starting point for developing respective deductively developed coding manuals. 

 The above is an example of how the process  of   deductive coding was applied to 
task responses. For this type of evaluation, coding manuals were formulated a priori 
and at fi rst independently of the existing data. Especially in the case of subtasks 
focusing on areas of knowledge this deductive coding mainly focused on the 
 adequacy of the answer. 

 Deductive coding was followed by a second part of data evaluation that focused 
on  inductive coding  . It was not to be expected that all aspects of the collected mate-
rial which are relevant with regard to the research question could be evaluated by 
the a priori formulation of coding manuals. Rather, the future teachers’ answers 
were found to differ in characteristics that were not covered by the a priori rules, for 
example when answers, despite their differences, were equal in their adequateness 
while the a priori rules covered the degree of adequacy of the answers. Examples for 
these different characteristics included different ways of solving a problem, differ-
ent ways of formulating an answer or different focal points included in the answer. 
These different characteristics were noted by the coders during the fi rst coding 
 process that used the deductively developed coding manuals. Afterwards the impres-
sions of additional possibilities for distinguishing answers were discussed by all 
coders and led to new manuals each focussing on one of these characteristics 
according to which the answers also differ. As these manuals and their development 
are based on the impression of the material they are  inductively developed   (Chap.   13    , 
Sect. 13.4). Often during this phase more than one additional inductively developed 
coding manual was developed for a respective subtask as the coders often noted 
more than one characteristic according to which the answers to the respective 
subtask differ. In this case for each characteristic taken into consideration a separate 
inductively developed coding manual was developed and therefore more than 
one inductively developed coding manual could be allocated to one subtask. Then 
all subtasks were again coded according to the newly formulated inductively devel-
oped manuals. In contrast to the previous part of the data evaluation, in this part, all 
subtasks were coded by only one coder and only answers diffi cult to code were 
discussed with other coders. This restriction to one coder was, on the one hand, a 
practical choice and, on the other hand, related to the fact that, due to the inductive 
development of the coding manuals, a good and quite distinct applicability of 
the determined rules in order to code the concrete material was to be expected, as 
the determined rules were derived from this material. 
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 So the basic principle of a “process model of inductive category formation” (ibid.) 
was used but in a way that was strongly adapted to this particular study. Thus for example 
the criteria according to which the material was later distinguished also arose from the 
material, in contrast to the theory-based criteria used for coding in the preceding fi rst 
phase of the data evaluation. This example illustrates how the general concept of the 
 different approaches offered by Qualitative Content Analysis can and have to be adopted 
in every case of data evaluation to the respective study (ibid., Sect.   13.3    ). 

 The inductive phase of data-evaluation is illustrated by the following example. 
The respective subtask is again focused on the reality-related task about the shells. 
In subtask 2b the future teachers were given three different pupil solutions:

•    Solution I is based only on the rule-of-three  
•   Solution II is based only on refl ections about the real world context  
•   Solution III includes both a mathematical attempt using the rule-of-three and 

refl ections about the real world context.    

 To probe their didactical knowledge, the future teacher students were asked the 
following: “What would you tell each of the three students if you were their teacher? 
Please explain your decision.” The future teachers’ answers were fi rst evaluated 
using deductively developed coding manuals under the perspective of whether their 
answers were adequate or not with regard to didactical knowledge. During this 
process the coders, among others, observed that different future teacher’s responses 
to a pupil’s answer were sometimes, on one hand, quite similar with regard to the 
estimation of the pupil’s answer but, on the other hand, differed with regard to the 
usage or not usage of commendations. This observation then led to the development 
of an inductively developed coding manual which focuses on whether or not the 
future teachers formulate a commendation for the respective pupil’s solution 
independent from how adequate the respective future teacher’s answer is. This 
inductively developed coding manual is described in Fig.  14.3 . Thereby as well as 
in the deductively developed coding manuals also in the inductively developed 
coding manuals all anchor items directly arose from the material.

   Following these phases of the data evaluation, all subtasks were coded according 
to the deductively and inductively developed coding manuals. However, this was 
not suffi cient to identify structures between the areas of competence as was needed. 
Instead these structures can be observed when codes are related to each other. Thus, 
in the third and fi nal part of the data evaluation different codes were set into relation 
in pairs. Here different combinations of types of codes are possible and occur. More 
precisely this means that deductively defi ned codes can be set into relation with 
other deductively defi ned codes and inductively defi ned  codes   can be set into 
 relation with other inductively defi ned codes as well as deductively defi ned codes 
can be set into relation with inductively defi ned codes. 

 From the observations on these relations of codes fi nally hypotheses were derived 
in order to answer the research question. A part of such an analysis is given below 
in order to briefly illustrate the procedure. In general codes resulting from the 
previously described codings again were taken into consideration and the common 
distribution of two codes at a time was analysed. Thereby the search for structures 
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within the future teachers’ professional competence in the sense of the research 
question was especially focused on identifying structures which could be found 
often in the data. This focus on more frequent structures was laid because it was not 
the aim of the study to reconstruct a preferably broad variety of possible structures 
independent of their distribution in the data. Rather especially frequent and in this 
sense typical structures were to be reconstructed so as to derive hypotheses there-
from which might have the potential to be confi rmed in more general samples.  Thus 
  quantitative methods were used for the analysis in the sense that frequencies are 
compared. More precisely, in particular the frequencies of combinations of values 
were considered and interpreted by the meaning of the values in order to therefrom 
derive descriptions of structures. 

 For the following example of the analysis, especially those future teachers’ 
answers were taken into consideration which in general contain commendations but 
in which commendations of only one or two pupils’ solutions are included. That 
means that all future teachers’ answers in which all three pupil’s solutions received 
commendation were not regarded. This was done because a future teachers’ use of 
only one or two commendations was interpreted as an indication that the future 
teacher used commendations to specially emphasize certain pupil’s solutions. This 
emphasis normally is expected to result from a special appreciation of the respective 
pupil’s solution. This selective use of commendations was to be distinguished from 
the use of commendations for all three pupils’ solutions which was interpreted as a 
use of commendations by the future teachers to generally motivate the pupils. 
Table  14.1  then describes the common distribution of the respective inductively 
defi ned code of 2b and the deductively defi ned code of 2a. (Because of the possibil-
ity of using the commendation once or twice, future teachers’ answers in which two 
pupil’s answers are allocated to a commendation are counted twice) 6 :

6   It may be noted that because of the restriction to only take those future teachers’ answers into 
consideration that allocate a commendation to only one or two pupils’ solutions, quite a lot of 
future teachers’ answers that contain commendations were not taken into consideration in this 
table, as the majority of future teachers who use commendations then allocate a commendation to 
each of the three pupils’ solutions. 

     Table 14.1    Common distribution of the deductively defi ned code of subtask 2a and the inductively 
defi ned code of subtask 2b   

 Inductively defi ned code of subtask 2b with 
regard to the usage of commendation for the 
different pupil’s solutions

Commendation of … 

 Solution I  Solution II  Solution III 

 Deductively defi ned code of subtask 
2a with regard to the subject-related 
adequate solution and refl ection of a 
reality-related mathematical task 

  −2   0  1  1 
  −1   6  2  5 

  0   2  12  9 
  1   2  13  12 
  2   2  3  3 

14 A Study on Professional Competence of Future Teacher Students as an Example…



396

   In the exemplary analysis discussed below, especially the answers coded as 
−1, 0, +1 in subtask 2a are to be discussed. For this, these answers are divided 
into two groups for further consideration under the perspective of the code of 
subtask 2a and then the answers are discussed relating both codes to each other, 
that is in view of the codes of 2a and 2b. The division of the answers into two 
groups thereby was done according to whether or not the answers contain 
 context-related reflections about the impossibility of formulating a distinct 
number as solution. The first group consists of those answers coded in subtask 
2a with 0 or +1. According to the coding rules described above (Fig.  14.2 ) 
these answers contain only, or among others, a context-related reflection about 
the ambiguity of the solvability of the task. Table  14.1  shows that future teach-
ers formulating such answers often allocated a commendation to the solutions 
II and III (see above in this section), that means solutions that contain only, or 
among others, a remark about the impossibility of formulating a distinct solu-
tion because of reflections about the real-world-context. The second group 
consists of answers coded with a −1 in subtask 2a. These are answers which 
according to the coding rules only contain a usage of the number material in 
the task to the rule-of-three with no context-related reflection about the ambi-
guity of the solvability of the task. Again looking at Table  14.1  one can see that 
future teachers whose answers are coded with −1 in 2a often allocated a com-
mendation to the  solutions I and III, solutions that also contain the use of 
the rule-of-three (see above in this section). In summary, one can see that the 
future teachers who selectively allocate commendation tend to allocate com-
mendation to those pupil’s solutions which are completely or in parts close to 
their own solution. These observations suggest a hypothesis concerning the 
future  teachers’   content knowledge and its influence on their  didactical knowl-
edge  . More precisely here with regard to the content knowledge individual 
 representations of the future teachers’ content knowledge are considered. 
Thereby the future teachers’ preferences in solving mathematical tasks served 
as an indicator for these individual representations. The application of the 
didactical knowledge in turn here is represented by the future teachers’ 
 formulations of responses to pupil’s answers. Under this perspective the 
described observations suggest the hypothesis that individual representations 
of the future teachers’ content knowledge have an influence on the application 
of their didactical knowledge related to the respective content knowledge. 

 This part of the chapter mainly focuses on the methodical aspects of the 
study. Thus, this exemplary result remains the only one described here. Further 
results and a more detailed description are contained in the original study 
(Schwarz  2013 ) that describe not only the structures between different areas of 
professional competence of future mathematics teachers but also relations between 
these areas and the practical teaching experience the future teachers have already 
gained, for example, in their previous teacher education.  
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14.5     Summary 

 In summary the paper tried to give an overview about the methodical approach of a 
study on the professional competence of future mathematics teachers in order to 
give a concrete example of a study using  Qualitative Content Analysis  . The 
described study, or more precisely in particular the related data-evaluation, thereby 
is presented in order to give an example of some central characteristics of Qualitative 
Content Analysis (see Chap.   13    ). 

 This chapter illustrates that Qualitative Content Analysis does not consist of one 
fi xed method for evaluating qualitative data but, rather, is made up of a plurality of 
approaches. The study shows one possibility of how methods from the assemblage 
of approaches covered by Qualitative Content Analysis can be combined and 
adapted to a particular study. This accommodation of the methodical approach 
within the concept of Qualitative Content Analysis to the theoretical framework of 
the study thereby is one central aspect of Qualitative Content Analysis. In particu-
lar, the data-evaluation excerpts described above exemplify how future mathemat-
ics teachers’ answers to open questions are coded according to both deductively 
and inductively developed coding manuals, to address the research question related 
to structures between areas of the future teachers’ professional competence. The 
combination of different coding approaches offers the opportunity to consider both 
predefi ned expectations about what the future teachers could answer, on the one 
hand, and, on the other hand, their personal ways of answering the questions, that 
is, of expressing their professional competence. Analysing the data according to 
theory- led developed criteria as well as allowing for attributes to arise from the 
material offers the possibility to more broadly evaluate the data with regard to the 
research question. 

 Furthermore, the study demonstrates that Qualitative Content Analysis is a quali-
tative approach that is strongly based on rule-guided procedures. This chapter 
 illustrates how categories and related coding manuals serve as focal points for 
applying Qualitative Content Analysis. While this methodical approach still is 
clearly a qualitative one involving interpretations of fi xed communications, such as 
written answers, this chapter also illustrates the important role of the intercoder-
reliability and the use of coding manuals in the rule-guided data-evaluation within 
Qualitative Content Analysis.     
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    Chapter 15   
 The Contemporary Importance 
of Triangulation in a Post-Positivist 
World: Examples from the Learner’s 
Perspective Study  

             Ida     Ah     Chee     Mok      and     David     J.     Clarke    

    Abstract     Triangulation has become a reference construct when issues of methodological 
rigour are discussed. In this chapter, we argue that conceptions of triangulation must 
be broadened if it is to be relevant to a community increasingly committed to inter-
pretivist and critical methodologies. We suggest that the metaphoric entailments of 
triangulation can usefully inform contemporary research efforts and the develop-
ment of new methodologies, particularly those required by cross-cultural compara-
tive research. Our argument is illustrated by examples taken from the Learner’s 
Perspective Study (LPS). This study examined the patterns of participation in 
competently-taught eighth grade mathematics classrooms in 18 countries in an inte-
grated and comprehensive fashion, using different theoretical frameworks to address 
a variety of signifi cant research questions. The complementary accounts generated 
by the application of the different theories are at the heart of the methodological 
shift that has required the progressive reconception of triangulation, where the 
ultimate goal is not a unique fi nding (proposition or relationship) warranted by a 
process of cross-validation leading to the convergence of multiple data points on a 
single truth, but rather the multi-faceted portrayal of a complex social situation 
(e.g. dyadic collaboration or teacher-led discussion). Acts of cross-cultural com-
parison are poorly served by the use of triangulation as a mechanism of convergence 
and benefi t from the triangulation of accounts interpreted as complementary. In the 
case of the LPS, these complementarities are enacted at the level of the participants’ 
social, organisational and cultural affi liations and at the level of the researcher’s 
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theoretical affi liations. The paradigmatic shift in the nature and utility of triangulation 
is captured precisely in this movement from convergence to complementarity.  

  Keywords     Triangulation   •   Cross-cultural comparison  

15.1         Introduction 

 The Learner’s Perspective Study (LPS) (Clarke et al.  2006b ) was designed to examine 
the practices of eighth grade mathematics classrooms in Australia, Germany, Japan 
and the USA in an integrated, comprehensive way and the project was originally 
designed to complement other international studies that reported national norms of 
student achievement and teaching practices. Since its inception, the LPS community 
has expanded and the research teams now participating in LPS are based in universities 
in Australia, China (Beijing, Hong Kong, Macau and Shanghai), the Czech Republic, 
Finland, Germany, Israel, Japan, Korea, New Zealand, Norway, The Philippines, 
Portugal, Singapore, Slovakia, South Africa, Sweden, the United Kingdom, and the 
USA. Each research team shares the same research design for the collection of data 
in their own research site (see http://www.lps.iccr.edu.au/ for details). The resultant 
shared database includes a rich documentation of lesson videos, lesson materials, 
post-lesson video-stimulated interviews with focus students and teachers. This 
complex, interconnected dataset exemplifi es “mixed methods” approaches to 
research (Johnson and Onwuegbuzie  2004 ), in which a variety of data types relating 
to the same situation or phenomenon are strategically generated for both qualitative 
and quantitative analysis. The contemporary recognition of the viability and value 
of mixed methods research designs (in the paper by Johnson & Onwuegbuzie, in 
Chap.   12     of this book by Kelle & Buchholtz, and in a very large body of research 
literature) provides a belated, retrospective acknowledgement of the co-existence of 
qualitative and quantitative aspects in all studies. Triangulation is not to be either 
confused or equated with mixed methods research designs. While mixed methods 
approaches may afford triangulation of data types, the signifi cance of “triangulation” 
lies in its function as a particular form of design logic: generating evidence through 
the strategic juxtaposition of design elements. The effects of triangulation of infor-
mants, triangulation of research techniques, triangulation of cultural settings, plus 
triangulation of researchers’ theoretical frameworks lie in the inevitable generation 
of interpretive accounts that must logically be viewed as complementary. 

 To illustrate this in relation to the LPS: Embedded in the design of the study is 
the anticipation of multiple entry points for analysis of classroom practice using 
different theoretical frameworks to address a variety of signifi cant research questions. 
The researchers’ refl ection and construction of meaning in the analysis of the 
various mathematics classrooms is enlightened and enriched by the spirit of 
 collaboration in the LPS community. This collaboration took as its goal the 
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construction of complementary (rather than consensual) accounts of classroom 
practice. As the founders of the project, Clarke et al. ( 2006b ) stated:

  Complementarity is fundamental to the approach adopted in the Learner’s Perspective 
Study. This applies to complementarity of participants’ accounts, where both the students 
and the teacher are offered the opportunity to provide retrospective reconstructive accounts 
of classroom events, through video-stimulated post-lesson interviews. It also applies to the 
complementarity of the accounts provided by members of the research team, where different 
researchers analyse a common body of data using different theoretical frameworks. (pp. 4–5) 

   The results of the Learner’s Perspective Study are reported in a Book Series, journal 
papers and conferences. The reports (and the underlying analyses) take many different 
forms including comparison between teachers within the same school system or 
culture, comparison of lesson structures and lesson event types between different 
cultural settings, and case study reports of the practices of a single classroom by 
juxtaposition of complementary accounts of the lessons from the perspectives of 
multiple classroom participants. It is these acts of implicit comparison, central to 
the LPS research design, that make the various LPS analyses such rich sources of 
examples of triangulation. 

 The multiple analyses undertaken within the LPS project have been reported in 
four books. In the fi rst book,  Mathematics Classrooms in Twelve Countries: The 
Insider’s Perspective  (Clarke et al.  2006b ), the authors of each chapter are insiders 
in their own cultures and school systems and carry out their analyses from that posi-
tion; also, the voices that constitute the data of this research are the voices of the 
insiders in the classrooms studied—the students and their teachers. 

 In the second book,  Making Connections: Comparing Mathematics Classrooms 
Around the World  (Clarke et al.  2006a ), the authors addressed a variety of macro and 
micro level concerns in mathematics education through several comparative analyses 
of mathematics classrooms in different countries. The various reports demonstrate 
how the data base generated by the LPS research design affords different levels and 
units of analysis, from consideration of lesson structure, to the characterisation of 
the iconic classroom activities we call “lesson events,” to the characteristics of math-
ematical tasks and the fi ne-grained analysis of language use in different mathematics 
classrooms. In the same way that comparison is central to LPS analyses, so is 
collaboration, particularly when collaboration involves the connection of analyses 
grounded in different theoretical perspectives. It is an irony of design that the com-
mitment to comparison and collaboration should demand a research design in which 
key elements are kept invariant and the need for consensus defi nitions is critical. 

 For example, to facilitate collaboration in the analysis of data, a defi nition for 
“lesson event” based on its form and function was developed:

  A ‘lesson event,’ as we conceived it, was characterised by a combination of form and function, 
both of which were subject to local variation, but with an underlying familiarity and 
frequency of use that suggested both cross-cultural relevance and utility. Each individual 
lesson event had a fundamentally emergent character, suggested by the classroom data as 
having a form (visual features and social participants) suffi ciently common to be identifi -
able within the classroom data from each of the countries studied. … Each lesson event 
required separate and distinct identifi cation and defi nition from within the international 
data set. (Clarke et al.  2007 , p. 287) 
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   The third LPS book,  Mathematical Tasks in Classrooms around the World  
(Shimizu et al.  2010 ) ,  is devoted entirely to research into the role of mathematical 
tasks. In combination, the various analyses in this book enhance our understanding 
of the nature of tasks and provide alternative analytical frameworks for investigation 
of tasks and their role in mathematics lessons; and culturally-specifi c differences in 
the nature of the tasks demonstrating the situatedness of the instructional use of 
mathematical tasks and the need to consider an instructional task in the curricular, 
organizational and social contexts. The focus of the fourth book,  Student Voice in 
Mathematics Classrooms around the World  (Kaur et al.  2013 ), is the occurrence and 
function of “student voice” in the mathematics classrooms analysed, the identifi ca-
tion of patterns of classroom discourse and the relative contribution of student and 
teacher voice to those discourse patterns. 

 The aim of this chapter is to utilise selected examples from among the LPS 
analyses to raise issues associated with the methodological function and signifi -
cance of triangulation as an essential consideration in contemporary interpretivist 
research design, particularly with regard to international comparative research. The 
selected reports illustrate how triangulation was employed to address particular 
research questions, while also providing an illustration of the capacity of various 
mixed methods approaches to facilitate several forms of triangulation. 

 It has been argued elsewhere (Clarke  2003 ) that we need to attend to the cultural 
authorship of any research report. Inevitably, a researcher’s participation in a 
research project will refl ect values, beliefs and priorities that have their origins in 
that individual’s personal pedagogical, curricular, organisational and socio-cultural 
situation. The vast majority of reports of educational research refl ect a Western and, 
frequently, American perspective. Culturally familiar perspectives can conceal 
assumptions and ignore alternative (unstated) possibilities. In an attempt to foreground 
these considerations, we take the experiences, challenges and fi ndings of the Hong 
Kong LPS team as our particular example.  

15.2      Triangulation 

 Over the past decades, researchers have taken triangulation and redefi ned it to meet 
perceived needs (Denzin  2010 ). Triangulation was the emerging fad in social science 
during the formative period in the history of mixed methods research (MMR) (Denzin 
 2010 ). This period has been outlined in terms of three moments, namely, paradigm 
debates in 1980s, procedural development in 1990s, and the advocacy and separate 
design period since 2000 (Creswell and Clark  2007 ; Denzin  2010 ). The paradigm 
debates were the quantitative-qualitative debates (Johnson and Onwuegbuzie  2004 ; 
Kelle & Buchholtz, this book) where the quantitative purists and qualitative purists 
constructed themselves as mutually exclusive (Johnson and Onwuegbuzie  2004 ; 
Denzin  2010 ). The assumptions of quantitative purists are consistent with what is 
commonly called a positivist philosophy in contrast to the constructivist and inter-
pretivist positions advocated by qualitative purists. The term triangulation became 
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problematic when the two warring paradigm camps, the quants and quals, became 
exclusively aligned with positivist and interpretivist paradigms respectively. The 
debates end with the mixed method research paradigm that sees both quantitative and 
qualitative methods are important, useful and can be used in combination. 

 Triangulation has been broadly defi ned as using different research methods in 
the study of the same phenomenon (Denzin  1970 ; Jick  1979 ). The triangulation 
metaphor is taken from navigation and surveying, and refers to the use of multiple 
reference points to locate the position of an object (Jack and Raturi  2006 ). In a 
simplistic way, triangulation is often used as a validation technique for research in 
different disciplines such as nursing and social science, where identifi cation of a 
single “best method” may be essential to the work of the particular discipline 
(Denzin  1970 ,  1989 ; Flick  2004 ; Guion et al.  2011 ; Jack and Raturi  2006 ; Mathison 
 1988 ). Different types of triangulation have been discussed. Denzin discussed four 
different forms of triangulation, namely triangulation of data, investigator triangula-
tion, triangulation of theories and methodological triangulation (Denzin  1970 , 
 1989 ; Flick  2004 ; Jack and Raturi  2006 ). Triangulation of data combines data drawn 
from different sources including verbal data such as interviews and group discus-
sions; and visual data such as videos and photos. Investigator triangulation refers to 
interpretations and analysis of collected data to be carried out in groups, evaluation 
teams or by several investigators to check for subjective views and to balance out 
individual views. Triangulation of theories means approaching the data from 
multiple perspectives and hypothetical assumptions, typically by bringing together 
people from different disciplines or people in different status positions within 
disciplines (Guion, et al.  2011 ). Methodological triangulation can be further 
differentiated into within-method and between-method (Casey and Murphy  2009 ). 
Within-method triangulation, that may be carried out by inviting differently posi-
tioned narratives and focusing on differently positioned individuals’ accounts of 
experiences of concrete episodes. This within-method approach intends to create 
complementary perspectives on the research issues as well as to clarify the different 
facets of the researcher’s inevitably subjective position. Between-method triangulation, 
also known as across method (   Bekhet and Zauszniewski  2012 ), is the combination 
of different methods, often qualitative and quantitative methods. This difference is 
central to an understanding of triangulation: for example, (i) the comparison of two 
interviews with two participants within the same activity and setting; and (ii) the com-
parison of interview and survey data relating to the same issue. In each case, triangu-
lation is employed to enrich or strengthen the products of the analytical process. 

 Why triangulate? The most discussed type of triangulation refers the use of multiple 
methods in the examination of a social phenomenon (Denzin  1970 ; Jonsen and 
Jehn  2009 ). The objective of using triangulation as a validation strategy is the most 
discussed (Denzin  1970 ; Jack and Raturi  2006 ; Mathison  1988 ). The use of triangula-
tion as a research strategy is based on some assumptions:

  First is the assumption that the bias inherent in any particular data source, investigator, 
and particularly method will be cancelled out when used in conjuction with other data 
sources, investigators, and methods. The second, and related, assumption is that when tri-
angulation is used as a research strategy the result will be a convergence upon the truth 
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about some social phenomenon…This assumption suggests that when a triangulation is 
used the result will be convergence on a single perspective of some social phenomenon. 
(Mathison  1988 , p. 14) 

   The identifi cation of these basic assumptions in the early years of the development 
of mixed-method evaluation designs placed triangulation in a positivist paradigm 
with the intent to seek convergence in the classic sense of the quantitative purist, 
precluding complementarity as a legitimate research goal (Greene et al.  1989 ; 
Mathison  1988 ). However, the role of triangulation changed with the evolution of 
research methodologies in education and the social sciences, and triangulation 
became no longer so simplistic in its conception nor so positivist in its application. 
As suggested by Denzin ( 1970 ,  1989 ), there are other conceptions of triangulation 
that are equally valid in different types of studies. As already noted, triangulation 
can have a different function in the qualitative paradigm, where a research question 
is addressed from multiple perspectives. Importantly, the introduction of multiple 
perspectives brings with it the likelihood of arriving at inconsistencies leading to 
deeper understanding of the issues. Mathison ( 1988 ) suggests that triangulation 
may result in convergent, inconsistent and contradictory results, any of which may 
be useful to researchers. It is essential that triangulation is seen as not only a validation 
strategy for the purpose of obtaining convergence or confi rmation of fi ndings, but 
also as an approach to the generalization of discoveries; or elucidating divergent 
fi ndings as a route to additional knowledge (Flick  2004 ; Denzin  2012 ). Jack and 
Raturi ( 2006 ) suggest three rationales for using methodological triangulation, namely, 
completeness, contingency and confi rmation. Triangulation has the advantages of 
“increasing confi dence in research data, creating innovative ways of understanding 
a phenomenon, revealing unique fi ndings, challenging or integrating theories, and 
providing a clearer understanding of the problem” (Thurmond  2001 , p. 254). 
Restricting triangulation to only a validation strategy is to deny a great part of its 
research value. Ellingson ( 2008 ) moves the conversation of triangulation to another 
level and endorses crystallization as a postmodern form of triangulation that embodies 
multi-genre strengths in the analysis (Denzin  2012 ). Over the past decades, the very 
term triangulation has been redefi ned to meet different needs but the complexities 
continue to pose challenges (Denzin  2010 ). 

 We support the importance attached to triangulation. In fact, we argue in this 
chapter that the function and value of triangulation in contemporary research meth-
odology is sometimes too narrowly conceived. The convergent research paradigm 
within which triangulation originally assumed signifi cance was a positivist one, 
where the goal of research was the identifi cation of a singular truth and the validity 
of any conclusion was subject to the required convergence of corroborative data. 
Nonetheless, inconsistencies can be seen as opportunities for deeper understanding 
of the issues (Guion et al.  2011 ). To return to the surveying analogy from which the 
metaphor arose, three observers differently situated around a mountain may provide 
bearings that enable the geographic location of the mountain’s peak to be identifi ed 
with a high level of precision. This example mirrors the trigonometric example in 
the Chap.   12     by Kelle and Buchholtz. But the same three differently positioned observ-
ers might also describe the mountain as it appears from their distinct perspectives. 
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In this case, their descriptions (e.g. steep or gradual slope, barren and rocky or heavily 
wooded) may or may not have some features in common, depending on the nature 
of the mountain face confronting each observer. What can be said is that a descrip-
tion of the mountain that attempts to combine the separate descriptions of all three 
observers is likely to provide more information about the mountain and thereby be 
more useful. The description of a social situation may be undertaken from a variety 
of perspectives as well without incurring any obligation to converge on a single 
consensus interpretation. Instead, both similarity and difference in the complemen-
tary accounts provide insight and stimulus for further investigation. 

 Contemporary enthusiasm for “data mining” of large scale (typically quantitative) 
data bases, highlights the growing recognition that data can be re-purposed or con-
structed anew from a common data source to meet the needs of different analyses 
addressing different questions. The gatekeepers to large data bases, such as those 
generated by the TIMSS and PISA studies (IEA and ACER), have invited researchers 
to undertake secondary analyses in order to optimise the societal value of these 
highly expensive data bases. Implicit in the accepted legitimacy of these multiple 
analyses of a common data set is the recognition that any situation is open to inter-
pretation from different perspectives and that each resultant interpretive account can 
be held accountable for its consistency with the originating data source, without the 
combined accounts being required to be laterally consistent with each other. In such 
an interpretivist paradigm, triangulation becomes the aspiration to more thorough 
portrayal, rather than the aspiration to more precise location.  

15.3     Research as the Mobilization of Bias 1  

 Our engagement with research refl ects our existing knowledge and beliefs and 
these, in turn, are a product of our personal history and culture. These attributes of 
the researcher have the effect of focusing her efforts on particular issues and 
particular situations. And not on others. By way of example, the decision to establish 
a Hong Kong research team within the LPS project was variously motivated: 

15.3.1     Mathematics Teaching 

 The Hong Kong team joined the LPS project in 2000 with the primary aim of iden-
tifying strengths and weaknesses in mathematics teaching in China (Hong Kong and 
Shanghai) through an in-depth comparison with mathematics teaching in some 
other countries (Australia, Germany, Japan, Sweden, and the USA).  

1   The phrase “research is the mobilization of bias” was used by Barry McDonald ( 1985 ) 
as part of a public lecture on research methodology at Monash University. It usefully highlights 
the inevitable process whereby the researcher translates their own history and priorities into 
a research agenda. 
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15.3.2     Chinese Learners’ Paradox 

 In international comparisons of achievement in mathematics, students from 
“Confucian Heritage Countries” such as Singapore, Japan, Korea and Hong Kong 
had outperformed students from most other countries. On the other hand, there was 
a widely accepted view that Chinese classrooms (including those in Hong Kong) are 
characterized by rote learning and passive students, which in combination constitute 
a learning environment potentially detrimental to the development of creative, fl exible, 
and widely useful modes of thinking. These observations sat in uneasy juxtaposition 
and led to the identifi cation of the phenomenon known as the “Chinese Learners’ 
Paradox” (Biggs and Watkins  1996 ; Watkins and Biggs  2001 ). The Hong Kong LPS 
team sought insight regarding the “Chinese Learners’ Paradox.”  

15.3.3     National Pedagogies 

 Classroom practices should be studied as part of culturally-mediated belief systems 
and traditions. The assumptions about learning, knowledge and teaching underlying 
classroom practices are often parts of coherent and rational systems of thinking 
about learning and of acts aimed at bringing learning about. Such systems of values 
and beliefs might be called “national pedagogies”. Earlier research by members of 
the Hong Kong team (e.g. Leung  1992 ,  1995 ) identifi ed differences between the 
instructional styles in Beijing, Hong Kong and London. Hong Kong involvement in 
the LPS project was also motivated by interest in whether a “Chinese” pedagogy of 
mathematics education could be identifi ed and whether comparison with other 
culturally specifi c pedagogies of mathematics education would reveal the strengths 
and weaknesses of those practices, providing a basis for further development.  

15.3.4     Research Design Characteristics 

 The TIMSS Video Study (Stigler and Hiebert  1999 ) utilized a random sub-sample 
of the full TIMSS sample of classrooms to compare activity in mathematics class-
rooms in Japan, Germany, and the USA. This study reported different “scripts” used 
by teachers in the three countries. In attempting to characterize national norms of 
teaching practice, the TIMSS Video Study accepted certain limitations. Only one 
camera was used and the primary focus of data collection and analysis was the 
teacher, and only one lesson was videotaped for each classroom sampled. Compared 
with the TIMSS Video Study, the key characteristics of the LPS research design 
are the recording of a sequence of at least 10 lessons by the same teacher, the use 
of three cameras (teacher camera, student camera and whole class camera), and 
the use of video-stimulated recall in interviews conducted with the teacher and 
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selected students immediately after each lesson to obtain the teacher’s and students’ 
reconstructions of the lesson and the meanings that particular classroom events held 
for them personally (see Clarke  2006a , for details). 

 The LPS research design, as implemented by the Hong Kong research team, had 
very specifi c characteristics:

•    It involved two different cities in China, Shanghai and Hong Kong, thus facilitating 
the identifi cation of a distinct Chinese pedagogy (if there was any), as well as the 
variations within any such pedagogy.  

•   It complemented studies reporting national norms of student achievement 
and teaching practices with an in-depth analysis of classroom learning from the 
perspective of the learner.  

•   It utilized multiple frameworks in the analysis of the data in order to get a deeper 
understanding of classroom teaching from the learner’s perspective.  

•   It examined the Shanghai-Hong Kong differences in teaching in light of what 
the students actually learned from the lessons through the use of post-lesson 
video- stimulated interviews.    

 In combination, the above reasons provided strong motivation and a coherent 
(and culturally-situated) rationale for the Hong Kong research team to participate in 
the Learner’s Perspective Study. Each participating research team did so with their 
own unique set of motivations and purposes. Each team brought to the LPS research 
community a perspective grounded in their own culture and national priorities and 
each implemented the LPS research design in a form aligned with those priorities. 

 Triangulation was enacted at the level of data type (video, interview, questionnaire 
and classroom artefacts), informant (teacher, students and observing researcher), 
analytical perspective (e.g. discourse analysis, variation theory, socio- cultural the-
ory) and cultural perspective. Positivist aspirations to identify a ‘correct view’ were 
discarded for the richness of the aggregated ‘complementary accounts’ available 
at each of the levels just outlined. Consistent with contemporary conceptions of 
triangulation, the accounts generated from different data types or analytical or 
cultural perspectives “may not be useful to validate each other, but … may yield a 
fuller and more complete picture of the phenomenon concerned if brought together” 
(Kelle and Buchholtz, Chap.   12     in this book). In this discussion of triangulation, it 
is useful to examine data examples and analyses at each of these levels.   

15.4     Characteristic Features of the Hong Kong LPS 
Research Implementation 

 In implementing the LPS research design in Hong Kong and Shanghai, a very spe-
cifi c modifi cation was made regarding the sampling of classrooms. Whereas the 
standard LPS research design took the grade level as its primary sampling unit and 
matched that grade level to the level at which TIMSS achievement testing and the 
TIMSS Video Study were carried out, the Hong Kong team chose “mathematical 
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content” as the primary sampling unit: specifi cally, simultaneous equations. The 
major consequence of prioritizing mathematical content as the point of analytical 
comparison was that data were collected in eighth grade mathematics classes in 
Hong Kong and seventh grade mathematics classes in Shanghai. In other respects, 
the LPS research design was implemented consistently.

    City Selection : Hong Kong and Shanghai, representing two urban/metropolitan 
cities with different historical backgrounds, were selected.  

   Teacher Selection : Three teachers were selected in each city. These teachers were 
recognized as competent by their respective local professional communities 
(their school principals, colleagues in schools, local teacher educators or 
researchers). Each teacher had at least 5 years of experience as a qualifi ed teacher.  

   Video - recording Procedures : Before the recording of a continuous sequence of at 
least 10 lessons for each class, two to three lessons were recorded to allow both the 
teacher and the students to become accustomed to the presence of the video cameras 
in the classroom. This strategy was intended to maximize the validity of the video 
data as representing something approximating normal classroom practice.  

   Student Selection : A particular group of four students were videotaped continuously 
for each two of the consecutive lessons. The groups were selected by rotation. 
Using this protocol, 20 students in each class were studied in some detail. If 
possible, it was intended that there should be a range of competence across the 
20 students, although not necessarily within any given group of four students. 
Two students were each interviewed individually after each lesson, providing a 
minimum of 20 post-lesson student interviews per classroom.  

   Camera Confi guration and Integrated Video : The research design employed 
three cameras—a “Teacher Camera”, a “Student Camera” and a “Whole Class 
Camera”. An audio-video mixer was used to combine the Teacher Camera and 
Student Camera images in a split-screen arrangement, to form the “Learner 
Practice Composite Image”. This integrated image was used to prompt student 
and teacher reconstructive accounts in interviews.  

   Fieldnotes : The research assistant/videographer recorded the time and type of all 
 changes  in instructional activity. The purpose of the fi eldnotes was to augment 
the video record. The completion of fi eldnotes was a lower priority than the 
maintenance of a continuous video record of teacher and students and was never 
allowed to distract the videographer(s) from their primary purpose.  

   Student Written Work : All written work produced by the four students “in camera” 
during any lesson was photocopied, together with any text materials or handouts 
used during the lesson. Each student was asked to bring their text and all written 
material produced in class with them to the post-lesson interview. The materials 
(text pages, worksheets, and students’ written work) were photocopied immediately 
after the interview and the original returned to the student.  

   Student Interviews : At least two of the four students on camera were interviewed 
for about 30 min maximum as soon as possible subsequent to the lesson. The 
interview followed the protocol developed for the Learners’ Perspective Study, 
although additional questions might be added in relation to the specifi c content 
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of the lesson. For consistency of data collection across all classrooms and all 
countries, the minimum requirement was two student interviews for every lesson 
videotaped. During the post-lesson interview, the integrated lesson video was 
played back and the student was invited to pause the video at any instance that 
they saw as important, explaining why they considered each chosen event to be 
important and what they were doing and thinking during the selected instances.  

   Teacher Questionnaires : Three types of teacher questionnaires were administered: 
(i) a preliminary teacher questionnaire about each teacher’s  goals  in the teaching 
of mathematics; (ii) a very brief  post-lesson  questionnaire administered after 
each lesson; and (iii) an adaptation of the TIMSS-video Teacher Questionnaire 
to generate teacher refl ection on the  lesson sequence  recorded on videotape after 
the whole sequence of 10 lessons.  

   Teacher Interviews : Three teacher interviews were carried out during the period of 
the recording of the lessons. The video-stimulated recall technique was used. 
The teacher was invited in each interview to choose the video of one lesson to 
play back during the interview to provide a catalyst for the discussion of the 
critical issues found during the lesson.    

 The resultant data set afforded a wide variety of potential points of comparison 
between the practices in different lessons in the same classroom, between different 
classrooms in the same city, and between classroom practices in different cities. In 
addition to the observable practices of the classrooms, the post-lesson interviews 
with teacher and students provided participant accounts of both classroom events 
and the learning associated with those events. 

 In considering issues of triangulation, the comparison of the teacher’s account of 
a classroom event with student accounts of the same event was not undertaken with 
the intention of identifying “what really happened” but with the goal of understanding 
the intentions, actions and interpretations that each participant identifi ed with the 
particular situation or event. Only by understanding classroom situations and events 
from the perspectives of the participants could the researcher hope to identify those 
aspects that were conducive to or restrictive of learning and those aspects that might 
prove amenable to improvement or more widespread promotion. 

 The variety of data types available for analysis afforded selective triangulation in 
relation to a given activity, event or situation, through the juxtaposition of researcher 
analyses of different subsets of that extensive database.  

15.5     Triangulation and Acts of Cross-Cultural Comparison 

 The LPS research data set was suffi ciently complex to support the investigation of 
socio-mathematical regularities such as lesson patterns. The data set was intended 
to complement the approach taken in the TIMSS Video Study by (1) documenting 
sequences of lessons, rather than single lessons; and (2) by recording students’ private 
conversations as well as public communications during the lessons. Another key 
feature was that the mathematics lessons were taught by three teachers designated 
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as competent in the local context, and that the classrooms were intended to represent 
a variety of demographic contexts to the extent that this was possible, depending on 
the geographical location of the research site. However, it is important to reassert 
here that there was no intention to characterize the teaching of a country or a culture 
on the basis of the very selective sample. The overall intention of the LPS research 
design was to generate a large international data set recording the practices of 
mathematics classrooms from a wide diversity of geographical locations and cultural 
settings. In this way, any commonalities of practice across such diverse settings 
would assume particular signifi cance, while the design offered the opportunity to 
investigate just how different the practices of eighth grade mathematics classrooms 
might be around the world. In the same way, for the Chinese sample, any common-
alities between the Hong Kong and Shanghai classrooms were of interest, while the 
diversity of practice across the classrooms of six competent teachers indicated the 
variation possible within recognizably Chinese cultural settings. 

 This anticipation of insight arising from both similarity and difference is characteristic 
of triangulation as it was employed in this study. Denzin ( 1989 ) distinguished trian-
gulation of data, investigators, theories and methodologies. As noted in the preceding 
section, the LPS research design engaged in triangulation of data types, informants, 
analytical perspectives and cultural perspectives. However, in each instance, the 
goal was not convergence on a single “true” measurement or account. In its original 
positivist form, triangulation provided enhanced confi dence in a measure by subject-
ing it to the requirement of convergence of multiple measures or the corroboration of 
multiple accounts. One might see “positivist triangulation” as privileging reliability 
of measure through the goal of mutual validation of account. But, as has been argued 
in Sect.  15.2  of this chapter and extensively by other authors, including Kelle and 
Buchholtz in this book, triangulation offers much more than simple validation. 

 Triangulation in the LPS and other contemporary research designs is directed 
towards the achievement of a different form of research confi dence; one much more 
closely associated with validity rather than reliability. The multiple, complementary 
accounts generated at each level of the LPS research provided ‘thick’ description, 
complex and comprehensive portrayal, and the opportunity for pattern recognition 
and hypothesis formulation. This greater detail of portrayal met higher expectations 
regarding the legitimate characterization of social interactions and the capacity of 
research to move beyond description to explanation. Two types of examples are 
provided to illustrate the role of triangulation in an interpretivist research design 
such as the one employed in the Learner’s Perspective Study: Lesson patterns and 
Lesson events. Each presumes a different goal for the research process and each 
makes use of triangulation in a different way. 

15.5.1     Lesson Patterns or Lesson Structure 

 One of the widely reported bases of comparison between classrooms and countries 
was lesson patterns or lesson structures, the discussion of which originated with the 
TIMSS studies. Based on the analysis of 81 single, randomly sampled, eighth grade 
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mathematics lessons, Stigler and Hiebert ( 1999 ) reported that US lessons could be 
generally characterised by the recurrence of four distinct classroom activities: 
Reviewing previous material; Demonstrating how to solve problems for the day; 
Practicing; and Correcting seatwork and assigning homework; and it was suggested 
that these activities, when placed in a particular sequence, formed the basis of a 
national lesson pattern (Stigler and Hiebert  1999 ). Similarly, from the analysis of 
100 German eighth grade mathematics lessons, Stigler and Hiebert ( 1999 ) reported 
the following lesson pattern for German mathematics lessons: Reviewing previous 
material; Presenting the topic and the problems for the day; Developing the proce-
dures to solve the problem; and, Practicing. Finally, an analysis of 50 Japanese 
lessons produced the pattern: Reviewing the previous lesson; Presenting the problem 
for the day; Students working individually or in groups; Discussing solution meth-
ods; and, Highlighting and summarizing the major points. Each reported lesson 
pattern appeared entirely plausible to educators in each country and elsewhere. 
Certainly, the component elements of each lesson were familiar and each posited 
sequence seemed plausible. Despite the apparent plausibility of the three lesson 
patterns reported, it remained to be demonstrated that teachers would actually 
employ the same lesson structure for the introductory lesson in a topic sequence as 
they employed in the middle and fi nal lessons of the topic. 

 Since the LPS data documented sequences of at least ten lessons for each classroom, 
one of the initial analyses of the LPS data was to determine whether the sequenced 
activity categories reported in the TIMSS Video study (Stigler and Hiebert  1999 ) 
could be identifi ed in an analysis of the corresponding LPS data in American, 
German, and Japanese classrooms. A minute-by-minute analysis was carried out for 
all lessons of the nine classrooms (90 lessons) in Germany, Japan and USA in the 
LPS data set to determine which of the various activities identifi ed in the TIMSS 
Video Study best described the classroom behaviour for each minute of every lesson. 
Two researchers carried out the analysis independently and the results were compared 
and discussed and a consensus coding constructed. The posited lesson structures did 
not appear in any lesson anywhere in the LPS data for any of the three countries: the 
USA, Germany or Japan. Taking the US Classroom 1 as an example, Lessons 1–5 
appeared radically different in structure from Lessons 7–10. Overall, for the coding 
of the full US data set, Clarke et al. ( 2007 ) found that “the differences in lesson 
structure and topic structure between teachers suggested that each teacher combined 
and sequenced the various activities in ways that were not only a refl ection of 
the mathematical topic being taught, and of the location of the lesson in the topic 
sequence, but also of the pedagogical style of the individual teacher” (p. 286). The 
full report can be found in the publication by Clarke et al. ( 2006c ). This analysis 
suggested that the lesson components (events) identifi ed in the TIMSS report were 
separately evident in the data from each of the three countries, but that they did not 
occur in the predicted  sequence . This suggested that the pedagogy in each mathe-
matics classroom was better represented by a separate, more detailed analysis of 
each of the characteristic lesson events. 

 In this comparison, we see the paradigmatic shift from convergence on a single 
typifi cation (the lesson pattern) to the attempt to capture the diversity and complexity 

15 The Contemporary Importance of Triangulation in a Post-Positivist World…



416

of social interactions over time. The aspiration to typify practice by aggregating 
over topics, teachers and time runs the risk of concealing precisely those differences 
(topics, teachers and chronological location) that might be most infl uential in deter-
mining lesson structure and the most important in assisting our understanding of 
teacher instructional decision-making in different culturally-situated classrooms. 

 Clarke and his co-authors ( 2007 ) suggested that the real contribution of the 
Stigler-Hiebert analysis was in the identifi cation of characteristic lesson components 
that did seem to recur from lesson to lesson, but which required much more detailed 
individual analysis to determine similarity and variation in purpose and function. 
It was suggested that analysis of the teacher’s deployment of these “lesson events” 
would provide greater insight into culturally-based differences in teaching practice. 
The Hong Kong data can be used to illustrate the difference between normative 
characterisations of lesson  pattern  and the detailed description of those lesson 
 events  from which teachers constructed their lessons.  

15.5.2     The Hong Kong Investigation of Lesson Structure 

 The Hong Kong study addressed the question of whether a pattern of lesson structure 
existed in the data set generated in the six classrooms (over 60 lessons) in Hong 
Kong and Shanghai. In addition to patterns of lesson structure, the Hong Kong team 
attempted to investigate the variation of teaching approaches and methods between 
the lessons of the same teacher. Lopez-Real et al. ( 2004 ) analyzed a sequence of 
lessons by one teacher in meticulous detail and demonstrated that variation occurred 
between lessons at the level of lesson structure (see Fig.  15.1 ), characterizing a 
particular teacher’s approach.

   Rather than applying the TIMSS categories of activities, derived from their analysis 
of German, Japanese and US lessons, a classifi catory scheme was developed 
specifi cally for the Hong Kong and Shanghai classrooms (Table  15.1 ). Six categories 
of lesson activity were identifi ed, characterized by different levels of descriptive 
detail, indicative of the extent to which variation was possible in the performance of 
each lesson element. Developing a schematic visual representation for the sequence 
of activities for a lesson, it was possible to compare the structure of different lessons 
effectively (Fig.  15.1 ). For example, the teacher-directive approach was very obvious 
in Lessons L04 to L08, whereas Lesson L01 obviously demonstrated a different 
approach with greater emphasis on pedagogy of an exploratory nature.

   In combination, Table  15.1  and Fig.  15.1  illustrate the dilemma faced by any 
researcher seeking to typify national or cultural practice for the purposes of com-
parison. This has been discussed at greater length elsewhere (Clarke  2006b ; Clarke 
et al.  2012 ). If, however, the aspiration is to portray rather than to typify, then 
categorization schemes such as that shown in Fig.  15.1  can serve dual purposes: 
(i) As a matter of defi nition, each designated category will accommodate the variety 
of actions or activities held to be suffi ciently similar to be associated with that 
category, which thereby provides a classifi catory basis by which to compare one 
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classroom or lesson with another; and (ii) the variations possible within each category 
delineate how the teachers may engage in pedagogical decision-making and select 
from their instructional repertoire the particular version or adaptation of the lesson 
component that will meet their needs in the particular lesson. 

 In elaborating the various categories of events of each of the lesson activities 
identifi ed in Table  15.1 , the researcher benefi ts from (i) data triangulation, where 
the video record of a lesson event is supplemented by retrospective explanatory 
interviews or copies of the written student products arising from that event; and 
(ii) informant triangulation, where the signifi cance of each lesson event must be 
understood from the perspective of the various classroom participants and from the 
perspective of the researcher. Triangulation with respect to theoretical perspectives 
has been discussed elsewhere (Clarke  2011 ). The next section addresses the question 
of cultural triangulation, a research strategy that allows the research team to compare 

  Fig. 15.1    Visual representation of the lesson patterns showing the variation between the lessons 
of one of the Hong Kong teachers       
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and contrast the enactment of “lesson events” based on a shared defi nition (form) 
accommodating variation across different cultural systems (function) for a deeper 
understanding of the social and pedagogical situations in the classrooms.  

15.5.3     Contrasting the Enactment of “Lesson Events” Across 
Different Cultural Systems 

 Analyses of Hong Kong and Shanghai classrooms, consistent with analyses of lesson 
structure in the classrooms of other participant LPS countries, suggested that teachers 
did not employ the same lesson structure for each lesson in a topic. Rather, teachers 

     Table 15.1    Criteria for categorizing activities demonstrating different teacher’s approaches 
(Lopez-Real et al.  2004 , pp. 411–412)   

 (B01) Exploratory 
  The focus is on a relative open or diffi cult problem which has more than one possible 

answers 
  The teacher gave a signal for pair discussion. (Sometimes this was skipped. The exploration 

was facilitated directly by the teacher in a whole class discussion.) 
  A whole class discussion with the following features: inviting more than one student to give 

answers, inviting for explanations, inviting for peer comments 
 (B02) Directive (Foundation; Consolidation) 
  No comment on the student’s answer, no attempt to discuss the answer with the other 

students, simply stating what should be done, the conventional notation 
  Emphasis is purely on following a convention 
  No explicit discussion on the implicit identifi cation (link) in the critical shift from a discrete 

context to abstract context 
  Insistent on precise language 
  Repetition of what had been learnt in an earlier lesson or in the earlier part of the lesson in a 

fast pace, using this as a foundation for establishing further knowledge 
  Insistent on articulation of procedures 
  Clear and directive summary (usually a defi nition of a concept or method) after an illustrative 

example or discussion 
  Teacher plays the role in directing students to work on problems 
  Probing 
  Directive explanation by teacher 
 (B03) Summarization 
  Teacher does summarization during the lesson, to summarize or to conclude the topics or 

problems discussed 
 (B04) Exercise and Practice (sometimes include whole class checking exercise) 
  In the situation of doing textbook exercise, there can be teacher talking about/ explaining the 

question, and students having seatwork 
  Teacher checks exercise with students 
 (B05) Assigning Homework 
  Teacher assigns homework or questions for students to do at home 
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employed the various “lesson events” according to the location of the lesson in the 
topic sequence. Another analysis was therefore undertaken of the LPS lessons 
focusing on the form and function of the activities that made up the various parts in 
the lesson. The original conception of lesson events as providing a legitimate unit 
for comparison across different cultural systems was based on the observation that 
some recognizable components of classroom practice might happen in classrooms 
of different countries or systems, but that these would have differences and similari-
ties in implementation in the various classrooms, particularly with respect to the 
function of the identifi ed activity and its value in the local pedagogy. For example, 
the proportion of time that the Australian teachers spent in moving around the 
classroom while the students were working independently in class was much greater 
that that found in the Shanghai classrooms. 

 Crucial to the analytic process is the distinction between form and function. The 
LPS defi nition of a “lesson event” states that the lesson event is recognizable by “a 
form (visual features and social participants) suffi ciently common to be identifi able 
within the classroom data from each of the countries studied” (Clarke et al.  2007 , 
p. 287). Having identifi ed by collaborative consensus between LPS team members 
that particular lesson events were recognizable by form in the classrooms of several 
countries, the focus of collaborative analysis was the function served by the identifi ed 
lesson event in the various classrooms in which it appeared. Some examples of lesson 
events are: “beginning the lesson” (Mesiti and Clarke  2006 ), “Kikan Shido or between 
desks instruction” (O’Keefe et al.  2006 ), and “learning task” (Mok and Kaur  2006 ). 

 In making comparison of the enactment of a particular learning task in several 
different cultural settings, we see most clearly the contemporary use of triangulation. 
Consider, for example, the lesson event titled, “the learning task” (Mok and Kaur 
 2006 ). It was not the intention of the Hong Kong team to use the cultural triangula-
tion of learning task performance in several cultural settings to take “cross- readings” 
on “learning task” as a category of activity and identify unambiguously those 
distinctive actions and functions that might constitute the set of criteria by which the 
event “learning task” might be uniquely defi ned. Rather, the goal was to document 
all possible forms of variation in the implementation of “learning task” across the 
various classrooms in order that the particular lesson event might be better under-
stood through the differences in function and consequence that were evident in each 
setting. The combination of similar features, identifi ed as holding constant across 
cultural settings, together with those functions that varied between settings, provide 
in their situated interconnection a more complete cross-cultural portrayal of the 
lesson event than would be provided by any positivist convergence on a unique set 
of indicators holding across all settings. 

 The remainder of this section makes use of the analysis of “learning task lesson 
events” undertaken by Mok and Kaur ( 2006 ) to show how the comparison of a 
particular type of lesson event between different cultural systems can help to understand 
culture-specifi c components of mathematics classrooms and identify explanations 
for any differences between different systems in terms of cultural values and traditions 
of teaching and learning. Mok and Kaur ( 2006 ) compared 18 identifi ed “learning 
tasks” from Australia, Germany, Hong Kong, Japan, Shanghai, Singapore and the 
United States. The data analysed included the video record and lesson transcripts. 
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 The emphasis of this discussion is not on the fi ndings with respect to the lesson 
event “learning task” but on the methodological aspects of the work by Mok and 
Kaur ( 2006 ); that is, the identifi cation of instances of the various units of analysis 
and the analytical approaches employed. 

15.5.3.1     The Learning Task: One Example of a Lesson Event 

 The selection of examples of each of the various lesson events was undertaken as a 
collaborative effort by the team members of different countries. The fi rst step was to 
develop a defi nition in terms of form with examples and non-examples, so the 
researchers of each country could select examples from the data set of their own 
research sites for inclusion in the combined set of examples of that lesson event. 
This combined set selected on the basis of similar form could then be analysed with 
respect to function. 

 For the purpose of defi ning the learning task lesson event, Mok and Kaur ( 2006 ) 
referred to the object of learning in the lesson:

  Every lesson will have an object of learning, that is, either a mathematical concept or skill 
which the teacher wants the students to learn in the lesson. This is often explained in the 
teacher’s goals for the lesson in our data (the lesson tables). Some learning tasks are usually 
used in the lesson to illustrate or explain the concepts or skills. Students may be engaged in 
the learning tasks in whole class discussion led by the teacher, individually or in groups 
depending on the teacher’s class arrangement. (Mok and Kaur  2006 , p. 148) 

   As a result, the form of a learning task lesson event was represented by the 
segment of the lesson that contained the enactment of the learning task by the 
teacher and the students during the lesson (Mok and Kaur  2006 ; Mok  2010 ). With 
respect to the differentiation between examples and non-examples for the event, a 
special effort was made to differentiate a “learning task” as defi ned in this study 
from a practice item or repetitive exercise.

  A learning task aims to teach the students something new and the sequence of learning tasks 
show a coherent development of the object of learning. On the other hand, a practice item 
is mostly repetition of a taught skill. A common occurrence in Western classrooms, and also 
in Hong Kong, is for the teacher to do a worked example on the blackboard. This worked 
example is defi nitely a learning task. The students then are asked to do a set of problems 
that strongly resemble the worked example. According to the defi nition, it means that where 
the similarity is very high between the worked example and the problems subsequently 
attempted by the students, then the worked example should be seen as a learning task, but 
the subsequent problems are not. (Mok and Kaur  2006 , p. 148) 

   This involved addressing the question of function in a general sense, without 
precluding locally-specifi c variations in the way the learning task event was carried 
out. For example, Mok and Kaur ( 2006 ) found, the various functions of the learning 
task lesson event carried out by the LPS Shanghai teachers included:

•    For setting a background for the topic to be learned;  
•   For demonstration or explanation, often with visual display and interactive 

question- and-answers between the teacher and the students;  
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•   For an in-depth investigation/discussion of a specifi c aspect of the object of 
learning. (Mok and Kaur  2006 , p. 148)    

 These functions were consistent with the general introductory character of the 
learning task and also provided initial criteria for other researchers to identify learning 
tasks within the data set of their own countries. The criteria made possible the 
comparison between samples of the data selected by researchers from their home 
data (Australia, Germany, Hong Kong, Japan, Shanghai, Singapore and United 
States) (Mok and Kaur  2006 ). Given the nature of the LPS research design, focusing 
on the detailed documentation of practices in the classrooms of only three teachers 
in each community, the project was not intended to characterize the practices of a 
particular culture. The value of cross-cultural analysis lies in the observation that 
people tend to disregard some features of an event, despite its importance, because 
they are too familiar with what happens, whereas, these features may become prom-
inent through the process of comparing examples from different backgrounds. 

 Each lesson event constituted a class of activities recognizable across different 
cultural settings, but diverse in the details of their enactment. Having identifi ed 
video excerpts involving “learning tasks,” different categories were generated to 
classify the particular instructional function served in each instance, resonating 
with the existing research literature and associated with the effective learning of 
mathematics. Three particular themes stood out, both as distinctive characteristics 
and as relevant to contemporary curricular priorities: differentiation of the mathe-
matical process, realistic contexts and building connections. It was then possible for 
Learning Task lesson events that appeared to share one or more of these features, 
such as their utilization of realistic contexts, to be compared. 

 For example, under the dimension of “differentiation of the mathematical process,” 
four examples were identifi ed in algebra lessons from Germany, Singapore, Japan 
and Shanghai. These four examples all demonstrated how Learning Tasks, similar 
in form, might produce very different activity with respect to the development of an 
understanding of the mathematical procedure and making the procedure visible so 
that it could be shared by learners. The contrast between the four examples demonstrated 
a  spectrum of possibilities  in the emerging dimension, namely, students’ sharing of 
non-public talk, teacher-guided class discourse with different levels of freedom and 
convergence in the process of constructing the solution, students’ looking back at 
their own work. A summary is quoted here:

  Whilst the German example only has the students’ own sharing of non-public talk, the 
Singapore teacher emphasises a correct demonstration of the process led by the teacher 
herself. There is hardly any possibility of any sidetrack and the students’ answers were 
mostly to fi ll in what the teacher asked for. The Shanghai example falls in between the 
German and Singapore cases … The Japanese example is of a different kind compared with 
other three examples. The focus of the Japanese example is not on the process of how the 
students produce their work, but on looking back on what they have produced. Consequently, 
the invitation by the teacher to comment on the two students’ work initiates discussion, the 
content of which includes ideas such as the meaning of a solution for equations and the 
presentation of checking. This kind of teaching strategy obviously demands another level of 
understanding of the procedure. (Mok and Kaur  2006 , pp. 151–152) 
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   The methodological point that is being made here concerns the capacity of 
cross- cultural comparison to reveal diversity and the utility of the documented differences 
in offering alternatives for practice, where a more convergent research paradigm 
would conceal difference through a process of aggregation and typifi cation. In line 
with Kelle and Buchholtz (Chap.   12     in this book), we contrast triangulation 
employed for mutual validation with that employed for elaborated portrayal and 
emphasise the important role of triangulation in generating more complex, multi- 
perspectival descriptions with greater explanatory potential. Following Denzin 
( 2010 ), we distinguish different types of triangulation functioning at different levels 
within the research design. But the key assertion of this chapter is that contemporary 
research efforts to understand classroom practice demand research designs that 
exploit rather than conceal difference, and that reveal diversity in ways that enhance 
the possibility of the recognition of pattern, connection and situatedness.    

15.6     Conclusion 

 In constructing this chapter, we have used the LPS research design as our example 
of a contemporary methodological approach with particular features. Each of these 
features invokes the notion of triangulation in a different way. The multiplicity of 
data types generated by the mixed methods design contributes to a complex but 
interconnected account of any given social situation. The use of multiple informants 
both as participants in the situations of interest, but also as retrospective commentators 
on those same situations, foregrounds the separate legitimacy of each participant’s 
interpretation of events, rather than their capacity to be mutually validating, and 
highlights the need to document the intentions, actions and interpretations of each, 
if we are to understand and thereby optimise the situations, actions and activities we 
fi nd in classrooms internationally. The use of different theories to provide alternative 
analytical perspectives is not addressed in detail here, but provides a form of trian-
gulation that is attracting increasing attention. Again, the essential methodological 
point is that such theoretically inclusive research designs are not intended to 
identify some consensus interpretation of events, but rather, through the juxtaposition 
of parallel, complementary, interpretive accounts, to offer a less partial portrayal of 
the situation of interest (Clarke  2011 ), and simultaneously to afford opportunities 
for the interrogation not only of the situation, but of the alternative theories themselves. 
Lastly, cultural triangulation is perhaps the most visible strategy employed in the 
LPS research design. Again, the question is “Triangulation to what end?” Certainly 
not the comparative evaluation of the effectiveness of different culturally-situated 
instructional approaches. By virtue of the differences in their cultural situation, the 
legitimacy of any such comparative evaluation is highly problematic (see Clarke 
et al.  2012 ). Instead, consistent with the other examples provided, cultural triangulation 
offers the opportunity for the rich portrayal of activities or phenomena having 
familiar form but varied function, in order to enrich our understanding of the 
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 possibilities  of action, of the  interconnectedness  of the webs of activity found in 
classrooms, and of the  situatedness  of those actions and of the process of teacher 
decision-making by which each action was initiated. 

 By undertaking analyses at very different levels of granularity (Schoenfeld 
 1999 ), by examining and re-examining selected subsets of the data set, the initial 
research interest of the Hong Kong team, the question of a “Chinese” pedagogy for 
mathematics, has been investigated by analysis of both insiders’ and outsiders’ per-
spectives, by various choices of research foci and issues, and by the methods and 
frameworks developed by the various members of the LPS community. Better 
understanding of what might be meant by Chinese pedagogy has been obtained by 
the comparison between the two cities in China, by comparison of the Chinese 
examples with other places in the Asian context and with non-Asian contexts. These 
analyses have been primarily afforded by the particular forms of triangulation inte-
gral to the LPS research design. The examples discussed in this chapter are only 
selected snapshots, attempting to illustrate the multiple strategies and methodologi-
cal concerns occurring during the conduct of the many analyses that have formed 
part of the Hong Kong team’s participation in the LPS. These included: decisions as 
to what to compare across a signifi cant number of classrooms situated in a broad 
range of cultures; how best to utilize a data set, simultaneously extensive and limited, 
to provide an understanding of generic pedagogical issues; and how to accommodate 
and exploit the combination of multiple theoretical approaches and the associated 
development of various coding schemes for seeking answers to very different research 
questions. In the context of cross-cultural classroom research, at a time when mixed 
methods approaches are recognised as the rule rather than the exception in educational 
research, we suggest that triangulation can serve the aspiration to accommodate and 
characterise complexity rather than conceal or minimise it.     
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    Chapter 16   
 An Introduction to Design-Based Research 
with an Example From Statistics Education 

             Arthur     Bakker      and     Dolly     van     Eerde    

    Abstract     This chapter arose from the need to introduce researchers, including Master 
and PhD students, to design-based research (DBR). In Sect.  16.1  we address key 
features of DBR and differences from other research approaches. We also describe 
the meaning of validity and reliability in DBR and discuss how they can be improved. 
Section 16.2 illustrates DBR with an example from statistics education.  

  Keywords     Design based research   •   Statistics education  

16.1              Theory of Design-Based Research 

16.1.1    Purpose of the Chapter 

 The purpose of this chapter is to introduce researchers, including Master and PhD 
students, to design-based research. In our research methods courses for this audi-
ence and in our supervision of PhD students, we noticed that students considered 
key publications in this fi eld unsuitable as introductions. These publications have 
mostly been written to inform or convince established researchers who already have 
considerable experience with educational research. We therefore see the need to 
write for an audience that does not have that level of experience, but may want to 
know about design-based research. We do assume a basic knowledge of the main 
research approaches (e.g., survey, experiment, case study) and methods (e.g., inter-
view, questionnaire, observation). 

 Compared to other research approaches, educational design-based research 
(DBR) is relatively new (Anderson and Shattuck  2012 ). This is probably the reason 
that it is not discussed in most books on qualitative research approaches. For exam-
ple, Creswell ( 2007 ) distinguishes fi ve qualitative approaches, but these do not 
include DBR (see also Denscombe  2007 ). Yet DBR is worth knowing about, espe-
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cially for students who will become teachers or researchers in education: Design- 
based research is claimed to have the potential to bridge the gap between educational 
practice and theory, because it aims both at developing theories about domain- 
specifi c learning and the means that are designed to support that learning. DBR thus 
produces both useful products (e.g., educational materials) and accompanying sci-
entifi c insights into how these products can be used in education (McKenney and 
Reeves  2012 ; Van den Akker et al.  2006 ). It is also said to be suitable for addressing 
complex educational problems that should be dealt with in a holistic way (Plomp 
and Nieveen  2007 ). 

 In line with the other chapters in this book, Sect.  16.1  provides a general theory 
of the research approach under discussion and Sect.  16.2  gives an example from 
statistics education on how the approach can be used.  

16.1.2    Characterizing Design-Based Research 

 In this section we outline some characteristics of DBR, compare it with other 
research approaches, go over terminology and history, and fi nally summarize DBR’s 
key characteristics. 

16.1.2.1    Integration of Design and Research 

 Educational design-based research (DBR) can be characterized as research in which 
the design of educational materials (e.g., computer tools, learning activities, or a 
professional development program) is a crucial part of the research. That is, the 
design of learning environments is interwoven with the testing or developing of 
theory. The theoretical yield distinguishes DBR from studies that aim solely at 
designing educational materials through iterative cycles of testing and improving 
prototypes. 

 A key characteristic of DBR is that educational ideas for student or teacher learn-
ing are formulated in the design, but can be adjusted during the empirical testing of 
these ideas, for example if a design idea does not quite work as anticipated. In most 
other interventionist research approaches design and testing are cleanly separated. 
See further the comparison with a randomized controlled trial in Sect.  16.1.2.5 .  

16.1.2.2    Predictive and Advisory Nature of DBR 

 To further characterize DBR it is helpful to classify research aims in general (cf. 
Plomp and Nieveen  2007 ):

•    To describe (e.g., What conceptions of sampling do seventh-grade students have?)  
•   To compare (e.g., Does instructional strategy A lead to better test scores than 

instructional strategy B?)  
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•   To evaluate (e.g., How well do students develop an understanding of distribution 
in an instructional sequence?)  

•   To explain or to predict (e.g., Why do so few students choose a bachelor in math-
ematics or science? What will students do when using a particular software 
package?)  

•   To advise (e.g., How can secondary school students be supported to learn about 
correlation and regression?)    

 Many research approaches such as surveys, correlational studies, and case 
studies, typically have descriptive aims. Experiments often have a comparative 
aim, even though they should in Cook’s ( 2002 ) view “be designed to  explain  the 
consequences of interventions and not just to describe them” (p. 181, emphasis 
original). DBR typically has an explanatory and advisory aim, namely to give 
theoretical insights into how particular ways of teaching and learning can be pro-
moted. The type of theory developed can also be of a predictive nature: Under 
conditions X using educational approach Y, students are likely to learn Z (Van den 
Akker et al.  2006 ). 

 Research projects usually have one overall aim, but several stages of the project 
can have other aims. For example, if the main aim of a research project is to advise 
how a particular topic (e.g., sampling) should be taught, the project most likely has 
parts in which phenomena are described or evaluated (e.g., students’ prior knowl-
edge, current teaching practices). It will also have a part in which an innovative 
learning environment has to be designed and evaluated before empirically grounded 
advice can be given. This implies that research projects are layered. Design-based 
research (DBR) has an overall predictive or advisory aim but often includes research 
stages with a descriptive, comparative, or evaluative aim.  

16.1.2.3    The Role of Hypotheses and the Engineering Nature of DBR 

 In characterizing DBR as different from other research approaches, we also need to 
address the role of hypotheses in theory development. Put simply, a scientifi c theory 
can explain particular phenomena and predict what will happen under particular 
conditions. When developing or testing a theory, scientists typically use hypothe-
ses—conjectures that follow from some emergent theory that still needs to be tested 
empirically. This means that hypotheses should be formulated in a form in which 
they can be verifi ed or falsifi ed. The testing of hypotheses is typically done in an 
experiment: Reality is manipulated according to a theory-driven plan. If hypotheses 
are confi rmed, this is support for the theory under construction. 

 Just as in the natural sciences, it is not always possible to test hypotheses empiri-
cally within a short period of time. As a starting point design researchers, just like 
many scientists in other disciplines, use thought experiments—thinking through the 
consequences of particular ideas. When preparing an empirical teaching experi-
ment, design researchers typically do a thought experiment on how teachers or stu-
dents will respond to particular tools or tasks based on their practical and theoretical 
knowledge of the domain (Freudenthal  1991 ). 
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 In empirical experiments, a hypothesis is formulated beforehand. A theoretical idea 
is operationalized by designing a particular setting in which only this particular feature 
is isolated and manipulated. To stay objective experimental researchers are often not 
present during the interventions. In typical cases, they collect only pre- and posttest 
scores. In design-based research, however, researchers continuously take their best bets 
(Lehrer and Schauble  2001 ), even if this means that some aspect of the learning envi-
ronment during or after a lesson has to be changed. In many examples, researchers are 
involved in the teaching or work closely with teachers or trainers to optimize the learn-
ing environment (McClain and Cobb  2001 ; Smit and Van Eerde  2011 ; Hoyles et al. 
 2010 ). In the process of designing and improving educational materials (which we take 
as a prototypical case in this chapter), it does not make sense to wait until the end of the 
teaching experiment before changes can be made. This would be ineffi cient. 

 DBR is therefore sometimes characterized as a form of didactical engineering 
(Artigue,  1988 ): didactical engineering: Something has to be made with whatever 
theories and resources are available. The products of DBR are judged on innovative-
ness and usefulness, not just on the rigor of the research process that is more promi-
nent in evaluating true experiments (Plomp  2007 ). 

 In many research approaches, changing and understanding a situation are sepa-
rated. However, in design-based research these are intertwined in line with the fol-
lowing adage that is also common in sociocultural traditions: If you want to 
understand something you have to change it, and if you want to change something 
you have to understand it (Bakker  2004a , p. 37).  

16.1.2.4    Open and Interventionist Nature of DBR 

 Another way to characterize DBR is to contrast it with other approaches on the fol-
lowing two dimensions: naturalistic vs. interventionist and open vs. closed. 
Naturalistic studies analyze how learning takes place without interference by a 
researcher. Examples of naturalistic research approaches are ethnography and sur-
veys. As the term suggests, interventionist studies intervene in what naturally hap-
pens: Researchers deliberately manipulate a condition or teach according to 
particular theoretical ideas (e.g., inquiry-based or problem-based learning). Such 
studies are necessary if the type of learning that researchers want to investigate is 
not present in naturalistic settings. Examples of interventionist approaches are 
experimental research, action research, and design-based research. 

 Research approaches can also be more open or closed. The term  open  here refers 
to little control of the situation or data whereas  closed  refers to a high degree of 
control or a limited number of options (e.g., multiple choice questions). For  example, 
surveys by means of questionnaires with closed questions or responses on a Likert 
scale are more closed than surveys by means of semi-structured interviews. 
Likewise, an experiment comparing two conditions is more closed than a DBR 
 project in which the educational materials or ways of teaching are emergent and 
adjustable. Different research approaches can thus be positioned in a two-by-two 
table as in Table  16.1 . DBR thus shares an interventionist nature with experiments 
and action research. We therefore continue by comparing DBR with experiments 
( 16.1.2.5 ) and with action research ( 16.1.2.6 ).
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16.1.2.5         Comparison of DBR with Randomized Controlled Trials (RCT) 

 A randomized controlled trial (RCT) is sometimes referred to as “true” experiment. 
Assume we want to know whether a new teaching strategy for a particular topic in a 
particular grade is better than the traditionally used one. To investigate this question 
one could randomly assign students to the experimental (new teaching strategy) or 
control condition (traditional strategy), measure performances on pre- and posttests, 
and use statistical methods to test the null hypothesis that there is no signifi cant 
 difference between the two conditions. The researchers’ hope is that this hypothesis 
can be rejected so that the new type of intervention (informed by a particular theory) 
proves to be better. The underlying rationale is: If we know “what works” we can 
implement this method and have better learning results (see Fig.  16.1 ).

   This so-called experimental approach of randomized controlled trials (Creswell 
 2005 ) is sometimes considered the highest standard of research (Slavin  2002 ). It has 
a clear logic and is a convincing way to make causal and general claims about what 
works. It is based on a research approach that has proven extremely helpful in the 
natural sciences. 

 However, its limitations for education are discussed extensively in the literature 
(Engeström  2011 ; Olsen  2004 ). Here we mention two related arguments. First, if we 
know what works, we still do not know why and when it works. Even if the new 
strategy is implemented, it might not work as expected because teachers use it in 
less than optimal ways. 

 An example can clarify this. When doing research in an American school, we 
heard teachers complain about their managers’ decision that every teacher had to 

   Table 16.1    Naturalistic vs. interventionist and open vs. closed research approaches   

 Naturalistic  Interventionist 

 Closed  Survey: questionnaires with closed questions  Experiment (randomized controlled 
trial) 

 Open  Survey: interviews with open questions  Action research 
 Ethnography  Design-based research 

  Fig. 16.1    A pre-posttest experimental design (randomized controlled trial)       
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start every lesson with a warm-up activity (e.g., a puzzle). Apparently it had been 
proven by means of an RCT that student scores were signifi cantly higher in the 
experimental condition in which lessons started with a warm-up activity. The nega-
tive effect in teaching practice, however, was that teachers ran out of good ideas for 
warm-up activities, and that these often had nothing to do with the topic of the 
 lesson. Effectively, teachers therefore lost fi ve minutes of every lesson. Better 
insight into how and why warm-up activities work under particular conditions could 
have improved the situation, but the comparative nature of RCT had not provided 
this information because only the variable of starting the lesson with or without 
warm- up activity had been manipulated. 

 A second argument why RCT has its limitations is that a new strategy has to be 
designed before it can be tested, just like a Boeing airplane cannot be compared 
with an Airbus without a long tradition of engineering and producing such airplanes. 
In many cases, considerable research is needed to design innovative approaches. 
Design-based research emerged as a way to address this need of developing new 
strategies that could solve long-standing or complex problems in education. 

 Two discussion points in the comparison of DBR and RCT are the issues of gen-
eralization and causality. The use of random samples in RCT allows generalization 
to populations, but in most educational research random samples cannot be used. In 
response to this point, researchers have argued that theory development is not just 
about populations, but rather about propensities and processes (Frick  1998 ). Hence 
rather than generalizing from a random sample to a population (statistical general-
ization), many (mainly qualitative) research approaches aim for generalization to a 
theory, model or concept (theoretical or analytic generalization) by presenting fi nd-
ings as particular cases of a more general model or concept (Yin  2009 ). 

 Where the use of RCTs can indicate the intervention or treatment being the cause 
of better learning, DBR cannot claim causality with the same convincing rigor. This 
is not unique to DBR: All qualitative research approaches face this challenge of 
drawing causal claims. In this regard it is helpful to distinguish two views on 
causality: a regularity, variance-oriented understanding of causality versus a realist, 
process- oriented understanding of causality (Maxwell  2004 ). People adopting the 
fi rst view think that causality can only be proven on the basis of regularities in larger 
data sets. People adopting the second view make it plausible on the basis of circum-
stantial evidence of observed processes that what happened is most likely caused by 
the intervention (e.g., Nathan and Kim  2009 ). The fi rst view is underlying the logic 
of RCT: If we randomly assign subjects to an experimental and control condition, 
treat only the experimental group and fi nd a signifi cant difference between the two 
groups, then it can only be attributed to the difference in condition (the treatment). 
However, if we were to adopt the same regularity view on causality we would never 
be able to identify the cause of singular events, for example why a driver hit a tree. 
From the second, process-oriented view, if a drunk driver hits a tree we can judge 
the circumstances and judge it plausible that his drunkenness was an important 
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explanation because we know that alcohol can cause less control, slower reaction 
time et cetera. Similarly, explanations for what happens in classrooms should be 
possible according to a process-oriented position based on what happens in response 
to particular interventions. For example, particular student utterances are very 
unlikely if not deliberately fostered by a teacher (Nathan and Kim  2009 ). Table  16.2  
summarizes the main points of the comparison of RCT and DBR.

16.1.2.6        Comparison of DBR with Action Research 

 Like action research, DBR typically is interventionist and open, involves a refl ective 
and often cyclic process, and aims to bridge theory and practice (Opie  2004 ). In both 
approaches the teacher can be also researcher. In action research, the researcher is not 
an observer (Anderson and Shattuck  2012 ), whereas in DBR s/he can be observer. 
Furthermore, in DBR design is a crucial part of the research, whereas in action 
research the focus is on action and change, which can but need not involve the design 
of a new learning environment. DBR also more explicitly aims for instructional theo-
ries than does action research. These points are summarized in Table  16.3 .

   Table 16.2    Comparison of experimental versus design-based research   

 Experiment (RCT)  Design-based research (DBR) 

 Testing theory  Developing and testing theory simultaneously 
 Comparison of existing teaching methods by 
means of experimental and control groups 

 Design of an innovative learning environment 
long 

 Proof of what works  Insight into how and why something works 
 Research interest is isolated by manipulating 
variables separately 

 Holistic approach long white word 

 Statistical generalization  Analytic or theoretical generalization, 
transferability to other situations 

 Causal claims based on a regularity view on 
causality are possible 

 Causality should be handled with great care 
and be based on a realist, process-oriented 
view on causality 

   Table 16.3    Commonalities and differences between DBR and action research   

 DBR  Action research 

 Commonalities  Open, interventionist, researcher can be participant, refl ective cyclic process 
 Differences  Researcher can be observer  Researcher can only be participant 

 Design is necessary  Design is possible 
 Focus on instructional theory  Focus on action and improvement of a situation 
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16.1.2.7       Names and History of DBR 

 In its relatively brief history, DBR has been presented under different names. 
 Design-based research  is the name used by the Design-Based Research Collective 
(see special issues in Educational Researcher,  2003 ; Educational Psychologist 
 2004 ; Journal of the Learning Sciences  2004 ). Other terms for similar approaches are:

•    Developmental or development research (Freudenthal  1988 ; Gravemeijer  1994 ; 
Lijnse  1995 ; Romberg  1973 ; Van den Akker  1999 )  

•   Design experiments or design experimentation (Brown  1992 ; Cobb et al.  2003a ; 
Collins  1992 )  

•   Educational design research (Van den Akker et al.  2006 )    

 The reasons for these different terms are mainly historical and rhetorical. In the 
1970s Romberg ( 1973 ) used the term  development research  for research accompa-
nying the development of curriculum. Discussions on the relation between research 
and design in mathematics education, especially on didactics, mainly took place in 
Western Europe in the 1980s and the 1990s, particularly in the Netherlands (e.g., 
Freudenthal  1988 ; Goffree  1979 ), France (e.g., Artigue  1988 , cf. Artigue Chap.   17    ) 
and Germany (e.g., Wittmann  1992 ). The term  developmental research  is a transla-
tion of the Dutch  ontwikkelingsonderzoek , which Freudenthal introduced in the 
1970s to justify the development of curricular materials as belonging to a university 
institute (what is now called the Freudenthal Institute) because it was informed by 
and leading to research on students’ learning processes (Freudenthal  1978 ; 
Gravemeijer and Koster  1988 ; De Jong and Wijers  1993 ). The core idea was that 
development of learning environments and the development of theory were inter-
twined. As Goffree ( 1979 , p. 347) put it: “Developmental research in education as 
presented here, shows the characteristics of both developmental and fundamental 
research, which means aiming at new knowledge that can be put into service in 
continued development.” At another Dutch university (Twente University), the term 
 ontwerpgericht  (design-oriented) research was more common, but there the focus 
was more on the curriculum than on theory development (Van den Akker  1999 ). 
One disadvantage of the terms ‘development’ and ‘developmental’ is their connota-
tions to developmental psychology and research on children’s development of con-
cepts. This might be one reason that this term is hardly used anymore. 

 In the United States, the terms  design experiment  and  design research  were more 
common (Brown  1992 ; Cobb et al.  2003a ; Collins  1992 ; Edelson  2002 ). One advan-
tage of these terms is that design is more specifi c than development. One possible 
disadvantage of the term  design experiment  can be explained by reference to a criti-
cal paper by Paas ( 2005 ) titled  Design experiment: Neither a design nor an experi-
ment . The confusion that his pun refers to is two-fold. First, in many educational 
research communities the term  design  is reserved for research design (e.g., compar-
ing an experimental with a control group), whereas the term in design research 
refers to the design of learning environments (Sandoval and Bell  2004 ). Second, for 
many researchers, also outside the learning sciences, the term  experiment  is reserved 
for “true” experiments or RCTs. In design experiments, hypotheses certainly play 
an important role, but they are not fi xed and tested once. Instead they may be 
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 emergent, multiple, and temporary. In line with the Design-Based Research 
Collective, we use the term  design-based research  because this suggests that it is 
predominantly research (hence leading to a knowledge claim) that is based on a 
design process.  

16.1.2.8    Theory Development in Design-Based Research 

 We have already stated that theory typically has a more central role in DBR than in 
action research. To address the role of theory in DBR, it is helpful to summarize 
diSessa and Cobb’s ( 2004 ) categorization of different types of theories involved in 
educational research. They distinguish:

•    Grand theories (e.g., Piaget’s phases of intellectual development; Skinner’s 
behaviorism)  

•   Orienting frameworks (e.g., constructivism, semiotics, sociocultural theories)  
•   Frameworks for action (e.g., designing for learning, Realistic Mathematics 

Education)  
•   Domain-specifi c theories (e.g., how to teach density or sampling)  
•   Hypothetical Learning Trajectories (Simon  1995 ) or didactical scenarios (Lijnse 

 1995 ; Lijnse and Klaassen  2004 ) formulated for specifi c teaching experiments 
(explained in Sect.  16.1.3 ).    

 As can be seen from this categorization, there is a hierarchy in the generality of 
theories. Because theories developed in DBR are typically tied to specifi c learning 
environments and learning goals, they are humble and hard to generalize. Similarly, 
it is very rare that a theoretical contribution to aerodynamics will be made in the 
design of an airplane; yet innovations in airplane design occur regularly. The use of 
grand theoretical frameworks and frameworks for action is recommended, but 
researchers should be careful to manage the gap between the different types of the-
ory on the one hand and design on the other (diSessa and Cobb  2004 ). If handled 
with care, DBR can then provide the basis for refi ning or developing theoretical 
concepts such as meta-representational competence, sociomathematical norms 
(diSessa and Cobb), or whole-class scaffolding (Smit et al.  2013 ).  

16.1.2.9    Summary of Key Characteristics of Design-Based Research 

 So far we have characterized DBR in terms of its predictive and advisory aim, par-
ticular way of handling hypotheses, its engineering nature and differences from 
other research methods. Here we summarize fi ve key characteristics of DBR as 
identifi ed by Cobb et al. ( 2003a ):

    1.    The fi rst characteristic is that its purpose is  to develop theories about learning 
and the means that are designed to support that learning . In the example pro-
vided in Sect.  16.2  of in this chapter, Bakker ( 2004a ) developed an instruction 
theory for early statistics education and instructional means (e.g. computer tools 
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and accompanying learning activities) that support the learning of a multifaceted 
notion of statistical distribution.   

   2.    The second characteristic of DBR is its  interventionist  nature. One difference 
with RCTs is that interventions in the DBR tradition often have better ecological 
validity—meaning that learning already takes place in learning ecologies as they 
occur in schools and thus methods measure better what researchers want to mea-
sure, that is learning in natural situations. Findings from experiments do not have 
to be translated as much from controlled laboratory situations to the less con-
trolled ecology of schools or courses. In technical terms, theoretical products of 
DBR “have the potential for rapid pay-off because they are fi ltered in advance for 
instrumental effect” (Cobb et al.  2003a , p. 11).   

   3.    The third characteristic is that DBR has  prospective and refl ective components  that 
need not be separated by a teaching experiment. In implementing hypothesized 
learning (the prospective part) the researchers confront conjectures with actual 
learning that they observe (refl ective part). Refl ection can be done after each les-
son, even if the teaching experiment is longer than one lesson. Such refl ective 
analysis can lead to changes to the original plan for the next lesson. Kanselaar 
( 1993 ) argued that any good educational research has prospective and refl ective 
components. As explained before, however, what distinguishes DBR from other 
experimental approaches is that in DBR these components are not separated into 
the formulation of hypotheses before and after a teaching experiment.   

   4.    The fourth characteristic is the  cyclic  nature of DBR: Invention and revision 
form an iterative process. Multiple conjectures on learning are sometimes refuted 
and alternative conjectures can be generated and tested. The cycles typically con-
sist of the following phases: preparation and design phase, teaching experiment, 
and retrospective analysis. These phases are worked out in more detail later in 
this chapter. The results of such a retrospective analysis mostly feed a new design 
phase. Other types of educational research ideally also build upon prior experi-
ments and researchers iteratively improve materials and theoretical ideas in 
between experiments but in DBR changes can take place during a teaching 
experiment or series of teaching experiments.   

   5.    The fi fth characteristic of DBR is that the  theory  under development  has to do 
real work . As Lewin ( 1951 , p. 169) wrote: “There is nothing so practical as a 
good theory.” Theory generated from DBR is typically humble in the sense that 
it is developed for a specifi c domain, for instance statistics education. Yet it 
must be general enough to be applicable in different contexts such as class-
rooms in other schools in other countries. In such cases we can speak of 
transferability.    

16.1.3        Hypothetical Learning Trajectory (HLT) 

 DBR typically consists of cycles of three phases each: preparation and design, 
teaching experiment, and retrospective analysis. One might argue that the term 
 ‘retrospective analysis’ is pleonastic: All analysis is in retrospect, after a teaching 
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experiment. However, we use it here to distinguish it from analysis on the fl y, which 
takes place during a teaching experiment, often between lessons. 

 A design and research instrument that proves useful during all phases of DBR is 
the  hypothetical learning trajectory  (HLT), which we regard as an elaboration of 
Freudenthal’s thought experiment. Simon ( 1995 ) defi ned the HLT as follows:

  The hypothetical learning trajectory is made up of three components: the learning goal that 
defi nes the direction, the learning activities, and the hypothetical learning process—a pre-
diction of how the students’ thinking and understanding will evolve in the context of the 
learning activities. (p. 136)   

 Simon used the HLT for one or two lessons. Series of HLTs can be used for lon-
ger sequences of instruction (also see the literature on didactical scenarios in Lijnse 
 1995 ). The HLT is a useful research instrument to manage the gap between an 
instruction theory and a concrete teaching experiment. It is informed by general 
domain-specifi c and conjectured instruction theories (Gravemeijer  1994 ), and it 
informs researchers and teachers how to carry out a particular teaching experiment. 
After the teaching experiment, it guides the retrospective analysis, and the interplay 
between the HLT and empirical results forms the basis for theory development. This 
means that an HLT, after it has been mapped out, has different functions depending 
on the phase of the DBR and continually develops through the different phases. It 
can even change during a teaching experiment. 

16.1.3.1    HLT in the Design Phase 

 The development of an HLT starts with an analysis of how the mathematical topic of 
the design study is elaborated in the curriculum and the mathematical textbooks, an 
analysis of the diffi culties students encounter with this topic, and a refl ection on what 
they should learn about it. These analyses result in the formulation of provisional 
mathematical learning goals that form the orientation point for the design and 
redesign of activities in several rounds. While designing mathematical activities the 
learning goals may become better defi ned. During these design processes the 
researcher also starts formulating hypotheses about students’ potential learning and 
about how the teacher would support students’ learning processes. The confrontation 
of a general rationale with concrete tasks often leads to a more specifi c HLT, which 
means that the HLT gradually develops during the design phase (Drijvers  2003 ). 

 An elaborated HLT thus includes mathematical learning goals, students’ starting 
points with information on relevant pre-knowledge, mathematical problems and 
assumptions about students’ potential learning processes and about how the teacher 
could support these processes.  

16.1.3.2    HLT in Teaching Experiment 

 During the teaching experiment, the HLT functions as a guideline for the teacher 
and researcher for what to focus on in teaching, interviewing, and observing. It may 
happen that the teacher or researcher feels the need to adjust the HLT or instruc-
tional activity for the next lesson. As Freudenthal wrote ( 1991 , p. 159), the cyclic 
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alternation of research and development can be more effi cient the shorter the cycle 
is. Minor changes in the HLT are usually made because of incidents in the class-
room such as student strategies that were not foreseen, activities that were too dif-
fi cult, and so on. Such adjustments are generally not accepted in comparative 
experimental research, but in DBR, changes in the HLT are made to create optimal 
conditions and are regarded as elements of the data corpus. This means that these 
changes have to be reported well and the information is stronger when changes are 
supported by theoretical considerations. The HLT can thus also change during the 
teaching experiment phase.  

16.1.3.3    HLT in the Retrospective Analysis 

 During the retrospective analysis, the HLT functions as a guideline determining 
what the researcher should focus on in the analysis. Because predictions are made 
about students’ learning, the researcher can contrast those conjectures with the 
observations made during the teaching experiment. Such an analysis of the interplay 
between the evolving HLT and empirical observations forms the basis for develop-
ing an instruction theory. After the retrospective analysis, the HLT can be reformu-
lated, often more drastically than during the teaching experiment, and the new HLT 
can guide a subsequent design phase. 

 An HLT can be seen as a concretization of an evolving domain-specifi c instruc-
tion theory. Conversely, the instruction theory is informed by evolving HLTs. For 
example, if patterns of an HLT stabilize after a few cycles, these generalized pat-
terns in learning or instruction and the insights of how these patterns are supported 
by instructional means can become part of the emerging instruction theory. 

 Overall, the idea behind developing an HLT is not to design the perfect instruc-
tional sequence, which in our view does not exist, but to provide empirically 
grounded results that others can adjust to their local circumstances. The HLT 
remains hypothetical because each situation, each teacher, and each class is differ-
ent. Yet patterns can be found in students’ learning that are similar across different 
teaching experiments. Those patterns and the insights of how particular educational 
activities support students in particular kinds of reasoning can be the basis for a 
more general instructional theory of how a particular domain can be taught. Bakker 
( 2004a ), for example, noted that when estimating the number of elephants in a pic-
ture, students typically used one of four strategies, and these four strategies reoc-
curred in all of the fi ve classrooms in which he used the same task. Having observed 
such a pattern in strategy use, the design researcher can assume the pattern to be an 
element of the instruction theory. 

 For some readers, the term ‘trajectory’ might have a linear connotation. Although 
we aim for a certain direction, like the course of a ship, Bakker’s ( 2004a ) HLTs were 
non-linear in the sense that he did not make a linear sequence of activities in advance 
that he strictly adhered to (cf. Fosnot and Dolk  2001 ). Moreover, two subtrajectories 
came together later on in the sequence. In the following sections we give a more 
detailed description of the three phases of a DBR cycle and discuss relevant 
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 methodological issues. Further details about hypothetical learning trajectories can 
be found in a special issue of  Mathematical Thinking and Learning  (Mathematical 
Thinking and Learning  2004 , volume 6, issue 2) devoted to HLTs. 

 The term HLT stems from research in which the teacher was a researcher or a 
member of the research team (Simon  1995 ). However, if the teacher is not so famil-
iar with the research team’s intentions it may be necessary to pay extra attention to 
what the teacher can or should do to realize the potential of the learning activities. 
In such cases, the terms  hypothetical teaching and learning trajectory  (HTLT) or 
 teaching and learning strategy  (Dierdorp et al.  2011 ) may be more appropriate.   

16.1.4    Phases in DBR 

16.1.4.1    Phase 1: Preparation and Design 

 It is evident that the relevant present knowledge about a topic should be studied fi rst. 
Gravemeijer ( 1994 ) characterizes the design researcher as a tinkerer or, in French, a 
 bricoleur , who uses all the material that is at hand, including theoretical insights and 
practical experience with teaching and designing. 

 In the fi rst design phase, it is recommended to collect and invent a set of tasks 
that could be useful and discuss these with colleagues who are experienced in 
designing for mathematics education. An important criterion for selecting a task is 
its potential role in the HLT towards the mathematical end goal. Could it possibly 
lead to types of reasoning that students could build upon towards that end goal? 
Would it be challenging? Would it be a meaningful context for students? 

 There are several design heuristics, principles, and guidelines. In Sect.  16.2  we 
explain heuristics from the theory of Realistic Mathematics Education.  

16.1.4.2    Phase 2: Teaching Experiment 

 The notion of a teaching experiment arose in the 1970s. Its primary purpose was to 
experience students’ learning and reasoning fi rst-hand, and it thus served the pur-
pose of eliminating the separation between the practice of research and the practice 
of teaching (Steffe and Thompson  2000 ). Over time, teaching experiments proved 
useful for a broader purpose, namely as part of DBR. During a teaching experiment, 
researchers and teachers use activities and types of instruction that according to the 
HLT seem most appropriate at that moment. Observations in one lesson and theo-
retical arguments from multiple sources can infl uence what is done in the next les-
son. Observations may include student or teacher deviations from the HLT. 

 Hence, this type of research is different from experimental research designs in 
which a limited number of variables are manipulated and effects on other variables 
are measured. The situation investigated here, the learning of students in a new 
context with new tools and new end goals, is too complicated for such a set-up. 
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Besides that, a different type of knowledge is looked for, as pointed out earlier in 
this chapter: We do not want to assess innovative material or a theory, but we need 
prototypical educational materials that could be tested and revised by teachers and 
researchers, and a domain-specifi c instruction theory that can be used by others to 
formulate their own HLTs suiting local contingencies. 

 During a teaching experiment, data collection typically includes student work, 
tests before and after instruction, fi eld notes, audio recordings of whole-class dis-
cussions, and video recordings of every lesson and of the fi nal interviews with stu-
dents and teachers. We further fi nd ‘mini-interviews’ with students, lasting from 
about twenty seconds to four minutes, very useful provided that they are carried out 
systematically (Bakker  2004a ).  

16.1.4.3    Retrospective Analysis 

 We describe two types of analysis useful in DBR, a task oriented analysis and a 
more overall, longitudinal, cyclic approach. The fi rst is to compare data on students’ 
actual learning during the different tasks with the HLT. To this end we fi nd the data 
analysis matrix (Table  16.4 ) described in Dierdorp et al. ( 2011 ) useful. The left part 
of the matrix summarizes the HLT and the right part is fi lled with excerpts from 
relevant transcripts, clarifying notes from the researcher as well as a quantitative 
impression of how well the match was between the assumed leaning as formulated 
in the HLT and the observed learning. With such analysis it is possible to give an 
overview, as in Table  16.5 , which can help to identify problematic sections in the 
educational materials. Insights into why particular learning takes place or does not 

   Table 16.4    Data analysis matrix for comparing HLT and actual learning trajectory (ALT)   

 Hypothetical learning trajectory  Actual learning trajectory 

 Task 
number 

 Formulation 
of the task 

 Conjecture of 
how students 
would respond 

 Transcript 
excerpt 

 Clarifi cation  Match between HLT 
and ALT: Quantitative 
impression of how 
well the conjecture 
and actual learning 
matched (e.g., −, 0, +) 

   Table 16.5    ALT result compared with HLT conjectures for the tasks involving a particular type of 
reasoning   

 +  x  x  x  x  x  x  x  x  x  x  x  x  x 

 ±  x  x  x 

 –  x  x  x 

 Task:  5d  5f  6a  6c  7  8  9c  9e  10b  11c  15  17  23b  23c  24a  24c  25d  34a  42 

   Note : an x means how well the conjecture accompanying that task matched the observed learning 
(− refers to confi rmation for up to 1/3 of the students, and + to at least 2/3 of the students)  
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take place help to improve the HLTs in subsequent cycles of DBR. This iterative 
process allows the researcher to improve the predictive power of HLTs across sub-
sequent teaching experiments.

    An elaborated HLT would include assumptions about students’ potential learn-
ing and about how the teacher would support students’ learning processes. In this 
task-oriented analysis above no information is included about the role of the teacher. 
If there are crucial differences between students’ assumed and observed learning 
processes or if the teaching has been observed to diverge radically from what the 
researcher had intended, the role of the teacher should be included into the analysis 
in search of explanations for these discrepancies. 

 A comparison of HLTs and observed learning is very useful in the redesign pro-
cess, and allows answers to research questions that ask how particular learning 
goals could be reached. However, in our experience additional analyses are often 
needed to gain more theoretical insights into the learning process. An example of 
such additional analysis is a method inspired by the  constant comparative method  
(Glaser and Strauss  1967 ; Strauss and Corbin  1998 ) and Cobb and Whitenack’s 
( 1996 ) method of longitudinal analyses. Bakker ( 2004a ) used this type of analysis 
in his study in the following way. First, all transcripts were read and the videotapes 
were watched chronologically episode-by-episode. With the HLT and research 
questions as guidelines, conjectures about students’ learning and views were gener-
ated and documented, and then tested against the other episodes and other data 
material (student work, fi eld notes, tests). This testing meant looking for confi rma-
tion and counter- examples. The process of conjecture generating and testing was 
repeated. Seemingly crucial episodes were discussed with colleagues to test whether 
they agreed with our interpretation or perhaps could think of alternative interpreta-
tions. This process is called  peer examination . 

 For the analysis of transcripts or videos it is worth considering computer soft-
ware such as Atlas.ti (Van Nes and Doorman  2010 ) for coding the transcripts and 
other data sources. As in all qualitative research, data triangulation (Denscombe 
 2007 ) is commonly used in design-based research.   

16.1.5    Validity and Reliability 

 Researchers want to analyze data in a reliable way and draw conclusions that are 
valid. Therefore, validity and reliability are important concerns. In brief, validity 
concerns whether we really measure what we intend to measure. Reliability is about 
independence of the researcher. A brief example may clarify the distinction. Assume 
a researcher wants to measure students’ mathematical ability. He gives everyone 7 
out of 10. Is this a valid way of measuring? Is this a reliable way? 

 It is a very reliable way because the instruction “give all students a 7” can be 
reliably carried out, independently of the researcher. However, it is not valid, 
because there is most likely variation between students’ mathematical ability, which 
is not taken into account with this way of measuring. 
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 We should emphasize that validity and reliability are complex concepts with 
multiple meanings in different types of research. In qualitative research the 
meanings of validity and reliability are slightly different than in quantitative 
research. Moreover, there are so many types of validity and reliability that we 
cannot address them all. In this chapter we have focused on those types that 
seemed most relevant to us in the context of DBR. The issues discussed in this 
section are inspired by guidelines of Maso and Smaling ( 1998 ) and Miles and 
Huberman ( 1994 ), who distinguish between internal and external validity and 
reliability. 

16.1.5.1    Internal Validity 

 Internal validity refers to the quality of the data and the soundness of the reasoning 
that has led to the conclusions. In qualitative research, this soundness is also labeled 
as  credibility  (Guba  1981 ). In DBR, several techniques can be used to improve the 
internal validity of a study.

•    During the retrospective analysis conjectures generated and tested for specifi c 
episodes are tested for other episodes or by data triangulation with other data 
material, such as fi eld notes, tests, and other student work. During this testing 
stage there is a search for counterexamples to the conjectures.  

•   The succession of different teaching experiments makes it possible to test the 
conjectures developed in earlier experiments in later experiments.    

 Theoretical claims are substantiated where possible with transcripts to provide a 
rich and meaningful context. Reports about DBR tend to be long due to the  thick 
descriptions  (Geertz  1973 ) required. For example, the paper by Cobb et al. ( 2003b ) 
is 78 pages long!  

16.1.5.2    External Validity 

 External validity is mostly interpreted as the generalizability of the results. The 
question is how we can generalize the results from these specifi c contexts to be 
useful for other contexts. An important way to do so is by framing issues as 
instances of something more general (Cobb et al.  2003a ; Gravemeijer and Cobb 
 2006 ). The challenge is to present the results (instruction theory, HLT, educa-
tional activities) in such a way that others can adjust them to their local 
contingencies. 

 In addition to generalizability as a criterion for external validity we mention 
 transferability  (Maso and Smaling  1998 ). If lessons learned in one experiment 
are successfully applied in other experiments, this is a sign of successful gener-
alization. At the end of Sect.  16.2  we give an example of how a new type of learn-
ing activity was successfully enacted in a new research project in another 
country.  
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16.1.5.3    Internal Reliability 

 Internal reliability refers to the degree of how independently of the researcher the 
data are collected and analyzed. It can be improved with several methods. Data 
collection by objective devices such as audio- and video registrations contribute to 
the internal reliability. During his retrospective analysis Bakker ( 2004a ) ensured 
reliability by discussing the critical episodes, including those discussed in 
Sect.  16.2 , with colleagues for peer examination. For measuring interrater reliability, 
the agreement among independent researchers, it is advised to calculate not only 
the percentage of agreement but also use Cohen’s kappa or another measure that 
takes into account the probability of agreement by chance (e.g., Krippendorff’s 
alpha). It is not necessary for a second coder to code all episodes, but ensure that a 
random sample should be of suffi cient size: The larger the number of possible 
codes, the larger the sample required (Bakkenes et al.  2010 ; Cicchetti  1976 ). Note 
that the term internal reliability can also refer to the consistency of responses on a 
questionnaire or test, often measured with help of Cronbach’s alpha.  

16.1.5.4    External Reliability 

 External reliability usually denotes replicability, meaning that the conclusions of 
the study should depend on the subjects and conditions, and not on the researcher. 
In qualitative research, replicability is mostly interpreted as virtual replicability. 
The research must be documented in such a way that it is clear how the research has 
been carried out and how conclusions have been drawn from the data. A criterion 
for virtual replicability is ‘trackability’ (Gravemeijer and Cobb  2006 ), ‘traceability’ 
(Maso and Smaling  1998 ), or transparency (Akkerman et al.  2008 ). This means that 
the reader must be able to track or trace the learning process of the researchers and 
to reconstruct their study: failures and successes, procedures followed, the concep-
tual framework used, and the reasons for certain choices must all be reported. In 
Freudenthal’s words:

  Developmental research means: experiencing the cyclic process of development and 
research so consciously, and reporting on it so candidly that it justifi es itself, and that this 
experience can be transmitted to others to become like their own experience. ( 1991 , p. 161)   

 We illustrate the general characterization and description of DBR of Sect.  16.1  
by an example of a design study on statistics education in Sect.  16.2 .    

16.2            Example of Design-Based Research 

 In this second section we illustrate the theory of design-based research (DBR) as 
outlined in Sect.  16.1  with an example from Bakker’s ( 2004a ,  b ) PhD thesis on DBR 
in statistics education. We briefl y describe the aim and theoretical background of 
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this DBR project and then focus on one design idea, that of growing samples, to 
illustrate how it is related to different layers of theory and how it was analyzed. 
Finally we discuss the issue of generalizability. In the appendix we provide a struc-
ture of a DBR project with examples from this Sect.  16.2 . 

16.2.1    Relevance and Aim 

 The background problem addressed in Bakker’s ( 2004a ) research on statistics 
 education was that many stakeholders were dissatisfi ed with what and how students 
learned about statistics. For example, in many curricula there was a focus on 
 computing arithmetic means and making bar charts (Friel et al.  2001 ). Moreover, 
there was very little knowledge about how to use innovative educational statistics 
software (cf.    Biehler et al.  2013 , for an historical overview). 

 To solve these practical problems, Bakker’s ( 2004a ) aim was to contribute to an 
empirically grounded instruction theory for early statistics education with new com-
puter tools for the age group from 11 to 14. Such a theory should specify patterns in 
students’ learning as well as the means supporting that learning in the domain of 
statistics education. Like Cobb et al. ( 2003b ), Bakker ( 2004a ) focused his research 
on the concept of distribution as a key concept in statistics. One problem is that 
students tend to see isolated data points instead of a data set as a whole (Bakker and 
Gravemeijer  2004 ; Konold and Higgins  2003 ). Yet statistics is about features of data 
sets, in particular distributions of samples. The selected learning goal was therefore 
that distribution had to become an object-like entity with which students could see 
data sets as an entity with characteristics.  

16.2.2    Research Question 

 Bakker’s initial research question was: How can students with little statistical back-
ground develop a notion of distribution? In trying to answer this question in grade 
7, however, Bakker came to include a focus on other statistical key concepts such as 
data, center, and sampling because these are so intricately connected to that of dis-
tribution (Bakker and Derry  2011 ). The concept of distribution also proved hard for 
seventh-grade students. The initial research question was therefore reformulated for 
grade 8 as follows: How can coherent reasoning about distribution be promoted in 
relation to data, variability, and sampling in a way that is meaningful for students 
with little statistical background? 

 Our point here is that research questions can change during a research project. 
Indeed, the better and sharper your research question is in the beginning of the proj-
ect, the better and more focused your data collection will be. However, our experi-
ence is that most DBR researchers, due to progressive insight, end up with slightly 
different research questions than they started with. 
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 As pointed out in Sect.  16.1 , DBR typically draws on several types of theories. 
Given the importance of graphical representations in statistics education, it made 
sense for Bakker to draw on semiotics as an orienting framework. He came to focus 
on semiotics, in particular Peirce’s ideas on diagrammatic reasoning. The domain-
specifi c theory of Realistic Mathematics Education proved a useful framework for 
action in the design process even though it had hardly been applied in statistics 
education.  

16.2.3    Orienting Framework: Diagrammatic Reasoning 

 The learning goal was that distribution would become an object-like entity. 
Theories on reifi cation of concepts (Sfard and Linchevski  1992 ) and the relation 
between process and concept (cf. Tall et al.  2000 , on  procept ) were drawn upon. 
One theoretical question unanswered in the literature was what the process nature 
of a distribution could be. It is impossible to make sense of graphs without having 
appropriate conceptual structures, and it is impossible to communicate about con-
cepts without any representations. Thus, to develop an instruction theory it is 
necessary to investigate the relation between the development of the meaning of 
graphs and concepts. After studying several theories in this area, Bakker deployed 
Peirce’s semiotic theory on diagrammatic reasoning (Bakker  2007 ; Bakker and 
Hoffmann  2005 ). For Peirce, a diagram is a sign that is meant to represent rela-
tions. Diagrammatic reasoning involves three steps:

    1.    The fi rst step is to  construct  a diagram (or diagrams) by means of a representa-
tional system such as Euclidean geometry, but we can also think of diagrams in 
computer software or of an informal student sketch of statistical distribution. 
Such a construction of diagrams is supported by the need to represent the rela-
tions that students consider signifi cant in a problem. This fi rst step may be called 
 diagrammatization .   

   2.    The second step of diagrammatic reasoning is to  experiment  with the diagram (or 
diagrams). Any experimenting with a diagram is executed within a not necessarily 
perfect representational system and is a rule or habit-driven activity. Contemporary 
researchers would stress that this activity is situated within a practice. What makes 
experimenting with diagrams important is the rationality immanent in them 
(Hoffmann  2002 ). The rules defi ne the possible transformations and actions, but 
also the constraints of operations on diagrams. Statistical diagrams such as dot 
plots are also bound by certain rules: a dot has to be put above its value on the  x  
axis and this remains true even if for instance the scale is changed. Peirce stresses 
the importance of doing something when thinking or reasoning with diagrams:    

  Thinking in general terms is not enough. It is necessary that something should be DONE. In 
geometry, subsidiary lines are drawn. In algebra, permissible transformations are made. 
Thereupon the faculty of observation is called into play. (CP 4.233—CP refers to Peirce’s 
collected papers, volume 4, section 233)   
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 In the software used in this research, students can do something with the data 
points such as organizing them into equal intervals or four equal groups.

    3.    The third step is to observe the results of experimenting. We refer to this as the 
 refl ection  step. As Peirce wrote, the mathematician observing a diagram “puts 
before him an icon by the observation of which he detects relations between the 
parts of the diagram other than those which were used in its construction” (   Peirce 
 1976  III, p. 749). In this way he can “discover unnoticed and hidden relations 
among the parts” ( Peirce CP  3.363; see also CP 1.383). The power of diagram-
matic reasoning is that “we are continually bumping up against hard fact. We 
expected one thing, or passively took it for granted, and had the image of it in our 
minds, but experience forces that idea into the background, and compels us to 
think quite differently” ( Peirce CP  1.324).     

 Diagrammatic reasoning, in particular the refl ection step, is what can introduce 
the ‘new’. New implications within a given representational system can be found, but 
possibly the need is felt to construct a new diagram that better serves its purpose.  

16.2.4     Domain-Specifi c Framework for Action: Realistic 
Mathematics Education (RME) 

 As pointed out by diSessa and Cobb ( 2004 ), grand theories and orienting frame-
works do not tell the design researcher how to design learning environments. For 
this purpose, frameworks for action can be useful. Here we discuss Realistic 
Mathematics Education (RME). 

 Our research took place in the tradition of RME as developed over the last 40 
years at the Freudenthal Institute (Freudenthal  1991 ; Gravemeijer  1994 ; Treffers 
 1987 ; van den Heuvel-Panhuizen  1996 ). RME is a theory of mathematics education 
that offers a pedagogical and didactical philosophy on mathematical learning and 
teaching as well as on designing educational materials for mathematics education. 
RME emerged from research and development in mathematics education in the 
Netherlands in the 1970s and it has since been used and extended, also in other 
countries. 

 The central principle of RME is that mathematics should always be meaningful 
to students. For Freudenthal, mathematics was an extension of common sense, a 
system of concepts and techniques that human beings had developed in response to 
phenomena they encountered. For this reason, he advised a so-called  historical 
 phenomenology  of concepts to be taught, a study of how concepts had been devel-
oped in relation to particular phenomena. The insights from such a study can be 
input for the design process (Bakker and Gravemeijer  2006 ). 

 The term ‘realistic’ stresses that problem situations should be ‘experientially 
real’ for students (Cobb et al.  1992 ). This does not necessarily mean that the  problem 
situations are always encountered in daily life. Students can experience an abstract 
mathematical problem as real when the mathematics of that problem is meaningful 
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to them. Freudenthal’s ( 1991 ) ideal was that mathematical learning should be an 
enhancement of common sense. Students should be allowed and encouraged to 
invent their own strategies and ideas, and they should learn mathematics on their 
own authority. At the same time, this process should lead to particular end goals. 
This process is called  guided reinvention —one of the design heuristics of RME. This 
heuristic points to the question that underlies much of the RME-based research, 
namely that of how to support this process of engaging students in meaningful 
mathematical and statistical problem solving, and using students’ contributions to 
reach certain end goals. 

 The theory of RME is especially tailored to mathematics education, because it 
includes specifi c tenets on and design heuristics for mathematics education. For a 
description of these tenets we refer to Treffers ( 1987 ) and for the design heuristics 
to Gravemeijer ( 1994 ) or Bakker and Gravemeijer ( 2006 ).  

16.2.5    Methods 

 The absence of the type of learning aimed for is a common reason to carry out 
design research. For Bakker’s study in statistics education, descriptive, compara-
tive, or evaluative research did not make sense because the type of learning aimed 
for could not be readily observed in classrooms. Considerable design and research 
effort fi rst had to be taken to foster specifi c innovative types of learning. Bakker 
therefore had to design HLTs with accompanying educational materials that sup-
ported the desired type of learning about distribution. Design-based research offers 
a systematic approach to doing that while simultaneously developing domain- 
specifi c theories about how to support such learning for example here on the domain 
of statistics. In general, DBR researchers fi rst need to create the conditions in which 
they can develop and test an instruction theory, but to create those conditions they 
also need research. 

  Teaching experiment . Bakker designed educational materials with accompany-
ing HLTs in several cycles. Here we focus on the last cycle, involving a teaching 
experiment in grade 8 .  Half of the lessons were carried out in a computer lab and as 
part of them students used two minitools (Cobb et al.  1997 ), simple Java applets 
with which they analyzed data sets on, for instance, battery life span, car colours, 
and salaries (Fig.  16.3 ). The researcher was responsible for the educational materi-
als and the teacher was responsible for the teaching, though we discussed in advance 
on a weekly basis both the materials and appropriate teaching style. Three preser-
vice teachers served as assistants and helped with videotaping and interviewing 
students and with analyzing the data. 

 In the example that we elaborate we focus on the fourth of a series of ten lessons, 
each 50 min long. In this specifi c lesson, students reasoned about larger and larger 
samples and about the shape of distributions. 

  Subjects.  The teaching experiment was carried out in an eighth-grade class with 
30 students in a state school in the center of a Dutch city. The students in this study 
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were being prepared for pre-university ( vwo ) or higher professional education 
( havo ). The students in the class reported on here were not used to whole-class dis-
cussions, but rather to be “taken by the hand” as the teacher called it; they were 
characterized by the three research assistants as “passive but willing to cooperate.” 
These students had no prior instruction in statistics; they were acquainted with bar 
and line graphs, but not with dot plots, histograms, or box plots. Students already 
knew the mean from calculating their report grades, but mode and median were not 
introduced until the second half of the educational sequence after variability, data, 
sampling, and shape had been topics of discussion. 

  Data collection.  The collected data on which the results presented in this chapter 
are based include student work, fi eld notes, and the audio and video recordings of 
class activities that the three assistants and researcher made in the classroom. An 
essential part of the data corpus was the set of mini-interviews we held during the 
lessons; they varied from about twenty seconds to four minutes, and were meant to 
fi nd out what concepts and graphs meant for students, or how the minitools were used. 
These mini-interviews infl uenced students’ learning because they often stimulated 
refl ection. However, we think that the validity of the research was not put in danger by 
this, since the aim was to fi nd out how students learned to reason with shape or distri-
bution, not whether teaching the sequence in other eighth-grade classes would lead to 
the same results in the same number of lessons. Furthermore, the interview questions 
were planned in advance as part of the HLT, and discussed with the assistants. 

  Retrospective analysis.  In this example we do not illustrate how HLTs can be 
compared with observed learning (see Dierdorp et al.  2011 ). Here we highlight one 
type of analysis that in Bakker’s case yielded more theoretical insights: a method 
resembling Glaser and Strauss’s constant comparative method (Glaser and Strauss 
 1967 ). For the analysis, Bakker watched the videotapes, read the transcripts, and 
formulated conjectures on students’ learning on the basis of transcript episodes. 
Numbering the conjectures served as useful codes to work with during the analysis. 
Examples of such codes and conjectures were:

    C1 . Students divide imaginary data sets into three groups of low, ‘average’, and high 
values.  

   C2.  Students either characterize spread as range or look very locally at spread  
   C3 . Students are inclined to think of small samples when fi rst asked about how one 

could test something (batteries, weight).  
   C5.  What-if questions work well for letting students think of aggregate features of 

a graph or a situation. What would a weight graph of older students look like? 
What would the graph look like if a larger sample was taken? What would a 
larger sample of a good battery brand look like?  

   C7 . Students’ notions of spread, distribution, and density are not yet distinguished. 
When explaining how data are spread out, they often describe the distribution or 
the density in some area.  

   C9.  Even when students see a large sample of a particular distribution, they often do 
not see the shape we see in it.    

 The generated conjectures were tested against other episodes and the rest of the 
collected data (student work, fi eld observations, and tests) in the next round of anal-
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ysis by data triangulation. Conjectures that were confi rmed remained in the list; 
conjectures that were refuted were removed from the list. Then the whole generat-
ing and testing process was repeated. The aforementioned examples were all con-
fi rmed throughout this analysis. 

 To get a sense of the interrater reliability of the analysis, about one quarter of the 
episodes including those discussed in this chapter and the conjectures belonging to 
these episodes were judged by the three assistants who attended the teaching experi-
ment. The amount of agreement among judges was very high: all four judges agreed 
about 33 out of 35 codes. A code was only accepted if all judges agreed after discus-
sion. We give an example of a code that was fi nally rejected and one that was 
accepted. This example stems from the seventh lesson in which two students used 
the four equal groups option in Minitool 2 for a revised version of the jeans activity. 
Their task was to advise a jeans factory about frequencies of jeans sizes to be pro-
duced (Fig.  16.2 ).

    Sofi e     Because then you can best see the spread, how it is distributed.   
  Int.     How it is distributed. And how do you see that here [in this graph]? 
  What do you look at then? (…)   
  Sofi e    Well, you can see that, for example, if you put a [vertical] line here, 
   here a line, and here a line. Then you see here [two lines at the right] 
  that there is a very large spread in that part, so to speak.   

   In the fi rst line, Sofi e seems to use the terms spread and distributed as almost 
synonymous. This line was therefore coded with C7, which states that “students’ 
notions of spread, distribution, and density are not yet distinguished. When explain-
ing how data are spread out, they often describe the distribution or the density in 
some area.” In the second line, Sofi e appears to look at spread very locally, hence it 
was coded with C2, which states that “students either characterize spread as range 
or look very locally at spread.” 

 We also give an example of a code assignment that was dismissed in relation to 
the same diagram.

  Fig. 16.2    Jeans data with four equal groups option in Minitool 2       
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   Int.    What does this tell you? Four equal groups?   
  Melle    Well, I think that most jeans are between 32 and 34 [inches].   

   We had originally assigned the code C1 to the this episode (students talk about 
data sets as consisting of three groups of low, ‘average’, and high values), because 
“most jeans are between 32 and 34” implies that below 32 and above 34 the frequen-
cies are relatively low. In the episode, however, this student did not talk about three 
groups of low, average, and high values or anything equivalent. We therefore 
removed the code from this episode.  

16.2.6    HLT and Retrospective Analysis 

 To illustrate relationships between theory, method, and results, this section pres-
ents the analysis of students’ reasoning during one educational activity which was 
carried out in the fourth lesson. Its goal was to stimulate students to reason about 
larger and larger samples. We summarize the HLT of that lesson: the learning 
goal, the activity of growing a sample and the assumptions about students’ poten-
tial learning processes and about how the teacher could support these processes. 
We then present the retrospective analysis of three successive phases in growing a 
sample. 

 The overall  goal  of the growing samples activity as formulated in the hypotheti-
cal learning trajectory for this fourth lesson was to stimulate students’ diagrammatic 
reasononing about shape in relation to sampling and distribution aspects in the con-
text of weight. This implied that students should fi rst make diagrams, then experi-
ment with them and refl ect on them. The idea was to start with ideas invented by the 
students and guide them toward more conventional notions and representations. 
This process of guiding students toward these culturally accepted concepts and 
graphs while building on their own inventions is called guided reinvention. We had 
noted in previous teaching experiments that students were inclined to choose very 
small samples initially. It proved necessary to stimulate refl ection on the disadvan-
tages of such small samples and have them predict what larger samples would look 
like. Such insights from the analyses of previous teaching experiments helped to 
better formulate the HLT of a new teaching experiment. More particularly, Bakker 
assumed that starting with students’ initial ideas about small samples and asking for 
predictions about larger samples would make students aware of various features of 
distributions. 

 The  activity  of growing a sample consisted of three phases of making sketches of 
a hypothetical situation and comparing those sketches with graphs displaying real 
data sets. In the fi rst phase students had to make a graph of their own choice of a 
predicted weight data set with sample size 10. The results were discussed by the 
teacher to challenge this small sample size, and in the subsequent phases students 
had to predict larger data sets, one class and three classes in the second phase, and 
all students in the province in the third phase. Thus, three such phases took place as 
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described and analyzed below. Aiming for guided reinvention, the teacher and 
researcher tried to strike a balance between engaging students in statistical reason-
ing and allowing their own terminology on the one hand, and guiding them in using 
conventional and more precise notions and graphical representations on the other. 
Figure  16.3b  is the result of focusing only on the endpoints of the value bars in 
Fig.  16.3a . Figure  16.3c  is the result of these endpoints falling down vertically on 
the x-axis. In this way, students can learn to understand the relationship between 
value-bar graphs and dot plots, and what distribution features in different represen-
tations look like (Bakker and Hoffmann  2005 ).

  Fig. 16.3    ( a ) Minitool 1 showing a value-bar graph of battery life spans in hours of two brands. 
( b ) Minitool 1, but with bars hidden. ( c ) Minitool 2 showing a dot plot of the same data sets       
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16.2.6.1      Analysis of the First Phase of Growing a Sample 

 The text of the student activity sheet for the fourth lesson contained a number of 
tasks that we cite in the following subsections. The sheet started as follows:

   Last week you made graphs of predicted data for a balloon pilot. During this lesson you will 
get to see real weight data of students from another school. We are going to investigate the 
infl uence of the sample size on the shape of the graph.  

  Task a. Predict a graph of ten data values, for example with the dots of minitool 2.    

 The sample size of ten was chosen because the students had found that size rea-
sonable after the fi rst lesson in the context of testing the life span of batteries. 
Figure  16.4  shows examples for three different types of diagrams the students made 
to show their predictions: there were three value-bar graphs (such as in minitool 
1—e.g., Ruud’s diagram), eight with only the endpoints (such as with the option of 
minitool 1 to “hide bars”—e.g., Chris’s diagram) and the remaining nineteen plots 
were dot plots (such as in minitool 2—e.g., Sandra’s diagram). For the remainder of 
this section, the fi gures and written explanations of these three students are demon-
strated, because their work gives an impression of the variety of the whole class. 
Those three students were chosen because their diagrams represent all types of 
 diagrams made in this class, also for other phases of growing a sample.

   To stimulate the refl ection on the graphs, the teacher showed three samples of ten 
data points on the blackboard and students had to compare their own graphs 
(Fig.  16.4 ) with the graphs of the real data sets (Fig.  16.5 ).

    Task b. You get to see three different samples of size 10. Are they different from your own 
prediction? Describe the differences.    

 The reason for showing three small samples was to show the variation among these 
samples. There were no clear indications, though, that students conceived this varia-
tion as a sign that the sample size was too small for drawing conclusions, but they 
generally agreed that larger samples were more reliable. The point relevant to the 
analysis is that students started using predicates to describe aggregate features of the 
graphs. The written answers of the three students were the following:

   Ruud    Mine looks very much like what is on the blackboard.   
  Chris     The middle-most [diagram on the blackboard] best resembles mine 
  because the weights are close together and that is also the case in my 
  graph. It lies between 35 and 75 [kg].   
  Sandra    The other [real data] are more weights together and mine are further 
  apart.   

   Ruud’s answer is not very specifi c, like most of the written answers in the fi rst 
phase of growing samples. Chris used the predicate “close together” and added 
numbers to indicate the range, probably as an indication of spread. Sandra used such 
terms as “together” and “further apart,” which address spread. The students in the 
class used common predicates such as “together,” “spread out” and “further apart” 
to describe features of the data set or the graph. For the analysis it is important to 
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  Fig. 16.4    Student predictions (Ruud, Chris, and Sandra) for ten data points (weight in kg) (Bakker 
 2004a , p. 219)       

  Fig. 16.5    Three real data 
sets in minitool 2 (Bakker 
 2004a , p. 219)       
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note that the students used predicates (together, apart) and no nouns (spread, 
 average) in this fi rst phase of growing samples. Spread can only become an object-
like concept, something that can be talked about and reasoned with, if it is a noun. 
In the semiotic theory of Peirce, such transitions from the predicate “the dots are 
spread out” to “the spread is large” are important steps in the formation of concepts 
(see Bakker and Derry  2011 , for our view on concept formation).  

16.2.6.2    Analysis of the Second Phase of Growing a Sample 

 The students generally understood that larger samples would be more reliable. With 
the feedback students had received after discussing the samples of ten data points in 
dot plots, students had to predict the weight graph of a whole class of 27 students 
and of three classes with 67 students (27 and 67 were the sample sizes of the real 
data sets of eighth graders of another school).

   Task c. We will now have a look how the graph changes with larger samples. Predict a 
sample of 27 students (one class) and of 67 students (three classes).  

  Task d. You now get to see real samples of those sizes. Describe the differences. You can use 
words such as majority, outliers, spread, average.    

 During this second phase, all of the students made dot plots, probably because 
the teacher had shown dot plots on the blackboard, and because dot plots are less 
laborious to draw than value bars (only one student started with a value-bar graph 
for the sample of 27, but switched to a dot plot for the sample of 67). The hint on 
statistical terms was added to make sure that students’ answers would not be too 
superfi cial as (often happened before) and to stimulate them to use such notions in 
their reasoning. It was also important for the research to know what these terms 
meant to them. When the teacher showed the two graphs with real data, once again 
there was a short class discussion in which the teacher capitalized on the question of 
why most student predictions now looked pretty much like what was on the black-
board, whereas with the earlier predictions there was much more variation. No stu-
dent had a reasonable explanation, which indicates that this was an advanced 
question. The fi gures of the same three students are presented in Figs.  16.6  and  16.7  
and their written explanations were:

     Ruud    My spread is different.   
  Chris     Mine resembles the sample, but I have more people around a certain 
  weight and I do not really have outliers, because I have 10 about the 70 
  and 80 and the real sample has only 6 around the 70 and 80.   
  Sandra     With the 27 there are outliers and there is spread; with the 67 there are 
  more together and more around the average.   

   Here, Ruud addressed the issue of spread (“my spread is different”). Chris was 
more explicit about a particular area in her graph, the category of high values. She 
also correctly used the term “sample,” which was newly introduced in the second 
lesson. Sandra used the term “outliers” at this stage, by which students meant 
“extreme values,” which did not necessarily mean exceptional or suspect values. 
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  Fig. 16.6    Predicted graphs for one class (n = 27, top plot) and three classes (n = 67, bottom plot) 
by Ruud, Chris, and Sandra (Bakker  2004a , p. 222)       
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  Fig. 16.7    Real data sets of size 27 and 67 of students from another school (Bakker  2004a , p. 222)       
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She also seemed to locate the average somewhere and to understand that many 
 students are about average. These examples illustrate that students used statistical 
notions for describing properties of the data and diagrams. 

 In contrast to the fi rst phase of growing a sample, students used nouns instead of just 
predicates for comparing the diagrams. Like others Ruud used the noun “spread” (“my 
spread is different”) whereas students earlier used only predicates such as “spread out” 
or “further apart” (e.g., Sandra). Of course, this does not always imply that if students 
use these nouns that they are thinking of the right concept. Statistically, however, it 
makes a difference whether we say, “the dots are spread out” or “the spread is large.” 
In the latter case, spread is an object-like entity that can have particular aggregate char-
acteristics that can be measured, for instance by the range, the interquartile range, or the 
standard deviation. Other notions such as outliers, sample, and average, are now used 
as nouns, that is as conceptual objects that can be talked about and reasoned with.  

16.2.6.3    Analysis of the Third Phase of Growing a Sample 

 The aim of the hypothetical learning trajectory was that students would come to 
draw continuous shapes and reason about them using statistical terms. During teach-
ing experiments in the seventh-grade experiments (Bakker and Gravemeijer  2004 ), 
reasoning with continuous shapes turned out to be diffi cult to accomplish, even if it 
was asked for. It often seemed impossible to nudge students toward drawing the 
general, continuous shape of data sets represented in dot plots. At best, students 
drew spiky lines just above the dots. This underlines that students have to construct 
something new (a notion of signal, shape, or distribution) with which they can look 
differently at the data or the variable phenomenon. 

 In this last phase of growing the sample, the task was to make a graph showing 
data of all students in the city, not necessarily with dots. The intention of asking this 
was to stimulate students to use continuous shapes and dynamically relate samples 
to populations, without making this distinction between sample and population 
explicit yet. The conjecture was that this transition from a discrete plurality of data 
values to a continuous entity of a distribution is important to foster a notion of dis-
tribution as an object-like entity with which students could model data and describe 
aggregate properties of data sets. The task proceeded as follows:

   Task e. Make a weight graph of a sample of all eighth graders in the city. You need not draw 
dots. It is the shape of the graph that is important.  

  Task f. Describe the shape of your graph and explain why you have drawn that shape.   

   The fi gures of the same three students are presented in Fig.  16.8  and their written 
explanations were:

   Ruud    Because the average [values are] roughly between 50 and 60 kg.   
  Chris    I think it is a pyramid shape. I have drawn my graph like that because I 
  found it easy to make and easy to read.   
  Sandra    Because most are around the average and there are outliers at 30 and 
  80 [kg].   
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   Ruud’s answer focused on the average group. During an interview after the 
fourth lesson, Ruud like three other students literally called his graph a “bell shape,” 
though he had probably not encountered that term in a school situation before. This 
is probably a case of  reinvention . Chris’s graph was probably inspired by line graphs 
that the students made during mathematics lessons. She introduced the vertical axis 
with frequency, though such graphs had not been used before in the statistics course. 
Sandra may have started with the dots and then drawn the continuous shape. 

 In this third phase of growing a sample, 23 students drew a bump shape. The 
words they used for the shapes were pyramid (three students), semicircle (one), 
and bell shape (four). Many students drew continuous shapes but these were all 

  Fig. 16.8    Predicted graphs for all students in the city by Ruud, Chris, and Sandra (Bakker  2004a , 
p. 224)       
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 symmetrical. Since weight distributions are not symmetrical and because skewness 
is an important concept, a subsequent lesson addressed asymmetrical shapes in rela-
tion to the weight data (see Bakker  2004b ).   

16.2.7    Refl ection on the Example 

 The research question we addressed in the example is: How can coherent reasoning 
about distribution be promoted in relation to data, variability, and sampling in a way 
that is meaningful for students with little statistical background? We now discuss 
those key elements for the educational activity and speculate about what can be 
learned from the analysis presented here. 

 The activity of growing a sample involved short phases of constructing diagrams 
of new hypothetical situations, and comparing these with other diagrams of a real 
sample of the same size. The activity has a broader empirical basis than just the 
teaching experiment reported in this chapter, because it emerged from a previous 
teaching experiment (Bakker and Gravemeijer  2004 ) as a way to address shape as a 
pattern in variability. 

 To theoretically generalize the results, Bakker analyzed students’ reasoning as an 
instance of diagrammatic reasoning, which typically involves constructing dia-
grams, experimenting with them, and refl ecting on the results of the previous two 
steps. In this growing samples activity, the quick alternation between prediction and 
refl ection during diagrammatic reasoning appears to create ample opportunities for 
concept formation, for instance of spread. 

 In the fi rst phase involving the prediction of a small data set, students noted that 
the data were more spread out, but in subsequent phases, students wrote or said that 
the spread was large. From the terms used in this fourth lesson, we conclude that 
many statistical concepts such as center (average, majority), spread (range and range 
of subsets of data), and shape had become topics of discussion (object-like entities) 
during the growing samples activity. Some of these words were used in a rather 
unconventional way, which implies that students needed more guidance at this point. 
Shape became a topic of discussion as students predicted that the shape of the graph 
would be a semicircle, a pyramid, or a bell shape, and this was exactly what the HLT 
targeted. Given the students’ minimal background in statistics and the fact that this 
was only the fourth lesson of the sequence, the results were promising. Note, how-
ever, that such activities cannot simply be repeated in other contexts; they need to be 
adjusted to local circumstances if they are to be applied in other situations. 

 The instructional activity of growing samples later became a connecting thread 
in Ben-Zvi’s research in Israel, where it also worked to help students develop statis-
tical concepts in relation to each other (Ben-Zvi et al.  2012 ). This implies that this 
instructional idea was transferable to other contexts. The transferability of instruc-
tional ideas from the USA to the Netherlands to Israel, even to higher levels of 
education, illustrates that generalization in DBR can take place across contexts, 
cultures and age group.  
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16.2.8    Final Remarks 

 The example presented in Sect.  16.2  was intended to substantiate the issues dis-
cussed in Sect.  16.1 , and we hope that readers will have a sense of what DBR could 
look like and feel invited to read more about it. It should be noted that there are 
many variants of DBR. Some are more focused on theory, some more on empiri-
cally grounded products. Some start with predetermined learning outcomes, others 
have more open-ended goals (cf. Engeström  2011 ). DBR may be a challenging 
research approach but it is in our experience also a very rewarding one given the 
products and insights that can be gained.      
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    Appendix: Structure of a DBR Project with Illustrations 

 In line with Oost and Markenhof ( 2010 ), we formulate the following general criteria 
for any research project:

    1.    The research should be  anchored  in the literature.   
   2.    The research aim should be  relevant , both in theoretical and practical terms.   
   3.    The formulation of aim and questions should be  precise , i.e. using concepts and 

defi nitions in the correct way.   
   4.    The method used should be  functional  in answering the research question(s).   
   5.    The overall structure of the research project should be  consistent , i.e. title, aim, 

theory, question, method and results should form a coherent chain of reasoning.     

 In this appendix we present a structure of general points of attention during DBR 
and specifi cations for our statistics education example, including references to rel-
evant sections in the chapter. In this structure these criteria are bolded. This struc-
ture could function as the blueprint of a book or article on a DBR project.

 General points  Examples 

 Introduction:  1. Choose a topic  1. Statistics education at the middle school level 
 2. Identify common 
problems 

 2. Statistics as a set of unrelated concepts and 
techniques 

 3. Identify knowledge gap 
and relevance 

 3. How middle school students can be supported 
to develop a concept of distribution and related 
statistical concepts 

 4. Choose mathematical 
learning goals 

 4. Understanding of distribution (2.1) 

(continued)
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 General points  Examples 

 Literature review forms the basis for formulating the research aim (the research has to be 
 anchored  and  relevant ) 
 Research aim:  It has to be clear whether 

an aim is descriptive, 
explanatory, evaluative, 
advisory etc. (1.2.2) 

 Contribute to an empirically and theoretically 
grounded instruction theory for statistics 
education at the middle school level (advisory 
aim) (2.1) 

 Research aim has to be narrowed down to a research question and possibly subquestions with 
the help of different theories 
 Literature 
review 
(theoretical 
background): 

   Orienting frameworks    Semiotics (2.3) 
   Frameworks for action    Theories on learning with computer tools 
   Domain-specifi c learning 

theories (1.2.8) 
   Realistic Mathematics Education (2.4) 

 With the help of theoretical constructs the research question(s) can be formulated 
 (the formulation has to be  precise ) 
 Research 
question: 

 Zoom in what knowledge is 
required to achieve the 
research aim 

 How can students with little statistical 
background develop a notion of distribution? 

 It should be underpinned why this research question requires DBR (the method should be 
 functional ) 
 Research 
approach: 

 The lack of the type of 
learning aimed for is a 
common reason to carry 
out DBR: It has to be 
enacted so it can be studied 

 Dutch statistics education was atomistic: 
Textbooks addressed mean, median, mode, and 
different graphical representations one by one. 
Software was hardly used. Hence the type of 
learning aimed for had to be enacted. 

 Using a research method involves several research instruments and techniques 
 Research 
instruments 
and techniques 

 Research instrument that 
connects different theories 
and concrete experiences in 
the form of testable 
hypotheses. 

 Series of hypothetical learning trajectories 
(HLTs) 

 1. Identify students’ prior 
knowledge 

 1. Prior interviews and pretest 

 2. Professional 
development of teacher 

 2. Preparatory meetings with teacher 

 3. Interview schemes and 
planning 

 3. Mini-interviews, observation scheme 

 4. Intermediate feedback 
and refl ection with teacher 

 4. Debrief sessions with teacher 

 5. Determine learning yield 
(1.4.2) 

 5. Posttest 

 Design  Design guidelines  Guided reinvention; Historical and didactical 
phenomenology (2.4) 

 Data analysis  Hypotheses have to be 
tested by comparison of 
hypothetical and observed 
learning. Additional 
analyses may be necessary 
(1.4.3) 

 Comparison of hypothetical and observed 
learning 
 Constant comparative method of generating 
conjectures and testing them on the remaining 
data sources (2.6) 

(continued)
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 General points  Examples 

 Results  Insights into patterns in 
learning and means of 
supporting such learning 

 Series of HLTs as progressive diagrammatic 
reasoning about growing samples (2.6) 

 Discussion  Theoretical and practical 
yield 

   Concrete example of an historical and 
didactical phenomenology in statistics 
education 

   Application of semiotics in an educational 
domain 

   Insights into computer use in the mathematics 
classroom 

   Series of learning activities 
   Improved computer tools 

 The aim, theory, question, method and results should be aligned (the research has to be 
 consistent ) 
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    Chapter 17   
 Perspectives on Design Research: 
The Case of Didactical Engineering 

             Michèle     Artigue    

    Abstract     In what is often called the “French didactical culture,” design has always 
played an essential role in research. This is attested by the introduction and institu-
tionalization of a specifi c concept, that of  didactical engineering , already in the 
early 1980s and by the way didactical engineering has accompanied the development 
of didactical research, both in its fundamental and applied dimensions. In this chapter, 
I present this vision of design and its characteristics as a research methodology, 
coming back to its historical origin in close connection with the development of the 
theory of didactical situations, tracing its evolution along the last three decades, and 
illustrating this methodology by some particular examples. I also consider current 
developments within this design culture, especially those linked to the integration 
of a design dimension into the anthropological theory of didactics and also to the 
idea of didactical engineering of second generation introduced for addressing more 
effi ciently the development dimension of didactical engineering.  

  Keywords     Didactical engineering   •   Theory of didactical situations  

17.1        Introduction 

 Design has always played a substantial role in mathematics education up to the 
point that some researchers consider this fi eld as a design science (see, for instance, 
Wittmann  1998 ; Cobb  2007 ). But the conception of design and the exact role it is 
given in research strongly depend on educational cultures. In this chapter we 
consider the case of what is often called the “French didactical culture” in which 
design has always played a fundamental role. This importance of design is attested 
by the introduction and institutionalization of a specifi c concept, that of  Didactical 
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Engineering  (DE in the following) already in the early eighties. Since that time DE, 
which developed in close connection with the theory of didactical situations 
initiated by Brousseau (cf. (Warfi eld  2006 ) for an introduction and (Brousseau 
 1997 ) for a more detailed vision), has accompanied the development of didactical 
research, both in its fundamental and applied dimensions. This chapter is structured 
into four main sections. In the fi rst section I briefl y review the development of DE 
from its emergence in the early eighties until now, and clarify its links with the 
theory of didactical situations (see also (Bessot  2011 )). In the second section I pres-
ent its characteristics as a research methodology. In the third section I illustrate this 
methodology with examples taken at different levels of schooling. In the fourth sec-
tion I consider two recent evolutions of DE. The fi rst one is conveyed by the anthro-
pological theory of didactics in terms of course of study and research that considers 
very open forms of design; the second one is “didactical engineering of second 
generation” introduced by Perrin-Glorian for addressing dissemination and up-
scaling issues (Perrin-Glorian  2011 ). Beyond the many examples of realizations, 
the writing of this chapter has been especially inspired by some foundational texts 
such as (Chevallard  1982 ; Artigue  1990 ,  2002 ,  2009 ), and by the extensive refl ection 
on didactical engineering carried out at the XV e  Summer School of Didactics of 
Mathematics in 2009 (Margolinas et al.  2011 ).  

17.2    Didactical Engineering: An Historical Review 

 The emergence, consolidation and evolution of didactical engineering can be traced 
through the successive summer schools of didactics of mathematics organized every 
2 years in France since 1980. In this brief historical review, I focus on three of these 
(1982, 1989, 2009) for which DE was a specifi c theme of study. Already, at the 
second summer school in 1982, DE was one of the themes addressed. Chevallard 
prepared a specifi c manuscript note for supporting the work of the summer school 
collective (Chevallard  1982 ); Brousseau gave a course, and practical sessions were 
organized around this theme. Accessible documents regarding this summer school 
show the shared conviction that didactical research should give a more central role 
to the construction and study of classroom realizations. French researchers expressed 
concerns about the observed tendency to privilege methodologies borrowed from 
established fi elds such as psychology (clinical interviews, questionnaires, pre-test/
post-test comparisons…) for ensuring the scientifi c legitimacy of research in math-
ematics education. They pointed out that the didactics of mathematics is a genuine 
scientifi c fi eld whose methodologies should be in line with its specifi c purpose: the 
study of intentional dissemination of mathematical knowledge through didactical 
systems, and the associated interaction between teaching and learning processes. As 
explained in Chevallard’s note, the need for developing specifi c methodologies 
based on classroom realizations was justifi ed by both theoretical and practical 
reasons. On the theoretical side, such methodologies were judged necessary for 
this essential part of scientifi c activity which is the production of phenomena (in this 
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case, didactical phenomena), what Bachelard ( 1937 ) called  phénoménotechnique . 
On the practical side, such methodologies were judged necessary for establishing 
productive relationships between research and practice, because they permit 
researchers to consider didactical systems in their concrete functioning, and to pay 
the necessary attention to the different constraints and forces acting on these, which 
could be neglected otherwise. Didactical engineering thus emerged as a research 
and development methodology based on classroom realizations in form of sequences 
of lessons, informed by theory and putting to the test theoretical ideas. At that time, 
what was predominant in the French didactical community was the theory of 
didactical situations that had emerged in the late 1960s. This theory became thus the 
natural support of DE. Its systemic perspective, constructions and values shaped 
DE, which progressively became the research methodology privileged within this 
community. In fact, it would be more adequate to say that theoretical constructions 
and DE jointly developed along the 1980s. 

 In 1989, for the second time, didactical engineering was a specifi c theme of the 
summer school and I was asked to give a course on this methodology. This course 
(Artigue  1990 ) contributed to the institutionalization of DE as a research methodology, 
making explicit its characteristics and its foundational links with the theory of 
didactical situations. It also pointed out that its privileged links with the theory 
of didactical situations did not prevent researchers using this methodology from 
relying on other theoretical approaches. For instance, several examples mentioned 
in the course or worked out in the practical sessions associated to it relied on the 
tool- object dialectics due to Douady ( 1986 ). Many contributions to the summer 
school indeed combined its specifi c constructs (through the attention paid in design 
to the dialectics to be organized between the tool and object dimensions of 
mathematics concepts and to the learning potential offered by moves between 
mathematical settings, numbers and geometry for instance) with those offered by 
the theory of didactical situations. In this course too, I pointed out that if DE had 
consolidated as a research methodology, the problem of establishing productive 
links between research and practice had not been solved. DE produced by research 
was disseminating through articles, educational resources and teacher education, 
but there was some evidence that along this dissemination process, it tended to lose 
its essence and value. 

 In fact, in coherence with the theory of didactical situations, in DE design, particular 
efforts had been made to create situations in which:

•    the mathematical knowledge aimed at is an optimal solution to the problem to 
solve (which is captured in the theory by the idea of  fundamental situation );  

•   students as a collective are able to reach this optimal solution through their inter-
action with the  milieu  1     of the situation, without signifi cant help from their teacher 
(which is captured in the theory by the idea of  adidactical situation ).    

1   In the theory, the milieu of a situation is defi ned as the system with which the student interacts, 
and which provides objective feedback to her. The milieu may comprise material and symbolic 
elements: artifacts, informative texts, data, results already obtained…, and also other students who 
collaborate or compete with the learner. 
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 The teacher’s role, for its part, had been mainly approached in terms of the dual 
processes of  devolution  and  institutionalization , coherently with the vision of learn-
ing as a combination of  adaptation  and  acculturation  processes underlying the 
theory. Through the devolution process, the teacher tries to make her students accept 
the mathematical responsibility of solving the problem at stake. She tries to make 
thus possible the adidactic interaction with the milieu required for learning through 
adaptation. If the devolution process is successful, the students agree to forget 
for a while the didactical intention of the teacher; to concentrate on the search for 
mathematical solutions instead of trying to decipher the teacher’s expectations. 
Through the process of institutionalization, the teacher connects the knowledge 
built by students through adidactic interaction with the milieu to the scholarly 
and decontextualized forms of knowledge aimed at by the institution, making the 
acculturation dimension of learning possible. 

 In 1989, even if the DEs produced by researchers had been able to approach in 
many cases this ideal-type, their functioning out of the control of research seemed 
diffi cult. Moreover, high attention was paid to the innovative situations designed for 
introducing new mathematical ideas or overcoming  epistemological obstacles,  2  and 
much less to the more standard situations used for consolidating mathematical 
knowledge and techniques. This situation created a distorted vision of DE products 
that certainly had negative impact on the quality of their dissemination. 

 In 2009, 20 years later, DE was once again a theme for the summer school, in fact 
its unique theme. Since 1989, the didactic fi eld had substantially evolved. The 
anthropological theory of didactics that was just emerging in the late 1980s had 
matured and gained in infl uence. Moreover, in the last decade, it had created its own 
design approach in terms of activities of research and study and then programs of 
study and research (Chevallard  2006 ,  in press ). A new theoretical framework had 
also emerged from the theory of didactical situations and the anthropological theory 
of didactics: the theory of joint action between teachers and students, proposing a 
renewed vision of the role of the teacher and of students-teacher interactions 
(Sensevy  2011 ,  2012 ). More generally, teachers’ practices and professional development 
had become a focus of research, and this research had developed its own methodolo-
gies involving naturalistic and participative observations of classrooms. DE was 
still an important research methodology, especially each time the didactical systems 
one wanted to study could not be observed in natural conditions (as is for instance 
often the case in research about technology), but was no longer the privileged 
methodology (Artigue  2002 ,  2009 ). Didactical engineering had also migrated out-
side its original habitat. It has been extended to teacher education and to the study 

2   The notion of epistemological obstacle, introduced by the philosopher Gaston Bachelard, was 
imported in the educational fi eld by Guy Brousseau ( 1983 ) for expressing the fact that the develop-
ment of mathematical knowledge necessarily faces obstacles, due to prior forms of knowledge that 
were relevant and successful in specifi c contexts. Epistemological obstacles are those attested in 
the historical development of knowledge, and having played a constitutive role in this develop-
ment. Their identifi cation may help understand students’ resistant errors and diffi culties. Schneider 
( 2014 ) provides a synthetic presentation and discussion of the notion, its development and use in 
mathematics education research. 
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of innovative pedagogical practices, including informal education; didacticians 
from other disciplines, for instance physical sciences or sports, had used it (Terrisse 
 2002 ); researchers educated in other countries and cultures, and having different 
theoretical backgrounds, had used it, for instance researchers referring to the 
socio-epistemological framework in mathematics education (Farfán  1997 ; Cantoral 
and Farfán  2003 ) or to semiotic approaches (Maschietto  2002 ; Falcade  2006 ). 
Moreover, design-based research perspectives had emerged and grown in other con-
texts, independently of it (Burkhardt and Schoenfeld  2003 ; Design-Based Research 
Collaborative  2003 ). These conditions created the need for a thorough refl ection 
about the concept of DE and this was the exact purpose of the 2009 summer school. 
I have integrated some of the results of this refl ection in the next section describing 
the characteristics of DE as a research methodology, and some others will be dealt 
with in the fourth section. Nevertheless the size of this chapter does not allow to pay 
full justice to the work carried out at this summer school and those interested are 
invited to read the report by Margolinas et al. ( 2011 ).  

17.3    Didactical Engineering as a Research Methodology 

 In this section, I present the characteristics of DE as a research methodology, using 
for that purpose its most standard form: the conception, realization, observation, 
analysis and evaluation of classroom realizations aiming at the learning of a specifi c 
content. However, it should be clear that, while obeying fi xed principles, this 
research methodology might take a diversity of forms in practice, according to the 
nature of the questions addressed by the researchers, and to the contexts involved. 
I will end this section by pointing out some similarities and differences with design- 
based research perspectives more and more infl uential in mathematics education. 

 One essential characteristic of DE as a research methodology is that, contrary to 
the traditional use of classroom realizations in educational research, it does not 
obey the validation paradigm based on the comparison of control and experimental 
groups. Its validation is internal and based on the comparison between the  a priori  
and  a posteriori analyses  of the didactic situations involved. This methodological 
choice can be easily understood considering the educational culture in which DE 
has emerged. In this culture, as explained above, research in mathematics education 
(didactics of mathematics) is seen as a scientifi c fi eld of its own whose ambition is 
the study of the intentional dissemination of mathematical knowledge through 
didactical systems. What is to be understood is the functioning of such didactical 
systems, and associated didactical phenomena, which requires entering into the 
intimacy of their functioning. Validating the hypotheses engaged in the conception 
phase of a DE cannot be thus a matter of comparison between experimental and 
control groups. 

 As a research methodology, DE is structured into different phases. These are the 
following: preliminary analyses, conception and  a priori  analysis ,  realization, 
observation and data collection,  a   posteriori  analysis and validation. 
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17.3.1    Preliminary Analyses 

 Preliminary analyses set the background for the conception phase of the process. 
They cover different dimensions, and especially the three following:

•    An epistemological analysis of the content at stake, often including an historical 
part. This analysis helps researchers to fi x the precise goals of the DE and to 
identify possible epistemological obstacles to be faced. It also supports the 
search for mathematical situations representative of the knowledge aimed at, 
what the theory of didactical situations calls  fundamental situations . These are 
problematic situations for the solving of which this knowledge is necessary or in 
some sense optimal. The epistemological analysis helps the researchers to take 
the necessary refl ective position and distance with respect to the educational 
world they are embedded in, and to build a reference point.  

•   An institutional analysis whose aim is to identify the characteristics of the 
context in which the DE takes place, the conditions and constraints it faces. 
These conditions and constraints may be situated at different levels of what is 
called the  hierarchy of levels of co-determination  (Chevallard  2002 ) in the 
anthropological theory of didactics. They may be attached to curricular choices 
regarding the content at stake and associated teaching practices, to more general 
curricular characteristics regarding the teaching of the discipline, the (technological) 
resources accessible, the evaluation practices and the school organization. 
They can also be linked to the characteristics of the students and teachers 
involved, to the way the school is connected with its environment… Depending 
on the precise goals and context of the research, the importance attached to these 
different levels may of course vary.  

•   A didactical analysis whose aim is to survey what research has to offer regarding 
the teaching and learning of the content at stake, and is likely to guide the design.    

 The three dimensions organizing the phase of preliminary analyses refl ect the 
systemic perspective underlying DE as a research methodology. Each of them has its 
methodological specifi cities and needs. The epistemological analysis often involves 
the use of historical sources and not just secondary sources; the institutional analysis 
also generally includes an historical dimension. As made clear by the theory of 
didactical transposition (Bosch and Gascón  2006 ), curricular organizations and 
choices are the result of a long-term historical process; they cannot be understood 
just by analyzing current curricula, offi cial documents and textbooks. Such under-
standing is needed for making clear the strength of the constraints faced and the way 
some of these can be moved in the design. The didactical analysis has generally a 
substantial cognitive dimension, but this cognitive dimension is only one part of the 
global picture even if what is aimed at is the development of a didactical strategy 
allowing students to learn better some part of mathematics. 

 It must also be pointed out that, according to the precise goals of the research, 
what is exactly investigated in these dimensions, and the respective importance 
attached to each of them may vary substantially.  
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17.3.2    Conception and  a Priori  Analysis 

 Conception and  a priori  analysis is a crucial phase of the methodology. It relies 
on the preliminary analyses carried out, and is the place where research hypoth-
eses are made explicit and engaged in the conception of didactical situations, 
where theoretical constructs are put to the test. Conception requires a number of 
choices and these situate at different levels. Some choices pilot the global project 
and in that case it is usual to speak of  macro-choices;  some are situated at the 
level of a particular situation, and in that case it is usual to speak of  micro-
choices . These choices determine  didactical variables,  3  so we have both  macro-
didactic and micro-didactic variables . These variables condition the milieu, thus 
the interactions between students and knowledge, the interactions between 
students and between students and teacher, thus the exact opportunities that 
students have to learn, how and what they can learn. In line with the theoretical 
foundations of DE, in these choices particular attention must be paid to the 
epistemological pertinence of the problems posed and to the mathematical 
responsibility given to the students. 

 The  a priori  analysis makes clear the different choices and the way they relate to 
the research hypotheses and preliminary analyses. For each situation, it identifi es 
the main didactical variables, that is to say those that affect the effi ciency and cost 
of the possible strategies developed by students, and their possible dynamics. These 
variables can be attached to the characteristics of the tasks proposed to students, but 
they can also be linked to the resources provided to the students for solving these 
tasks (which in the theory corresponds to the  material milieu  of the situation) and to 
the way the students’ interaction with the  milieu  is socially organized. From these 
characteristics, conjectures are made regarding the possible development of the 
situation, students’ interaction with the  milieu , students’ strategies and their evolu-
tion, and the possible sharing of mathematical responsibilities between teacher and 
students. It is important to stress that such conjectures do not regard individuals but 
a  generic and epistemic student  who enters the situation with some supposed 
 knowledge background and is ready to play the role that the situation proposes her 
to play. Of course, the realization will involve students with their personal specifi ci-
ties and history, but the goal of the  a priori  analysis is not to anticipate how each 
particular student will behave and benefi t from the situation, but what the situation 
 a priori  can offer in terms of learning in the context at stake. It creates a reference 
with which classroom realizations will be contrasted.  

3   Among the many variables infl uencing the possible dynamics of a situation and its learning 
outcomes, didactical variables are those under the control of the teacher. In a situation of 
enlargement such as the well-known “Puzzle situation” by Brousseau, the number of pieces of the 
puzzle, their shapes and dimensions, the ratio of enlargement are didactical variables; the fact 
that students work in group, each student being asked to enlarge one piece of the puzzle is also a 
didactical variable. 
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17.3.3    Realization, Observation and Data Collection 

 During the realization phase, data are collected for the analysis  a   posteriori . 
The nature of the collected data depends on the precise goals of the DE, on the 
hypotheses put to the test in it and on the conjectures made in the  a priori  analysis. 
However, particular attention is paid to the collection of data allowing the researcher 
to understand students’ interaction with the milieu, and up to what point this interac-
tion supports their autonomous move from initial strategies to the strategies aimed 
at, and to analyze devolution and institutionalization processes. Generally collected 
data include the students’ productions including computer fi les when technology is 
used, fi eld notes from observers, audios and, more and more, videos covering group 
work and collective phases. The data, collected during the realization are generally 
complemented by additional data (questionnaires, interviews with students and 
teacher, tests) allowing a better evaluation of the outcomes of the DE. During the 
realization, researchers are in the position of observers. It is important to point out 
that the realization often leads to make some adaptation of the design during the 
realization, especially when the DE is of substantial size, or from one realization to 
the next one when several realizations are planned in the research project. In that 
case, adaptations are of course documented together with the rationale for them and 
taken into account when the  a posteriori  analysis is carried out.  

17.3.4    A Posteriori Analysis and Validation 

  A   posteriori  analysis is organized in terms of contrast with the  a priori  analysis. Up 
to what point do the data collected during the realization phase support the  a priori  
analysis? What are the signifi cant convergences and divergences and how can 
they be interpreted? What happened that was not anticipated and how can it be 
interpreted? Through this connection between  a priori  and  a   posteriori  analyses, the 
hypotheses underlying the design are put to the test. It is important to be aware that 
there are always differences between the reference provided by the  a priori  analysis 
and the contingence analyzed in the  a posteriori  analysis. As observed above, the  a 
priori  analysis deals with generic and epistemic students, which is not the case for 
the contingence of the realization. Thus, the validation of the hypotheses underlying 
the design does not impose perfect match between the two analyses. 

 The analyses carried out are qualitative in nature and local, even when the 
researchers use statistical tools such as for instance implicative analysis for identifying 
dependences. In accordance with the theoretical foundation of DE, what the 
researcher looks at is the dynamic of a complex system, and he does so through the 
comparison of the observed dynamics with the reference provided by the  a priori  
analysis, trying to make sense of similarities and differences. The precise tools used 
for that purpose depend on the research questions at stake and the data collected. 
There is no doubt however that these tools have evolved along the years, infl uenced 
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by the global evolution of the fi eld and also by the technological evolution. In 
general, researchers combine and triangulate different scales of analyses. They 
more and more include microscopic analyses taking into account the multimodality 
of the semiotic resources used by students and teachers that technology makes 
accessible today. To this should be added that, as mentioned above, the validation of 
the research hypotheses generally combines the analysis of data collected during the 
classroom sessions themselves and of complementary data.  

17.3.5    The Nature of the Results 

 It must be stressed that the results obtained through this methodology are mainly 
local, contextualized, and generally in form of existence theorems in their positive 
forms. For instance, in the research I developed about the teaching of differential 
equations in the mid-1980s (Artigue  1992 ,  1993 ), I used DE methodology to inves-
tigate the possibility of combining qualitative, algebraic and numerical approaches 
to the solving of ordinary differential equations in a university mathematics course 
for fi rst year students. The research showed the possibility of organizing such a 
course in the French context, at that time, with the support of technological tools; it 
made clear what could be expected from such a course in terms of learning 
outcomes in this particular context and why. Beyond that, one important result was 
that a condition for the viability of the course was the acceptance by the didactical 
system of proofs based on specifi c graphical arguments, which violated the usual 
didactical contract 4  regarding proofs in Analysis at university. The diffi culty of 
ensuring this acceptance out of experimental contexts and research control at that 
time hindered a large-scale dissemination of the developed didactical strategy, 
despite the fact that its robustness had been attested by realizations carried out with 
different categories of students. These results were certainly interesting but could 
not be generalized without precaution to another educational context. However, it 
would be unreasonable to consider that the results of this engineering work were 
limited to what we have summarized above. 

 As evidenced by the further use of this work by different researchers, the pre-
liminary analyses carried out had a more general value, as well as the understanding 
gained on:

•    the students’ cognitive development in this area;  
•   the role played in it by the interaction between the quantitative and the qualitative, 

between algebraic and graphical representations;  
•   the affordances of technological tools for approaching the qualitative study of 

differential equations;  

4   The notion of didactical contract is a fundamental notion in the theory of didactical situations 
(Brousseau  1997 ). It expresses the mutual expectations, partly explicit but mainly implicit, of 
students and teacher regarding the mathematical knowledge at stake in a given situation. The rules 
of the didactic contract often become visible when they are transgressed by one actor or another. 
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•   the characteristics of usual didactical contract regarding graphical representations 
and their didactical effects, especially the fact that proofs based on graphical 
arguments were not accepted.   

Looking back at decades of DE research, what is evident indeed is that the results of 
DE research are far from being limited to the production and validation of didactical 
designs. DE research has also been a highly productive tool for understanding the 
functioning of didactical systems, and for identifying didactical phenomena. For 
decades, DE research has been an essential tool for the development of theoretical 
constructs paying justice to the complexity of the systems involved in the teaching 
and learning of mathematics. 

 What I have described here are the characteristics of the main form of DE: a 
research methodology based on the conception, experimentation and evaluation 
of a succession of classroom sessions having a precise mathematical aim. As 
already mentioned, this methodology has been extended to other contexts such 
as teacher education, to more open activities such as project work or modeling, 
and even to mathematical activities carried out in informal settings such as sum-
mer camps which obey a different form of contract, which Pelay ( 2011 ) defi nes 
as the  didactical and ludic contract.  5  These extensions infl uence the content of 
preliminary analyses, but also what the design aims to control in terms of learn-
ing trajectories. The reference provided by the  a priori  analysis cannot exactly 
have the same nature, and this impacts the ways  a priori  and  a posteriori  analyses 
are contrasted.  

17.3.6    Didactical Engineering and Design-Based Research 

 I will fi nish this section by situating didactical engineering with respect to design- 
based research, using the defi nition of it provided in the Encyclopedia of mathematics 
education (Swan  2014 , p. 148):

  Design-based research is a formative approach to research, in which a product or process 
(or ‘tool’) is envisaged, designed, developed and refi ned through cycles of enactment, 
observation, analysis and redesign, with systematic feedback from end users. In education, 
such tools might, for example, include innovative teaching methods, materials, professional 
development programs, and/or assessment tasks. Educational theory is used to inform the 
design and refi nement of the tools, and is itself refi ned during the research process. Its goals 
are to create innovative tools for others to use, describe and explain how these tools 
function, account for the range of implementations that occur, and develop principles and 
theories that may guide future designs. Ultimately, the goal is  transformative ; we seek to 
create new teaching and learning possibilities and study their impact on teachers, children 
and other endusers.  

5   The didactical and ludic contract is defi ned as the set of rules that, implicitly or explicitly, fi xes 
the respective expectations and regulate the behaviour of one educator and one or several participants, 
in a project combining ludic and learning aims. 
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This defi nition makes clear that design-based research and DE have some common 
methodological characteristics. Both methodologies are organized around the 
design of some educational tool; this design is informed by educational theory, but 
also contributes to its development. Moreover, both methodologies reject standard-
ized validation processes based on the comparison of experimental and control 
groups through a pre-test/ post-test system. However, differences are visible. The 
global vision underlying design-based research is that of mathematics education as 
a design science whose aim is the controlled production of educational tools 
(Wittmann  1998 ; Collins  1992 ); the global vision underlying DE is of didactics of 
mathematics as a fundamental science, whose aim is the understanding of didactical 
systems and didactical phenomena, and which has also of course an applied 
dimension. This fundamental difference refl ects in methodological characteristics. 
Design- based research is interventionist and iterative in nature, and the cyclic nature 
of its process is essential. Along the successive cycles, the design is refi ned but 
also experimented in wider contexts for studying how it functions with different 
categories of users, not involved in the design process, and what adaptations may be 
necessary for its large-scale use. Didactical engineering as a research methodology 
does not obey the same pattern. It is more a “phénoménotechnique” with the meaning 
given to this term by Bachelard ( 1937 ), a tool for answering didactical questions, 
for identifying, analyzing and producing didactical phenomena through the con-
trolled organization of teaching experiments. This is the reason why the preliminary 
analyses with their different dimensions and the  a priori  analysis are a central 
part of the research work, and are given so much importance in the articles referring 
to this methodology. Of course, this does not mean that a DE used in research is 
built from scratch, but previous constructions when they exist are used to inform the 
 a priori  analysis; the process is not theorized as a cyclic process. Moreover, 
what concerns robustness and up-scaling is considered as a matter of development. 
I come back to this point in the last section of this chapter, but fi rst illustrate the 
ideas developed up to now with two examples.   

17.4    Two Particular Examples 

17.4.1     A Paradigmatic Example: The Extension 
of the Field of Numbers by G. and N. Brousseau 

 The fi rst example I will consider is the paradigmatic example of the didactical 
engineering developed by N. and G. Brousseau, more than three decades ago, for 
extending the fi eld of whole numbers towards rational and decimals (Brousseau and 
Brousseau  1987 , English version: Brousseau et al.  2014 ). This engineering which 
ranges over 65 classroom sessions is a very big object when compared with usual 
constructions whose size is much more limited. I cannot enter into its very details 
but would like to show how this construction is characteristic of a DE piloted by the 
theory of didactical situations. 
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17.4.1.1    Preliminary Analyses 

 This construction evidences fi rst the importance attached to the preliminary analyses, 
and especially to their epistemological and didactical dimensions, the initial realiza-
tions having taken place in the COREM 6  where the institutional pressure was 
reduced. These analyses led Brousseau to question the usual educational strategy 
for extending the fi eld of whole numbers. Usually indeed, the fi rst step was the 
introduction of decimal numbers in connection with changes in units in the metric 
system, and fractions played a more marginal role. Emphasis was put on the continuity 
between the two systems of numbers (whole numbers and decimals), especially 
regarding the techniques for arithmetic operations, and the resistant cognitive 
diffi culties that these strategies generated or reinforced were more and more evidenced 
by research. Brousseau made the hypothesis that, in their last years at elementary 
school, students were able to learn much more about rational and decimal numbers, 
for instance to differentiate the dense order of rational and decimal numbers from 
the discrete order of whole numbers, to appreciate the computational interest of 
decimal numbers and the possibility that this system offers for approaching rational 
numbers with arbitrary levels of precision. The didactical engineering developed 
aimed at testing the validity of this hypothesis with ordinary students.  

17.4.1.2    Conception and Analysis a Priori 

 The epistemological analysis carried out inspired the fi rst macro-choice, in clear 
rupture with established practices: to extend fi rst the fi eld of numbers towards 
rational numbers, and then to particularize decimal numbers among these for the 
facilities they offer in terms of comparison, estimation and calculation. Regarding 
the introduction of rational numbers, another macro-choice was made linked to the 
identifi cation of two different conceptions for rational numbers: a conception in 
terms of partition of the unit (1/n is then associated with the partition of one unit 
into n equal parts and the rational m/n represents m such pieces of the unit) and 
a conception in terms of commensurability, which corresponds to the search for a 
common multiple to two different magnitudes for instance two lengths (the ratio of 
two magnitudes is expressed by the rational m/n if m times the second one equals n 
times the fi rst one). Generally didactical strategies privilege the fi rst conception in 
the context of pizza parts or other equivalent contexts. This constitutes an easy 
entrance in the world of fractions but Brousseau hypothesized that it could contribute 
to the observed cognitive diffi culties. This led him to explore the potential offered 

6   COREM was the Center for observation and research in mathematics education created by 
Brousseau in Bordeaux in 1973. An experimental elementary school was attached to this center, 
with very advanced means for systematic data collection and storage. The data collected there during 
more than 20 years are still studied by researchers, for instance, in the frame of the national project 
VISA ( http://visa.ens.lyon.fr ). Detailed information is accessible at the following url:  http://guy-
brousseau.com/le-corem/acces-aux-documents-issus-des-observations-du-corem-1973-1999/ 
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by an entry in terms of commensurability, and to search for a fundamental situation 
attached to this conception: a situation that would oblige to consider multiples of 
magnitudes to compare them. 

 The problem posed to the grade 4 students was the following: how to compare 
the thickness of different sheets of paper? There is no doubt that this problem 
answers the condition just mentioned. The thickness of a sheet of paper cannot 
directly be measured with usual instruments but taking a suffi cient number of such 
sheets one obtains something measurable. This problem being fi xed, different 
choices must be done for defi ning a situation. Evident didactic variables are the 
number of types of paper to compare and their respective thickness. Anticipating 
that a basic strategy for students is to use their senses (sight and touch) for ordering 
the different types, it is important to have papers of close thickness invalidating 
perceptive strategies. Other choices concern, as mentioned above, the organization 
of the material milieu and the students’ interaction with this milieu, the social orga-
nization of the classroom. In the organization adopted in this DE, the material milieu 
was made of piles of sheets of different thickness which often were very close and 
students worked in groups. First, they had to fi nd a way of comparing the thickness 
of the sheets provided to their group, then in a second phase, after selecting one type 
of paper, to write a message allowing another group of students having the same 
types of paper to fi nd the paper they had selected. These messages became then 
themselves an object of study: did the messages produced by the different groups 
solve the particular problem each group had to address, and, beyond that, did they 
provide a technique for solving the problem of comparison in a general way? We 
can see here a construction which takes into account the distinction made in the 
theory of didactical situations between three different functionalities of mathemati-
cal knowledge: for acting, for formulating, for proving. Their development obeys 
different dialectics and thus supposes different types of situations:  situations of 
action  in the fi rst phase,  situations of formulation  in the second phase (in which the 
key for success is the quality of the specifi c language developed) and  situations of 
validation  in the third phase (in which what is at stake is the validity of assertions). 

 In an implicit way, the winning strategy in this situation uses the fact that the 
thickness of a pile is proportional to the number of sheets, which constitutes a 
reasonable model under certain limits, of course. In fact, the different couples of 
whole numbers attached to the same paper obtained through manipulations are not 
exactly proportional, which shows the distance that separates the real world from 
mathematical models. In observed realizations, this strategy systematically emerged 
through a-didactic interaction with the milieu. This emergence is certainly fostered 
by the presence of piles of paper in the material milieu. In the  a priori  analysis, it 
was expected that each type of paper would be eventually characterized by one or 
several couples of whole numbers that are nearly proportional, in reference to the 
manipulations carried out by the students. For instance, it could be 1 mm for 27 
sheets in one case, 2 mm for 40 sheets in another case. Once such couples are 
obtained, as they do not necessarily correspond to the same number of millimeters 
or to the same number of sheets, if students are not allowed more manipulations, the 
success of the comparison relies on proportional reasoning. For a good functioning 
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of the interaction with the milieu, it is thus necessary that some knowledge about 
proportional reasoning be part of the mathematical knowledge shared by students. 
In the  a priori  analysis, this knowledge is supposed from the generic student. For 
instance, if the task is to compare the types of paper corresponding to the two couples 
mentioned above, one can develop the following reasoning: for the fi rst paper, 2 mm 
should correspond to 54 sheets, and 54 is more than 40, thus the second paper is 
thicker. For close thicknesses, comparison may be more delicate for the reasons 
mentioned above, and several exchanges of messages might be needed. 

 What is mathematically at stake in the solving of this problem is the ordered 
structure of rational numbers seen as couples of whole numbers or more appropriately 
families of such couples, and the conception attached is clearly the commensurability 
conception. As shown by the many realizations carried out, substantial work can be 
developed in this context about equality and order of rational numbers, students can 
progressively discover a good number of properties in a-didactic interaction with 
the successive milieus organized for them, validate them pragmatically using piles 
of paper, and then use piles of paper more metaphorically for supporting computations 
and reasoning. However, the mathematical knowledge built still remains attached to 
this specifi c context. There is no reason that the notations introduced by students 
and progressively refi ned for reasons of economy and effi ciency are the conventional 
notations. This is the responsibility of the teacher to decide when to connect these 
classroom notations to the usual ones expected by the institution, and also to organize 
the decontextualization of knowledge through appropriate situations. Of course, in 
the DE, these steps are also carefully designed. 

 In this DE, the same context is then used for extending addition to these new 
numbers. However it does not allow to extend multiplication to rational numbers in 
a similar way. For this extension, the choice is made of privileging a conception of 
multiplication as an external operation in terms of linear application for which the 
well-known situation of the puzzle is the associated fundamental situation. With this 
new situation, it is also expected to make students face the epistemological obstacle 
of the additive model.  

17.4.1.3     Realization, Data Collection,  a Posteriori  Analysis, Validation 
and Further Outcomes 

 I cannot enter into more details in this DE structured in four main phases and invite 
the interested reader to consult the references mentioned above or the retrospective 
analysis provided by Brousseau and Brousseau ( 2007 ). In the description above, 
I have focused on the essential phases of design and  a priori  analysis of the meth-
odology, trying to show how they were informed by the preliminary analyses and 
guided by the theory of didactical situations. The experimentations took place in 
the experimental school attached to the COREM, the sessions were observed by 
researchers according to specifi c guidelines and systematically video-recorded. The 
comparison of the  a priori  and  a posteriori  analyses, the complementary tests taken 
by the students, validated the hypotheses underlying the DE. 
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 This DE was used year after year in the experimental school attached to the 
COREM. More than 750 students were exposed to it and its robustness was 
confi rmed. However, as often stressed by Brousseau himself, it was never consid-
ered that it could be easily implemented in ordinary schools and become a standard 
teaching strategy. Moreover, the comparison of the successive dynamics attracted 
Brousseau’s attention to the fact that the reproduction of the same situations, year 
after year, by a teacher generated what he called a phenomenon of obsolescence 
affecting the internal reproducibility of the DE. This phenomenon more globally 
raised the issue of the reproducibility of didactical situations that was theorized in 
further work (Artigue  1986 ). 

 It must also be stressed that this DE was in fact used for approaching a diversity 
of research questions, and for instance for investigating dependences between 
conceptions (Ratsimba-Rajohn  1982 ). In his doctoral thesis, indeed, Ratsimba-
Rajohn, starting from the two strategies for associating a rational measure to a 
magnitude mentioned above (commensurability and partition of the unit), precisely 
differentiated these in terms of situations of effectiveness and mathematical 
knowledge engaged. This analysis led to the identifi cation of a set of nine variables 
conditioning the effectiveness and cost of each strategy, depending on the type of 
task (game in the terminology used by the author, in line with the use of game the-
ory in the theory of didactical situations). The author used this tool for investigating 
how students introduced to rational measures through the commensurability strat-
egy, as was the case in the DE, could enrich their strategies by incorporating the 
partitioning strategy,  a priori  more intuitive and socially used. For that purpose, a 
sequence of three situations was designed as part of the DE. In the fi rst situation, the 
commensurability strategy was extended to other magnitudes (length, weight, 
capacity); in the second situation, the tasks proposed were out of the domain of 
effectiveness of the commensuration strategy but could be solved using the partition 
strategy. 7  The goal of the third situation was to initiate the validation of equivalence 
of the two models when both strategies are effective. The corresponding lessons 
were implemented in two consecutive years. Students’ strategies and their evolution 
were carefully documented. Different dynamics were identifi ed. The most striking 
result was the diffi culty that these students had at moving from commensuration 
strategies to partition strategies, even when commensuration was ineffective. These 
diffi culties were confi rmed by the evolution of students’ answers at a test taken by 
the students before and after the teaching sequence in the fi rst year of experimentation. 
All students signifi cantly progressed in their answers to questions that favored the 
commensuration strategy or were neutral, only one student progressed on questions 
blocking the commensuration strategy. Diffi culties met in using commensuration 
and efforts made for overcoming these diffi culties in fact tended to reinforce this 
strategy and the associated conception of rational numbers; more was needed for 

7   This is the case for instance when pupils are asked to fi nd a rational measure for a stick, a unit 
stick being provided, but the limitation of the physical space and material provided does not allow 
them to implement the strategy of commensuration. 
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integrating an alternative conception in terms of partition, despite the fact that it 
seemed  a priori  much more accessible than the commensuration conception.   

17.4.2     An Example of Didactical Engineering Combining 
the Theory of Didactical Situations with Semiotic 
Perspectives 

 The second example I consider is substantially different. It corresponds to a didacti-
cal engineering developed by Maschietto in her doctoral thesis (Maschietto  2002 ) on 
the transition between Algebra and Analysis. The goal of this DE was to explore the 
possibility of introducing students very early to the local/global game on functional 
objects fundamental in Calculus and Analysis, through the introduction of the deriva-
tive in terms of local linear approximation. The main hypothesis was that, through an 
appropriate use of the potential offered by symbolic and graphical calculators, this 
local/global game could be initiated already in high school, and that the idea of derivative 
could be built by the students as mathematization of a perceptive phenomenon. 
Another aim of this DE whose theoretical framework combined the theory of didactical 
situations and the theory of semiotic mediations (Bartolini Bussi and Mariotti  2008 ) 
was to analyze how gestures and metaphors (Arzarello and Edwards  2005 ; Lakoff 
and Nuñez  2000 ) contributed to the mathematization process and the cognitive 
development of students, as summarized by Maschietto ( 2008 , p. 208):

  The research hypothesis is that the transformations of the graphical representation of a function 
through the use of zoom-controls and the experience of the perceptive phenomena of “micro-
straightness” that these transformations provoke, can give rise to the formulation of some specifi c 
language, the construction of metaphors and the production of gestures and specifi c signs by 
the students. Our hypothesis is also that adequately exploited by thke teacher, these germs can 
lead to an entrance in the local/global game, fundamental in Calculus and Analysis hardly 
observed at high- school level.  

We fi nd in this DE interesting variations from the standard case; they illustrate how, while 
maintaining the foundational values of this methodology, researchers can adapt it to their 
theoretical culture and needs. In this presentation, I will try to make clear how the theoreti-
cal combination at stake affects the methodological work. 

17.4.2.1    Preliminary Analyses 

 In this DE, we observe still the same attention paid to preliminary analyses. 
Maschietto developed a detailed analysis of the different perspectives that can be 
attached to a function: punctual, local, global, of the idea of local straightness, and 
of thinking modes in Analysis. Her epistemological analyses also aimed at under-
standing how, before the offi cial introduction of the concept of limit, the language 
of infi nitesimals could support the transition from Algebra towards Calculus, foster-
ing the identifi cation of rules for computations taking into consideration the 
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respective order of magnitudes of the quantities involved. 8  From an institutional 
perspective, the DE was strongly constrained. Realizations could only be organized 
at the end of the school year in grade 11 in the Italian context, and in usual practices 
very few sessions were devoted to the topic. Moreover the use of calculators was 
usually limited in ordinary classrooms and that of symbolic calculators nearly non-
existent. What was proposed was thus far apart from usual practices and would have 
been impossible to observe in naturalistic conditions. In fact, Maschietto worked 
with a teacher used to collaborate with researchers, but the institutional constraints 
limited the realization to a few sessions. Six sessions of 90 min were initially 
planned, but the thesis only analysed the three fi rst sessions implemented in each 
of the three experimentations carried out. 

 Didactical analysis classically reviewed research carried out in that area which is 
substantial from the seminal work by Tall ( 1989 ). What this review showed never-
theless was that, even when the property of local straightness was put to the fore and 
the visualization potential of technology used for making students aware of it, the 
responsibility of the mathematization process was hardly devolved to them. 
Moreover, with few exceptions (see, for instance, Defouad  2000 ), the distance 
between what was seen on the screen of calculators or computers, or the equations 
provided by the calculator for tangent lines and the ideal mathematical objects 
was not necessarily questioned; thus the mathematization process was not fully 
developed. Research has also shown that when students enter Calculus, the idea of 
tangent is not new to them; they have coherent conceptions, geometric and algebraic 
ones, coming from the experience gained when working with circles. These 
 conceptions lead to characterize the tangent to a curve as a line having a unique 
intersection point with the curve and staying on the same side of it, but not in terms 
of proximity (Castela  1995 ). This conception has to be questioned and as research 
also shows, usual teaching does not pay much attention to the reconstruction needed. 
Maschietto pointed out that, in Italy, these conceptions could be reinforced through 
the teaching of conics in grade 10. Her preliminary analyses also reviewed research 
developed on gestures and embodiment, as well as the metaphorical vision of 
mathematics developed by Lakoff and Nuñez ( 2000 ).  

17.4.2.2    Conception and Analysis a Priori 

 The conception phase of the DE relied on these preliminary analyses. In the fi rst situ-
ation, students were asked to consider six different functions and after entering them 
in the calculator and getting their graphical representation in the standard window, to 
make successive zooms around particular points and to explore what happened. 

 They were also asked to sketch the initial representation and those obtained after 
two zooms and at the end of the exploration (when they had the feeling that the 
graphical representation was more or less stable), before moving to another function. 

8   For instance, taking into account the fact that, in the neighbourhood of 0, the order of magnitude 
of  x 2  + x is the order of magnitude of x. 
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The number and characteristics of the proposed functions and the selected points are 
evidently micro-didactical variables for this task. In the DE, the value of these was 
chosen so that students fi rst met differentiable functions, then faced a function not 
differentiable at a point but having left and right derivatives (the function defi ned by 
f(x) = −x 3  − 2∣x∣ + 4), a linear function and a function with a more complex behavior 
(the function defi ned by f(x) = 4 + x.sin(1/x) for x  0 and f(0) = 4). It was hypothe-
sized that the fi rst examples would lead students to perceptively identify the local 
straightness phenomenon and to expect its emergence for further examples. The 
examples of non-differentiable functions would then oblige them to realize that there 
exist exceptions to this apparently common behavior and that these exceptions might 
present different characteristics. It was also expected that the dynamic process of 
zooming would make emerge discourses and metaphors able to support the further 
mathematization of the perceptive phenomena of local straightness. The drawings 
asked of the students were expected to be a useful support for this emergence, and for 
the substantial collective discussion at the end of the session. These drawings were 
also data to be used for the  a posteriori  analysis. Moreover, for each function two 
different points were selected for insisting on the local nature of the observed 
phenomenon. Students worked in pairs with one calculator for each pair and one 
common graphical production to deliver. This is a classical organization in DE for 
fostering verbal exchanges and making these accessible to researchers. 

 The aim of the second situation was the mathematization of this perceptive phe-
nomenon. A differentiable function was selected, different from those already envis-
aged, and a particular point of its graphical representation. Students were asked to 
check its local behavior around this point and to fi nd the equation of the line they 
had got on the screen. It was hypothesized that the different groups would manage 
the zooming process in different ways and stop it at different times, obtaining thus 
close but different lines. Using the Trace command or numerical values from the 
Table application of the calculator for getting coordinates of a second point of their 
line, they would thus get different equations. At this stage, it was planned that the 
teacher would collect and write on the blackboard all these equations and would 
launch a collective discussion. It was hypothesized that the view of the equations, 
close but different would lead students to consider all these lines as approximations 
of one ideal object: the tangent to the curve, whose equation they could conjecture 
from the equations written on the blackboard. The validation of this conjecture was 
not supposed to result from mere a-didactical interaction with the milieu. In the 
scenario for this session, it was planned that the teacher would ask students to fi nd 
a common way of expressing the different computations and that, if this was not 
spontaneously proposed by them, she would introduce the idea of giving account of 
the commonalities between these different calculations through the use of a letter h 
representing the different small increments chosen by the students. From this point 
a collective computation was expected to lead to an equation for the line depending 
on h, but becoming the ideal equation when h was made equal to 0 (in some sense 
when infi nite zooming was performed). This should allow the teacher both to 
institutionalize the defi nition of the tangent to a curve at a given point in terms of 
linear approximation, and the specifi c type of computation that allowed fi nding its 
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equation. For this second situation, the characteristics of the function and of the 
point were the main micro-didactical variables of the task. In the DE, two different 
choices were successively made: a polynomial function of degree 2 and then one of 
degree 3, with simple coeffi cients and of a point whose coordinates were such that 
the ideal equation could be easily conjectured. Choosing a polynomial function and 
using the letter h in the symbolic computation resulted in the equation of the line 
described by a polynomial in h (after simplifi cation by h), which made the reasoning 
easier. Choosing a polynomial of degree 3 made that the algebraic strategy known 
from these students for fi nding tangents to conics did no longer work. Once again 
students worked in pairs. In the third situation, it was planned to begin to consolidate 
the form of computation that had been introduced and also to connect this conception 
of the tangent in terms of approximation with those conceptions, geometric and 
algebraic, mentioned above, reinforced in grade 10, through the work with conics. 

 As mentioned above, it was hypothesized that during the three sessions, the students 
would combine gestures with the use of language and different semiotic representations 
for making sense of the situations and exchange with other students and the teacher. 
However, the exact forms these combinations would take, and the language that 
students were likely to introduce for qualifying local straightness was not anticipated. 
From that point of view, the DE had more an exploratory purpose. 

 Each session lasted 90 min and combined a phase of autonomous work by the 
students and a phase of collective discussion. Its  a priori  analysis was structured in 
the thesis around the following dimensions:

•    the preparation of students’ worksheets and analysis of them in terms of 
mathematical content, pre-requisites, didactical variables;  

•   the analysis of the role to be played by graphic and symbolic calculators in each 
phase of the session;  

•   the analysis of the work expected from the students, the anticipation of possible 
strategies and diffi culties;  

•   the analysis of the work expected from the teacher in each phase of the session, 
and of the distribution of responsibility expected between students and teacher.     

17.4.2.3    Data Collection,  a Posteriori  Analysis and Validation 

 The collected data consisted of students’ worksheets and productions, videos of one 
particular group and of collective phases, observation notes for different groups 
(two or three depending on the experimentation) according to guidelines defi ned in 
the analysis  a priori . A test taken by students 2 weeks after the teaching experiment 
and a questionnaire fi lled by them regarding their participation in this experience 
were added. The semiotic perspective impacted the collection of data (those in 
charge of video-recording for instance tried to capture students’ and teacher’s gestures 
as much as possible) and the  a posteriori  analysis of the sessions. 

 The  a posteriori  analysis of each session combined two levels. The fi rst level 
presented a global analysis of the session in its relation to the  a priori  analysis 
(regarding the scenario of the session, the distribution between group work and 
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collective discussions, the strategies developed by the students and the main charac-
teristics of their work, the diffi culties observed, the teacher’s role…). The second 
level was a fi ne-grained analysis of the data collected during the session elucidating 
the conceptualization processes at stake and their characteristics, through the role 
of the calculator, of metaphors, of discourse and gestures, of interactions between 
students during group work and between students and teacher. 

 We illustrate this methodological work by a few examples taken from the 
 a posteriori  analysis of the fi rst session. For this session, the global analysis was 
structured around four dimensions: the scenario, the localization of the perspective, 
the emergence of the invariant and the role of the teacher. Regarding the localization 
of the perspective for instance, the main elements taken into account in this global 
approach were the characteristics of the graphical representations drawn by the 
different groups. A specifi c list of codes had been developed in the  a posteriori 
 analysis of the fi rst experimentation, starting from students’ productions. It was 
used again in the  a posteriori  analysis of the second and third experimentation. 
These codes showed the expected evolution of representations along the zoom 
process, but they also made evident the strength of the usual didactic contract 
regarding graphical representations of functions and the diffi culty most students 
thus faced when the zooming process makes the axes disappear. 

 The analysis of data for the observed groups and for the collective discussion then 
combined different semiotic elements for clarifying the conceptualization  processes 
at stake and the characteristics of the situation that fostered these conceptualizations 
(characteristics of the task, of the milieu and of social interactions). In particular, 
discourse, inscriptions and gestures were tightly connected in the analysis. 

 In the  a posteriori  analysis, the different levels of analysis for one particular ses-
sion were then combined for testing the conjectures made in the  a priori  analysis 
regarding this particular session. The same type of  a posteriori  analysis was made 
for the three sessions, then the different results were synthesized and triangulated 
with those resulting from the analysis of the fi nal test and questionnaire. 

 The following two quotations by Maschietto ( 2008 ) in which the author gives a 
synthetic vision of her research work, illustrate the form that these analyses 
have taken. The fi rst quotation (pp. 215–216) regards the emergence of the linear 
invariant and an interesting phenomenon accompanying this emergence. This 
phenomenon was not anticipated in the  a priori  analysis but it had a positive effect 
on the dynamics of the situation.

  Excerpt 1: DAL-DF-MA group (Exp_A)   

 15. DF     “Forward zoom” ( he carries out the 3rd ZoomIn    )   
  16. DF     “Again” ( he carries out the 4th ZoomIn )   
  17. DF     “It becomes straighter and straighter”   
  18. DF     “The drawing is the same as before. Even if the result is the same, we’ll 

write it down”. 
 After getting the representation in the standard window, DF does 2 ZoomIns   
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    DF     “I want the other piece of function. It’s still a line! Draw at least one axis” 
( addressed to MA. DF carries out the 3rd ZoomIn )   

  DF     “We’ll stop here because it stays the same”.   

   In the pencil-and-paper environment (Fig.  17.1a ), the linearity is emphasised by the use 
of a ruler to draw the graphical representation that appears on the calculator display on the 
third sheet (end of the exploration).
   In other protocols (Exp_B and Exp_C), the students try to explain the end-point of their explo-
ration, for example: “REASON WHY WE STOPPED CARRYING OUT THE ZOOMS →  The 
more we used the ZoomIn, the more the curve sector considered tended to become a line” . We 
observe here a dynamic language, that draws on the infi nite approximation process.  

 In the protocols, there are two distinct phenomena, linked to the local point of view. The 
fi rst regards the strength of the “straight” nature at a perceptive level. The second regards 
the interference of the global point of view with the local one. As far as the fi rst phenome-
non is concerned, the comments (for example, Excerpt 2) on the exploration of the corner 
(function y3 9 ) highlight that at this stage the students have, in general, clearly identifi ed the 
graphic phenomenon “it becomes straight using the zoom”.  

 Excerpt 2: DAL-DF-MA group (Exp_A)  
 In all these cases the functions, even with the second zoom, are similar to a line with a 
gradient ≥0 but:

 –    y4 10  is similar to a line only after the 4th zoom [Note: at x = 1/pi]  
 –   y3 is similar to two lines (one with m > 0 and the other with m < 0)    

 However, this recognition does not allow them to distinguish the situation of the func-
tion that is differentiable at the given point and that of the function having two different half 
derivatives and leading to a corner. In fact, these situations, mathematically different, are 
unifi ed by their common “straightness” recognized at a perceptive level (Excerpt 2). The 
second function does not therefore represent a counter-example, unlike what is hypothe-
sized in the a-priori analysis. Their distinction will only occur during the mathematization 

9   y3(x) = − x 3  − 2 ∣ x ∣ + 4  at  x = 0. 
10   y4(x) = 4 + sin(1/x)at x  0, = 4  at x = 0 

  Fig. 17.1    Window at the end of the exploration process (Exp_A)       
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 The second quotation (pp. 217–218) shows the importance attached to gestures 
in the  a posteriori  analysis:

 In accordance with the a-priori analysis, the activity presented to the students 
shows its potential for the production of gestures and metaphors. These 
appeared both during the communication inside the groups and during the 
collective discussions. The analysis of the students’ protocols and the discussions 
show that the conceptualisation of the zoom- controls, that supports the locali-
sation of the view, appears through gestures that accompany the explanation 
of the exploration strategies and linguistic expressions that can be analysed in 
terms of metaphors.  

 A particularly representative example is the analysis of the gestures of one 
student, PM (Exp_A), while he is explaining the exploration of a graphical 
representation. The ZoomIn control is used in order to see some of the char-
acteristics of the curve in a detailed way and is associated with a downward 
movement meaning an “entrance into the curve,” that corresponds with moving 
into the curve (ZoomIn gesture, Fig   .  17.2a ). The ZoomOut control, which is 
used to obtain a bigger curve and to study its characteristics better, is associ-
ated with an upward movement meaning an “exit from the curve” (ZoomOut 
gesture, Fig.  17.2b ), which also corresponds with moving away from the curve. 
PM’s gestures lead the details of the curve to be interpreted as downwards and the 
overall curve as upwards. PM also creates a space in front of him for controlling 
these processes (the standard window of the calculator becomes a little rect-
angle that is constructed by his fi ngers, Fig.  17.2c ).

  Fig. 17.2    PA’s gestures (Exp_A): ZoomIn, ZoomOut, standard window       

process of the linear invariant. The real counter-example is provided by the y4 function, 
the graphical representation of which, after subsequent zooms, is perceptively different. In 
this case there is no move from the “curve” category to the “straight” category, as happens 
for all the other functions.   
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   The realization took place in three different classes as mentioned above, with 
some minor adjustments and evident regularities were observed. Globally the 
hypotheses mentioned above were confi rmed despite the fact that it was not possible 
to cover all that had been planned and that, due to their previous experience 
with conics, some groups conjectured very early that the line was the tangent and 
privileged an algebraic strategy for fi nding its equation, persisting in that strategy 
with the polynomial of degree 3 in the second and third experiments. Some interesting 
and non-anticipated phenomena also occurred but they did not necessarily invalidate 
the  a priori  analysis. For instance, as shown in the fi rst quotation above, it appeared 
that most students considered that straight lines and curves were objects belonging to 
different categories. This conception in fact helped them to consider that the linear 
representations they obtained by zooming were not exactly linear but just very 
close to a linear object, and that linearity could only be reached through an infi nite 
succession of zooms. This helped them to make sense of the notion of tangent as 
an ideal object and of the computations carried out for fi nding its equation. This 
conception nevertheless also led them to think that the function admitting only left 
and right derivatives at a given point was not very different from the regular ones. 
This question was considered again later on once the derivative was properly 
defi ned. As expected also, gestures accompanied students’ verbalizations and work, 
and the language and metaphors used by students showed evident embodiment. 
They introduced their own expressions for qualifying the phenomenon of local 
straightness, saying for instance that the functions were “zoomata lineare” at a particular 
point and these were accepted and used by the teacher. Validation of the DE did not 
just use the comparison of the  a priori  and  a posteriori  analysis of the sessions, but 
also the data from the questionnaire and interviews taken by the students after the 
completion of the process as mentioned above. 

 I cannot enter into more details here. The interested reader can fi nd these in the 
references mentioned above. But I would like to stress a few points. According to 
the author, this methodological construction is a DE and I fully agree with this posi-
tion, recognizing in it the fundamental features of DE presented above. This is nev-
ertheless a construction sensibly different from that described in the fi rst example. 
For instance, it is diffi cult to model the fi rst situation as a game that students enter 
with basic strategies that they must make evolve towards winning strategies. 
Students are asked to stop their exploration when they have got the feeling that the 
graphical representations will no longer substantially evolve, which is a rather fuzzy 
condition. Moreover, if the situations are designed in order to ensure productive 
adidactical interaction with the milieu, in the construction of the situations an 
important role is given to collective discussions piloted by the teacher and to her 

   The reference to the ZoomOut control identifi es the space under his eyes, while the palm of 
one hand is associated with the fl at part that is obtained from the ZoomIn. In this way, PM 
has created his own space, which is suggested by the activity with the calculator, where the 
two different transformations of the curve can co-exist and be controlled. 
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mediations. These collective discussions are not just institutionalization phases. As 
evidenced by the  a posteriori  analysis, they play an essential role in the progression 
of knowledge beyond what has been achieved by each pair of students in the phase 
of autonomous work. In some sense, they play the role given in the theory of didac-
tical situations to situations of formulation and of validation but they do not obey a 
similar organization; they are not supported by the same theoretical constructs. We 
can see here the effect of a combination of the theory of didactical situations and the 
theory of semiotic mediation. It shows us that, as a research methodology, DE can 
productively combine several theoretical approaches. Another close example is 
provided by the thesis by Falcade ( 2006 ) also combining the theory of didactical 
situations and the theory of semiotic mediation in an approach to functions using 
Cabri-Géomètre (see also Falcade et al.  2007 ).    

17.5    Some Recent Developments of Didactical Engineering 

17.5.1     Didactical Engineering and the Anthropological 
Theory of Didactics 

 After considering these two examples, in the last part of the paper, we enter into 
some recent developments of didactical engineering, referring more precisely to the 
work carried out at the 2009 summer school. 

 As mentioned earlier, the anthropological theory of didactics has developed in 
the last decade a design perspective based on the idea of Programme of Study and 
Research (PSR in the following). At the 2009 summer school, Chevallard proposed 
to refund didactical engineering around this idea (Chevallard  2011 ). I will not follow 
him up to this point but would like to situate Chevallard’s perspective with respect 
to the vision of DE that has been presented in the fi rst sections of this chapter, and 
briefl y explore some possible complementarities between these. 

 Through PSR, Chevallard wants to build a new epistemology opposing what he 
calls the “monumentalistic” doctrine pervading contemporary school epistemology 
(Chevallard  2006 ,  in press ). As explained by Chevallard ( 2006 ):

  For every praxeology 11  or praxeological ingredient chosen to be taught, the new epistemol-
ogy should in the fi rst place make clear that this ingredient is in no way given, or a pure 
echo of something out there, but a purposeful human construct. And it should consequently 
bring to the fore what its raisons d’être are, that is, what its reasons are to be here, in front 
of us, waiting to be studied, mastered, and rightly utilised for the purpose it was created to 
serve. (p. 26)  

11   The notion of praxeology is central in the anthropological theory of didactics that considers that 
knowledge emerges from human practices and is shaped by the institutions where these practices 
develop. Praxeologies ,  which model human practices, at the most elemental level (punctual prax-
eologies), are defi ned as 4-uplets made of a type of task, a technique for solving this type of task, 
a discourse explaining and justifying the technique (technology), and a theory legitimating the 
technology itself. 
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In coherence with this vision, a PSR starts from the will to bring an answer to some 
generating question. In fact, at the 2009 summer school, Chevallard distinguished 
between different forms of PSR, and especially between fi nalized and open PSR. In 
fi nalized PSR, the main praxeologies aimed at are known. They correspond for 
instance to praxeologies aimed at by a given curriculum. The designer must found a 
question or a succession of questions which are able to generate the encounter of the 
corresponding types of tasks and the development of techniques and technological 
discourse constituting these praxeologies. This is done by a combination of study of 
existing works and inquiry processes. In open PSR, the situation is quite different. 
There is a generating question but the praxeological equipment needed for answering 
it is not  a priori  known; neither it is necessarily limited to mathematical praxeologies. 
This is for instance often the case in project work, and modeling activities. 

 Even in the case of fi nalized PSR, the proposed vision however is at some distance 
from the forms of DE mentioned above, especially in what concerns the milieu and its 
evolution. This is notably due to the place given to cultural answers to the question at 
stake in PSR. In the didactical schema that Chevallard proposes (Chevallard  in press ), 
a role is given to cultural answers or pieces of information accessible to the learners in 
the media and especially on the Internet. It is supposed that such cultural answers or 
pieces of information can enter the milieu on the initiative of teacher or students and 
that, duly studied and criticized, they should contribute to the elaboration of the 
expected answer to the question at stake. In the anthropological theory of didactics, 
this is encapsulated in the idea of  media-milieu dialectics . 

 Differences with the classical vision of DE also concern more globally what the 
researcher ambitions to optimize and control in the design phase and consequently 
they affect the  a priori  analysis. This is especially the case for open PSR. For that 
case Chevallard denies the possibility of an  a priori  analysis. He thus introduces 
the idea of  analysis in vivo , fully integrated into the inquiry work. This position can 
be questioned all the more as the publications of researchers working within this 
perspective show that they develop some form of  a priori  analysis to select questions 
having a strong generating power under the institutional conditions and constraints 
at stake. What is clear, however, is that, for such open PSR, in the  a priori  analysis 
researchers are more interested in investigating the didactical potential of the 
selected question, trying to make clear how its study can develop and generate 
new and interesting questions, motivate the study and progressive structuring of 
important praxeologies, than in the optimization of students’ learning trajectories. 
In fact, the  a priori  analysis becomes an on-going process that develops and adjusts 
along the implementation phase of the DE. The doctoral thesis by Barquero ( 2009 ), 
(see also Barquero et al.  2008 ) analyzing the design and implementation of a PSR 
devoted to the modeling of population dynamics with undergraduate students 
provides a good example of such functioning. 

 There is no doubt that, from a DE perspective, the notion of open PSR makes it 
possible to address research issues attached to the functioning and viability of 
didactical forms more open than those usually addressed by existing DE such as 
project work and modeling activities. These didactical forms still have a marginal 
position in educational systems but they are also more and more encouraged as 
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evidenced for instance by the number of European projects currently funded 
around inquiry-based education in mathematics and science. 12  As a research meth-
odology, DE certainly needs some accommodation in order to cope effi ciently with 
the research issues that emerge from this evolution, and also for taking into account 
the dramatic changes in access to information of the digital era. From this point of 
view, the design perspective offered by the anthropological theory of didactics 
seems promising.  

17.5.2     Research and Development: Didactical Engineering 
of Second Generation 

 The second evolution I would like to mention is that introduced by Perrin-Glorian 
( 2011 ) who distinguishes between DE of fi rst and second generation. In this chap-
ter, we have considered DE from a research perspective focusing on its character-
istics as a research methodology. We cannot forget nevertheless that from its 
emergence DE had the ambition to contribute both to research and development. In 
the historical review we mentioned the diffi culties met at converting DE developed 
for research aims into useful educational resources. This problem is still not solved 
but the increase in our knowledge of teachers’ representations and practices, and of 
possible dynamics for their evolution makes us better understand the diffi culty of 
the enterprise. The distinction introduced by Perrin-Glorian directly addresses this 
issue and we consider it because it can also affect the vision of DE as a research 
methodology. Contrasting RDE and DDE (research didactical engineering and 
development didactical engineering), she compares the levels of theoretical con-
trols in which these two forms of DE engage. She thus points out that even if in 
both cases the analysis of the mathematical knowledge at stake and of the students’ 
knowledge, the defi nition of the situations and associated milieus are under theo-
retical control, for DDE much more fl exibility is needed for preparing the adapta-
tion to a diversity of contexts. The loss of control is even greater with regard to the 
role of the teacher while institutional constraints cannot be partly removed as is 
often the case in RDE. These considerations lead her to postulate that before trying 
to implement a DE product coming from research in ordinary classes, it is neces-
sary to plan at least two different levels of DE, each one having specifi c aims: This 
is the whole process that she names DE of second generation. 

 At the fi rst level, the goal is the theoretical validation of the situations of the DE 
(i.e. their capacity in producing the knowledge aimed at) and the identifi cation of 
the fundamental choices of the DE, separating what is essential from what is linked 
to the particular context and could be changed, and adapted. The associated realization 
takes place in a rather protected environment and under the control of researchers as 
is the case for RDE. 

12   See the portal  www.scientix.eu  for information about these projects. 
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 At the second level, the goal is the study of the adaptability of such validated 
situations to ordinary classrooms and teachers through the negotiation of the DE with 
teachers who have not been involved in the fi rst phase. These negotiations and the 
transformations introduced by the teachers involved in this second phase are taken 
as objects of study together with their impact on the DE itself and its outcomes. It is 
expected that the results allow researchers to determine what concessions can be 
made in such negotiations, what should be preserved and why, and to identify what 
forms of control can be maintained. 

 As Perrin-Glorian points out, envisaging this second level modifi es in fact the 
fi rst level because it obliges researchers to move from a top-down conception of 
transmission of research results to an idea of adaptation much more dialectical. 
As she adds:

  The problem is no longer to control and disseminate engineering products coming from 
research but to determine the key variables, in terms of knowledge involved, piloting the 
didactical engineering that one wants to make a resource for ordinary teaching, and to study 
the conditions of their dissemination. (p. 69, our translation)  

She then illustrates this vision by an example regarding the teaching of axial 
symmetry at the transition between elementary school and junior high school. 

 This refl ection in fact points out that the transition from research to development 
needs specifi c forms of research, extending our view of the ways didactical engineering 
and educational research can be connected.   

17.6    Conclusion 

 In this chapter, I have tried to present didactical engineering, focusing on its dimension 
of research methodology. To help readers make sense of this methodology, I have 
reviewed its history from its emergence in the early 1980s until now. I have tried to 
clarify its main characteristics and to show that this methodology, even if it has 
been shaped by the values and constructs of the theory of didactical situations, is a 
methodology that can be productively used beyond the frontiers of this theory, and 
is enriched by the different uses made of it. I have also tried to show that, as for 
many other constructs in educational research, didactical engineering is a living and 
dynamic concept which adapts to the evolution of the fi eld, to the advances of educational 
knowledge, and to the evolution of the social and cultural contexts of mathematics 
education. I also hope to have made clear that this methodology, although fl exible, 
imposes a systemic view of the fi eld, a view of the classroom as a social organization, 
of learning as a combination of adaptation and acculturation processes and a particular 
sensitivity to the discipline and its epistemology.     
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    Chapter 18   
 Educational Design Research to Support 
System-Wide Instructional Improvement 

                Erin     Henrick     ,     Paul     Cobb     , and     Kara     Jackson    

    Abstract     In this chapter, we describe a methodology for conducting educational 
design research to support system-wide instructional improvement in mathematics 
and draw on one of the few design studies that does this as an illustrative case. 
Design studies conducted at the level of an educational system are interventionist 
in nature, and can address both the complexity of educational settings and the 
problems that educational system leaders, school leaders, and teachers encounter as 
they work to improve the quality of classroom instruction, school instructional 
leadership, and ultimately, students’ mathematics learning. This chapter describes 
the theoretical background for this approach, in which the issue of what it takes to 
support instructional improvement on a large scale is framed as an explicit focus of 
empirical investigation.  

  Keyword     Educational design research on a large scale  

     Our purpose in this chapter is to describe a methodology for conducting educational 
design research to support large scale instructional improvement in mathematics. 
In countries with centralized education systems, large scale might mean instruc-
tional improvement at the national level. In countries with decentralized education 
systems, the appropriate organizational unit is the largest administrative jurisdiction 
that can support coordinated improvement efforts. In this chapter, this largest unit 
will be referred to as the educational system or system. 

 For the purpose of this chapter, we defi ne design research as a family of methodo-
logical approaches in which research and the design of supports for learning are 
interdependent. On the one hand, the design of supports serves as the context for 
research and, on the other hand, ongoing and retrospective analyses are conducted 
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in order to inform the improvement of the design (Gravemeijer  1994 ; Schoenfeld 
 2006 ). Design research methodology has become increasingly prominent in the 
learning sciences and in several related fi elds of educational research including 
mathematics education in recent years. Most design research studies focus on 
students’ mathematical learning either as they interact one-on-one with a researcher 
(e.g., Cobb and Steffe  1983 ; Lobato  2003 ; Steffe and Thompson  2000 ) or as they 
participate in classroom processes (e.g., Cobb et al.  2003a ; Design-Based Research 
Collaborative  2003 ). In comparison, design studies conducted to support and inves-
tigate teachers’ learning are far less common, and design studies conducted to study 
the process of supporting improvements in the quality of mathematics teaching on 
a large scale have, until recently, been extremely rare. As a consequence, there are 
currently few examples of design research studies that have been conducted at 
the level of an educational system, or that focus simultaneously on teachers’ 
development of instructional practices and the school and system settings in which 
they develop and refi ne those practices (e.g., Cobb et al.  2003b ,  2009 ; Fishman et al. 
 2004 ). However, design research at scale (Cobb and Jackson  2012 ) and closely 
related approaches such as design based implementation research (Penuel et al. 
 2011 ) and improvement science research (Bryk  2009 ) are gaining momentum. 

 As Stein ( 2004 ) observed, research in mathematics education has not, to this 
point, investigated how the school and system settings in which mathematics teachers 
work can be organized to support their ongoing learning. Key aspects of these 
settings include the materials and associated resources that teachers use as a basis 
for their instruction, the formal and informal sources of assistance on which they 
can draw, as well as to whom and for what they are accountable. Design studies 
conducted at the level of an educational system is interventionist in nature, and can 
address both the complexity of these educational settings and the problems that 
educational system leaders, school leaders, and teachers encounter as they work to 
support improvements in the quality of classroom instruction, school instructional 
leadership, and ultimately, students’ mathematics learning. 

 We illustrate the methodology for investigating and supporting system-wide 
instructional improvement by framing one of the few design studies of this type 
as a sample case. The study, Designing Learning Organizations for Instructional 
Improvement in Mathematics (known as MIST), was conducted in the United 
States and investigated how school- and system-level supports and accountabil-
ity relations impacted the quality of mathematics instruction in middle-grades 
schools that served students aged 12–14. The study was a 4-year collaboration 
with district leaders, school leaders, and mathematics teachers in four city-wide 
school systems that served a total of 360,000 students. Before describing and 
illustrating the methodology, we fi rst provide background information on the 
United States educational context. We also detail the vision of high-quality mathe-
matics instruction that oriented our research agenda and recruitment of partici-
pating school systems. 
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18.1     The United States Context 

 The United States educational system is decentralized, and there is a long history of 
the local control of schooling. Each U.S. state is divided into a number of indepen-
dent school districts. In rural areas, many districts serve less than 1,000 students 
whereas a number of urban districts serve more than 100,000 students. In the context 
of the U.S. educational system, urban districts are the largest jurisdictions in which it 
is feasible to design for improvement in the quality of instruction (Supovitz  2006 ). 

 The federal government’s role in the educational system in the U.S. has increased 
signifi cantly in recent years following the passing of the No Child Left Behind Act 
(NCLB) in 2001. States receive incentives to set standards for students’ mathematics 
achievement, develop standardized assessments aligned with the standards, and imple-
ment accountability measures to promote increases in achievement for all students and 
for specifi c sub-groups (e.g., racial and ethnic categories, socio-economic status, 
students who receive special education services). Districts and schools are sanctioned 
if they fail to meet goals for “adequate yearly progress” (AYP) on state assessments. 

 As a result, school districts are under great pressure to improve student achieve-
ment in mathematics. In addition to responding to accountability pressures, urban 
school districts in the United States face a number of other challenges that impact 
improvement initiatives. These challenges include limited fi nancial resources, 
under-prepared teachers, and high teacher turnover (Darling-Hammond  2007 ). 

 Unfortunately, most U.S. school districts do not have the capacity to respond to 
these accountability demands in a productive manner (Elmore  2006 ). Many districts 
are implementing short-term interventions aimed at “teaching to the test,” and some are 
attempting to game the assessment system (Heilig and Darling-Hammond  2008 ). In 
addition, districts frequently expend considerable resources on different (and even 
confl icting) improvement policies, abandoning each for the next when student achieve-
ment does not improve quickly, without understanding the challenges of implementing 
particular policies. This policy churn (Hess  1999 ) can cause frustration for teachers and 
does not help the larger educational community understand how improvement in 
student achievement can be supported at the scale of a large school district. 

 A minority of districts is responding to accountability demands by attempting to 
improve the quality of classroom instruction. These districts are attempting to support 
teachers’ development of high quality instructional practices that will ultimately 
lead to improvement in student achievement (Elmore  2004 ). Concurrently, the role 
of the principal is shifting from school manager to instructional leader, with 
an increased responsibility to support instructional reforms in each content area 
(Nelson and Sassi  2005 ; Fink and Resnick  2001 ). To date, efforts to support funda-
mental improvements in teachers’ instructional practices on a large-scale have rarely 
been successful, and there are no proven models regarding how this can be accom-
plished (Elmore  2004 ; Gamoran et al.  2003 ). Furthermore, although research on 
mathematics teaching and learning has made signifi cant advances in recent years, 
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these advances have had limited impact on the quality of instruction in most U.S. 
classrooms. In addition, research in both mathematics education and in educational 
policy and leadership can provide only limited guidance to districts attempting 
to respond to high stakes accountability pressures by improving the quality of 
mathematics instruction.  

18.2     An Orienting Vision of High-Quality 
Mathematics Instruction 

 The four urban school systems, or districts, that we recruited for the MIST study 
were all pursuing similar agendas for instructional improvement in mathematics. 
These agendas were oriented by goals for students’ mathematics learning that are 
relatively ambitious in the U.S. context. These system-level goals emphasized 
students’ development of conceptual understanding as well as procedural fl uency 
in a range of mathematical domains, students’ use of multiple representations, 
students’ engagement in mathematical argumentation to communicate mathematical 
ideas effectively, and students’ development of productive dispositions towards 
mathematics (U.S. Department of Education  2008 ; Kilpatrick et al.  2001 ; National 
Council of Teachers of Mathematics  2000 ). These student learning goals in turn 
oriented leaders of the four collaborating districts as they specifi ed high-quality 
mathematics instructional practices that could be justifi ed in terms of student learning 
opportunities (Kazemi et al.  2009 ). The resulting view of high-quality instruction 
has been referred to in the U.S. as ambitious teaching (Lampert and Graziani  2009 ; 
Lampert et al.  2010 ). 

 Ambitious teaching requires teachers to build on students’ solutions to challenging 
tasks while holding students accountable to learning goals (Kazemi et al.  2009 ). Recent 
research in mathematics education has begun to delineate a set of high- leverage 
instructional practices that support students’ achievement of ambitious learning 
goals (Franke et al.  2007 ; NCTM  2000 ). These practices include launching chal-
lenging tasks so that all students can engage substantially without reducing the 
cognitive demand of tasks (Jackson et al.  2013 ), monitoring the range of solutions 
that students are producing as they work on tasks individually or in small groups 
(Horn  2012 ), and building on these solutions during a concluding whole-class 
discussion by pressing students to justify their reasoning and to make connections 
between their own and others’ solutions (Staples  2007 ; Stein et al.  2008 ). These 
practices differ signifi cantly from the current practices of most U.S. teachers, and 
their development involves reorganizing rather then merely adjusting and elaborating 
current practices. The learning demands for teachers include developing a deep 
understanding both of the mathematics on which instruction focuses and of students’ 
learning in particular mathematical domains. In addition, it involves developing 
the new high-leverage instructional practices outlined above (e.g., launching cognitively-
demanding tasks effectively; orchestrating whole class discussions of students’ 
solutions that focus on central mathematical ideas). 
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 The agenda for instructional improvement that the four collaborating school 
systems were pursuing is specifi c to the U.S. context and was infl uenced by the 
recommendations of several professional organizations including the National 
Council of Teachers of Mathematics ( 1989 ,  2000 ), and it is compatible with the 
more recent Common Core State Standards Initiative ( 2010 ). Improvement efforts 
in other countries might be oriented by a different vision of high-quality mathe-
matics instruction. The methodology that we describe will nonetheless be relevant 
to all cases where instructional improvement goals involve signifi cant teacher learning 
and require teachers to reorganize rather than merely elaborate their current 
classroom practices. 

 In the remainder of this chapter, we describe the key aspects of design studies 
conducted to investigate and support system-wide improvement in mathematics 
instruction. Although we draw on the MIST study to clarify the rationale for certain 
tools and processes, our intent is to describe the methodology in broad terms.  

18.3     Design Studies to Investigate and Support System-Wide 
Improvement in Mathematics Instruction 

 The overall goal of design research at the level of an education system is to investigate 
what it takes to support instructional improvement at scale (Bryk and Gomez  2008 ; 
Coburn and Stein  2010 ; Roderick et al.  2009 ) by testing and revising conjectures 
about school- and system-level supports and accountability relations. Design 
studies of this type aim to both support and investigate the process of instructional 
improvement at scale by documenting (1) the trajectories of (interrelated) changes 
in the school- and system-level settings in which mathematics teachers work, their 
instructional practices, and their students’ learning, and (2) the specifi c means by 
which these changes are supported and organized across the system (Cobb and 
Smith  2008 ). 

 Design studies of this type have two primary objectives. The fi rst objective is 
pragmatic, and is to provide leaders of the collaborating educational systems with 
timely feedback about how their improvement strategies or policies are actually 
playing out that can inform the ongoing revision of instructional improvement 
efforts. The second objective is theoretical, and is to contribute to the development 
of a generalizable theory of action (Argyris and Schön  1974 ) for system-wide 
instructional improvement in mathematics by synthesizing fi ndings across multiple 
educational systems. 

 Design studies conducted at any level involve iterative cycles of designing to 
support learning and of conducting analyses that inform the revision of the current 
design. In contrast to studies conducted to investigate students’ learning, design 
studies at the system level necessarily entail a partnership with system leaders. As a 
consequence, cycles at this level also include a feedback phase in which researchers 
share fi ndings with system leaders who have the ultimate authority for making 
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decisions about improvement strategies. The length of the cycles is much longer 
that in other types of design research. For example, in the MIST study, each cycle 
spanned an entire school year. 

 In the sections below, we describe the following aspects of the methodology:

    1.    developing an initial set of conjectures that comprise an initial theory of action 
about school- and system-level supports and accountability relations;   

   2.    recruiting collaborating educational systems;   
   3.    employing an interpretative framework for assessing an educational system’s 

designed and implemented instructional improvement strategies;   
   4.    conducting successive design, analysis and feedback cycles by: (a) documenting 

each collaborating system’s current improvement strategies, (b) collecting and 
analyzing data on how those strategies are actually playing out, (c) sharing fi ndings 
and recommendations with system leaders in time to inform their revision of 
improvement plans, and (d) assessing the infl uence of recommendations on the 
collaborating system’s instructional improvement strategies;   

   5.    testing and revising conjectures that comprise a theory of action for system- wide 
instructional improvement based on ongoing feedback analyses, the current research 
literature, and retrospective analyses of data collected in successive cycles.      

18.4     Developing Initial Conjectures 

 The basic goal of a design study conducted at any level is to improve an initial design 
for supporting learning by testing and revising conjectures inherent in the design 
about the course of participants’ learning and the means of supporting their learning 
(Cobb et al.  2003a    ). A key concern when preparing for a system-level design study 
is therefore to develop an initial set of conjectures for what it would take to support 
improvement in the quality of mathematics teaching across an entire system. 

 In the MIST study, we found it valuable to follow the basic tenets of design as 
articulated by Wiggins and McTighe ( 1998 ) and develop initial conjectures by 
mapping out from the classroom (cf. Elmore  1979 –80). The fi rst step in the process 
is to specify explicit goals for students’ mathematical learning and an associated 
research-based vision of high-quality mathematics instruction. The learning 
demands for teachers can then be identifi ed by comparing the vision of high-quality 
mathematics instruction that constitutes the goal for teachers’ learning with their 
current instructional practices. 

 The second step is to develop an initial, tentative, and eminently revisable theory 
of action by formulating conjectures about both supports for teachers’ learning and 
accountability relations that press them to improve their practices. These  conjectures 
should clearly attend to teacher professional development and to instructional mate-
rials and associated tools designed for teachers to use. However, it also proved 
important in the MIST study to broaden our purview by considering other types of 
possible support such as mathematics teacher collaborative meetings scheduled 
during the school day, the colleagues to whom teachers turned for instructional 
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advice during the school day, and mathematics teacher leaders or coaches who were 
charged with supporting teachers in their classrooms and during collaborative 
meetings. In addition, research on school instructional leadership oriented us to 
consider the role of principals and other school leaders in pressing and holding 
teachers accountable for improving the quality of instruction. 

 It is important to note that conjectures about supports and accountability relations 
for teachers’ learning typically have implications for the practices of members of 
other role groups. For example, conjectures about the role of coaches in supporting 
teachers’ learning have implications for the practices of system leaders responsible 
for hiring coaches and for supporting their development of effective coaching 
practices. Similarly, conjectures about school leaders’ role in communicating appro-
priate instructional expectations to teachers have implications for the practices of 
others in the system who are charged with supporting them in deepening their 
understanding of high-quality mathematics instruction. 

 In following this process of mapping out from the classroom in the MIST study, 
it proved critical to balance the ideal with the feasible by taking account of each 
collaborating system’s current capacity to support members of different role groups 
in improving their practices. As we worked through this process of formulating 
initial conjectures, we also found that the challenge of improving classroom instruc-
tion had implications for the practices of personnel at the highest levels of the four 
collaborating systems. As a consequence, it proved essential to formulate testable 
conjectures about the means of supporting the learning of mathematics teachers, 
mathematics coaches, school leaders, and system leaders in a coordinated manner. 
It also became apparent as we worked through this process that issues of mathemati-
cal content really matter. The mathematical learning goals for students have direct 
implications for the vision of high-quality instruction and thus for the learning 
demands on the teachers. These learning demands in turn have implications for 
conjectures about supports and accountability relations for teachers’ learning, and 
thus for the practices of personnel at all levels of the system. 

 Research on instructional improvement at the level of an educational system is 
thin, and gets thinner the further one moves away from the classroom. In order to 
formulate MIST conjectures about potentially productive school- and system-level 
supports, we drew on the limited number of relevant empirical studies and conceptual 
analyses available in the mathematics education literature on mathematics teaching, 
professional development, and teacher collaboration (Kilpatrick et al.  2003 ; Cobb 
and McClain  2001 ; Franke and Kazemi  2001 ; Gamoran et al.  2000 ; Kazemi 
and Franke  2004 ; Little  2002 ; Stein et al.  1998 ; Coburn and Russell  2008 ) and the 
literature on education policy and leadership that viewed policy implementation as 
involving learning (Blumenfeld et al.  2000 ; Coburn  2003 ; McLaughlin and Mitra 
 2004 ; Stein  2004 ; Tyack and Tobin  1995 ). 

 The resulting conjectures specifi ed school and district structures, social relation-
ships, and material resources that we anticipated might support mathematics teachers’ 
and instructional leaders’ ongoing learning. These conjectures assumed that the 
district has adopted research-based, inquiry-oriented mathematics textbooks and 
would provide sustained teacher professional development. 
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 One of our conjectures drew on research in educational policy and leadership 
that indicated the importance of teachers and school leaders having a common 
improvement agenda. We therefore conjectured that a shared vision of high-quality 
mathematics instruction in schools would be associated with instructional improve-
ment. A second conjecture specifi ed that instructional improvement will be supported 
both if school instructional leaders support and hold mathematics teachers account-
able for developing high-quality instructional practices, and if district leaders 
hold school leaders accountable for assisting mathematics teachers in improving 
their instructional practices. We also conjectured that greater improvements in over-
all student mathematics achievement would occur if school mathematics programs 
were de-tracked so that classes were heterogeneous rather than organized by current 
student achievement. This conjecture drew on research that indicated that “tracking 
does not substantially benefi t high achievers and tends to put low achievers at a 
serious disadvantage” (Darling-Hammond  2007 , p. 324). A fourth conjecture 
indicated the importance that we attributed to the alignment of goals and strategies 
for instructional improvement across district central offi ce units, particularly Leadership, 
the department responsible for supporting and holding school leaders accountable, 
and Curriculum and Instruction, the department responsible for selecting instructional 
materials and for providing professional development for teacher and coaches. Cobb 
and Smith ( 2008 ) provide more detail on these initial conjectures.  

18.5     Recruiting Collaborating Educational Systems 

 When preparing for a system-level design study, it is essential to formulate explicit 
criteria for selecting educational systems to target for participation in the study. In 
doing so, it is important to remember that it is system leaders rather than researchers 
who have the ultimate authority to determine both goals for students’ mathematics 
learning and what counts as high-quality mathematics instruction. One important 
selection criterion for any system-level design study is therefore that system leaders’ 
views of high-quality mathematics instruction are similar to those of the researchers. 

 In the case of MIST, a second important criterion was that the district be typical 
of large urban districts in the U.S. in terms of persistent patterns of low student 
achievement (including disparities in achievement between historically disadvan-
taged and advantaged groups of students); high teacher turnover; and relatively 
large numbers of novice teachers. 

 A third selection criterion related to how a district was responding to account-
ability demands. Given our focus on instructional improvement at scale, we sought 
to recruit districts that were among the minority that were responding by focusing 
on the quality of classroom mathematics instruction and students’ mathematical 
learning. In this regard, all of the districts with which we collaborated were atypical 
of urban districts in that they sought to improve student achievement in middle 
grades mathematics by supporting teachers’ development of ambitious mathematics 
teaching practices of the type described earlier in the paper. The collaborating 
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districts’ goals for students’ mathematical learning extended beyond improving 
achievement on state tests, and included a concern for students gaining admission to 
college and succeeding when they got there. 

 A fourth selection criterion was that the districts framed the problem of instruc-
tional improvement in terms of teacher learning and were attempting to implement 
a reasonably well worked out set of improvement strategies (Elmore  2006 ). Each of 
the four district’s pre-existing improvement strategies for high-quality mathematics 
instruction aligned with current research on mathematical learning, and encompassed 
curriculum, teacher professional development, and school instructional leadership. 
Examples of such strategies include adopting an inquiry-oriented textbook series 
for middle-grades mathematics, providing high quality teacher professional 
development, scheduling time during the school day for mathematics teachers to 
collaborate, recruiting and supporting a cadre of school- or district-based mathe-
matics coaches, and supporting instructional leaders’ development of instructional 
leadership practices through professional development. 

 A fi fth criterion was that middle-grades mathematics was a priority area for the 
districts. The four districts were committed to providing time and resources to 
further their instructional improvement efforts in middle-grades mathematics, and 
considered that participating in our study could contribute to these efforts. 

 Not surprisingly, the number of urban districts that met our fi ve criteria was 
limited. We identifi ed three of the districts with the assistance of the Institute for 
Learning, a national organization that partners with districts to guide their develop-
ment and implementation of improvement policies. 

 In conducting a design study of instructional improvement at scale, it is typically 
not feasible to collect data in all schools in the systems that have been recruited. 
Given the intent of a study of this type, we recommend purposefully selecting 
schools that refl ect the overall variation in student performance and capacity for 
instructional improvement across all schools in each system. Teachers might then 
be recruited randomly within schools, or they might be selected purposefully to 
refl ect variation in quality of current instructional practices. 

 In MIST, we recruited 30 middle-grades mathematics teachers from between six 
and ten schools in each of the four districts, together with 20 school and district 
leaders in each district. We found that teachers often agreed to participate in the 
MIST study because they saw it as an opportunity to have their perspective taken 
into account when system leaders formulated district improvement policies for 
middle- grades mathematics.  

18.6     Using an Interpretive Framework to Assess Designed 
and Implemented Improvement Strategies 

 Based on our experience in the MIST study, two types of conceptual tools are 
important when conducting investigations of this type. The fi rst tool is a theory of 
action for large-scale instructional improvement in mathematics that consists of 
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testable conjectures about supports and accountability relations. As we described 
above, we developed an initial theory of action in the MIST study by drawing on then 
current research in mathematics education and the learning sciences, educational 
leadership, and educational policy before we began working with the four collabo-
rating systems. We tested and revised the conjectures that comprised this initial 
theory of action as we conducted successive cycles of design and analysis in the 
course of the study. The theory of action is central to the design phase of the iterative 
design and analysis cycles that characterize design research at the system level. 

 The second type of conceptual tool is an interpretive framework that can be used 
to assess the potential of the collaborating systems’ designed or intended strategies 
to contribute to instructional improvement. This tool is central to the analysis phase 
of each cycle. During the fi rst 2 years of the MIST study, we developed an interpretive 
framework that distinguishes between four general types of supports: new positions, 
learning events (including professional development), organizational routines, and 
tools. These types of supports capture all the improvement strategies that the four 
collaborating systems attempted to implement across the 4 years. In developing the 
framework, we drew on research in the learning sciences, teacher learning, and 
related fi elds to assess the potential of each general type of support to scaffold 
teachers,’ coaches,’ and school leaders’ reorganization of their practices. 

 We clarify the nature of each type of support and its potential to support practitio-
ners’ learning in the following paragraphs. As will become apparent, the framework 
refl ects the view that co-participation with others who have already developed 
relatively accomplished practices is essential when the learning demands of an improve-
ment strategy require the reorganization rather than the extension or elaboration of 
current practices (Lave and Wenger  1991 ; Rogoff  1997 ; Sfard  2008 ).  

18.7     New Positions 

 School- and system-level strategies for instructional improvement typically include 
changes in the responsibilities of existing positions, such as principals becoming 
effective instructional leaders in mathematics. In addition, improvement efforts 
often include the creation of new positions whose responsibilities include supporting 
others’ learning by providing expert guidance. For example, an educational system 
might create the position of a school-based mathematics coach in each school, 
whose responsibilities include supporting their principals in becoming instructional 
leaders in mathematics. This improvement strategy assumes that the coaches have 
developed greater expertise as instructional leaders in mathematics and can there-
fore guide principals as they attempt to support mathematics teachers’ improvement 
of their classroom practices (Bryk  2009 ; Spillane and Thompson  1997 ). 

 The importance that we attributed to the expertise or knowledge-in-practice 
of the holder of the new position follows directly from Vygotskian accounts of 
human development (Kozulin  1990 ; van der Veer and Valsiner  1991 ; Vygotsky  1978 ) 
and is supported by studies of apprenticeship and coaching (Brown et al.  1989 ). 
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We therefore view the provision of expert guidance by creating new positions 
(or changing the responsibilities of existing positions) as a primary support for 
learning. The extent to which the investment in the new position will pay off is 
likely to be infl uenced by a variety of factors in addition to the expertise of the 
appointee. These additional factors include the overall coherence of instructional 
improvement strategies and the extent to which the expert and target of policy co-
participate in activities that are close to the intended forms of practice.  

18.8     Learning Events 

 Large-scale instructional improvement efforts typically include professional devel-
opment for teachers and, on occasion, for members of other role groups including 
principals. We view professional development sessions as instances of learning 
events, which we defi ne as scheduled meetings that can give rise to opportunities for 
targets of policy to improve their practices in ways that further policy goals. We take 
account of both learning events that are intentionally designed to support targets’ 
learning and those that might give rise to incidental learning. 

18.8.1     Intentional Learning Events 

 A distinction that proved useful in the MIST study when analyzing the strengths and 
weaknesses of improvement strategies is that between intentional learning events 
that are ongoing and those that are discrete. The two key characteristics of ongoing 
intentional learning events are that they are designed as a series of meetings that 
build on one another, and that they involve a relatively small number of participants. 
As an example, a mathematics specialist might work regularly with middle-school 
principals as a group in order to support them in recognizing high-quality mathematics 
instruction when they make classroom observations. Because a small number of 
participants is involved, the group might evolve into a genuine community of practice 
that works together for the explicit purpose of improving their practices. 

 It is important to note that although communities of practice can be produc-
tive contexts for professional learning (Horn  2005 ; Kazemi and Hubbard  2008 ), 
the emergence of a community of practice does not guarantee the occurrence of 
 learning opportunities that further policy goals (Bryk  2009 ). Recent research in 
both teacher education and educational leadership indicates the importance of 
interactions among community members that focus consistently on issues central 
to practice (Marks and Louis  1997 ) and that penetrate beneath surface aspects of 
practice to address core suppositions, assumptions, and principles (Coburn and 
Russell  2008 ). This in turn suggests the value of one or more members of the 
community having already developed relatively accomplished practices so that 
they can both push interactions to greater depth (Coburn and Russell  2008 ) and 
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provide concrete illustrations that ground exchanges (Penuel et al.  2006 ). The 
critical role of expertise in a community of practice whose mission is to support 
participants’ learning is consistent with the importance attributed to “more 
knowledgeable others” in sociocultural accounts of learning (Bruner  1987 ; Cole 
 1996 ; Forman  2003 ). 

 The key aspects of ongoing intentional learning events that we have highlighted 
are consistent with the qualities of effective teacher professional development iden-
tifi ed in both qualitative and quantitative studies. These qualities include extended 
duration, collective participation, active learning opportunities, a focus on problems 
and issues that are close to practice, and attention to the use of tools that are integral 
to practice (Borko  2004 ; Cohen and Hill  2000 ; Desimone et al.  2002 ; Garet et al. 
 2001 ). We view ongoing intentional learning events that have these qualities as a 
primary means of supporting consequential professional learning that involves the 
reorganization of practice. 

 Discrete intentional learning events include one-off professional development 
sessions as well as a series of meetings that are not designed to build on each other. 
For example, system leaders might organize monthly meetings for principals. These 
meetings would be discrete rather than ongoing intentional learning events if 
principals engage in activities that focused on instructional leadership in mathe-
matics only occasionally, and these activities do not build on each other. Discrete 
intentional learning events can be valuable in supporting the development of 
specifi c capabilities that elaborate or extend current practices (e.g., introducing a 
classroom observation tool that fi ts with principals’ current practices and is designed 
to make their observations more systematic). However, they are by themselves 
unlikely to be suffi cient in supporting the signifi cant reorganization of practice 
called for in systems that are pursuing ambitious instructional agendas.  

18.8.2     Incidental Learning Events 

 Learning opportunities are not limited to those that are intentionally designed, but 
can also arise incidentally for targets of policy as they collaborate with others to 
carry out functions of the school or educational system. For example, if principals 
meet regularly with mathematics coaches to discuss the quality of mathematics 
teaching in the school, these meetings could provide learning opportunities for the 
principal even though these meetings were not designed to support the principals’ 
learning. In general, the extent to which regularly scheduled meetings with a more 
knowledgeable other involve signifi cant learning opportunities depends on both the 
focus of interactions (e.g., the nature of teachers’ classroom practices and student 
learning opportunities) and on whether the expert has in fact developed relatively 
accomplished practices and the novice recognizes and defers to that expertise 
(Elmore  2006 ; Mangin  2007 ). However, the strategy of relying primarily on inciden-
tal learning events to support professional learning appears to be extremely risky.   
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18.9     New Organizational Routines 

 In addition to creating new positions and planning learning events, instructional 
improvement policies sometimes include the specifi cation of new organizational 
routines. Feldman and Pentland ( 2003 ) defi ne organizational routines as “repetitive, 
recognizable patterns of interdependent actions, carried out by multiple actors” 
(p. 94). Investigations of organizational routines in school settings demonstrate that 
they can play a critical role in ensuring continuity and thus school stability in the face 
of high staff turnover (Spillane et al.  2007 ). In addition, these studies clarify that 
organizational routines often evolve incrementally in the course of repeated enactments 
and can therefore also be a source of organizational fl exibility (Feldman  2000 ,  2004 ). 
Furthermore, as Sherer and Spillane ( 2011 ) illustrate, the introduction of carefully 
designed organizational routines can be an important means of supporting learning. 

 An illustration of an organizational routine would be system leaders expecting 
principals to conduct Learning Walks™ with the mathematics coach at their schools 
on a regular basis. A Learning Walk™ is a repetitive, recognizable pattern of actions 
that involves determining the focus of classroom observations (e.g., the extent to 
which teachers maintain the cognitive challenge of tasks throughout the lesson), 
selecting classrooms to visit, observing a classroom, and then conferring to discuss 
observations before moving on to the next classroom. In addition, a Learning 
Walk™ is carried out by multiple actors, namely the principal, mathematics coach, 
and the observed teachers. This organizational routine provides opportunities for 
the mathematics coach to support the principal in coming to recognize key aspects 
of high-quality mathematics instruction. 

 In this example, the organizational routine is conducted independently of any 
formally scheduled meetings. Other organizational routines might be enacted during 
either intentional or incidental learning events. For example, a mathematics specialist 
working with a group of principals might introduce an organizational routine that 
fi rst involves having principals collect student work on the same instructional task 
from one or more classrooms in their schools, next having the principals analyze the 
quality of the student work in small groups, and fi nally pressing the principals to 
delineate the characteristics of high-quality work during a subsequent whole group 
discussion. We consider organizational routines in which a more knowledgeable 
other scaffolds relative novices’ learning as they co-participate in a sequence of activ-
ities that are close to practice to be a potentially productive means of supporting 
professional learning (Grossman and McDonald  2008 ; Lampert and Graziani  2009 ).  

18.10     New Tools 

 In speaking of tools, we refer to material entities that are used instrumentally to 
achieve a goal or purpose. Work in the learning sciences and in teacher professional 
development indicates that introducing carefully designed tools is a primary means 
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of supporting learning (Borko  2004 ; Cobb et al.  2009 ; Lehrer and Lesh  2003 ; Meira 
 1998 ). In the context of large-scale instructional improvement efforts, designed 
tools can also play a second important role by supporting members of a particular 
role group in developing compatible practices, and by supporting the alignment 
of the practices developed by members of different role groups (e.g., teachers, prin-
cipals, coaches). Examples include textbooks, curriculum guides, state mathematics 
objectives, classroom observation protocols, reports of test scores, student written 
work, and written statements of school and educational system policies. 

 Large-scale instructional improvement efforts almost invariably involve the 
introduction of a range of new tools designed to be used in practice, including newly 
adopted instructional materials and revised curriculum frameworks for teachers, 
and new classroom observation protocols and data management systems for principals. 
The fi ndings of a number of studies conducted in the learning sciences substantiate 
Pea’s ( 1993 ) claim that the incorporation of a new tool into current practices can 
support the reorganization of those practices (Lehrer and Schauble  2004 ; Meira 
 1998 ; Stephan et al.  2003 ). However, it is also apparent that people frequently use 
new tools in ways that fi t with current practices rather than reorganizing those practices 
as the designers of the tool intended (Wenger  1998 ). For example, the fi ndings of a 
number of studies of policy implementation and of teaching indicate that teachers 
often assimilate new instructional materials to their current instructional practices 
rather than reorganize how they teach as envisioned by the developers of the materials 
(Cohen and Hill  2000 ; Remillard  2005 ; Spillane  1999 ). These fi ndings suggest 
that the design of tools for professional learning should be coordinated with the 
development of supports for their increasingly accomplished use. 

 As a fi rst design heuristic, it is important that users see a need for the tool when 
it is introduced (Cobb  2002 ; Lehrer et al.  2000 ). This implies that either the tool 
should be designed to address a problem of current practice or it should be feasible 
to cultivate the need for the tool during intentional learning events. As an illustration, 
consider a classroom observation protocol that has been designed to support principals 
in focusing not merely on whether students are engaged but also on whether signifi -
cant learning opportunities arise for them. Most principals are unlikely to see a need 
for the new observation form unless it is introduced during a series of intentional 
learning events that might, for example, focus on the relation between classroom 
learning opportunities and student achievement. 

 Second, it is also important that the tool be designed so that intended users can 
begin to use it shortly after it has been introduced in relatively elementary ways that 
are nonetheless compatible with the designers’ intentions and do not involve what 
A. Brown ( 1992 ) termed lethal mutations. In the case of our example, it would seem 
advisable to minimize the complexity of the observation protocol given the signifi cant 
reorganization of practice that most principals would have to make to use it in a way 
compatible with the designers’ intentions (Nelson and Sassi  2005 ). 

 Third, in using the tool in rudimentary but intended ways, users begin to reorganize 
their practices as they incorporate the tool. The challenge is then to support their 
continued reorganization of practice by scaffolding their increasingly profi cient 
use of the tool either during intentional learning events or as they co- participate in 
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organizational routines with an accomplished user (J. S. Brown and Duguid  1991 ; 
Lave  1993 ; Rogoff  1990 ). In the case of the observation protocol, for example, 
mathematics coaches might support principals’ use of the tool as they conduct 
Learning Walks™ together. Just as the failure to provide sustained teacher profes-
sional development around a new curriculum can lead to diffi culties (Crockett 
 2007 ), failure to scaffold principals,’ coaches,’ and others’ use of new tools is also 
likely be problematic.  

18.11     Summary 

 Our analysis of the four types of support for learning indicates that improvement 
strategies that are likely to be effective in supporting consequential professional 
learning involve some combination of new positions that provide expert guidance, 
ongoing intentional learning events in which tools are used to bridge to practice, 
carefully designed organizational routines carried out with a more knowledgeable 
other, and the use of new tools whose incorporation into practice is supported. We 
do not discount the support that discrete intentional learning events and incidental 
learning events might provide and recommend taking them into account when 
assessing systems’ improvement strategies. However, research on professional 
learning and on students’ learning in particular content domains indicates that they 
are, by themselves, rarely suffi cient to support signifi cant reorganizations of 
practice (Garet et al.  2001 ). The analysis we conducted during the MIST study of 
the four districts’ instructional improvement efforts over a 4-year period is consis-
tent with this conclusion.  

18.12     Conducting Design, Analysis and Feedback Cycles 

 Thus far, we have discussed the key issues that need to be addressed when preparing 
for a system-level design study. We now focus on the process of conducting a study 
by enacting successive design, analysis, and feedback cycles. Each of the four 
cycles we conducted in the MIST study spanned an entire school year, which is 
much longer than in other types of design experiments (a day in the case of a classroom 
design study and a few weeks or less for a professional development study). 

 In planning cycles, it is important to take account of patterns in system leaders’ 
work across the school year. In the U.S. educational systems, the school year runs 
from August until May or the beginning of June. In the MIST study, we delayed 
interviewing district leaders to learn about their current instructional improvement 
plans until October of each year after they had fi nalized their plans for that school 
year. We then determined that January-March would be the best time to collect data 
because it would give us enough time to conduct the feedback analyses, and would 
not interfere with standardized testing, which typically occurs near the end of the 

18 Design Research for Sytem-Wide Improvement



512

school year. We shared our feedback and recommendations with district leaders 
in May of each year so they could take account of our fi ndings when they revised 
district instructional improvement strategies over the summer. 

18.12.1     Documenting Current Instructional 
Improvement Strategies 

    The fi rst phase of a cycle involves documenting the vision of high-quality mathematics 
instruction that orients each collaborating system’s instructional improvement 
initiative and the strategies that each system is implementing in an attempt to 
achieve its vision. In the MIST study, it proved feasible to document the four 
collaborating systems’ improvement strategies by interviewing six to ten key system 
leaders in each system and by collecting system-level planning and implementation 
documents in October of each year. The leaders were from a number of system units 
that had a stake in mathematics teaching and learning. They included Curriculum 
and Instruction that is responsible for selecting instructional materials and for 
providing professional development for teacher and coaches, Leadership that is 
responsible for providing professional development for school leaders and for holding 
school leaders accountable, ELL that is responsible for supporting the learning of 
English Language Learners, Special Education that is responsible for supporting the 
learning of students who receive special education services, and Research and 
Evaluation that is responsible for generating and analyzing data on students, teachers, 
schools, and the district. 

 In addition to asking about current initiatives in middle-grades mathematics, it 
proved useful to include interview questions that focused on student demographics, 
the impact of regional and national policies, and the historical context of the system 
including prior reform initiatives and previous mathematics instructional materials 
and assessments. (Interview protocols are downloadable at   http://vanderbi.lt/mist    ). 

 The transcribed interviews and the artifacts can be analyzed through an inductive 
coding process in order to discern broad consistencies across participants in each 
system. The goal in conducting these analyses is to clarify the intended or  envisioned 
practices of members of particular role groups (e.g., teachers, coaches, principals), 
the intended means of supporting the learning of members of those groups, and 
system leaders’ rationales for why the supports might enable members of each role 
group to develop the envisioned forms of practice. 

 In the MIST study, we reported our fi ndings for each collaborating system in a 
fi ve-page document. This System Design Document named each district strategy 
and described the intended supports and accountability relations for members of 
each role group. We shared this document with system leaders to determine whether 
it accurately represented their plan for instructional improvement. We made 
revisions until the district leaders agreed that the document accurately represented 
their intended plan. 
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 System Design Documents serve four useful purposes. First, they are useful in 
preparing for the next phase of a cycle that involves collecting data to learn how 
each system’s intended strategies are being implemented in schools. Second, the 
major strategies identifi ed in each document provide a framework for organizing 
the feedback given to the system leaders about how their improvement strategies are 
playing out. Third, system leaders who participated in the MIST study reported that 
they found these documents useful in clarifying their improvement strategies 
with others across the system. Finally, the System Design Documents produced in 
successive cycles provide a record of changes in a system’s improvement policies 
over time, thus enabling the system leaders to monitor progress and researchers to 
document the infl uence of their recommendations on the improvement strategies 
that system leaders attempted to implement in the next cycle. 

 To illustrate, we refer to the System Design Document we created for District B, 
one of the four participating districts, during our fi rst year of working with the 
district. (Table  18.1  provides a summary of District B’s System Design Document, 
2007–2008). The overall goal of the instructional improvement effort in District B 
was to ensure that all students had opportunities to learn through engagement with 
a rigorous mathematics curriculum, that teachers and school leaders had high 
expectations for students’ learning, and that achievement disparities between White 
students and traditionally underserved groups of students were eliminated. District 
B was in its fi rst year of implementing an inquiry-oriented mathematics curriculum. 
To support this implementation, the district had assigned a mathematics coach to 
each middle school the previous year and had provided them with a signifi cant 
amount of professional development that focused on both teaching the new curriculum 

   Table 18.1    Summary of a System Design Document for District B, 2007–2008 school year   

  District B instructional improvement goal  
 Ensure that all students have opportunities to learn through engagement with a rigorous 
curriculum, that teachers and school leaders have high expectations for students’ learning, and 
that achievement gaps between White students and traditionally underserved groups of students 
are eliminated 
  Improvement strategies    Supports for role groups to develop the intended 

forms of practice  

 1. Develop principals and coaches 
who work together to improve 
instruction 

 Professional development for principals on observing 
classroom and providing feedback to teachers 
 Principal and the math coach are required to meet 
weekly to discuss classroom instruction and supports 
for teachers 
 Professional development for math coaches 

 2. Support teachers in teaching a 
rigorous mathematics curriculum 
effectively 

 Professional development for teachers on the 
inquiry-oriented curriculum 
 A comprehensive curriculum framework to support 
the implementation of the rigorous curriculum 
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effectively and coaching other mathematics teachers at their schools. Each coach 
taught for half of the school day and served as a coach for the remainder of the day.

   The fi rst improvement strategy that we identifi ed was to support principals’ and 
mathematics coaches’ development as instructional leaders who worked together to 
improve the quality of mathematics instruction. Principals were expected to observe 
classroom instruction regularly to assess the quality of teachers’ instructional 
practices and determine their needs based on these observations. Principals received 
professional development on observing and assessing the quality of mathematics 
instruction, and were expected to meet with the mathematics coach at their school 
every week to discuss the quality of classroom instruction and assess teachers’ needs. 

 The second strategy was to support teachers in teaching the inquiry-oriented 
curriculum effectively. Supports for teachers’ learning included teacher professional 
development provided by the mathematics coaches and a district Curriculum 
Framework that aligned the curriculum with the state standards and provided 
guidance on differentiating instruction for particular groups of students, especially 
English Language Learners and special education students. 

 We used the Interpretive Framework described above to assess the strengths 
and limitations of these two improvement strategies. District leaders clearly and 
consistently articulated the forms of practice they intended teachers, coaches, and 
principals would develop (e.g., principals were to observe classrooms and provide 
feedback to improve instructional practices). In addition, these intended forms 
of practice were compatible with the district’s overall goal of supporting teachers’ 
development of ambitious instructional practices. However, we considered it 
unlikely that the supports for various role groups’ learning would be adequate. 

 With regard to the fi rst strategy, principals would have to distinguish between 
weak and strong enactments of ambitious instructional practices if they were to give 
teachers effective feedback. The supports for principals’ learning included profes-
sional development on observing classroom instruction. We questioned whether 
these ongoing intentional learning events would be effective because they focused 
on characteristics of high quality instruction that were independent of subject matter 
area, and because these characteristics were relatively global. Principals were also 
expected to meet regularly with the mathematics coach to discuss the quality of 
classroom instruction. Although these discussions might focus on content-specifi c 
instructional practices, we doubted whether the resulting incidental learning 
 opportunities would be adequate. In addition, the coaches were new to the role and 
it was not clear that they had developed suffi cient expertise to support principals in 
assessing the quality of instruction. 

 With regard to the second strategy, the effective implementation of the inquiry- 
oriented curriculum that the district had adopted required that most teachers 
signifi cantly reorganize their instructional practices. Teachers participated in ongo-
ing intentional learning events- 4 days of district professional development led 
by the math coaches. However, it was not clear that mathematics coaches had 
developed the expertise to lead this professional development effectively given that 
they were also teaching the new curriculum for the fi rst time.  
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18.12.2     Documenting How Instructional Improvement 
Strategies Are Implemented 

 The next phase of the design cycle involves collecting data to document how each 
system’s strategies are playing out in schools and classrooms. In the MIST study, 
we collected multiple types of data to document the four systems’ instructional 
improvement efforts: audio-recorded interviews conducted with the 200 participants; 
on-line surveys for teachers, coaches, and school leaders; video-recordings of two 
consecutive lessons in the 120 participating teachers’ classrooms, coded using the 
Instructional Quality Assessment (IQA) (Boston  2012 ; Matsumura et al.  2008 ); 
teachers’ and coaches’ scores on the Mathematics Knowledge for Teaching (MKT) 
instrument (Hill et al.  2004 ); video-recordings of select district professional devel-
opment; audio-recordings of teacher collaborative planning meetings; and an on- line 
assessment of teacher networks completed by all mathematics teachers in the 
participating schools. In addition, the districts provided us with access to mathematics 
achievement data for students in the participating 120 teachers’ classrooms. The 
interviews and online surveys focused on the school and district settings in which 
the participating teachers and school leaders worked and gave particular attention to 
the formal and informal supports on which they could draw to improve their practices, 
as well as to whom they were accountable and for what they were accountable. 

 As we had only 3 months to analyze data before district leaders began planning 
strategies for the following school year, we limited the data we analyzed to provide 
feedback about how districts’ strategies were being implemented to the audio- recorded 
interviews conducted with the 50 participants in each district. (As our collaboration 
with each district continued over 4 years, we were able to share additional fi ndings 
from other data sources, for example video-recordings of classroom instruction, in 
subsequent reports as they became available.) 

 One of the challenges when conducting a system-level design study is to analyze 
a large amount of data in a relatively short period of time while ensuring that 
the fi ndings shared with system leaders are reliable. In this context, an important 
 criterion for reliability is that claims about how improvement strategies are being 
implemented can be justifi ed by backtracking through successive steps of the analysis 
to the raw data. This method involves using a series of structured tools to fi rst 
summarize transcriptions of each participant interview, and then to triangulate and 
synthesize the responses both across participants in each school and across teachers, 
coaches, and school leaders in each collaborating system. 

 In MIST, a team member completed an Interview Summary Form (ISF) for each 
interview (teacher, coach, school leader, system leader). The ISF summarized each 
participant’s response to interview questions that were central to understanding how 
improvement strategies were playing out in schools. This information was then 
synthesized across all participants in a school using the School Summary Form 
(SSF). This required the triangulation of participant responses at each school, citing 
evidence from the ISFs. Additional forms included a Principal Summary Form 
(PSF), a Coach Summary Form (CSF) and a Teacher Summary Form (TSF) that 
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were used to synthesize information across members of a role group in a system 
(i.e., the TSF synthesized the interview summary forms for all the participating 
teachers in a system). 

 Once this initial analysis was complete, we returned to the System Design 
Document, and we identifi ed gaps between each system’s intended strategies and 
the strategies as they were being implemented in schools. We then examined why 
strategies were playing out as we had documented rather than as intended by focusing 
on the actual learning opportunities and press for improvement for members of each 
role group. In developing these explanations, we used one of our conceptual tools, 
the interpretive framework which differentiates between four general types of supports. 

 The fi nal step in the analysis involved developing recommendations for how 
system leaders might revise their improvement strategies to make them more effec-
tive. In doing so, we drew on the conjectures about supports and accountability 
relations that comprised the current iteration of our theory of action for instructional 
improvement. It also proved essential to take account of each collaborating system’s 
current capacity to support the learning of members of particular role groups. The 
resulting recommendations proposed feasible strategies for supporting teachers,’ 
coaches,’ and school leaders’ improvement of their practices. Table  18.2  provides 
an illustration of this process.

   As another illustration, our analysis of data measuring coaches’ mathematical 
content knowledge (as measured by the MKT assessment), as well as the quality of 
coaches’ instructional practices (as measured by the IQA) collected during our fi rst 
year of collaborating with District B indicated that the knowledge and instructional 
practices of the school-based mathematics coaches were only slightly more 
advanced than those of the teachers they were expected to support even though they 
had received extensive professional development. In addition, few if any mathemat-
ics teachers had developed relatively accomplished instructional practices. Further, 
the district had only three district-level mathematics specialists (members of 
Curriculum and Instruction) who were expected to fulfi ll several different roles and 
responsibilities while serving 32 middle-grades schools. This lack of instructional 
expertise was a major constraint that we had to take account of when making recom-
mendations about supports for teachers’ and for coaches’ learning. One of our rec-
ommendations therefore included leveraging the expertise of the three mathematics 
specialists by making their work in supporting the coaches’ learning a priority.  

18.12.3     Sharing Findings and Recommendations 
with System Leaders 

 We have emphasized that a system-level design study involves a genuine partnership 
with system leaders in which the leaders have the ultimate authority for making 
decisions about improvement strategies. It is therefore important for the researchers 
to develop a method for sharing fi ndings and recommendations that is both feasible 
and relevant to system leaders’ current concerns. In the MIST study, a two-step 
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process for communicating fi ndings and negotiating future improvement strategies 
proved to be relatively effective. 

 The fi rst step involved preparing a System Feedback and Recommendations 
Report of approximately 15 single-spaced pages for the leaders of each collaborating 
system. These reports built directly on the System Design Documents and were 
intentionally structured around the district’s major strategies so that they related 
directly to the work district leaders were attempting to accomplish. For each 
strategy reported in the System Design Document, we reiterated the envisioned 
forms of practice that constituted the goal of the strategy and described the intended 
supports and accountability relations for the development of the envisioned practices. 
We then reported our fi ndings about how that strategy was playing out in schools, 
explained why this was the case, and made our recommendations for adjusting the 
strategy. Based on our experience in the MIST study, we believe that this way of 
organizing reports for system leaders provides a useful model for others conducting 
system-level design studies. Redacted versions of reports produced in the MIST 
study are available at the MIST website (  http://vanderbi.lt/mist    ). 

 The second step in sharing fi ndings and recommendations with system leaders 
was a 2-h meeting with the leaders of each system scheduled approximately 1 week 
after we sent them the System Feedback and Recommendations Report. The intent 
of these meetings was to clarify the fi ndings and to have a genuine conversation 
about their implications for the system’s improvement strategies. We therefore 
recommend that researchers explicitly negotiate norms for these meetings with 
system leaders, and that they speak from notes rather than PowerPoint in order to 
encourage an open discussion. 

 In the case of MIST, these meetings usually included the head of Curriculum and 
Instruction responsible for all content areas, the head of the Mathematics Department, 
the district mathematics specialists (who work with the mathematics coaches and 
support schools), the head of Leadership, and leadership specialists who support 
and assess school leaders. In one district the superintendent attended the feedback 
sessions. These meetings were typically very productive. In every instance, the 
conversation was an open dialogue about the current status of the district’s improve-
ment efforts and about possible adjustments to those efforts.  

18.12.4     Assessing the Infl uence of Recommendations 
on Collaborating System’s Instructional 
Improvement Strategies 

 The fi rst phase of the next data collection, analysis, and feedback cycle involves 
interviewing system leaders again to document their revised instructional improve-
ment strategies. The infl uence of recommendations made to system leaders can be 
assessed by comparing their revised and prior improvement strategies. As we have 
noted, assessing the infl uence of the recommendations is important both because 
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the pragmatic goal of a system-level design is to contribute to the collaborating 
systems’ instructional improvement efforts, and because researchers have opportu-
nities to test the conjectures that comprise their theory of action when system lead-
ers act on their recommendations. A priori, sharing a written report and conducting 
a single meeting with system leaders to discuss its implications might appear to be 
a relatively weak mechanism for infl uencing system-wide improvement strategies. 
We were therefore gratifi ed to fi nd that the leaders in all four systems that participated 
in the MIST study revised their improvement strategies based on many of our 
recommendations. The data we collected the following year documented how 
the policy revisions we recommended were actually playing out in school and 
classrooms. We could therefore use these data to test, revise and thus improve our 
conjectures about the learning of members of different role groups and the means of 
supporting their learning. Thus, the collaborative partnerships in which we became 
co-designers of district improvement policies with district leaders enabled us to 
enact iterative cycles of design and analysis that are characteristic of the design 
research methodology. 

 There are several reasons why we believe this limited collaboration proved to 
be suffi cient. First, we selected districts whose goals for students’ mathematical 
learning and for teachers’ improvement of their instructional practices were broadly 
compatible with those that we intended to investigate. Second, we prioritized the 
development and maintenance of relationships of trust with district leaders and 
school personnel. Thus, during the fi rst year of the collaboration, we strove to pro-
duce feedback reports that district and schools leaders would view as extremely 
relevant and useful to their work. It was because districts leaders found this and 
subsequent reports useful that they were willing to continue to spend time with us 
three times a year (fall interview, January interview, and May feedback session) 
and to allocate resources to assist our data collection efforts. This in turn enabled 
us to achieve almost 100 % success in all aspect of our data collection each year in 
all four districts. 

 This approach of developing, testing, and refi ning theory by conducting tightly 
integrated cycles of analysis and (policy) design is at the heart of the design research 
methodology (Cobb et al.  2003a ). On the one hand, we revised and elaborated 
the conjectures that comprised our evolving theory of action in the course of the 
analysis and feedback process. On the other hand, our evolving conjectures informed 
the formulation of the specifi c feedback recommendations we made to the districts. 
In a very real sense, the design for system-wide instructional improvement that is 
implemented was co-constructed by system leaders and the researchers. It is useful 
to distinguish between the co-constructed designs that are specifi c to a particular 
system and researchers’ conjectures about the process of supporting system-wide 
instructional improvement more generally. On the one hand, these latter conjectures 
comprise a theory of action that can be used to make recommendations to system 
leaders. On the other hand, occasions when system leaders act on these recommendations 
constitute opportunities for the researchers to test and revise their conjectures and 
thus contribute to the development of a generalizable theory of action for system-
wide instructional improvement in mathematics.   

E. Henrick et al.



521

18.13     Testing and Revising Conjectures that Comprise 
a Theory of Action for System-Wide Instructional 
Improvement 

 To this point, we have focused on the pragmatic objective of providing leaders of the 
collaborating systems with timely feedback about how their improvement strategies 
are actually playing out that can inform the revision of their instructional improvement 
efforts. We now consider the theoretical objective of contributing to a generalizable 
theory of action for system-wide instructional improvement in mathematics. In 
doing so, we draw on our experience in the MIST study by discussing three types of 
evidence that can inform the revision of conjectures that comprise the theory of 
action: fi ndings from feedback analyses about how the collaborating systems’ 
instructional improvement strategies are being implemented, the current research 
literature, and the fi ndings of retrospective analyses conducted by drawing on the 
multiple sources of data collected in each cycle.  

18.14     Findings About the Districts’ Instructional 
Improvement Strategies 

 When researchers formulate recommendations to collaborating educational systems, 
they necessarily have to address concrete organizational design challenges by 
proposing how the systems might support and hold members of particular role 
groups accountable for improving their practices. Addressing these challenges is a 
primary context for researchers’ learning. Furthermore, researchers can step back 
after completing each data collection, analysis, and feedback cycle and frame the 
fi ndings and recommendations for the collaborating systems as cases of attempting 
to support instructional improvement at scale. In doing so, it is important to determine 
whether any of the recommendations to a particular system represent refi nements or 
elaborations of current conjectures, and if they do whether they might have more 
general implications and under what conditions. For example, the constraint of 
limited instructional expertise that we identifi ed in District B proved to be a constraint 
in two of the other three collaborating districts. The recommendations we made to 
these districts for supporting teachers’ and coaches’ learning could therefore inform 
the revision of our initial conjectures for instructional improvement in districts that 
are constrained by limited instructional expertise.  

18.15     Research Literature 

 As we have noted, relevant research that can inform the design of instructional 
improvement strategies becomes increasingly thin the further one moves away from 
the classroom (Cobb et al.  2013 ; Honig  2012 ). Nonetheless, fi ndings reported in 
the literature can, on occasion, provide evidence for the revision of current conjectures. 
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This possibility is becoming increasingly likely as system-level design studies and 
closely related approaches become more common.  

18.16     Retrospective Analyses 

 The retrospective analysis of data collected during successive design and analysis 
cycles is a key aspect of design studies conducted at any level. In the case of system- 
level design studies, a primary goal of retrospective analyses is to investigate key 
conjectures of the theory of action for instructional improvement. Based on our 
work in the MIST study, we recommend that mutually informing lines of retrospective 
analyses be established that focus on the major types of supports conjectured to be 
important for instructional improvement (e.g., teacher collaborative time, teacher 
networks, mathematics coaching, school instructional leadership). 

 As we have indicated, the types of data that can be analyzed to give collaborating 
systems feedback about how their improvement strategies are playing out is constrained 
by the need to ensure that the feedback is timely and can inform system leaders’ 
revision of their strategies. Retrospective analyses that can inform the revision of 
the theory of action draw on a range of additional types of data that are collected 
during each data collection, analysis, and feedback cycle. The primary concern 
when making decisions about the types of data to collect is that the key constructs 
of each conjecture are assessed including the relevant aspects of teachers’ knowledge 
and instructional practices. For example, if the vision of high- quality mathematics 
instruction that constitutes the goal for teachers’ learning requires that teachers 
deepen their mathematical knowledge, then it is important to include an appropriate 
measure of this knowledge. Similarly, if teachers’ informal professional networks 
are conjectured to be an important support for their learning, then it is important to 
develop instruments for assessing the relevant aspects of their networks (e.g., who 
teachers turn to for instructional advice, frequency of their interactions with those 
people, and content of their interactions). 

 The MIST team is currently conducting fi ve interrelated lines of analysis that 
focus on district-level and school-level teacher professional development (including 
mathematics teacher collaborative meetings), teacher networks, mathematics coach-
ing, school instructional leadership, and district instructional leadership. We discuss 
the current version of our theory of action for instructional improvement in mathe-
matics in the next section of this chapter.  

18.17     MIST’s Current Theory of Action for Instructional 
Improvement in Middle-Grades Mathematics 

 Presenting the current iteration of our theory of action in any detail is beyond the scope 
of this chapter, and we refer the reader to Cobb and Jackson ( 2011 ). To illustrate our 
current conjectures, we focus on one component of the theory of action, school 
instructional leadership. 
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 Our initial conjectures about school instructional leadership were relatively 
global and did not differentiate between the practices of mathematics coaches 
and school leaders. These conjectures indicated the importance of school leaders 
developing relatively sophisticated visions of high-quality mathematics instruction 
and both supporting and holding mathematics teachers accountable for developing 
high- quality instructional practices. Our revised conjectures indicate the potential 
value of a distributed model of school instructional leadership in which coaches 
and  district mathematics specialists are primarily responsible for supporting 
teachers’ learning, and school leaders are responsible for pressing and holding 
teachers accountable for developing the intended instructional practices (Elmore 
 2006 ; Spillane et al.  2004 ). In addition, our current conjectures specify three 
leadership practices that might be feasible goals for school leaders’ learning. 
Two of these practices—observing mathematics instruction and providing feed-
back, and participating in mathematics teacher collaborative meetings—aim at 
pressing teachers to develop the intended forms of practice and providing teachers 
with adequate support. The third practice concerns the development of productive 
relationships with coaches. 

 We conjecture that by observing instruction and providing teachers with informed 
feedback, school leaders can both communicate expectations and hold teachers 
accountable for improving classroom instruction. We also conjecture that it is 
important that the feedback be specifi c to the instructional practices on which school 
and district teacher professional development focuses. However, the extent to which 
school leaders’ feedback accomplishes these goals depends crucially on the profes-
sional development they receive. 

 We conjecture that school leaders’ participation in mathematics teacher collab-
orative meetings signals the importance of teacher collaboration, enables school 
leaders to hold teachers accountable for using collaborative time productively, and 
constitutes a context for school leaders’ learning, thus better positioning them to 
give productive feedback after observing instruction and to procure appropriate 
resources for teachers. In this regard, a meta-analysis conducted by Robinson et al. 
( 2008 ) found that school leaders’ participation in teacher professional development 
is strongly associated with improvements in student achievement. 

 Findings of a retrospective analysis indicate that coaches’ effectiveness in 
supporting teachers’ learning depends on school leaders assuming shared responsibility 
for instructional improvement with them (Gibbons et al.  2010 ). We therefore conjec-
ture that it is important that school leaders understand the district-wide goals for 
students’ mathematical learning and the guiding vision of high-quality instruction, 
and that they appreciate the critical role of coaches in supporting teachers’ learning. 
In the course of our collaboration with the districts, we have documented several 
cases in which principals have assigned additional duties to coaches that took them 
away from their work with teachers (e.g., analyzing data to identify struggling stu-
dents, tutoring struggling students). Our observations also indicate that principals 
protect coaches’ time when they understand the coaches’ role in the improvement 
effort. We conjecture that the development of shared responsibility for instructional 
improvement is facilitated if school leaders and coaches meet regularly to share 
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their observations about the quality of teachers’ instructional practices, discuss how 
the coach’s work with teachers is progressing, jointly select teachers with whom the 
coach should work, and plan for future work with groups of teachers. 

 The ongoing analyses we have conducted while developing feedback for the 
collaborating districts indicate that it is challenging for school leaders, most of 
whom are not mathematics specialists, to develop the three instructional leadership 
practices that we have described. As a consequence, we have also developed conjectures 
about the nature of professional development that might support their development 
of these practices. 

 First, we conjecture that if school leaders are to effectively and realistically press 
teachers to improve the quality of instruction, professional development for school 
leaders should enable them to recognize the instructional practices that are the focus 
of teacher professional development, and to distinguish between low- and high- 
quality enactments of those practices. We also conjecture that a consistent emphasis 
on the same instructional practices across teacher, coach, and school leader profes-
sional development will contribute to the development of compatible visions of 
high-quality instruction and to the alignment of supports for teachers’ learning. 

 Second, we conjecture that professional development should attend explicitly to 
how to provide feedback to teachers that communicates expectations for ambitious 
instruction. This might involve school leaders and district mathematics specialists 
observing instruction or watching video-recordings of specifi c phases of lessons 
and discussing the feedback they would provide. 

 Third, we conjecture that professional development should clarify the role of 
coaches and mathematics teacher collaborative meetings in supporting teachers’ 
development of ambitious instructional practices. We have documented several 
cases in which a school leader has taken over the agenda of mathematics teacher 
meetings to the detriment of the participating teachers’ learning. We therefore 
conjecture that it is important to give particular attention to how the distribution of 
instructional leadership between coaches and school leaders should refl ect their 
complementary areas of expertise (Elmore  2006 ). 

 The contrast between our initial and current conjectures for school leadership is 
representative of the changes we have made as we have revised and elaborated our 
initial conjectures. The level of specifi city of our current conjectures is essential if 
we are to provide district leaders with actionable guidance on how they might 
support instructional improvement in mathematics on a large scale. We regard the 
current iteration of our theory of action as a work in progress and are further testing 
and revising our conjectures as we continue to collaborate with two of the four 
districts for a further 4 years.  

18.18     Conclusion 

 Our purpose in this chapter has been to describe a design research approach for studying 
and supporting improvements in the quality of mathematics teaching on a large scale. 
The aim of this methodology is to both provide the leaders of educational systems, 
such as urban school districts in the U.S., with feedback that can inform their instructional 
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improvement efforts, and to contribute to the development of a generalizable theory of 
action for large-scale instructional improvement in mathematics. The successful 
use of the methodology depends crucially on researchers establishing a genuine 
collaborative partnership with educational leaders such that researchers become co-
designers of instructional improvement policies. Only then is it possible for researchers 
to test and revise their conjectures about supports for instructional improvement by 
conducting successive data collection, analysis, and feedback cycles. 

 We noted early in this chapter that research in mathematics education has made 
considerable progress in recent years, but that the fi ndings of this work have had 
little impact on the quality of mathematics instruction and thus student learning in 
most classrooms. Design studies of the type that we have described and illustrated 
are clearly non-trivial undertakings. The value of this methodology derives from the 
way in which it enables us to test, revise, and thus improve our understanding of 
what it takes to support large-scale instructional improvement in mathematics.     
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    Chapter 19   
 Looking Back 

             Angelika     Bikner-Ahsbahs     ,     Christine     Knipping     , and     Norma     Presmeg    

    Abstract     In this fi nal summary we refl ect on the interconnection between method-
ology and research practice. This brings us to consider basic principles and paradig-
matic questions that link methodologies with each other and with specifi c objects 
and goals of research. Methodologies are part of the theoretical frameworks used in 
research, and therefore deeply connected with the theory’s principles and paradig-
matic questions. However, the link between specifi c research objects and goals, 
methodology and theoretical principles may be stronger or weaker. Looking back 
over the parts of this book, this is refl ected in their structures, with some having two 
distinct chapters focused on theory and research practice respectively, while others 
consist of a single chapter, and others have two chapters in which theory and 
research practice are integrated but differently emphasized. The connections 
between theory and research practice refl ected in the book’s structure is the main 
topic of this fi nal summary.  

  Keywords     Methodology   •   Research practice   •   Connection between theory and 
research practice      

 Initially, all the parts of this book were supposed to consist of two separate chapters, 
which would allow the reader to use the book as an actual guide for the selection of 
an appropriate methodology, based on both theoretical depth and practical implica-
tions. However, in the course of the emergence of the book we realized that not all 
methodologies could be described in two such separate chapters, i.e., one describing 
the methodology in a more general form including basic considerations and the 
other illustrating this general description with a specifi c research example. Some 
methodologies seemed to be much more tightly linked to research practice than we 
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had assumed beforehand. Therefore this strict separation was modifi ed, to allow 
presentations of interesting new strands of methodologies to be more connected to 
their respective research practices, their research objects, and specifi c theoretical 
frameworks. In looking back, this seems so particularly interesting to us that we 
want to refl ect on the interconnection between methodology and its research prac-
tice in our fi nal summary. 

 Following the methodology concept introduced by Radford ( 2008 ,  2012 ), 
 methodologies, encompassing methods and techniques, are parts of the theory 
involved in research, and therefore deeply connected with the theory’s principles 
and paradigmatic questions. The link between methodology and the theory’s prin-
ciples may be of varying degrees. For instance, ideal type construction (Part III) 
and Grounded Theory methodology (Part I) both have their roots in interpretive 
sociology but they are not as deeply intertwined with the theoretical principles as in 
the case for Abstraction in Context (Part V). 

 Abstraction in Context is not only a theory, rather it also provides the tools for 
analyses leading to results that in turn allow a deepening of the understanding of the 
theory’s principles and core concepts. This deep interrelatedness of principles, 
methodology and results gained in research refl ects the way the authors have 
illustrated their methodology while drawing on examples of their “research journey”. 
A separation into two separate chapters was just not suitable. 

 The chapter on semiotic research (Part IV) shows how methodology can be elabo-
rated by research practice: Hence, these authors, too, delineate the methodology by an 
intense use of research examples, but also for other reasons. The authors’ cultural 
historical view has spread out to their research process that naturally is regarded as a 
cultural historical activity that can only be thought of as being intertwined with 
research practice. As described in the chapter, principles, methodologies and research 
questions are brought about through research practice and reveal results, which in turn 
broaden the researcher’s theoretical view and approach to the fi eld (see also Radford 
 2012 ). Thus, the authors’ methodological perspective on generalization was widened 
and changed as they realized the relevance of rhythm as a semiotic resource. 

 The two chapters on argumentation processes (Part II) at fi rst glance seem to 
refer to the same research object since both papers use Toulmin’s scheme for their 
analyses of argumentation structures. However, the argumentation processes 
described in the two chapters differ with respect to the students’ age, the level of 
mathematics, their complexity and duration. Moreover, the foci of the papers are 
different. Because of the complexity of the investigated processes the authors of 
Chap.   4     use additional diagrams that allow the capturing of long lasting mathematical 
argumentation processes and their specifi cities. In Chap.   3    , two theories are merged, 
a participation theory and an argumentation theory, resulting in a conjunction of two 
different methodologies that offer additional insights into both, argumentation and 
participation of the students. Hence, this chapter illustrates how methodological 
tools, theories and research objects mutually inform each other. 

 Similar to the chapter on semiotic research (Part IV), the authors of the chapters 
on the networking of theories (Part VI) regard themselves and their experience in 
the Networking Theories Group as parts of the methodology. At the beginning of 
this research strand, multi-theoretical empirical research was an attempt at deepen-
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ing the understanding of the role of theory in research in mathematics education. 
In the course of doing research with a group of scholars using different theories, 
 methodologies for the networking of theories were developed. As described in this 
part, these methodologies revealed new kinds of concepts at the boundary of the 
theories involved. Hence, the chapters on the networking of theories are an example 
that shows how new methodologies involving a variety of theories provide new 
ways of engaging in research practice, and new kinds of results. 

 The authors of Part VII undertake a multilevel analytical approach to investigate 
individual and social learning processes over time in classrooms. To capture these 
they address and connect microgenesis, sociogenesis, and individual ontogenesis 
strands of learning consisting of different mutually infl uencing sub-objects, 
which belong to the learning process. Their specifi c methodical approaches deeply 
refl ect the intertwined infl uence of different kinds of research objects in processes 
of learning over signifi cant spans of time in class. As the authors admit, their 
methodology might not be transferable to another project the way it is used in their 
work. However, their approach might serve as heuristics that may be converted and 
adapted by other researchers to investigate learning processes over time in another 
class or another environment to understand the learning of another topic. 

 The approaches of Mixed Methods (Part VIII), Qualitative Content Analysis 
(Part IX) and Triangulation (Part X) in the next three parts are methodological 
approaches of a more general character and are therefore better transferable to other 
research projects. Mixed Methods and Qualitative Content Analysis address the 
kind of data used. Mixed methods mean the combined use of qualitative and 
quantitative data and methods in the very same research project. This may be pursued 
by relating results of qualitative and quantitative analyses to each other in order to 
compensate for specifi c weaknesses of both types of research. Such a combination 
may lead to enhancing the validation of qualitative or quantitative fi ndings being 
extensively discussed in Part VIII. Qualitative and quantitative research can also be 
combined by integrating quantitative methods into the analysis of textual data in 
qualitative content analysis—an approach presented and discussed in Part IX. The 
third aforementioned methodology (Triangulation in Part X) not only addresses 
the connection of different data and methods in research, but also the common use 
of different theoretical perspectives, informants, environments and specifi cally 
cultural settings. Even if these three approaches (Parts VIII, IX, X) are not so tightly 
connected to the specifi c research objects, they assist in pursuing specifi c research 
aims. For instance a research aim might require mixed methods either to deepen 
insight into a quantitative data set by qualitative data or to broaden or validate the 
view suggested by qualitative data by adding a quantitative approach. Another aim 
could be enhanced insight into and an overview of the complementary variation of 
classroom activities. This aim is pursued by the Learner’s Perspective Study (LPS) 
with its implementation of different kinds of triangulation, focusing specifi cally on 
the triangulation of different cultural settings (Part X). 

 In the fi nal part (Part XI) on design research, the methodologies described in two 
of the three chapters share a cyclic characteristic, although the methods used are 
different. This cyclic character is often at the core of design research methodologies 
that links design and theory, although each can play a different role in the research 
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practice. The design can be the goal of research, informed by theory. Design can 
also be the object to be researched in order to gain theoretical insight into the design 
itself. Or design can be a way to understand the structure of specifi c mathematical 
content to be learned. The methodology described in the third chapter of this part, 
on didactical engineering, lacks a cyclic character, and design is used as a tool for 
research and theoretical insight informed by epistemological considerations. While 
all three chapters of this part share an emphasis on design, there are analytical 
distinctions between them. They all show that theorizing and designing inform each 
other, but either theory or design or both can be in the center of the specifi c project. 
Not only the objects of research but also the purpose for which the design is  developed 
and the kind and the role of theories involved all determine the methods used. 

 While specifi cities of the methodologies described differ in many ways, the parts 
of this book have pointed out the connectivity between doing research and the 
(qualitative) methodologies involved. This connectivity has been brought to life by 
including illustrative and paradigmatic examples, and, looking back, it has been 
refl ected on in the previous sections according to the methodologies’ degree of 
tightness to the theoretical principles on the one hand and the role of research 
practice on the other. We may conclude that qualitative methodologies (and beyond) 
do not always serve as instruments for research that are completely determined 
beforehand; they rather also serve as heuristics and evolve through research 
practice, its focus, aims and objects and its results over time. As Radford ( 2012 ) 
describes it, results may retroact to the development of theory and this encompasses 
the development of methodology. 

 Overall, we believe the purpose of this book—as a contribution to a methodological 
debate and as an offer for scholars interested in qualitative research and beyond—
has been fulfi lled. We thank the authors for their scholarship and careful work, 
especially in providing the examples of research projects that illustrate the use of 
their various methodologies, intertwined as these are with the respective theoretical 
principles, and for illustrating the refl exive relationships among theory, methodology, 
and methods of data collection which allow each of these to develop further.    
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