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What This Book Series Is About…

Current Healthcare: What Is Behind the Issue?

For many acute and chronic disorders, the current healthcare outcomes are consid-

ered as being inadequate: global figures cry for preventive measures and

personalised treatments. In fact, severe chronic pathologies such as cardiovascular

disorders, diabetes and cancer are treated after onset of the disease, frequently at

near end-stages. Pessimistic prognosis considers pandemic scenario for type 2

diabetes mellitus, neurodegenerative disorders and some types of cancer over the

next 10–20 years followed by the economic disaster of healthcare systems in a

global scale.

Advanced Healthcare Tailored to the Person: What Is

Beyond the Issue?

Advanced healthcare promotes the paradigm change from delayed interventional to

predictive medicine tailored to the person, from reactive to preventive medicine and

from disease to wellness. The innovative predictive, preventive and personalised

medicine (PPPM) is emerging as the focal point of efforts in healthcare aimed at

curbing the prevalence of both communicable and non-communicable diseases

such as diabetes, cardiovascular diseases, chronic respiratory diseases, cancer and

dental pathologies. The cost-effective management of diseases and the critical role

of PPPM in modernisation of healthcare have been acknowledged as priorities by

global and regional organisations and health-related institutions such as the Orga-

nisation of United Nations, the European Union and the National Institutes of

Health.
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Why Integrative Medical Approach by PPPM as the

Medicine of the Future?

PPPM is the new integrative concept in healthcare sector that enables to predict

individual predisposition before onset of the disease, to provide targeted preventive

measures and create personalised treatment algorithms tailored to the person. The

expected outcomes are conducive to more effective population screening, preven-

tion early in childhood, identification of persons at risk, stratification of patients for

the optimal therapy planning, and prediction and reduction of adverse drug-drug or

drug-disease interactions relying on emerging technologies, such as pharmaco-

genetics, pathology-specific molecular patterns, sub-cellular imaging, disease

modelling, individual patient profiles, etc. Integrative approach by PPPM is con-

sidered as the medicine of the future. Being at the forefront of the global efforts, the

European Association for Predictive, Preventive and Personalised Medicine

(EPMA, http://www.epmanet.eu/) promotes the integrative concept of PPPM

among healthcare stakeholders, governmental institutions, educators, funding bod-

ies, patient organisations and in the public domain.

Current Book Series, published by Springer in collaboration with EPMA, over-

view multidisciplinary aspects of advanced bio-medical approaches and innovative

technologies. Integration of individual professional groups into the overall concept

of PPPM is a particular advantage of this book series. Expert recommendations

focus on the cost-effective management tailored to the person in health and disease.

Innovative strategies are considered for standardisation of healthcare services. New

guidelines are proposed for medical ethics, treatment of rare diseases, innovative

approaches to early and predictive diagnostics, patient stratification and targeted

prevention in healthy individuals, persons at risk, individual patient groups, sub-

populations, institutions, healthcare economy and marketing.
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O. Labudova in years 1990–2000. Dr. Golubnitschaja is an expert in molecular

diagnostics actively publishing in the fields of ophthalmic diseases, neurodegener-

ative pathologies, cancer, cardiovascular disease, Diabetes mellitus, hyperhomo-

cysteinemia, etc. She is the cofounder of the theory of individual patient profiles,

author of fundamental works in systems medicine (holistic approach considering

molecular patterns at epi/genomic, transcriptional and post/translational levels). Dr.

Golubnitschaja holds appointments, at the rank of Professor, at several European
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Preface

Although the first indication of the presence of DNA in blood occurred some

65 years ago, it was not until the early 1970s that there was a return to researching

the DNA present in blood led by the pioneering studies of Maurice Stroun and

Philippe Anker, in which they demonstrated the release of DNA in a controlled

manner from living but not dead cells. They further showed that DNA found in the

blood could be of tumor cell origin.

During the interim period, studies on the uptake and movement of DNA in

cells and whole organisms gave rise to the idea that DNA could circulate within

organisms—both plant and animal—and that a fraction of the DNA could be acting

as a messenger. These new studies showed increases in blood DNA levels in cancer

and trauma patients and were followed by measurements of increased DNA

blood levels in patients suffering from sepsis, stroke, and acute myocardial infarc-

tion by the early 2000s. Clearly, the increased amounts of DNA found in cancer

patients could not be used to identify the type of cancer present, and current studies

are ongoing to identify suitable early markers for cancer-specific forms based

on assays for individual sequences of cell-free DNA, mRNA and microRNAs

with some successful early markers already available ranging from individual

markers to panels of markers.

A major development involves the use of minimally invasive methods for

identifying fetal cell-free DNA in the maternal blood, so leading to first-trimester

identification of fetal sex and Rh status. The former has been incorporated in

routine clinical practice in a number of countries as well as by direct-to-consumer

testing. The development of techniques, including digital PCR and massively

parallel sequencing, has allowed the detection of allelic imbalances and the precise

quantification of sequences in the maternal plasma. In turn, this has enabled the

deduction of maternally inherited fetal monogenic diseases as well as the accurate

detection of fetal chromosomal aneuploidies such as Down syndrome in the first

trimester. In addition, the determination of the fetal genome in utero through the

sequencing of the fetal cell-free DNA in maternal blood has been achieved.

Moreover, the sequencing of fetal cell-free RNAs found in amniotic fluid has

opened up the possibility of identifying markers for fetal development and hence

xi



potential developmental problems. This offers the possibility of initiating treatment

either in utero or immediately after birth.

Thus, the study of circulating nucleic acids in plasma and serum (CNAPS) has

yielded the first concrete steps as an additional arm to the other “liquid biopsy”

methods already involved in predictive, preventive and personalized medicine

(PPPM). More recently, the research has been extended to include studies on cell-

free DNA and RNAs in other body fluids including saliva, urine, amniotic fluid,

cerebrospinal fluid, bronchial lavages/aspirates, breast milk, colostrum, tears, sem-

inal fluid and stools.

The study of circulating nucleic acids (CNA) is already playing an important

role in PPPM, including the exploitation of early nucleic acid markers for

(i) monitoring serial blood biomarker concentrations to screen patient groups at

risk of developing a disease, (ii) estimating the severity (and staging) of a diagnosed

disease, (iii) the stratification of patients with a diagnosis for a particular therapy,

(iv) monitoring the response to local or systemic therapies and (v) the early

detection of disease recurrence following completion of primary therapy.

As with other approaches, CNA has a crucial role to play in the integrative

approach of PPPM, which is acknowledged as a priority by the WHO, UN

General Assembly, and the European Union, among others. The European Associ-

ation for Predictive, Preventive and Personalised Medicine (EPMA) (http://www.

epmanet.eu) is at the forefront of PPPM-related initiatives and has provided an

excellent scientific research platform through The EPMA Journal (BioMed Central,

London). The EPMA organization of the World Congress on PPPM in Bonn,

Germany on September 15-18, 2011 hosted participants from 44 countries world-

wide, an event leading to the EPMA J publication of the General Report and
Recommendations in PPPM 2012: White Paper of EPMA. The subsequent release
of the EPMA Book Series Advances in PPPM published by Springer has yielded a

range of PPPM-related volumes. The current volume, Circulating nucleic acids in
early diagnosis, prognosis, and treatment monitoring: an introduction, concerns
the preparation of cell-free nucleic acids from peripheral blood and other body

fluids, the analytical methods employed, and the application of these methods in

PPPM. The book presents the current situation and is intended primarily for all

researchers who would want to enter the field, be they PhD students, postdoctoral

workers, current researchers, or clinicians. My special thanks go to the chapter

authors for their contributions and the publisher for support during the preparation

of this book.

London, UK Peter B. Gahan
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Abbreviations

AF Amniotic fluid

cfDNA cell-free DNA

cffDNA cell-free fetal DNA

cffRNA cell-free fetal RNA

cfmitDNA cell-free mitochondrial DNA

cfRNA cell-free RNA

CGH Comparative genomic hybridisation

CRC Colorectal cancer

CTC Circulating tumour cells

ddPCR droplet digital PCR

dPCR digital PCR

GE Genomic equivalents

HGT Horizontal gene transfer

lncRNA long noncoding RNA

LOH Loss of heterozygosity

miRNA microRNA

MPS Massively parallel sequencing

NGS Next generation sequencing

NIPD Non-invasive prenatal diagnosis

NIPT Non-invasive prenatal testing

NOD Non-obese diabetic

PCR Polymerase chain reaction

QF-PCR Quantitative fluorescence PCR

qPCR quantitative PCR (real time PCR)

ROC curves Receiver-operating characteristic (ROC) curves
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RT-qPCR Reverse transcription quantitative PCR

sDNA stool DNA

SNP Single nucleotide polymorphism

WGA Whole genome amplification
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Part I

Background



A Brief History and the Present and Future

Status of CNAPS

Peter B. Gahan

Abstract 1948 marked the identification of DNA in peripheral blood by Mendel

and Métais and the beginning of modern cell biology after the 2nd world war.

During the period that followed, little was heard of the peripheral blood DNA, but

there was research activity concerning the movement of DNA about plants that led

to parallel studies on animal systems. This resulted in the establishment of the

capability of DNA to leave and enter cells as well as to circulate about plants and

animals. Subsequently, together with improved technology and analytical genetics,

both DNA and RNAmarkers have been identified that may act as early indicators of

a pathological state and also have a use in the monitoring of treatment. This chapter

offers some historical background to CNAPS and indicates both the current state of

the art as well as the directions in which the research is developing. Attention is

drawn to the ethical and legal problems arising through the development of the

genetic information and the testing systems. The topics discussed are expanded in

the subsequent chapters.

Keywords Circulating DNA/RNA • Brief history • Cancer • Fetal nucleic acids

• Costs • Ethics • Predictive, preventive and personalized medicine

1 Introduction

Although the presence of nucleic acids in blood from healthy donors, pregnant

women and clinical patients was first made by Mendel and Métais [1], this study

was largely forgotten until the paper of Koeffler et al. [2] involving raised DNA

levels in the blood of lupus erythematosus and rheumatoid arthritis patients. The

apparent “long silence” of the period 1948–1975 was due, in part, to the fact that the
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data of Mendel and Métais were questioned because of uncertainties in the analyt-

ical methods available at the time (reviewed in [3]). Only 4 years earlier Avery

et al. [4] identified DNA as genetic material and 1948 saw the start of the challenge

to the idea that DNA was animal nucleic acid and RNA was plant nucleic acid.

Although the presence of DNA in the cytoplasm was identified for the first time in

1949, evidence for the structure of DNA [5, 6] and the confirmation that DNA

comprised the gene [7] was still awaited. 1948 was also the beginning of modern

cell biology with the developments of various forms of light and electron micros-

copy, quantitative DNA measuring methods, isolated and in situ, as well as other

biochemical and cytochemical methods for nucleic acids, proteins and lipids.

Nevertheless, the long period from 1948 to 1977 was not really one of silence but

one in which a series of experiments, initially on plants and, subsequently, animal

systems would ignite the studies on peripheral blood nucleic acid levels leading to a

consideration of their biology and use in diagnosis, prognosis and treatment mon-

itoring and, hence, in Predictive, Preventive & Personalized Medicine.

2 The Occurrence of Circulating DNA

Although Koeffler et al. [2] demonstrated raised DNA levels in the serum of

patients with a variety of diseases, but especially in lupus erythematosus (SLE)

and rheumatoid arthritis patients, these results were challenged by Steinman [8]. He

claimed a lack of DNA in serum and only 2 μg ml�1 in plasma using 2 ml of normal

blood samples though accepting that DNA may be present in serum in an unusual

form that escaped detection by his methods. However, Stroun et al. [3] suggested

that if only 20–30 μg DNA could be founding 200 ml of plasma [9], then Steinman

would be unlikely to find only in 1 ml.

A separate study by Davis and Davis [10] using counter-immunoelectrophoresis

for DNA detection, which was about 10 times more sensitive than simple immu-

nodiffusion used by Koeffler et al. [2], showed that DNA levels from normal

individuals could be as low as 1.5 μg ml�1 for plasma and 0.2 μg ml�1 for serum.

Using nick-translation on purified plasma DNA, normal individuals showed

266� 57 ng ml�1 whilst two untreated SLE patients showed 4,024 and

2,437 ng ml�1, respectively.

Thus, although the apparent “long silence” of 1948–1975 was due, in part, to the

fact that the data of Mendel and Métais was too early in the development of the

understanding of DNA, it also has to be remembered that the methods for DNA and

RNA analysis were comparatively primitive when compared to the technology

available today.

Nevertheless, the “silent period” was not so silent!

4 P.B. Gahan



3 The “Silent” Period 1948–1977

The unusual beginning leading to the concept of CNAPS started with the experi-

ments of Stroun and colleagues [11, 12]. They repeated the experiments of

Glouchtchenko [13], who was based in the USSR, in which the transmission of

hereditary characteristics was demonstrated through the graft between two varieties

of plants – a mentor plant and a pupil plant.

Stroun et al. [11, 12] used grafting experiments with the egg-plants Solanum
nigrum and two varieties of Solanum melgena e.g. S. melongena and S. nigrum that

involved either the stock or the scion being deprived of all growing leaves and so

subjected to the influence of the metabolism of the leaf-bearing section. They

showed that the products of the pupil sometimes demonstrated genetically modified

characteristics similar to those of the mentor that were very different from those

seen by the sexual crossing of the two varieties. Thus, (a) some characteristics of the

mentor plant were seen in the pupil plant whilst others were different to those of the

mentor plant; (b) not all of the modified pupil plants acquired the same character-

istics of the mentor plant, some demonstrating only one characteristic, others

several characteristics whilst still others, all of the characteristics of the mentor;

(c) during segregation, which occurred as early as the F1 generation, some recessive

parents produced offspring with dominant features and (d) occasional linked char-

acteristics in the mentor plant appeared individually in the pupil plant and its

offspring. Similar results were obtained through grafting between S. melongena
and S. nigrum. The data were interpreted as being due to the passage of DNA from

the mentor to the pupil [11, 14].

During the same time period, Yagishita [15, 16] performed similar experiments

using Capsicum baccatum and Capsicum annuum obtaining similar results includ-

ing the non-Mendelian segregation of the new features in the progeny of the grafts.

Hirata [17–19] also worked on S. melongena with similar results to those of Stroun

[11] and Stroun et al. [12] coming to similar conclusions to these authors in that

there was a movement of genetic material between the stock and the scion.

Graft-induced genetic variation was also demonstrated through the transfer of

male sterility from male sterile petunia stocks to normal fertile petunia scions

[20, 21]. Non-Mendelian inheritance was also reported for grafts of Capsicum
annuum by Kasahara and co-workers (see Ohta and Choung [22]; reviewed by

[23]).

Thus, these preliminary experiments led the authors to indicate a possible

transfer of DNA via the graft to express itself in a subsequent generation. There

was no mention of RNA transfer although this possibility could not be excluded

[24].

Such plant experiments were accompanied by similar early work on animals by a

number of researchers [24]. For example, Stroun et al. [25, 26] demonstrated that

when blood from the gray guinea fowl was repeatedly injected into birds of the

White Leghorn variety, the progeny so produced had some gray or black-flecked

feathers in the second and later generations. During this time period and earlier,

A Brief History and the Present and Future Status of CNAPS 5



many such experiments were also performed in the USSR (reviewed [23]) with

similar outcomes.

These and other experiments led to the development of two approaches based

upon the concept that DNA was moving in the sap between e.g. mentor and pupil

plants as well as in the blood between parabiosed animals. Experiments were run to

test if (a) DNA could be taken up by cells and tissues without being degraded and

what changes did it cause to be made in the recipient cells/tissues, and more

importantly, (b) cells can release DNA into their environment.

DNA uptake was demonstrated in both plants and animals. The introduction of
3H-DNA isolated from thymine-deficient Escherichia coli by i.v. injection into

mice showed the presence of the radio-active DNA in ovarian tissues and in

particular, in the oocyte nuclei. This was confirmed by both CsCl centrifugation

and autoradiography [27]. In the case of plants, uptake of similar E. coli 3H-DNA
into nuclei, mitochondria and plastids of all tissues was demonstrated by uptake

into cut shoots of Solanum esculentum. Again, the E. coli 3H-DNA presence was

identified by both CsCl centrifugation and autoradiography [28–31].

The release of DNA from cells was even more important in the context of

CNAPS. The early indications of DNA localisation, structure and mobility are

given in Table 1 whilst possible mechanisms by which DNA, and RNA, could be

released and hence act as sources of CNAPS are given in Table 2.

A fuller discussion of DNA/RNA release from cells and uptake by cells is given

in chapter “The Biology of CNAPS” (Sects. 3 and 4).

Circulating DNA also came back into the literature through studies employing

DNA isolated from serum (though plasma was shown to contain similar DNA levels)

of systemic lupus erythematosus patients and using both the diphenylamine reaction

and gel-electrophoresis against DNA antibody [42]. Albeit that the techniques used

were less sensitive than those employed today, this DNAwas compared with that from

normal individuals as well as with calf thymus, salmon sperm and E. coli DNAs.
What is clear from the “silent” period is that the groundwork was being laid for

the subsequent studies permitting the establishment of the presence of DNA/RNA

in the peripheral blood and leading to the development of their possible uses in

diagnosis, prognosis and monitoring of treatment.

4 Applications in the Early Studies of CNAPS

The cfDNA studies were subsequently kick-started by two approaches in particular.

The first was by Leon et al. [39] using a radioimmunoassay for ng quantities of

cfDNA, the levels of which were determined for serum samples from 173 patients

with various types of cancer and 55 healthy individuals. cfDNA concentration in

the normal controls had a range of 0–100 ng ml�1 with a mean value of

13� 3 ng ml�1. However, 93 % of controls were found to be in a range of 0–

50 ng ml�1 that was chosen for comparison. The cancer patients’ cfDNA concen-

trations ranged from 0 to μg levels (mean 180� 38 ng ml�1). Fifty percent of the
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patients’ values were found in the range of 0–50 ng ml�1; the other 50 % were

between 50 and 5,000 ng ml�1. However, significantly higher cfDNA levels were

found in the serum of patients with metastatic disease (mean 209� 39 ng ml�1)

when compared with non-metastatic patients (mean 100� 30 ng ml�1, p< 0.02).

Interestingly, the levels decreased in 90 % of the patients after radiation therapy

for lymphoma, lung, ovary, uterus and cervical tumours while for glioma, breast,

colon and rectal tumours, the DNA levels decreased only in 16–33 % of the

patients. Thus, a decreased serum cfDNA concentration correlated with an

improved clinical condition. When treatment failed, cfDNA levels either increased

or remained unchanged (see chapter “CNAPS in Therapy Monitoring” re monitor-

ing of patients). Although the data derived from this study was somewhat mixed, it

was one of the first studies to indicate (a) increased levels of serum cfDNA in

cancer patients, (b) a decrease in serum cfDNA levels after radiation therapy and

(c) a difference in cfDNA levels between tumour bearers with and without

Table 1 Some developments in understanding DNA mobility and its cellular roles

Date Authors Discovery

1948 Mandel and

Metais [1]

Circulating cfNAs in blood

1949 Chayen and

Norris [32]

Cytoplasmic DNA localisation

1959 Gartler [33] DNA uptake by mammalian cells

1962 Gahan et al. [34] DNA mobility

1962 Stroun [11] DNA mobility

1962 Pelc [35] Metabolic DNA

1965 Gahan and

Chayen [36]

Messenger DNA

1969 Stroun et al. [37] Released bacterial DNA transcription in plants

1971 Stroun [38] Bacterial DNA-dependent RNA polymerase released from bacteria into

plants

1972 Stroun and

Anker [14]

Released cfNAs with associated polymerases – a general phenomenon

1977 Stroun et al. [3] Circulating nucleic acids

1977 Leon et al. [39] Raised blood DNA levels in cancer

1989 Stroun et al. [40] Cancer derived blood DNA

1997 Lo et al. [41] Fetal DNA in maternal blood

Table 2 Possible

mechanisms for the release of

DNA and RNA from both

animal and plant cells and

tissues

Mechanism Plant Animal

Leucocyte breakdown � +

Bacteria and viruses + +

Cell-surface DNA � +

Necrosis + +

Apoptosis + +

Exosomes + +

Virtosomes + +
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metastases. This led to an interest in the possibilities of exploiting cfDNA concen-

tration as a tumour marker.

The second study was by Stroun et al. [40] who employed a method based upon

the decreased strand stability of cancer cell DNA. They found extractable amounts

of plasma cfDNA from a range of tumour patients but none extractable from the

normal control plasmas. They further demonstrated that the released cfDNA was

derived from cancer cells.

Unfortunately, the increased cfDNA levels were found for a range of cancers and

so could not be used to identify a single type of cancer. Moreover, similar increases

were found in a range of general medical conditions (Table 3; see also chapter

“CNAPS and General Medicine”). It became clear that although there was a

disturbance in cfDNA levels, this alone could not form the basis of a diagnostic

method although in specific cases, cfDNA amounts could prove helpful e.g. for the

triage of earthquake victims [50].

This led to the search for specific cfDNA fragments that would typify a partic-

ular cancer for early diagnosis e.g. cfDNA fragments corresponding to mutant

genomic sequences (see chapter “Extracellular Nucleic Acids and Cancer”). In

addition, the quest for cfRNA molecules that might also be exploited either as

early markers or indicators of tumour progression was launched leading to exten-

sive analyses of cfmRNA and cfmiRNA, in particular. Similar approaches have

been used in aspects of diabetes (see chapter “Circulating Nucleic Acids and

Diabetes Mellitus”).

Nevertheless, there has been disappointingly slow progress in the definition of

routine cancer markers for the early detection of the presence of specific tumours. In

contrast, the identification of the presence of cffDNA in maternal plasma and serum

during pregnancy [41] was a major breakthrough, permitting the development of

tests for fetal sex and Rh factor both of which are available to the general population

in a number of countries. In addition, tests for trisomy disorders and ß-thalassemia

are close to clinical deployment (see chapter “Fetal CNAPS: DNA/RNA”). The

range of some fetal disorders identified by cffDNA/cffRNA in maternal plasma/

serum are given in Table 4.

There are now many groups around the world searching for specific cfDNA and

cfRNA markers for the early identification of various forms of cancer and other

clinical disorders that can be applied in the clinical setting. These studies have been

boosted by the development of DNA and RNA analytical methods including

various PCR techniques, high throughput sequencing and microarray expression

analysis (see chapters “Detection of Genetic Alterations by Nucleic Acid Analysis:

Use of PCR and Mass Spectroscopy-Based Methods” and “Genomic Approaches to

the Analysis of Cell Free Nucleic Acids”). The application of such methods has

permitted faster analyses of genomic sequences that may be used as possible

markers in searching for cfDNA/cfRNA fragments for early diagnosis including

the development of a panel of cfDNA/cfRNA sequences for a particular e.g. cancer

form. Moreover, this approach has permitted the sequencing of the full fetal

genome [60, 61] from cffDNA fragments in the maternal blood whilst cffRNA

from amniotic fluid has permitted the identification of systems development of the
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fetus as well as checking for fetal sex, trisomy 13, 18 and 21 and SNPs (see Other

Body Fluids as Non-Invasive Sources of Cell-Free DNA/RNA). Systems evolution

in the neonate has also been determined by analyses of cffRNA from neonate saliva

(see Other Body Fluids as Non-Invasive Sources of Cell-Free DNA/RNA).

In addition to searching for early markers for clinical disorders, the use of

cfDNA and cfRNAs has permitted the monitoring of treatment (see chapter

“CNAPS in Therapy Monitoring”). Thus, not only can the effectiveness of treat-

ment be checked e.g. for radio- and chemo-therapy for cancer, but the early

identification of metastases after surgery, for e.g. CRC, can also be determined.

In consequence, the application of CNAPS can be seen to have an important role

to play in PPPM.

4.1 Implied Costs for Such Tests

One aspect for the application of such test in PPPM concerns the cost of the test. It is

clear from the example in Fig. 1 (A.R. Thierry, unpublished data) that the test costs

can vary widely as a function of the particular method employed. The increased

cost arises with increased genomic coverage associated with an increased data turn-

around time. Thus, the methods employing small cfDNA fragments using either

Intplex or dPCR or Single locus assay will be the cheapest and with the fastest turn-

around together with the highest sensitivity for rare mutation detection as deter-

mined by estimating theWT/mutant copy ratio. Thus, either the need or decision for

expanding the number of tested mutations outside of the conventional “hotspot” to

very rare (infrequent, <1 %) mutations, will seriously impact the test cost and data

turnaround time. NGS technologies could fulfil this expectation, but more devel-

opment is necessary with regards to their sensitivity since mutant circulating

cfDNA fragments might be present at very low frequency.

Table 3 Early examples of clinical disorders with increased plasma/serum cfDNA levels

Clinical disorder References

Injury Tan et al. [42]

Stroke Lam et al. [43], Rainer et al. [44] and Geifer et al. [45]

Acute myocardial infarction Chang et al. [46], Saukkonen et al. [47] and Antonatos et al. [48]

Sepsis Angus et al. [49]

Table 4 Some examples of fetal tests derived from cffDNA/cffRNA present in maternal plasma/

serum

Test References

Sex Vainer et al. [51]

Blood genotyping Lo et al. [52], Finning et al. [53], Zhang et al. [54] and Li et al. [55]

Trisomy 21 Dhallan et al. [56] and Lo et al. [57]

ß-thalassemia Li et al. [58] and Papsavva et al. [59]
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These figures will have an impact on the cost to the clinical application of the

tests and to the cost to the individual if the test is run from a private clinic.

The costs could be further affected by the patenting of a test where the test can

become restricted to being offered by a single company so resulting in (i) higher

than necessary costs, (ii) no chance of second opinions, (iii) no data sharing,

(iv) lack of access of the DNA sequences to other research workers leading to

(v) the blocking of the possible development of other tests as well as (vi) lack of

access to relevant information about the test by certain populations.

The granting of a patent for one or more genes has been challenge in the USA

Supreme Court where a decision taken on 13 June 2013 ruled that synthetic genes

such as complementary DNA can be patented but that naturally occurring genes

cannot be patented [62]. This also formed the basis of a similar decision taken by a

Federal District judge in San Francisco, USA [63].

These judgements have multiple implications including the costs of testing

in PPPM.

5 Ethical and Other Implications of CNAPS Applications

The identification and application of cfDNA/cfRNAs and cffDNA/cffRNA in

PPPM whilst bringing many benefits to people, also raises a number of ethical

and other questions. Some of the ethical issues include the erosion of informed

decision-making, pressure to test, testing for non-medical reasons or for

Fig. 1 A comparison of the costs of various techniques in detecting KRAS 12 and 13 mutations

(AR Thierry, unpublished)
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information only are considered in chapter “Societal Aspects: Ethics”. However,

there are additional questions that need to be addressed given especially that the

fetal genome can be sequenced and SNPs identified. This has already occurred for

the human genome with a possible SNP every 100–300 bp, i.e., 10–30 million

potential SNPs per genome. Given the identification of SNPs prior to birth and

subsequent genome sequencing of individuals, fetal diagnostic processes can be

employed more generally in PPPM. Determining fetal gender and Rh is of less

concern, but with the increased speed and sensitive methodology available and the

wide selection of possible disorders identified, e.g., through SNPs, will increase the

ethical problems. The similar situation arises for people of all ages who have their

DNA sequenced. Although either the presence or absence of particular SNPs or

DNA sequences that might lead to the development of a clinical disorder does not

necessarily mean that the disorder will develop, this can lead to uncertainties that

could be exploited e.g. by insurance companies with the cost of health and life

insurance policies. So should an insurance company be able to demand access to

such information? There should be protection for the patient concerned against

additional issues such as (i) How will such medical records be stored and how safe

will they be? (ii) Who will have access to such information? (iii) Who will pay for

such analyses and the upkeep of such data-bases, especially in the absence of a

national health service?

These topics need debating since the need for such genetic information in order

to apply PPPM in society in general involves the obtention of genetic information

for, eventually, each individual.
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The Biology of CNAPS

Peter B. Gahan

Abstract Although nucleic acids have been known to circulate in the blood since

1948 their biology has been studied only since the 1960s. This chapter contains

discussion of (a) the presence of DNA and RNA circulating in human plasma and

serum from both healthy individuals and patients, (b) the amounts of DNA/RNA

present together with the variables affecting these amounts, (c) possible sources of

the DNA/RNA in blood and (d) the ability of the circulating nucleic acids to enter

other cells and to modify the biology of the recipient cells. The relationship of the

DNA from cancer patients is considered with respect to the formation of

metastases.

Keywords Circulating DNA/RNA • Sources • Entry into/exit from cells • Cell

modification • Metastases

1 Introduction

The background concerning the presence of cfDNA/cfRNA in blood and other body

fluids has been considered in chapter “Brief History and the Present and Future

Status of CNAPS”. Developments in analyzing these cfNAs have permitted the

study of various applications of their use in diagnosis, prognosis and monitoring of

treatment of clinical disorders. Since the first identification of cfDNA and cfRNA,

there has been an increase in the general identification of the members of the RNA

family and in a broadening of their analysis in CNAPS. This chapter will consider

the biology of cfNAs in plasma and serum as well as in urine, saliva, cerebrospinal

fluid and amniotic fluid. The possible cellular origins of cfDNA/cfRNA found in
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blood, the mechanisms of release into the blood and their uptake into other cells as

well as their possible biological effects in the host organism will also be considered.

2 cfNucleic Acids and Nuclease Content

Both DNA (1.8–15 ng mL�1) and RNA (2.5 ng mL�1) are found in plasma and

serum from healthy donors [1 –3]. These levels rise in patients with various cancers,

trauma, myocardial infarction and stroke with values of 3,000 μg DNA mL�1 and

above being recorded on occasions [4]. In consequence, the amount of cfDNA and

cfRNA present in plasma and serum will depend upon the health status of the

individual and will also be influenced by the amount of nucleases present in blood.

The average blood plasma concentration of DNAase 1 forms 90 % of total blood

DNase i.e. 41� 30 ng mL�1 for healthy men and 21� 21 ng mL�1 for healthy

women yielding an activity of 0.307� 0.249 U mL�1 for men and 0.405� 0.509 U

mL�1 for women. In contrast, the values for diseased individuals rise with

e.g. gastrointestinal cancer patients having about 350 ng mL�1 [5]. The average

serum RNAase value for 54 normal individuals was 104 units mL�1 while for those

suffering from pancreatitis was 120 units ml�1 and pancreatic cancer was 383 units

mL�1 [6]. Based on such measurements, it can be postulated that the relatively low

levels of circulating cfDNA in healthy individuals could occur, partially, due to

peripheral blood DNAase activity. However, the DNA of cancer patients could be

resistant to DNAase as demonstrated by using bacterial DNAase [7]. This could be

possibly due to either accessory (lipo)-protein and/or low DNAase levels. Equally,

high RNA levels may also be due to RNA resistance to RNAase digestion espe-

cially when high RNAase and RNA levels co-exist. The RNA may either be

protected by a glycolipid resulting from its apoptotic origin [8] or the DNA and

RNA fractions are associated with the exosomes and virtosomes from living cells so

protecting the cfNAs from digestion by RNAase/DNAase activity ([1, 9–13];

section “Exosomes”/“Virtosomes”).

3 Nucleic Acid Sources

The presence of DNA in the blood raised the question as to its origin. The most

obvious suggestion was that it must be derived from dead and dying cells. However,

whilst this was a likely source, experiments by Stroun and Anker demonstrated that

healthy, living cells also could release DNA and RNA [1, 11, 14–16]. Subsequent

analyses have indicated that there are at least twelve possible sources of blood

cfNAs (Table 1).
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3.1 cfDNA

Leukocytes

A minimal amount of DNA is released on the death of leukocytes and is unlikely to

account for the total amounts of cfDNA found in normal blood i.e. 1.8–36 ng mL�1

[1, 5, 17] and certainly not the levels found during clinical disorders; larger amounts

have been reported for both normal individuals and those suffering from

e.g. cancer [4].

However, DNA can be found on the surface of leukocytes through either

trapping DNA on the outer surface prior to its internalization and destruction or

secretion of a DNA network onto the surface [18–21]. Neutrophils can release

sticky webs of chromatin (DNA+histones) during infection to trap invading

microbes. These neutrophil extracellular traps have granules containing lytic

enzymes and antimicrobial peptides exploited for the rapid killing of invading

pathogens [22–24].

In addition, lipopolysaccharide from Gram-negative bacteria activates either

interleukin-5 (IL-5)- or interferon-gamma primed eosinophils leading to a release

of mitDNA independently of eosinophil death. The mitDNA is rapidly (<1 s)

released involving a catapult-like movement. mitDNA, together with protein,

forms the extracellular network that is believed to bind and kill bacteria in vitro

and in vivo under inflammatory conditions [25]. However, Menegazzi et al. [26]

have challenged this explanation suggesting that the DNA network was released

only by dying neutrophils. This is based upon experiments in which live bacteria

were released from the DNA network on treatment with DNAase.

Importantly, cell surface DNA forms the basis of a number of early diagnostic

and monitoring analyses (e.g. [27]).

Table 1 Possible sources of

cfDNA and cfRNA

circulating in plasma and

serum

DNA and RNAsa

1. Leukocyte breakdown

2. Bacteria breakdown

3. Viruses

4. Mitochondrial DNA

5. Cell and tissue necrosis

6. Cell apoptosis

7. Cellular release of exosomes

8. Cellular release of RNAs

9. Cellular release of virtosomes

10. Parasite nucleic acids

DNA

1. Cellular release of transposons and retrotransposons

2. Leukocyte surface DNA
aIncluding the many forms of RNA (see Sect. 3.2) though to date,

the cfNA focus has been primarily on mRNAs and miRNAs
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Bacteria and Viruses

The levels of DNA seen are unlikely to be due to the presence of bacteria found

normally due to their low numbers. Some viral DNAs have been recorded in

peripheral blood e.g. Epstein Barr virus (EBV) in patients with nasopharyngeal

carcinoma [28] and human papilloma viral carcinoma in about 50 % of cervical

carcinoma patients and hepatitis patients [21, 29]. Human herpes virus-6 (HHV-6)

DNA has also been found in both plasma and serum. HHV-6 DNA in plasma was

readily attacked by DNAase and so is considered to be unencapsulated. HHV-7 was

also identified in plasma, but only in the P1 sub-fraction whereas HHV-6 appeared

in P1, P2 and S sub-fractions, especially in P1 [30].

That bacteria and viruses are likely to form only a very small part of cfDNA/

cfRNA was shown in a study by Beck et al. [31] on blood from 51 apparently

healthy individuals when they obtained 4.5� 105 DNA sequences (7.5� 107

nucleotides). Of these, 87 % were attributable to known human database sequences

and only 3 % were found to be xenogeneic.

Necrosis

Necrosis has also been considered as a potential source of blood cfDNA. The

cfDNA derived by necrosis forms non-specifically and incompletely digested

pieces in excess of 10,000 bp and, unlike apoptotic DNA fragments, forms smears

when electrophoretically run on gels [32–34]. The cfDNA fragments released from

necrotic cells and present in blood plasma samples have been shown, via electro-

phoresis and sucrose-gradient sedimentation, to contain high molecular weight

DNA fragments ranging from 21 kb [35] to 80 kb in length [36]. Hence, necrosis

does not appear to be a major contributor to cfDNA, the electrophoretic separation

pattern showing primarily an apoptotic ladder pattern rather than the smear pattern.

Apoptosis

This would appear to present a major contributor to cfDNA. cfDNA in blood is

double-stranded [1, 37] and forms a ladder pattern when separated by agarose gel

electrophoresis [32, 38, 39] with fragment sizes ranging from 60 to 1,000 bp. The

fragment ends are capped showing them to be present in the form of nucleosomes or

apoptotic fragments. This has led to the cfDNA being considered as the apoptotic

product from e.g. tumors. The typical electrophoretic ladder pattern of DNA from

apoptotic cells is initially of 50–300 kb fragments that mainly fragments into

multiples of nucleosomal fragments (180–200 bp). Thus, the cfDNA fragments

may have their origin via apoptosis [36, 38, 40]. Apoptotic fragments are expected

to be phagocytozed by macrophages and dendritic cells at the final stage [41] and so
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should not be released into the blood. It has been suggested that if the release is

from solid tumors there could be a breakdown in the phagocytic process [40, 42,

43].

Further evidence for the apoptotic origin of DNA is through the identification of

mitDNA in CNAPS [43]. Both particle-associated and mitcfDNA are present in

plasma, their respective concentrations being modified depending on the prepara-

tion of plasma from whole blood [44]. Thus, mitDNA increases were found in

trauma patients [45, 46], with median plasma mitDNA concentrations having

double the number of copies mL�1 in the severely injured subgroup compared

with the minor/moderate subgroup. A 2.6-fold increase in mitDNA was found in

patients dying from prostate cancer as opposed to those who survived [47]. The

median mitDNA copies 100 μL�1 plasma for prostate cancer patients were 49,193

compared to 19,037 for benign controls.

Exosomes

These membrane-bound structures, 30–90 nm in diameter, are secreted by most cell

types and may play a role in intercellular signaling. Although originally described

in 1983, interest in exosomes has increased recently due to them containing both

mRNA and miRNA ([48] see section “Exosomes”). DNA has also been found to be

present in exosomes of both man and mouse [49–51]. DNA-containing exosomes

have been linked to the initiation of both glioma and colorectal cancer under

experimental conditions [49, 50]. Nevertheless, exosomes appear to be low-level

contributors of DNA/RNA to cfNAs.

Virtosomes

A further contributor to CNAPS would appear to be newly synthesized DNA that

has been shown to be spontaneously released, in a regulated manner, from both

stimulated and non-stimulated human [1, 52, 53] and rat lymphocytes [9, 10]

in vitro. This DNA is complexed with newly synthesized lipoprotein [9, 10, 54]

and newly synthesized RNA [9, 10] i.e. all of the components of this complex are

newly synthesized. This complex has been termed a virtosome.

The release of newly synthesized DNA from living, but not dead or damaged

cells, has been shown to be of general occurrence in vitro (Table 2) as well as being

released in vivo from whole chick embryos [59].

Transposons and Retrotransposons

These mobile genetic elements, or transposable elements, form a substantial part of

the nuclear “c” DNA value.
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Retrotransposons copy themselves via RNA, whilst the transposons copy them-

selves without the intervention of RNA. The Alu repeat sequence of approximately

300 bases, being found 300,000–1,000,000 times in the human genome, is the

commonest form of human transposons. ALU repeat DNA fractions have been

reported to be present in CNAPS [60, 61] together with the retrotransposon LINE

1 [62]. ALU and LINE1 are distributed throughout the genome being less methyl-

ated in cancer cells as opposed to normal cells [63].

Mitochondrial DNA Release

This was found in CNAPS from trauma patients [45, 46]. Bound and mitcfDNA

have both been found in plasma, the concentrations of each possibly being affected

by the mode of preparation of plasma from whole blood [44]. mitcfDNA may be

also derived by apoptosis [43] (see also Sect. 3.1).

Parasite DNA Release

This is a little studied area, but the possibility of parasite nucleic acids being present

as cfDNA have been discussed by Gahan [64] in considering aspects of HGT.

3.2 RNA

In a similar fashion to DNA, RNA can be released from any one of ten possible

sources listed in Table 1. There has been an explosion in the identification of a

variety of RNAs and their various roles in cells including mRNA, tRNA, rRNA,

snRNA, snoRNA, dsRNA, RNAi, siRNA, miRNA, piRNA, circRNA, ceRNA and

lncRNA (see section “Exosomes”). This is reflected in the identification by deep

sequencing of many of these RNAs in exosomes [65] although much of the current

work on cfRNA has been essentially limited to cfmRNA and cfmiRNA.

Table 2 Release of newly synthesized DNA from prokaryote and eukaryote cells and tissues

Cell/tissue References

Bacteria Ottolenghi and Hotchkiss [55, 56] and Borenstein and

Ephrati- Elizur [57]

Human stimulated and non-stimulated

lymphocytes

Anker et al. [1]

Rat stimulated and non-stimulated

lymphocytes

Olsen and Harris [52] and Adams and Gahan [9, 10]

Adams et al. [58]

Chick embryo fibroblasts Adams and MacIntosh [54]

Frog heart auricle pairs Stroun and Anker [16] and Stroun et al. [11]

Frog brain Anker and Stroun [14]
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Messenger RNA (mRNA), ribosomal RNA (rRNA) and transfer RNA (tRNA)

are all involved in transferring information from chromosomal DNA to the ribo-

somes where amino acids are transported for the construction of protein

[66]. Involved in these processes are small nucleolar RNAs (snoRNA), a class of

small RNA molecules that mainly guide chemical modifications of other RNAs

including rRNAs, tRNAs and small nuclear RNAs (snRNA). The latter are a class

of small RNA molecules found within the eukaryotic nucleus and having an

average length of ca 150 nucleotides. Their primary function concerns the

processing of pre-mRNA (hnRNA) in the nucleus.

There are a variety of small non-coding RNAs involved in cfNAs including

miRNA that is important in a number of studies discussed throughout this book. It

involves a single-stranded RNA of 20–25 nucleotides functioning in transcriptional

and post-transcriptional regulation of gene expression through binding to the

30-untranslated region of the target mRNAs. The human genome has over 1,000

miRNAs that function via base-pairing with complementary sequences within

mRNA molecules. Their action usually results in gene silencing via either transla-

tional repression or targeted mRNA degradation.

Other small non-coding RNAs include:

(i) Long double-stranded RNA (dsRNA) is cleaved into short 21–24 nucleotide

double-stranded RNAs (siRNA). Each siRNA unwinds to form two single-

stranded RNAs (ssRNAs), the passenger strand and the guide strand. The

former is degraded while the latter is incorporated into the RNA-induced

silencing complex (RISC). A well-studied example of its function involves

post-transcriptional gene silencing when the guide strand base pairs with a

complementary sequence of a mRNA to induce cleavage by Argonaute, the

catalytic component of the RISC complex.

(ii) Similar to the siRNAs are the piRNAs, Piwi-interacting RNAs, found in

gonads, are the largest class of small non-coding RNA molecules. They are

distinguished from miRNA by being of 26–31 nucleotides rather than 21–24

nucleotides, lacking sequence conservation and increased complexity. The

piRNA complexes, formed by interacting piRNA with piwi proteins, have

been linked to silencing of both epigenetic and post-transcriptional genes of

retrotransposons in germ line cells.

(iii) Long non-coding RNAs (lncRNA) are non-protein coding transcripts longer

than 200 nucleotides being much longer than the above-mentioned RNAs.

There are at least four-times more lncRNA than coding RNA sequences. Their

roles have not been well analyzed though it has been shown that there is

involvement with the physiological aspects of cell-type determination and

tissue homeostasis.

(iv) Circular RNAs (circRNA) concern a class of circular RNA molecules that

may play a regulatory role in miRNA processes. Initial studies have shown

that they may act as “sponges” for miRNAs since e.g. circRNA (ciRS-7) acts

as a miR-7 super-sponge containing ~70 target sites from the same miR-7 at

the same transcript.
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(v) Salmena et al. [67] propose the presence of ceRNA – competing endogenous

RNA and hypothesize that “in addition to the conventional microRNA/RNA

function, a reversed RNA/microRNA logic exists in which bona fide coding

and noncoding RNA targets can crosstalk through their ability to compete for

microRNA binding. On the basis of this hypothesis, MREs can be viewed as

the letters of an “RNA language” by which transcripts can actively commu-

nicate to each other to regulate their respective expression levels. We hypoth-

esize that RNAs that share multiple MREs will crosstalk effectively.

Importantly, we predict that this “RNA language” can be used to functionalize

the entire mRNA dimension through the identification of crosstalking

ceRNAs, as well as ceRNA networks.” ceRNAs may be involved in cfNAs

since ceRNAs for the tumor suppressor gene PTEN have been identified for

prostate cancer [68], glioma [69] and melanoma [70].

Leukocytes

Leukocyte breakdown could release a range of RNAs into the blood so possibly

accounting for the RNA amount already determined [2].

Bacteria and Viruses

The presence viral RNA has been demonstrated for hepatitis C RNA in the plasma

and serum of European and African patients using an RT-qPCR and the isothermal

NASBA nucleic acid amplification system encompassing a gel-based detection

assay. This extraction method has allowed the detection of hepatitis C RNA equally

in both serum and plasma using either heparin or EDTA [71]. Majde et al. [72] have

also shown the release of dsRNA into the extra-cellular medium from influenza

virus-infected MDCK epithelial cells. Little information is available of the levels of

RNA released from bacteria into the blood stream.

Necrosis and Apoptosis

A spectrum of mRNAs has been identified in plasma that are presumed to have been

released by either apoptosis or necrosis including those representing (i) genes over-

expressed in a range of different tumors [73, 74], (ii) fetal genes in the blood plasma

of pregnant women [75], (iii) genes of patients with diabetic retinopathy [76] as

well as (iv) housekeeping genes detected in the plasma of healthy persons [77].

RT-qPCR detectable fragments of 18S rRNA were also found in the extracellu-

lar RNA pool circulating in blood plasma of healthy subjects and cancer patients

[78]. Ribosomal 28S rRNA fragments secreted by primary and cultivated human

cells into the culture medium have been demonstrated [79].
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Exosomes

Early studies indicated that exosomes contained RNAse that was thought to destroy

unwanted RNA [66]. In fact, exosomes contain many domains with RNAase

activity. Hence, if such exosomes were to be released into the blood stream, they

could contribute to the RNAse levels.

More recently, it has transpired that exosomes may act as vehicles for the

transfer of a variety of RNAs and so as an inter-cellular signaling system. The

RNAs include mRNAs, miRNAs, non-coding RNAs, retrotransposon elements,

genomic DNA and cDNA derived from oncogenic sequences [80–82]. Exosomes

from both mouse and human mast cells have been shown to contain cfRNA as have

primary, bone marrow-derived, mouse mast cells [82]. The presence of cfRNA in

exosomes has also been reported for those released from tracheobronchial ciliated

epithelial cells [83]. Importantly, exosomes released into the blood from glioblas-

toma patients were shown to contain mRNA mutant/variants and miRNA charac-

teristic of gliomas. In particular, tumour-specific EGFRvIII, containing a mutation

specific for glioblastoma, was detected in the serum micro-vesicles of seven out of

25 glioblastoma patients. The glioblastoma-derived vesicles were shown to stimu-

late proliferation of a human glioblastoma cell line [81]. These workers also

showed mRNA and miRNA to be taken up by normal host cells including brain

and microvascular endothelial cells.

More recently, Huang et al. [65] characterized human plasma-derived exosomal

RNAs by deep sequencing. They obtained a total of 101.8 million raw single-end

reads from 14 size-selected sequencing libraries and detected significant fractions

of RNA species including rRNA (9.16 % of all mappable counts), lncRNA

(3.36 %), piRNA (1.31 %), tRNA (1.24 %), snRNA (0.18 %) and small nucleolar

RNA (0.01 %). However, the dominant RNA fraction was miRNA that accounted

for over 42.32 % of all raw reads and 76.20 % of all mappable reads. The five most

common of the 593 miRNAs detected were miR-99a-5p, miR-128, miR-124-3p,

miR-22-3p and miR-99b-5p. Collectively, these accounted for 48.99 % of all

mappable miRNA sequences. A further 185 potential miRNA candidates were

predicted (see also Sect. 11).

Virtosomes

RNA has been found to be present in virtosomes. Experimental data indicate that

it is synthesized prior to the complex leaving the cell, possibly involving

the DNA-dependent RNA polymerase associated with the complex [9, 12, 15, 16,

84, 85].
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Mitochondria

mitRNA was also reported to be present in plasma there being no significant

relation between mitRNA in plasma and patient age (n¼ 69; r¼�0.16, P¼ 0.19

for mitRNA). However, in a study on prostate cancer patients, non-survivors were

found to have a 3.8-fold increase in mitcfRNA compared with survivors (P¼ 0.003;

non-survivors: median copies, 16,038; interquartile range, 5,097–48,544 copies;

survivors: median copies, 4,183; interquartile range, 2,269–8,579 copies) [47].

Parasite RNA Release

As with parasite DNA, this is a little studied area, but the possibility of parasite

nucleic acids being present as cfRNA exists [64].

4 Mechanisms of Exit from and Entry into Cells by cfDNA

and cfRNA

4.1 Mechanisms for the Exit of cfDNA and cfRNA from Cells

It is clear that cfDNA and cfRNA are present in blood in various forms, but how

they leave affected cells and enter the blood stream has not been well investigated.

It is assumed that apoptotic and necrotic fragments, especially from tumors, could

be released directly into the blood stream. Garcia Olmo et al. [86] considered the

possible release mechanisms, but came to no specific conclusion concerning the

presence of higher cfDNA levels, especially of non-mutated cfDNA significantly

elevated at the early stages of tumor progression.

Release of LINE-1 from both HeLa and HUVEC cells, in vitro, could be reduced

by treating the cells with inhibitors of protein secretion [87]. Thus, DNA release

from HUVEC cells was reduced by 30, 35 and 19 % for monensin, glyburide and

methylamine, respectively. However, monensin reduced DNA release from HeLa

cells by only 15 % while glyburide actually increased cell-surface bound DNA by

50 %.

Exosome formation is a more evident process involving exocytosis of the

membrane bound cfDNA and cfRNA. However, the picture for virtosomes is not

so clear in that although the complex is formed with lipo-protein they do not appear

to have a standard limiting membrane [88, 89]. The virtosomal release process is

energy dependent [10].
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4.2 Mechanisms for the Entry of cfDNA and cfRNA into
Cells

When considering the mechanisms by which cfCNAs are taken up, two aspects

need addressing: (i) entry into the cytoplasm with the avoidance of cfNA destruc-

tion and (ii) passage from the cytoplasm into the nucleus where it may act either

epigenetically or be incorporated into a chromosome.

Cytoplasmatic Entry

Early studies on the uptake of DNA and RNA into cells have been reviewed by

Stroun et al. [37]. However, subsequently, there have been few studies on the

mechanisms of cfRNA cell uptake. Since most cfRNA release so far recorded

tends to be via exosomes (Table 3), it is very likely that cytoplasmic entry will be

by a form of endocytosis. This is supported by studies on plant siRNA in which the

endolysosomal system is considered to be involved [93] while in Drosophila cells,

dsRNA uptake from the environment requires receptor-mediated endocytosis

[94]. Lee et al. [95] have linked gene silencing by miRNAs and siRNAs to

endosomal trafficking. In the few RNA uptake studies available, caveoli are

prominent showing no hydrolase activity (Table 3).

It should be noted that dsRNA entry into murine GEnC cells required complex

formation with cationic lipids for entry via clathrin-dependent endocytosis though it

was independent of endosomal acidification [90].

Although Rh110-labelled siRNA phosphorothioate (PTO)-modified ON

(TM6-6) entered into ECV304 cells [96], similar results could not be obtained

with either the human T-lymphoma cell line Jurkat 17 [97] or the mouse

B-lymphoid cell line BJA-B [98]. In the absence of PTOs, the uptake of the

siRNA was reduced and the molecules distributed throughout the cytoplasm [99].

More recently, mechanisms of cfDNA entry have been demonstrated including

the entry of various sources of bacterial DNA and mitDNA through the Toll

receptor system [100–105]. Nevertheless, current research indicates that cfDNA

can enter cells by various routes (Table 4). The mechanisms involved in this cell

entry process include endosomes, caveoli and T-tubules. However, the mechanism

by which the cfDNA avoids the digestive processes of the lysosomal system is not

clear. The uptake of naked plasmid DNA via endosomes has been demonstrated to

block endosomal acidification resulting in the lack of activation of the hydrolases

present and hence DNA digestion [108]. Such DNA was considered by these

authors to remain in the endosomes and to move to the nuclear membrane where

it could be transferred directly into the nucleus.

Caveoli have different endocytotic functions from those of the clathrin-coated

pit pathway. Ligands bound to receptors that are internalized by caveolae can be

delivered to four different locations in the cell. At least four different caveolae

membrane traffic patterns are distinguishable during potocytosis so offering a
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mechanism for bypassing the lysosomes [110, 111]. However, there is still the

possibility that the caveoli may eventually link with the lysosomal system [112,

113]. It is not clear how the RNA escapes from the either endosomes or the caveoli,

but it is able to exert a biological effect upon the recipient cells [81, 90].

Thus, it is possible that cfDNA can enter primarily via either macropinocytosis

into cells in vitro or via caveoli into muscle in vivo and block the acidification of the

endosomes so preventing their development into lysosomes and hence degradation

of the DNA. In addition, the DNA can exploit the endosomal movement to the

nucleus so transporting the cfDNA prior to its release and entry into the nucleus. An

example of such activity concerns exosomal mutated cfDNA from a colorectal

cancer patient transforming NIH3T3 cells that were able to initiate tumors in rats

[114, 115].

It has been suggested that DNA binding proteins are involved in the uptake of

cfDNA. The studies of Basner-Tschakarjan et al. [107] indicated that ezrin and

moesin are functionally associated with some transmembrane receptors such as the

EGF, CD44 or ICAM-1 receptor. These workers considered that these binding

proteins were important in the uptake of plasmid DNA into keratinocytes. Subse-

quently, there has been little information on such binding proteins and alternative

mechanisms have been proposed.

Histones H1 [116–121], H2A [122–124], and H3 and H4 [125, 126] have been

shown to be effective mediators of transfection. The postulated mechanisms by

Table 3 Possible mechanisms of uptake of cfRNA for a variety of cell types

Cell RNA Vehicle References

Murine GEnC dsRNA Endosomes Hägele et al. [90]

ECV304 siRNA phosphorothioate Caveoli Fra et al. [91]

2B2318 lymphocytes SFV-VIP21 virus (dog/simian) Caveoli Fra et al. [92]

Table 4 Possible mechanisms of uptake of cfDNA for a variety of cell types

Cell/tissue DNA Vehicle References

Leukocytes Bacterial DNA;

mitDNA

Toll system Chuang et al. [101], Hemmi et al. [105],

Cornélie et al. [102], Barton

et al. [100], Dalpke et al. [103] and

El Kebir et al. [104]

Myofibres Plasmid DNA;

mRNA

Caveoli;

T-tubules

Wolff et al. [106]

Human

keratinocytes

Plasmid DNA Macropinocytosis Basner-Tschakarjan et al. [107]

J77 cells Plasmid DNA Endosomes Trombone et al. [108]

Murine GEnC

cells

dsRNA Endosomes Hägele et al. [90]

Human MCF7

breast cancer

cells

Human chro-

matin

fragments

Endosomes Yakubov et al. [109]

NIH3T3 kras Exosome Garcı́a-Olmo et al. [86]
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which histone H1 increases gene transfection are through DNA condensation and

DNase protection. DNA delivery activity may be mediated by two mechanisms,

namely, electrostatically driven DNA binding and condensation by histone and

nuclear import of these histone H2A ·DNA polyplexes via nuclear localization

signals in the protein [116]. It is also possible that, because histones can increase

the permeability of membranes by ionic interaction, this mechanism could aid

complexes such nucleosomes to enter recipient cells [127].

Virtosomes might also enter cells by one of the mechanisms described above

[88]. Being comprised of DNA, RNA and glycolipoprotein and failing to either pick

up or lose membrane material on either leaving or entering cells, it is possible that a

mechanism similar to that exploited by histones could lead to the direct uptake of

virtosomes through an ionic interaction between a part of the glycolipoprotein

present and the cell membrane. This proposition is also supported by Wittrup

et al. [128] who demonstrated that naked plasmid DNA uptake occurred via

proteoglycan dependent macropinocytosis.

cfCNA Entry into the Nucleus

The nuclear membrane presents a considerable barrier to the entry of nucleic acids

with the nuclear pores permitting a passive transport limit of 70 kDa molecular

mass or ~10 nm diameter [129]. Nevertheless, DNA can be seen to enter the nucleus

of chick embryo fibroblasts [54, 130], HeLa cells [130], L29 mouse fibroblasts and

Krebs 2 ascites carcinoma cells [109] as well as plant nuclei (reviewed in [131]).

The mechanism by which DNA enters the nucleus is not clear. It is known that, for

mediated active transport through the nuclear pore complex, nuclear proteins

require a nuclear localization signal that contains basic amino acids and can be

recognized by cytosolic factors [132]. For this to occur, the nuclear pore can expand

to approximately 30 nm [133]. This can be shown to function experimentally on

coupling 100 nuclear localization signal peptides/kilobase pair of DNA for the

nuclear delivery of the DNA [133, 134]. It is important to remember that the

mediation of nuclear import of DNA is aided by the presence of H1 histone as

seen with gene transfection.

Specific proteins appear to be involved during RNA movement from cytoplasm

to nucleus. Thus, siRNAs need to be linked to an argonaut protein for transfer to the

nucleus as in the case of NRDE-3 in Caenorhabditis elegans [135].

4.3 Conclusions

cfCNAs are present in a variety of forms that are capable of entering cells with

which they come into contact. The mechanisms of entry, and in some cases exit,

have still not been fully elucidated for either cfRNA or cfDNA although caveoli and

pinocytosis seem to be implicated. As yet, there is no information as to the possible
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rôles that connexins, innexins and pannexins might play in the intercellular move-

ment of nucleic acids [136, 137].

Both naked DNA and virtosomes released into the blood can move to other parts

of the organism and into host cells. On entering cells of a similar type no obvious

effects occur.

However, if the uptake is into cells of a different type, the biological activity of

the host cell may be modified [58]. The uptake of cfDNA by stem cells raises

interesting possibilities [138]. The modification of a cell’s biology on the receipt of

tumor cell cfDNA has particular implications for the formation of metastases

through both the release of cfDNA from tumor cells into the circulation and the

ability of the cfDNA to move to cells in other parts of the body. In particular, and in

spite of the blood brain barrier, cfDNA can move to the amphibian brain [139] and

the human maternal brain [140] whilst fetal cells can move to the female mouse

brain [141].

cfRNA in its various forms can behave similarly and in a few cases has been

shown to modify the biology of the host cell though there are few studies currently

available on this aspect of cfRNA.

In view of the fact that both cfDNA and cfRNA have been implicated in tumor

induction, maybe the question should be asked “Should blood collected for blood

transfusions be screened for specific forms of cfNAs prior to use?”

5 Mitochondrial Release and Uptake of cfNAs

There is not much known about the release of mitcfDNA from animal mitochon-

dria, other than through either damage or cell death. Release of mitcfDNA from

such mitochondria may be a key link between trauma, inflammation and systemic

inflammatory response syndrome [142]. It has also been demonstrated that when

mitochondria are damaged by external hemodynamic stress, they are degraded by

the autophagy in cardiomyocytes. The mitcfDNA that escapes from the autophagic

vesicles can lead to Toll-like receptor 9-mediated inflammatory responses in

cardiomyocytes that is capable of inducing myocarditis and dilated cardiomyopathy

[143]. In plants, a mitochondrial permeability transition pore complex exists

together with the inner mitochondrial membrane so permitting the passage of

molecules of <1,500 Da, [144]. However, currently there is no evidence for a

similar passage of DNA in animal/human mitochondria. Nevertheless, studies by

Ibrahim et al. [145] on isolated mitochondria from a range of organisms demon-

strated that the efficiency of mitochondrial uptake depends on the sequence of the

DNA to be translocated becoming sequence-selective for large DNA substrates.

ATP needed to be hydrolyzed in order to enhance DNA import. The presence of

ATP also allowed tight integration of the exogenous DNA into mitochondrial

nucleoids [145].
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6 cfNAs Can Enter and Express in Other Cells

6.1 cfDNA

In vitro studies on mammalian cells have shown cfDNA uptake by recipient cells

and its subsequent expression. This may be due to either epigenetic or genetic

responses.

Immune Response

An allogenic T-B lymphocyte co-operation involving lymphocyte subsets from

human donors with different allotypes was studied. B lymphocytes cultured in the

presence of the supernatant from the culture medium of T cells, previously exposed

to inactivated herpes simplex virus, were able to synthesize an anti-herpetic anti-

body with some allotypic markers of the T cell donor. The same effect on B

lymphocytes was found both with DNA purified from the supernatant of the T

cell culture medium and the non-ultra-centrifuged supernatant [146].

Anker et al. [147] also used nude mice injected with DNA extracted from the

complex released by human T lymphocytes previously exposed to inactivated

herpes or polio viruses. Tested for its neutralizing activity by human anti-allotype

sera, the serum from these mice showed synthesis of anti-herpetic or anti-polio

antibodies depending on the antigen used to sensitize the T cells. This showed the

antibodies to carry human allotypes. Moreover, on concentration, the newly syn-

thesized complex transformed much more efficiently than did either the DNA

purified from the supernatant or the crude supernatant itself.

Effects on Cell Division

The DNA released from mouse tumor cell lines J774 cells (leukemia) and P497

cells (glial tumor), as well as non-stimulated lymphocytes, was isolated from the

culture medium by ultracentrifugation and agarose gel chromatography [58]. After

concentration, the released DNAs were added to the culture media of each of the

different cell types. Thus, the tumor cell lines were each incubated in the presence

of either of the two tumor cell line DNAs or the lymphocyte DNA i.e. each cell type

was incubated in the presence of either a self DNA or each of two foreign DNAs.
3H-thymidine was added to the cultures of each cell type together with the partic-

ular donor DNA and the amount of nuclear incorporation of the 3H-thymidine into

DNA of the recipient cells was measured (the index of DNA synthesis). The levels

of DNA synthesis in the tumor cell lines was the same in the presence of either of

the DNAs released by the two tumor cell lines, but was reduced by about 60 % in

the presence of the lymphocyte DNA [58]. Conversely, the incubation of the

non-stimulated lymphocytes in the presence of either of the tumor cell line DNAs
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showed an initiation of DNA synthesis in the presence of the tumor DNAs, but not

in the presence of the lymphocyte DNA [58].

Viola-Magni et al. [148] demonstrated that similar reciprocal events occur

between stimulated and non-stimulated lymphocytes.

cfDNA Effects in Irradiated Cells – By-Stander Effect

Exposure of Chinese hamster ovarian cells to X-rays at an adaptation dose of

10 cGys led to a transposition of the chromosomal peri-centromeric loci of homol-

ogous chromosomes from the peri-membrane sites to approach each other and an

accompanying activation of the chromosomal nucleolar-forming regions [149]. The

movement of the peri-centric loci appears to be associated with repair of the DNA

double-strand breaks during the development of an adaptive response to radiation.

Growing untreated cells in medium containing DNA fragments isolated from the

medium of treated cells led to their exhibiting similar changes to those seen in the

treated cells. Incubation of the untreated cells in medium containing the DNA

fragments from medium of untreated cells had no such effect [149]. This is

known as the radiation–induced by-stander effect and can be seen both in vitro,

as described above, and in vivo [150–155].

cfDNA Effects on Myocardiocyte Contraction Rates

cfDNA was isolated from patients with myocardial infarction followed by the

separation of AT-rich fragments of the human satellite 3 tandem repeat (1q12

region) and GC-rich fragments of the rDNA [156]. When fed in vitro to neonatal

rat ventricular myocytes in culture, AT-rich fragments (1 ng mL�1) increased the

frequency of cardiomyocyte contractions whilst GC-rich fragments (0.5 ng mL�1)

decreased the contraction frequency. Serum cfDNA from patients with acute

myocardial infarction decreased contraction frequency in proportion to the cfrDNA

content so implying that the GC-rich cfrDNA circulating in the blood myocardial

infarct patients might affect the contractile function of the myocardial cells [156].

Tumor Induction

The SW 480 cell line, originating from a human colon carcinoma, contains a point

mutation of the K-ras gene on both alleles. These cells in culture released DNA

containing the mutated K-ras gene. When NIH-3T3 cells were directly cultured in

the presence of non-purified SW 480 cell culture supernatant, transformed foci

appeared in similar numbers to those occurring after a transfection using a cloned

K-RAS gene administered as a calcium precipitate [157].

The effects on cultured cells of plasma from healthy individuals and patients

with colon cancer were also determined. NIH-3T3 cells and human adipose-derived
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stem cells (hASCs) cultures were supplemented with plasma cfDNA from either

patients with K-RAS-mutated colorectal tumors or from healthy subjects by either

(i) direct addition of plasma to cultures in standard plates or (ii) avoiding plasma-

cell contact by filtering through membranes (0.4 μm pores) placed between the

plasma and the cells. No K-RAS mutated sequences were detected in hASC cells by

qPCR. However, human gene transfer occurred in most cultures of NIH-3T3 cells,

since they were shown to contain sequences for human K-ras, p53 and ß-globin.

NIH-3T3 cells were oncogenically transformed after being cultured with plasma

from colon cancer patients, confirmed by carcinoma development in NOD-SCID

mice after injection with the transformed NIH-3T3 cells. The human mutated

K-RAS sequence was also found free in the mouse blood. The presence of the

artificial membrane between the NIH-3T3 cells and the tumor patient plasma gave

similar results showing that the transforming factor had a diameter of less than

0.4 μm. A TEM study of the plasma fraction passing through the membrane pores

confirmed the complete absence of cells but the presence of vesicles <0.4 μm
diameter [114]. These were later shown to be DNA containing exosomes [50].

Trejo-Becerril et al. [115] reported a similar set of results using the same

experimental system as that used by Garcia-Olmo et al. [114]. In further experi-

ments, Garcia-Olmo et al. [158] showed that plasma K-RAS cfDNA was found

during a 2-year period following surgical removal of the colorectal tumor from

patients. This DNA also yielded similar results with the same experimental system

involving NIH-3T3 cells and NOD-SCID mice [158].

RAR2 gene methylated cfDNA uptake into HeLa and human umbilical vein

endothelial cells was twice as efficient as that of unmethylated cfDNA.

Hypermethylation is a common alteration of tumor related cfDNA from cancer

patients and as methylated RAR 2 gene cfDNA is more prevalent than the

unmethylated form in intracellular traffic, it is considered they pose a higher

transformation potential [159].

Clearly, cfDNA released from healthy cells can move to other parts of the

organism and into host cells. Entry to cells of a similar physiohistological type

does not lead to a changed biological activity. However, if the uptake is into cells of

a different physiohistological type, a changed biological activity in the host cell

may occur. The above results have implications for (a) the formation of metastases

by DNA released from tumor cells into the circulation termed “genometastasis”

[114, 138, 158, 160–162] and (b) the ability of cfDNA to move to cells in other parts

of the body, including the brain, in spite of the blood brain barrier, where it could be

taken up and expressed [14].

Gene Replacement Therapy

Based upon data indicating that chromatin fragments possessing recombinagenic

free ends were present in the plasma and serum (section “Tumor Induction”), it was

possible to exploit them in gene replacement therapy. Small fragments prepared

from human chromatin from non-mutant cells were added to the culture medium of
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human breast cancer cells having a 47-bp deletion in the CASP 3 gene. The

restoration of caspase 3 activity occurred in 30 % of the treated cells [163].

6.2 cfRNA

Few studies have been performed on the entry of cfRNA into other cells. However,

dsRNA polyriboinosinic polyribocytidylic acid (polyI:C) activated murine glomer-

ular endothelial cells via RIG-1 in the cytosol to produce inflammatory cytokines,

chemokines and type I interferons [90].

The experimental delivery of siRNA is very difficult and so it possible that the

natural uptake of sicfRNA will be minimal. However, when entry of siRNA has

been demonstrated, there is an apparent dose-dependent siRNA-mediated suppres-

sion of lamin A/C in primary human umbilical vein endothelial cells [96, 99]. Per-

haps more importantly, Skog et al. [81] showed that mRNA and miRNA can be

taken up by normal host cells including brain and microvascular endothelial cells.

In addition, RNA-containing glioblastoma derived vesicles were shown to stimu-

late proliferation of a human glioblastoma cell line.

7 Can cfNAs Influence the F1 Generation?

This question was recently considered since cfNAs have been demonstrated to be

capable of modifying cells into which they enter [64]. The continual circulation of

cfNAs around the organism may result in their entry into adjacent tissues. If the

cfNA is not mutated, then any entrance and expression would not necessarily be

detectable. However, as has already been considered for mutated cfNAs, the

likelihood of the development of metastases is a possibility [158]. Foreign cfNAs

could also circulate though there has been little evidence that this is a major

problem in the normal individual. Nevertheless, if such cfNA could enter the

gonads, then this could offer a mechanism for horizontal gene transfer (HGT) to

operate, HGT involving the movement of genes from one organism to another.

Although HGT has been identified to occur in lower organisms such as bdelloid

rotifers [164] or Lepidoptera [165] currently, there is no such evidence for euthe-

rians including man. This is likely to be prevented through the presence of the

distinct germ cell line being separate from the soma [166]. This would appear to act

through the difficulty of the natural entry of cfNAs into mammalian sperm and ova

to form a modified zygote [64, 167].
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Dı́az-Chávez J, Gaxiola M, Dueñas-González A (2012) Cancer progression mediated by

horizontal gene transfer in an in vivo model. PLoS One 7:e52754

116. Balicki D, Putnam D, Scaria PV, Beutler E (2002) Structure and function correlation in

histone H2A peptide mediated gene transfer. Proc Natl Acad Sci U S A 99:7467–7471
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Pre-analytical Requirements for Analyzing

Nucleic Acids from Blood

Safia El Messaoudi and Alain R. Thierry

Abstract Circulating nucleic acids have received an increasing scrutiny over the

past decade with some applications, such as in prenatal diagnosis and oncology,

being on the verge of use in clinical practice. It is crucial to implement optimal

standardization of pre-analytical procedures. Currently, this domain has been

poorly studied and there is no well-established procedure. This chapter examines

the literature on the pre-analytical factors affecting nucleic acids from blood

drawing to the storage of circulating cell-free DNA extracts ready for analysis

and provides some elements as guidelines for a set procedure. In particular, this

chapter reports on the choice between serum and plasma as the biological source

but does not concern the actual nucleic acid extraction procedures (these will be

dealt with in chapter “Circulating DNA and miRNA Isolation”). Currently, the lack

of a standard operating procedure for the application of blood handling in a clinical

setting is due to the lack of dispensing and sharing data among researchers as well

as head-to-head comparative studies between techniques. This has led to in-house

specific procedures that are, undoubtedly, prejudicial to the smooth translation of

nucleic acid analysis into clinical practice. Hence, the proposed procedure should

overcome this gap in technique.
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IRCM-Institut de Recherche en Cancérologie de Montpellier, U896 INSERM, 208 Rue des

Apothicaires, 34298 Montpellier, France

e-mail: alain.thierry@inserm.fr

P.B. Gahan (ed.), Circulating Nucleic Acids in Early Diagnosis, Prognosis and
Treatment Monitoring, Advances in Predictive, Preventive and PersonalisedMedicine 5,

DOI 10.1007/978-94-017-9168-7_3, © Springer Science+Business Media Dordrecht 2015

45

http://dx.doi.org/10.1007/978-94-017-9168-7_4
mailto:alain.thierry@inserm.fr


1 Introduction

Despite the great interest in circulating cfNA analysis, it is not as yet transferred

into clinical practice. The lack of consistency between the various procedures at

each pre-analytical and analytical step constitutes one of the major hurdles for the

use of cfNA analysis in routine clinical practice. In recent years, cfNA reviews have

regularly highlighted the lack of standardization between the various techniques

used for cfNA analysis [1–9], constituting a bias when comparing data from

different laboratories.

In this chapter, we review the main factors potentially affecting circulating

cfDNA analysis from blood drawing to the storage of cfDNA extracts, and finally

provide an optimal guideline for the pre-analytical treatment of samples that

guarantees quality analysis.

This chapter is based on data reported in the literature and our own observations

[10]. Particular attention has been devoted to the study of cfDNA fragmentation

considering that it is an indicator of cfDNA stability during the handling and

storage of samples. Our robust and precise cfDNA quantification method enabled

a precise study of both the pre-analytical handling and portability of cfDNA

analysis.

2 Optimal Blood Sampling

2.1 Serum or Plasma?

State of the Art

The choice of matrix, i.e. serum or plasma, is the first parameter to define for the

standardization of cfDNA analysis. Reported data comparing cfDNA concentra-

tions in paired plasma and serum samples reveal that the cfDNA concentration is

significantly higher in serum than in plasma [11–18]. Some of these data are

summarized in Table 1.

It is now commonly hypothesized and shown that the increased levels of cfDNA

in serum are due to the clotting process of white blood cells in the collection tube

leading to their lysis [11, 13–15, 19]. As a consequence, cfDNA in serum is at least

slightly contaminated by genomic DNA released from white blood cells and

specific cfDNA is diluted by high concentrations of non-specific genomic DNA.

This point is crucial for the accurate detection of rare cfDNA sequences. While it

has been established for a few years that plasma is better than serum, many studies

in the field are still based on serum samples, certainly due to the propensity of

clinical laboratories to prepare sera conventionally and to perform retrospective

studies.
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Our Observations

We have shown unequivocally that plasma is a better source of specific tumor-

derived cfDNA [20]. Using xenografted mice (n¼ 4) with a human colorectal

cancer cell line, we showed that total murine cfDNA concentration (i.e. targeting

non tumor-derived cfDNA) was higher in serum samples than in plasma samples.

Conversely, when studying human cfDNA concentration (i.e. targeting specific

tumor-derived cfDNA), cfDNA concentrations were higher in plasma samples

(Fig. 1). This observation confirms that the increase of cfDNA in serum samples

is due to the release of DNA from blood cells.

As plasma appears to be more adapted for specific cfDNA analysis, this chapter

further focuses mainly on the pre-analytical factors potentially affecting cfDNA in

the plasma fraction. Nevertheless, we will discuss the pre-analytical treatment of

serum samples in Part 8 of this chapter.

2.2 Optimal Blood Collection Tube for Plasma Preparation

Plasma is obtained conventionally by blood drawing in either EDTA or citrate or

heparin blood collection tubes. Heparin is prohibited for further PCR analysis since

Table 1 Non-exhaustive data focusing on differences in cfDNA concentrations in paired serum

and plasma samples

Article Clinical field

Subject

numbers

Plasma cfDNA

concentration

Serum cfDNA

concentration p-value

Quantification of genomic

DNA in plasma and

serum samples: higher

concentrations of

genomic DNA found in

serum than in plasma

[14]

Healthy

subjects

18 Approximately

40 copies mL�1
Median: 8,000

copies mL�1

Higher amount of r

circulating cfDNA in

serum is not mainly

caused by

contamination by

extraneous DNA

during separation [18]

Cancer 24 Mean� sd:

180� 150 pg�L�1
Mean� sd:

970� 730

pg�μL�1

p¼ 0.0002

Predominant hematopoietic

origin of cfDNA in

plasma and serum after

sex-mismatched bone

narrow transplantation

[15]

Transplantation 22 Median: 1,195

copies mL�1
Median: 16,345

copies mL�1
p< 0.0001

Effects of pre-analytical

factors on the

molecular size of

cfDNA in blood [11]

Fetal

medicine

27 Median: 600

copies mL�1
Median: 975

copies mL�1
p< 0.05
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it is an inhibitor of the PCR [21]. K3EDTA collection tubes are commonly used for

cfNA analysis, but another blood collection tube should be used, Cell-free DNATM

blood collection tubes, which are specifically dedicated for cfDNA analysis. They

are composed of K3EDTA with an additive agent allowing the preservation of

cfDNA in blood samples for up to 14 days at room temperature (RT) [22]. The

additive agent stabilizes white blood cells, preventing the release of genomic DNA

and inhibiting nuclease-mediated DNA degradation. In this chapter, we will mainly

focus on blood collected in K3EDTA collection tubes and present some data

published with Cell-free DNATM blood collection tubes.

2.3 Blood Drawing Conditions

Holdenrieder et al. [23] showed that gentle hemolysis of blood samples triggered an

increase in the plasma nucleosome level. They advised that blood should be drawn

Fig. 1 Comparison of cfDNA amounts from serum (light bars) and plasma (dark bars) prepara-
tions. cfDNA concentration in plasma and serum from SW620 xenografts was determined using

the mouse KRAS M3 (a), mouse PSATI M4 (b), human KRAS H2 (c) and human PSATI H5 (d)

primer sets. ctDNA concentration for each mouse (Mo1, Mo2, Mo3 and Mo4) and the

corresponding tumor weight (210, 610, 710 and 2,880 mg, respectively) are shown. Values were

calculated from duplicate experiments each performed twice (from [20])
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carefully in order to avoid hemolysis. A similar observation was also reported by

Norton et al. [24] where agitation of K3EDTA blood samples led to a significant

increase in cfDNA concentration compared to non-shaken samples. We confirmed

that agitation of blood samples was responsible for a two-fold increase in the

cfDNA concentration compared to non-shaken samples (Fig. 2).

2.4 Storage Conditions of Blood Samples

As the anticoagulant effect of K3EDTA is limited over time, the main challenge in

the pre-analytical treatment of blood samples is to avoid any release of genomic

DNA by blood cells during storage. Generally, good practice recommends

performing analysis on blood collected in EDTA collection tubes within 6 h

following venipuncture as a decrease in red and white cell counts and morphology

changes occur when analysis is further delayed [25]. The observed decrease in

white blood cells may be due to either apoptosis or necrosis in the collection tube

and lead to the release of genomic DNA from white blood cells, which may

contaminate specific cfDNA. Moreover, cfDNA has also been described as being

bound to the cell surface [26], assuming that nucleic acids can unbind from the cell

surface and lead to an increase in cfDNA concentration with prolonged storage (see

chapter “The Biology of CNAPS”). We can also hypothesize that cfDNA is actively

released from blood cells in the collection tube.

Influence of agitation on
ccfDNA concentration

non sh
ak

en
 blood sa

mple

sh
ak

en
 blood sa

mple
0

2

4

6

8

Pl
as

m
a 

cc
fD

N
A

co
nc

en
tr

at
io

ns
(n

g/
m

L)

Fig. 2 Influence of

agitation of K3EDTA blood

samples on cfDNA

concentration: samples
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Blood drawing and blood sample storage time and temperature need to be

carefully defined. For these reasons, the influence of the storage time and temperature

between venipuncture and plasma preparation are two parameters widely studied and

reported in the literature [11, 13, 23, 27–29, 31]. It is now well known that between

blood drawing and processing, cfDNA concentrations increase slightly with time,

certainly due to apoptosis and necrosis of white blood cells, as described above.

2.5 cfDNA Concentration

State of the Art

The reported data are quite conflicting: some authors have shown a significant

increase of cfDNA concentration after 2 h of storage compared to a baseline value

(i.e. blood processed at t¼ 0), while other authors have reported this increase after

24 h. Conversely, all data have demonstrated that storage temperature (RT or

+4 �C) has no influence on cfDNA concentration. Non-exhaustive data from

various clinical fields are summarized in Table 2.

Our Observations

The influence of time delay and storage temperature on cfDNA concentrations

between venipuncture and blood processing were tested in two different experi-

ments. A slight increase in cfDNA concentration with time delay was observed and

confirmed that storage temperature has no influence (Fig. 3a, b). Although a slight

increase in the cfDNA concentration with time delay was observed, we confirmed

that the cfDNA concentration did not vary significantly within 4 h following

venipuncture at either RT or +4 �C. However, we demonstrated that 6 h of storage

at RT triggered a two-fold increase in cfDNA concentration compared to samples

processed soon after venipuncture.

2.6 cfDNA Fragmentation

Previous work on fetal cfDNA analysis reported the influence of time delay and

temperature on cfDNA fragmentation [11] and demonstrated that fragmentation

was not affected up to 6 h after blood sampling at both RT and +4 �C. Our group
carefully examined the influence of these parameters on cfDNA fragmentation by

determination of the DNA Integrity Index (DII: ratio of the mean cfDNA concen-

tration determined using a primer set amplifying a 300-bp sequence to the mean

cfDNA concentration determined using a primer set amplifying a 100-bp
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Table 2 Data focusing on the influence of K3EDTA blood collection tubes storage conditions on

cfDNA concentration

Article Sample type n Influence of time delay

Influence of

temperature

storage

Predominant hematopoietic

origin of cfDNA in

plasma and serum after

sex-mismatched bone

narrow transplantation

[15]

Healthy individuals 8 cfDNA concentration

stable up to 6 h at RT

Not studied

Effects of pre-analytical

factors on the molecular

size of cell-free DNA in

blood [11]

Healthy individuals 27 cfDNA concentration

stable up to 6 h at RT

and +4 �C.
Significant increase

after 24 h at RT and

+4 �C

No difference

between RT

and +4 �C

Changes in concentration of

DNA in serum and plasma

during storage of blood

samples [13]

Healthy individuals 10 cfDNA concentrations

stable up to 8 h at RT

or 24 h at +4 �C

No difference

between RT

and +4 �C

EDTA is a better

anticoagulant than

heparin or citrate for

delayed blood processing

for plasma DNA

analysis [19]

Healthy individuals 10 cfDNA concentration

stable up to 6 h at RT.

Significant increase

after 24 h at RT

Not studied

Implementing prenatal

diagnosis based on

cffDNA: Accurate

identification of factors

affecting fetal DNA

yield [28]

Pregnant women 10 Total cffDNA

concentrations stable

up to 8 h at +4 �C
and RT.

Significant increase

after 24 h at +4 �C and

RT

No difference

between RT

and +4 �C

Nucleosomes in serum as

marker for cell death [23]

Healthy individuals;

solid tumors;

acute infection

10 Time-dependent increase

in the nucleosome

values

Increase in

nucleosome

value is

marked at

+37 �C, but is
less marked

at RT and

+4 �C
Plasma cffDNA

concentrations in Maternal

blood are stable 24 h after

collection: Analysis of first

and -trimester samples [27]

Pregnant women 29 Significant increase of

maternal cffDNA

after 6 h

Not studied

Isolation and extraction of

circulating tumor cfDNA

from patients with cell

lung cancer [29]

Healthy individuals 10 No significant difference

between the means of

concentration up to

24 h after venipuncture

Not studied

Optimizing the yield and utility

of circulating cfDNA from

plasma and serum [31]

Healthy individuals 3 cfDNA concentrations

stable up to 2 h at RT

and 0 �C.
Significant increase

after 4 h at RT or 0 �C

No difference

between RT

and 0 �C
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sequence), reflecting cfDNA fragmentation. We observed that the DII was not

affected for up to 3 h of storage at either +4 �C or RT. However, a long delay of

6 h and sample agitation triggered a slight decrease in the DII, indicating that

cfDNA may degrade with time and agitation (Fig. 4).

2.7 Influence of Storage Conditions on Cell-Free DNATM

Blood Collection Tube-Drawn Blood Samples

The preservative agent of these tubes allows prolonged storage of blood samples at

RT without any consequences on cfDNA level. Indeed, data published using these

tubes report the conservation of cfDNA concentration values for up to 14 days at

RT. Nevertheless, it seems that temperature variations can affect the cfDNA

content and further studies need to confirm this observation. Some of the data are

summarized in Table 3.

Fig. 3 (a). Influence of time delay between blood drawing and blood processing on total cfDNA

concentration determined with a primer set amplifying a 105-bp sequence: samples from the same

donor were incubated in different conditions. (b). Influence of time delay and temperature storage

between blood drawing and blood processing on total cfDNA concentration determined with a

primer set amplifying a 105-bp sequence: samples from the same donor were incubated in different

conditions. Data in a and b were calculated from one either duplicate or triplicate experiment.

Results were expressed as the mean (Adapted from [10])
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2.8 Comparison Between K3EDTA and Cell-Free DNATM

Blood Collection Tubes

In the field of fetal cfDNA analysis, Hidestrand et al. [35] showed that there was no

significant difference between cfDNA concentrations in samples shipped in EDTA

collection tubes and samples shipped in cell-free DNATM blood collection tubes

when the blood was processed immediately. However, Fernando et al. [34] dem-

onstrated that cfDNA levels in blood samples drawn in cell-free DNATM blood

collection tubes were stable for up to 14 days at RT, while they decreased when

blood was drawn in K3EDTA collection tubes. Barrett et al. [28] showed that there

was no significant difference for up to 3 days in the total cfDNA concentration

when blood was drawn in cell-free DNATM blood collection tubes, while it

increased after 24 h when blood was drawn in K3EDTA collection tubes. In the

field of oncology, there are still no comparative results when blood is drawn in

either EDTA tubes or cell-free DNATM blood collection tubes.

These data indicate that during this pre-analytical step, time delay and agitation

should be treated with caution and in particular, the study protocol needs to define

rigorously the time delay and the handling process. Agitation of blood samples

should be prohibited.
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2.9 Optimal Plasma Preparation

As the success of cfDNA analysis is largely dependent on the absence of contam-

ination by genomic DNA, the main technical requirement for plasma preparation is

to avoid any cell presence.

Indeed, Van Wijk et al. [36] studied the composition of plasma samples from

pregnant women used to analyze cfDNA and reported the presence of fetal apo-

ptotic cells in plasma. This was confirmed by Poon et al. [37] who found fetal cells

in plasma samples from three pregnant women. This raised the following question:

“Is plasma truly acellular after blood processing?”

State of the Art

Chiu et al. [38] studied different blood processing protocols on samples from

pregnant women. They showed that a first blood centrifugation step at 1,600 g for

10 min. followed by a second plasma centrifugation step at 16,000 g for 10 min. was

effective in producing cell-free plasma. cfDNA concentrations determined from

these samples were similar to concentrations determined from plasma samples

Table 3 Data focusing on the influence of cell-free DNATM blood collection tubes storage

conditions on cfDNA concentration

Article Sample type n

Influence of time

delay

Influence of

temperature

storage

A new blood collection device

minimizes cellular DNA release

during sample storage and

shipping when compared to a

standard device [24]

Healthy

individuals

5 cfDNA

concentration

stable up to

14 days at RT

Significant

changes after

7 days at +6 �C

Optimizing blood collection,

transport and storage conditions

for cfDNA increases access to

prenatal testing [32]

Pregnant

women

20 cfDNA

concentration

stable up to

14 days at RT

Strong temperature

effect at +37 �C
and +40 �C

Effects of a novel cell stabilizing

reagent on DNA amplification by

PCR as compared to traditional

stabilizing reagents [33]

Healthy

individuals

6 cfDNA

concentration

stable up to

14 days at RT

Not studied

Implementing prenatal diagnosis

based on cffDNA: Accurate

identification of factors affecting

fetal DNA yield [28]

Pregnant

women

9 Slight increase of

cfDNA

concentration

after 72 h

Not studied

A new methodology to preserve the

original proportion and integrity

of cfDNA in maternal plasma

during sample processing and

storage [34]

Pregnant

women

20 cfDNA

concentration

stable up to

14 days at RT

Not studied
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obtained by centrifugation followed by filtration with a 0.2 μm filter (reference

protocol ensuring the production of a cell-free plasma fraction). Inversely, a unique

centrifugation step at 800 g was not effective to eliminate all the cells in the plasma

fraction.

Swinkels et al. [39] confirmed these results and added that the second high-speed

plasma sample centrifugation step at 16,000 g can be performed either before or

after storage of plasma samples at �20 �C.
Another question raised is “Does centrifugation cause the ex vivo release of

DNA from blood cells?” [30]. Indeed, we can assume that a high centrifugation

speed destroys blood cells and leads to release of genomic DNA. Lui et al. [30]

evaluated the influence of centrifugation speeds (from 400 g to 16,000 g) on cfDNA

and revealed that there was no significant difference with the speed value. However,

in this study, only one blood centrifugation step was performed and each plasma

sample was then filtered with a 0.2 μm filter in order to ensure truly cell-free

plasma.

Our Observations

We proposed the following protocol for isolating cfDNA: a first blood sample

centrifugation step at 1,200 g for 10 min followed by a second plasma centrifuga-

tion at 16,000 g for 10 min at +4 �C.We checked the validity of this protocol using a

third centrifugation step for 10 min. at 16,000 g: (i) DNA concentrations deter-

mined from the supernatants of samples after the second and the third centrifugation

step were similar; (ii) no DNA was detected in the bottom of the tube subjected to

the third centrifugation step by qPCR; (iii) microscopic observation of plasma

pellets after the second and the third centrifugation step revealed the absence of

blood cells.

These data confirmed that the second centrifugation step is sufficient to provide

quality cell-free plasma for cfDNA analysis.

3 Pre-analytical Treatment of Plasma Samples Before

Nucleic Acid Extraction

Few data on this analytical step are available in the literature, even though it is a

crucial phase: indeed, we can hypothesize that cfDNA structures present in the

plasma are sensitive to storage conditions. In addition to chromatin or nucleosome

cfDNA complexes, cfDNA may be integrated in vesicles i.e. exosomes or apoptotic

bodies, or within nucleolipoprotein complex structures, such as virtosomes

[40]. These forms may disintegrate with time and, as a consequence, lead to further

release of detectable cfDNA in plasma samples. Time delay before extraction,
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temperature storage of plasma samples and freeze-thaw cycle numbers before

nucleic acid extraction must be carefully specified.

3.1 Influence of Storage Conditions

cfDNA Concentration – State of the Art

One of the most extensive studies of this phase was by Holdenrieder

et al. [41]. Even if it cannot be generalized to cfDNA analysis since the study

was performed on serum and measures nucleosome levels only, this work indicates

the sensitivity of nucleosomes to temperature variations: they seem to be more

sensitive at +37 �C than at either +4 �C or RT. In serum samples stored at either

+4 �C or RT for different lengths of time, the nucleosome level was stationary for

up to 144 h of storage while at +37 �C, a significant decrease was observed after 6 h
of storage. Considering that one part of cfDNA is complexed with nucleosomes,

plasma samples should be stored at +4 �C or RT before nucleic acid extraction.

cfDNA Concentration – Our Observations

We showed that the cfDNA concentration slightly increased with time delay (from

0 to 4 h) before extraction at RT (Fig. 5a). We also tested different temperatures of

storage and revealed that cfDNA concentrations were comparable when plasma

samples were stored for 3 h at different temperatures (from�80 �C to RT) (Fig. 5b).

However, we noted that the highest cfDNA concentrations were observed when

samples were stored below +4 �C. The storage at RT triggered a slight decrease in

cfDNA concentration.

3.2 cfDNA Fragmentation

We showed that the DII was not affected for up to 4 h of storage of plasma samples

before extraction at RT. However, we observed also that the highest DII value was

obtained when samples were stored below +4 �C as it seemed that storage at RT

triggered a slight decrease of the DII value (Fig. 6a, b).
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3.3 Influence of Freeze-Thaw Cycles

cfDNA Concentration

Chan et al. [11] tested the influence up to three freeze-thaw cycles and showed that

the cfDNA concentration was not significantly affected. We also investigated the

effect of repeated freeze-thaw cycles and confirmed this observation (Fig. 7).

cfDNA Fragmentation

However, it seems that repeated freeze-thaw cycles leads to cfDNA fragmentation.

Chan et al. [11] showed a significant decrease in the cfDNA DII after three freeze-

thaw cycles were applied to plasma samples. Such an observation confirms the

sensitivity of circulating cfDNA structures to temperature variations.

We also report that after three freeze-thaw cycles applied to plasma samples, the

DII significantly decreases (Fig. 8).

These data highlight the need to carefully handle plasma samples before nucleic

acid extraction.
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Fig. 5 (a). Influence of time delay before nucleic acids extraction on total cfDNA concentration

determined with a primer set amplifying a 105-bp sequence: samples from the same donor were

incubated in different conditions. (b). Influence of temperature storage between before nucleic

acid extraction on total cfDNA concentration determined with a primer set amplifying a 105-bp

sequence: samples from the same donor were incubated in different conditions (Adapted from

[10])
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4 Pre-analytical Treatment of cfDNA Extracts Between

Nucleic Acid Extraction and cfDNA Analysis

Storage of cfDNA extracts and freeze-thaw cycle number must be carefully defined.

Chan et al. [11] showed that cfDNA concentration and fragmentation were

stable in cfDNA extracts stored at �20 �C for up to three freeze-thaw cycles. We

also tested the influence of freeze-thaw cycles applied to cfDNA extracts stored at

�20 �C. Our results did not show any modification up to the third freeze-thaw

cycle, thus confirming the observations by Chan et al. (Fig. 9a, b).

5 Long-Term Storage of Plasma Samples and cfDNA

Extracts

It is particularly important to define the duration of storage of plasma samples and

cfDNA extracts for retrospective clinical studies.

Influence of time delay before extraction

t=0
h

t=1
h 

t=2
h

t=3
h

t=4
h

0.0

0.1

0.2

0.3

0.4

0.5

D
II

Influence of storage conditions on
ccfDNA fragmentation

3h
 R

T

3H
 +4

°C

3h
 -2

0°C
 

3h
 -8

0°C
0.0

0.1

0.2

0.3

Storage conditions

D
II

a b

Fig. 6 (a). Influence of time delay before nucleic acid extraction on DII: DNA integrity index

(ratio of the mean cfDNA concentration determined using a primer set amplifying a 300-bp

sequence to the mean cfDNA concentration determined using a primer set amplifying a 100-bp

sequence). (b). Influence of temperature storage between before nucleic acid extraction on DII:

DNA integrity index (ratio of the mean cfDNA concentration determined using a primer set

amplifying a 300-bp sequence to the mean cfDNA concentration determined using a primer set

amplifying a 100-bp sequence). Data in a and b were calculated from one either duplicate or

triplicate experiment. Results were expressed as the mean (Adapted from [10])
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Influence of freeze-thaw cycles
on ccfDNA fragmentation
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Fig. 8 Influence of repeated freeze-thaw cycles on DII: DNA integrity index (ratio of the mean

cfDNA concentration determined using a primer set amplifying a 300-bp sequence to the mean

cfDNA concentration determined using a primer set amplifying a 100-bp sequence): samples from

the same donor were submitted to either 1 or 2 or 3 freeze-thaw cycles (Adapted from [10])
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Fig. 7 Influence of repeated freeze-thaw cycles on total cfDNA concentration determined with a

primer set amplifying a 105-bp sequence: samples from the same donor were submitted to either

2 or 3 freeze-thaw cycles. Data were calculated from either one duplicate or triplicate experiment.

Results were expressed as the mean (Adapted from [10])
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5.1 State of the Art

Table 4 summarizes the main data reported in the literature [11, 42–45] on the

storage of plasma samples and cfDNA extracts. Each study compares data from two

consecutive tests performed at different time intervals. The results are quite

conflicting and clear conclusions cannot be drawn.

5.2 Our Observations

We performed a statistical study on the data obtained from samples used for a

blinded, multicentre prospective clinical study comparing KRAS/BRAF mutational

status determined from CRC plasma samples and paired CRC tumor sections

(n¼ 106) [46]. The effects of storage at �80 �C on the cfDNA concentration

were studied in 34 clinical plasma samples. Each sample was analyzed twice in

the same way: extraction and immediate consecutive qPCR analysis. The time

Influence of ccfDNA extracts freeze-thaw 
cycles on ccfDNA fragmentation

1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Number of freeze-thaw cycles

D
II

Influence of ccfDNA extracts freeze-thaw 
cycles on ccfDNA concentration

1 2 3
0

2

4

6

8

10

12

14

16

18

20

Number of freeze-thaw cycles

cc
f D

N
A

 c
on

ce
nt

ra
tio

n 
(n

g/
m

L 
pl

as
m

a)

ba

Fig. 9 (a). Influence of cfDNA extracts freeze-thaw cycles on cfDNA concentration on total

cfDNA concentration determined with a primer set amplifying a 105-bp sequence: samples from

the same donor were submitted to either 1 or 2 or 3 freeze-thaw cycles. (b). Influence of cfDNA

extracts freeze-thaw cycles on DII: DNA integrity index (ratio of the mean cfDNA concentration

determined using a primer set amplifying a 300-bp sequence to the mean cfDNA concentration

determined using a primer set amplifying a 100-bp sequence): samples from the same donor were

submitted to either 1 or 2 or 3 freeze-thaw cycles (Adapted from [10])
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interval between the two analyses ranged from 1 to 270 days. Similarly, 25 cfDNA

extracts stored at �20 �C were analyzed twice by qPCR. The time interval between

the two analyses ranged from 1 to 150 days. To evaluate the effect of storage on

cfDNA concentration, a variation factor, termed k, was determined (cfDNA con-

centration determined from the second analysis/cfDNA concentration determined

from the first analysis).

The k-median values in cfDNA extracts (n¼ 25) and plasma samples (n¼ 34)

were 0.88 and 1.03, respectively. No significant difference was shown between the

k values in the two groups (p¼ 0.293). Alternatively, a significant difference was

shown in the variance of the k values in the two groups (p< 0.05). The coefficient

of variation of the k values in plasma samples was close to 50 %, while it was

Table 4 Data focusing on the influence of frozen storage of samples on ccfDNA concentration

Article Sample type

Lenght of time

between the

two

measurements

(months) n Conclusion

Effects of preanalytical

factors on the

molecular size of

cell free DNA in

blood [6]

Healthy

individuals

0.5 27 Storage of plasma at

−20 ˚C for 2 weeks

did not significantly

affect the plasma

DNA

concentrations

Effects of prolonged

storage of whole

plasma or isolated

plasma DNA on the

results of

circulating DNA

quantification

assays [41]

Lung cancer

and

healthy

individuals

41 34 lung cancer Annual decrease of

30 % in cfDNA

levels in plasma

samples and

cfDNA extracts

28 healthy

individuals

Down syndrome and

cell-free fetal

DNA in archived

maternal

serum [31]

Pregnant

women

17–35 11 −0,66 GE/mL per

month of storage

Long-term stability

of circulating

nucleosomes in

serum [21]

Cancer Median ± sd:

64.8 ± 5.5

154 Median decrease

of 32 % in

nucleosome levels

in sera samples

Reproducibility of a

semi quantitative

measurement of

circulating DNA

in plasma from

neoplastic

patients [15]

Intestinal

polyps or

colorectal

cancer

3 15 Absolute DNA content

values concordant

after three months

of storage in

cfDNA extracts
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inferior to the technical coefficient of variation (24 %) for cfDNA extracts

(Fig. 10a).

Nevertheless, the k-median value in cfDNA extracts stored for less than 3months

was 0.89, while it decreased to 0.72 when cfDNA extracts were stored for more than

3 months (Fig. 10b).

In plasma samples, the k-median value was close to 1 whatever the length of the

storage time, but there was a wide variation in the k values (Fig. 10c).

Fig. 10 Variation was evaluated using factor k: fold difference between two consecutive deter-

minations of cfDNA concentration. (a). cfDNA concentration variation represented by k in

25 DNA extracts stored at �20 �C and 34 plasma samples stored at �80 �C. (b). cfDNA
concentration variation represented by k in 20 DNA extracts stored at �20 �C for a period not

exceeding 3 months and in 5 DNA extracts stored for more than 3 months. (c). cfDNA concen-

tration variation represented by k in 28 plasma samples stored at�80 �C for a period not exceeding

3 months and in six plasma samples stored for more than 3 months. cfDNA concentrations were

determined using the KRAS B1/B2 primer set (ng ml-1 plasma) (Adapted from [10])
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These data indicate that cfDNA concentration decreases with the length of the

storage time; if the analysis aims to quantify and characterize cfDNA fragmentation

then working on cfDNA extracts stored for up to 3 months is preferential. However,

storage time has no influence on the detection of specific sequences or mutations in

cfDNA as it has been shown that mutations can be detected several years after

freezing plasma samples [47]; however, the sensitivity of the technique could be

compromised since specific sequences may be present in smaller quantities after a

long storage time.

6 Optimal Pre-analytical Treatment of Sera Samples

6.1 From Blood Drawing to Serum Preparation

Holdenrieder et al. [23] reported an optimal handling protocol for the measurement

of nucleosomes in serum samples and recommended careful blood drawing in order

to avoid any hemolysis. Centrifugation for serum preparation should be performed

as soon as possible since it revealed an increase in nucleosome values with time

delay before blood processing. This effect is more particularly marked at both RT

and +37 �C. Such an observation is also reported by Jung et al. [13]: cfDNA

concentrations significantly increase after 2 h of storage of blood samples and

increases even more when samples are stored at RT rather than at +4 �C.

6.2 From Serum Preparation to the Analytical Process

Holdenrieder et al. [41] analyzed preanalytical parameters on serum samples such

as vortexing-rolling-shaking, storage at different temperatures for different lengths

of time and freeze-thaw cycles. The authors reported that vortexing-rolling-shaking

serum samples had no influence on the nucleosome content. They observed that

there was a slight modification of the nucleosome concentration after three freeze-

thaw cycles.

The main preanalytical parameter studied was the duration and temperature of

serum sample storage before analytical processing. They showed that nucleosome

concentration was stable until 7 days of storage at both RT and +4 �C while it

continually decreased at +37 �C and was significantly lower after 1 day of storage.

This may be explained by the thermal activation of serum nucleases or nucleosome

sensitivity to heating.
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6.3 Long Term Storage of Sera Samples

Holdenrieder et al. [23] studied the influence of storage of serum samples at�20 �C
for 0, 1, 2, 4, and 6 months and revealed no modification of the nucleosome value

content. They reported an annual 7 % loss of nucleosome content value when serum

samples were stored at �70 �C [43].

7 Preanalytical Treatment for cfRNA Analysis

As with cfDNA analysis, cfRNA analysis is concerned by the influence of many

preanalytical parameters. Indeed, RNA is particularly known to be labile and degrad-

able. Moreover, ribonucleases are present at high concentrations in blood and plasma.

To explain the surprisingly relative stability of cfRNA in blood, it is assumed that

cfRNA is protected by other structures: lipids, proteins, and nucleosomes [48].

Here the literature data on optimal treatment of samples for cfRNA analysis is

summarized (see also sections “miRNA” and “Isolation Methods”).

7.1 From Blood Drawing to Plasma or Serum Preparation

Tsui et al. [49] studied different protocols for optimal cfRNA analysis. Interest-

ingly, they showed that there were two types of cfRNA: particle associated and

non-particle associated cfRNA. In their study, they discriminated total cfRNA

(particle associated and non-particle associated) and non-particle associated

cfRNA obtained by plasma/serum 0.22 μm filtration.

Plasma Preparation from K3EDTA Blood Shipped Samples

The authors revealed that there was a significant modification of the total cfRNA

yield with an increase in the time delay between venipuncture and plasma prepa-

ration at RT, while there was no significant modification when blood was stored at

+4 �C. Conversely, for exclusive non-particle associated cfRNA, there was no

effect of either time delay or storage temperature.

In contrast, Holford et al. [48] showed that total cfRNA concentration signifi-

cantly decreased after 2 h of storage of blood samples at +4 �C.
These authors recommended processing plasma as soon as possible after veni-

puncture. However, in some cases, prolonged storage of blood samples is inevita-

ble. It is clear that stringent preanalytical standardization is required when

analyzing cfRNA. This is a critical issue for implementing this promising approach.
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Plasma Preparation from cfRNA BCTs Blood Shipped Samples

Nevertheless, Fernando et al. [50] compared the stability of cfRNA in blood

samples shipped in K3EDTA blood collection tubes and cell-free RNA BCTs.

These specific tubes contain a chemical cocktail preventing RNA degradation by

inhibition of RNAse. After 3 days of storage of blood samples at RT, the authors

showed that cfRNA concentrations were stable in blood samples drawn in cfRNA

BCTs while they significantly increased in K3EDTA blood samples.

Serum Preparation from K3EDTA Blood Shipped Samples

Tsui et al. [49] realized the same studies for serum preparation from clotted blood

samples. They showed that total cfRNA concentration significantly increases with

time delay before centrifugation at RT and +4 �C. Conversely, for the non-particle
associated cfRNA, the time delay had no influence on its concentration.

Fig. 11 Specific guidelines for plasma cfDNA analysis from peripheral blood drawing to storage
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8 Conclusions

The numerous discrepancies reported in the literature on cfDNA studies are mainly

due to poor reproducibility and differences in handling procedures, thus highlight-

ing their crucial importance. Analysis of data in the literature and our own results

reveal the crucial influence of preanalytical factors on cfDNA analysis. Evaluation

of all the factors potentially affecting cfDNA concentration and fragmentation leads

us to describe here, for the first time, the optimal pre-analytical handling conditions

for cfDNA analysis:

(i) plasma is a better matrix than serum since it avoids contamination of specific

cfDNA by blood-cell genomic DNA;

(ii) EDTA or cell-free DNATM collection tubes prevent the release of genomic

DNA by blood cells;

(iii) blood must be processed within 4 h following blood drawing;

(iv) high-speed centrifugation ensures the absence of any cells in the plasma and a

second high-speed centrifugation step is highly recommended;

(v) plasma samples are sensitive to temperature variations and freeze-thaw

cycles.

(vi) plasma must be aliquoted and may be stored at �80 �C for up to 9 months;

(vii) cfDNA extracts may sustain a maximum of three freeze-thaw cycles and

storage at �20 �C for up to 3 months for cfDNA concentration and fragmen-

tation analysis or 9 months for specific sequence detection.

The specific guidelines for plasma cfDNA analysis at each preanalytical step are

represented Fig. 11.

Standardization of pre-analytical operating procedures would certainly consol-

idate the promising potential of cfDNA analysis as a powerful liquid biopsy

[51–55] in the field of oncology and a diagnostic tool in prenatal diagnosis [56, 57].

Concerning cfRNA analysis, few data are available in the literature and further

observations are needed for the standardization of handling procedures for cfRNAs.
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Circulating DNA and miRNA Isolation

Alain R. Thierry, Safia El Messaoudi, and Evelyne Lopez-Crapez

Abstract Analysis of circulating nucleic acids undoubtedly represents a break-

through in the diagnostic field and in predictive, preventive and personalized

medicine. In order to adequately and systematically study and to transfer this

approach into clinical practice, standardization of the pre-analytical steps is a

crucial prerequisite. Thus, during the first pre-analytical step, it is critical to achieve

nucleic acid extraction from blood cell free nucleic acid with the highest purity and

yields. Optimization of isolation processes will lead to a low variation of measure-

ments and sensitive quantification of these macromolecules that are often present at

low concentration and sometimes are physically tightly associated with biological

constituents in the blood. Various isolation methods are used, but ready to use

extraction kits appear as a good compromise with respect to routine application,

especially in a clinical setting. Improvement or high specificity of the circulating

nucleic acid analysis might be possible with a better knowledge of their form and

structure. The choice of the biological source (serum vs. plasma) is described in the

previous chapter. Circulating DNA and microRNA were recently applied in clinical

practice; their isolation methods are here described and discussed.
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1 Circulating cfDNA Isolation

1.1 cfDNA Extraction Methods

Numerous methods either described in the literature or commercially available are

proposed for the extraction of DNA from biological sources. They combine isola-

tion and purification processes as DNA is a highly charged polyelectrolyte macro-

molecule prone to strong interaction with cationic elements, such as minerals,

peptides and proteins, or supra-molecular complexes, such as histones. DNA

isolation from cellular/biological components can be divided into four stages:

(i) disruption, (ii) lysis, (iii) removal of proteins and contaminants and (iv) DNA

recovery.

Non-commercially Available Methods

“Homemade” extraction methods have been described in the literature and many

have achieved good yields, especially those using advanced procedures developed

by the scientists who regularly use them. These include:

• Simple methods, such as boiling the preparations and other protocols that do not

include a lysis step.

• Alcohol precipitation based on the precipitation of proteinase K-digested lysates

after removal of the insoluble particles by centrifugation.

• Organic extraction with phenol/chloroform subjected to the proteinase

K-digested lysate, vortexed, and centrifuged. The upper phase is then alcohol

precipitated.

• The salting-out method, which consists in treatment of the proteinase K-digested

lysate with a high-salt buffer. This is incubated and the proteins are precipitated

by centrifugation. The supernatant is then subjected to alcohol precipitation.

Homemade extraction methods may enable correct DNA purification at a satis-

factory yield using cost effective procedures.

The method based on cesium chloride density gradients, however, cannot be

defined as a simple method. Cells are lysed using a detergent and the lysate is

alcohol precipitated. Resuspended DNA is mixed with CsCl and ethidium bromide,

and centrifuged for several hours. The DNA band, identified by ethidium bromide

fluorescence, is collected from the centrifuge tube, extracted with isopropanol to

remove the ethidium bromide and then precipitated with ethanol to recover the

DNA. This method isolates high-purity DNA, but it is time consuming and uses

toxic chemicals.
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Commercially Available Methods

In commercially available DNA extraction kit procedures, protein removal is

typically achieved by digestion with proteinase K followed by either salting-out

or organic extraction or binding of DNA to a solid-phase support. DNA is com-

monly recovered by elution or precipitation using either ethanol or isopropanol.

Biotechnology companies, or, more importantly, laboratory chemical and material

suppliers, propose extraction kits based on either anion-exchange or silica technol-

ogy or magnetic bead solid-phase support.

• The anion-exchange method provides high-molecular weight, ultrapure DNA

for sensitive applications, such as cell transfection.

• Silica-membrane technology extracts high-purity DNA of medium to high-

molecular weight.

• Magnetic-particle technology extracts high-purity DNA of high-molecular

weight with a possibility of automation.

These three methods present the advantage of enabling standardization with

relatively good repeatability and reproducibility.

1.2 Specificity of Extracted cfDNA

Only recent studies have better elucidated the forms of cfDNA with respect to the

possible mechanisms of release involved. Necrosis, associated with tumor devel-

opment, as well as apoptosis and phagocytosis associated with defence mecha-

nisms, lead not only to the destruction of tumor cells, but also the adjacent,

non-tumor tissues [1–3]. However, cfDNA fragmentation is higher after apoptosis

than after either necrosis or phagocytosis [4]; DNA fragmentation is a hallmark of

apoptosis. Specifically, cfDNA fragments longer than 10,000 bp are likely to

originate from necrotic cells, whereas cfDNA fragments shorter than 1,000 bp,

particularly 180 bp or multiples of this size, are reminiscent of the

oligonucleosomal DNA ladder observed in apoptotic cells. cfDNA can circulate

in blood by associating with histone complexes (nucleosomes) and apoptotic

bodies, by binding to membrane parts, or in exosomes, or with nucleoproteolipidic

complexes (virtosomes) ([5]; chapter “The Biology of CNAPS”).

However, knowledge is still very poor concerning the proportion of these

various mechanisms in regard to their cell origins (tumor cell-derived cfDNA

vs. healthy cell-derived cfDNA), tumor types, tumor progression, patient age. It

is obvious that better knowledge of this issue would favor a more specific and

higher-yield extraction procedure. For instance, we have demonstrated, for the first

time, the presence of a higher proportion of cfDNA fragments below 100 bp,

particularly in samples from cancer patients [6]. Thus, contrary to the analysis of

genomic DNA in which the concentration of quantified DNA is directly
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proportional to the number of amplified copies, this proportionality varies with

target sequence length in the case of cfDNA from CRC patients. Moreover,

targeting 150- to 250-bp sequences (the length commonly chosen for amplification)

generates a significant bias by not taking into account up to 80 % of the total

cfDNA. Thus, the cfDNA size profile, as determined by amplifying targets of

increasing length, reveals that optimal detection is obtained with amplicons

<100 bp and that a much higher proportion of cfDNA of a size ranging from

150 to 400 bp is present in non-tumor cfDNA than in tumor cfDNA

[6, 7]. Thus, higher and more accurate cfDNA quantification is now made possible,

enabling a novel examination of cfDNA as a cancer biomarker. This buttresses the

notion of using an isolation procedure enabling the extraction of small cfDNA

fragments.

1.3 Studies on the Extraction Methods for cfDNA Extraction

Circulating cfDNA extraction is a key step in the detection process, yet very few

publications exist on this subject compared to those on circulating cfDNA detection

methods. According to Wang et al. [4] and Fong et al. [8], the choice of the

extraction method can significantly contribute to the detection results. The main

methods used for extracting circulating cfDNA are shown in Table 1 and can be

distinguished as two groups: “homemade” methods that do not make use of a

commercial kit (20 % of the methods listed in Table 1) and methods using ready-

to-use extraction kits (80 % of the methods listed in Table 1). Chronologically, the

phenol-chloroform method was the first circulating cfDNA extraction method

employed followed by silica columns. Silica-coated magnetic beads are among

the latest methods used.

“Homemade” methods, such as the phenol-chloroform method, are the oldest

methods used for extraction and mostly use organic solvents. According to Fong

et al. [8], circulating cfDNA extraction using the phenol-chloroform method with

the addition of glycogen achieves higher concentrations when compared with DNA

extraction kits and also extracts more small-sized fragments, but these methods take

longer, are more complex and use toxic solvents. Furthermore, these methods,

highly linked to the handling process, exhibit a high coefficient of variation and

therefore are not suitable for quantitative clinical analysis.

On the contrary, ready-to-use extraction kits offer efficient, fast and simple

extraction suitable for a clinical study. Moreover, most commercially available

extraction kits are or may be automated. However, the documentary opacity of the

reagents used and the lack of flexibility of these methods can be an obstacle to

improving or developing new applications. For the different kits used in the cfDNA

field and presented in Table 1, silica columns represent 70 % of the kits used with

the QIAmp DNA blood kit alone representing 47 % of the kits using silica columns.

Methods based on silica-coated magnetic beads are more recent than the

column-based methods and account for 30% of the cfDNA extraction kits (Table 1).
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Based on previous work by the Thierry group and online discussions concerning

extraction methods, the main problem of the technique is the variation of the

extraction yield, frequently resulting in measurement repeatability problems during

extraction repetitions. New automated methods (extraction in line with qPCR

detection, BD MAX, Becton Dickinson) are appearing on the market and seem to

be a good compromise due to the gain of time permitted by these machines.

However, these automated methods may require larger initial sample volumes.

Fong et al. [8] compared the capacity of seven different extraction methods.

Their unique data showed remarkable differences in the recovery of DNA from

serum. The phenol-chloroform procedure, the sodium iodide method and the

QIAamp DNA blood kit generated significantly higher yields of DNA, assessed

by fluorescence measurement, than the four other methods (the guanidine-resin

method, the ChargeSwitch serum kit, the ZR serum kit and the Puregene DNA

purification system cell and tissue kit). “The higher recovery of DNA obtained with

the NaI and PCI glycogen procedures was also revealed on the agarose gel, which

interestingly showed recovery of substantial amounts of small DNA fragments

(200–400 bp)” [8]. The phenol-chloroform and sodium iodide methods appear

best suited to quantitative and qualitative DNA extraction, especially of small

fragments, including cfDNA; however, they are inappropriate for routine use as

part of the procedure for using cfDNA as a diagnostic tool, especially in a clinical

setting. In addition, these methods use toxic chemicals and are also impossible to

either standardize or automate.

In our laboratory, the commercially available methods were compared and the

Qiagen DNA blood kit was found to provide the best methods for isolation and

purification of cfDNA from the plasma of CRC patients [7, 9]. Under internal

SOP, a coefficient of variation range of 5–10 % of the recovered amount was

determined in several repeatability studies (data not shown). Also, according to

Phillips and Mea [24]), this kit eliminates more PCR inhibitors compared to the

homemade methods.

1.4 Criteria for Selecting an Optimal Extraction Procedure

Based on either the scientific or industrial goals, the choice of method concerns

several factors: efficacy in extracting low-molecular weight DNA, the purity

required for downstream applications, repeatability, reproducibility, time and the

overall cost. Capacity of standardization is clearly a requirement when analyzing a

biomarker potentially suitable for clinical testing. Figure 1 summarizes the charac-

teristics of various commercially available extraction methods with respect to time,

purity and small DNA fragment recovery. At present, extraction with a commercial

kit, such as the DNA QiAmp blood kit (Qiagen), appears to be a good choice when

analyzing cfDNA for clinical purposes.
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1.5 Direct Analysis of cfDNA Without an Extraction
Procedure

Despite the progress in DNA tissue extraction methods, the currently available

research methods for cfDNA measurement appear labor-intensive and expensive,

requiring DNA extraction and qPCR amplification with specific primers. It seems

worthwhile to consider investigating ways for directly analyzing cfDNA in plasma

or serum. Goldshtein et al. [25] developed a convenient DNA assay applied directly

to biological samples. This assay uses fluorochrome SYBR® Gold which does not

require prior sample processing, i.e. DNA extraction and amplification. The assay is

simply performed by adding diluted fluorochrome to the samples and measuring

fluorescence. Recently, using this assay they measured cfDNA levels and followed

tumor growth and rejection in mice and in CRC patients. They found that cfDNA

levels are prognostic for disease progression and death Goldshtein et al. [25]. The

direct SYBR® Gold assay proved to be an accurate and simple technique for

measuring cfDNA in biological fluids. Current studies are ongoing to evaluate

this new method for the detection and follow-up of breast cancer patients. However,

this technical approach is limited to the quantification of cfDNA and does not

enable the determination of other parameters such as either the presence of muta-

tion or the cfDNA fragmentation level.
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Fig. 1 Comparison of the various methods used for isolating circulating DNA from blood in

regards to their time and cost, purity and standardization ability. Circles diameter is function of the

standardization ability of each method
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2 miRNA Isolation

Total RNA extraction is complicated by the presence of RNAse. Original extraction

methods involving phase separation through centrifugation employed the addition

of guanidinium thiocyanate to the organic phase to denature proteins, including

RNAse, as well as separating rRNA from ribosomal proteins [26]. However, small

RNAs (chapter “The Biology of CNAPS”) are lost when using this approach. The

better extraction methods for small RNAs employing either magnetic beads or

silica columns are available as kits, as is the phase separation method of [26]. Of

the small RNAs, mRNA from both serum and plasma has been exploited across a

range of studies (chapters “CNAPS and General Medicine”, “Fetal CNAPS:

DNA/RNA”, “Circulating Nucleic Acids and Diabetes Mellitus”, “Extracellular

Nucleic Acids and Cancer”, “Other Body Fluids as Non-invasive Sources of

Cell-Free DNA/RNA” and “CNAPS in Therapy Monitoring”) with some success

as possible early markers of various disorders though, so far, none appear to have

successfully reached clinical trials for routine use. Work has only just com-

menced upon the other small RNAs (chapter “The Biology of CNAPS”). More

recently, the presence of the more stable miRNAs in body fluids has opened up a

more likely route to early markers, probably as a panel of early markers (chapters

“CNAPS and General Medicine”, “Fetal CNAPS: DNA/RNA”, “Circulating

Nucleic Acids and Diabetes Mellitus”, “Extracellular Nucleic Acids and Can

cer”, “Other Body Fluids as Non-invasive Sources of Cell-Free DNA/RNA” and

“CNAPS in Therapy Monitoring”). Therefore, this section will be specifically

concerned with isolation of cfmiRNAs.

miRNAs are small non-coding RNAs that regulate RNA stability and gene

expression ([27]; chapter “The Biology of CNAPS”). These ubiquitous mole-

cules are involved in many key cellular processes, such as development, prolif-

eration, differentiation and apoptosis [28–29] and are differentially expressed in

various diseases. In addition to their presence in cells and tissues, miRNAs have

been detected also in several biological fluids ([30]; chapter “Extracellular

Nucleic Acids and Cancer”). Particularly, significant amounts of miRNAs are

present in the human circulation [20, 31]. This finding has two major implica-

tions: (i) miRNAs may be considered as mediators of cell–cell communication

[32] and (ii) circulating miRNAs hold great promise as potential non-invasive

biomarkers for a broad spectrum of clinical conditions, such as cancer, heart

disease and pregnancy (chapters “CNAPS and General Medicine”, “Fetal

CNAPS: DNA/RNA”, “Circulating Nucleic Acids and Diabetes Mellitus”,

“Extracellular Nucleic Acids and Cancer”, “Other Body Fluids as

Non-invasive Sources of Cell-Free DNA/RNA” and “CNAPS in Therapy

Monitoring”).

However, accurate profiling and quantification of cfmiRNAs in blood samples

are challenging and depend on proper miRNA isolation, choice of a sensitive

detection technique and appropriate data analysis/normalization.
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The main variables that may affect miRNA isolation, such as sample collection,

storage and processing have been characterized [33]; however, there is no consen-

sus on the optimal starting biological material and the techniques to extract

cfmiRNAs vary from report to report. Moreover, to exploit the information

obtained by miRNA profiling/quantification for clinical use two major consider-

ations must be taken into account before pre-analytical choices: (i) the physical

forms of circulating cfmiRNAs in blood samples and (ii) the presence of significant

amounts of detectable cfmiRNAs in blood cells.

2.1 miRNA Stability in Blood and Plasma/Serum Samples

Several studies have demonstrated that, overall, miRNAs are stable in blood-

derived samples for several hours or even days [31, 34, 35]. Successful miRNA

profiling was performed using plasma samples that had been stored for more than

12 years [36]. Nevertheless, both the length and the temperature of storage before

blood sample processing and before miRNA plasma/serum extraction affect sig-

nificantly the quality of the circulating cfmiRNA profiles. Particularly, the stability

of specific miRNAs in serum samples can differ. For instance, it has been reported

that the levels of some miRNAs (e.g. miR-1 and miR-122) can decrease, while

others (e.g. miR-16, miR-21 and miR-142-3p) remain stable upon prolonged serum

incubation before extraction [37]. Moreover, digestion by the abundant human

pancreatic RNase is the major cause of cfmiRNA degradation. Therefore, to

prevent cfmiRNA degradation it is suggested to centrifuge blood samples at 4 �C
within 2 h of sampling [36] and to add RNase inhibitors [37]. In all cases, it is

important to follow serum and plasma standard sampling procedures (e.g. the

standard operating protocols from The National Cancer Institute Early Detection

Research Network – EDRN). Moreover, plasma/serum samples that are not ana-

lyzed straightaway should be stored at�70 �Cwhere miRNAs can remain stable for

up to 1 year [38], but freeze-thawing cycles should be avoided.

Another element that can influence the stability of circulating cfmiRNAs and

their isolation is the existence of different forms of extracellular circulating

miRNAs. miRNAs can be encapsulated in various types of vesicles (exosomes,

microvesicles) that are secreted from cells [39, 40] or apoptotic bodies. Moreover,

in the circulation, high-density lipoproteins transport and deliver miRNAs to

recipient cells [41]. Then, miRNAs form complexes with proteins, such as

Argonaute2 [42], or the RNA-binding protein nucleophosmin 1 [43]. As each

miRNA form may have a different clinical impact [44] and because encapsulated

miRNAs appear to be more stable than non-vesicle associated miRNAs [37], it is

important to: (i) preserve all complexed miRNAs during the entire pre-analytical

process and (ii) choose the adequate isolation technique corresponding to the

specific form of circulating miRNA of interest.
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2.2 Sample Collection: Plasma vs. Serum

As serum is the clinical sample more frequently stored in biobanks, a large number

of studies have investigated miRNA quantification in serum. Nevertheless, the use

of serum instead of plasma for the quantification of circulating miRNAs is debat-

able. In the first study on circulating miRNAs [31] the measurement of different

miRNAs (miR-15b, miR-16, miR-19b, and miR-24) in matched plasma and serum

samples from the same patient were strongly correlated, suggesting that both

sample types are suitable for cfmiRNA analysis. However, further studies have

highlighted differences in the types of miRNAs and/or their concentration in

matched serum and plasma samples. For instance, Wang et al. [4] observed that,

in healthy individuals, serum samples contain more detectable cfmiRNAs than do

plasma samples. In addition, higher cfmiRNA expression levels were detected in

serum compared to plasma samples. These authors concluded that plasma samples

should be preferred for cfmiRNA profiling to avoid bias induced by the release of

cellular cfmiRNAs during the coagulation process. In contrast, other studies

reported lower amounts of circulating cfmiRNAs in serum than in plasma and

suggested to use serum samples as starting material [35, 45]. These discrepancies

are largely related to the coagulation process that modifies the true spectrum of

circulating cfmiRNAs and to the contamination of plasma and serum samples by

blood cells containing significant miRNA amounts [38]. Indeed, profiling of

365 miRNAs demonstrated a clear association between circulating cfmiRNA

expression and residual platelet contamination of plasma specimens from patients

and healthy controls [46]. Particularly, the subset of miRNAs that were most

affected by plasma processing corresponded to those that are highly expressed in

platelets (e.g., miR-142-3p, let-7a and miR-223) [47]. As a general rule, a platelet

count in plasma samples is recommended before sample processing and addition of

a high speed centrifugation (10,000 g) or a 0.22 μm filtration step for serum or

plasma samples (even when stored for a long period) is advisable to avoid the

confounding effects of platelet miRNA contamination. Similarly, circulating

cfmiRNA quantification is affected by miRNAs coming from erythrocytes and

hemolysis is associated with an increase in the copy number of red blood cell-

associated miRNAs, such as miR-16, miR-15b and miR-451 [35, 48].

In conclusion, plasma is frequently considered as the sample of choice for

cfmiRNA studies. Nevertheless, even when the plasma sampling and preparation

methods are well controlled, the choice of the blood collection tubes can also

influence cfmiRNA isolation and subsequent analyses. As heparin inhibits PCR

assays, plasma for cfmiRNA profiling studies should be collected preferably in

EDTA vacutainers and post-collection sample treatment with sodium fluoride and

potassium oxalate (NaF/KOx) appears to be an attractive solution to increase

cfmiRNA recovery [49].

In addition to serum and plasma, some authors assessed the potential of whole

blood-derived miRNA profiles as a new tool for either cancer screening [50] or

acute myocardial infarction detection [51]. Analyses performed using whole blood
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samples are attractive because no further handling is required and snRNAs, such as

RNU6, may be used for data normalization. Although cell lysis is prevented by

using whole blood, the high cell proportion in such samples requires accurate,

complete blood cell counts for adequate data interpretation.

2.3 miRNA Extraction Methods

Extraction of miRNAs from blood samples is challenging. Indeed (i) their abun-

dance is low compared to proteins and lipids, (ii) they circulate predominantly

associated with proteins or packaged in vesicles and (iii) they are small-sized

single-strand entities (17–23 nt). In the case of packaged extracellular miRNAs,

vesicles can be isolated using various techniques such as centrifugation/ultracen-

trifugation, filtration, column chromatography, immunoaffinity, polymeric precip-

itation and microfluidic devices [52].

Independently from the chosen starting blood material, the general principles for

miRNA isolation are similar to those used for RNA extraction and combine

chemical extraction and silica column-based purification. While some approaches

allow the isolation of total RNA including small RNAs, others focus on miRNA

enrichment. In addition, direct analysis of serum samples based on qPCR, without

the need for miRNA isolation, has been performed to detect circulating cfmiR-21 in

samples from patients with breast cancer [53]. This straightforward approach using

as serum treatment a simple incubation step with 2.5 % Tween 20 followed by

centrifugation at 9,000 g to eliminate proteins is both effective and reproducible.

The use of TRIzol® for solubilization/denaturation of biological material and

proteins followed by a phase separation in the presence of chloroform and then

alcohol precipitation is effective for RNA extraction. Its application for the isola-

tion of circulating cfmiRNAs has given robust and reproducible results [54] and

according to some authors could surpass the performance of column-based

approaches. However, as TRIzol® fails to isolate miRNAs with low GC-content

or secondary structure (e.g. miR-141 and miR-21) from small numbers of cells [51],

its efficiency for blood-derived samples is arguable.

Several commercially available kits have been optimized for the retention of

small RNAs along with many methodological modifications (Table 2). Their

extraction efficiency, yield and reproducibility for circulating cfmiRNAs have

been recently investigated and compared [36, 38, 55, 56]. The miRNeasy® serum/

plasma kit has been reported [10] to give the highest miRNA yields from plasma.

McAlexander et al. [56] compared four miRNA extraction methods and concluded

that the Exiqon miRCURY™ RNA isolation – Biofluids kit was better than the

frequently used miRNeasy® serum/plasma and mirVana™ kits. A recent study

compared seven different RNA extraction methods (phenol-based, column-based

and combined phenol/column-based) starting from isolated exosomes and con-

cluded that the miRNeasy® and miRCURY™ kits gave the best results in terms

of relative amount of extracted cfmiRNAs [55]. Despite their convenience and
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reproducibility, one major drawback of column-based kits is the limited amounts of

extracted miRNA, due to column saturation, when more than 200 μl of plasma are

used [57]. Moreover, the use of a carrier (preferentially glycogen, otherwise

bacteriophage MS2 RNA) is recommended to enhance miRNA recovery and for

reproducible and robust isolation [41].

2.4 Quality Control of the Extracted miRNAs

Assessment of the quality and quantity of the miRNAs extracted from blood-

derived samples is important for the reproducibility and accuracy of miRNA

studies. Traditional methods for checking the quality/quantity of extracted

miRNA from tissues, including spectrophotometry or automated capillary electro-

phoresis, are inappropriate for circulating cfmiRNAs due to low cfmiRNA yields

obtained from serum and plasma samples. An alternative method based on spiked-

in synthetic miRNA oligonucleotides is currently used [31]. These synthetic

miRNA oligonucleotides, which are not naturally present in biological samples,

are added before the RNA isolation step and are quantified to normalize for

variations in RNA extraction efficiency and the presence of reverse transcription

or PCR inhibitors [58]. Recently, two quality control procedures to identify samples

with potential pre-analytical problems have been developed [59]. Specifically, the

normal reference ranges for 119 circulating cfmiRNAs in serum and plasma

samples are provided as well as a hemolysis indicator based on the difference of

expression between miR-451 (erythrocyte-specific) and miR-23a (stable).

In conclusion, sample storage/processing and the RNA extraction method have a

major impact on the results of cfmiRNA profiling and around 70 % of detectable

circulating miRNAs show expression variations related to processing alone. To

obtain accurate and reproducible data, one must keep in mind that serum and

plasma samples, as well as the specific pre-analytical conditions related to the

forms of circulating cfmiRNA, are not interchangeable and result in different

circulating cfmiRNA profiles and concentrations. Therefore, a standardized list of

details concerning the sample collection and processing should always be reported

in publications and the same miRNA extraction protocol should be used for all

Table 2 List of

commercially available

miRNA extraction kits

frequently used for miRNA

profiling in blood-derived

samples

Kit name Manufacturer

miRNeasy® serum/plasma Qiagen

mirVana™ PARIS Life Technologies

miRCURY™ RNA isolation – biofluids Exiqon

NucleoSpin® miRNA plasma Macherey-Nagel

MicroRNA isolation BioChain®

mirPremier® microRNA Sigma-Aldrich®

miRNA isolation Geneaid

PureLink®miRNA isolation Life Technologies
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tested samples. Finally, whenever possible, cfmiRNA isolation from a given spec-

imen should be performed at least in duplicate.
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Detection of Genetic Alterations by Nucleic

Acid Analysis: Use of PCR and Mass

Spectroscopy-Based Methods

Florent Mouliere, Alain R. Thierry, and Christian Larroque

Abstract Cell free circulating DNA, isolated from blood has emerged as a poten-

tial biomarker in oncology. There has been also considerable progress towards

theranostic application of circulating DNA. These applications were enabled by the

increased use of the PCR technique and its derivates. PCR assays have become a

widely used method for the quantification of circulating DNA in either plasma or

serum samples. Moreover, PCR amplification is the basic method implicated in the

majority of the circulating DNA analytical methods. This review focuses on the

PCR and Mass-spectrometry methods developed to detect circulating DNA alter-

ation from blood, in evolving applications such as cancer diagnostic tools. This

review also gives advices and guidelines for designing PCR experiments with the

specific requirements of circulating DNA. The concentration of circulating DNA,

especially mutant circulating DNA, fragments can be too low for accurate

measurements with other spectrophotometric methods. However, the accuracy,

the high through-put and multiplexing capabilities of mass spectrometry becomes

an interesting tool for the quantification as well as for the characterization of

circulating DNA.
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1 PCR-Based Methods

PCR assays have become a widely used method for quantification of circulating

cfDNA in plasma or serum samples as the concentration of circulating cfDNA can

be too low for accurate measurements by other spectrophotometric methods. The

process involves amplification of a single or a few copies of a piece of DNA to

generate thousands to millions of copies of a particular DNA sequence. The method

employs a pair of primers that span a target region in template DNA to polymerize

partner strands in each direction via a thermostable polymerase in the presence of

nucleotides. The process is repeated through multiple cycles to produce amplifica-

tion of the targeted DNA region. In each cycle, the template and primers heated to

separate the newly synthesized molecule and template and on cooling, the mole-

cules become the template for the next synthesis round - and so on. There is a

doubling of the number of copies with each round of synthesis. The PCR revealed

itself to be a very sensitive method; however, this sensitive property is

counterbalanced by either a high risk of false-positivity or prone to nonspecific

amplifications of exogenous contaminants. Good laboratory practice and specific

strategies to avoid contamination need to be settled to decrease the risk of contam-

ination. Moreover, PCR amplification is the basic method involved in the majority

of the circulating cfDNA analytical methods and in order to optimize its efficiency,

we will consider the particular characteristics of the cfDNA in this chapter.

1.1 First PCR Application in CNAPS

In the story of CNAPS research, there a clear gap between the research performed

before and after the implementation of PCR and subsequently, of its derivates.

There was a sharp increase in the number of publications at the time when PCR was

widespread in the research community and also at the time of quantitative PCR

(qPCR) diffusion. The PCR methods, with their ability to detect and amplify unique

fragments of DNA, are one of the key methodologies for the analysis of CNAPS.

PCR amplification is being used in a growing number of applications including

gene expression quantification, expression profiling, SNP analysis, allelic discrim-

ination and the detection and monitoring of genetic alterations.

The quantification of the template DNA during qPCR cycles is based on the

re-emission of a fluorescent signal during the exponential phase of the amplification

[1]. qPCR enables the sensitive and specific measurement of the fluorescence level

at each cycle of the amplification process. The ability to read fluorescence at an

early phase of the amplification, enables an acute quantification before the limiting
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reagents, the inhibitors inactivate the polymerase so leading to a decrease in the

efficiency of the amplification. The fluorescence intensity proportionally increases

with each amplification cycle in response to the increase in the amplicon concen-

tration i.e. the concentration of the piece of either DNA or RNA that is the product

of the amplification.

The first cycle at which the instrument can distinguish the fluorescence gener-

ated by the amplification is termed the threshold cycle, or more recently, the

quantification cycle (Cq) in the MIQE guidelines [2]. The MIQE guidelines were

set up to enable researchers who are willing to work with qPCR to publish all the

elements necessary for a precise reproducibility of their experiments.

It is also important to note that conscientiously performed good sample prepa-

ration is one of the key to unlocking qPCR’s true potential. By preparing all nucleic

acid samples in a highly defined and careful manner, the enzymatic reactions on

which PCR, qPCR, RT qPCR depend are allowed to occur as intended [3]. A better

knowledge of the DNA template structure and composition is also a key for getting

optimal and accurate results in qPCR.

In 1997, Lo et al. [4] first described PCR detection of circulating cffDNA in

maternal plasma and serum. Since then, circulating cffDNA amplification by PCR

has emerged as an important method for non-invasive prenatal diagnosis. The

advent of qPCR soon made it possible to measure circulating cffDNA concentra-

tions in maternal plasma and soon after that, in the plasma of cancer patients ([5];

chapter “Extracellular Nucleic Acids and Cancer”).

The first utilizations of qPCR systems with circulating tumor cfDNA focused

mainly on the quantification of the total level of cfDNA and to estimate the

diagnostic utility of the observed increased in cfDNA in the blood of cancerous

patients.

One form of PCR, reverse transcription quantitative PCR (RT-qPCR), is men-

tioned here briefly. It is the method for the amplification of cfRNAs (chapters

“Genomic Approaches to the Analysis of Cell Free Nucleic Acids”, “CNAPS and

General Medicine”, “Fetal CNAPS: DNA/RNA”, “Circulating Nucleic Acids and

Diabetes Mellitus”, “Extracellular Nucleic Acids and Cancer”, “Other Body Fluids

as Non-invasive Sources of Cell-Free DNA/RNA” and “CNAPS in Therapy Mon

itoring”) and most of the following general comments on PCR are also applicable to

RT-qPCR.

1.2 Importance of a Good Knowledge of Structure and Size
of cfNAs Prior to PCR Analysis

The specific detection of circulating tumor DNA within a mix of cfDNA fragments

in plasma requires the use of molecular methods and is based on the genetic,

epigenetic or structural differences between normal and tumor- derived DNA.

Given the small fragment size of cfDNA and the varying proportions of tumor-
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derived DNA in the pool of circulating plasma cfDNA, cfDNA detection initially

proved to be technically challenging.

As PCR amplification is closely dependant on the size of the targeted DNA, a

good knowledge of the size and structure of circulating cfDNA, is firmly

recommended in order to optimize and rationalize experiments using PCRmethods.

qPCR is widely used to characterize and quantify circulating DNA (Table 1). qPCR

methods exhibit an apparently lower sensitivity than other sophisticated methods

for studying cfDNA e.g. droplet digital PCR or BEAming (Table 2). But this

limitation is not only attributable to the technique itself and a better knowledge of

cfDNA structure enables the reaching of equivalent levels of sensitivity with a

modified qPCR technique [23, 37].

Also, measurements of local variations in gene copy numbers can be performed

in circulating cfDNA and the correct measurement of a copy number variation

relative to a reference region by qPCR hinges on the use of a non-biased quantita-

tive PCR assay. A reliable determination of the quantities of different DNA targets

is important as well in the analysis of circulating cffDNA in the plasma of a

pregnant woman. In a situation where a duplex qPCR assay or two separate

singleplex assays are used to compare abundances of two different target regions

in a sample of fragmented DNA, it is crucial that the quantitative detection of the

two targets is not influenced by different degrees of degradation of the target DNA

sequences so leading to incorrect quantities of the respective target.

1.3 Methods Based on an Increased Sensitivity
for the Detection of Genetic Alterations with CNAPS

Standard PCR–based assays have a relatively limited sensitivity for detecting

infrequent genetic alterations and cannot detect mutations that represent less than

5–10 % of the total pool of alleles. Identification of somatic genetic and epigenetic

aberrations now has been facilitated by the advent of highly sensitive techniques

[38]. Moreover, high sensitivity polymerase is known to induce less error during the

amplification process. Tailored PCR focusing on specific structural genomic vari-

ants—translocations, insertions and deletions—known to be present in the primary

tumor allows for high sensitivity analysis (0.001 %; which represents the detection

of one mutant allele among 100,000 wild-type alleles).

Other qPCR-derived methods permit a high sensitivity of detection of the

mutational profile. Nested PCR, ARMS, ASB, Intplex, Bi-PAP, Allele specific

ligation PCR (Table 2) are methods already used on clinical cohorts and validated

for the detection of genetic alterations in plasma samples. In addition new digital

based approaches have been developed, including BEAMing, digital PCR and

digital droplet PCR [35, 39]. These PCR-based methods with a high sensitivity

are limited by the fact that the exact genomic aberrations to be investigated must be

known a priori or because the methods are either labor intensive or challenging to
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Table 2 Brief explanation of the variety of PCR developments

Method Description

References and/or

application to CNA

Quantitative PCR (Q-PCR) Classical quantification of fluorescent

intercalating molecules or probes dur-

ing PCR amplification

Lo et al. [17] and

Jahr et al. [18]

Amplification Refractory

Mutation System (ARMS)

Sequence-specific PCR primers that allow

amplification of test DNA only when

the target allele is contained within the

sample. In general the 30 nucleotide of
one of the PCR primers matches the

targeted gene mutation.

Little et al. [19] and

Board et al. [20]

Allele Specific Blocker PCR

(ASB-PCR)

Terminal 30 nucleotide of one of the PCR
primers matches the targeted gene, low

Tm primer, and oligo-blocking nucle-

otide (primer with phosphate group for

blocking WT non-specific

amplification).

Morlan et al. [21]

Intplex (Q-PCR based method) Multi-marker analysis of short fragments

cell-free DNA concentration, mutation

and fragmentation.

Mouliere et al. [22]

and Thierry

et al. [23]

Pyrophosphorolysis-activated

polymerization

(PAP/bi-PAP)

The 30 extremity of the PCR primer is

blocked. This base can be removed

(which leads to extension and amplifi-

cation) only if the template DNA is

mutated.

Liu and Sommer

[24, 25] and

Madic et al. [26]

Peptide Nucleic Acid/Locked

Nucleic Acid (PNA/LNA)

PNA/LNA probes block primer binding to

nonmutated DNA.

Däbritz et al. [27]

Digital PCR (dPCR) Microfluidic system separate template

DNA in partition cells and enables

individual copy amplification and

detection

Vogelstein and

Kinzler [28];

Digital droplet PCR (ddPCR) Each DNA template is amplified sepa-

rately in emulsion droplets

Hindson et al. [29]

and Taly

et al. [30]

Co-amplification at lower

denaturation temperature

PCR (COLD PCR)

Enrichment of mutated fragments of DNA

in a mix of mutated and wild type

DNA fragments, by preferential

amplification of heteroduplexes DNA

produced during PCR thermal cycling.

Milbury et al. [31]

and

Makrigiorgos

et al. [32]

DISSECT (Differential Strand

Separation at Critical

Temperature)

A method that enriches unknown muta-

tions of targeted DNA sequences

purely based on thermal denaturation

of DNA heteroduplexes without the

need for enzymatic reactions

Guha et al. [33]

BEAMing (Beads, Emulsion,

Amplification and

Magnetics)

This method combines emulsion PCR

with magnetic beads and flow

cytometry for the detection and quan-

tification of mutant tumor DNA.

Diehl et al. [34, 35]

and Higgins

et al. [36]
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design. The DISSECT seems to be a nice method to overcome the limitations of

locus specific assay [33], otherwise NGS methods are also enabling non-locus

specific analysis of cfDNA [40, 41].

With its ability to perform absolute quantification of cfDNA, the dPCR technol-

ogy presents a conceptual advantage compared to classical qPCR, especially for the

determination of copy number variations [42]. Whenever cfDNA is analyzed, copy

numbers derived from PCR assay with fragmented DNA as a template cannot easily

be interpreted as haploid whole genome equivalents because the qPCR assay counts

only the copies of the available full length target. This implies that the detected

copy number is, in fact, dependent on the either the qPCR or dPCR assay

performed. Therefore, target copy numbers obtained for the same sample using

different assays should only be compared after performing appropriate tests that

check for quantification bias via a proper normalization. Digital droplet PCR is an

evolution of dPCR where the partitioning consists in an emulsion generation. This

method presents a conceptual advantage that the number of emulsion might be

increased, which will also increase the sensitivity of this approach to very high level

(0.001% of mutant DNA detected [30, 43]).

1.4 Other Approaches

Common PCR will amplify both the major (wildtype) and minor (mutant) alleles

with the same efficiency, excluding the ability to easily detect the presence of

low-level mutations. Another strategy for detecting low frequency mutations is

based on the specific enrichment of the mutated fraction of the cfDNA. COLD-PCR

and its derivatives are able to efficiently enhance the proportion of mutated cfDNA

([44]; Table 2). The underlying principle of COLD-PCR is that single nucleotide

mismatches will slightly alter the melting temperature (Tm) of the double-stranded

DNA. Depending on the sequence context and position of the mismatch, Tm

changes of 0.2–1.5 �C are common for sequences up to 200 bp or higher. Each

double-stranded DNA has a ‘critical temperature’ (Tc) lower than its Tm. The PCR

amplification efficiency drops measurably below the Tc, the latter being dependent

on the DNA sequence. Two template DNA fragments differing by only one or two

nucleotide mismatches will have different amplification efficiencies if the denatur-

ation step of the PCR is set to the Tc. This is achieved by using preferential

denaturation of mismatch-forming mutations at critical denaturation temperature

[32]. Using two consecutive COLD-PCRs, mutations can be enriched by 100-fold

or more [33, 45].

A multi-marker approach, and beyond a multiparametric method, would lead to

an increased sensitivity and performance in answering current diagnosis questions

[16, 37, 46]. In previous work, the concentration of cfDNA, the fragmentation of

this DNA, the presence of mutation, the allelic frequencies of the detected muta-

tions and the epigenetic alterations were used with a multiparametric analysis for

discriminating between cancer and healthy patients [22, 46]. The relative
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contributions of each of these parameters in this analysis are not yet investigated in

order to answer other biological questions, but this could increase either the

discrimination of early stage cancer or the prognosis of patients that are difficult

to investigate by other methods.

NGS technologies have allowed the development of new approaches for cfDNA

analysis. NGS analysis of plasma cfDNA can be used to (i) determine the presence

of a given mutation and estimate its allelic frequency within a sample [40, 47] and

(ii) perform whole-exome or whole-genome characterization of the mutational

profile in a cancer ([41, 48]; chapter “Genomic Approaches to the Analysis of

Cell Free Nucleic Acids”). These latter sequencing methods would enable the

identification, and follow-up of new mutations linked to the emergence of treatment

resistance.

1.5 General Guidelines Applicable to All PCR Applications
for CNAPS Analysis

DNA Preparation

It is important to note that the lack of reproducibility between the different studies

has already been identified for a long time as one of the most important drawback in

cfDNA analysis (van der Vaart [49]; chapter “Extracellular Nucleic Acids and

Cancer”). The preparation of the DNA corresponds to the isolation and extraction

steps (chapters “Pre-analytical Requirements for Analyzing Nucleic Acids from

Blood” and “Circulating DNA and miRNA Isolation”). These two steps, as well as

the storage of the extracted DNA, require a better standardization to increase the

reproducibility of cfDNA analysis. In order to avoid variability induced by the

quantification method and strategy, it is also recommend to set up a MIQE or a

dMIQE guideline as soon as possible [2, 50].

Anti-contaminations Procedures

As for the classical PCR protocol for genomic DNA [51], the preparation of each of

the analytical steps, namely blood isolation, DNA extraction, PCR preparation,

preparation of the controls and PCR assay, should be performed in separate and

designated working areas. A one way workflow is also required to avoid PCR

contaminants for the later steps of the process [52]. The preparation of the PCR

reagents should also be made in a dedicated laminar flow cabinet. In previous work,

it has been reported that the inclusion of uracil N-Glycosylase would prevent the

unwanted amplification of PCR products from previous reactions.
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Choice of the Target Size

The choice of the size of the template DNA to amplify is an essential information,

especially when it is intended to work with highly fragmented DNA. The majority

of the studies using PCR systems for quantifying cfDNA were targeting sequences

ranging from 120 to 150 bp. In addition to the high PCR efficiency of amplifying

sequences of this range, this choice was based on agarose gel electrophoresis size

analysis of cfDNA indicating a typical ladder at 180 bp and multiples. This size

would correspond to the fragmentation induced by the apoptosis phenomenon.

However, more recent work seems to indicate that circulating cfDNA would be

more fragmented than was previously thought, especially in samples from cancer

patients, with a peak of fragmentation comprised of between 80 and 145 bp,

depending on the study [16, 53, 54]. Mouliere et al. found that qPCR primer pair

amplifying DNA fragment ranging from 60 to 100 bp are optimal to quantify

circulating cfDNA from metastatic colorectal cancer patients. This apparent greater

fragmentation could be induced by a subsequent degradation of the cfDNA by

phagocytosis in the bloodstream. Thus, different levels of fragmentation are also

observed depending on the cancer type, the targeted gene and the analytical method

(Table 1). However, the smaller the amplicon targeted, the greater are the potential

number of amplified products. Nevertheless, as the efficiency of the PCR decreases

when targeting amplicons of low size, the normalization process of the PCR

efficiency is essential to ensure a precise quantification. Table 1 summarizes the

different sizes observed depending on the study.

Thermal Cycling

cfDNA analysis with PCR methods does not required a particular thermal cycling.

It is, however, recommended so as to avoid long steps of annealing and extension

(as cfDNA is highly fragmented into short size fragments, longer steps are not

required if it is considered that an error rate of incorporation of 1 per 10,000 nt with

classical Taq Polymerase). The fidelity of amplification by PCR is dependent on

several factors such as: annealing and extension time, annealing temperature, dNTP

concentration, salt concentrations and the type of polymerase used. In general, the

rate of misincorporation may be reduced by minimizing the annealing/extension

time, maximizing the annealing temperature and minimizing the salt

concentrations.

By default, a classical thermal cycle would be composed of a first step of

denaturation of 5–10 min at 92–94 �C for initiating a first denaturation and/or

activate hot start Polymerase when used. During cycle succession, a denaturation at

92–94 �C for 1–2 min is generally used. The temperature and annealing duration is

dependant on the base composition, the length and concentration of the primers. An

annealing step at 55–60 �C for 30 s is generally accepted. This step is crucial for a

difficult primer-template pair and requires optimization to avoid non-specific
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product formation. The primer extension step is generally performed at 72 �C for

1 min. In fast-PCR protocols, annealing-extension steps are grouped together with a

temperature of >60 �C only. The recently developed microfluidics system for

qPCR or dPCR would require specific uncommon thermal cycling.

Normalization

qPCR is widely used to characterize and quantify circulating cfDNA [3]. qPCR

methods exhibit an apparently lower sensitivity than other sophisticated methods

for studying cfDNA such as BEAming or dPCR. This limitation is not only

attributable to the technique itself and a better knowledge of cfDNA structure

enables nearly equivalent levels of sensitivity with a modified qPCR technique to

be reached [23]. However, the normalization procedures used in such qPCR

experiments are, in general, identical to qPCR realized with a genomic template

DNA (Table 3) even if the cfDNA is structurally different. In general, the ampli-

fication of either one or a few target sequences in a quantitative PCR assay is used to

quantify the target DNA molecules by comparing the amplification signal of the

unknown sample to a standard curve with a known DNA concentration. In the case

of circulatory cfDNA, the concentration of the sample is usually determined by

comparing the sample to a standard that is made up of high-quality genomic DNA.

The concentration of this quantification standard is, in general, determined by

measuring UV absorbance with a spectrophotometer (for example the nanodrop

system), or fluorescence with a spectrofluorimeter (for example, the Qubit system).

In most cases a standard curve with genomic DNA from human healthy lym-

phocytes is used to determine the DNA quantification. However, this template is not

the better way to mimic circulating tumor cfDNA as genomic DNA is not

fragmented and tumor cfDNA seems to be highly fragmented with more than

80 % of the fragments being less than 145 bp [16, 70]. This raises the question as

to whether or not circulatory, fragmented DNA can be accurately quantified by

qPCR when high-quality genomic DNA is used as a quantification reference. When

analyzing circulating tumor cfDNA it is necessary to modify the classic procedures

of normalization to ensure an accurate DNA quantification with qPCR. More

precisely, taking into account the size of the DNA template and its structure and

complexity would be important for the accurate determination of DNA concentra-

tions. DNA fragmentation leads to a lower availability of intact target sequences

when compared to high quality genomic DNA such that, in a circulatory cfDNA

sample, it may no longer be possible to determine the number of diploid or haploid

genome equivalents from the detected number of target sequences.

In this sense, digital dPCR represents a time-saving and more reproducible

method as no standard curve is required for normalizing the data and for determin-

ing the absolute quantification of the PCR products. The main technologies for

dPCR are those based on a physical partitioning of the DNA molecules [40] and

those based on an emulsification process for separating the DNA molecules

[30, 43].
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Melt Curve Analysis

The introduction of melt-curve analysis is a plus in the detection strategy of low

frequent mutations in a mix of WT samples. However, this step would be time

consuming e.g. if the fluorescence level is monitored from 50 to 90 �C with an

increment of 0.2 �C, this represents approximately 1 h of machine time. Surpris-

ingly, the High Resolution Melt strategy has not been heavily explored for the

discrimination of mutated tumor cfDNA and healthy cfDNA [31, 71]. For down-

stream mutation screening, high resolution melting (HRM) curve analysis is simple,

rapid and inexpensive to perform yet exhibits a high sensitivity when scanning for

unknown, low-abundance mutations and variants. The reported sensitivity of HRM

is largely determined by fragment length, sequence composition, mutation identity,

PCR quality and equipment. Although recent publications report the ability to

detect <1 % mutant in wild-type DNA, most applications of HRM-based assays

exhibit a detection capability of approximately 5–10 % mutant among wild-type

alleles. Although HRM mutation scanning is highly sensitive and efficient, HRM

lacks the ability to identify the specific nucleotide change; this is a particularly

important issue when mutations or variants are not known a priori and are likely to
occur at any position within the amplicon sequence.

Melt-curve analysis is not automatically available in recent dPCR technologies

and in particular, in ddPCR. In this case, the specificity of the primer amplification

would need to be investigated before the experiment or based on the droplet

repartition. With ddPCR, specific strategies should be employed in particular in

case of multiplexing [30, 43].

1.6 Conclusion

PCR and its derivates have been extensively used since the beginning of the 1990s

for detecting and quantifying circulating cfDNA in both cancer and prenatal

diagnosis research. qPCR and dPCR have found wide spread applicability in the

analysis of gene alteration measurement and cfNAs in body fluids (chapter “Other

Body Fluids as Non-invasive Sources of Cell-Free DNA/RNA”). The assay is

readily amenable to automation by making use of either the current real-time

PCR 96–384 well formats or microfluidics system. PCR amplification is the basic

method involved in the majority of the circulating cfDNA analytical methods. In

order to optimize its analysis, the consideration of the structural particularities of

cfDNA, as well as their pre-analytical parameters, are recommended. In spite of

these technical challenges, the quantitative analysis of circulating cfDNA is gaining

increased importance as a tool of molecular diagnostics, addressing various path-

ological or physiological conditions. Circulating cfDNA derived from tumors can

be detected in either plasma or serum and the concentration of a tumor-specific

target region may reveal details about the malignant condition which might be

explore with other technological approaches.
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2 Mass Spectrometry-Based Methods

The mass spectrometer has been used for the analysis of biological complex

structures such as DNA and peptides since the development of soft ionization

techniques known as ElectroSpray Ionization or ESI [72] and Matrix Assisted

Laser Desorption/Ionization or MALDI [73, 74]. In the electrospray ion (ESI)

source of the mass spectrometer, the DNA solution, either directly infused or

injected through a liquid chromatography device, is converted into a plume of

fine droplets and submitted to an intense electric field. DNA molecules are thus

ionized, accelerated and resolved with respect to their mass to charge ratio (m/z) in

a time of flight analyzer (TOF). The MALDI ionization mode requires the use of a

matrix that, under LASER illumination, transfers to DNA molecules the electric

charges necessary for their extraction and analysis as described for the ESI mode.

2.1 Mass Spectrometry in Nucleic Acids Sequencing

In the 1990s, the first attempts to use either ESI or Maldi mass spectrometry to

sequence DNA fragments [75] were quickly surpassed by the rapid development of

large scale sequencing technologies. One of the major pitfalls of this approach was

the necessary purification of the DNA fragments before their mass spectrometry

analysis and the propensity of DNAmolecules to be associated with one or more Na+

or K+ ions. Several groups have then developed sample purification procedures

compatible with mass spectrometry [76–79] in return for which mass spectrometry

had some advantages over electrophoretic techniques in the detection and resolu-

tion of frameshift mutations [80]. Recently, taking advantage of the information-

rich spectra obtained from high resolution ESI-MS/MS QqTof apparatus, the use of

mass spectrometry in fast DNA sequencing was reinvestigated. The interpretation

of fragmentation ion mass spectra is accomplished using specific comparative

sequencing algorithms (COMPAS) [81]. By applying these algorithms, the

sequencing of DNA fragments of up to 80 nucleotides could be verified in a few

seconds. However, the most popular application of mass spectrometry in DNA

analysis concerns the detection of single-nucleotide polymorphisms.

2.2 SNP Genotyping Using Mass Spectrometry

As the full sequence of the human genome is now uncovered, there is an increasing

demand for the precise knowledge of individual variation in the sequence. Some of

these variations known as SNPs only affecting one per 1,000 bases, represent 90 %

of the genome modifications. Mutations induced by these SNPs must be synony-

mous (i.e. no change in the amino acid composition if the mutation occurs within an
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exon), mis-sense (changing one amino acid) or nonsense (introducing a defect in

the resulting protein). As the number of SNPs identified increases, their impact on

population genetics, genetic disease identification and disease susceptibility

becomes essential. The SNP-disease association is now a parameter that could

not be ignored and many of them are indexed in specific databases (geneticasso-

ciationdb.nih.gov).

Whereas sequencing is the standard method for the characterization of a SNP,

MALDI mass spectrometry methods for SNP genotyping have been designed.

Methods are based on allele specific hybridization with either PNA-probes [82]

or allele specific ligation [83] or allele specific cleavage of oligonucleotides

[84]. However, only the primer extension method followed by mass spectrometric

analyses was implemented for high throughput genotyping. For the assay, a primer

is annealed immediately upstream of a SNP and a combination of dNTP and ddNTP

is added with the aid of a DNA polymerase.

The single extension primer protocol utilizes a single primer per SNP and

generates allele specific products with distinct masses. The Sequenom

MassARRAY platform utilizes this method that was demonstrated to be attractive

for accurate custom genotyping assay. Many detailed protocols describing the

primer extension method are accessible [85, 86]. This approach was chosen to

profile critical cancer gene mutations in clinical tumor samples of mutations in

patients and then to predict patient outcome and/or inform on treatment options

[87]. In this study, 396 mutations on 33 cancer genes were analyzed by the primer

extension mass spectrometry approach establishing an OncoMap sequence for each

patient.

Today, this technology is widely used and has become a standard in specific

gene mutation detection in large cohorts of patients [88], in pharmacogenomics

response prediction of the side effects in chemotherapy in cancer treatment [89, 90]

and in the discovery of disease susceptibility due to gene mutations [91].

2.3 Application of Mass Spectrometry to the Studies
of Circulating Cell-Free Nucleic Acids

cfDNA, and more particularly, circulating cfDNA is now demonstrated to become

an important tool for either clinical diagnostics or disease follow-up. Since the

discovery that patients with various types of cancers have high level of circulating

cfDNA in their plasma, a new era opens where possible mutations could be detected

after a minimally invasive act on the patient [37, 41, 92–94].

In this area, the accuracy, the high throughput and multiplexing capabilities of

mass spectrometry becomes an interesting tool for the quantification as well as for

the characterization of circulating cfDNAs. Each of them requires an initial step of

PCR amplification of the genomic region of interest. Specific methods were devel-

oped for the analysis of amplified fragments. Both quantitative and qualitative
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information could be drawn from the short oligonucleotide mass analysis (SOMA)

based on the ESI-MS assay on short fragments generated by use during the PCR of

two Bmp1 containing primers and the accurate determination of the mass of each

amplified allele fragment [95]. This approach was validated by comparison with

alternative methods [96]. Some refinements of the mass spectrometry characteri-

zation of circulating cfDNA, but coupled to a MALDI-MS analysis were proposed

such as the single allele base extension reaction (SABER) [97] and the allele

specific base extension reaction (ASBER) [98]. These two last cited methods are

refinements of the most used MassEXTEND (hME) reaction but using specific

(SABER) or competitive (ASBER) ddNTP as elongation reaction inhibitors [99].

2.4 Conclusion

Coupled with either existing PCR methods or directly on DNA extracts, mass

spectrometry becomes the adequate technology in this domain due to its flexibility,

high sensitivity and adaptability to high throughput analysis at affordable costs. The

complementarity of MALDI and ESI ionization modes together with the develop-

ment of new software will make mass spectrometry a method of choice for

analyzing circulating cfDNA. The past decade has seen the increasing use of

circulating cfDNA from various origins in the early diagnosis of several diseases.

As interest increased, the methods of characterization needed to be more robust,

sensitive and accurate. The technological improvement of PCR, mass-spectrometry

and NGS enable now to probe ctDNA at different levels of resolution, and would

increase the clinical utilization of cfDNA as a biomarker.
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Genomic Approaches to the Analysis of Cell

Free Nucleic Acids

Wenying Pan and Stephen R. Quake

Abstract Recent advances in high throughput DNA sequencing and microarray

technologies have revolutionized the field of genomics and also opened up many

opportunities for the analysis of cell-free nucleic acids. These genomic approaches

have not only provided a more comprehensive portrait of the landscape of cell-free

nucleic acids, but also enabled a number of non-invasive genome-wide diagnostic

methods. In this chapter, we introduce the basic mechanism of high throughput

DNA sequencing and discuss some unique characteristics of cell-free nucleic acids

that make their experimental procedure for high throughput analysis different from

ordinary cellular nucleic acids. We describe different DNA sequencing protocols

that have been used for cell-free DNA, including whole genome sequencing, exome

sequencing and targeted amplicon sequencing. We explain the statistical model

underlying the detection of copy number variation and point mutation from cell-

free DNA. We also review recent clinical applications of sequencing cell-free

DNA, from the non-invasive diagnosis of fetal genetic defects, to detection of

tumor mutations from plasma and monitoring rejection of organ transplantation.

In addition, we outline the perspective of profiling cell-free mRNA and cell-free

microRNA using RNA-seq and microarray, and their potential applications.

Finally, we conclude with discussions of the current challenges and possible future

advances for genomic analysis of cell-free nucleic acids.
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1 Introduction of High Throughput Sequencing

High throughput sequencing methods are a variety of the DNA sequencing methods

that can read the sequence of thousands to millions of DNA molecules in parallel.

To differentiate these methods from Sanger sequencing, these methods are referred

to as next generation sequencing. High throughput sequencing usually can be

divided into two steps: DNA template preparation and sequencing [1]. There are

two strategies used in preparing DNA templates: (1) clonally amplified templates

originated from a single DNA molecule that could enhance the fluorescence signal

during imaging; (2) a single DNA molecule template that could reduce the errors

introduced during amplification. There are two common methods for clonal ampli-

fication: solid-phase amplification and emulsion PCR and two popular strategies for

sequencing: sequencing-by-synthesis and sequencing-by-ligation. For example, the

most widely used high throughput sequencing platform – Illumina sequencer, is

based on solid-phase amplification and sequencing-by-synthesis. The mechanism

of Illumina sequencing technology involves: hundreds of millions of DNA tem-

plates are immobilized on the surface of a glass slide. For each single template

molecule, up to 1,000 identical copies are created in close proximity by solid-phase

amplification. The hundreds of millions of DNA templates are then sequenced

using the sequencing-by-synthesis method. A single labeled dNTP is added to the

nucleic acid chain during each sequencing cycle. The nucleotide label serves as a

terminator for polymerization, so after each dNTP incorporation, the fluorescent

dye is imaged to identify the base and then enzymatically cleaved to allow incor-

poration of the next nucleotide (Fig. 1). Besides Illumina, other commercially

available high throughput sequencing platforms include 454 Roche that incorpo-

rates emulsion PCR amplification and sequencing-by-synthesis technology, SOLiD

that uses emulsion PCR amplification and sequencing-by-ligation technology and

PacBio that provides single molecule sequencing.

2 Overview of the High Throughput Analysis Methods

for cfNAs

Generally, the high throughput sequencing or microarray profiling of cfNAs fol-

lows similar protocols to those used for bulk tissue or cultured cell lines (Fig. 2).

Sequencing analysis can be divided into two major categories: one is shotgun

sequencing, which means globally sequencing an unbiased sample of the whole

genome or transcriptome from the sample. The advantage of shotgun sequencing is

that it does not require assumptions about which molecules may be present, but

obtaining such comprehensive coverage can be expensive. The other category is

targeted sequencing which can achieve much greater coverage at locations of

interest. The targeted region could be all of the exons in the genome, termed

exome sequencing; it could be also for specific genes, such as the genes related to
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cancer. Two methods are widely used to enrich the targeted sequences: the first one

is through PCR amplification (see chapter “Detection of Genetic Alterations by

Nucleic Acid Analysis: Use of PCR and Mass Spectroscopy-Based Methods”)

Fig. 1 Scheme of Illumina sequencing method. Sequencing primers are annealed to the adapters

of the sequences to be determined. Polymerases are used to extend the sequencing primers by

incorporation of fluorescently labeled and terminated nucleotides. The incorporation stops imme-

diately after the first nucleotide due to the terminators. The polymerases and free nucleotides are

washed away and the label of the bases incorporated for each sequence is read with four images

taken through different filters. Subsequently, the fluorophores and terminators are removed and the

sequencing continued with the incorporation of the next base [2]

Fig. 2 The workflow of high throughput methods for cfNAs
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followed by the sequencing of the PCR product, which is named amplicon sequenc-

ing. Amplicon sequencing is a cost-effective and time-efficient choice for a target

region of relatively small size. The larger the targeted region, the more primers are

needed. A common pitfall for a mixture of a large number of primers is the

generation of a large amount of primer-dimers. The second enrichment method is

to capture the target sequences with magnetic beads linked with oligonucleotide

probes. This method can be applied to a target region of large size, such as the

whole exome. However, it normally requires more starting DNA/cDNA molecules

when compared with PCR-based enrichment.

Microarray analysis has been the first gold standard for the quantification of the

transcriptome. Since the invention of RNA sequencing (RNA-seq) by Nagalakshmi

et al. [3], global characterization of RNA has begun to shift from microarray to

RNA-seq. Besides the measurement of the expression level of RNA transcripts,

RNA-seq can also reveal splicing information and allow the discovery of novel

RNA species, such as non-coding RNAs and circRNA (see chapter “The Biology of

CNAPS”).

3 Sample Preparation for High Throughput Analysis

of cfNAs

There are some unique characteristics of cfNAs that make the sample preparation

procedure for high throughput analysis different from that for ordinary cellular

nucleic acids.

cfNAs are highly fragmented. For nucleic acids extracted from intact cells, the

size of genomic DNA is more than 20 kbp and the majority of mRNA is in the range

of 1–5 kb. In comparison, the average size of cfDNA is approximately 200 bp.

Similarly, the size distribution of the degraded cfmRNA has the peak around 160 bp

(Fig. 3).

The DNA/mRNA isolated from intact cells is generally too long for direct

downstream sequencing or microarray analysis and so the isolated DNA/mRNA

normally needs to be fragmented to a smaller size (200–500 bp) before adaptor

ligation in sequencing or fluorescent labeling in microarray. One benefit of the

fragmented nature of cfNAs is that this fragmentation step can be omitted. How-

ever, another characteristic of cfNAs, its ultralow concentration, can make its

sample preparation technically challenging.

Normally, only 0.5–50 ng of cfDNA (equivalent to 100–10,000 copies of the

genome) and 1–100 ng of cfRNA are isolated from 1 ml of plasma. However, for

standard Illumina sequencing library preparation, more than 1 μg of DNA is

recommended. For conventional samples with ultralow DNA amounts, WGA,

which is based on random priming, is usually employed before library preparation.

Because of its significantly shorter size, this approach generally does not work well

with cfDNA molecules. As a result, it is better to avoid random-priming based
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amplification for cfDNA. Rather, the tendency is to ligate known primers (such as

Illumina sequencing primers) directly to the cfDNA and then amplify the fragments

via PCR. We have also had success in library preparation with automated platforms

such as NuGen’s Mondrian system.

One technical issue that comes into play is that PCR amplification efficiency

depends upon the size of the fragments being amplified: smaller fragments are

generally amplified more efficiently. In the context of high throughput sequencing,

this results in an over-representation of short fragments and an under-representation

of longer fragments. Fan and Quake characterized this distortion and corrected for

it, so enabling them to study the true length distribution of cfDNA (Fig. 4) [4].

Fig. 3 The size distribution of cfRNA and cfDNA. (a) size distribution of extracted cfRNA by

Bioanalyzer measurement; (b) size distribution of cfDNA by Bioanalyzer measurement

Genomic Approaches to the Analysis of Cell Free Nucleic Acids 117



Another important systematic error that must be reckoned with is GC bias. GC

bias describes the dependence between GC content in a region and the count of

sequencing reads mapped to it [5]. Both the PCR amplifications and the sequencing

process itself lead to significant GC bias. This was recognized and partially

corrected for in the first non-invasive measurements of fetal aneuploidy [6]. More

sophisticated methods to correct for GC bias were subsequently developed and their

application has reduced these systematic errors below the level stochastic error due

to counting statistics [7].

cfRNA faces similar challenges. Because one normally requires ~5 μg of cDNA
for the hybridization of microarray, and ~1 μg of cDNA for RNA-seq, whole

transcriptome amplification is necessary. The most widely used whole

transcriptome amplification methods take advantage of the poly-A tail of mRNA

for the reverse transcription and amplification, which is not applicable to cfmRNA

to its fragmented state. As an alternative, random primers can be used to convert

mRNA to cDNA, but with the cost of introducing amplification bias and uneven

coverage of the transcripts. In principle, universal adaptors could first be ligated to

the 30 and 50 end of the mRNA and the following reverse transcription and

amplification could be primed by a sequence complementary to the adaptors

(Fig. 5). This method has been used for the library preparation of small RNA, but

so far it has not been tested on cfRNA. However, the sensitivity of this method

would rely on the adaptor ligation efficiency.

Fig. 4 The effects of library preparation and amplification on the size distribution of DNA.

DNA was digested with AluI and then paired-end sequenced. The number of sequenced fragments

is plotted against length. Each black dot represents the mean number of reads in every 20-bp bin.

The red line is a locally weighted logistic regression fit [4]
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4 High Throughput Sequencing and Analysis

4.1 Whole Genome Sequencing

The extracted DNA can be sequenced globally or selectively. For the whole

genome sequencing, the DNA molecules are ligated with sequencing adaptors

and subsequently put onto a sequencer for sequencing. The whole genome sequenc-

ing of cfDNA has been applied to the diagnosis of fetal aneuploidy from maternal

plasma [6], the detection of tumor-associated copy number aberrations [8, 9] and

the non-invasive monitoring of organ transplant rejection [10].

4.2 Exome Sequencing

The global sequencing of either the DNA or mRNA could capture the whole

genomic landscape. However, its widespread coverage could also make its

sequencing not deep enough to reveal the genomic variation in the minor DNA

population. For example, one lane of Illumina HiSeq sequencing generates 200 mil-

lion of 2� 100 bp pair-end reads, which only equate to 7� coverage of the whole

genome. As 99 % of the human genome is comprised of e.g. repetitive elements, the

introns, ribosomal RNA genes which are not informative for disease diagnosis.

Therefore, one strategy to enhance the sequencing depth with the same budget is to

enrich and sequence only the exome DNA. The exome DNA can be selectively

Fig. 5 Scheme of adaptor-

ligation based method for

library preparation of

cell-free RNA (Source:

TruSeq™ Small RNA

Sample Preparation Guide)
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hybridized by biotin labeled oligonucleotides with complementary sequences and

captured by streptavidin coupled magnetic beads. DNA sequences with more

specific annotations than exome could also be enriched by customized oligonucle-

otides, such as the capture of a set of cancer related genes. Exome sequencing has

demonstrated its application for cfDNA in the inference of the fetal exome directly

from the maternal plasma DNA [11], and the non-invasive analysis of cancer

therapy by tracking the fraction of tumor DNA in plasma over time [12].

4.3 Targeted Amplicon Sequencing

If the interested genomic region is more focused (for example, only several genes or

within 50 kbp), targeted amplicon sequencing is a more sensitive and cost-effective

method. If the concentration of the input DNA is low, which is normally the case for

cfDNA, a pre-amplification step is required. During the pre-amplification, a cock-

tail primer set is used to amplify all of the targeted DNA fragments simultaneously.

To exclude the primer-dimers and non-specific products generated during the

pre-amplification step, a second round of PCR amplification with only one pair of

primers in each reaction is performed in parallel format. The amplified products

from each reaction are then pulled together for sequencing (Fig. 6). Targeted

amplicon sequencing of plasma cfDNA has recently been employed to identify

and monitor cancer mutations [13, 14].

5 Characterization of cfNAs Using High Throughput

Sequencing

High throughput sequencing has opened up a new portrait of the landscape of

cfDNA. Previous work had suggested that cffDNA is shorter than maternal

cfDNA. Using pair-end sequencing, Fan et al. [4] directly measured the size

distribution of both cffDNA and maternal cfDNA. Their results showed that

cfDNA had a dominant peak at approximately 162 bp and a minor peak at

approximately 340 bp that corresponded to the size of monochromatosome and

dichromatosome, respectively, implying the apoptotic origin of the cfDNA. In

addition, their sequencing measurements also agreed with previous findings that

cffDNA is mostly shorter than 300 bp, whereas a portion of maternal cfDNA is

>300 bp in size (Fig. 7).

Interestingly, one can directly observe an over-representation of cfDNA that

appears to correspond to nucleosome protection. When representation is plotted as a

function of distance from the transcription start site, oscillations can be seen, the

period of which corresponds precisely with the nucleosome frequency (Fig. 8)

[6]. These results are concordant with other studies that directly map nucleosome

position in the genome.
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Fig. 6 Overview of tagged amplicon sequencing. (a) Illustration of amplicon sequencing. Primers

were designed to amplify regions of interest in overlapping short amplicons. Amplicon design is

illustrated for a region covering exons 5–6 of TP53. Colored bars, segmented into forward and

reverse reads, show regions covered by different amplicons (excluding primer regions). Sequencing

adaptors are attached at either end such that a single-end read generates separate sets of forward and

reverse reads. (b) Workflow overview. Multiple regions were amplified in parallel. An initial

preamplification step was performed for 15 cycles using a pool of the target-specific primer pairs

to preserve representation of all alleles in the template material. The schematic diagram shows DNA

molecules that carry mutations (red stars) being amplified alongside wild-type molecules. Regions

of interest in the preamplified material were then selectively amplified in individual (single-plex)

PCR, thus excluding nonspecific products. Finally, sequencing adaptors and sample-specific

barcodes were attached to the harvested amplicons in a further PCR [13]
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Fig. 7 Length distributions of fetal (chromosome Y) and total DNA sequenced from 7 sam-

ples of maternal plasma. (chrY: chromosome Y) [4]
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6 The Counting Principle

One of the most powerful ideas to be used in the analysis of cfDNA is the counting

principle. This enables the teasing apart of mixtures of genomes without the need to

physically separate them. It was first applied for the detection of fetal aneuploidy in

maternal cfDNA, containing mostly maternal DNA and a small component of

cffDNA, but it has also been used to detect copy number variation, measure point

mutations and to perform exome and genome analysis in similar contexts (see

chapter “Fetal CNAPS – DNA/RNA”). It has parallel applications in cancer to

determine the difference between tumor genomes and the somatic genomes of the

affected individuals, as well as in organ transplant diagnostics to measure the health

of the transplanted organ. The basic idea is to detect over-representation of a

particular part of the genome – whether it be a chromosome or a gene region or

Fig. 8 Distribution of sequence tags around transcription start sites (TSS) of ReSeq genes on all

autosomes and chromosome X from plasma DNA sample of a normal male pregnancy (Upper) and
randomly sheared genomic DNA control (Lower). The number of tags within each 5-bp window

was counted within 1,000-bp region around each TSS, taking into account the strand to which each

sequence tag mapped. The counts from all TSS for each 5-bp window were summed and

normalized to the median count among the 400 windows. A moving average was used to smooth

the data. A peak in the sense strand represents the beginning of a nucleosome whereas a peak in the

antisense strand represents the end of a nucleosome. In the plasma DNA sample shown here, five

well-positioned nucleosomes are observed downstream of the TSS and are represented as gray

ovals. The number within each oval represents the distance in base pairs between adjacent peaks in

the sense and antisense strands, corresponding to the size of the inferred nucleosome. No obvious

pattern is observed for the genomic DNA control [6]
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an individual SNP location – by comparing the relative amount to the deviations

expected by counting statistics.

6.1 Detection of Copy Number Variation (CNV)

The basic idea is that the number of the sequencing reads mapped to a targeted

genomic region is correlated to the copy number of that region. In normal human

diploid cells, the copy number of most genome regions should be two. So the

abnormal copy number could indicate diseases in which genetic aberrations are

involved. The genomic region could be either a whole chromosome (e.g.: fetal

aneuploidy, tumor-associated aneuploidy), or part of a chromosome (e.g.: Digeorge

syndrome, CNV in tumor cells).

There are several factors that affect the detection limit of copy number variation:

the number of sequencing readsM, the fraction of foreign DNA E, the proportion of
targeted region in terms of size relative to the entire genome ρ and the times of copy

number variation n. At false positive rate α and false negative rate β, their relation-
ship can be summarized by the following formula:

n� 1ð Þ2ε2ρM ¼ z αð Þ þ z βð Þð Þ2 ð1Þ

The following case is used to illustrate the derivation of formula (1). Assume

that we already have the cfDNA sequencing data from a group of normal subjects,

now we have the cell-free DNA sequencing data from a new subject. The objective

is to determine whether or not there is tumor DNA with CNV in the plasma of this

subject.

Using basic statistical principles, the number of reads x mapped to target region

should follow a hypergeometric distribution, which can be approximated by the

Poisson distribution in this circumstance.

For a normal sample :

ρnor ¼ ρ

λnor ¼ ρM

E xnorð Þ ¼ ρM

Var xnorð Þ ¼ ρM

For a tumor sample :

ρtum ¼ 1þ n� 1ð Þεð Þρ
1þ n� 1ð Þερ � 1þ n� 1ð Þεð Þρ

λtum ¼ 1þ n� 1ð Þεð ÞρM
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E xtumð Þ ¼ 1þ n� 1ð Þεð ÞρM
Var xtumð Þ ¼ 1þ n� 1ð Þεð ÞρM

Denote y ¼ x

M

unor ¼ E ynorð Þ ¼ E xnorð Þ
M

¼ ρ

σnor
2 ¼ Var ynorð Þ ¼ Var xnorð Þ

M2
¼ ρ

M

utum ¼ E ytumð Þ ¼ E xtumð Þ
M

¼ 1þ n� 1ð Þεð Þρ

σtum
2 ¼ Var ytumð Þ ¼ Var xtumð Þ

M2
¼ 1þ n� 1ð Þεð Þρ

M

Distribution of y could be approximated to normal distribution

σtum
2 � σnor

2 ¼ σ2 ¼ ρ

M

Pnor : ynoreN unor; σ
2

� �

Ptum : ytumeN utum; σ
2

� �

Hypothesis test :

H0 : uy ¼ unor this is a normal sampleð Þ
HA : uy 6¼ unor this is a tumor sample with CNVð Þ

The test statistic is the z statistic :

z ¼ y� unor
σ

For a test at significance α level false positive rate,FP ¼ αð Þ :
Consider the case of amplification n > 1ð Þ

Rejection region :

z ¼ y� unor
σ

> z αð Þ
y > unor þ z αð Þσ

False negative rate,FN ¼ β

β ¼ Ptum y � unor þ z αð Þσð Þ

β ¼ ϕ
unor � utum þ z αð Þσ

σ

� �

z βð Þ ¼ �unor þ utum � z αð Þσ
σ
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z αð Þ þ z βð Þ ¼ utum � unor
σ

n� 1ð Þ2ε2ρM ¼ z αð Þ þ z βð Þð Þ2 ð1Þ

One more thing to mention about formula (1): there appears to be no limit for the

fraction of foreign DNA ε and the size of copy number variation, as long as there is

no limit for the number of sequencing reads M. However, in reality, there is an

upper limit ofM, which cannot exceed the total number of original DNA molecules

in the sample. When more reads than the number of original DNA molecules in the

sample are sequenced, essentially there are more PCR duplicates being sequenced

and the formula does not apply.

Returning to the experimental data, and it is possible to test if the prediction from

formula (1) matches the experimental observations.

In the case of detecting a certain type of fetal aneuploidy from maternal plasma,

the n and ρ are fixed. It is easy to conclude from formula (1) that the smaller is the

fetal fraction ε, the larger the number of sequencing reads, M, is required. In the

case of detecting the tumor CNV from plasma, if the tumor fractions ε and n are

fixed, the smaller the size of CNV, the larger the number of sequencing reads

M required.

For example, when detecting fetal Down syndrome, n¼ 1.5, ρ ¼ 50Mbp
3000Mbp

0:017

(the size of chromosome 21 is 50 Mbp, the size of human genome is 3,000 Mbp). If

the total number of sequencing reads is ten million and we set α� 0.01 and β� 0.01,

then according to formula (1), the detection limit of the cffDNA fraction is 2.3 %.

This theoretical prediction matches very well with the experimental result. In 2008,

the Quake group detected fetal aneuploidy from maternal plasma [6]. Their data

shows that the minimum fraction of cffDNA that would be detected is when the

sequencing reads are 10 million. In the subsequent paper, they also comprehen-

sively discussed the relationship between the requirement of sequencing depth and

the fetal DNA fraction (Fig. 9) [7]. In another study of the detection of chromo-

somal alterations in the circulation of cancer patients [8], Leary et al. could detect

the loss or gain of the whole chromosome arm with the tumor DNA concentration

as low as 0.75 % at a sensitivity >90 % and specificity >99 %, using one lane of

Illumina HiSeq (200 million reads). They also made a simulation to show the

relationship between sensitivity and specificity in a ROC curve (Fig. 10).

6.2 Detection of Point Mutation

The principle behind this scenario is straightforward: count the allele frequency

(AF) of the locus of interest and see if there is either an appearance of novel alleles

or if the AF is beyond the threshold of background noise. However, it could turn

into a competition between the sequencing error and the true signal when the

fraction of foreign DNA becomes low, which is the case for the early detection of
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Fig. 10 Detection of circulating tumor DNA in breast and colon cancers using simulated

copy number analyses. ROC analyses of simulated mixtures of breast cancer DNA (left) or
colorectal cancer DNA (right) with normal plasma DNA using the PA score derived from the five

chromosomal arm copy number alterations with the highest absolute z scores in each sample.

Detection of 0.75 % circulating tumor DNA could be achieved with a sensitivity of >90 % and

specificity of >99 % using the equivalent of one HiSeq lane of sequencing and a fixed PA score

threshold in both tumor types. ROC analyses of a z score from a single chromosome arm, 17p,

were similar to chance alone at this simulated tumor DNA concentration in the plasma [8]

Fig. 9 Estimation of the requirement of sequencing depth for the detection of fetal aneu-

ploidy in cell-free plasma as a function of fetal DNA fraction. The estimates are based on level

of confidence a, 0.001 for chromosomes 13, 18, 21 and X, each having different length. As cffDNA

fraction decreases, the total number of shotgun sequences required increases. With a sequencing

throughput of ten million sequence reads per channel on the flow cell, trisomy 21 can be detected if

3.9 % of the cfDNA is fetal (dashed lines). The total number of sequence tags and the estimated

fetal DNA fraction from our set of 19 patient samples are also plotted. For one of the normal male

samples (P19, indicated by the solid arrow), chromosome X was not detected as under-

represented. This was probably due to insufficient sampling, as the total number of sequence

obtained for this sample was close to the limit of detection given its fetal DNA fraction [4]
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cancer or fetal single-gene disorders. The following mathematical derivation and

simulation is to demonstrate the relationship between sequencing error, sequencing

depth and the detection limit of the fraction of foreign DNA. The principle is

illustrated using the case of the detection of tumor point mutations in plasma.

The reference genome sequence of one individual can be measured by sequenc-

ing the white blood cells of the same person. At any given locus, it is either

homozygous or heterozygous. Thus the reference genome is relatively easy to

determine even when sequencing errors exist. However, it becomes more ambigu-

ous when determining the rare point mutation among the dominant normal back-

ground signals. When there are non-reference bases present in the mapped reads, a

criterion is needed to decide whether it is a real mutation signal from the tumor

DNA or it is just a sequencing error. One strategy is to analyze the distribution of

allele frequency (AF) from both mutation signal and sequencing error and to apply

a statistic test to differentiate them.

The following analysis is a statistical point of view of this problem. At one locus,

the number of a non-reference base caused by sequencing error is denoted by xerr,
and the number of non-reference bases caused by mutation is denoted by xmut. We

assume that C is the sequencing coverage at that locus, e is the sequencing error rate
and E is the fraction of tumor DNA (assume all the tumor DNA has this point

mutation homogeneously).

Based on basic statistic principle, xerr follows Poisson distribution with λerr ¼ eC:

λerr ¼ eC

E xerrð Þ ¼ eC

Var xerrð Þ ¼ eC

Similarly, xmut also follows Possion distribution with λmut ¼ EC:

λmut ¼ EC

E xmutð Þ ¼ EC

Var xmutð Þ ¼ EC

Let AF denote allele frequency : AF ¼ x

C

uerr ¼ E AFerrð Þ ¼ e

σerr
2 ¼ Var AFerrð Þ ¼ e

C

umut ¼ E AFmutð Þ ¼ E

σmut
2 ¼ Var AFmutð Þ ¼ E

C

Differentiate tumor mutation signal from sequencing error using Hypothesis test :

H0 : uy ¼ uerr The non� reference base at AF originated from sequencing errorð Þ
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HA : uy > uerr The non� reference base at AF originated from tumor mutationð Þ
Rejection region : AF > AFc

σ ¼ Perr AF > AFcð Þ
β ¼ Pmut AF � AFcð Þ

AFc is the threshold for background noise caused by sequencing error. σ is the

false positive rate and β is the false negative rate of this hypothesis test.

There are three factors that determine the detection limit: the sequencing error e,
the fraction of tumor DNA E and the sequencing coverage C. When sensitivity,

specificity and sequencing error are fixed, the requirement of the tumor DNA

fraction decreases as the sequencing coverage increases. On the other hand, when

the sensitivity, specificity and coverage are fixed, the requirement of the tumor

DNA fraction decreases when the sequencing error rate decreases.

The current sequencing error rate of Illumina sequencing is around 0.1 %. Based

on experimental data, Forshew et al. [13] have demonstrated the distribution of the

non-reference allele frequency originated from sequencing error (Fig. 11).

In theory, there should be no lower boundary for the fraction of tumor DNA that

could be detected, as long as there is no upper boundary of the sequencing depth.

However, once the sequencing depth exceeds the number of genomic copies in the

original sample, more reads only correspond to more PCR duplicates that have been

sequenced. After a certain point, an increase of sequencing depth will not reduce

the variance of allele frequency (AF) or the detection limit.

On average, there are approximately 5,000 genomic copies of cfDNA in 1 ml of

plasma. This means 5,000 is the maximal sequencing coverage for 1 ml of plasma

sample. Figure 12 shows the distribution of the allele frequency from point muta-

tion and sequencing error when the sequencing coverage is 5,000. Given the

maximal sequencing coverage and current sequencing rate, the point mutations

Fig. 11 Distribution of

observed non-reference

read frequencies, averaged

over 47 FFPE samples,

across all loci and all

non-reference bases. Inset

expands the low-frequency

range [13]
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could apparently be differentiated from the sequencing error when the tumor

fraction is 1 % (Fig. 12a). However, the point mutations are not separable from

the sequencing error when the tumor fraction is as low as 0.2 % (Fig. 12b). It is not

infrequent for the tumor DNA fraction to be below 1 % in the plasma of a cancer

patient. Vogelstein’s group has characterized the tumor cfDNA in the plasma of

colorectal cancer patients with the fraction of tumor DNA ranging from 0.01 to

1.7 % [15]. In order to detect tumor DNA with an extremely low fraction, one

strategy is to reduce the sequencing error. Kinde et al. [16] have developed a

method called “Safe-SeqS” to correct PCR and sequencing error by assigning a

unique ID (random barcode) to each original DNA molecule (Fig. 13). They have

applied this Safe-SeqS method to the detection of ovarian and endometrial cancer

from the Papanicolaou test [17]. This method could potentially be used to increase

the sensitivity of cfNAs analysis as well.

7 Applications for Human Biology and Diagnostics

In 2008, Fan et al. reported the invention of non-invasive diagnosis of fetal

aneuploidy from maternal plasma using high throughput sequencing. The basic

idea is to use the counting principle to analyze the number of sequencing reads

mapped to each chromosome when either the over- or under- representation of any

chromosome in maternal plasma DNA contributed by an aneuploid fetus can be

Fig. 12 Distribution of allele frequency from simulation data. (a) Error rate¼ 0.001, fraction

of tumor DNA¼ 0.01, sequencing coverage¼ 5,000. (b) Error rate¼ 0.001, fraction of tumor

DNA¼ 0.002, sequencing coverage¼ 5,000
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Fig. 13 Scheme of Safe-SeqS assay. Top left: DNA templates from three exons of different genes

(yellow, purple, and brown rectangles) to be queried for mutations. Note that only one of the

templates contains a mutation (star) that exists before any sample preparatory steps or sequencing.

Top right: Safe-SeqS primer pairs contain binding sites for universal primers (“UPS,” blue), a
unique identifier (“UID,” red) and gene-specific sequences (colors match the targeted exon). Next,

the templates and primers are combined into a single PCR compartment and a UID is attached to

each targeted template, along with UPS binding sites, after a low number of PCR cycles (“UID

assignment”). The Safe-SeqS primers are removed and subsequent PCR is performed with primers

containing UPS sites as well as the sequences required for attachment to the sequencing instrument
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detected (Fig. 14). Using this method, fetuses with trisomy 21 (Down syndrome),

trisomy 18 (Edward syndrome) and trisomy 13 (Patau syndrome) were detected

from maternal blood at gestational ages as early as the 14th week. Following this

publication, there was an increasing attention from both academia and the health

care industry to the emerging market of non-invasive prenatal testing. Large-scale

clinical trials have been performed [18], and the first commercial non-invasive

Trisomy 21 tests were launched in 2012, representing the first clinical application of

next generation sequencing in cfDNA analysis. In 2012, both Fan et al. and,

independently, Kitzman et al. [19] demonstrated that the whole-genome sequence

of a human fetus could be reconstructed by sequencing the maternal plasma DNA.

This breakthrough hints that comprehensive, non-invasive prenatal screening for

Mendelian disorders may be clinically feasible in the near future (see also chapters

“Fetal CNAPS – DNA/RNA” and “Other Body Fluids as Non-invasive Sources of

Cell-Free DNA/RNA”).

Since 2012, a number of papers have reported the analysis of tumor DNA in

plasma by various sequencing methods. Using deep Amplicon sequencing targeted

Fig. 13 (continued) (“GP,” black) to prepare the templates for massively parallel sequencing.

When mutations preexist in template DNA before sample preparation, all of the sequenced

daughter molecules sharing the same UID will contain the same mutation (a “supermutant”). In

contrast, artifactual mutations caused by sample preparation or sequencing are unlikely to be

observed in most other daughter molecules sharing the same UID (“Artifact”). Note that only one

of two DNA strands is depicted for clarity [17]

Fig. 14 Fetal aneuploidy is detectable by the overrepresentation of the affected chromosome

in maternal blood. Sequence tag density relative to the corresponding value of genomic DNA

control; chromosomes are ordered by increasing GC content [6]
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to four cancer-related genes (EGFR, BRAF, KRAS and PIK3CA), Rosenfeld’s group
screened cancer point mutations present in cfDNA, non-invasively identified the

origin of metastatic relapse in a patient with multiple primary tumors and longitu-

dinally monitored tumor dynamics by tracking the concomitant mutations in

plasma [13] (Fig. 15). Dawson et al. [14] extensively investigated the sensitivity

of using tumor cfDNAs as biomarkers to monitor cancer treatment and compared

them with other potential biomarkers including cancer antigen 15-3 and circulating

tumor cells. In their proof-of-concept analysis, tumor cfDNA levels showed a

greater dynamic range and greater correlation with changes in tumor burden than

did either cancer antigen 15-3 or cell-free tumor cells. The follow-up work of the

same group moved one step further when they established proof-of-principle that

exome-wide sequencing analysis of tumor cfDNA could track acquired resistance

to cancer therapy [12]. Recently, Leary et al. [8] detected chromosomal aberrations

– copy number changes and rearrangements – in the circulation of cancer patients

using massively parallel whole-genome sequencing (Fig. 16), the methodology of

which is similar to that for the non-invasive detection of fetal aneuploidy.

Shotgun sequencing of cfDNA has also been used for the detection of organ

transplant rejection [10] (Fig. 17). The fraction of donor-specific bases at particular

SNP locations where the donor bears different bases from the recipient could be

calculated by counting the number of reads mapped to that location and this fraction

could indicate the rejection level of organ transplantation. Their results demon-

strated that this method provides a quantitative measure of organ health that can be

either complementary to or possibly replace other approaches for post-transplant

monitoring.

Fig. 15 Longitudinally

monitoring tumor

mutations in plasma by

target sequencing.

Dynamics of 10 tumor-

specific mutations in the

plasma of a breast cancer

patient, PD, progressive

disease [13]
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8 Profiling of cfRNA

8.1 Profiling of cfmRNA

The high throughput methods of microarray and RNA-seq provide a global view of

the cfRNA level across different gene transcripts. In 2007, Maron et al. [20] used

gene expression microarrays to profile the cffmRNA in maternal plasma and

compared its transcriptome expression pattern with that of whole blood. They

used a mixture of oligo-dT and random hexamers to synthesize first strand cDNA

and amplified cDNA using SPIA (Single Primer Isothermal Amplification) tech-

nology. Their results showed that the genes that are highly expressed in the placenta

have a higher expression in the antepartum plasma compared with the

corresponding antepartum whole blood. Gene expression microarray has also

been used to screen cfmRNA biomarkers for cancer patients. O’Driscoll

et al. [21] have investigated the feasibility of identifying panels of cfmRNA bio-

markers of breast cancer by profiling the gene expression in serum using whole

genome microarray.

Compared with microarrays, the newer technology of RNA-seq provides higher

sensitivity and wider dynamic range. We used RNA-seq to profile the cfRNA in

maternal plasma in parallel with microarray. According to this study, the mRNA

transcripts of 10,115 genes (51 % of known human genes) could be detected by

RNA-seq with FPKM> 0 at the saturated sequencing depth (Fig. 18). Most of the

Fig. 16 Copy number analyses of tumor and serial plasma samples from patient with

colorectal cancer. Primary tumor and plasma samples taken at various time points over 62 months

of multimodality treatment were analyzed and compared with unmatched normal plasma. The

plasma samples were obtained at the time of initial evaluation (0 months), after extensive

chemotherapy and surgical intervention (4 months) and at the time of cancer recurrence

(62 months) [8]

134 W. Pan and S.R. Quake



genes detectable by RNA-seq are overlapped with the genes that are “on” in

microarray. The gene expression measurements by RNA-seq are generally concor-

dant with the measurement of microarray with an average correlation coefficient of

0.74 (Fig. 19). In the same study, 17 genes with their abundance changes over the

time course of pregnancy were identified by both microarray and RNA-seq. Most of

these genes are originated from the placenta and are involved in the pregnancy

related pathways. This exploratory study implied the potential of using cfmRNA

and cffRNA as biomarkers to monitor pregnancy complications and fetal develop-

ment (Koh W, Pan W, Gawad C, Fan HC, Blumenfeld YJ, EI-Sayed YY, Quake SR

unpublished data).

Fig. 17 General scheme for the universal detection of solid organ transplant rejection.

cfDNA collected in plasma contains a majority of molecules from the recipient (in gray) but
may also include some from the transplanted organ (green). Due to increased cell death in the

organ during a rejection episode, more donor molecules are expected to be present in the blood at

these times. Shotgun sequencing of the purified DNA allows for counting recipient versus donor

molecules by looking at SNPs that vary between donor and recipient. Very high levels of donor

DNA, particularly changes from past measurements, will indicate the onset of rejection [10]
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8.2 Profiling of Cell-Free Small RNA

Besides cfmRNA, other RNA species existing in circulation also demonstrated

potential application in non-invasive cancer and prenatal diagnosis. Recent work

has characterized human plasma-derived exosomal RNA by deep sequencing

[22]. These researchers have compared three small library preparation protocols

for cell-free exosomal RNA. All three protocols require adaptor-ligation to small

Fig. 19 Characterization of Maternal Plasma Transcriptome by RNA-Seq and microarray

assays. (a) The scatter plot of the correlation between RNA-Seq and Affymetrix array assay

(sample P12_T3). The Pearson correlation coefficient is 0.78. (b) Venn diagram displaying the

genes detected by RNA-Seq and Microarray. The cutoff of RNA-Seq is FPKM> 0. The cutoff of

Microarray is Intensity >4. Sample P12_T3 is shown here as an example

Fig. 18 The saturation curve for sequencing depth. (a) The number of genes detected with

FPKM> 0 at different sequencing depth. (b) The number of genes detected with FPKM >1 at

different sequencing depth
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RNA molecules before reverse transcription and cDNA amplification. They also

classified the composition of cell-free exosomal RNA and the most abundant

species were microRNAs. Another recent paper [23] profiled cfmiRNA from

blood samples using deep sequencing and revealed that the vast majority of

cfmiRNA originate from blood components and endothelial cells. More interest-

ingly, tissue-specific miRNA, for example, from liver and gut, were present as well.

Taking advantage of high throughput sequencing, Wang et al. [24] made a com-

prehensive survey of the source of the RNA molecules in plasma and observed that

a significant fraction of these RNA molecules originated from exogenous species

including bacteria and fungi.

9 Perspective

The use of high throughput sequencing for the detection of cfNAs in blood opens up

enormous opportunities, but also challenges, for non-invasive clinical diagnosis.

For cancer diagnosis, one major challenge is to be able to detect tumor mutation at

an extremely low fraction of tumor DNA. The current technology can detect a

mutant allele with a frequency as low as 2 %. However, the fraction of tumor DNA

could be much lower than this level at an early tumor stage. One way to increase the

sensitivity of detecting rare alleles is to decrease the sequencing error, which would

be achievable with the advancement of sequencing techniques.

Compared with cfDNA, there are more unexplored areas for cfRNA. Recent

work has started to globally profile RNA in plasma. Tissue-specific mRNA and

miRNA has been identified in plasma, which might have the potential for use in

monitoring the health status of different organs. However, more thorough investi-

gation needs to be done before proceeding to the clinic. For example, cfRNA

biomarkers with high sensitivity and specificity to certain disease phenotypes need

to be discovered; the relationship between the level of tissue-specific RNA in plasma

and the health status of its corresponding organ should be characterized in both

patients and healthy controls (see also section “Choice of Appropriate Controls”).
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Part III

Applications



CNAPS and General Medicine

Heidi Schwarzenbach

Abstract The identification of blood-based markers that help clinicians to diag-

nose, predict and monitor diseases is a great challenge. In general, the earlier a

precise diagnosis and therapy can be applied, the higher the probability of a

successful treatment of the patients. Cell-free nucleic acids have promising clinical

potential because they can critically be dysregulated during pathogenic processes.

They are usually released during cellular stress or tissue injury and related to

inflammatory responses caused by a coordinated expression of numerous genes

that initiate, sustain and propagate immune responses and tissue remodeling.

Although there is a potential for the application of cell-free nucleic acids as clinical

assays, their use as potential biomarkers in pathologic conditions is still at the

experimental stage, partly due to different qualities of the analyses employed. With

the exception of minimally invasive prenatal diagnostic tests, the approaches on

circulating, cell-free DNA, mRNA and microRNAs applicable for clinical practice

currently remain somewhat elusive.

Keywords Circulating DNA/RNA • mRNA • microRNA • Transplantation •

Aging • Burns • Sepsis • Cardio-vascular • Multiple sclerosis • Liver • Kidney •

Stroke • Trauma • Hemodialysis • Pancreatitis • Predictive diagnosis

1 Introduction

This following discussion draws attention to the latest developments of the use of

cfNAs (circulating, cell-free nucleic acids) with particular regard to general med-

icine, and discusses the utility of cfNA assays in predictive and personalized

medicine. The succeeding survey of general diseases is not meant to be
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comprehensive, but is based on studies that offer substantial clinical insight in the

scope of the application of cfNAs.

2 Multiple Sclerosis

Multiple sclerosis (MS) is an autoimmune-mediated, inflammatory, demyelinating

and neurodegenerative disease of the central nervous system (CNS) and may have a

fluctuating, wavelike course. The vast majority of MS patients suffer from

relapsing-remitting MS, and have relapsing and remitting attacks of demyelination

affecting different parts of the CNS at various times during the course of disease. In

most patients, this initial inflammatory relapsing-remitting phase of MS is followed

by a more chronic (secondary) progressive phase years later. Less frequently,

patients have the rarer, primary progressive form of MS without bouts or exacer-

bations. The main problem of all MS types is to define standard procedures for

monitoring the course of disease [1].

The most common clinical syndrome of MS, the relapsing-remitting MS, may be

accompanied by a unique disease – and state-specific fingerprint of cfDNA (circu-

lating, cell-free DNA) that provides significant clinical sensitivity and specificity.

Using mass sequencing and assembly technologies, serum cfDNA motifs from

28 patients with definite relapsing-remitting MS and 50 healthy individuals were

sequenced. Protein-coding genes that were differentially expressed in MS serum

encoded cytoskeletal proteins, brain-specific regulators of growth and receptors

involved in signal transduction of the nervous system. The cfDNA motifs charac-

teristic for relapsing-remitting MS along with their disease activity could, thus, be

promising as a clinical tool in monitoring patient responses to treatment modalities.

Several repeat sequences, such as the L1M family of LINE (Long Interspersed

elements), were also consistently differently expressed in all MS patients and even

yielded the best separation from the healthy population (p< 0.0001) [2]. However,

the role that this gene product may play in MS is unknown. It is presumed that these

repeats have a function in the dynamic equilibrium of auto-reactive T lymphocytes

that play a pivotal role in the prevention of autoimmune diseases, such as MS [3].

More recently, disease-associated changes in DNA methylation have particu-

larly gained interest for biomarker development because the technique used is more

disease-specific than measurements of the altered cfDNA levels. DNA methylation

is an epigenetic process of chemical DNA modification leading to inactivation of

gene expression [4] and such changes may also be involved in MS. In a previous

assay, differences in methylation patterns were observed in exacerbation and

remission of relapsing-remitting MS patients so identifying two different states of

a single disease. Three patient cohorts were examined: 59 patients in either remis-

sion (n¼ 30) or exacerbation (n¼ 29) and 30 healthy individuals as controls. The

DNA methylation patterns of 56 gene promoters were determined by a microarray-

based assay (MethDet-56). These patterns permitted recognition of (a) relapsing-

remitting MS patients in remission versus healthy controls (sensitivity of 79.2 %;
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specificity of 92.9 %), (b) patients in exacerbation versus healthy controls (sensi-

tivity of 75.9 %; specificity of 91.5 %) and (c) patients in exacerbation versus those

in remission (sensitivity of 70.8 %; specificity of 71.2 %). These findings demon-

strate that DNAmethylation patterns of numerous genes involved in multiple signal

pathways allowed identification of relapsing-remitting MS better than a single

molecular marker and that the use of a composite DNAmethylation pattern resulted

in a higher accuracy. As DNA methylation reflects the molecular features of

pathological processes, these cfDNA methylation pattern differences may be

related to MS disease progression and its associated immune activation, inflamma-

tion and cell death [5].

Assays on numerous dysregulated cfmiRNAs (circulating, cell-free

microRNAs) in the blood circulation of MS patients have also been performed

[6]. Using qRT PCR and Exiqon Human Panel assays, 19 miRNAs were detected in

serum derived from independent cohorts of 50 relapsing-remitting MS patients,

51 secondary progressive MS patients and 32 healthy controls. In particular,

miR-92a-1*, involved in cell cycle regulation and cell signaling, and miR-454,

the functions of which are largely unknown for immune cells, play a role in

MS. MiR-92a-1* (p¼ 0.001) and miR-454 (p¼ 0.005) were differently expressed

in relapsing-remitting MS and secondary progressive MS. MiR-92a-1* (p¼ 0.002)

and miR-454 (p¼ 0.005) also showed association with the MS-specific Expanded

Disability Status Scale (EDSS) [7].

As demonstrated by the above-described findings, MS patients may display

disease- and state-specific changes in the levels of cfDNA and cfmiRNAs as well

as in the profiles of cfDNA methylation that can be detected in the peripheral blood

of these patients.

3 Cardiovascular Disease

The most common causes of cardiovascular (or heart) diseases are atherosclerosis

and/or hypertension. Additionally, during aging, a number of physiological and

morphological changes lead to increased risk of this disorder. Myocardial infarction

is caused by the partial interruption of blood supply to the heart muscle based on the

blockage of a coronary artery following the rupture of a vulnerable atherosclerotic

plaque. The resulting ischemia and ensuing oxygen shortage lead to damaged or

dying heart cells [8]. The gold standards in detection of acute myocardial infarction

are increase in troponin, a marker of myocardial necrosis, and ST-segment eleva-

tion as measured with an electrocardiogram, when the trace in the ST segment is

abnormally high above the isoelectric line. In particular, in geriatric patients who

have frequently atypical symptoms and acute non-ST-segment elevation with

non-diagnostic electrocardiograms, the detection of a modest elevation of cardiac

troponins is often challenging for physicians. Unfortunately, non-coronary dis-

eases, such as acute heart failure, may also cause elevated troponin values [8]. If

combined with troponin measurements, the increased levels of cfDNA detected in
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cardiovascular disease could reduce such drawbacks and improve patient screening,

since soon, after the onset of chest pain, cfDNA concentrations rise in the blood

circulation. This is due to acute cellular injury in cardiovascular disease, provoking

apoptosis of both cardiac myocytes and non-myocytes, so leading to this disease-

associated elevation of cfNAs. When additional complications occur, the levels

may further rise and have a potential clinical value in monitoring disease progres-

sion of patients with acute myocardial infarction [9].

The housekeeping, gene ß-globin, was quantitatively measured by qPCR in

blood samples taken from 58 patients with chest pain of apparent cardiac cause

and 21 healthy individuals. Median plasma cfDNA concentrations were higher in

patients who later either developed heart failure [1,060 versus 500 kilogenome

equivalents L�1 (kGE L�1), p< 0.01] or reinfarcted (1,000 versus 530 kGE L�1,

p< 0.03) or who had a cardiac arrest in their admission (1,350 versus 525 kGE L�1,

p¼ 0.04) or were readmitted within 6 months of discharge (725 versus 475 kGE

L�1, p¼ 0.04) than in their counterparts. Hence, the increased levels of cfDNA

could predict post-acute coronary syndrome complications, such as cardiac failure,

cardiac reinfarction and cardiac arrest [10]. During hospitalization serial determi-

nations of cfDNA levels were performed by RT qPCR on the plasma of 47 patients

with acute myocardial infarction once daily (235 samples) and once with the

plasma of 100 healthy subjects. cfDNA concentrations were significantly higher

in patients throughout hospitalization compared to the levels of healthy subjects

(p< 0.001). The median maximum plasma cfDNA concentration was 3.5-fold

higher in 20 patients with complicated post-acute myocardial infarction course

(range 117–4,996,212 kGE L�1) than in 27 patients without complications (range

56–4,715 kGE L�1, p¼<0.004). cfDNA levels rose significantly on the day the

complication occurred and remained elevated on the day after the complication

[11]. Using a branched DNA-based Alu assay, cfDNA concentrations were also

determined in the plasma of 137 patients with acute coronary syndrome, 13 patients

with stable angina and 60 healthy individuals. Patients with acute coronary syn-

drome (range 916–4,857 ng ml�1), especially patients with ST-segment elevation

(range 4,013–8,643 ng ml�1) displayed a significant increase in plasma levels of

cfDNA compared with patients with stable angina (range 112–256 ng ml�1) and

healthy controls (range 81–221 ng ml�1). Thus, in acute coronary syndrome,

cfDNA may be a promising marker for diagnosing and predicting the severity of

coronary artery lesions and risk stratification [12].

Since cfmiRNAs offer many attractive features as biomarkers, specific profiles

of cfmiRNAs are emerging as blood-based biomarkers for cardiovascular diseases,

such as coronary artery disease, myocardial infarction, hypertension or heart failure

[13]. In patients with advanced renal failure the diagnosis of acute myocardial

injury could be improved by quantifying cfmiRNAs. The plasma levels of

6 miRNAs (miR-1, miR-21, miR-133a, miR-208a, miR-423-5p and miR-499-5p)

in 92 patients with acute non-ST-segment elevation myocardial infarction (compli-

cated by acute heart failure in 74 % of cases), 81 patients with acute heart failure

without acute myocardial infarction and 99 healthy controls were analyzed.

MiR-499-5p was >80 times higher in patients with acute non-ST-segment
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elevation myocardial infarction than in controls. Interestingly, the ability of this

cfmiRNA to discriminate myocardial infarction from acute heart failure was com-

parable to that of cardiac troponins. At initial contact with patients with modest

elevation of troponins, miR-499-5p enhanced the diagnostic accuracy as sensitive

biomarker. Its diagnostic accuracy with AUC of 0.86 was higher than that of

cardiac troponin with AUC of 0.70 in differentiating non-ST-segment elevation

myocardial infarction and acute heart failure patients with modest cardiac troponin

at presentation. MiR-499 regulates the actin-based cytoskeletal myosin isoforms

and modulates cardiac kinase and phosphatase pathways [14]. In a previous study,

miR-499 and miR-208b were analyzed in the plasma of 397 patients with

ST-segment elevation and 113 patients with non-ST-segment elevation myocardial

infarction. Patients with ST-segment elevation had significantly higher cfmiRNA

concentrations than patients with non-ST-segment elevation (p< 0.001). Both

miRNAs correlated with peak concentrations of creatine kinase and cardiac tropo-

nin. cfmiRNAs and cardiac troponin were already detectable in plasma 1 h after the

onset of chest pain, and 3 h after the onset of pain miR-499 and troponin were still

found in 93 % and 88 % of patients, respectively. In this study, miR-499 and cardiac

troponin provided a comparable diagnostic value with an AUC of 0.97 [15]. A

combination of multiple cfmiRNAs in a diagnostic test could still further advance

the diagnostic accuracy, because different causes of heart diseases can result in

dysregulated levels of cfmiRNAs. In this regard, the combination of circulating

miR-1, miR-133 (a and b) and miR-208 (a and b) in 444 patients with coronary

syndrome was assessed and associated with the development of cardiac hypertro-

phy. Although these cfmiRNAs identified patients with myocardial infarction after

the onset of complaints, they showed a large overlap between patients with unstable

angina and myocardial infarction. In univariate and age- and gender-adjusted

analyses increased miR-133a (p> 0.03) and miR-208b (p< 0.05) levels were

significantly associated with the risk of death [16]. In contrast, it was observed

that circulating miR-1, miR-133 and miR-499 were down-regulated in the hearts of

diabetic rats [17]. miR-1, miR-133 and miR-208 are associated with the develop-

ment of cardiac hypertrophy and influence myocardial contractile function. In the

heart, miR-1 supports cardiomyocyte Ca2-cycling and contractility by targeting the

transmembrane protein junction and is involved also in cell proliferation [18, 19]. A

prominent role was ascribed for miR-133 and miR-208, but not for miR-1, in the

cardiac adaption to and/or remodeling of the ischemic heart [20].

In summary, these findings show that cardiac injury is accompanied by changes

in the levels of cfDNA and cfmiRNAs that may represent potential therapeutic

targets for modulation of the cardiac function and remodeling during heart disease

progression.
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4 Stroke

Due to the transient or permanent reduction in cerebral blood flow, ischemic stroke

is caused by either an embolus or local thrombosis. The interaction of complex

pathophysiological processes, such as excitotoxicity, inflammation and apoptosis,

leads to ischemia tissue damage and release of cfNAs into the bloodstream

[21]. Soon after the onset of acute ischemic stroke an increase in nuclear and

mitochondrial cfDNA followed by a gradual decrease were observed in blood. In

50 acute ischemic stroke patients and 50 control subjects at risk, plasma nuclear and

mitochondrial cfDNA levels were serially measured by qPCR using β-globin
(specific for nuclear DNA) and MT-ND2 gene (specific for mitochondrial DNA),

respectively. Elevated circulating nuclear cfDNA in plasma persisted until 1 month

after the acute stroke. Levels of plasma nuclear cfDNA were 5,575 kGE L�1 in the

poor and 5,120 kGE L�1 in the good outcome group, whereas levels of plasma

mitochondrial cfDNA were 3,121 kGE L�1 in the poor and 2,333 kGE L�1 in the

good outcome group. This study indicates that in acute stage patients the levels of

cfDNA reflects the clinical severity of ischemic stroke and may be useful for risk

stratification [22]. A further study, showing the correlation between plasma cfDNA

concentrations and the volume of cerebral hematoma, quantified the levels of cell-

free β-globin in 70 patients with ischemic stroke, 11 patients with intracerebral

hemorrhage and seven patients with transient ischemic attacks. Median plasma

cfDNA concentrations taken within 3 h of symptom onset were higher in patients

who died than those who survived at discharge (6,205 versus 1,334 kGE L�1).

Plasma cfDNA concentrations of >1,400 kGE L�1 had a sensitivity of 100 % and a

specificity of 74.4 % for predicting hospital mortality after stroke with an AUC of

0.89. Accordingly, the cfDNA concentrations were related to the extent of brain

damage and predicted short- and long-term neurobehavioral morbidity as well as

post-stroke mortality [23]. Also, in patients with clinical stroke who had no obvious

acute cerebral lesions by either computerized tomography or magnetic resonance

imaging, the cfDNA levels were an independent predictor for stroke outcome. In

this study, 17 of 44 patients were classified as patients with post-stroke modified

Rankin score (mRS) grades 3–6. Determining the quantity of β-globin gene by

qPCR, the median plasma cfDNA concentration of this group of patients was

significantly higher than that of patients with post-stroke mRS grades 0–2. The

median concentrations of the relatively specific neurobiochemical S100 protein did

not show significant differences between the two groups. Plasma cfDNA concen-

trations of >800 kGE L�1 had a sensitivity of 42 % and a specificity of 100 % for

predicting 6-month post-stroke mRS (grades 0–2) with an AUC of 0.74, whereas

serum S100 protein concentrations of >0.09 μg L�1 had a sensitivity of 48 % and

specificity of 75 % with an AUC of 0.54. Thus, plasma cfDNA concentrations

predict post-stroke morbidity and mortality in patients with negative neuro-

imaging, and may be more effective than S100 protein measurements [24]. In

contrast to this study, it was reported that S100 protein is a better biomarker for

early stroke diagnosis than the non-specific increase in cfDNA levels because
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serum S100 was increased in 126 (p< 0.001) but plasma β-globin cfDNA was

increased in only 36 stroke patients. Serum S100 protein was also shown to be a

better risk stratification and prognostic marker of long-term mortality than plasma

cfDNA, but plasma β-globin cfDNA alone was better at discriminating hemor-

rhagic (1,725 kGE L�1) from non-hemorrhagic stroke (100 kGE L�1). However,

the use of combined selected cut-off levels of plasma β-globin cfDNA and S100

protein reached the highest ratio of 16.55 than cfDNA alone (4.24) [25]. These

findings emphasize, again, that the assessment of combined markers provide the

best results in diagnostics.

In the pathophysiology of stroke, the detection of specific cfmiRNAs in the

peripheral blood is still in their infancy with respect to addressing their potential use

as diagnostic and prognostic markers [26].

5 Sepsis

Sepsis is a vascular infection disorder accompanied by a systemic activation of

inflammatory and coagulation pathways in response to microbial infection of

normally sterile areas of the body. Severe sepsis leads to acute organ dysfunction

with a mortality rate of 30–50 % [27]. In the pathogenesis of multiple organ

dysfunction, excessive amounts of inflammatory cytokines are released and may

cause apoptosis of cells resulting in elevated plasma levels of nucleosomes [28]. In

patients with severe sepsis the quantification of cfDNA measured by UV absor-

bance at 260 nm provided high prognostic accuracy and enhanced risk-stratification

of the patients. The serial measurements of cfDNA in the plasma of these 80 patients

demonstrated that the ICU (intensive care unit) mortality may be predicted within

24 h, i.e. the AUC for cfDNA was 0.97 and a cfDNA cut-off value of 2.35 ng μL�1

(sensitivity of 88 %; specificity of 94 %). By combining the quantification of

cfDNA with markers essential for sepsis pathophysiology, such as the levels of

protein C (an anticoagulant factor) or MODS, the predictive power of cfDNA could

be increased [29]. Although the plasma cfDNA concentrations may be an indepen-

dent predictor for ICU mortality, its clinical value does not seem to be qualified for

hospital mortality in severe sepsis and septic shock. When plasma β-globin cfDNA

of 255 patients was measured by qPCR, cfDNA concentrations were found to be

higher in ICU non-survivors (15,904 kGE L�1) than in survivors (7,522 kGE L�1;

p< 0.001) and were an independent predictor for ICUmortality (p¼ 0.005), but not

for hospital mortality [30].

The diagnoses of mild sepsis, severe sepsis and septic shock are based on clinical

judgments. In respect to the clinical aspect, miR-223 and miR-499-5p might be of

marked interest being associated with organ failure. In 166 patients with sepsis and

24 healthy controls, the expression levels of several miRNAs were determined by

RT qPCR. Serum levels of miR-223 (p< 0.04) and miR-499-5p (p< 0.001) were

significantly different between patients with mild sepsis and those with severe

sepsis and septic shock [31]. Serum miR-499-5p, also a biomarker of acute
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myocardial infarction [14], had the highest AUC of 0.69 followed by serum

miR-223 with an AUC of 0.61 [31]. The levels of miR-223 could also differentiate

sepsis patients from patients with systemic inflammatory response syndrome

(SIRS). In this study, the levels of miR-223 and miR-146a were quantified for

50 sepsis patients, 30 SIRS patients and 20 healthy controls. miR-223

(AUC¼ 0.804) and miR-146a (AUC¼ 0.858) levels were significantly lower in

the cohort of sepsis patients than in the cohorts of SIRS patients and healthy

controls. However, miR-223 expression is also dysregulated in other diseases

such as influenza or hepatitis B infection, Crohn’s disease, type 2 diabetes, leukae-

mia and lymphoma. miR-223 modulates inflammation, infection and cancer devel-

opment [32] and is able to suppress pro-inflammatory activation of macrophages

[33]. MiR-146a also controls pro-inflammatory signals in endothelial cells,

repressing the pro-inflammatory NF-κB pathway as well as the MAP kinase

pathway and so may, consequently, affect vascular inflammatory diseases. Its

expression is induced upon exposure of endothelial cells to pro-inflammatory

cytokines. Over-expression of miR-146a moderates endothelial activation, while

loss of miR-146a has a stimulatory effect [34].

These studies highlight the association of increased cfDNA and dysregulated

cfmiRNA levels with the severity of sepsis and their prognostic value to predict,

with high specificity and sensitivity, the mortality of the patients.

6 Hemodialysis

During hemodialysis sessions, elevated cfDNA concentrations have been reported

in numerous studies. It is assumed that these increased cfDNA levels in blood

circulation are caused by apoptotic cells on the dialysis membranes. Patients with

end-stage renal disease undergoing hemodialysis are characterized by a chronic

inflammatory disorder that includes aberrant and chronic production of inflamma-

tory cytokines, such as IL-6 (interleukin-6) [35]. IL-6 released by monocytes may

induce elevated levels of cfDNA indicating that this process may also contribute to

the increase in cfDNA levels and to the pro-inflammatory environment observed in

hemodialysis patients [36].

In addition to changes in cfDNA concentrations, significant and specific changes

in DNA methylation are involved in hemodialysis patients. cfDNA from randomly

selected patients before and after hemodialysis sessions were assayed twice daily

with a 4-h interval. The extent of promoter methylation of 24 genes involved in the

immune response was examined using the EpiTect Methyl quantitative PCR array.

In this pilot study, changes in DNA methylation patterns of the immune response

gene promoters (IL-7, IL-13, IL-17C and tyrosine kinase TYK2) were detected,

indicating that DNA methylation profiling on cfDNA may provide additional

information about the actual state of immune response in hemodialysis

patients [37].
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In patients with acute kidney injury dysregulated levels of cfmiRNAs were

observed during dialysis therapy. Although miRNAs are small in size, miR-21

and miR-210 were not removed by various dialysis membranes [38]. In contrast, in

patients with advanced renal failure, hemodialysis affected the levels of cfmiRNAs.

In this assay plasma miR-499 and serum troponins were quantified in 41 patients

and 41 healthy controls. Both parameters were elevated in the blood circulation of

hemodialysis patients compared to controls (p< 0.001). In contrast to the levels of

troponins that were unaffected by hemodialysis, there was a 6.5-fold decrease

(p¼ 0.002) in miR-499 levels, reducing the potential of miR-499 as a biomarker

for patients with end-stage renal disease [39]. These observations in patients with

kidney diseases show that it remains unclear if and how the dialysis procedure

affected the levels of cfmiRNAs.

7 Liver and Kidney Diseases

Liver and kidney diseases are frequently caused by viral infections, alcohol abuse

and toxic chemical exposure. They can be examined by biopsies, but these exam-

inations are invasive and not routinely performed. Thus, a marker with an increased

specificity would be helpful for evaluating the presence of these diseases. In

contrast to cfDNA analyses, particular attention was drawn to the investigations

of cfmiRNAs in liver and kidney diseases. The concentration of miR-34a was

reported to be significantly altered by chronic ethanol feeding of rats resulting in

a poor functional state of the liver and a serious inhibition of its regenerative

ability [40].

Disease-specific changes in the levels of miR-34a and miR-122 were observed in

53 patients with chronic hepatitis C infection who had no alcoholic or fatty liver.

The serum levels of miR-34a associated with cell-cycle checkpoint failure and

increasing cell proliferation and of miR-122 involved in the replication of hepatitis

C virus correlated positively with the histological disease severity of simple

steatosis to steatohepatitis. These changes in the levels of both cfmiRNAs also

correlated with liver enzymes levels, fibrosis stage and inflammation activity

[41]. Increases in miR-122 concentrations were also observed in 82 of 83 patients

with histopathologic change and they were reflected in the severity of liver disease.

The plasma levels of miR-122 significantly correlated with alanine aminotransfer-

ase activity, a biomarker commonly used for the diagnosis and assessment of liver

disease (p< 0.001) [42]. Moreover, the quantification of serum miRNAs in

48 patients with chronic type B hepatitis and 101 patients with hepatocellular

carcinoma showed that the levels of miR-122 (p< 0.0001) and miR-21

(p¼ 0.0004) in patients with chronic hepatitis were higher than in patients with

hepatocellular carcinoma [43]. miR-21 has biological functions in inflammatory

conditions and correlates with the pathogenesis of numerous other disorders includ-

ing autoimmune diseases such as type 1 diabetes, systemic lupus erythematosus,

systemic sclerosis, psoriasis and multiple sclerosis [19]. miR-21 also plays a role in
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allergic diseases, including atopic dermatitis, a hyperproliferative cutaneous disor-

der associated with a defective skin barrier, and allergic rhinitis [44]. Functional

analyses showed that miR-21 also is involved in the regulation of the polarization of

adaptive immune responses and activation of T cells [44]. The potential use of

circulating miR-21, as well as of miR-122 and miR-192 as a novel, predictive, and

reliable blood-based marker panel for alcohol-, viral- and chemical-induced liver

injury was also reported [42, 43, 45]. Serum miR-122 (p< 0.0001) and miR-192

(p< 0.0004) were substantially higher in 53 patients with acetaminophen-induced

acute liver injury than in 11 patients with chronic kidney disease [45]. In kidney,

miR-192 was described to be involved in TGF-β1-mediated fibrogenesis [46].

With respect to pathophysiological changes in acute kidney injury, miR-210 was

measured in the plasma of 77 patients. The altered levels of miR-210 predicted the

mortality of the patients (p¼ 0.03) and could, therefore, serve as an independent

and powerful predictor of 28-day survival [47]. Findings providing novel insights

into the angiogenesis mechanism of this injury revealed that after renal ischemia/

reperfusion injury miR-210 targeted the VEGF signaling pathway to regulate

angiogenesis [48].

Accordingly, these studies provide evidence for the specific role of miRNAs in

inflammatory processes and their potential use as biomarkers of alcohol-, viral- and

chemical-induced injuries.

8 Pancreatitis

Acute pancreatitis is usually a short lasting mild disease, but in 20 % of cases the

disease takes a severe course with high mortality rates despite treatment. The

disease may be cellular triggered by acinar injury and its subsequent progression

to a systemic illness involves a complex interplay between the pancreatic paren-

chymal microvasculature, circulating soluble cytokine mediators, cellular media-

tors of inflammation and regional endothelial beds, especially those in lung, liver

and kidneys [49].

Severe acute pancreatitis is characterized by inflammation and accelerated

apoptotic and necrotic pathways. A previous study measured cfDNA using qPCR

with a TaqMan RNase P kit on 43 patients with severe acute pancreatitis, 12 patients

with pancreatic cancer and 28 non-cancer controls undergoing laparoscopic chole-

cystectomy. Plasma cfDNA levels in patients with acute pancreatitis (median of

0.40 ng μL�1, range of 0.05–0.79 ng μL�1) were significantly lower than in controls

(median of 1.60 ng μL�1, range of 0.45–9.10 ng μL�1, p< 0.001). During the

disease course, cfDNA levels in patients with acute pancreatitis significantly fell to

a median value of 0.08 ng μL�1 (range of 0–0.53 ng μL�1, p< 0.001) [50]. To

investigate whether or not cfDNA correlates with the extent of pancreatic necrosis,

cfDNA was measured in the serum of 30 patients with acute pancreatitis. On the

first day following admission, patients who developed severe pancreatitis had

significantly higher serum cfDNA levels (median of 0.271 ng μL�1) than those
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with mild disease (0.059 ng μL�1, p< 0.001) with an AUC of 0.97. There was a

significant correlation between Balthazar score (CT severity index) and serum

cfDNA concentrations (p¼ 0.012) [51]. To confirm the value of cfDNA and test

its practical usage in pancreatitis, cfDNA in both serum and plasma samples of

33 with severe and 71 with mild acute pancreatitis was quantified. The plasma

levels of cfDNA differentiated between patients with mild and severe acute pan-

creatitis with a sensitivity of 91 % and a specificity of 80 % using a cut-off value of

>0.304 ng μL�1. Although the parameters were somewhat lower for serum cfDNA

levels (a sensitivity of 88 % and a specificity of 68 % using a cut-off

>0.363 ng μL�1), both plasma and serum cfDNA showed a better sensitivity and

specificity than either C-reactive protein or two scoring systems (Ranson and

APACHE II scores) that are, in practice, the mostly used clinical predictors for

acute pancreatitis [52].

These data demonstrate that quantification of cfDNA can be a possible early

marker of the severity of acute pancreatitis.

9 Transplantation

Transplantation medicine is another field of medicine that could benefit from the

analyses of cfNAs. In spite of the advances in immunosuppressive treatment, graft

rejection is still a severe problem in human transplantation. The levels of donor-

derived cfDNA and cfRNA in the recipient’s blood circulation could serve as a

marker for transplant rejection. To date, donor-derived cfDNA could be isolated

from the blood of liver, kidney, pancreas and bone-marrow transplant recipients

[53]. In this regard, a sex-mismatched bone marrow transplantation model was used

to obtain information about the source of cfDNA in transplant patients and whether

cfDNA is derived from hematopoietic and/or non-hematopoietic cells. In this assay,

plasma of 22 sex-mismatched bone marrow transplant patients was examined and

showed that the median percentage of Y-chromosome cfDNA in female patients

receiving bone marrow from male donors (59.5 %) significantly differed from that

in male patients receiving bone marrow from female donor (p< 0.001). These

findings show that plasma cfDNA in the bone marrow of transplant recipients

was of predominant hematopoietic origin [54].

Kidney transplantation is the most desirable and cost-effective modality of

renal-replacement therapy for patients with irreversible chronic kidney failure. In

the early postoperative phase kidney transplant patients have the highest risk of

complications and the first 3 months are critical for acceptance or rejection of the

graft [55]. Procalcitonin, a precursor of the hormone calcitonin, and produced by

cells after surgery is used as a general marker for infection. In the early postoper-

ative period, immunological monitoring at the molecular level along with serial

quantification of plasma procalcitonin and cfDNA has been demonstrated to detect

complications of renal transplantation, such as acute rejection or sepsis. Total

cfDNA and donor-derived cfDNA were quantified in both plasma and urine of
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100 renal transplant recipients by qPCR for the HBB (hemoglobin ß) and the TSPY1
(testis specific protein Y-linked 1) genes, respectively. Concentrations of plasma

cfDNA markedly increased during acute rejection and returned to reference values

after anti-rejection treatment. A cut-off level of 12,000 kGE L�1 classified acute

rejection and non-acute rejection in 86 % of post-transplantation complications

(sensitivity of 89 %; specificity of 85 %). The use of the combination of plasma

cfDNA and procalcitonin improved the diagnostic specificity to 98 %. Although

these biochemical markers will not replace renal biopsy as a definitive method for

diagnosing medical complications after renal transplantation, they could support

the diagnosis of patients displaying contraindications to biopsy and also reduce the

number of biopsies [56].

Accordingly, the further development of such non-invasive assays on cfDNA

and cfmiRNAs could improve the identification of patients with acute rejection of

the graft and predict long-term transplant function in the future.

10 Trauma

Trauma is a physiological wound or injury caused by external situations. Brain

trauma, also known as intracranial injury is caused by e.g. falls, vehicle accidents,

acceleration alone and violence. Following this injury, a variety of events can occur

in terms of minutes and days and include alterations in cerebral blood flow and

pressure within the skull. These processes substantially contribute to the damage of

the initial injury. Severe traumatic brain injury is still related to a high rate of

unfavorable outcome and associated with a mortality rate of 35–70 % [57]. DNA is

released early from the injured tissue into the blood circulation of trauma patients.

The cfDNA levels increase within an hour and rapidly continue decreasing at 24 h

after trauma. The amount of cfDNA is related to the severity of tissue damage and

predicts post-traumatic complications including mortality, but cfDNA concentra-

tions may also considerably vary in blood [58].

A qPCR study was made of plasma cfDNA from 84 patients who had sustained

an acute blunt traumatic injury and 27 control subjects using the housekeeping,

gene β-globin. The median plasma cfDNA concentrations in the control, 47 minor/

moderate trauma (Injury Severity Score<16) and 37 major trauma (Injury Severity

Score �16) groups were 3,154 kGE L�1, 13,818 kGE L�1 and 181,303 kGE L�1,

respectively. Plasma cfDNA concentrations in patients with adverse outcomes,

including acute lung injury, acute respiratory distress syndrome and death, had a

12-fold higher plasma cfDNA concentration than those who did not develop these

complications. At a cut-off level of 232,719 kGE L�1, the sensitivities of plasma

cfDNA analysis for the prediction of acute lung injury, acute respiratory distress

syndrome and death were 100 %, 100 % and 78 %, respectively. The respective

specificities were 81 %, 80 % and 82 % [59]. To analyze the degree of cfDNA

decline after severe traumatic brain injury, plasma cfDNA concentrations of

65 patients during 96 h in the Intensive Care Unit were also quantified by qPCR
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using the β-globin gene. After the following 4 days, a 51 % and a 71 % decrease in

cfDNA levels during the first 24 h and after 48 h were observed, respectively. The

decrease was more pronounced in survivors than in non-survivors. A cut-off ratio of

1.95 was established for the detection of patients who will not survive after the

injury with a sensitivity of 70 % and a specificity of 66 % [60]. To examine whether

or not the cfDNA concentration could also predict the later development of

posttraumatic organ failure and multiple organ dysfunction syndrome, plasma

cfDNA of 83 patients was measured as a consequence of major trauma by qPCR

using the β-globin gene. The sensitivity of plasma cfDNA for predicting

posttraumatic organ failure and multiple organ dysfunction syndrome ranged

from 50 to 100 %, the specificity ranged from 74 to 95 % and the likelihood ratio

ranged from 3.89 to 10.50. Using a classification and regression tree, plasma

cfDNA and aspartate transaminase predicted organ failure and multiple organ

dysfunction syndrome with an overall correct classification of 93 and 87 %, respec-

tively. Along with other typical predictors for trauma, such as the maximal abbre-

viated injury score and shock index, the cfDNA quantification may further aid an

early diagnosis of organ failure and mortality and so guide clinicians’ decisions

considering admission to intensive care or modifications in therapy [61].

The deadly China Wenchuan earthquake also caused changes in cfDNA con-

centrations in the plasma of the Chinese people involved. In a cohort of 1,187

healthy adults and 283 trauma patients the cfDNA levels were measured by a

duplex qPCR assay using the β-actin gene. The median plasma cfDNA concentra-

tion of females (16.9 ng ml�1) was significantly lower than that of males

(22.6 ng ml�1, p< 0.0001). During the early stage of injury, the median plasma

cfDNA levels of patients increased above 100 ng ml�1, i.e. five times that of the

healthy controls. There were statistically significant correlations of plasma cfDNA

concentrations with the Injury Severity Score (p< 0.0001) and the presence of

organ injury (p¼ 0.001) [62].

Acute trauma also includes skin burns that involve an extensive vascular damage

and an intense inflammatory response. Stages of the repairing process of skin

wounds include processes of cell proliferation, tissue remodeling and angiogenesis.

During the wound healing process bone marrow-derived circulating endothelial

progenitor cells (EPCs) migrate to sites of neovascularization and support angio-

genesis. In burned patients there is an increase in number of EPCs that is associated

with the burnt body surface area. Likewise, a rise in the levels of both cfDNA and

cfmRNA was observed in the blood circulation of burned patients. In this pilot

study, cfDNA and the cfmRNA were measured in the plasma of 19 burned patients

at days 1–3 and week 10 following acute thermal injury and in 19 healthy controls

by qPCR using two endothelial specific genes EndoPDI and ECSM2. The increased
levels of cfNAs detected in burned patients were related to the severity of burn, in

terms of the percentage of the burnt body surface area, and consequently, to the

levels of EPCs and also correlated with the levels of cytokines in blood

(p< 0.05) [63].

To avoid time-consuming quantification of cfDNA by qPCR, neutrophil-derived

extra-cellular traps (NETs) containing cfDNA (NET/cfDNA) were quantified by a
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fluorescence-based assay in a prospective study [64]. Neutrophils actively release

NET/cfDNA together with cytoplasmic effector molecules in order to trap and kill

pathogens extracellularly ([65]; chapter “The Biology of CNAPS”). Blood samples

from 32 patients with severe burn injuries were sequentially obtained on days 1, 3,

5 and 7 after admission. Seven patients died within a month following burn injury.

On day 1, differences of NET/cfDNA values were already significant between

survivors (220� 20 ng ml�1) and non-survivors (645� 163 ng ml�1). By day

3 the values decreased in survivors (175� 9 ng ml�1) and non-survivors

(322� 88 ng ml�1), but remained elevated over 7 days. These increased

NET/cfDNA values may reflect neutrophil hyperactivity rather than only tissue

damage alone. To verify the prognostic potential of NETs/cfDNA for patient

mortality after burn injury, ROC curves were established and showed an AUC of

0.815 on day 1 and of 0.883 on day 3 at a cut-off of 255 ng ml�1; NET/cfDNA had a

sensitivity of 0.80 and a specificity of 0.74. These findings show that NET/cfDNA

may be a rapid and valuable marker for prediction of the mortality of burned

patients [64].

Changes in the levels of numerous cfmiRNAs were detected in the blood

circulation of patients with traumatic brain injury. To determine whether

cfmiRNAs can identify patients with traumatic brain injury, plasma from 21 patients

within the first 24 h post-injury and 10 healthy controls was used. This study

showed that miR-16 (AUC of 0.89), miR-92a (AUC of 0.82) and miR-765 (AUC

of 0.86) might be promising markers of severe traumatic brain injury. In combina-

tion with established clinical practices, such as imaging, neurocognitive and motor

examinations, these cfmiRNAs markedly increased their diagnostic accuracy. With

a specificity of 100 % and a sensitivity of 100 %, they have the potential to improve

classification and management of patients with traumatic brain injury. In patients

with mild traumatic brain injury, the plasma levels miR-765 were unchanged, while

the levels of miR-92a (AUC of 0.78) and miR-16 (AUC of 0.82) were significantly

increased within the first 24 h of injury compared to healthy volunteers [66].

These findings indicate that cfNAs in traumatic patients may provide a useful

tool for new therapeutic interventions, monitoring and prediction of patient

outcome.

11 Implications of cfNAs in Aging

Aging is accompanied by increased cellular senescence and cell death. With

advanced age, exposure to a variety of damaging substances, such as free radicals,

leads to cellular damage along with a chronic low-grade inflammation. Moreover,

the fragility of lymphocytes also increases [67]. As a result of inflammation and cell

death, the accumulation of cfDNA and its somatic mutations have been demon-

strated to increase in the blood circulation of elderly people [68]. To examine

whether or not aging is reflected in the appearance of cfDNA in blood, plasma of

12 women aged 90+ years and 11 healthy control women (aged 22–37 years) was
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used. cfDNA was quantified directly in plasma by the Quant-iTTM DNA high-

sensitivity assay kit, the amplifiable cfDNA was assessed using qPCR and the

quality of cfDNA was analyzed by a DNA Chip assay. The concentration of

cfDNA was significantly higher in nonagenarians than in controls (p< 0.05). The

quality of the cfDNA also displayed a marked difference between nonagenarians

and controls. A fragmented pattern of low-molecular weight cfDNA was observed

in the majority of the nonagenarians whereas in controls, cfDNA was intact and had

an appearance of high-molecular weight DNA. These findings show that not only

the quantity, but also the quality of cfDNA displays a striking difference between

nonagenarians and young women [69]. Moreover, the plasma levels of gene-coding

cfDNA, Alu repeat cfDNA, cfmitDNA (circulating, cell-free mitochondrial DNA)

copy number and the amounts of unmethylated and total cfDNAs were measured in

144 nonagenarian participants (aged 90+) and 30 young controls. In the nonage-

narians, higher levels of total DNA (p¼ 0.002), unmethylated cfDNA (p¼ 0.001)

and cfmitDNA copy number (p< 0.03) were associated with increased frailty.

Higher levels of total and unmethylated cfDNAs were also associated with

immunoinflammatory activation in the nonagenarians but plasma cfmitDNA

appeared to be inert in terms of inflammatory activation [70]. The levels of

nucleosomes in the blood also increase with age (p¼ 0.0001). The concentrations

of nucleosomes were quantified in the serum of 140 healthy subjects (age 15–70

years) using a Cell Death Detection ELISA kit [71].

These data demonstrate that apart from pathologies, inflammatory factors also

play an essential role in age-related processes resulting in increased levels of

cfDNA in the blood circulation of elderly individuals.

12 Clinical Relevance of cfNAs in General Medicine

The above-described studies are intended to give a short overview on the research

dealing with the changes in the levels of cfNAs and their association with general

medicine. They summarize the potential use of cfNAs in general medicine and

show the limitations of these studies using different analytical variables.

The concentrations of cfDNA are usually early elevated in the blood circulation

after onset of different diseases and may be highest in patients with disease-specific

complications and a high risk of death. Accordingly, the elevation in cfDNA levels

is not specific for a definite disease and varies among the patients within a patient

cohort, but may correlate with the severity of disease. These observations indicate

that cfDNA levels, if increased in the blood of an individual, may reflect patholog-

ical processes in her/his body. However, aging and altered physiological states that

may also display increases in cfNA levels should additionally be considered. The

diagnostic accuracy of the established markers and possibly, patient classification

and management could be improved by a combination of these disease-specific

markers with the quantification of cfDNA concentrations. Since cfDNA levels may

change during the course of disease and parallel with the severity of disorder, their
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measurement could be a potentially useful marker for the assessment of adverse

outcome and might allow clinicians to make a rapid risk stratification for more

rational therapeutic decisions.

Several studies have revealed the presence of methylated cfDNA in patient

serum or plasma. The detection of gene-specific changes in the methylation pattern

of cfDNA represents one of the most promising approaches for detection and risk

assessment of various diseases and is more specific than the measurement of

cfDNA concentrations. Although epigenetic alterations are not unique for a single

disease, there are particular genes that are frequently and specifically methylated

and that expression is down-regulated in a certain disorder. Nevertheless, to

improve the assay conditions and the clinical relevance of methylated cfDNA, it

is essential to select the appropriate disease-related genes from a long list of

candidate genes known to be methylated. In sick individuals, this disease-related

methylation of cfDNA can be analyzed by gene-specific methylation sensitive PCR.

Apart from cfDNA, much attention and effort have been put into the study on

cfmiRNAs over the last few years. In the future, minimally invasive blood analyses

of cfmiRNAs may have great potential to complement the existing biomarkers. In

particular, some identified miRNAs appear repeatedly significant for different

diseases and show promising prognostic associations with disease outcomes,

suggesting that miRNA-coordinated regulatory pathways are common for several

diseases. Thus, functional studies on these miRNAs will be necessary and may

provide a better understanding of the mechanisms underlying diverse disorders.

However, an important question that has to be addressed for a miRNA-based

therapy is that a single miRNA can target numerous mRNAs and consequently,

prevent the translation of many different proteins that are involved in several

(disease-relevant) signal transduction pathways. Although the impact of miRNAs

on these signal pathways offers additionally potential therapeutic targets in the

treatment of diseases, it also leads to multiple changes in the signal transduction of a

cell and possibly adverse effects. Therefore, each miRNA and its influence on the

different signaling pathways need to be identified and considered before applying

miRNAs as targeted therapy for patients. Moreover, for the development of a useful

and clinically relevant panel of cfmiRNAs as biomarkers, the establishment of an

endogenous reference miRNA with constant values is especially important to

normalize the values of circulating candidate cfmiRNAs.

Currently, there are too few substantial progresses to establish a blood-based

assay of cfDNA or cfmiRNAs that can stand up clinical trials. Much more emphasis

needs to be placed on improving the quality of the methodology to reach consis-

tency of data between laboratories before such an approach can be introduced into

the clinic. Pre-analytical and analytical aspects of cfNA analyses have to be

standardized. Pre-analytical parameters implicate blood collection, processing of

plasma or serum and storage. Analytical parameters include extraction, quantifica-

tion and assessments of cfNAs (Chapter III; Chapter VI). Another issue that has also

to be addressed is that the analyses of cfNAs vary in assay sensitivity and specific-

ity. To date, no approach has been developed that is consistent, robust, reproducible

and validated on a large-scale or prospective multicentre patient population.
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Usually, in the studies the number of patients analyzed is small and the follow-up

period is, likewise, short.

For the most acute clinical syndromes, it is likely that multiple markers rather

than a single marker will give the best diagnosis and prognosis. At optimal cut-off

levels, higher odds ratios are achieved using combined selected cut-off points. If

these technical problems and common deficiencies can be solved and the reliability

of such tests and universal standardization of data comparison can be demonstrated,

a blood-based assay on either cfDNA or cfmiRNAs could be introduced into

clinical routine testing of patients with different diseases in the future.
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Fetal CNAPS – DNA/RNA

Stephanie Cheuk Yin Yu

Abstract The discovery of fetal circulating nucleic acids in maternal plasma and

serum has revolutionized prenatal genetic testing by providing a non-invasive

source of fetal genetic material. Since fetal DNA coexists with a high background

of maternal DNA in the maternal plasma, early studies in the field have been

focused on the detection of paternally inherited sequences that are absent from

the maternal genome. This approach has been applied to fetal sex and blood type

determination, as well as the detection of paternally inherited mutations causing

single-gene disorders. The emergence of single molecule counting technologies,

such as digital PCR and massively parallel sequencing, have allowed the detection

of subtle allelic imbalances and the precise quantification of sequences in the

maternal plasma. This precise quantification has enabled the deduction of mater-

nally inherited fetal monogenic diseases, as well as the accurate detection of fetal

chromosomal aneuploidies. While some of the applications of fetal circulating

nucleic acid have been rapidly incorporated into clinical practice, a number of

ethical, legal and social issues have been raised regarding the current and potential

use of this technology. Overall, research on fetal circulating nucleic acids in

maternal plasma and serum is a rapidly developing and exciting area. It is

envisioned that the use of fetal circulating nucleic acids in maternal plasma and

serum will play an increasingly important role in prenatal care.
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1 Introduction

Chromosomal and genetic abnormalities are important causes of perinatal morbid-

ity and mortality. Worldwide, 1 in 200 newborns has a major chromosomal

abnormality and 1 in 100 has a single-gene abnormality [1]. In view of the high

incidence and clinical significance of these abnormalities, prenatal genetic testing,

which comprises both non-invasive screening and invasive diagnostic testing, has

become an essential part of modern obstetric care.

Currently, prenatal screening tests for a number of conditions are clinically

available: for instance, prenatal screening of aneuploidy by a combination of

maternal serum biochemical markers and ultrasonographic markers [2] and prenatal

screening of cystic fibrosis via carrier testing [3]. These screening tests are either

offered to all pregnant women or based on either ethnic background or family or

personal history. These screening tests provide pregnant women with a risk assess-

ment for certain fetal chromosomal or genetic abnormalities.

Nevertheless, definitive prenatal diagnosis still requires the sampling of fetal

genetic material by invasive procedures, such as chorionic villus sampling (CVS) or

amniocentesis, which are associated with a small but significant risk of fetal loss

(~1 %) [4, 5].

Over several decades, researchers have been searching for non-invasive methods

to sample fetal genetic material. One approach is to isolate fetal nucleated cells

from maternal blood [6]. However, such cells are extremely rare – about one cell in

each milliliter of maternal blood. In addition, selected fetal cell populations may

persist in the maternal circulation after delivery [7] and the isolation of fetal cells is

technically demanding. Such difficulties have motivated researchers to look for

alternative approaches for non-invasive prenatal testing (NIPT).

An important advance in NIPT came in 1997 when it was reported that cffDNA

is present in the plasma and serum of pregnant women [8]. Since then, the field of

NIPT has seen rapid developments.

This chapter will provide a comprehensive review of the applications of fetal

CNAPS starting with a brief history and summary of the discovery and the

biological characteristics of fetal CNAPS. An outline of the general approaches

will be given for various clinical applications of fetal CNAPS, including NIPT of

paternally inherited traits, aneuploidy and monogenic diseases, with a particular

emphasis on the strengths and pitfalls of different approaches. Several important

technical and analytical aspects which may be important for clinical implementa-

tion will be highlighted. The chapter will conclude with a survey of several

unexplored areas and future directions in the field of fetal CNAPS.
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2 Characteristics of Fetal Circulating Nucleic Acids

2.1 Circulating cffDNA

In 1997, Lo and colleagues demonstrated the presence of circulating cffDNA by

showing the presence of Y chromosome sequences in the plasma and serum of

women carrying male fetuses [8]. Subsequent qPCR experiments showed that

circulating cffDNA is present in the maternal plasma and serum at a surprisingly

high absolute concentration, accounting for a mean of 3–6 % of the total plasma

DNA [9]. Recent studies with the use of more precise quantification methods, such

as dPCR and MPS, show that the fractional cffDNA concentration may be some

two- to three-fold higher [10–12].

In general, cffDNA molecules are detectable in maternal plasma from about the

seventh week of gestation onwards [13], increasing in concentration as gestation

progresses [11, 13]. Following delivery, circulating cffDNA is cleared rapidly from

the maternal plasma [14, 15]. It has been suggested that clearance of circulating

cffDNA may occur in two phases: in an initial rapid phase, with a mean half-life of

1 h and in a subsequent slow phase, with a mean half-life of 13 h [15]. cffDNA does

not persist in the maternal circulation – its final disappearance is about 1–2 days

after delivery, a phenomenon that has been confirmed in a number of studies

[15–17].

The relatively high concentration and lack of persistence following delivery are

two important advantages of cffDNA as a source of genetic material for

non-invasive prenatal testing.

Several pieces of evidence support the placenta as the predominant source of cff

DNA: first, in cases of confined placental mosaicism (in which the fetus and

placenta have different chromosomal constitutions), placenta-specific genetic sig-

natures can be detected in the maternal plasma [18]; second, cffDNA molecules

with placenta-specific epigenetic signatures can be detected in the maternal plasma

[19, 20]; and third, in cases of anembryonic pregnancy (in which the placenta is

present but no fetus is developing), cffDNA levels are comparable to those of

normal pregnancies [21].

Maternal blood cells are believed to be the predominant source of maternally-

derived DNA in maternal plasma [22]. Using a sex-mismatched bone marrow

transplantation model, researchers have showed that most of the plasma cfDNA

molecules of the recipient show the sex genotype of the transplant donor [22]. This

conclusion has been extrapolated to the scenario of maternal plasma cffDNA in

pregnancy and appears to be accepted by many workers in the field [23–25].

Plasma DNA molecules are fragmented in nature. In maternal plasma, cffDNA

is generally shorter than maternal cfDNA [26]. By using paired-end massively

parallel sequencing, researchers have constructed the size profile of total (predom-

inantly maternal) plasma DNA and fetal-specific plasma DNA [27]. The size

distributions of both total and cffDNA show a series of peaks [27]. They both

have a peak at 166 bp, another peak at 143 bp and a distinctive 10-bp periodicity
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below 143 bp [27]. The most marked difference between fetal and total plasma

DNA is that plasma cffDNA has a reduced 166 bp-peak and a more prominent

143 bp-peak [27].

2.2 Circulating cffRNA

Three years after the discovery of circulating cffDNA, Poon et al. [28] demon-

strated the presence of circulating cffmRNA in maternal plasma by the detection of

Y-chromosome-specific mRNA in the plasma of women carrying male fetuses.

This finding was surprising because mRNA was believed to be labile in plasma due

to the existence of plasma ribonucleases. Later, plasma mRNA was found to be

associated with subcellular particles that render them remarkably stable, probably

by protecting them against degradation by plasma ribonucleases [29]. Structurally,

mRNA molecules in maternal plasma are similar to plasma DNA molecules in that

they are also fragmented, showing various degrees of degradation at their 30

ends [30].

In a recent study by Quake’s group, transcripts from fetal brain and fetal liver

have also been detected in the maternal plasma. cffmRNA of placental origin, such

as human placental lactogen (hPL), the β-subunit of human chorionic gonadotropin
(β-hCG) and corticotropin-releasing hormone (CRH), is readily detectable in

maternal plasma [31]. Ng et al. [31] quantified hPL and β-hCG levels in maternal

plasma using RT-qPCR and found that the plasma cffmRNA levels of hPL and

β-hCG correlate with their corresponding protein levels at various gestational ages.

Both hPL and β-hCG mRNA can be detected in the maternal plasma as early as the

fourth week of gestation and their concentrations increase as gestation progresses.

Furthermore, like plasma cffDNA, cffmRNA is rapidly cleared from maternal

plasma following delivery [14, 32]. Circulating hPL cffmRNA has been shown to

be cleared from the maternal plasma with a mean half-life of 14 min [32].

3 Fetal Epigenetic Markers

Epigenetic modifications are heritable molecular changes that regulate gene expres-

sion, but are not associated with changes in DNA sequence. DNA methylation, one

of the best characterized epigenetic mechanisms, is a process by which a methyl

group is added to the 50 carbon of a cytosine residue to give 5-methylcytosine, often

occurring on the cytosine residues of CpG dinucleotides.

In 2002, Poon et al. [33] used an imprinted locus to demonstrate that it is possible

to detect fetal-specific epigenetic signatures in maternal plasma. The group studied

an imprinted region between the insulin-like growth factor 2 (IGF2) andH19 genes,
which is methylated when inherited from the father and unmethylated when

inherited from the mother (Fig. 1) [33]. They were able to detect an allele on this
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imprinted locus that the fetus had inherited from the mother in the maternal plasma

(Fig. 1), demonstrating for the first time that maternally-inherited cffDNA

sequences can also be detected in maternal plasma [33].

DNA methylation is one of the mechanisms that have contributed towards

tissue-specific gene expression [34]. Since plasma fetal and maternal DNA origi-

nates predominantly from different tissues, namely the placenta and maternal blood

cells, respectively, the DNA methylation pattern between them may be postulated

to be different. Therefore, fetal-specific epigenetic markers may be found by

distinguishing the DNA methylation patterns between the placenta and maternal

blood cells.

Themaspin (SERPINB5) gene promoter is the first sequence that has allowed the

demonstration that a placenta-specific epigenetic signature can be detected in

maternal plasma [20]. The SERPINB5 promoter is hypomethylated in the placenta

and hypermethylated in maternal blood cells [20]. Hypomethylated SERPINB5
promoter sequences can be detected in maternal plasma samples from all three

trimesters of pregnancy [20].

Fig. 1 First fetal-specific

epigenetic signature

detected in maternal

plasma. (a) The imprinted

region between the insulin-
like growth factor 2 (IGF2)
and H19 genes is

methylated when inherited

from the father and

unmethylated when

inherited from the mother.

Filled circles indicate DNA
methylation. (b) The G

allele that the mother has

inherited from the

grandfather is methylated.

When the G allele is passed

from the mother to the fetus,

it will become

unmethylated. Filled bars
represent methylated

sequences whereas open
bars represent
unmethylated sequences

[33]

Fetal CNAPS – DNA/RNA 169



On the other hand, several fetal epigenetic markers have opposite methylation

patterns in the placenta and maternal blood cells; for instance, the Ras association
domain family 1A (RASSF1A) gene promotor is hypermethylated in the placenta

[35] and hypomethylated in maternal blood cells [19]. Hypermethylated RASSF1A
sequences are also readily detectable in maternal plasma during pregnancy [19].

Characterization of fetal DNA using this epigenetic approach yields consistent

results with methods using genetic markers. Positive correlation between the levels

of fetal epigenetic markers and fetal genetic markers in the maternal plasma has

been demonstrated [19, 20]. Sequences with fetal-specific epigenetic signatures are

cleared rapidly (within 24 h) from the maternal plasma after delivery [19, 20].

4 Detection of Paternally Inherited Traits

Early studies in the field of fetal CNAPS focused on the qualitative detection in the

maternal plasma or serum of fetal-specific DNA sequences inherited from the father

and absent from the maternal genome. Two representative applications are prenatal

fetal sexing and rhesus D genotyping, both of which are now clinically available in

a number of countries.

4.1 Fetal Sex Determination

Prenatal fetal sex determination is useful in pregnancies at risk for X-linked

recessive diseases such as Duchenne muscular dystrophy and hemophilia

[36]. Since males have only a single copy of chromosome X, the male fetus of a

mother who is a carrier of an X-linked recessive disorder has a 50 % chance of

inheriting the defective gene and hence developing the disorder. Therefore, if a

carrier woman is pregnant with a male fetus, invasive prenatal diagnosis would be

recommended. On the contrary, if a carrier mother is bearing a female fetus,

invasive testing can be avoided.

Prenatal fetal sexing is also useful in pregnancies at risk for congenital adrenal

hyperplasia (CAH) [37]. CAH is an autosomal recessive disorder resulting from

defects in certain enzymes involved in the biosynthesis of cortisol from cholesterol.

As a consequence of the enzyme deficiencies, accumulated cortisol precursors

e.g. pregnolone are converted into androgens. While excessive synthesis of andro-

gens causes virilization of female fetuses, male fetuses are not affected. Therefore,

antenatal dexamethasone treatment, which can ameliorate the effect of virilization,

is given to female fetuses.

Currently, ultrasound examination is the standard method of assessing fetal sex

non-invasively however, it is unreliable before 11 weeks of gestation. With the

discovery of circulating cffDNA in maternal blood, fetal sex can now be deter-

mined non-invasively by the detection of Y chromosome sequences in either the
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maternal plasma or serum [8, 36, 37]. Positive amplification of Y chromosome

sequences indicates a male fetus; however, negative amplification should be

interpreted with caution since it may be due to low levels of cffDNA in maternal

blood or even complete absence of plasma or serum cffDNA. Therefore, it is of

prime importance to verify the presence of cffDNA for the validation of negative

amplification. To ascertain detectable levels of cffDNA in maternal blood samples,

biallelic insertion/deletion polymorphisms [38] or fetal epigenetic markers can be

used [19].

There are two systematic reviews and meta-analyses on the use of cffDNA for

prenatal fetal sex determination [39, 40]. Both reviews have shown that test

performance is generally high (Sensitivity: 95.4 and 96.6 %; Specificity: 98.6 and

98.9 %) [39, 40].

Thus far, there are more than a 100 studies on prenatal sex determination using

circulating DNA. Most of the studies analyze plasma samples and some use serum,

but both of them show similar performance [40].

Reported studies mainly used qPCR and conventional PCR [39]. The uses of

other methods such as matrix-assisted laser desorption/ionization time-of-flight

mass spectrometry (MALDI-TOF MS) [41] and pyrophosphorolysis-activated

polymerization [42] have also been reported. Among these methods, PCR appears

to give the best performance.

Different Y chromosome sequences have been used, including SRY, DYS14,
DYS1/DAZ, DYS3 and AMELY. Among them, SRY and DYS14 (a multi-copy

sequence) are being used more frequently and both of them appear to perform

equally well [40]. Using this method, fetal sex can be reliably determined as early

as 7 weeks of gestation. Although test performance increases with gestational age,

test performances in the late first and early second trimesters are comparable.

In a few studies, inconclusive results or failed tests have been reported, which

would require retesting with another blood sample obtained at a later stage of

pregnancy. According to Wright and colleagues, the reported reasons for either

inconclusive or false-positive or false-negative results include: blood samples not

being processed within 48 h of collection, poor plasma and serum quality, variable

or low concentration of cffDNA in the maternal blood samples and a suboptimal

diagnostic threshold, the cutoff value of the threshold cycle used for assigning

positive or negative detection of Y chromosome in a sample, used for fetal sex

determination [40].

Non-invasive determination of fetal sex using circulating cffDNA in maternal

blood has already been incorporated into routine clinical practice in a number of

countries including the United Kingdom, the Netherlands, France and Spain.

Several companies have also begun to offer this test through the internet as a

direct-to-consumer test, so raising concerns of potential abuse for non-medical

purposes [23].
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4.2 Fetal Rhesus D Genotyping

Like antigens in the ABO blood group system, Rhesus (Rh) factor is a red blood cell

surface antigen. There are five main Rh antigens, namely D, C, c, E and e. Among

them, the D antigen is the most immunogenic. A person with RhD-positive pheno-

type has at least one functional copy of the RHD gene, whereas a person with

RhD-negative phenotype lacks functional RHD.
In the context of pregnancy, RhD incompatibility occurs when a RhD-negative

woman is pregnant with a RhD-positive fetus. Maternal alloimmunization against

the D antigen is the major cause of hemolytic disease of the fetus and the newborn

(HDFN). The pathogenesis of HDFN usually involves a primary and a secondary

exposure. Potential sensitizing events can be a previous pregnancy with a

D-positive fetus or previous blood transfusion with D-positive blood. If a woman

who has been previously sensitized becomes pregnant with a D-positive fetus, then

secondary exposure to the D-positive blood would cause the sensitized woman to

produce a large amount of anti-D antibodies that can cross the placenta and attack

the D-positive red cells of the fetus.

Therefore, prenatal determination of fetal RhD genotype is clinically useful in

the management of pregnancies in RhD-negative women. If the fetus is RhD

positive, administration of anti-D immunoglobulin would reduce the chance of

sensitization in a non-sensitized woman. Even though anti-D prophylaxis does

not work for sensitized women, knowing the fetal RhD status gives clinicians

sufficient time to plan for further tests and treatments. Conversely, if the fetus is

RhD negative, no further testing and treatment would be needed.

Traditionally, fetal genetic material for fetal RhD typing was obtained through

amniocentesis or CVS. However, in addition to the inherent risk of miscarriage,

these invasive procedures could induce fetomaternal hemorrhage, which would

increase the risk of maternal sensitization.

With the demonstration of cffDNA in the maternal plasma, non-invasive prena-

tal RhD typing became feasible [43, 44]. In the genome of a RhD-negative woman,

the RHD gene is typically absent. Thus, any RHD sequences detected in the

maternal plasma can be presumed to be from the fetus and inherited from the

father. In cases with negative detection of RHD, similar to the negative detection of

Y chromosome sequences in fetal sexing, it is critical to ascertain the presence of

cffDNA to minimize false negatives.

Initial studies of fetal Rh typing amplified a single region on RHD, with either

conventional or qPCR. Advances in the molecular characterization of rhesus genes

revealed extensive polymorphisms in the Rh blood group system [45]. There are

more than 150 alleles for the RHD gene and the frequencies of these RHD variants

vary widely among different populations [45, 46]. In the Caucasian population, the

majority of D-negative phenotypes are caused by a complete deletion of the RHD
gene whereas, the majority of D-negative Africans have an intact but nonfunctional

RHD pseudogene, the RHDψ or the RHD-CE-D hybrid gene. Therefore, to avoid

false-positive results due to these common gene variants, more recent studies have
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amplified at least two distinct regions on the RHD gene (commonly exon 5 and 7)

[47–50].

Furthermore, maternal-fetal incompatibility of other blood cell antigens such as

the c antigen of the Rh blood group system and the K antigen of the Kell blood

group system can also cause HDFN. In the light of this, a few studies have analyzed

circulating cffDNA in maternal plasma for non-invasive prenatal RHCE and KEL
genotyping and have demonstrated accurate test results [50, 51].

Currently, in the United Kingdom [52], the Netherlands [50], Denmark [47],

France [53] and Sweden [54], non-invasive prenatal testing of fetal rhesus status is

already in clinical use. Before its clinical introduction, antenatal anti-D treatment

was usually given to all RhD-negative women regardless of the fetal RhD status at

about 28 weeks of gestation. Since 40 % of RhD-negative women actually carry a

RhD-negative fetus, these women would receive the treatment unnecessarily

[48, 53]. Anti-RhD immunoglobulin is a pooled human blood product from

RhD-negative donors who have been exposed to RhD-positive red cells to stimulate

the production of RhD antibodies [48]. Therefore, targeted anti-D prophylaxis

would prevent pregnant women from unnecessary exposure to human blood prod-

uct and would reduce the risk of infection [55]. In addition, this approach would

minimize the usage of anti-D immunoglobin, which is only available in limited

amounts.

5 Detection of Fetal Aneuploidy

Fetal chromosomal aneuploidy is the main reason why pregnant women choose to

undergo prenatal diagnosis. Aneuploidy refers to an abnormal number of chromo-

somes; more specifically, having one extra or one less copy is termed trisomy or

monosomy, respectively. While the majority of chromosomal aneuploidies are

non-viable, leading to spontaneous abortion, a subset may survive to term and

beyond. Fetuses with trisomy appear to be more viable than those with monosomy.

The three most common autosomal trisomies detected in newborns are: (a) trisomy

21 (Down syndrome), with an incidence of 1 in 800 live births; (b) trisomy

18 (Edwards syndrome), with an incidence of 1 in 8,000 live births; and

(c) trisomy 13 (Patau syndrome), with an incidence of 1 in 20,000 live births.

The detection of fetal chromosomal aneuploidy is much more challenging than

the determination of fetal sex and RhD status since the former requires the quan-

titative analysis of fetal chromosome dosage, while the latter simply involves the

detection of specific cffDNA sequences in the maternal plasma. Since cffDNA

represents only a small proportion of the DNA in maternal plasma, the overwhelm-

ing maternal DNA background makes the assessment of fetal chromosome dosage

difficult.

In fact, increased levels of cffDNA in the maternal plasma and serum have been

reported in trisomy 21 and trisomy 13, but not in trisomy 18 [56–58]. However, the

maternal plasma and serum cffDNA concentrations in euploid and aneuploid
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pregnancies significantly overlapped. Therefore, it seemed difficult to unambigu-

ously distinguish euploid from trisomic fetuses just by measuring cffDNA concen-

tration in maternal plasma.

5.1 Enrichment of Fetal Nucleic Acid

After the realization that cffDNA only represents a minor fraction of the DNA in

maternal plasma, a number of researchers have attempted to increase the fractional

fetal DNA concentration with either physical enrichment or molecular enrichment.

Physical Enrichment of cffNAs

Physical enrichment of cffDNA in maternal plasma entails either the selective

enrichment of the cffDNA by using size or the reduction of the background

maternal cfDNA by using formaldehyde.

Based on the fact that cffDNA in maternal plasma is generally shorter than the

maternal cfDNA [26], Li et al. [59] targeted the shorter DNA molecules in plasma

to enrich for cffDNA. This size-based enrichment has been applied in the detection

of paternally inherited fetal mutations in maternal plasma [60]. On the other hand,

whether the degree of enrichment attained by using this approach is enough to

detect fetal aneuploidy in the maternal plasma is still unknown. A drawback to this

method used by Li et al. [59] is that it is relatively labour-intensive and prone to

contamination, involving agarose gel electrophoresis for size separation and man-

ual excision of targeted gel slices for size fractionation. However, using an auto-

mated size fractionation system could potentially solve these problems.

An alternative approach to increasing the relative proportion of fetal DNA in the

maternal plasma is to suppress the maternal background DNA. Dhallan et al. [61]

treated blood samples with formaldehyde, which they claimed could inhibit cell

lysis and reduce the release of DNA from maternal blood cells into the maternal

blood since formaldehyde stabilizes cell membranes. In addition, formaldehyde

inhibits nucleases in the maternal blood, which may increase the recovery of fetal

DNA by reducing the degradation of plasma DNA [61]. Dhallan et al. [61] showed

significantly increased fetal proportions in the formaldehyde-treated samples as

compared with the untreated samples. However, other groups were unable to

reproduce this result [62, 63]. Zhang et al. [64] suggested that this discrepancy

might be due to the difference in sample processing time after blood collection.

Molecular Enrichment of cffNAs

Another approach to overcoming the high maternal DNA background is to target

the nucleic acids that are specifically derived from the fetus. Since the predominant
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source of cffDNA and maternal cfDNA in the maternal plasma is the placenta and

the maternal blood cells, respectively, one can identify fetal-specific nucleic acid

markers from the different methylation and expression patterns between the pla-

centa and the maternal blood cells. One strategy whereby these placenta-specific

epigenetic signatures and placenta-derived RNA can be used for detecting aneu-

ploidies is when their sequences are located on a disease-causing chromosome.

Since most common aneuploidies are on chromosomes 21, 18, and 13, researchers

have looked to identify epigenetic and RNA fetal markers on these chromosomes.

Fetal Epigenetic Markers

Epigenetic markers are based on a difference in methylation levels between the

placenta and the maternal blood cells in the same sequence. The SERPINB5 gene is
hypomethylated in cffDNA and hypermethylated in maternal cfDNA and was the

first fetal epigenetic marker used in the detection of fetal aneuploidy since it is

located on chromosome 18 [20, 65]. Subsequent efforts were made to systemati-

cally search for fetal epigenetic markers on chromosome 21 [66, 67]. Candidates

such as HLCS, AIRE, SIM2 and ER, have been identified and so may potentially be

used for NIPT of trisomy 21 [66, 67].

To detect fetal epigenetic markers in maternal plasma DNA, two methods are

commonly used: bisulfite modification and restriction enzyme digestion. When DNA

is treated with sodium bisulfite, cytosine, but not 5-methylcytosine, is converted into

uracil. Therefore, plasma DNA molecules with identical DNA sequences but differ-

ent methylation status are now distinguishable. Such sequences are then detected

either via a methylation-specific PCR (MSP), in which PCR primers are specifically

designed to amplify either the altered or unaltered sequence, or via sequencing, in

which cytosine and 5-methylcytosine in the original DNA sequences will be shown as

thymine and cytosine, respectively, in the sequence trace. A major drawback to this

approach is the massive DNA degradation (over 90 %) that occurs during the process

of bisulfite conversion. This is problematic in NIPT as cffDNA is already present in

very low quantities in the maternal plasma.

On the other hand, restriction enzyme digestion uses methylation-sensitive

restriction enzymes (MSREs). Similar to other restriction enzymes, MSREs recog-

nize and cleave at specific sequences but are different in that they are also sensitive

to cytosine methylation and cannot cleave methylated DNA. When using a

hypermethylated fetal marker, for instance RASSF1A [19], treatment with MSRE

cleaves the hypomethylated maternal DNA sequences, while the hypermethylated

cffDNA sequences remain intact and can be subsequently amplified by various PCR

methods. Conversely, when using a hypomethylated fetal marker, for instance

SERPINB5 [20], MRSE cleaves the cffDNA sequences, which could then be

amplified by a stem-loop primer [68]. Altogether, these methods of distinguishing

epigenetic differences in DNA combined with the fetal epigenetic markers in

potentially aneuploid chromosomes can be used for the analysis of fetal aneuploidy.
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cffRNA Markers

Other than epigenetic markers, another fetal-derived source of nucleic acids is

placenta-derived RNA. Scientists have systematically searched for placental

mRNA markers using high throughput microarray-based expression profiling of

the placenta and maternal blood cells [69]. Differential expression of the candidate

markers was then confirmed by RT-qPCR.

The best cffRNA transcript markers for the detection of fetal aneuploidy are not

only transcribed from the potentially aneuploid chromosomes, but also have a high

absolute expression level in placenta since this combination of characteristics

makes them more specifically and readily detectable in maternal plasma [70]. Tran-

scripts with a large difference in the relative expression levels between the placenta

and maternal blood cells are also preferred. In this regard, scientists have used

PLAC4 mRNA, which has both a high absolute expression in the placenta and a

large difference in the relative expression between the placenta and maternal blood

cells, for the detection of trisomy 21 [70]. With cffRNA markers, researchers can

specifically detect cffNAs, without interference from the maternal nucleic acid

background in their analysis.

To tackle the inherent problems of low cffDNA fraction and high maternal

cfDNA background in analyzing maternal plasma cfDNA, researchers have used

either physical enrichment or molecular enrichment. Physical enrichment actually

changes the absolute number of DNA molecules in the plasma by either isolating

cffDNA by size or suppressing maternal DNA release. On the other hand, molec-

ular enrichment retains the original composition of the plasma and instead specif-

ically targets cffNAs for detection and analysis.

5.2 Determining the Fetal Chromosome Dosage of Enriched
cffNAs

Because molecular enrichment identifies the fetal subset of nucleic acids without

the interference of maternally derived nucleic acids, one can directly analyze and

determine the fetal chromosome dosage. Two approaches, namely the allelic ratio

analysis and the relative chromosome dosage analysis, have been used in combination

with the molecular enrichment strategy to determine the fetal chromosome dosage.

Allelic Ratio Analysis

The core concept behind allelic ratio analysis is to determine the ratio of alleles at a

heterozygous locus on a potentially aneuploid chromosome. Theoretically, the

heterozygous locus would have an allelic ratio of 1:1 for a euploid fetus or an

allelic ratio of either 2:1 or 1:2 for a trisomic fetus (Fig. 2). Allelic ratio analysis can
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be applied to either fetal epigenetic or RNA markers. For epigenetic markers, the

process of analysis has been referred to as the Epigenetic Allelic Ratio (EAR)

approach [65]; for RNA markers, the process is named the RNA-SNP allelic ratio

approach [70].

Having identified a placenta-specific DNA methylation marker, the

hypomethylated SERPINB5 sequence, in maternal plasma, Tong et al. [65] deter-

mined the allelic ratio of a SNP located on these hypomethylated SERPINB5
sequences. Briefly, their process is as follows: first, the method involves bisulfite

conversion and methylation-specific PCR to amplify fetal-specific hypomethylated

Fig. 2 Approaches for the determination of fetal chromosome dosage. (a) Allelic ratio approach.

(b) Relative chromosome dosage approach using a reference locus on the Y chromosome.

(c) Relative chromosome dosage approach using a reference locus on an autosome
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SERPINB5 sequences; then, primer extension and mass spectrometric analysis are

used to determine the allelic ratio. To distinguish between a euploid and a trisomic

fetus, a reference interval of allelic ratios would need to be established with plasma

samples from women with euploid fetuses. A drawback of the EAR approach is that

it requires at least 4,000 template molecules, which is around 16 mL of plasma, in

the beginning before bisulfite conversion to distinguish between trisomy and

euploid pregnancies.

Similarly, the RNA-SNP allelic ratio approach applies allelic ratio analysis on

placental expressed mRNA. Lo et al. [70] used the PLAC4 mRNA in maternal

plasma, which is transcribed from chromosome 21 and expressed specifically from

the placenta, to detect fetal trisomy 21. Basically, Lo et al. [70] performed a

RT-qPCR on the maternal plasma RNA sample and determined if there was an

allelic imbalance of a SNP on the PLAC4 mRNA using primer extension and mass

spectrometry. One important assumption of this approach is that the allelic ratio in

the plasma reflects the allelic ratio in the placenta. The sensitivity and specificity of

this RNA-SNP allelic ratio approach is 90 % and 96.5 %, respectively, and the

accurate detection of fetal trisomy 21 requires an estimated minimum of 1,000

template molecules of PLAC4 mRNA.

Instead of using mass spectrometry, dPCR can also be used in RNA-SNP

analysis [70]. With dPCR, individual alleles can be counted, resulting in a more

precise quantification of alleles when compared with a mass spectrometry-based

method. Lo et al. [70] used a statistical algorithm called the sequential probability

ratio test (SPRT) [71] to determine if there is an allelic imbalance. The presence of

an allelic imbalance of a fetal heterozygous SNP would suggest trisomy.

In fact, Dhallan et al. [72] have also used the allelic ratio method in conjunction

with their cffDNA enrichment strategy by formaldehyde for the determination of

fetal chromosome dosage.

The major limitation of these allelic ratio approaches is that the fetus must be

heterozygous for the analyzed SNP. Multiple SNP markers are needed to achieve a

broad population coverage using the EAR and RNA-SNP approaches. However,

gathering multiple SNP markers is difficult because the SNP must also be located

relatively close to the fetal-specific marker (either epigenetic or RNA). This

requirement is to ensure that the heterozygous SNP and the fetal-specific marker

would coexist on the same plasma DNA molecule and be quantified. Therefore,

achieving broad population coverage with either the EAR or the RNA-SNP

approach would be difficult.

Epigentic-Genetic Chromosome Dosage Method

Another approach to determining the fetal chromosome dosage for non-invasive

fetal diagnosis is to analyze the relative chromosome dosage. The core concept

behind relative chromosome dosage analysis is to assess the ratio between the loci

of a potentially aneuploid chromosome and the loci of a reference non-aneuploid

chromosome (Fig. 2).
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Applying this relative chromosome dosage approach to analyze fetal-specific

epigenetic locus/loci is called the epigenetic-genetic (EGG) chromosome-dosage

approach. Tong et al. [73] used the relative dosage of a fetal-specific epigenetic

marker on chromosome 21, the hypermethylated holocarboxylase synthetase

(HLCS) sequence, and a fetal-specific genetic marker on a reference chromosome,

ZFY on chromosome Y. Since there is only one Y chromosome, the expected

chromosome ratio would be 2:1 for a euploid male pregnancy and 3:1 for a trisomic

male pregnancy (Fig. 2). The reference fetal-specific marker is not an epigenetic

marker; instead, any paternally inherited fetal-specific genetic marker could poten-

tially be used [74]. However, when the reference locus is located on an autosome,

the expected ratio for a euploid and a trisomic fetus would be 2:2 and 3:2,

respectively (Fig. 2). Therefore, the EGG chromosome-dosage approach can be

used to detect fetal trisomy 21 from maternal plasma DNA [73, 74].

One advantage of the EGG approach is that the epigenetic and the genetic

markers do not need to be in the same genomic region. Therefore, it is easier to

achieve broader population coverage than those approaches that rely upon allelic

ratio analysis, such as the EAR approach.

Single-Molecule Counting Approach

The advent of single molecule counting technologies, such as dPCR and MPS, has

changed the field of maternal plasma nucleic acid-based prenatal detection of fetal

aneuploidy. With these technologies, the enrichment of the fetal subset of nucleic

acids is no longer necessary prior to analysis. Instead, it is now possible to directly

infer the fetal chromosome dosage in maternal plasma by counting single mole-

cules. The theory behind the single molecule counting approach to diagnosing fetal

aneuploidy requires that a trisomic fetus will release an increased amount of DNA

into the maternal plasma due to its extra chromosome. The amount of increase

depends on the proportion of cffDNA in the maternal plasma sample, which is

around 10 % in early pregnancy. With a cffDNA fraction of around 10 %, a trisomic

fetus would contribute around 5 % more fetal DNA from the aneuploid chromo-

some than a euploid fetus. This small 5 % increase in the chromosome dosage of a

particular chromosome would be challenging to be measured precisely without

either dPCR or MPS. The accurate quantification provided by either dPCR or MPS

has revolutionized the field of fetal aneuploidy detection.

dPCR allows individual DNA molecules to be counted [75]. This is in contrast

to conventional qPCR, which only has a discrimination power of 2-fold, a power

inadequate for detecting the small increase in chromosome dosage contributed by

the fetal aneuploid chromosome. The theory and process behind using dPCR to

quantify maternal plasma DNA is as follows: (a) the sample is diluted and

partitioned into hundreds to thousands of wells such that each well contains either

a single or no target molecule; (b) each well performs an individual PCR and each

reaction will be either positive or negative for a target amplicon; (c) the number of
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target molecules in the sample is then measured by counting the number of positive

PCRs [75, 76].

With the precise quantification provided by dPCR, the theory of relative chro-

mosome dosage can be applied to a maternal plasma sample without prior molec-

ular enrichment of cffDNA. This method directly assesses whether or not a

chromosome 21 locus is overrepresented when compared with a locus on a refer-

ence chromosome [77]. For a euploid pregnancy, the number of positive wells for

the two target loci would be approximately equal whereas for a trisomy 21 preg-

nancy, the number of positive wells for the chromosome 21 locus would be greater

than those for the reference chromosome.

Since the degree of overrepresentation depends on the cffDNA fraction in the

maternal plasma sample, scientists have estimated the number of molecules

required for reliable detection of fetal trisomy at different fetal fractions using

DNA mixtures and computer simulations [77]. From their simulations, they deter-

mined that a maternal plasma sample with a fetal fraction of 25 % would require the

analysis of approximately 7,680 DNA molecules to detect fetal trisomy (correct

classification in 97 % of cases) [77].

Initially, labor-intensive, manual partitioning of DNA samples into hundreds of

wells was required. However, the development of automated dPCR platforms, such

as the microfluidic dPCR chips, emulsion PCR and droplet dPCR, has allowed

dPCR to be performed in a high-throughput fashion, hence greatly increasingly its

feasibility for routine clinical applications.

The major limitation of using dPCR for fetal aneuploidy detection is that it is a

locus-specific method, meaning that only those plasma DNA fragments with a

specific locus targeted by the PCR primers would be analyzed (Fig. 3)

[78]. These fragments must also encompass the full amplicon, as only those that

allow the binding of both PCR primers will be amplified. This requirement implies

that most of the DNA fragments in a particular maternal plasma sample that are

derived from a potentially aneuploid chromosome would be ‘wasted’. As a conse-

quence and for illustration purposes, to capture the 7,680 target molecules neces-

sary for analyzing trisomy in a fetal fraction of 25 %, around 15 mL of maternal

plasma would be needed. Therefore, fetal aneuploidy detection using dPCR to

quantify one locus on a potentially aneuploid chromosome relative to another

locus on a non-aneuploid chromosome would typically require a large volume of

plasma sample.

MPS In contrast to dPCR, MPS does not require a DNA fragment to contain a

particular pair of primer-binding sites (Fig. 3), meaning that all plasma DNA

fragments could be counted. Therefore, it makes a more efficient use of the limited

amount of DNA molecules in the maternal plasma. In addition, MPS allows very

precise quantification as millions of plasma DNA molecules are analyzed in a

single run.

There are three major MPS-based methods developed for prenatal detection of

fetal chromosomal aneuploidy in maternal plasma, namely the whole genome

random sequencing approach, the chromosome-selective targeted sequencing

approach (targeted sequencing of nonpolymorphic loci on the chromosome of
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interest) and SNP-based targeted sequencing approach (targeted sequencing of

polymorphic loci on the chromosome of interest).

Whole Genome Approach

The whole genome sequencing approach entails the random sequencing of a

representative portion of the DNA molecules in maternal plasma. Each sequence

tag is aligned to the reference human genome to determine its chromosomal origin;

the number of sequence tags aligned to each chromosome is then counted (Fig. 4).

The fetal chromosome dosage can then be assessed in two different ways: (1) the

proportional representation of the at-risk chromosome can be determined and

compared with that of a group of euploid pregnancies [79]; (2) the counts of the

at-risk chromosome can be normalized with the counts of other chromosomes

expected to be disomic [80]. The robustness of these approaches for the noninvasive

detection of fetal T21 was first demonstrated in two initial proof-of-concept studies

[79, 81]. In a case report, Lun et al. [82] demonstrated that the whole genome

sequencing approach could similarly be applied for the detection of Down syn-

drome due to unbalanced Robertsonian translocation.

Scientists have used different statistical approaches to analyze data and report

the results. Most reported studies used a z-score which is defined as the number of

Fig. 3 Comparison between locus-specific and locus-independent methods for DNA quantifica-

tion. (a) When a locus-specific method is used, only those fragments that contain the complete

locus and allow the binding of both PCR primers will be amplified. (b) Alternatively, when a

locus-independent method is used, virtually all fragments originated from that chromosome could

be used. Therefore, with the same amount of plasma DNA input a locus-independent DNA

quantification method would be more precise as more molecules are being counted

(Figure adapted, with permission, from Chiu et al. [78]. Copyright, 2009; Elsevier)
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Fig. 4 Procedural framework for the whole genome random sequencing approach for the non-

invasive detection of fetal chromosomal aneuploidy. (a) cffDNA (thick red fragments) circulates
in maternal plasma as a minor population in a high background of maternal DNA (black
fragments). A sample containing a representative profile of DNA molecules in maternal plasma

is obtained. (b) As an illustration, one end of each plasma DNA molecule was sequenced for 36 bp

using massively parallel sequencing. The chromosomal origin of each 36-bp sequence was

identified through mapping to the human reference genome by bioinformatics analysis. (c) The

number of unique sequences mapped to each chromosome was counted and then (d) expressed as a

percentage of all unique sequences generated for the sample, termed % chrN for chromosome N.

(e) Z-scores for each chromosome and each test sample were calculated using the formula shown.

The z-score of a potentially aneuploid chromosome is expected to be higher for pregnancies with

an aneuploid fetus (cases E–H, green bars) than those without an aneuploid fetus (cases A–D, blue
bars) (Figure reproduced, with permission, from Chiu et al. [79]. Copyright, 2008; National

Academy of Sciences, U.S.A.)
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standard deviations away from the mean of a reference dataset [12, 79, 80]. In

studies using a z-score many have reported the results as either “positive” or

“negative” for trisomy [12, 79], with a number of other studies reporting an

additional category of “no call” [80], based on predefined cutoff values of the

z-score. On the other hand, one group of researchers used a binary hypothesis t-test

where one hypothetical model corresponds to a euploid fetus, while the other

corresponds to an aneuploid fetus. They then calculated a relative logarithmic

likelihood odds ratio between the binary hypotheses (named as the L-score) for

classification [83].

To increase throughput, plasma DNA molecules from different samples can be

labeled with unique tags such that multiple samples can be pooled together and

sequenced [10, 84, 85]. While most studies have used the Genome Analyzer or the

HiSeq sequencing platform from Illumina, researchers have also applied the whole

genome tag counting approach to other MPS platforms, such as the ABI Sequencing

by Oligonucleotide Ligation and Detection (SOLiD) platform [86] and the Ion

Torrent Personal Genome Machine (PGM) sequencer [87] (see also chapter “Geno

mic Approaches to the Analysis of Cell Free Nucleic Acids”).

The accuracy and precision of the whole genome sequencing approach to

diagnosing aneuploidy are affected by several factors. For cases with an aneuploid

fetus, the degree of quantitative perturbation would positively correlate with the

fetal fraction. A minimum fetal fraction (i.e. 4 %) is usually required to ensure that

there is a sufficient amount of cffDNA in the maternal plasma for precise quanti-

fication. Furthermore, the absolute number of DNA molecules analyzed would

influence the precision of the measurement. The latest studies performed sequenc-

ing 4–6 samples per lane on the Illumina HiSeq 2000 sequencer, corresponding to

20–25 million reads per case [84, 88].

Detecting Trisomy 18 and Trisomy 13 with MPS

Soon after the accurate detection of fetal trisomy 21 with MPS-based NIPT was

initially reported, the test was expanded to include the other common autosomal

aneuploidies on chromosomes 18 and 13 [84, 88, 89].

Indeed, the non-invasive prenatal detection of fetal trisomy 18 and trisomy

13 appears to be more challenging [89]. MPS technologies contain a GC bias,

meaning that the read coverage of different genomic regions can vary depending on

the genomic GC content [90]. The GC content affects the efficiency of the PCR

steps during sample preparation or analysis by MPS. The chromosomal GC content

may also partly account for the variation in precision of the MPS platforms in

measuring the proportional representation of different chromosomes

[81, 89]. While chromosome 21 has a GC content that is average relative to that

of all human chromosomes, both chromosomes 18 and 13 have relatively low GC

content when compared with chromosome 21 [81, 89].

To reduce GC-associated quantitative biases, bioinformatics algorithms have

been developed to adjust the sequencing read counts to the local genomic GC
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content [88, 89, 91]. Alternatively, one could also normalize the number of counts

of the potentially aneuploid chromosome with the counts of a reference chromo-

some with a similar GC content [80]. In fact, different sequencing platforms appear

to show different patterns of GC bias [81, 86]. For the Genome Analyzer from

Illumina, chromosomes with low GC contents are underrepresented while chromo-

somes with high GC contents are overrepresented [81]. For the SOLiD system from

ABI, the opposite pattern was observed [86]. This may be due to the different

sequencing chemistries of the two platforms: the Genome Analyzer uses sequenc-

ing-by-synthesis, whereas SOLiD uses sequencing-by-ligation. Even correcting for

the effects of the GC content and the sequencing platform with bioinformatics,

measurements of the genomic representations of chromosomes 18 and 13 still

appeared to be less precise than those of chromosome 21 on both platforms [86].

Since PCR is one of the processes known to introduce GC-associated quantita-

tive bias in the sequencing data, the use of single-molecule sequencing platforms,

which require no PCR amplification step during sample preparation and sequencing

[92], could potentially reduce the bias. Using a single-molecule sequencing plat-

form, the sequencing data show no GC bias and a more distinct separation between

trisomic and euploid samples occurs [93]. So far, they have accurately detected

trisomy 21 and trisomy 18, but not trisomy 13, with the use of the Helicos single-

molecule sequencing platform [93, 94]. It is speculated that factors other than just

GC content might influence the measurement precision of chromosome 13 [94].

Sex Chromosomal Aneuploidy

While early studies mainly focused on detecting fetal autosomal aneuploidies,

detection of sex chromosomal aneuploidies is also of clinical importance. The

incidence of sex chromosomal aneuploidies is estimated to be 1 in 500 live births.

Although patients with sex chromosomal aneuploidies generally have less severe

phenotypes compared with patients with autosomal aneuploidies, a proportion of

such subjects still suffer from severe morbidities. Common sex chromosomal

aneuploidies include the Klinefelter syndrome (47, XXY), 47, XYY syndrome

(47, XYY), triple X syndrome (47, XXX), and Turner syndrome (45, X).

In this regard, Bianchi et al. [84] developed a complex classification algorithm

for the detection of sex chromosomal aneuploidies based on the z-scores for both

chromosomes X and Y. However, testing for detecting sex chromosomal aneu-

ploidy appears to be not as sensitive as testing for autosomal aneuploidy. For

instance, with non-mosaic Turner syndrome (45, X), the detection rate was 75 %,

and the false-positive rate was 0.2 % (Table 1) [84].

On the other hand, Mazloom et al. [95] used a training cohort to establish various

cutoffs for a classification system to determine the copy number of the two sex

chromosomes (Fig. 5). In pregnancies with euploid male fetuses, the proportion of

X chromosome reads in plasma (containing both maternal and fetal X chromosome)

depends on the fetal fraction. As the fetal fraction in maternal plasma increases, the

proportional representation of chromosome Y increases, while the proportional
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representation of chromosome X decreases (Fig. 5). Therefore, for cases with a

putative male fetus, one needs to examine the proportional representations of both

chromosomes X and Y, and determine if they have fallen outside the confidence

interval for euploid male fetuses established with the training dataset. On the other

hand, for cases with a putative female fetus, one could determine the chromosome

X dosage by comparing against the pregnancies with euploid female fetuses

(Fig. 5). By using this algorithm, the detection rate for Turner syndrome, triple X

syndrome, Klinefelter syndrome and 47, XYY syndrome were 83 % (25/30), 83 %

(5/6), 85 % (11/13) and 75 % (3/4), respectively [95]. Liang et al. [96] used a similar

approach to detect sex chromosomal aneuploidy, but had fewer affected cases in the

study (Table 1).

Overall, these studies indicate that it is feasible to detect sex chromosomal

aneuploidy albeit with a lower accuracy than with the detection of autosomal

aneuploidy (Table 1). Nevertheless, to date, there are only a few studies on the

prenatal testing of fetal sex chromosomal aneuploidies (Table 1).

Several factors may contribute to the suboptimal performance of NIPT of sex

chromosomal aneuploidies. Firstly, the sequence similarity between parts of chro-

mosomes X and Y causes difficulty in mapping. Using current bioinformatics

algorithms, a small number of plasma DNA molecules from pregnancies with

female fetuses would align to the Y chromosome [79]. Secondly, copy number

analysis can typically only be performed on a small number of unique

Y-chromosome loci, only 2.2 % of the Y chromosome, leading to a large variation

in the representations of chromosome Y [95]. Lastly, mosaicism for sex chromo-

somal aneuploidies is common, so complicating the quantitative analysis of sex

chromosomes.

Fig. 5 The sex

chromosomal aneuploidy

classification system. The

x- and y-axes show the X

and Y chromosome

representations,

respectively. The grey areas
mark the regions with

non-reportable results for

sex chromosomal

aneuploidy (Figure adapted,

with permission, from

Mazloom

et al. [95]. Copyright, 2013;

John Wiley and Sons, Ltd.)
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Chromosome-Selective Approach

When one is only interested in quantifying a particular chromosome, such as

chromosome 21, for disease diagnosis, only a small fraction of the sequencing

data generated using the whole genome sequencing protocol is derived from that

chromosome. For example, chromosome 21 represents only 1.3 % of the entire

genome. A more efficient strategy is to selectively sequence genomic regions on the

chromosome of interest so that sequencing power is focused on genomic regions of

diagnostic interest. This would help to reduce the cost and increase the throughput.

In this regard, Sparks et al. [97] developed an assay called Digital ANalysis of

Selected Regions (DANSR) to specifically amplify non-polymorphic loci on chro-

mosomes 21 and 18. For each targeted locus, they used a set of three locus-specific

oligonucleotides and a pair of universal PCR primers for the amplification [97]. Ini-

tially, they targeted 384 non-polymorphic loci on chromosome 21 and on chromo-

some 18; subsequently, they expanded the DANSR assay to include 576 loci on

each chromosome.

In the same assay, a user of this approach would also simultaneously target SNP

loci on chromosomes not usually involved in an aneuploidy (chromosomes 1–12)

for the determination of the fetal fraction [98]. They have used an algorithm that

takes into account the fetal fraction when determining the risk of fetal trisomy in

each pregnancy [98].

This chromosome-selective sequencing approach has been stated to require

approximately one million mappable reads per sample, which appears to be less

than that required by the whole genome sequencing approach [97]. One disadvan-

tage of this approach is that other off-target chromosomal aneuploidies will not be

detected.

SNP-Based Approach

Liao et al. [99] reported an MPS-based approach to detect fetal aneuploidy by using

targeted enrichment and sequencing of SNP loci. They used an in-solution hybrid-

ization-based capture strategy to enrich 2,906 SNP loci on chromosomes 7, 13,

18 and 21, after which they sequenced the DNA by MPS [100]. They applied this

approach for the detection of trisomy 21 in this proof-of-concept study as follows:

first, they analyzed the informative SNPs in which the mother was homozygous and

the fetus was heterozygous and calculated the ratio between the fetal-specific alleles

and the shared alleles, the F-S ratio (F-SR) (Fig. 6). Then, by subsequently

comparing the F-SR between the target and the reference chromosomes, they

determined the fetal ploidy status and the parental origin of the extra chromosome

(Fig. 6). This approach is founded upon the observation that the original allelic ratio

of the targeted SNPs was maintained even after target enrichment [100]. However,

as 85 % of trisomy 21 cases are maternally derived, it should be noted that the

detection of maternally derived trisomy 21 is less robust than that of paternally
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derived trisomy 21 using this method. The difference in robustness is because the

perturbation in the allelic ratio in maternally derived trisomy 21 cases depends on

the fetal fraction in the maternal plasma (Fig. 6). Compared with the

non-polymorphic tag counting approach, this SNP-based approach requires paren-

tal genotype information and more sequencing reads if the fetal fraction in the

maternal plasma is low.

Zimmermann et al. [101] have evaluated a SNP-based MPS approach to detect

fetal aneuploidy. They used a PCR-based enrichment strategy, followed by MPS to

detect fetal aneuploidy in chromosomes 13, 18, 21, X and Y [101]. Initially, they

performed multiplex amplification of 11,000 SNP loci on chromosomes 13, 18,

21, X and Y in a single reaction [101]. Later, they increased the targeted SNP

number to 19,488, corresponding to over 3,000 SNPs per chromosome evaluated

[102]. For sequencing data analysis, they developed an algorithm that uses maternal

genotypes and recombination frequencies to generate billions of possible hypoth-

eses about the fetal genotypes. Based on the observed allelic distributions, their

algorithm determines the relative likelihood of each hypothesis and selects the

hypothesis with the maximum likelihood to infer the copy number for each of the

five analyzed chromosomes. In addition, a sample-specific calculated accuracy was

reported for each of the analyzed chromosomes.

The combination of this SNP-based method and the algorithm to detect aneu-

ploidy in chromosomes 13, 18, 21, X and Y was validated in a blinded study led by

an independent group [102].

Fig. 6 Principle of trisomy 21 detection by F-S ratio calculation. Assuming the fractional cffDNA

concentration in chrRef is f, the F-S ratio would be f/(2-f) on chrRef irrespective of the aneuploidy

status of the fetus. On the other hand, the F-S ratio on chr21 would be f/(2-f) if the mother was

carrying a euploid fetus, 2f/(2-f) if the mother was carrying a paternally-derived trisomy 21 fetus,

and f/2 if the mother is carrying a maternally-derived trisomy 21 fetus. Therefore, the FSR21Ref

would be 1 if the mother is carrying a euploid fetus, would become 2 if the mother is carrying a

paternally-derived trisomy 21 fetus, and would become (1-f/2) if the mother is carrying a

maternally-derived trisomy 21 fetus (Figure reproduced from Liao et al. [99])
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It is also possible to detect triploidy (the condition of having an additional

haploid set of maternal or paternal chromosomes) with this SNP-based method

[103]. In addition, it is also possible to detect uniparental disomy by using this

method.

6 Clinical Implementation

Existing prenatal screening tests for fetal aneuploidy use a combination of maternal

age, fetal nuchal translucency thickness and maternal serum β-human chorionic

gonadotropin (β-hCG) and pregnancy-associated plasma protein-A (PAPP-A) con-

centrations to assess the risk of fetal aneuploidy [2]. Currently, prenatal screening is

routinely offered to all pregnant women regardless of maternal age. These screen-

ing tests can achieve a detection rate of 90–95 % for fetal trisomies 21, 18 and

13, with a false-positive rate of 2.5–5 % [2]. Cases with a positive screening test

result require confirmation via invasive diagnostic testing.

Clinically, MPS-based non-invasive prenatal tests can be performed after

10 weeks of gestation with a turnaround time of 8–10 days [104]. Although a

number studies have demonstrated that it is feasible to simultaneously detect all

fetal whole chromosome aneuploidies in a single assay [96, 105], most clinical

validation studies have been focused on evaluating the performance of NIPT for

trisomies 21, 18 and 13 [10, 12, 83, 85, 88, 98, 106–109]. There are also a few

studies evaluating the performance for detecting sex chromosomal aneuploidies

[84, 102].

Among the three MPS-based approaches (see sections “Whole Genome

Approach”, “Detecting Trisomy 18 and Trisomy 13 with MPS”, “Sex Chromo-

somal Aneuploidy”, “Chromosome-Selective Approach”, “SNP-Based Approach”

above) whole genome random sequencing and chromosome-selective sequencing

have been more extensively validated (Table 2). The overall detection rates for

trisomy 21, trisomy 18 and trisomy 13 are 99.4 %, 97.4 % and 86.2 %, respectively.

While the detection of trisomy 21 and trisomy 18 were consistently more accurate

across different studies, the detection of trisomy 13 was comparatively less accurate

in both the whole-genome sequencing and chromosome-selective sequencing

approach (Table 2). Furthermore, the number of trisomy 13 cases studied is also

comparatively less.

Overall, the false-positive rates for trisomy 21, trisomy 18 and trisomy 13 are

0.1 %, 0.1 % and 0.4 %, respectively (Table 2). Thus, the introduction of maternal

plasma nucleic acid NIPT could possibly reduce the number of invasive tests that

would be performed. However, the false-positive rate associated with NIPT is still

at a clinically significant level; therefore, it could not yet replace invasive

diagnostic test.

In response to the results of these clinical validation studies, several professional

bodies and expert societies have published guidelines on the use of NIPT for fetal

aneuploidy. Currently, NIPT for aneuploidy is being recommended as an advanced
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second-tier screening test for pregnant women identified as high-risk by conven-

tional methods such as ultrasound scanning and maternal serum biochemistry.

Positive NIPT results still need to be confirmed by invasive testing as NIPT has a

small yet clinically significant false-positive rate.

Recently, results of a few studies on unselective general population screening

have become available [108, 110]. In a study using the chromosome-selective

approach to routinely screen a first trimester population [108], a false-positive

rate of 0.1 % in detecting trisomies 21 and 18 was reported, highlighting the

possibility of using this test for the general population. Despite this, there is still a

relative paucity on studies reporting evidence about the performance of the test in

the general population. Furthermore, the cost of MPS-based NIPT of Down syn-

drome is still too expensive for routine clinical implementation as a primary

screening test [111]. Therefore, whether NIPT via cffNAs in maternal plasma

would be implemented as a primary screening test would require more studies

with low-risk and average-risk women and also a substantial reduction in the cost of

sequencing.

7 Mosaicism

Mosaicism refers to the presence in an individual of two or more genetically

different cell lineages arising from the same zygote. Overall, the incidence of

fetal mosaicism is 0.15 % [112]. The presence of fetal mosaicism presents consid-

erable challenges to the detection of fetal aneuploidy as it reduces the effective fetal

fraction [113].

At present, only a few studies have reported the NIPT of mosaic cases

[84, 113]. The sensitivity of these maternal plasma-based MPS approaches to detect

fetal aneuploidy in cases with different levels of fetal mosaicism remains to be

determined. Furthermore, phenotypes of individuals with mosaic karyotypes can be

highly variable. The clinical significance of mosaicism depends on the proportion

and the tissue distribution of the abnormal cells. Thus, mosaicism poses a challenge

for genetic testing and counseling.

8 Aneuploidy Detection for Twin Pregnancies

Despite the robustness of MPS-based approaches for the non-invasive detection of

fetal aneuploidy from maternal plasma, most studies only assess the use of

MPS-based NIPT of fetal aneuploidy for singleton pregnancies. There are two

types of twins, namely identical and fraternal twins. Identical twins are monozy-

gotic (derived from the same fertilized egg) and therefore genetically identical;

fraternal twins are dizygotic (derived from two fertilized eggs) and therefore not

genetically identical. A number of groups have applied the same analytic algorithm
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used to detect fetal trisomies in singleton pregnancies to pregnancies with multiple

gestations [80, 114, 115]. In fact, a number of companies are now offering

sequencing-based NIPT for twin pregnancies.

As discussed previously, it is important to assess the fetal fraction in maternal

plasma to avoid possible false-negative detection due to insufficient cffDNA

content in a particular maternal plasma sample. In this respect, Canick et al.

[114] determined a combined fetal fraction and assumed that each twin fetus had

contributed sufficient cffDNA molecules for aneuploidy detection if the combined

fetal fraction exceeded the minimum requirement. However, this assumption might

not be valid in some cases. To tackle this problem, Qu et al. [116] proposed an

MPS-based method to non-invasively determine the zygosity of a twin pregnancy

and the fetal fraction for each fetus of a twin pregnancy. Genetic differences

between dizygotic twins would result in fluctuations in the apparent fetal fractions

across multiple genomic regions. This method has been applied to two discordant

dizygotic twin pregnancies (with one aneuploid fetus from each pair of dizygotic

twins) to assess the twin zygosity and to determine the fetal fraction contributed by

each twin fetus [117].

9 Abnormal NIPT Results

With more widespread use of plasma DNA-based NIPT, a number of reports have

described discordant results between NIPT and fetal metaphase karyotyping. At

least part of the discordant results might be attributed to the fact that circulating

DNA molecules in the maternal plasma originate from both the mother and the

placenta. As a consequence, NIPT results may not genuinely reflect the fetal

karyotype.

For instance, confined placental mosaicism (CPM), a condition where a second

cell lineage exists only in the placenta but not in the fetus, is one of the situations

that may lead to a discordant result [118, 119]. Overall, the incidence of CPM is

approximately 1 % [112]. While one-fifth of pregnancies with CPM show prenatal

or perinatal complications such as intrauterine growth retardation (IUGR) and

spontaneous fetal loss, most of them show a normal pregnancy outcome [120].

Impact of CPM on NIPT has been discussed in detail elsewhere [121].

On the other hand, NIPT by MPS of maternal plasma may sometimes reveal the

presence of maternal chromosomal abnormalities. In this regard, a case of an

abnormal NIPT result due to undiagnosed maternal mosaicism has been reported

[122]. To distinguish maternal mosaicism from true fetal mosaicism and CPM, one

may sequence the maternal buffy coat to confirm or exclude maternal mosaicism.

When a copy number aberration originates from the fetus, the degree of under- or

over-representation would be correlated with the fetal fraction. On the contrary, an

abnormally large degree of under- or over-representation may indicate maternal

chromosomal abnormalities instead.
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Abnormal NIPT results may also be attributed to a maternal malignancy.

Analogous to cffDNA in the maternal plasma, circulating tumour cfDNA is also

present in the plasma of cancer patients. In fact, cancer in pregnancy is not

uncommon; it complicates approximately 0.1 % of all pregnancies [123]. A case

of discordant NIPT results in a patient who was subsequently diagnosed with a

metastatic disease has been reported [124]. Another unusual case of discordant

NIPT results, where a double aneuploidy for chromosomes 13 and 18 were

detected, was consistent with a maternal malignancy diagnosed after delivery [125].

Therefore, one should always bear in mind when interpreting MPS-based NIPT

results that circulating DNA in maternal plasma is of both maternal and placental

origin.

10 Detection of Subchromosomal Aberrations

In light of the successful detection of fetal copy number changes involving a whole

chromosome, a number of groups have further expanded the diagnostic spectrum

of non-invasive plasma-based testing to subchromosomal copy number changes

[126–129]. Although such aberrations occur less frequently than aneuploidies, they

are associated with serious fetal conditions, such as developmental disabilities or

congenital anomalies.

Techniques commonly used for detecting subchromosomal aberrations include

metaphase cytogenetic analysis, chromosomal microarray analysis (CMA), fluo-

rescence in situ hybridization (FISH) and quantitative fluorescent PCR (QF-PCR).

Both metaphase karyotyping and CMA provide a genome-wide snapshot of all the

chromosomes of an individual, whereas FISH and QF-PCR allow for targeted

analyses of only one or a few regions of the entire genome. CMA offers higher

resolution (can resolve up to 100 kb) than metaphase karyotyping which typically

detects copy number variations (CNVs) of 5 Mb or greater. It has been demon-

strated that CMA can detect 2 % more clinically relevant CNVs when used with

pregnancies with standard indications for prenatal diagnosis (such as advanced

maternal age and positive prenatal screening result) and 6 % more when used

with an anomaly on ultrasound screening, respectively [130]. Several expert groups

have also recommended the use of CMA as a first-tier diagnostic test for individuals

with developmental disabilities or congenital anomalies [131, 132]. The major

disadvantage of metaphase karyotyping and CMA is that the fetal genetic material

for the tests is obtained through either amniocentesis or CVS that may pose a risk of

miscarriage.

In light of this, two studies have investigated the possibility of using MPS-based

analysis of maternal plasma to detect fetal subchromosomal copy number aberra-

tions [126, 127]. Peters et al. [127] were able to detect a 4.2 Mb paternally inherited

deletion on the fetal chromosome 12 in a maternal plasma sample. On the other

hand, Jensen et al. [126] were able to detect a 3 Mb deletion on the fetal chromo-

some 22 in two maternal plasma samples. Even though both studies performed
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whole fetal genome sequencing on the maternal plasma cffDNA, their statistical

analyses were solely focused on one or a small number of genomic regions.

Conversely, Srinivasan et al. [128] and Yu et al. [129] have attempted to detect

fetal subchromosomal copy number changes across the whole genome through

MPS of maternal plasma cffDNA using the random sequencing approach. The

two studies used different bioinformatics approaches to detect and classify CNVs,

but their underlying principles were similar. In fact, both of their analyses for

detecting subchromosomal CNVs were similar to that for detecting whole chromo-

some aneuploidy. To detect subchromosomal aberrations, the genome was divided

into non-overlapping bins of a fixed-size. By counting the number of plasma

cffDNA fragments aligned to each bin and comparing them with a reference (either

a different bin with a presumably normal copy number within the same sample or a

set of samples with a normal copy number for the same bin), it was possible to

deduce whether or not the copy number has changed from the normal.

While Srinivasan et al. [128] used a higher threshold to identify amplified or

deleted regions in the genome, Yu et al. [129] used the additional criterion of

requiring three consecutive bins outside the reference interval, all showing changes

in the same direction, to call a positive result.

Both studies demonstrated the detection of fetal de novo copy number changes

across the whole genome. In particular, Srinivasan et al. [128] detected a

microdeletion as small as 300 kb, which is similar to the genomic resolution

using CMA. The detection of subchromosomal aberrations requires a higher

depth of sequencing than the detection of whole-chromosome aneuploidies

(which typically requires 2.5–5 million reads). By using computer simulations,

Yu et al. [129] predicted that to achieve a diagnostic resolution of 2 Mb and 1 Mb

with a 99 % sensitivity, 240 million and 480 million plasma cfDNA molecules

would need to be analyzed. To achieve a diagnostic resolution of 100 kb, one would

need to analyze approximately one billion plasma cfDNA molecules [128].

Occasionally, metaphase karyotyping would reveal the presence of additional

material of unknown origin. Srinivasan et al. [128] have demonstrated that it is

possible to identify the chromosomal origin of the additional material by using

MPS. Similar to CMA, fetal de novo balanced rearrangements, such as balanced

translocation and inversion, cannot be detected with the whole-genome MPS-based

approach because there is no gain or loss of genetic material [128, 130].

At present, only a few proof-of-principle studies, involving a small number of

cases, have been reported [126–129]. These methods should be validated in large-

scale prospective studies with first or early second trimester samples. Nonetheless,

prenatal detection of fetal subchromosomal deletions and duplications through

MPS-based maternal plasma analysis is feasible. Its resolution appears to be able

to match that offered by CMA, and it has an additional advantage of being non-

invasive. However, an additional cost would be added to the current aneuploidy test

if subchromosomal CNVs are to be included as a higher sequencing depth is

required. Alternatively, this test can be offered only when an abnormal ultrasound

is indicated. In addition, the detection of CNVs of unknown clinical significance

poses a challenge for counselling and can cause unnecessary anxiety. Conversely, it
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may also be possible to target those clinically relevant pathogenic copy number

variants by targeted sequencing; however, this raises the question as to which

conditions should be tested.

11 Detection of Single-Gene Disorders

The global prevalence of monogenic diseases is approximately 1 in 100 newborns.

Examples of common monogenic disorders include thalassemia, sickle cell anemia,

cystic fibrosis and hemophilia. Pregnancies at high risk for monogenic diseases are

usually identified when there is a positive family history or when parents are

confirmed to be carriers through carrier screening programs. Sometimes, an abnor-

mal fetal ultrasound finding may also be an indication for genetic testing. A number

of fetal anomalies can be picked up by an ultrasound scan. However, a number of

prenatal features may be associated with multiple conditions, making definitive

diagnoses in these pregnancies challenging.

Initial efforts to achieve non-invasive prenatal diagnosis of monogenic diseases

focused on the qualitative detection of a paternally inherited mutation or a de novo
mutation that is absent from the maternal genome. The principle is the same as that

for detecting paternally inherited traits (i.e. the detection of chromosome Y

sequences in prenatal sex determination and the detection of RHD sequences in

RhD-negative women). For instance, if the father is affected by an autosomal

dominant disorder, one could determine whether or not the fetus has inherited the

paternal mutation either by directly detecting the mutation [133] or indirectly

detecting the polymorphic markers linked to the mutation. Different methods

have been used for the detection of paternally inherited base substitutions, inser-

tions and deletions that cause single-gene disorders [134]. In particular, the

PCR-based approach is commonly used and is relatively straightforward.

If the father and the mother carry different mutations for an autosomal recessive

condition, the detection of the paternal unique mutation in the maternal plasma

would indicate that the fetus has a 50 % chance of being affected. On the other

hand, the absence of the paternal mutation would exclude the fetus from being

affected by the recessive condition and manifesting the severe disease. Therefore,

invasive diagnosis can be avoided in these pregnancies. This exclusion strategy has

been applied to prenatal diagnosis of recessive conditions such as β-thalassemia

[135–137], congenital adrenal hyperplasia [136] and cystic fibrosis [138]. To

exclude the fetal inheritance of a recessive condition with confidence, it is crucial

to ascertain the presence of detectable cffDNA in the maternal plasma sample,

thereby avoiding false-negative results. Commonly used fetal markers include

Y-chromosome sequences (e.g. SRY and DYS14) for male pregnancies, a panel of

polymorphic short tandem repeats (STRs), SNPs or insertion/deletion markers, and

epigenetic markers (e.g. hypermethylated RASSF1A) [19]. The major limitation of

this exclusion approach for the prenatal diagnosis of recessive conditions is that it

cannot be applied if the father and mother are carrying the same mutation.
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In addition, whether or not the fetus will have inherited the maternal mutation is not

known.

To prenatally diagnose recessive conditions when the parents have the same

mutation, Lun et al. [139] introduced a strategy called Relative Mutation Dosage

(RMD). They took advantage of the analytic precision of dPCR that allows for the

discrete counting and hence precise quantification of plasma cfDNA molecules

[75, 77]. Briefly, they detected and counted the number of mutant and normal

alleles and determined the relative dosage of the two alleles in the maternal plasma.

If the mother is a heterozygous carrier, she would contribute the mutant and normal

alleles in a 1:1 ratio. There would be three possible scenarios: (1) the fetus has

inherited the mutant alleles from both parents and contributes additional mutant

alleles to the maternal plasma, resulting in an overrepresentation of the mutant

allele relative to the normal allele; (2) the fetus has inherited the normal alleles from

both parents, resulting in an overrepresentation of the normal allele in the maternal

plasma; and (3) the fetus has inherited one mutant and one normal allele from its

parents and contributes an equal amount of the mutant and normal alleles to the

maternal plasma, resulting in an allelic ratio of 1:1. This degree of allelic imbalance

positively correlates with the fetal fraction in the maternal plasma [139]. These

authors [139] used a statistical approach called the sequential probability ratio test

(SPRT) to determine whether or not a statistically significant allelic imbalance

exists. SPRT is a method that allows for the testing of a hypothesis while data

accumulate [71]. Each SPRT curve is case-specific, and its construction is based on

the fetal fraction and the experimentally derived average template concentration.

The RMD approach has been successfully applied to recessive conditions such as

thalassemia [139] and sickle-cell anemia [140].

Similarly, this approach could also be used to determine whether or not the fetus

has inherited the maternal mutation in a situation where the mother is heterozygous

for an autosomal dominant condition when the expected allelic ratio would be 1:1.

However, if the fetus has inherited the normal allele, the latter would be over-

represented in the maternal plasma.

Furthermore, this strategy could also be applied to X-linked diseases such as

hemophilia [141]. When a pregnant woman is a carrier of an X-linked mutation, her

male fetus would be at risk for the X-linked condition. Since a male fetus has only

one copy of chromosome X that must be inherited from the mother, it would have a

50 % chance of inheriting the mutation. As a consequence, if the fetus has inherited

the mutant allele from the mother, the mutant allele would be over-represented in

the maternal plasma. On the other hand, if the fetus has inherited the normal allele

from the mother, the normal allele would be over-represented.

Undoubtedly, the use of dPCR allows for the precise quantitative analysis of

allelic imbalance in maternal plasma. Together with the RMD approach, and

despite the interference of a large background of maternal DNA, it is possible to

detect a disease-causing mutation that is also present in the maternal genome that

the fetus has inherited from the mother in the maternal plasma. Nonetheless, there

are several limitations to the use of dPCR for the diagnosis of monogenic diseases.

Technically, a separate set of probes specific for the mutant and wild-type alleles is
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required for each mutation. Clinically, prior knowledge about the specific mutation

involved in each family is required.

12 Decoding the Fetal Genome

After the development of targeted assays for monogenic diseases, the next question

is whether or not it is possible to screen, non-invasively, the entire fetal genome for

genetic diseases. To achieve this, the entire fetal genome sequence would need to be

decoded from the circulating cfDNA in the maternal plasma. So far, there are four

studies demonstrating the recovery of the entire fetal genome through deep

sequencing of maternal plasma cfDNA (Table 3) [27, 142–144]. Despite differ-

ences in some key technical details (Table 3), the general principle for constructing

a fetal genetic map from maternal plasma sequencing data is similar across different

studies:

Firstly, parental genotypes at each locus are determined. This step is crucial as it

provides information about the possible fetal genotypes at each locus. Parental

genotypes are determined by either array-based SNP-genotyping or whole

genome sequencing of parental DNA. While array-based SNP-genotyping

restricts the analysis to the more common SNPs on the array, whole genome

sequencing could potentially reveal the genotypes in most of the positions in the

parental genomes.

Subsequently, each genomic position is assigned to one of the following five

categories, according to the parental genotypes at the corresponding site (Table 4).

Sites with different combinations of parental genotypes require different strategies

for inferring the inheritance of the fetus (Table 4). For instance, sites where both

parents are homozygous either for the same or a different allele, the fetal inheri-

tance can be inferred directly. For the remaining sites where one or both parents are

heterozygous, the fetal inheritance would need to be deduced from the maternal

plasma cfDNA sequencing data. The five categories of polymorphic sites together

with the strategy needed for inferring fetal inheritance for each category are as

follows:

(i) For sites where both parents are homozygous for the same allele, the fetus will

be homozygous for the parental allele, a category accounting for >99.9 % of

sites in the genome [145].

(ii) For sites where the parents are homozygous for different alleles, the fetus

would be an obligate heterozygote. This category accounts for <0.03 % of

sites in the genome [145].

(iii) The paternal inheritance of the fetus at sites where the father is heterozygous

and mother is homozygous can be deduced by detecting the paternal-specific

allele at each of these sites. The underlying principle is the same as that for
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fetal sex determination through detecting Y chromosome sequences in the

maternal plasma. If the paternal-specific allele is not detected, it would imply

that the opposite allele has been transmitted. More specifically, if the paternal-

specific allele is transmitted, sequence reads containing the paternal-specific

allele would contribute to half of the fetal-derived reads at this locus, i.e., half

of the fetal cffDNA fraction. Therefore, the accuracy of this approach for

determining paternal inheritance at these sites is dependent on the fetal

fraction in maternal plasma, as well as the sequencing depth.

(iv) In theory, the maternal inheritance of the fetus at sites where the mother is

heterozygous and father is homozygous could be deduced by determining if

there is an allelic imbalance in the maternal plasma on a site-by-site basis,

which is conceptually similar to the RMD approach described in the previous

Table 3 Comparison of different fetal genome recovery approaches used in the four studies

Lo et al. [27] Kitzman et al. [144] Fan et al. [143] Chen et al. [142]

Samples Mother:

plasma,

whole blood

Mother: plasma,

whole blood

Mother: plasma,

whole blood

Mother: plasma,

whole blood

Father: plasma,

whole blood

Father: saliva Father: plasma,

whole blood

CVS Four grandparents:

saliva

Sequencing

depth of

maternal

plasma

DNA

65� 78� 52.7� 44�

Genotyping Microarray-

based SNP

genotyping

of maternal

and paternal

DNA

Sequencing of

maternal (32�)

and paternal

DNA (39�)

Microarray-based

SNP genotyping

of maternal DNA

Sequencing of

maternal (20�)

and paternal

DNA (20�);

microarray-based

SNP genotyping

of grandparents’

DNA

Haplotyping Maternal haplo-

type

deduced

from CVS

(obtained by

invasive

procedure)

Whole-genome

experimental

phasing of

maternal chro-

mosomes: use

of clone pool

dilution

sequencing

Whole-genome

experimental

phasing of

maternal chro-

mosomes: use of

an automatable

microfluidics

device to sepa-

rate chromo-

somes from a

single cell in

metaphase,

followed by SNP

genotyping

Computational phas-

ing of both

maternal and

paternal chromo-

somes: use of

trios and popula-

tion haplotype

frequency to

deduce
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section. However, this approach would require several thousand fold coverage

to accurately determine the maternal inheritance at each maternal heterozy-

gous site, and genome-wide sequencing to such depth is impractical at present.

To solve this problem, Lo et al. [27] introduced an analytical strategy called

Relative Haplotype DOsage (RHDO). Instead of deducing the maternal inher-

itance of the fetus at an individual SNP site, the RHDO approach determines

the fetal inheritance of the maternal haplotype, which is a series of

neighbouring alleles on a single chromosome of a homologous pair that are

inherited together (Fig. 7). To achieve this, heterozygous sites in the maternal

genome need to be phased into a series of haplotype blocks (to identify which

alleles of a series of heterozygous sites are present on each of the two maternal

haplotypes). These SNPs are then classified into two types, namely α and β,
which are analyzed separately. When classifying the fetal inheritance of the

maternal haplotype, the paternal genotype information on the maternal het-

erozygous sites is also needed. This method of combining the counts from

dozens to hundreds of maternal heterozygous sites into a haplotype block

allows the maternal inheritance of the fetus to be deduced with a lower depth

of coverage.

(v) The deduction of the paternal and maternal inheritance of a fetus at sites where

both parents are heterozygous is more complex because there are three

possible fetal genotypes at these sites (Table 4). To resolve the inheritance

at these sites, haplotype information from both the mother and the father

would be required. The inherited paternal haplotype could be deduced using

a tagging SNP (a SNP that is homozygous in the mother and heterozygous in

the father on the haplotype blocks). Inheritance of the tagging SNP at a

specific allele would represent the inheritance of the corresponding haplotype,

and the paternal inheritance at other sites on the same haplotype could then be

inferred. After knowing the paternal inheritance at these sites, maternal inher-

itance could be deduced by performing RHDO analysis.

In addition to the inherited component, a complete fetal genetic map should also

include fetal de novomutations which are newly arisen mutations in the maternal or

paternal germ line that do not exist in the somatic cells of the parents. It is estimated

that the number of de novo mutations in a fetus is approximately 50–100 [146]. In

this regard, Kitzman et al. [144] attempted to detect fetal de novo mutations

noninvasively. Ideally, fetal de novo mutations would be variants detected in the

maternal plasma that are absent from the parental genomes. However, current

sequencing technologies are far from perfect with errors being introduced during

the sequencing process, and these sequencing errors are inherently indistinguish-

able from true de novo mutations. Despite their efforts to filter the noise (sequenc-

ing errors) at the expense of the sensitivity, they came up with thousands of

candidate de novo mutations <1 % of which were indeed true de novo mutations.

Therefore, the non-invasive detection of fetal de novo mutations remains a

challenge at present, requiring further development.
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Fig. 7 Procedural steps for the determination of maternal inheritance (a) Heterozygous sites in the

maternal genome are phased into a series of haplotype blocks. (b) These SNPs are then classified

as either type α or β SNPs based on the paternal genotypes at the corresponding sites. Type α SNPs

are those for which paternal alleles are identical to the alleles on the maternal Hap I whereas type β
SNPs are those for which paternal alleles are identical to the alleles on the maternal Hap II. (c)

These two types of SNPs are analyzed separately. For type α SNPs, alleles on Hap I would be

overrepresented if the fetus has inherited Hap I. On the other hand, alleles on Hap I and Hap II

would be equally represented if the fetus has inherited Hap II. On the contrary, for type β SNPs,

alleles on Hap II would be overrepresented if the fetus has inherited Hap II whereas alleles on Hap

I and Hap II would be equally represented if the fetus has inherited Hap I
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The accuracy and completeness of the fetal genetic map could be affected by a

number of factors. Firstly, fetal fraction and maternal plasma sequencing depth may

affect the accuracy of fetal genotype deduction. For instance, as the fetal fraction

decreases, a higher depth of maternal plasma cfDNA sequencing would be needed

to infer the fetal genotypes at a predefined level of accuracy. Secondly, the length of

the phased haplotype block may affect the precision of RHDO analysis. A longer

haplotype block would contain more heterozygous sites for haplotype inference.

Finally, the completeness of haplotype phasing (fraction of heterozygous sites

phased) would affect the resolution of the fetal genetic map. In this regard, a

number of experimental and computational haplotype phasing methods are cur-

rently available [147]. However, all of the currently available phasing methods are

not perfect. In this respect, Browning and Browning [147] have provided a com-

prehensive review of the haplotype phasing methods that are available, discussing

the merits and demerits of each approach and the practical aspects for their

application.

Maternal plasma DNA sequencing for fetal genome scanning was used to

determine if a fetus had inherited β-thalassemia mutations from its parents, carriers

for different β-thalassemia mutations [27]. Nonetheless, this fetal genome-wide

scanning approach for detecting fetal genetic disorders is relatively expensive due

to the high cost associated with the deep sequencing of maternal plasma DNA. In

addition, large amounts of data are generated, which require complex data analysis

and interpretation.

Recently, the use of targeted MPS of maternal plasma cfDNA for the prenatal

diagnosis of β-thalassemia has been reported [148]. It has been demonstrated that

one could perform RHDO analysis with target-enriched MPS data. Specifically,

Lam et al. [148] determined if the fetus had inherited the haplotype blocks

containing the mutant allele from its parents. By using targeted sequencing,

sequencing and analysis are targeted to genomic regions of interest. It is also

possible to target multiple, clinically relevant, genomic regions in the same assay.

As a consequence, it would be more cost-effective to use targeted MPS for the

prenatal diagnosis of monogenic diseases.

Table 4 The five possible combinations of maternal and paternal genotypes

SNP category Maternal genotype Paternal genotype Possible fetal genotypes

1 AA AA AA

2 AA CC AC

3 AA AC AA, AC

4 AC AA AA, AC

5 AC AC AA, AC, AC
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13 Conclusion

13.1 The Present

The discovery of circulating cffNAs in maternal plasma and serum has revolution-

ized prenatal genetic diagnosis and testing. Prior to the availability of NIPT, the

potential loss of a normal fetus due to the inherent risk associated with invasive

procedures has deterred some pregnant women from receiving prenatal testing.

Now, with NIPT made only by a simple blood draw, more pregnant women may

choose to undergo prenatal testing [149]. The main advantages of NIPT are that

(1) it can reduce the number of invasive tests performed [149], thus reducing the

number of unnecessary miscarriages caused by invasive procedures, and (2) it can

be performed earlier in pregnancy than can the current tests. Having the test earlier

in pregnancy, possibly at around the tenth week of gestation, may give pregnant

women more time to consider their options, such as whether to continue or

terminate the pregnancy and whether to receive further testing.

In this chapter, the general approaches for some of the possible applications of

cffNAs have been reviewed, including fetal sexing for sex-linked disorders and

congenital adrenal hyperplasia, fetal rhesus blood group genotyping for guiding

management in RhD-negative pregnant women, fetal chromosomal aneuploidy and

subchromosomal CNV detection and fetal monogenic disease detection. Some of

these applications – fetal sexing, fetal RhD genotyping and fetal aneuploidy

detection – have been translated into clinical practice. In particular, the successful

demonstration of the use of MPS for fetal aneuploidy detection was rapidly

followed by clinical validation and commercialization. Lastly, it also worth men-

tioning that the rapid development in the field has been accompanied by growing

concerns of the ethical, legal, and social implications of NIPT (see chapter

“Societal Aspects: Ethics”).

13.2 The Future

While most of the current applications of cffNAs have been based on circulating

cffDNA, researches in the area of circulating cffRNA are less well-established. The

advent of MPS for cffRNA (RNA-seq), given its high sensitivity and high through-

put, may change this landscape by allowing for the genome-wide expression

profiling of the placenta through sequencing of the cffRNA isolated from the

maternal plasma. On the other hand, non-coding RNAs, such as miRNA and

large intergenic non-coding RNA (lincRNA), have also aroused great interest in

the scientific community in the recent years because of their regulatory role in gene

expression (see Sect. 3.2).

In a recent proof-of-concept study, scientists have demonstrated the use of

genome-wide bisulfite sequencing of the maternal plasma DNA for analyzing the
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fetal and placental methylomes [24]. In the same study, they have also demon-

strated the feasibility of this approach for the detection of fetal trisomy 21. This

approach to assessing the fetal and placental DNA methylation levels could be used

for other pregnancy-related disorders, notably for those known to have altered

epigenetic profiles, and for biomarker discovery.

Besides prenatal genetic testing, another possible prenatal application of cffNA

analysis is the prediction and monitoring of pregnancy-associated conditions such

as preeclampsia and preterm delivery. For instance, it has been reported that women

with preeclampsia have increased cffDNA concentrations compared with normal

pregnancy controls [150–153]. Some evidence suggested that this increase might

occur before the onset of preeclampsia [154] and that the degree of increase

correlates with the severity of the disease [150, 152, 153]. However, due to a

large inter-individual variability in cffDNA concentrations (which may be due to

factors such as maternal weight and ethnicity), cffDNA levels show much overlap

between women who subsequently developed preeclampsia and those who do not.

Similarly, it has been reported that some cffmRNAs, such as CRH, PLAC1 and

selectin-P, showed increased concentrations in preeclamptic pregnancies compared

with controls [155, 156]. Nonetheless, cffNAs may be used in combination with

existing biochemical and sonographic markers to screen for at-risk pregnancies, and

to monitor preeclampsia.

Besides preeclampsia, a number of pregnancy-related disorders are also associ-

ated with abnormal fetal DNA concentrations in the maternal plasma. These

include preterm delivery [157–159], hyperemesis gravidarum [160], invasive pla-

centation [161] and fetal growth restriction [162]. Future research in these areas

might expand the use of cffNAs to disease prediction and monitoring.

To conclude, research on circulating cffNAs in maternal plasma and serum is a

rapidly developing and exciting area. One could envision that the use of cffNAs

could likely play an increasingly important role in prenatal care.
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Circulating Nucleic Acids and Diabetes

Mellitus

Asif Butt and Ramasamyiyer Swaminathan

Abstract Diabetes, which is a major health problem throughout the world is

associated with increased mortality and morbidity. Early detection of those at risk

and early detection of complications will help to reduce the adverse consequences.

Current methods used for early detection of DM and its complications either have

limitations or are expensive. Circulating miRNA and mRNA offer an exciting new

approach to the diagnosis of diabetes and its complications. Several recent studies

have reported that this approach is feasible. For example, mRNA for retinal specific

proteins was reported to give good discrimination between different grades of

diabetic retinopathy. In this chapter the use of miRNA and mRNA in diabetes

and its complications is discussed.

Keywords Diabetes mellitus • Circulating DNA/mRNA/microRNA • Diabetic

retinopathy • Diabetic nephropathy • Diabetic neuropathy • Macrovascular compli-

cations • Predictive, preventive and personalized medicine

1 Introduction

Diabetes mellitus (DM) remains one of the major global health concerns today

[1]. It has been estimated that nearly 400 million people suffer form DM and the

incidence is increasing rapidly both in the developed as well as in the developing

countries. It is increasing in children as well as in adults due to changes in lifestyle,

reduced physical activity and obesity as well as due to an aging population. By 2030

the number of people with diabetes is estimated to increase to 552million [1, 2]. Dia-

betes is associated with micro and macrovascular complications. Microvascular

complications include retinopathy, nephropathy and neuropathy and macrovascular
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complications include cardiovascular disease, stroke and peripheral vascular dis-

ease. These complications are often present at the time of diagnosis.

There are two main types of diabetes mellitus: Type 1 (T1DM) and Type

2 (T2DM). T1DM accounts for 5–8 % of all cases of diabetes mellitus and generally

develops during childhood or in young adults [3]. T1DM is an autoimmune disorder

where there is destruction of the insulin-producing β-cells. During this process,

leucocytes infiltrate the pancreatic islets and secrete pro-inflammatory cytokines

that help to recruit cytotoxic T lymphocytes causing β-cell dysfunction and death

[4]. The net result is a progressive destruction of β-cells leading to severe or

complete insulin deficiency.

T2DM accounts for 92–95 % of all diabetic cases and is characterized by insulin

resistance in peripheral tissues including skeletal muscle, liver and adipose tissue as

well as failure of pancreatic β-cells to secrete adequate amounts of insulin to

maintain blood glucose concentration. The development of T2DM is closely linked

to genetic, environmental and/or lifestyle factors, such as lack of exercise and

obesity. When insulin resistance develops in the early stages, pancreatic β-cells
compensate by increasing insulin secretion. However, in susceptible individuals the

β-cells are unable to maintain this increased demand for insulin, leading to chronic

hyperglycemia and T2DM [5]. Diabetes and its complication cause increased

mortality and morbidity and the economic cost of diabetes is high [6]. Mortality

and morbidity due to DM could be reduced if treatment is implemented early in the

course of the disease. In order to do this good biomarkers are necessary to detect

those who are at risk of DM, diagnose DM early and detect its associated

complications.

In this review, a brief account of the role of miRNA in the pathogenesis of the

disease is followed by an account of the role of cfNAs in the diagnosis and

management of DM.

1.1 Pathogenesis of Diabetes and miRNA

A well-defined set of miRNAs are expressed in pancreatic β-cells and insulin

sensitive tissues. Most of these miRNAs are not cell-specific and are distributed

widely in many tissues, the one exception being miR-375 that is expressed in the

pancreas to a greater extent and regulates the section of insulin. It is also involved in

the increase in β-cell mass in response to insulin resistance [7, 8]. In patients with

T1DM and T2DM, the expression profile of miRNA in the β-cell and in insulin

sensitive tissues is altered [9–11]. In an animal model of T1DM, the NOD mouse,

several miRNAs, including miR-21, miR-34a, miR-29 and miR-146a, are increased

in the pre-diabetic state [12, 13]. Similar alterations in miRNA expression have

been described in the islets of animal models of T2DM, namely ob/ob and db/db
mice [14, 15]. The expression of miR-29, miR-34a, miR-802 miR-143, miR-107

and miR-103 are also increased in insulin sensitive tissues in these mouse models

indicating that they may contribute to insulin resistance [16, 17]. In the skeletal
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muscle of patients with T2DM, expression of miR-143 is up regulated and that of

miR-206 and miR-133a, two muscle specific miRNAs, are down regulated [18]. It

is worth noting that in patients with impaired glucose tolerance some of these

miRNAs are already down regulated [18]. In addition expression of miRNAs in

tissues affected by DM namely, blood vessels, retina and kidney are also altered

[11, 19, 20].

miRNA has also been implicated in diabetic complications. In an experimental

model of diabetic nephropathy miR-192, miR-200b/c, miR-216a and miR217 are

up-regulated [21–24]. In a recent review Kato et al. [24] concluded that miR-192 is

a key regulator of events leading to diabetic nephropathy. In diabetic retinopathy

up-regulation of miR-155, miR-132 and miR-21 have been reported [25]. Similarly

alterations in several miRNAs have been reported in diabetic cardiovascular com-

plications. A summary of the possible role of miRNAs in diabetic complications is

shown in Figs. 1 and 2.

In addition to the regulation of gene expression with in the cells, miRNAs are

found in extracellular fluids being carried in exosomes or in HDL particles. They

can be readily transferred into cells and it has been suggested that extracellular

miRNAmay act as signaling molecules between cells e.g. between endothelial cells

and vascular smooth muscle cells ([27, 28]; see also chapter “The Biology of

CNAPS”).

1.2 Circulating Nucleic Acids as Biomarkers

cfNAs (cfDNA, cfmRNA and cfmiRNA) have been reported as potential bio-

markers in the diagnosis of DM as well as in the detection of diabetic complica-

tions. Table 1 gives a summary of the potential of cfNAs that have been suggested

as being useful in the diagnosis and management of diabetes and its complications.

2 Identification of the at Risk Population

2.1 Type 1 DM

Clinical T1DM develops when more than 80–90 % of the pancreatic β-cells are

destroyed by the immune response [41]. This may take months or even years. The

interval between the start of the immune reaction destroying the β-cell to clinical

presentation is a useful period to identify and attempt to treat these subjects with

immune modulating therapy. Such therapy helps to stop the progression and

thereby preserve β-cell mass and delay the clinical onset of T1DM. Therefore, it

is important to identify this group of patients as early as possible in order to initiate

therapy. Auto-antibodies against islet cells, insulin, tyrosine phosphatase IA-2 and

IA-2β, glutamate decarboxylase and zinc transporter are some of the useful
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biomarkers to identify individuals at risk of developing T1DM [41, 42]. However,

these are not useful to start treatment early. Furthermore, not all subjects with

antibodies go on to develop clinical DM and they are not useful to monitor immune

modifying therapy as auto-antibodies do not disappear quickly from the circulation

[42]. These limitations have prompted attempts to find/develop new biomarkers

for T1DM.

It has been suggested that miRNAs may be useful biomarkers for the prediction

of β-cell destruction as well as to assess residual β-cell function. In one study,

Nielsen et al. [35] compared newly diagnosed patients with T1DM with an

age-matched control group. They identified several miRNAs (miR-24, miR-25,

miR-26a, miR-27a, miR-27b, miR-29a, miR-30a-5p, miR-148a, miR-152,

Fig. 1 Mechanism of diabetic complications (Adapted from Kato et al. [26])

Fig. 2 A summary of possible miRNA in the pathogenesis of diabetic complications (Adapted

from Kato et al. [26])
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miR-181a, miR-200a and miR-210) that were different in TIDM compared to the

control group. Previous studies have shown that some of these miRNAs are

involved in the regulation of apoptosis and β-cell function [35]. In addition, these

workers found that residual β-cell function (assessed by the conventional test –

levels of C-peptide) correlated with the concentration of miR-25 in circulation.

Another study, [65] compared the profile of circulating miRNAs in newly

diagnosed patients with T1DM with a control group. They detected 206 miRNAs

in the serum and of these, 64 were found to be differently expressed in the patients

with T1DM including miR-31, miR-146a, miR-155, miR-181a and miR-199a,

miR-9 and miR-34a. miR-375, which is expressed abundantly in the islets of

Langerhans [36], has been suggested as a possible marker to predict the develop-

ment of T1DM in animal models. In streptozocin induced diabetic mice, circulating

levels of this miRNA increased in association with β-cell destruction. In NODmice,

Table 1 Summary of circulating miRNA changes associated with diabetes mellitus

Author Groups Up-regulated miRNA

Down-regulated

miRNA #
Karolina

et al. [29]

T2DM &

control

144,150,192,29a, 320 146a,182,30d

Karolina

et al. [30]

Metabolic

syndrome

150,192,27a,320a, 375

Kong et al. [31] T2DM, IFG 9,29a,30d,34a,124, 146a, 375

Zametaki

et al. [32]

T2DM 28-3p 20b,21,24,15a,

126,191,197,223,

320,486

Heneghan

et al. [33]

Obese & nor-

mal weight

122,143 17-5p,132,34a,99a,

145,195

Ortega

et al. [34]

Morbid obesity &

controls

140-5p,142-3p,222 532-5p,125b,130b,

221,15a,423-5p,

520-c-3p

Bajomo

et al. (2013),

unpublished

data

Obese &

control

17-5p

Neilson

et al. [35]

T1DM 24,25,26a,27a,27b,29a,

30a-5p,148a,152,

181a,200a,210

Erener

et al. [36]

T1DM mouse

model

375

Sebastiani [37] T1DM 31,349,146a,155,181a,199a

Salas-Perez

et al. [38]

T1DM 21a,93

Sebastiani

et al. [39]

326

Complications

Zampataki

et al. [32]

T2DM miR-126 associated with

arterial disease

Caporali

et al. [40]

miR-16,21,210 &638 corre-

lated with GFR
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the plasma concentration of miR-375 was higher before the onset of T1DM [36] but

decreased rapidly within a week.

Salas-Perez et al. [38] reported that expression of miR-21a and miR-93 in

circulating mononuclear cells was lower in patients with T1DM than that in healthy

controls. They also observed that if mononuclear cells were incubated with glucose

(25 mmol L�1) the expression of miR-21a, but not that of miR-93, was reduced

showing that hyperglycemia may have been responsible for the reduction in

miR-21a observed in T1DM patients. Another study, [39] found miR-326 expres-

sion in circulating lymphocytes to be higher in patients with T1DM and that this

was related to the autoimmune reaction. These studies indicate that miRNA in

serum or blood could be used to monitor the autoimmune response in T1DM.

In addition to miRNA, methylated DNA has been shown to be useful in the

detection of β-cell destruction [43]. These workers developed a specific assay for

DNA methylation and found that circulating levels of demethylated Ins 1 DNA in

an experimental model of T1DM was increased. In addition, they showed increased

levels of demethylated DNA for Ins1 in newly diagnosed T1DM when compared to

age-matched controls. These authors suggest that methylation-specific PCR could

be useful in detecting β-cell death in subjects who are at risk of developing T1DM.

In an in vitro study, Rani et al. [44] demonstrated that a number of β-cell gene
transcripts (Pdx1, Egr1 and Chgb) could be demonstrated in the culture medium

and that the amount of these reflects the β-cell mass. This approach could be used to

assess the remaining β-cell function in T1DM prone subjects.

2.2 Type 2 DM

T2DM is a heterogeneous metabolic disorder as a result of interaction between

genetic factors and environmental/life style factors. One of the important life style

factor predisposing to T2DM is obesity, especially central or abdominal obesity.

Therefore, methods identifying those at risk of developing DM from the large

number of obese subjects is important. At present, such methods to identify these

subjects are either not very sensitive or are expensive. Several studies have looked

at cfNAs as potential markers. Heneghan et al. [33] demonstrated differential

expression of miRNAs in the omental (abdominal) fat compared to that in the

subcutaneous fat. In addition, they showed that these differences in miRNA expres-

sion could be demonstrated also in the circulation. Circulating levels of miR-122

and miR-143 were increased while miR-132 and miR-349 were lower in obese

subjects with increased omental fat. Bajomo et al. have recently shown that

circulating levels of miR17-5p was 21.3 folds higher in obese compared to normal

weight subjects. In subjects with a history of cardiovascular disease, the expression

of miR17-5 was 39.1 fold greater than in those who were free from cardiovascular

disease. Circulating levels of miR17-5p also correlated significantly with age

(r¼ 0.3458, p< 0.05) and waist circumference (r¼ 0.3430, p< 0.05) (Bajomo

et al. 2013, unpublished observations).
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In a recent study, Ortega et al. [34] analyzed plasma miRNA in morbidly obese

individuals before and after weight loss and compared it with that in normal weight

subjects. In morbidly obese subjects miR-140-5p, miR-142-3p and miR-222 were

higher while that of miR-532-5p, miR-125b, miR-130b, miR-221, miR-15a,

miR-423-5p, and miR-520c-3p were lower. Using discriminant function analysis

they found that miR-15a, miR-520c-3p, and miR-423-5p were specific for morbid

obesity and had a diagnostic accuracy of 93.5 %. After bariatric surgery, plasma

miR-140-5p, miR122, miR-193-5p and miR-16-1 decreased and miR-221 and

miR-199-3p increased. This was not seen after diet induced weight loss. These

studies permit the possibility that plasma mRNA could be a useful biomarker for

the risk assessment of obese subjects. Further longitudinal studies are required to

examine if plasma miRNA could identify those at risk of developing DM.

Metabolic syndrome is a cluster of related biochemical and anthropometric

features. There are various definitions of this syndrome [45]. However, it is well

accepted that subjects with this syndrome are predisposed to develop T2DM.

Various clinical and laboratory tests have been described to diagnose this syndrome

[50]. Karolina et al. [30] examined the plasma miRNA profile of subjects with this

syndrome and compared this with that from healthy subjects. They identified

several miRNAs (miR-23a, miR-27a, miR-32a, miR-130a and miR-195, miR-197

and miR-509a) that were differentially expressed in subjects with this syndrome as

compared to healthy individuals. This study highlights that plasma miRNA may be

a useful biomarker of metabolic syndrome especially for those at risk of

developing T2DM.

2.3 Diagnosis of DM

Although DM is a well recognized condition there is still controversy and discus-

sion about the best test to diagnose DM. The current recommendation for diagnos-

ing DM is based on fasting blood glucose, 2 h post prandial blood glucose or

glycated hemoglobin (HbA1c). The cut off value of each of these tests to diagnose

DM is based on the risk of developing complications. As plasma glucose is a

continuous variable, the cut off value used is arbitrary and arrived as a consensus.

These issues related to the diagnosis of DM have been recently discussed [46]. It is

notable that the groups of people identified by these different tests are not identical.

A significant number of subjects identified by one criterion is not picked up by the

other tests [46]. For these and other limitations none of these tests is currently

recommended as the preferred test [46]. Furthermore, large numbers of subjects

remain undiagnosed [47] and up to 25 % of subjects have established complications

by the time of diagnosis [48]. These issues have prompted the search for alternative

diagnostic tests for DM and the pre-diabetic state. For example, leucocyte

O-GlcNAcylation has been suggested as a possible biomarker for the early

detection of T2DM [49]. Others have examined cfNAs as potential biomarkers.

Kong et al. [31] measured seven miRNAs in serum (miR-9, miR-29a, miR-30d,
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miR-34a, miR-124a, miR-146a and miR-375) as potential biomarkers of T2DM.

These miRNAs were measured in patients with newly diagnosed T2DM, subjects

either with impaired glucose tolerance or impaired fasting glucose (pre-diabetic

state) or individuals who are susceptible for DM but with normal glycemia

(those with family history and/or obesity). They found that in T2DM all of

the above miRNAs were up regulated of which five were up- regulated in the

pre-diabetic state.

Zampetaki et al. [32] analyzed the plasma miRNA profile of a large group of

T2DM and healthy controls in a longitudinal follow-up study. They observed lower

plasma miRNA (miR20b, miR21, miR24, miR15a, miR126, miR191, miR197,

miR223, miR320 and miR486) and a higher miR-28-3p in T2DM. Importantly,

these changes in plasma miRNA were seen before the diagnosis of

DM. Furthermore, they identified miR-126 as a potential marker of endothelial

function. These authors suggest that plasma miRNAs have the potential to identify

those who are likely to develop DM and may be of value in the prediction of micro-

and macro-vascular complications.

In a preliminary study of a small number of diabetic subjects and controls

Moussa et al. (unpublished observations) measured circulating miR-192 and

miR-215 and found that these were elevated 16.5 and 19.2 times, respectively, to

that seen in healthy controls. Receiver operating characteristic curve (ROC)

analyses showed that the area under curve (a measure of potential diagnostic

value) were 0.980 and 0.991 for miR-192 and miR-215 respectively. This indicates

that miRNAs are potentially useful in the diagnosis of DM.

2.4 Gestational DM (GDM)

GDM is a condition where women who have no previous DM develop high blood

glucose during pregnancy and is associated with maternal (e.g. pre-eclampsia) and

foetal (large babies and respiratory syndrome, etc.) complications. Early diagnosis

of GDM is important in order to start treatment to normalize the blood glucose and

so to reduce these complications. Many methods have been proposed to identify

these subjects. Most of these are based on plasma glucose measurement after a

glucose load at 24–28 weeks of gestation. This means treatment cannot be started

until about 32 weeks of gestation. Circulating miRNAs have been suggested as

possible early test for GDM. Zhao et al. [50] identified miR-132, miR-29a, and

miR-222 from microarray studies and measured these in serum from pregnant

women at 16–19 weeks of gestation and showed them to be lower in those

women who went on to be diagnosed as GDM. If these results can be replicated it

will be a major advantage in identifying women who are likely to develop GDM

and to be able to start treatment early. In addition, placental specific miRNAs have

been described in the maternal circulation [51] and these also may be additional

markers of GDM.
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3 Diabetic Complications

Long-term complications of diabetes may be divided into two general categories:

macro- and microvascular complications. In the case of the latter, retinopathy,

nephropathy and neuropathy are commonly observed after 10–20 years from the

development of diabetes. Indeed, in T2DM, these are often the first symptoms to

present when the initial diagnosis for diabetes is confirmed. In each of these diabetic

complications the prognostic and diagnostic value of cfNAs are discussed further.

3.1 Diabetic Retinopathy

Diabetic Retinopathy (DR) is the leading cause of blindness in the working age

group and is dependent on the duration and age of onset of diabetes. For instance,

prevalence rates for DR are very low during the first 5 years in patients below

30 years of age. However, the rate increases to over 95 % after 15 years of diabetes

[52]. There are also several risk factors for the development of DR, including:

(a) duration of diabetes; (b) blood glucose control [53, 54], (c) hypertension and

(d) dyslipidemia [55]. At the same time, there is good evidence from a number of

studies suggesting that controlling these associated risk factors might significantly

decelerate progression of DR. Untreated, loss of vision would ensue. Therefore, it is

important that any changes in the retina are detected early so that appropriate

treatment may be administered. Currently, classification of eye status is assessed

according to a scale for the number of abnormalities observed and retinopathy

categorized into four stages of severity, that is, no pathology, background,

pre-proliferative and proliferative. The assessment involves retinal screening by

digital fundus photography and is guided by criteria for classification based on the

recommendations of The Diabetic Retinopathy Grading and Disease management

Working Party [56]. However, such screening protocols are expensive and labor

intensive, requiring the input of several different healthcare professionals. A further

consideration is that the grading system itself is substantially subjective [57]. Thus,

an objective, quantitative blood test may circumvent the limitations associated with

the screening procedures currently in place. The additional benefit of such a blood

test may be that it would be relatively inexpensive, not requiring expensive

hardware and equipment or specialist healthcare personnel. The blood test could

be performed anywhere and would not require the patient to attend specialist clinics

for this purpose. The test would also overcome the problems associated with

grading retinae occluded by media opacities.

One of the earliest investigations exploring the possibility of using a circulating

retina specific molecular marker was reported by Hamaoui et al. [58]. The authors

postulated that damage to the retina would promote cell death of rods and cones.

This would in turn release retina specific mRNA species to enter the circulation

detectable levels of which would be indicative of the extent of retinal cell damage.
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The hypothesis was tested by measuring mRNA in whole blood samples from

clinically proven cases of diabetic retinopathy. As mRNA had long been thought

to be highly labile, blood samples were collected into Paxgene Blood RNA tubes

designed to stabilise blood mRNA at the point of collection. Whole blood RNA was

extracted and the mRNA therein reverse transcribed to cDNA. The latter was

quantified by qRTPCR using rhodopsin sequence specific primers and probe.

mRNA for the house keeping β actin was also measured at the same time and the

results expressed as a ratio. This original pilot study demonstrated that retina

specific mRNA was detectable in the circulation. In addition, the levels of rhodop-

sin mRNA were seen to increase with the severity of DR. Moreover, compared to

healthy control subjects, diabetics without retinopathy appeared to show higher

levels of rhodopsin mRNA, suggesting that the latter group may go on to develop

retinopathy or have it sub-clinically (Fig. 3). The investigators concluded that

circulating cell free retina specific mRNA had a potential prognostic and diagnostic

role to play in the assessment of DR.

Further work from this group looked at additional retina specific markers,

including RPE65 and retinoschisin [59]. As with rhodopsin (Rho), RPE65 mRNA

showed increased levels with severity of DR (Fig. 4a). In contrast to these two

markers, levels of retinoschisin mRNA decreased with DR severity (Fig. 4b). In an

effort to enhance specificity and sensitivity, more rod, cone and retinal ganglion

cell-specific markers were added to the panel of retinal markers, including retinal

amine oxidase (RAO), phosphodiesterase 6C (PDE6C) and melanopsin. While

mRNA for Rho and RAO were detected in 100 % of the subjects, PDE6C mRNA

was only found in 60 % of the individuals and melanopsin mRNA was not detected.

When diabetic subjects were divided according to their DR status, significant

differences were observed – Rho increased while RAO tended to decrease. The

area under the curve ROC for Rho (Fig. 5) and Rho/RAO ratio to differentiate mild

or no DR from significant DR (pre-proliferative and proliferative stages) were

0.756 and 0.823, respectively [60]. This provided further evidence that circulating

mRNA may be useful in assessing DR.

Some of the markers discussed above were also used in other related disorders.

For instance, it was proposed recently that hypoxia, as seen in Obstructive Sleep

Apnea (OSA), might be associated with DR [61]. To investigate this further, Wong

et al. [62] used T2DM patients to determine the effect of oxygen desaturation on

circulating retina-specific mRNA. Oxygen desaturation was defined as the number

of times per hour the oxygen saturation decreased by 4 % or greater (number of dips

h�1) and percentage of sleep time with oxygen saturation (SpO2) <90 %. The

results indicated that in patients with >/¼5 dips h�1, mRNA values for rhodopsin

and RPE65 were significantly higher than in patients with <5 dips h�1 (Fig. 6).

Levels of retinoschisin mRNA remained unchanged. In patients with

pre-proliferative or proliferative DR, median levels for rhodopsin mRNA and

RPE65 mRNA were 30 and 80 % higher and retinoschisin mRNA was lower in

patients with >/¼5 dips hr�1 when compared to patients with <5 dips hr�1. Thus,

hypoxia may modulate expression of genes in the retina and this may be reflected in

the variation of retina specific mRNA measured in the circulation.
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MicroRNA and Diabetic Retinopathy

Several studies have shown the role of miRNAs in DR [26]. With miR-146,

miR-155, miR-132, and miR-21 being shown to be up regulated in the retina of

diabetic animals [25]. To date there have been no studies on the possible use of

serum/plasma miRNA in the detection of DR.

4 Diabetic Nephropathy

Diabetic nephropathy (DN) is the commonest cause of end-stage renal disease

[63]. Approximately 40 % of all diabetic patients have DN with the incidence

expected to rise alongside the escalating rates of DM worldwide. Patients with DM

are screened regularly for DN, which is based on the measurement of urinary

albumin excretion (UAE). Microalbuminuria, the presence of small amounts of

albumin in the urine, is believed to be a strong predictor of DN [64]. However,

despite its widespread use, the interpretation of UAE is subject to many sources of

variation. For instance, many non-diabetic patients have microalbuminuria and not

all patients with microalbuminuria go on to develop DN [65]. Sample collections

are also time-consuming and prone to errors [66]. Nevertheless, even with these

known limitations, current recommendations state that all diabetic patients should

have an annual measurement of albumin in the urine [67]. As increased albumin

excretion in diabetic patients arises from damage to the glomerular basement

membrane, measurement of circulating nephron-specific mRNA may offer some

Fig. 3 mRNA for rhodopsin in healthy subjects and diabetic subjects with and without retinop-

athy. Results are expressed as a percentage of that in controls. Circulating mRNA for rhodopsin is

increasing with increasing severity of retinopathy except for the severest grade
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potential in the diagnosis and monitoring of DN. This approach was found to be

feasible in assessing diabetic retinopathy using circulating retina specific mRNA

suggesting that renal specific mRNAmay also serve a similar function in the case of

renal status analysis.

Fig. 4 (a) RPE65 and (b) retinoschisin mRNA levels in healthy controls and diabetic patients

with and without retinopathy. (a) Circulating mRNA for RPE65 is higher in early and late stages of

retinopathy. (b) Highest values for retinoschisin is seen diabetics without retinopathy. Levels

decreased with increasing severity of retinopathy
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Nephrin is a transmembrane protein [68] expressed by visceral epithelial cells

(podocytes) in the slit diaphragm of the glomerulus and is crucial for the integrity of

the slit diaphragm. Abnormalities in this protein can lead to proteinuria and

eventually to nephrotic syndrome. Measurement of nephrin mRNA in blood offers

the possibility of assessing renal function without the constraints associated with

urinary albumin analysis. Additionally, such an approach may also provide a clue to

the etiology of the renal disease. This was first illustrated by a study by Orlandi

et al. [69] who measured nephrin mRNA in healthy individuals and in renal

transplantation patients. They showed that nephrin mRNA in circulation is

influenced by age and transplantation, both of which are associated with reduced

renal mass. Nephrin mRNA was also higher in females, both in healthy individuals

and in transplant patients, suggesting that the nephrin mRNA expression is

influenced by estrogens or other female hormones (Table 2).

Extending this original finding, Butt et al. [70], measured nephrin mRNA in

peripheral blood of healthy subjects and patients with diabetic nephropathy and

found that nephrin mRNA levels were increased in DN (Fig. 7). However, whilst

encouraging from a biomarker perspective, the interpretation of results was incon-

clusive as factors known to effect renal function, e.g. age, gender and ethnicity had

not been accounted for. In a further proof-of-concept study Moussa et al. [71]

ROC Curve analysis for Circulating Rhodopsin mRNA
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Fig. 5 Receiver operator characteristic curve to differentiate mild form severe retinopathy using

mRNA for rhodopsin. The area under the curve for circulating rhodopsin mRNA is 0.756 – (values

for the area under the ROC curve approaching 1.00 are better discriminatory tests)
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measured the levels of a panel of kidney specific cfm RNAs (nephrin, paracellin,

nyctalopin and podocin). In this study mRNA for nephrin, paracellin and

nyctaloplin was detected in the circulation of all the subjects studied while podocin

mRNA was only detected in 53 % of subjects. In contrast to the study by Butt

et al. [70], there was no significant difference in nephrin mRNA between healthy

subject and DN patients. By way of explanation for the lack of reproducibility of the

nephrin levels, Moussa et al. [71] noted that they used a much smaller sample of

individuals which was different to the group studied by Butt et al. [70]. Nyctalopin

mRNA levels also remained unchanged between the groups studied. As nyctalopin

is expressed by tissues other than the kidney, the differential contribution of renal

mRNA for nyctalopin may have been masked by the total circulating mRNA for

this protein. Paracellin mRNA was significantly higher in the microalbuminuric

group compared to healthy subjects, normoalbuminuric or macroalbuminuric

groups (Fig. 8). However, there was no difference in paracellin mRNA between

groups within the diabetic population based on the renal status.

MicroRNA and diabetic nephropathy: MicroRNAs may play a role in the

pathogenesis of DN. In in vitro studies and in experimental studies miR-192,

miR-200b/c, miR-216a, and miR-217 were altered in DN [20]. In a recent study

we measured miR192, miR-215, and miR-377 in the circulation of diabetic subjects

and controls and showed that miR-192 and miRNA-215 but not miR-377 were

detectable in the circulation [71]. In the diabetic patients group miRNA-192 levels

were 26.5 fold greater than that seen in healthy subjects. However, there was no

difference in miR-192 within the diabetic group based on renal status. A similar

profile was seen with miR-215 measurement between and within the groups under

study (Fig. 9). While the mechanisms for this observed increase in microRNAs in

the circulation remains unknown, there is a suggestion that over-expression of

microRNAs in the cells leads to this increased release. It is further proposed that

microRNAs are released into exosomes, which maintain their stability and resis-

tance to endogenous RNAse breakdown [72]. These two findings may explain the

altered and increased levels of miR-192/mir-215 in the circulation of patients with

DN. Interestingly, and unlike ACR measurement, circulating levels of microRNA

were not related to age, gender, BP, duration of diabetes or renal function. Inde-

pendence from factors that would otherwise require microRNAs levels to be

corrected offers considerable advantage over ACR measurement when making

direct comparisons between individuals or defined groups.

Table 2 Blood nephrin mRNA concentrations (ratio of nephrin mRNA to total blood β-actin
RNA) in healthy persons and kidney transplant patients

Median (range)

P, Mann–Whitney U-testFemales Males

Healthy persons 0.076 (0.003–0.180) 0.0394(0.0064–0.1339) 0.04

Transplant patients 0.028(0.0023–1.38)a 0.0106(0.0013–0.492)b 0.022
aP¼ 0.05 compared with healthy males
bP¼ 0.029 compared with healthy females
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4.1 Diabetic Neuropathy

Approximately 131 million individuals are affected by diabetic neuropathy (DNeu)

[73]. It is estimated that the prevalence of neuropathy in diabetes patients is

approximately 20 %. However, this may vary depending on the diagnostic criteria

[74], e.g. prevalence of DNeu after 25 years was 45 % [75]. Although duration of

diabetes, age, smoking, hypertension and hyperlipidemia are important, the main

risk factor for DNeu is hyperglycemia. In the DCCT [54] study, the annual

incidence of neuropathy was 2 % per year, but dropped to 0.56 % with intensive

treatment of Type 1 diabetics. DNeu is also implicated in 50–75 % of non-traumatic

amputations [76, 77]. Despite a range of diagnostic tools being available, under

diagnosis or misdiagnosis of DNeu remains a problem in clinical practice. As a

viable alternative, Sandhu et al. [78] postulated that in diabetic neuropathy, neuron

specific nucleic acids may appear in the circulation and these may form a blood test

for the early detection of this disorder. The marker proposed was neuron-specific

enolase (NSE), which is a highly soluble intracellular protein principally located in

neuronal cytoplasm and in neuroendocrine cells [79, 80].

Fig. 7 Ct values for mRNA for nephrin in healthy subjects and diabetic patients with different

degrees of albumin excretion. mRNA for nephrin was higher (hence lower Ct value) in subjects

with diabetes
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In this pilot study 72 individuals consisting of 26 healthy subjects and 46 diabetic

patients, of whom 24 were diagnosed with DNeu, were tested for circulating NSE

mRNA. Of the 24, all but one were also diagnosed with diabetic retinopathy. The

results of this original study revealed that diabetic controls had significantly higher

levels of circulating enolase mRNA than healthy subjects (Fig. 10), indicating that

hyperglycemic insult, even before clinical manifestation of DN, could lead to

increased release of NSE mRNA into the circulation. However, levels of NSE

mRNA were lower in the diabetic neuropathy group relative to the diabetic controls

and healthy subjects. One possible explanation for this outcome is that the wide-

spread cellular damage, due to persistent hyperglycemic insult, in the years before

the diagnosis of DNeu may affect the ability of neurons to transcribe NSE mRNA.

When the DNeu patients were examined according to their eye status, patients with

pre-proliferative retinopathy had significantly higher levels of circulating enolase

mRNA compared to those with background retinopathy (Fig. 11). This was not

surprising as DR is known to lead to ischemic changes in the inner retina, resulting

in atrophy of the neuronal layer. Furthermore, extensive loss of retinal neurons may

lead to release of NSE mRNA into the circulation, which may rise with increasing

severity of DR. The investigators concluded that levels of enolase mRNA are

decreased in diabetic neuropathy and this molecular marker may also be useful in

differentiating early from advanced eye disease in those diabetics diagnosed with

neuropathy.

Fig. 8 Circulating levels of paracellin mRNA in healthy control subjects and patients with

diabetes (data are expressed as mean and 95 % confidence interval). Circulating pracellin

mRNA was higher in diabetic nephropathy
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Fig. 9 Circulating levels of microRNA-192 (a) and microRNA-215 (b) in healthy control and

diabetic subjects (Data is expressed as mean and 95 % confidence interval). HC Healthy controls,

No Normoalbuminuria,MiMicroalbuminuria,MaMacroalbuminuria. miR-192 and mi-215e were

higher in microalbuminuric subjects
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4.2 Macrovascular Complications

Cardiovascular disease is the leading cause of death in DM. Early detection of those

who are likely to develop cardiovascular disease and peripheral vascular disease

will greatly improve the management of these conditions. As discussed earlier

Zametaki et al. [32] identified miR-126 to be associated with vascular complica-

tions. Caporali et al. [40] have shown that miR-503 in muscle biopsy samples and in

plasma from patients with limb ischemia were higher compared to those with these

complications. Several studies have shown the potential of microRNAs in the

diagnosis of heart failure and acute myocardial infarction ([11]; see also chapter

“CNAPS and General Medicine”). These are discussed elsewhere in the book in

greater detail. These studies illustrate the potential of cfNAs in the detection of

macrovascular complications.

There is presently very little or no specific and sensitive non-invasive test for the

assessment of macrovascular complications associated with diabetes. cfNAs repre-

sent a potential prognostic and diagnostic utility to overcome this deficiency. It is of

the utmost importance that these early stage pilot studies are expanded and verified

by other independent workers in the field.

Fig. 10 Circulating enolase mRNA levels in healthy subjects, diabetic patients, and patients with

diabetic neuropathy. mRNA for enolase was higher in albuminuric subjects

Circulating Nucleic Acids and Diabetes Mellitus 231

http://dx.doi.org/10.1007/978-94-017-9168-7_7


Concluding Remarks

In this chapter we have described the potential of cfNAs (cfDNA, cfmRNA and

cfmiRNA) in the early detection of diabetes and its complication. Most of the

studies described here are early studies and require much larger, well-designed

trials to confirm the applicability of circulating nucleic acids as biomarkers in

diabetes. These are likely to be of great value as they could predict who will get

clinical diabetes or its complications. However several issues need to be addressed

before full clinical application.

As discussed, above and as shown in Table 1, different papers identify different

nucleic acids as of potential value. There is no consensus as to the best markers. The

differences in the markers identified so far may be due to the different approaches

used by these investigators. Some have used systematic profiling while others have

adopted a candidate marker approach. Larger, well-designed studies are needed to

identify the best biomarkers. Some researchers have used plasma, others have used

serum and yet others have used whole blood. Standard protocols for sample

collection, preparation, storage, nucleic acid extraction and analysis are required

before embarking on large-scale studies (see chapter “Pre-Analytical Requirements

for Analyzing Nucleic Acids from Blood”). Some of the markers described, for

Fig. 11 Circulating enolase mRNA levels in patients with diabetic retinopathy and neuropathy.

mRNA for enolase was higher in patients with diabetic retinopathy
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example miR-15b and miR-16 are affected by hemolysis and contamination of

cellular material [81].

The origin of cfNAs is not fully understood (see chapter “The Biology of

CNAPS”). A better understanding of this process may help to improve the diag-

nostic utility of these markers. Transport of nucleic acids in the circulation is

complex. Some are carried in exosomes, others as lipoprotein or protein complexes.

Knowledge of the transport process of specific nucleic acids may help to design

better methods to isolate these particles before analysis. This will help to identify

small amount of organ specific nucleic aids from the sometimes large amount of

other nucleic acids in circulation.

Diabetes is a complex disorder affecting almost all of the organs of the body.

Changes described in this chapter need to identified as specific for diabetes. Studies

examining these cfNAs in other related diseases are required in order to identify

more sensitive and specific biomarkers (see chapters “CNAPS and General

Medicine”, “Fetal CNAPS – DNA/RNA” and “Extracellular Nucleic Acids and

Cancer”).
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Extracellular Nucleic Acids and Cancer
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Abstract Since the clear proof of the presence of tumor-associated genetic alter-

ations in extracellular nucleic acids almost 20 years ago this field gained has

attracted much interest. According to our current knowledge it seems as if all

tumor-associated alterations found in tumor cells are also found in the extracellular

environment. The isolation of extracellular nucleic acids from tumor patients and

its genetic characterization with very sensitive and highly specific methods led to

the concept of “liquid biopsy”. This means that for follow-up analysis of tumor

patients, the physicians no longer depend exclusively on a single examination of

tissue biopsies (usually at the time of diagnosis) but are able by longitudinally

analyzing the extracellular nucleic acids to follow the reaction of a tumor to e.g. a

given therapy, the development of resistance mechanisms. In this chapter we

will discuss the detection and characterization of different genetic (e.g. mutation

analysis and structural variations as seen in microsatellites), epigenetic

(e.g. hypermethylation of selected sequences) and regulatory alterations (as in

different miRNA expression patterns found in tumor patients). We will also touch

on some confounding factors that have to be taken into consideration as well as the

functional and biological aspects of extracellular nucleic acids.
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1 Introduction

Cancer has been seen for many years as a purely genetic disease and was even

enthroned as “The Emperor Of All Maladies” [1]. This view has been changed

recently up to the point where scientists are arguing that only 5–10 % of cancers are

associated with genetic defects whereas the majority of malignant diseases are

connected with our environment and lifestyle like cigarette smoking, diet, alcohol,

sun exposure, environmental pollutants, infections, stress, obesity and physical

inactivity [2]. Apart from the fact that our modern lifestyle is part of the problem,

the life expectancy of humans is rising [3] leading to an increase on the global

cancer burden [4]. Contributing to the increased number of humans suffering from a

malignant disease is not only the age-associated enhanced risk of developing cancer

[4] but also the huge improvement of the diagnostic tools in the last decades. This is

demonstrated by the reduced mortality from breast cancer due to the mammo-

graphic screening and improved therapies [5]. On the other hand there are highly

sophisticated techniques available for the detection and isolation of a single tumor

cell (obtained by laser micro-dissection or by capturing CTC from the cancer

patients blood) and their molecular genetic characterization by next generation

sequencing analysis, dPCR.

Recently, the analysis and characterization of cfNAs gained much popularity.

While in our exhaustive overview in 2007 443 references were cited [6], there are

now far more than 1,000 papers published dealing with this subject. The aim of this

chapter is not to give a complete compilation of work devoted to the analysis of

cfNAs but to point out successful and failed approaches in this field, recent method

and technical improvements together with different aspects not previously covered

[6, 7].

2 General Remarks

cfNAs can be isolated from a variety of different body fluids such as plasma/serum,

tears, urine, breast milk/colostrum, seminal fluid, saliva, amniotic fluid, bronchial

lavage, cerebrospinal fluid, pleural fluid and perioneal fluid ([6, 8, 9]; chapter

“Other Body Fluids as Non-invasive Sources of Cell-Free DNA/RNA”). All of

these body fluids have been used for the isolation and characterization (qualitatively

and/or quantitatively) of cfNAs.

The last years have seen an impressive progress in our understanding of cellular

processes, regulatory circuits and the myriad of factors involved, leading to the

so-called systems biology approaches [10]. Also, the development of new methods

such as NGS analysis, the improvement of high-throughput expression analysis

systems and methods for the detection of a few mutated sequences in a background

of millions of wild type DNA (dPCR) broadened our view on the “cancer problem”

(see chapter “Genomic Approaches to the Analysis of Cell Free Nucleic Acids”).
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3 DNA Quantification/DNA Integrity

Leon and coworkers [11] were the first to demonstrate an increase in cfDNA in

tumor patients compared to a control population. In the late 1990s (after the

landmark papers by Chen et al. [12] and Nawroz et al. [13] were published) this

observation initiated a surge of papers confirming and extending the results

described by Leon et al. Unfortunately, it became clear very soon that the increase

in cfDNA in tumor patients is not specific and that many factors/diseases lead to the

higher quantity of cfDNA (see chapter “The Biology of CNAPS”). When cfDNA

had been quantified it was shown that the amount is increased in a variety of

different conditions such as myocardial infarction [14], cardiac arrest [15], exhaus-

tive exercise [16–18], in patients with systemic lupus erythematosis [19], in older

humans [20], in febrile patients [21], in children on peritoneal dialysis [22], in

patients with obstructive sleep apnea [23], patients with chronic kidney disease

[24], patients with severe sepsis or septic shock [25], in trauma [26] and burn

patients [27] (chapter “CNAPS and General Medicine”). In an attempt to differen-

tiate lung cancer patients from a control population according to their sputum

cfDNA it was demonstrated that the amount of cfDNA was related to the severity

of the inflammatory processes but not the presence of lung cancer [28]. When a

capillary electrophoresis (CE) method and qPCR were used to determine the

amount of plasma cfDNA in non-small cell lung cancer (NSCLC) patients and

healthy controls, the quantity of cfDNA obtained with CE was almost twice as high

as with qPCR and with both methods, almost twice as high in NSCLC patients when

compared with a group of healthy subjects. This led the authors to conclude that this

method “is an effective diagnostic tool to discriminate NSCLC patients from

healthy individuals” [29]. According to our opinion, this statement will not stand

the test of time. We strongly believe that the lack of an association between an

increased amount of cfDNA and a malignant disease makes a quantitative assess-

ment of cfDNA for diagnostic purposes completely useless. This very likely also

holds for a combination of a quantitative cfDNA measurement plus a clinical assay

(including but not limited to imaging methods) or any other biomarker. Whether an

increased amount of plasma cfDNA might be useful for an early detection of

disease recurrence in NSCLC patients [30] has to be seen in future trials. In

contrast, there was no association between post-surgery cfDNA levels and disease

recurrence in patients with renal-cell carcinoma [31]. A group of 15 patients

suffering from a variety of different malignancies (all solid tumors) who were

treated with radiation therapy were followed over several months and their plasma

cfDNA was quantified [32]. In 13/15 patients a decrease in plasma cfDNA concen-

tration was seen over time. Two of these patients had local tumor recurrence, three

other patients had distant metastasis and eight patients were in complete remission.

From their experiments, the authors concluded that there was no obvious associa-

tion between patient outcome and plasma cfDNA concentration before treatment

and during therapy. In an animal system. it was shown that there is a positive

correlation between the amount of plasma tumor cfDNA and tumor size and that
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the level of WT and mutated plasma cfDNA fluctuated among individual animals

(rats) depending on individual specific factors [33]. As long as we do not under-

stand the factors regulating the release of cfDNA into the environment a quantita-

tive analysis would appear to have no meaning.

Considering the facts mentioned above and the observation that there is a large

overlap in the amount of circulating cfDNA in cancer patients vs. controls

(as discussed in detail in a previous overview; [6]), several groups tried to differ-

entiate patients from controls with a cfDNA integrity index [34]. The basic

assumption for this approach is the observation that tumor-derived cfDNA is

released by mechanisms different to those for cfDNA from non-tumor cells together

with the different sizes of these fragments. The index is determined by a qPCR in

which two amplicons targeting the same sequence, but of different lengths are

generated. The Ct values are used to calculate the cfDNA integrity index with

several formulas [35]. In the first paper reporting on this approach, a different

integrity index was found in patients with gynecological malignancies compared to

healthy women [34]. Several other groups tried to replicate this observation with

varying success in patients with prostate cancer [36–38] renal cell and bladder

cancer [39, 40], head and neck cancer [41], gastric cancer [42] and lung cancer [43,

44]. In the report mentioned before, it was shown that the plasma cfDNA integrity

index in tumor patients was higher than in healthy subjects, but no data were

supplied for cfDNA integrity during radiation therapy [32]. In a slightly modified

approach, several groups used the integrity index as a marker for therapy monitor-

ing but these data are very preliminary [45].

3.1 Synopsis

4 Number Crunching with dPCR and BEAMing

dPCR and its further development i.e. BEAMing were only established a few years

ago but are already on their way to replace qPCR as a standard for nucleic acid

quantification (Table 1; [46–48]; chapters “Detection of Genetic Alterations by

Nucleic Acid Analysis: Use of PCR and Mass Spectroscopy-Based Methods” and

“Genomic Approaches to the Analysis of Cell Free Nucleic Acids”). It had been

demonstrated that dPCR/BEAMing is not only more precise than qPCR, but also

Clinical relevance of cfDNA quantification of extracellular nucleic acids

Diagnosis Therapy response Prognosis Clinical utility

DNA quantification None Probably not None None

DNA integrity index None Maybe Maybe Maybe
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very robust and obviates the need for a calibrator since the quantity of nucleic acid

molecules (DNA, cDNA, RNA in its different forms) are counted as absolute

numbers [70–72]. The first studies using these methods nicely demonstrated that

there is a correlation between the number of mutant cfDNA in the plasma of

colorectal cancer patients before and during therapy [73], the possibility to detect

tumor-associated mutations and methylated genes in plasma and stool samples from

cancer patients [66, 74], the detection of copy number alterations [56], an ampli-

fication of the HER2 gene in the plasma of breast cancer patients [62] and the

quantification of mRNA transcripts in serum and cerebrospinal fluid from glioma

patients [75]. A sensitive and specific detection of EGFR mutations in the plasma of

lung cancer patients was shown by Taniguchi et al. [76].

In a retrospective BEAMing analysis of plasma and tumor samples from meta-

static breast cancer patients, the concordance of PIK3CAmutations was found to be

100 % while in the prospective cohort, the concordance between plasma and tissue

was only 72 % [54]. The authors explain this discrepancy by the fact that the data

from plasma samples of patients with recurrent disease were compared to archived

tissue obtained at least 3 years before the actual blood draw and point out that it is

important to use contemporary and not archived material (chapter “Pre-analytical

Requirements for Analyzing Nucleic Acids from Blood”). On the other hand, it

might be possible that recurrent tumors demonstrate a different mutational spec-

trum than the original tumor analyzed at the time of diagnosis though this is not

discussed by the authors.

In a sequential BEAMing analysis of plasma cfDNA for the detection of KRAS
mutations in colorectal cancer patients undergoing an anti-EGFR therapy, Misale

et al. [77] demonstrated the sensitivity of this assay by showing that KRAS variants

leading to a resistance for cetuximab were detectable in plasma 10 months before a

disease progression was found by radiological evidence.

All these data demonstrate the technical feasibility for a sensitive and quantifi-

able detection of molecular alterations in different body fluids, but before these

methods can be applied in a routine clinical setting, large patient populations have

to be analyzed in prospective trials to demonstrate their clinical benefit for the

patients and for setting cut-off values.

4.1 Synopsis

Counting of cfNA molecules

Diagnosis Therapy response Prognosis Clinical utility

Digital PCR and BEAMing Not any time soon Yes Yes Yes
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5 Mutation Analysis

The power of newly developed methods such as NGS and dPCR for a quantitative

mutation analysis was recently demonstrated in several papers in which serial

plasma cfDNA samples were analyzed. In a prospective study, 30 women with

metastatic breast cancer receiving systemic therapy over 2 years were examined for

CA 15-3 level, the number of CTCs, mutations and structural variants like deletions

in their plasma cfDNA [78]. It was demonstrated that in the majority of patients

(19/20 women) the fluctuation of circulating tumor cfDNA generally correlated

with treatment response. A progressive disease was seen during follow-up and an

increase in cfDNA reflected the CT data. Although the number of CTC showed

some fluctuation as well, this was observed to a somewhat lesser extent than the

amount of tumor cfDNA. The tumor marker CA 15.3 was the marker with the least

changes over time. In addition, increasing levels of circulating tumor cfDNA was

associated with inferior overall survival, whereas CA 15-3 had no prognostic

power. MPS of exomes from circulating tumor cfDNA was used for the detection

and enumeration of plasma cfDNA mutations leading to acquired resistance to

cancer therapy in patients with advanced breast, ovarian and lung cancers who were

followed over 1–2 years [65]. The quantification of allele fractions in plasma

identified increased representation of mutant alleles in association with the emer-

gence of therapy resistance such as an activating mutation in PIK3CA following

treatment with paclitaxel, a truncating mutation in RB1 following treatment with

cisplatin, a truncating mutation in MED1 following treatment with tamoxifen and

trastuzumab, a splicing mutation in the GAS6 gene following subsequent treatment

with lapatinib and a resistance-conferring mutation in EGFR following treatment

with gefitinib.

The detection of EGFRmutations in the plasma of lung cancer patients by dPCR

has been demonstrated and the authors showed a very high concordance rate of

mutations found in tumor tissue as compared to plasma [69]. The analysis of plasma

cfDNA from colorectal cancer patients for the detection of KRAS mutations with a

multiplex dPCR demonstrated that in 14/19 patients the same mutation was present

in tumor tissue and plasma whereas 1 patient had a different KRAS plasma mutation

and four patients had no detectable plasma mutations [68]. Equally, there are also

reports in which it was shown that the detection rate of EGFR mutations in cfDNA

is far less sensitive than the analysis of tissue DNA [79]. So far, it is not completely

understood as to whether the discordance between mutation frequency found in

tumor tissue vs. plasma is due to either techniques with insufficient sensitivity or a

low amount of tumor derived plasma cfDNA or tumor heterogeneity, i.e. the

existence of tumor subclones harbouring different mutational spectra.

Using a variety of different methods, activating mutations of the BRAF gene are

found in cfDNA from patients with melanoma [80], hairy-cell leukemia [81],

papillary cancer of the thyroid [81, 82], colorectal cancer [83], ovarian cancer

[84] and NSCLC [50]. Therefore, a quantitative analysis, i.e. an enumeration of
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cfDNA molecules (from plasma or any other body fluid) harbouring a mutation

might be useful for therapy monitoring and prognosis, but not as a diagnostic tool.

5.1 Synopsis

6 miRNA

Since the first description of miRNA in Caenorhabditis elegans [85] the analysis of
these nucleic acids has been evolving as a very hot topic due to several factors.

cfmiRNAs are very stable even under harsh conditions and survive storage at low

temperature (�80 �C and less) for a long time. In contrast to isolated total RNA, the

RNA integrity number (RIN value) of which decreased considerably after dilution

in water and treatment at 80 �C for up to 4 h; this had almost no influence on the

stability of cfmiRNA when measured by qPCR [7, 86]. Also repetitive freezing and

thawing of miRNA samples [87] or of urine samples which were either subjected to

seven freeze/thaw cycles or were incubated at room temperature for up to 3 days did

not change the amount of miRNA detectable by qPCR [88]. It was also shown that

stool derived miRNAs that are either bound to cell membranes or are inside

exosomes are rather stable [89]. In addition to the high stability of miRNAs, they

are lower in numbers as compared to mRNA (approx. 2,500 mature forms in Homo
sapiens listed in www.mirbase.org as of September 2013), they can be isolated and

quantified easily with a number of different commercially available kits and they

play important roles in tumor development – and might be even therapeutic targets.

The number of papers dealing with cfmiRNA and their exploration for diagnosis,

prognosis and staging is increasing almost exponentially.

The papers recording the cfmiRNA expression in either plasma or serum or

sputum was analyzed with the aim of (early) diagnosing lung cancer patients are

given in Table 2. Upon reviewing these data, it can be concluded that (i) the

reported cfmiRNA expression levels are very heterogenous (even papers originat-

ing from the same laboratory report different results) and that only very few

cfmiRNAs are confirmed in several publications as up - or down-regulated;

(ii) the possibility cannot be excluded that different techniques (sequencing

vs. qPCR) yield different results; and (iii) most groups used healthy subjects

Mutation detection and quantification of cfDNA in body fluids

Diagnosis

Therapy

response Prognosis

Clinical

utility

Mutation

analysis

Not before organ specific

alterations are found

Yes Maybe Yes
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(in some cases poorly defined) which is not an adequate control population. In many

papers the authors state that the panel of cfmiRNA they discovered to be aberrantly

expressed in lung cancer patients are potentially useful biomarkers for diagnosis, an

overly optimistic view. One of the genes which has been recurrently described as

being over-expressed in lung cancer, miR-21, is not organ specific at all but over-

expressed in glioma, cancer of the breast, ovary, stomach, liver, prostate, pancreas,

head and neck, thyroid, cervix, leukemia and lymphomas [110]. The same holds

true for miR-155 that is not only over-expressed in different malignant tumors but

also plays a role in a variety of physiological and pathophysiological conditions

such as immunity, inflammation and cardiovascular diseases (more examples of

aberrantly regulated cfmiRNAs in more than one organ are summarized in Table 3)

[111]. In a recently published meta-analysis, it was demonstrated that cfmiR-21 is

not suitable as a diagnostic marker for cancer [124]. This statement does not come

as a surprise given the facts that in most studies cancer patients (i) were compared

Table 3 Summary of different miRNAs aberrantly expressed miRNAs in more than one organ

miRNA Lung cancer Different malignancy Remarks

342 Underexpressed [97] Underexpressed in AML

[112]

let-7a Underexpressed [97] Underexpressin in gastric

cancer [113]

let-7b Underexpressed [97] Overexpressed in AML [112]

374 Underexpressed [97] Overexpressed in AML [112]

148a Overexpressed [97] Overexpressed in multiple

myeloma [114]

21 Overexpressed in several

papers, see Table 2

Overexpressed in: colorectal

cancer [115] pancreatic

cancer [116]

Overexpressed in: hepati-

tis C patients with/

without hepatocellular

Tong squamous cell

carcinoma [117]

Carcinoma [119]

Osteosarcoma [118] Students performing acute

exhaustive excercise

[120]
Gastric cancer [113]

155 Overexpressed in several

papers, see Table 2

Overexpressed in: pancreatic

cancer [116]

Breast cancer [121]

372 Differentially expressed

in lung cancer [108]

Overexpressed in tong

squamous

cell carcinoma [117]

92a Underexpressed [97] Overexpressed in colorectal

cancer [122],Overexpressed [92]

200b Overexpressed [106] Overexpressed in metastatic

breast cancer patients

[123]

143 Differentially expressed

[108]

Underexpressed in

osteosarcoma [118]

106a Overexpressed [92] Overexpressed in gastric

cancer [113]
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with healthy subjects, (ii) miR-21 is one of the key players in inflammation and (iii)

inflammatory processes are not only present in cancer but also play a significant

role in premalignant conditions [125, 126]. The fact that we are still far away from

the point where we can apply our knowledge and turn it into clinical routine

becomes very obvious upon reviewing some of the papers in which cfmiRNA

expression profiles from plasma were compared [127]. In a meta-analysis of

13 publications, almost no congruence in cfmiRNA profiles from different groups

was found. In 10/13 papers selected for their meta-analysis, healthy subjects served

as controls and only one group used an appropriate control population (comparing

plasma cfmiRNA expression in patients with malignant solitary pulmonary nodules

(SNPs) with patients having benign SNPs). Another example involves studies in

which cfmiR-342, which was originally described as being down-regulated in colon

cancer [128], was later was found to be down-regulated in patients with acute

leukemia [129], acute myeloid leukemia [112], malignant peripheral nerve sheath

tumors [130], malignant glioma [131], in cancer-associated fibroblasts from breast

cancer patients [132], breast cancer [133] and lung adenocarcinoma [134] but

up-regulated in melanoma patients [135] and patients with Sézary syndrome [136].

That there is only partial overlap between the circulating cfmiRNA species

identified in the three studies of CRC has been shown by Ng et al. [137] and

Huang et al. [138]. In two studies, qPCR analysis was applied while one relied upon

Solexa sequencing of cfmiRNA from serum [90]. Although both qPCR studies used

similar RNA extraction methods and the same qPCR approach, one of the studies

found miR-17-3p to be higher in patient plasma [137] whereas the other reported

plasma levels to be too low to be accurately quantifiable [138]. A similar conclusion

can be drawn when comparing the results of cfmiRNA expression analysis in

patients with ovarian cancer. The quantity of circulating exosome-derived

miRNA from sera of ovarian adenocarcinoma patients was compared to sera from

age-matched women with benign ovarian adenoma and women without ovarian

disease [139]. No exosomal miRNA was found in normal controls and the level of

eight cfmiRNAs (miR-21, miR-141, miR-200a, miR-200c, miR-200b, miR-203,

miR-205 and miR-214, all of them were over-expressed) was different in cancer

patients compared to patients with benign disease. In contrast to these data, another

group also examined sera from ovarian cancer patients and compared them to sera

from healthy women. They described a panel of five cfmiRNAs as being over-

expressed (miR-21, miR-92, miR-93, miR-126 and miR-29a) and three under-

expressed (miR155, miR-129 and miR-99b) [140]. It is not too surprising that,

apart from miR-21 that was found to be over-expressed in both studies, there is

basically no concordance between these studies so reflecting the current state of

affairs. Additionally, the latter group states that their panel might be useful as early

detection markers for ovarian cancer that is doubtful given the fact that their control

population comprised healthy individuals which is not necessarily an appropriate

control group. Discordant results generated in the same laboratory for the expres-

sion of cfmiRNA were also published. In the first study, Solexa sequencing data

showed an increase in cfmiR-25 and cfmiR-223 in plasma of lung cancer patients

compared to controls, while let-7a which had been described as a diagnostic marker
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for lung cancer in other papers did not demonstrate any changes in expression in

plasma from lung cancer patients as compared to the controls [90]. In a second

paper by the same group, they performed Taqman probe-based qPCR assays to find

differentially expressed serum cfmiRNAs from NSCLC patients and healthy sub-

jects. None of the ten cfmiRNAs detected were described in their earlier paper [93].

6.1 cfmiRNA Quantification for Prognosis, Diagnosis,
Follow-Up and Treatment Monitoring

In a few studies, the quantity of cfmiRNA before and after treatment was analyzed.

In patients with squamous cell carcinoma of the tongue, the level of plasma cfmiR-

184 before and after surgery was analyzed and a significant reduction was observed

after surgical removal of the primary tumor [117]. Unfortunately, the authors did

not specify the time between surgery and the post-surgery examination and did not

report on the outcome of the patients in whom increased post-surgery cfmiR-184

levels were seen. A decrease of plasma derived cfmiR-17-3p and cfmiR-92 was also

observed in colorectal cancer patients, the levels of which were determined before

and after surgery [137]. A similar observation was reported in gastric cancer

patients in whom an increased level of plasma cfmiR-17-5p, cfmiR-21, cfmiR-

106a, cfmiR-106b was followed by a decline after surgery [113]. The reduction of

cfmiR-21 and cfmiR-26b plasma levels post-surgery in head and neck squamous

cell carcinoma patients is associated with a better survival [141]. A decrease of

serum cfmiR-21 and cfmiR-24 levels after surgery was also seen in lung cancer

patients leading the authors to conclude that this method might be useful for disease

recurrence assessment [142]. When resectable NSCLC patients (stage I-IIIA) were

followed for at least 18 months, an increased cfmiR-155-5p and cfmiR-223-3p and

a decreased cfmiR-126-3p plasma level was found to be associated with a higher

risk for progression in adenocarcinoma patients [143]. A decreased plasma level of

cflet-7f and cfmiR-30e-3p in NSCLC patients was associated with a shortened

disease-free survival and overall survival in a long-term study in which patients

were followed for several years [144]. A similar observation was made in HCC

patients in whom a deregulated serum cfmiR-1 level is associated with longer

overall survival [145]. A possible clinical usefulness was demonstrated in prostate

cancer patients who experienced a relapse or disease progression that was associ-

ated with an elevated serum cfmiR-146b-3p and cfmiR-194 level [146]. A different

set of circulating cfmiRNAs, the serum levels of which were up-regulated

i.e. cfmiR-375 and cfmiR-141, was correlated with advanced cancer disease in

prostate cancer patients [147]. The quantity of plasma cfmiR-141 in patients with

metastatic prostate cancer was followed during therapy for several months when it

was demonstrated that the quantification of cfmiR-141 was able to predict outcome

(i.e. progression vs. non-progression) with an almost 80 % sensitivity [148]. When

plasma cfmiRNA was profiled from 12 multiple myeloma patients and eight
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healthy controls using TaqMan low density arrays (TLDAs) in a different set of

patients, it was found that high levels of cfmiR-20a and cfmiR-148a were related to

shorter relapse-free survival [149]. All these data show some promise but they need

to be confirmed in studies including higher patient numbers and longer follow-up

times.

6.2 Why Is cfmiRNA Quantification Not Yet a Clinically
Useful Tool?

Our knowledge on the relationship between biogenesis, passive release or active

secretion and the stability of different cfmiRNAs is still limited [150]. We need to

know what influence different pre-analytical factors might have on the yield of

cfmiRNA expression levels. Therefore, it is mandatory to develop standard pro-

tocols for collection and processing the starting material, i.e. different body fluids.

We do not know the reasons for the contradictory results in expression levels when

different platforms (sequencing vs. qPCR) are used. Of utmost importance is the

normalization of data. So far in almost all of the papers a different house-keeping/

reference gene(s) was/were used, making it impossible to compare the data. We do

not have any data on (i) the cfmiRNA expression levels in healthy and diseased

people over time (no longitudinal studies), (ii) the baseline concentration of

cfmiRNAs in healthy and diseased people and (iii) the biological significance of

the changes over the time.

A recently published paper exemplifies many of the mistakes and pitfalls one

should avoid [95]. For the detection of lung cancer patients, the authors compared

this group to age and sex matched healthy controls. The plasma was obtained by

centrifugation (only once!) at a rather low speed that is very unlikely to remove all

cells. Only cfmiR-21 was analyzed (i) which is not organ specific, (ii) the expres-

sion of which is strongly influenced by inflammatory processes and (iii) inflamma-

tory processes were neither considered nor controlled. The possibility that plasma

cfmiR-21 quantification might have a value for predicting the response to chemo-

therapy cannot be dismissed, but it is very unlikely that this marker will have any

diagnostic value.

An example of the difficulty to reproduce results obtained in one laboratory by a

different group concern the data reported by Song et al. [151] and Shiotani

et al. [152]. Both groups aimed to identify a panel of serum cfmiRNAs for the

early detection of gastric cancer. The first step in the paper by Song et al. consisted

of a TLDA analysis of pooled samples from gastric cancer patients and controls

(patients with superficial gastritis or mild chronic atrophic gastritis). From the large

panel of prospective candidates, 16 cfmiRNA were selected and their usefulness

confirmed by qPCR. Nine cfmiRNAs from this panel showed a good performance

in discriminating between gastric cancer patients and controls as well as patients

with dysplasia vs. controls. It is not clear from the published data whether or not this

cfmiRNA panel can also differentiate between cancer patients and dysplasia
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patients. In an additional analysis, it was demonstrated that cfmiR-221, cfmiR-376c

and (to a lesser degree) cfmiR-744 showed an increased expression level over time

(starting with �15 years to 2–5 years before diagnosis) and that the serum levels of

the same cfmiRNA panel also increased in gastric cancer patients (starting 1989 till

1999/2003). From these data the authors concluded that their cfmiRNA panel might

provide potential biomarkers for an early detection of gastric cancer patients.

Shiotani et al. [152] analyzed serum samples from patients with a recent medical

history of endoscopic submucosal dissection (which are considered to be a high-risk

group for gastric cancer) and a control population of subjects who had been

previously diagnosed as H. pylori-positive gastric ulcer or atrophic gastritis. They
used a panel of 20 cfmiRNAs plus the afore-mentioned cfmiR-221 and cfmiR-744

and found that cfmiR-106b and cfmiR-21 were the best for indicating an increased

risk for early gastric cancer.

Some of the problems associated with the use of cfmiRNA in cancer research

that are neglected in most papers dealing with this topic are touched on in the work

published by Cookson and coworkers [153] on breast cancer patients. They failed to

confirm a significant association between the level of specific cfmiRNAs and the

disease and found a different panel of cfmiRNAs than published before. They were

also unable to use cfmiR-16 as a reference gene for quantification as the expression

of this cfmiRNA varied substantially in plasma samples. Instead, they used a mean

cfmiRNA level as a normalizer that worked much better. In contrast to other

reports, they observed only small reductions in circulating cfmiRNA levels after

surgery though not one cfmiRNA was consistently reduced. There was almost no

relationship between high expression levels of cfmiRNAs in tumor cells and their

presence in the circulation leading them to conclude that the release of cfmiRNA

into the circulation is caused by an active and very selective secretion. The analysis

of 15 reports on circulating cfmiRNA in breast cancer patients also revealed a very

low reproducibility between the datasets published before [154]. Recently, two

papers by Kanaan et al. were published describing plasma cfmiR-21 as a potential

diagnostic marker for CRC and a panel of eight plasma cfmiRNAs for the discrim-

ination of patients with colorectal adenomas from subjects without polyps or

sporadic CRC [115, 155]. There is no concordance in the cfmiRNA panels given

in both papers. If the assumption is correct that genetic alteration seen in prema-

lignant conditions plays a role in the process of cancer development, one should

expect to see at least some of these alterations in tumor cells as well. The fact that

none of the aberrantly expressed cfmiRNAs found in adenoma patients is seen in

cancer patients and that none of the dysregulated cfmiRNAs seen in CRC can be

detected in adenoma patients leads to the conclusion that either these processes

have nothing to do with each other or that the plasma cfmiRNA expression panel in

adenoma patients is not indicative of a tumor development. In contrast to these

observations, Brase et al. [147] observed a very good correlation between

up-regulated cfmiR375 and cfmiR141 levels in serum samples and tumor tissue

from the same prostate cancer patients. Similar findings were also reported in

gastric cancer patients in which cfmiR-106b was over-expressed and cflet-7a

under-expressed in tumor tissue and plasma from the same patients [113].
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In a recently published review on the use of extracellular cfmiRNAs as bio-

markers for patients with lung cancer, the authors analyzed 13 studies and found a

sensitivity of 70–100 % and a specificity of 66–100 %, concluding that the analysis

of cfmiRNAs in body fluids could be used as a screening tool for the detection of

NSCLC patients [156].

In many of the papers published on profiling of cfmiRNA the results are very

inconsistent and this also applies to publications coming from the same laboratory.

This is exemplified in the profiling of breast cancer patients [157, 158] and patients

with lung cancer whose sputum was examined [105, 106]. In addition, there are

only a few data on the age-related expression changes of cfmiRNAs in healthy

subjects underscoring the fact that our knowledge on the biology of cfmiRNAs is

still very rudimentary [159] (see Sect. 10).

The problems we still face in making use of cfmiRNA quantification as a clinical

tool are illustrated in one of the first papers on this topic [138]. The authors show that

plasma cfmiR-29a and cfmiR-92a are over-expressed in colorectal cancer patients

and to a lower degree in adenoma patients. Both markers can discriminate a patient

population (i.e. CRC and adenoma patients) from healthy controls but neither can

differentiate between CRC and adenoma patients. Also, there is a large overlap of

single patients in all groups compared to healthy subjects making a differentiation

based on a single patient almost impossible. The data summarized on the diagnostic

power of circulating cfmiRNAs in patients with a variety of haematologic or solid

tumor diseases look quite impressive, but as long as they cannot be confirmed in

different laboratories they are only a promise for the future [160].

6.3 Synopsis

7 cfNAs in Stool and Urine (See also Sect. 4)

The gold standard for detecting colorectal neoplasia is still a colonoscopy, although

it is known that up to 27 % of neoplastic lesions �5 mm can be missed with this

procedure [161]. In order to enhance the compliance for this examination and as an

alternative/complement to colonoscopy, large efforts were undertaken to develop

non-invasive methods for an early detection of CRC [162, 163].

Miller and Steele [164] and Hong and Ahuja [165] together with dozens of other

papers were published in the recent years in which tumor-associated genetic

alterations found in either plasma cfNAs or in stool samples were described.

Expression analysis of cfmiRNA isolated from body fluids

Diagnosis Therapy response Prognosis Clinical utility

Profiling of cfmiRNA Not any time soon Maybe Maybe Yes, in the long run
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There are different approaches to tackle this problem; the detection and character-

ization of fecal cfDNA, the demonstration of hypermethylated cfDNA in plasma/

serum and stool, the presence of cfRNA (particularly cfmiRNA) and mutation

analysis in blood or stool samples.

The first description of the presence of K-RAS mutations in stool samples from

patients with CRC [166] was followed by a broader method which included the use

of cfDNA from feces for the detection of point mutations in three genes (K-RAS,
p53 and APC), a microsatellite marker (BAT-26) and the generation of PCR

products of different length to generate a DNA integrity index [167]. The methyl-

ation of the SFRP2 gene in fecal cfDNA was the first assay to be used as a marker

for the detection of colorectal cancer [168] and colorectal polyps [169]. The

leftovers of fecal occult blood rests were useful for RNA isolation, cfDNA synthe-

sis and cfmiRNA analysis but only when the stool samples had been stored at 4 �C
(compared to either room temperature or 37 �C) and an increase of cfmiR-106a was

detectable in CRC patients (as compared to healthy volunteers) [170]. Not only

cfmiRNA, but even cfmRNA (which is much more fragile) was successfully

amplified from stool samples of CRC patients, but with a lower sensitivity com-

pared to the detection of methylated cfDNA [171]. By now there are many papers in

which new and old markers have been used for the detection of CRC and other

gastro-intestinal tumors. Some of them are listed to demonstrate their usefulness

and limitations.

The analysis of a panel of six methylated genes from stool DNA was sufficient to

discriminate cancer from non-cancer patients (adenoma patients + disease-free sub-

jects without large bowel pathology) with a sensitivity of 65 % and a specificity of

81 %, but the methylation profile for stool DNA did not reflect the one found in

colonic mucosa [172]. The authors explained this difference on the assumption that

the DNA isolated from stool is not representative for the multitude of alterations

found in colorectal mucosal cells. If this explanation holds true, the immediate

question is: which markers are clinically relevant for the (early) detection of CRC

and do they necessarily have to reflect cellular alterations? In a recent paper, a panel

of three hypermethylated genes (AGTR1, WNT2 and SLIT2) detected colorectal

cancer in stool samples with a sensitivity of 78 % [173]. The control population for

this study consisted of healthy subjects so leaving the question open as to whether

or not this marker panel will be able to differentiate tumor patients from adenoma/

hyperplasia or inflammatory bowel disease patients. The detection of the methyl-

ated spastic paraplegia-20 gene which was heralded as a biomarker for the

non-invasive detection of adenomas and colorectal cancer [174, 175] had also

been found to be hypermethylated in ovarian [176] and prostate cancer [177]

i.e. this marker very likely lacks an organ specificity. A similar observation was

made for the methylation of the integrin alpha 4 gene which was described as a

good biomarker for the early detection of colonic neoplasms. A fecal DNA based

assay found 69 % of individuals with adenomas with a sensitivity of 79 % [178] but

this marker was later described as methylated in cholangiocarcinoma patients as

well [179]. When four hypermethylated genes (i.e. BMP3, EYA4, vimentin and

NDRG4) were analyzed in stool samples from IBD associated CRC patients, those
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with a tumor could be differentiated from the controls, but there was no significant

difference between tumor patients and patients with high-grade or low-grade

dysplasia [180]. In contrast, a promoter methylation of miR-34b/c was found in

75 % of fecal DNA samples from CRC patients but in only 16 % in high-grade

dysplasia patients [181]. The combination of an assay for the analysis of TFPI2
methylation plus the amplification of “long DNA” (245 bp amplicon) differentiated

between controls and CRC patients, but not between CRC and adenoma

patients [182].

Apart from the sDNA test developed for the detection of CRC in stool samples

(encompassing the qPCR quantification of four methylated genes and K-RAS
mutation), there is only one commercial test available which quantifies the amount

of methylated Septin9 cfDNA in plasma. In a head-to-head comparison, the sDNA

test demonstrated 82 % sensitivity for adenomas compared to 14 % for the plasma-

based Sept9 assay while for stage I-III CRC the values were 91 % and 50 % and for

stage IV CRC 75 % and 88 %, respectively [183]. The authors explained the large

difference (especially for adenomas and early stage tumors) with a model in which

epithelial cells are constantly exfoliated into the lumen of the gastro-intestinal tract

forming finally the stool. In contrast, plasma-based markers have to be transported/

released into the vascular system to be detectable. This group also showed that the

size of a neoplasm or an adenoma affects the detection rate, which for CRC with

their sDNA test is about 100 % for tumors larger than 3 cm, whereas only 50–60 %

of tumors with a size of 1–3 cm can be found. For adenomas, there is a linear

increase from 30 % detection rate (size 1 cm) to 90 % for adenomas �4 cm [184].

Apart from CRC there is an urgent need for methods for an early detection of

other tumors originating in the gastro-intestinal tract, the first being pancreatic

cancer. The analysis of sDNA seems to be able to discriminate pancreatic cancer

patients from sex-, age- and smoking-matched control populations using methyl-

ated BMP3 and KRAS [185]. Unfortunately, no patients with precursor lesions of

pancreatic cancer or benign diseases were included in this study. Such a control

group seems to be even more appropriate as it has been demonstrated that KRAS
mutations are detectable in plasma cfDNA of healthy subjects who might develop

bladder cancer later in life [186]. Recently the question was asked as to whether or

not it would be of advantage if there would be a fecal DNA based “pan-detection”

assay for gastro-intestinal tract cancers [187]. The answer is “yes”, provided that

the marker (panel) would target the originating organ e.g. colon, pancreas, bladder,

stomach, gall bladder.

The isolation and characterization of cfNAs from urine is seen as a non-invasive

method for detecting patients suffering from malignancies of the urogenital tract.

In most of the reports published on this topic the cellular fraction of urine was

used for the analysis that cannot be viewed as cell-free in sensu stricto. In one of the

first reports, microsatellite analysis was used for the detection of renal cell carci-

noma patients [188]. Interestingly, the authors demonstrated that the examination of

urine (from the paper it is not clear whether the cellular sediment or cell-free urine
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supernatant was used) is better suited than serum (52 LOH+MA in urine

vs. 23 LOH+MA in serum). That the analysis of cell-free urine is better suited

for microsatellite alterations than urine sediments was shown by several groups and

the reason for this difference might be a “contamination” of the sediment with

normal epithelial cells leading to a high noise vs. signal ratio [189, 190]. The total

amount of cell-free DNA and the relative quantity of long DNA (measured as

400 bp amplicons in q PCR) in urine supernatant is seen as a potential biomarker for

bladder cancer [191]. Since neither tumor stage nor grade is associated with the

amount of long DNA and the amount of cfDNA is not tumor associated at all (see

above) it might well be that the observed increase in cfDNA is related to inflam-

matory processes in the patient population. The possibility to detect aberrantly

methylated plasma cfDNA sequences from breast cancer patients in their cell-free

urine as well is interesting but unfortunately the authors supply no data on the

methylation level in urine from cancer-free women [192]. This leaves the question

open as to whether the assay might have any clinical utility. It had been demon-

strated that the increased integrity of cfDNA from urine can be used as a marker for

an early detection of prostate or bladder cancer, but since in both papers the control

group consisted of healthy volunteers instead of patients suffering from prostatitis

or cystitis or any other benign prostate/bladder disease we can not be sure whether

these findings might have any clinical relevance [193, 194].

In summary, it can be said that there has been much progress in the field of fecal

DNA testing but so far none of the assays are validated up to the point that they can

be used as a primary test for the detection of CRC [195, 196]. Additionally, the

optimal DNA marker panel of markers is unknown. A recently performed meta-

analysis on the detection of aberrant gene methylation in stool samples from

colorectal cancer or adenoma patients included 19 studies with 2,356 patients

[197]. The overall sensitivity and specificity for the detection of patients with

CRC was 64 % and 90 % for hypermethylated genes in stool samples and in studies

with adenoma patients, these values were 54 % and 88 %, respectively. The authors

concluded from their results that the diagnostic accuracy of hypermethylated sDNA

for the detection of CRC or adenoma was better than a fecal occult blood test but

“none of the gene panels tested are currently accurate enough to be used alone for

colo-rectal neoplasia screening,” Before stool-based DNA assays are introduced,

there are a couple of problems that have to be tackled: the sample collection,

storage and handling have to be standardized since these factors might have a

large influence on the performance of a specific test, a single marker or (more

likely) a marker panel has to be generated and validated in prospective studies in

many patients, the diagnostic accuracy to screen for colorectal cancer in asymp-

tomatic, average-risk patients, and soforth ([198, 199]; see chapter “Quality

Assurance”).

262 M. Fleischhacker and B. Schmidt

http://dx.doi.org/10.1007/978-94-017-9168-7_13
http://dx.doi.org/10.1007/978-94-017-9168-7_13


7.1 Synopsis

8 Microsatellite Alterations

By the turn of the millennium, the analysis of microsatellite alterations i.e. loss of

LOH and microsatellite instability (MI) in cfDNA was very popular, but in the last

few years few papers were published on this topic. Among them is one by the group

of Schwarzenbach and colleagues who demonstrated that the detection of LOH at

D12S1725 (mapping to the cyclin D2 gene) in plasma cfDNA of breast cancer

patients is associated with shorter survival [200], an association between the

presence of allelic imbalances in cfDNA and the detection of CTCs in prostate

cancer patients [201] and a possible clinical value for the molecular staging of

prostate cancer patients since their analysis showed a higher allelic imbalance in the

plasma of cancer patients compared to benign prostatic hyperplasia patients

[202]. The authors explain the low incidence of allelic imbalances in the plasma

of cancer patients compared to the paired tumor cell DNA with the presence of

normal cfDNA in the plasma. This could be due to the fact that they applied only

one centrifugation for the plasma preparation that has been shown to be

insufficient for a complete cell removal (see chapters “Pre-analytical Requirements

for Analyzing Nucleic Acids from Blood” and “Circulating DNA and miRNA

Isolation”). Field et al. [203] used a panel of 12 microsatellite markers for the

analysis of cfDNA from bronchial lavage and found genetic alterations in 35 % of

the lung cancer patients, but also in 23 % of patients without cytological or

radiological evidence of bronchial neoplasia (see Sect. 6 bronchial lavage).

There are several factors contributing to the decreasing interest in microsatellite

analysis in cfDNA such as (i) no high-throughput techniques for microsatellite

analysis, (ii) problems with the reproducibility of the results, (iii) drop-out exper-

iments due to low and highly degraded DNA and (iv) the introduction of PCR

artifacts due to low DNA concentration i.e. false positive results due polymerase

slippage.
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8.1 Synopsis

9 Epigenetic Modifications

So far, we have only a rudimentary knowledge of the influence diet, lifestyle [204]

and other environmental factors have on epigenetic modifications resulting in

aberrant expression of tumor suppressor genes and oncogenes leading to increased

cancer susceptibility [205]. Also, we still do not fully understand the relationship

between age-related and tumor-related methylation processes and how methylation

changes the biology of a tumor cell [206, 207]. Some of the markers assumed to be

tumor-associated, such as CDH1, HIC1, TWIST1, DAPK1, APC and RARß, have
been described as being hypermethylated in mononuclear cells which very likely

contribute to the cfDNA in plasma [208]. Thus, before establishing an epigenetic

marker panel able to specifically detect precancerous lesions or signs of malignancy

at an early stage, much more information is needed [209]. A good example is given

by Hauser et al. [210] who found that the methylation level of nine genes isolated

from serum is variable and able to differentiate between healthy individuals and

patients with bladder cancer but not between the latter and patients with benign

bladder diseases. Nevertheless, there are quite a few papers published in which

several hypermethylated sequences isolated from cell free body fluids were ana-

lyzed for their diagnostic value. For the early detection of lung cancer alone there

are some 20 papers published in which methylated genes isolated from bronchial

lavage, bronchial washings, sputum and plasma were described as being useful

[211]. Similar approaches have been published for an early detection of malignan-

cies of the breast, stomach, prostate, colon, the urogenital system, liver, pancreas

and thyroid, but so far none of them made its way into clinical routine.

A promoter hypermethylation of the CST6 gene was found in plasma of breast

cancer patients that could be clearly distinguished from a group of healthy subjects,

but there was no difference in the groups of patients who relapsed or died [212]. In

contrast, the quantitative analysis of methylated cfDNA for either staging or

prognosis or the differentiation between patients with local disease vs. patients

with metastases seems to be a very promising approach. This was demonstrated in a

study in which patients with locally confined prostate cancer and patients with

metastases were examined. The authors showed that patients with metastatic

disease had a higher amount of BMP6 mRNA and a decreased quantity of meth-

ylated H3K27 gene in their plasma cfDNA [213]. A similar observation was made

Microsatellite alterations in plasma cfDNA
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on patients with metastatic melanoma that is associated with the presence of

methylated tissue factor pathway inhibitor 2 (TFPI2) cfDNA in serum [214]. In

lung cancer patients treated with tyrosine kinase inhibitors the presence of

unmethylated CHFR serum cfDNA is a predictor of increased survival [215].

9.1 Synopsis

10 Inflammation and Cancer

There are strong links between inflammation and cancer and recently cancer-related

inflammatory processes were included as another “hallmark of cancer” [216]. The

tight junctions between inflammatory processes and the development of a tumor

embrace both extrinsic inflammatory pathways causing/promoting cancer and

intrinsic pathways in which cancer causing genetic events lead to inflammation

[217–219]. Frequently, tumor patients demonstrate an elevated C-reactive protein

level [220, 221] and in Table 4 some of the premalignant conditions often associ-

ated with inflammatory processes are summarized. This observation has been

neglected in many studies searching for cancer-specific biomarkers. The examina-

tion of sputum in cancer-free patients with idiopathic pulmonary fibrosis demon-

strated changes in markers previously associated with lung cancer [239]. No

microsatellite alterations were found in the sputum of smoking, non-chronic

obstructive pulmonary disease patients whereas chronic obstructive pulmonary

disease patients demonstrated microsatellite alterations and/or LOS leading to the

assumption that chronic inflammation is the reason for the detected DNA damage

[240]. In addition, microsatellite instability in non-neoplastic mucosa from patients

with chronic, ulcerative colitis was described by Brentnall et al. [241] and in plasma

cfDNA as well [242]. It is possible that the alterations in these patients are not

indicative of a tumor but the result of inflammatory processes. This can also be

applied to the relationship of miRNAs in inflammatory processes and their associ-

ation with cancer [243]. An over-expression of miR-21 has been demonstrated in

inflammatory processes but at the same time in malignant diseases. This miRNA

species is found to be over-expressed in sputum and plasma of lung cancer patients,

in feces from CRC patients [244] and is seen as a marker for early tumor detection

Detection and quantification of epigenetic modifications of cfDNA
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[106, 245]. Thus, inflammation is a very important confounding factor and has to be

considered when searching for biomarkers in plasma and other body fluids [246].

11 Functional and Biological Aspects

The debate about the mechanisms by which cfNAs are released into the cellular

environment is still ongoing as well as the discussion on the question as to whether

or not cfNAs are only “leftovers” from dead cells or are actively released. That the

latter mechanism might be responsible for the presence of cfmiRNA was demon-

strated by Ohshima and coworkers who showed that cultivated cells with a high

intracellular level of let-7 miRNA secreted this miRNA via exosomes into the

extracellular environment [247]. Since it had been demonstrated previously that let-
7 has a tumor-suppressive role (by targeting oncogenes like RAS and HMGA2), the
authors speculated that the highly metastatic cell line producing this miRNA

generated a “metastatic niche” and therefore maintained the oncogenesis. Mature

cfmiRNAs come in different forms, i.e. bound to proteins belonging to the

Argonaute family or encapsulated in microvesicles, apoptotic bodies or high-

density lipoprotein particles [248]. The question as to whether the majority of

cfmiRNA is bound to Ago2 protein making them highly nuclease-resistant [249]

or is particle-associated as reported by Garcia et al. [250] is open for discussion.

It had been shown that cfRNA secreted from human tumor cell lines promotes

tumor cell trafficking and progression via TNF-ά [251]. Also a unidirectional

intercellular transfer of miRNA from T cells to antigen presenting cells and a gene

expression in recipient cells has been described [252]. miRNAs which are

released into the cellular environment can be transferred and perform a function

in recipient cells [253, 254]. Tumor-derived melanoma exosomes might be

mediators of tumorigenesis and able to reprogram bone marrow progenitor cells

Table 4 Cancer and inflammation, modified from [222]

Malignancy Inflammatory processes Reference

Colorectal Inflammatory bowel disease, adenomas, polyps [223–225]

Gastric Helicobacter pylori gastritis [226]

Esophagus Barrett’s esophagus [227]

Pancreas Chronic pancreatitis [228–230]

Lung Smoking, silica, benign lung diseases [231]

Mesothelioma Asbestosis [232]

Bladder Cystitis, schistosomiasis [233]

Hepatocellular Hepatitis B and C, cirrhosis [234]

Cervix and anus Papillomavirus [235]

Ovary Pelvic inflammatory disease [236]

Kaposi’s sarcoma Human herpesvirus type 8 [237]

Leukemia Essential thrombocythemia, myelofibrosis [238]
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toward a pro-vasculogenic phenotype [255]. Additionally it has been shown

that microvesicles and exosomes are not only able to transport miRNAs but

deliver these miRNAs to recipient cells and alter their gene expression pattern

[248, 256]. Multiple myeloma bone-marrow mesenchymal stromal cells release

exosomes that are transferred to multiple myeloma cells resulting in a modulation

of their tumor growth in vivo. In addition, these multiple myeloma bone-marrow

mesenchymal stromal cells (BM-MSC) derived exosomes had higher levels of

oncogenic proteins, cytokines and adhesion molecules compared with exosomes

from the cells of origin and promoted the growth of multiple myeloma cells

whereas exosomes from normal BM-MSC inhibited the growth of myeloma

cells [257].

12 Technical Issues and Study Design

12.1 Choice of Material

Either plasma or serum is frequently the first choice for the analysis of cfNAs. So

far, it is not known if one of them is preferable over the other, but there are a number

of reports comparing plasma vs. serum as starting material (see chapter “Pre-

analytical Requirements for Analyzing Nucleic Acids from Blood”). These include

the observation that the amount of cfDNA in serum is higher (3–20-fold) as

compared with plasma from the same individual. This seems to be due to the

release of nucleic acids from white blood cells during clotting [258]. In one report

it was demonstrated that plasma is better than serum for the detection of EGFR
mutations (95 % in plasma vs 72 % in serum) and this was explained by a higher

amount of DNA from healthy cells in serum due to clotting [259]. The comparison

of miRNA profiles between plasma and serum samples from the same donors

showed that (i) the total number of detectable miRNA species obtained with

Taqman cards and Exiqon panels varied, (ii) the two platforms differed very

much in the amount of miRNA detected, (iii) there was no correlation between

the number of detected miRNAs and the RNA concentration and (iv) the higher

concentration of RNA/miRNA in serum than plasma might be the result of the

coagulation process and the release of cellular RNA/miRNA into the environment

[131]. A degree of correlation between the levels of circulating microRNA bio-

markers in plasma and serum using qRT-PCR was demonstrated by Kroh

et al. [260].

Nevertheless it is worth thinking carefully about the starting material. When

cfmiRNAs from serum and cerebrospinal fluid from patients with neurological

diseases were profiled by NGS, there were (as one could expect) substantial

differences found [261]. A similar observation was made when miRNA signatures

from plasma and bronchial lavage fluid from the same patients were compared

[262]. For the detection of genetic alterations associated with tumors of the
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gastro-intestinal tract gastric juice, pancreatic juice and/or feces/lavage fluid

obtained during colonoscopy might be better suited than either plasma or serum.

Other sources might be nipple aspirate for the detection of malignant alterations of

the breast, urine for the urogenital system (kidney, bladder), either saliva or sputum

for head and neck and lung cancer, vitreus fluid for ocular diseases and pleural fluid

or bronchial lavage for lung diseases. In a direct comparison, a panel of four

methylated genes was quantified from prostate cancer patients when all of them

showed a greater sensitivity on analysis from urine as compared to plasma [263].

12.2 Pre-analytic Variables

A variety of different factors such as blood sampling and processing, the use or

non-use of anticoagulants, the time interval between blood sampling and

processing, the storage temperature before and after processing, freezing of plasma

samples vs. isolated DNA have an impact on the amount and quality of cfNAs that

can be isolated [7, 86, 264, 265]. Nevertheless, there is so far no agreement on a

standard operational procedure for any of the steps mentioned (discussed in chapter

“Pre-analytical Requirements for Analyzing Nucleic Acids from Blood”).

The influence of storage of blood samples on the amount of cell-free DNA was

examined by Lee et al who demonstrated that the concentration of extracellular

DNA increased in serum samples during storage at 4˚C over a period of up to 5

days, whereas the amount of cell-free DNA in citrate plasma increased only to a

small degree [258] and similar results were made by others as well [266]. Recently

cell-free DNA blood collection tubes (BCT) were introduced containing a stabiliz-

ing substance that prevents the extracellular DNA from being diluted by cellular

DNA [267]. The use of these tubes might be a good choice when samples have to be

shipped for processing to another laboratory but when the blood samples are

processed in a reasonable time (several hours to 1 day) EDTA collection tubes

are not inferior [268]. In a head-to-head analysis the BCT tubes and blood drawing

tubes containing CPDA (citrate, phosphate, dextrose, adenine) were stored for up to

48 hrs at room temperature before plasma was isolated. While in cell-free plasma

DNA from CPDA tubes the methylated SEPT9 gene was consistently detected the

BCT system failed in 35% of the samples [269].

Importantly, Madisen et al. [270] demonstrated that isolated DNA can be stored

either in a dried form or in solution at �20 �C for several years without an increase

in degradation. In contrast, when circulating nucleosomes in serum were stored at

�70 �C and the DNA concentration was measured shortly after sampling and at a

later time (�5 years), there was found to be a significant drop in the amount of

nucleosomes detectable [271].

The generation of plasma or other body fluids that are cell-free is of the utmost

importance since an incomplete cell removal leads to misleading and/or

nonreproducible results [272]. It is known that a one step low speed centrifugation

of EDTA blood for 10 min at 1,700 g produces a “cloudy supernatant” in which
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cfmiRNAs are heavily “contaminated” with cellular miRNAs, mostly of hemato-

poietic origin. Only a second spin for 10 min at 2,000� g produced a plasma

fraction containing mainly circulating cfmiRNA species [273, 274]. The latter

group also demonstrated, in a thorough analysis, that the processing of plasma

samples had a big influence on cfmiRNA levels [273]. Using a different approach, it

was demonstrated that a “contamination” of plasma DNA with as low as 5 % of

normal (WBC) DNA prevents LOH from being detected in prostate cancer patients

[275]. Therefore, either high-speed centrifugation or filtration of the plasma is

highly recommended [276] and it is clear that, once started, one has to stay with

one of the two methods. That the use of haemolytic blood samples can lead to a

change in the plasma cfmiRNA expression pattern was illustrated for miR-16 and

miR-451, an important observation since both genes are frequently used as refer-

ence genes [277].

12.3 Technical/Biological Pitfalls

Blood Preparations and RNAs

Some reports concern the use of PAX gene blood collection tubes for RNA

stabilization [278, 279]. In these experiments, the resulting RNA is mostly of

cellular origin as the stabilization reagent in these tubes lyses all blood cells and,

therefore, this system is not suited for the analysis of extracellular RNAs. Pritchard

et al. [280] analyzed the expression of 79 cfmiRNAs that were reported to be good

tumor biomarkers for a variety of different solid tumors. Of these, 58 % (46/79)

were shown to be highly expressed in blood cells and, therefore, the number of

blood cell counts as well as hemolysis can alter the amount of some of these plasma

cfmiRNA by up to 50-fold. A similar observation was published by Kirschner

et al. [281] who demonstrated that some of the cfmiRNA that had been proposed as

tumor markers e.g. miR-21, miR-106a, miR-92a, miR-17 and miR-16, are

increased in hemolytic plasma samples. The storage of sera at 4 �C for up to

4 days, followed by the isolation of exosomes by EpCAM antibodies bound to

magnetic beads, did not change the quantity of exosome-associated miR-21,

miR-200b and miR-205 [139] This group also demonstrated that all analyzed

miRNAs (i.e. miR-21, miR-141, miR-200a, miR-200b, miR-200c, miR-203,

miR-205, miR-214) were elevated in exosomes from stage I-III ovarian cancer

patients compared to women with benign ovarian disease [139].

The cfNAs found in body fluids are always a mix the origin of which is not easy

to trace. Chen and coworkers [90] observed a considerable overlap of cfmiRNA

profiles in serum as compared to blood cells in healthy subjects, leaving the

possibility that in papers in which healthy subjects are used as controls, not

cfNAs but rather a blood cell derived signature is analyzed. The cfmiRNA com-

position in different body fluids (amniotic fluid, breast milk, bronchial lavage,

cerebrospinal fluid, colostrum, peritoneal fluid, plasma, pleural fluid, saliva,
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seminal fluid, tears and urine) from healthy subjects is distinct for each fluid, a

reflection of the surrounding tissues confirming this observation [9]. Another point

for consideration is the observation that in most examinations there was no com-

plete concordance between the alterations found between tumor tissue and body

fluids. We can only speculate on the different reasons for this observation such

as access of the tumor cells to the vascular system, differences of the tumor

subpopulations for shedding nucleic acids into the environment, size of the tumor

and so forth. In a recently published study it was shown that the concordance for a

methylation of the protocadherin 10 promoter region in tissue and plasma was

higher in early stage colorectal cancer patients compared to patients with a later

stage of the disease [282]. A similar lack of concordance for the detection of a

methylated sequence (CpG island of the TFPI2 gene) in tumor cell DNA and serum

of 20, paired cases of metastatic melanoma patients was recently reported

[214]. Interestingly, in 9/20 cases, the mean % TFPI2 methylation was higher in

serum than in the tumor. Unfortunately, the authors did not supply the clinical

details of these patients e.g. TNM, Breslow thickness, so leaving the question open

as to whether or not there is any correlation between higher serum methylation and

clinical data. When the status of the EGFR gene was analyzed in tumor tissue and

matched plasma from NSCLC patients using the sensitive mutant-enriched PCR

method, the concordance was only 71 % (79/111) [283].

In three recently published papers, the authors used different platforms,

i.e. NGS, qPCR and microarrays for the quantification of cfmiRNA and concluded

that each of the methods had its pros and cons and that it is necessary to critically

evaluate the results obtained [284–287].

Isolation Methods

cfmiRNAs are very stable and can be isolated from a variety of different body fluids

(see above). Nevertheless the quantity is very low and, therefore, it is crucial to rely

on very efficient isolation methods. In an effort to maximize the cfmiRNA yield

obtained from human cerebrospinal fluid, ten commercially available RNA isola-

tion kits were compared and the isolated cfmiRNAs analyzed by NGS [288]. The

authors not only demonstrated that the yield of total RNA obtained from 200 μL
plasma varied by a factor of 15 between the different methods, but that a simple

re-extraction (even when kits were used) almost doubled the yield of miRNA.

Since the amount of cfDNA in body fluids is also rather small (not to mention the

fact that it is highly degraded) it is important to maximize the recovery rate for these

nucleic acids as well [289]. When the amount of plasma as starting material for the

isolation and quantification of methylated cfDNA was increased from 500 μL to

2 mL and at the same time the bisulfite treatment was optimized, this resulted not

only in a higher DNA yield (1.5–5-fold) but also in a 25-fold increase in sensitivity

for the detection of methylated sequences [290]. An increase in the amount of

starting material can have a negative effect on the quantification of cfmiRNA

isolated from plasma or serum leading to the conclusion that a titration of the
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starting material is necessary and yields a higher quantification accuracy [291]. In

most papers, authors use a method for cfNA isolation from body fluids involving

strong chaotropic salts such as guanidium or phenol/chloroform purification to

remove proteins. In an approach described by Ho et al. [292], 100 μL plasma

were boiled for 10 min at 100 �C, the samples spun at 10 min at 13,000 g and

1 μL supernatant used for miRNA detection [292]. They found an increased cfmiR-

210 level in cancer patients as compared to age-matched non-cancer controls but

did not report the Ct values. According to our experience, such a crude purification

method is likely to yield unreliable results.

When plasma DNA was isolated from breast cancer patients using the QIamp

DNA mini kit (Qiagen) and the Wizard Plus SV columns (Promega) to obtain high

molecular weight (>1,000 bp) and low molecular weight DNA (<1,000 bp),

respectively, 38 % of the patients showed LOH in all eight markers when short

DNA was analyzed as compared to 28 % in the fraction of long DNA [200].

In a study reported by Kumar et al. [293], it was demonstrated that the results

obtained in microarray experiments using saliva derived cfmRNA were not

influenced by treatment of the samples with either RNase or DNase so leading to

the conclusion that the generated RT-PCR signal is not RNA-based but DNA. There

are some reports on the use of cfNAs from saliva for the detection of different types

of cancer (e.g. lung, head and neck) and the cautionary note expressed by Kumar

et al. [293] has to be taken very seriously.

So far there are no published data on the influence improved isolation protocols

might have on gene expression patterns in either miRNA or mRNA analysis, in the

sensitivity of mutation detection systems or the quantification of methylated

sequences. Therefore, standardized isolation systems are clearly warranted.

Real-Time Quantification

Apart from apoptosis and necrosis, i.e. cell death in its different forms leading to the

liberation of cellular DNA and RNA, there is also the possibility of “extrusion” by

living cells. These different mechanisms could lead to DNA fragments of different

sizes. cfNAs in general are highly degraded (no matter by which mechanism they

were liberated) and therefore qPCR methods should amplify short targets,

i.e. �100 bp, to work reliably [294]. This is a very important point since it is

known that a reduction in amplicon size results in an increase amount of cfDNA

[295, 296]. Inhibition of PCR by various inhibitors is also an important point for

consideration. Recently, it was demonstrated that dPCR is less susceptible to

inhibitory substances such as SDS, heparin or EDTA than qPCR ([297]; chapter

“Circulating DNA and miRNA Isolation”).

The lack of rigorously tested reference genes used in gene expression analysis,

resulting in the difficulty to compare findings from different laboratories, is still one

of the major problems. In an attempt to solve this problem, cfmiRNA profiling

(TLDA arrays and Solexa sequencing) was performed from pools of sera from

patients with lung, breast, cervical, gastric cancers and two control groups (pooled
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sera from male/female healthy subjects). When two miRNAs (miR-191 and

miR-484) were chosen as endogenous controls, the authors discovered a panel of

four miRNAs able to differentiate between breast cancer patients and controls

[157]. Whether or not the authors’ conclusion that these two miRNAs might be

useful as endogenous controls for serum cfmiRNA detection in most (!) cancers

will prove to be correct has to be demonstrated in future experiments.

Choice of Appropriate Controls

The majority of papers in which cfNAs were used for the characterization of

tumor-associated alterations, compare tumor patients with healthy subjects

matched in age, sex, life-style [140, 261, 274, 298–300]. In most cases this is an

inappropriate control group since factors like inflammatory processes and alter-

ations associated with premalignant conditions are not taken into account [246]. In

one of the very few studies using a proper control group, the levels of circulating

cfmiRNAs were analyzed in breast cancer patients and patients with a benign breast

disease [301]. With a panel of 4 cfmiRNAs only miR-214 could discriminate

between the two patient populations whereas the others failed. Interestingly, this

is the only cfmiRNA concentration which decreased after tumor removal by

surgery whereas the other three cfmiRNA levels did not change. In another study,

miR-155 and miR-196a were used for the examination of chronic pancreatitis

(CP) and pancreatic ductal carcinoma patients (PDAC) demonstrating that these

two miRNAs discriminated between healthy controls and both patient groups, but

were not able to differentiate between CP and PDAC [116]. A proper control group

of patients with cervical intraepithelial neoplasia was used for the analysis of

patients with uterine cervical cancer and the over-expression of circulating Bmi-1

cfmRNA described as a useful marker for discriminating the two groups [302]. The

analysis of plasma cfmiRNA from patients with colorectal cancer, advanced ade-

nomas and healthy controls demonstrated that a panel of six cfmiRNAs was

significantly up-regulated in CRC patients compared to the control population but

that these markers did not discriminate CRC patients from adenoma patients

[303]. This paper demonstrates the problems being faced in the search for bio-

markers useful for diagnostic purposes.

The data published by Wang et al. [304] must be seen critically for several

reasons. The authors used heparin stabilized plasma which is known to be a very

powerful polymerase inhibitor, the plasma being obtained by spinning the tube only

once at rather low speed (leading to a sample which is very unlikely to be cell-free,

see above), the pancreatic cancer patients were compared to healthy subjects and

the panel of four cfmiRNAs discriminating the two groups was based mainly on a

few cases in the patients cohort demonstrating exceptionally high quantities of

plasma cfmiRNA [304].
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13 Early Tumor Detection

The ultimate goal of cancer research is the detection of a tumor at an early stage in

which a curative treatment is not only possible, but successful in the majority of

patients (we are not even mentioning screening of an asymptomatic population

which increases the demands even more). In one of the earliest reports on the

development of lung cancer, Saccomanno et al. [305] described the possibility of

detecting lung cancer by dysplasia and carcinoma in situ approximately 4–5 years

before the time of diagnosis. Since then, substantial efforts have been made to

establish a marker panel able to, not only detect cancer at a very early stage, but to

discriminate premalignant stages from early cancers. Unfortunately, none of the

immunocytochemistry markers tested so far has been able to detect premalignant

changes in peripheral blood. Also, the cancer model depicting the increased amount

of genetic alterations over time and the association with morphological changes of

the lung clearly illustrates the stepwise nature of tumor pathogenesis, though so far

has not been demonstrated as clinically helpful [306]. In an attempt to combine

imaging diagnostics with molecular genetic analysis for an early detection of lung

cancer, subjects enrolled in a screening trial were additionally analyzed for the

presence of microsatellite alterations, K-RAS and p53 mutations and the amount of

cfDNA in plasma and sputum. In this study, a statistically significant difference in

the frequency of allelic imbalances (sputum+ plasma) in subjects with a negative

computerised tomography scan (17 alterations) and positive computerised tomog-

raphy scan (people with non-calcified nodules, 44 alterations) was observed [307].

When Diehl et al. [308] looked for mutations in the plasma of colorectal cancer

patients, they wrote that “it is unlikely that circulating mutant DNA could be used to

detect premalignant tumors, based on the fact that we were unable to detect such

DNA even in very large adenomas”. A similar statement was made by Berger and

Ahlquist [309]: “It is biologically implausible that DNA markers will be present in

plasma of patients with precancers irrespective of the assay method employed”.

Whether or not these statements are true has to be seen in the future. In the case of

colorectal cancer patients it could be that a more sensitive stool-based assay might

yield better results. When the frequencies of SFRP2 methylation in tumor tissue,

stool and serum DNA were compared, the sensitivity of the assay was 88 % and

84 % for tissue and stool DNA, but dropped to 67 % for serum DNA. On the other

hand, there was an increase in the specificity (number of benign adenomas without

SFRP2 methylation) from 35 % (tissue) and 54 % (stool DNA) to 94 % in serum

cfDNA [310]. As for other tumor locations, it may be useful to look for genetic

alterations in body fluids closer to the scene of the action e.g. bronchial lavage in

lung cancer, sputum in head and neck cancer, nipple fluid in breast cancer. Their

observation that the amount of tumor cfDNA released into circulation is indepen-

dent of tumour size is confirmed by results from Garcia-Olmo et al. [311], but

contrasts with reports in which a correlation between tumour size and the amount of

cfDNA was demonstrated [294, 312] leaving this question open to debate.
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14 Literature Search

For the majority of researchers, the most obvious and straightforward approach to

find the relevant papers is a search in NCBI’s Pubmed (http://www.ncbi.nlm.nih.

gov/pubmed/?otool¼idehallib). Recently, quite a few very useful key words such

as cell free, cell free DNA, circulating cell free DNA, cell free DNA cancer, cell

free circulating DNA, cell free RNA, cell free DNA plasma, circulating tumor

nDNA, circulating miRNA, circulating nucleic, circulating free DNA and so forth,

have been included. Unfortunately, these terms are not yet included in the MeSH

database that results in many but frequently not relevant “hits” when searching for

papers dealing with these topics.

Possible supplementary sources and alternatives to Pubmed are the web

of knowledge (http://apps.webofknowledge.com/UA_GeneralSearch_input.do?

product¼UA&search_mode¼GeneralSearch&SID¼R2bUyJUav2wOccVFZ8i&

preferencesSaved¼), quertle (http://www.quertle.info/) or recently (http://www.

recentlyapp.com/).

15 Summary

In the last few years, cfNAs have become a very hot topic and it is almost

impossible to keep pace with the number of new papers published basically every

day. Nevertheless there are quite a few fundamental questions and problems for

which we do not have an answer.

1. Our basic knowledge on cfNAs is far from being complete. We still do not know

all of the mechanisms leading to the liberation of nucleic acids into the extra-

cellular environment. There is some evidence that these cfNAs are not just

artifacts but may serve a biological function (see chapter “The Biology of

CNAPS”). These and other problems have to be tackled before we can move

on to establish new clinically relevant and useful biomarkers [313].

2. There are technical and methodological issues that have to be solved. Once

obtained, cfNAs are highly degraded and generally in a poor shape, no matter

what is done to protect them from further degradation. Some species

e.g. miRNA, which are tiny and very resistant to harsh conditions, can be

isolated as intact molecules whereas mRNA and DNA are more susceptible to

nuclease attacks and can only be isolated as highly degraded fragments. There is

some evidence that the size of nucleic acid fragments from normal healthy cells

is different from the ones released from tumor cells, i.e. the latter one seems to be

smaller. This should be kept in mind when designing methods and assays

(such as qPCR, dPCR) for the detection of tumor-associated alterations.

3. So far there is no consensus on a “gold standard” for the isolation of cfNAs

(chapter “Circulating DNA and miRNA Isolation”). There are many bead-based

or column-based manual and robot-based methods available (homebrew as well
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as commercially produced kits) but none of them is seen as “the winner”. Only a

streamlined, robust procedure which starts with blood drawing (or obtaining

other body fluids), preparation of cell-free body fluids, to storage conditions at

low temperatures, isolation of nucleic acids up to measurement of different

parameters which relies upon rigid SOPs and the application of certified ingre-

dients for all steps will ultimately lead to success.

4. The choice of an appropriate control population for the search of new bio-

markers is of utmost importance. In many papers healthy individuals have

been used as controls making the results obtained at least questionable. It is

likely that these biomarkers will be unable to differentiate between tumor

patients and patients with premalignant precursor lesions or patients with benign

diseases affecting the target organ.

5. It might be useful to think about future approaches in which the genetic analysis

of cfNAs in combination with the isolation and characterization of CTCs is

combined. This combination may lead to deeper insights into tumor biology

and to improved strategies for the care of cancer patients [314].

6. The use of plasma/serum or any other body fluid for the isolation and detection

of tumor-associated genetic alterations has many advantages (as compared to the

difficulty of obtaining (repeat) biopsies) in that it is only minimally invasive,

opens the possibility for kinetic studies, but has also disadvantages (e.g. the

“dilution” of tumor-associated cfNAs with genetic material from different cell

types of hematopoietic and non-hematopoietic origin).
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Stebbings LA, Andersson LC, Flanagan AM, Durbecq V, Ignatiadis M, Kallioniemi O,

Heckman CA, Alitalo K, Edgren H, Futreal PA, Stratton MR, Campbell PJ (2010) Use of

cancer-specific genomic rearrangements to quantify disease burden in plasma from patients

with solid tumors. Genes Chromosomes Cancer 49:1062–1069

64. Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F, Dawson SJ, Piskorz AM,

Jimenez-Linan M, Bentley D, Hadfield J, May AP, Caldas C, Brenton JD, Rosenfeld N (2012)

Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing

of plasma DNA. Sci Transl Med 4:136ra68

65. Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin SF,

Kingsbury Z, Wong AS, Marass F, Humphray S, Hadfield J, Bentley D, Chin TM, Brenton

JD, Caldas C, Rosenfeld N (2013) Non-invasive analysis of acquired resistance to cancer

therapy by sequencing of plasma DNA. Nature 497:108–112

66. Li M, Chen WD, Papadopoulos N, Goodman SN, Bjerregaard NC, Laurberg S, Levin B,

Juhl H, Arber N, Moinova H, Durkee K, Schmidt K, He Y, Diehl F, Velculescu VE, Zhou S,

Diaz LA Jr, Kinzler KW, Markowitz SD, Vogelstein B (2009) Sensitive digital quantification

of DNA methylation in clinical samples. Nat Biotechnol 27(9):858–863

67. Weisenberger DJ, Trinh BN, Campan M, Sharma S, Long TI, Ananthnarayan S, Liang G,

Esteva FJ, Hortobagyi GN, McCormick F, Jones PA, Laird PW (2008) DNA methylation

analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Res

36:4689–4698

68. Taly V, Pekin D, Benhaim L, Kotsopoulos SK, Le Corre D, Li X, Atochin I, Link DR,
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Ellinger J (2013) Serum DNA hypermethylation in patients with bladder cancer: results of

a prospective multicenter study. Anticancer Res 33(3):779–784

211. Liloglou T, Bediaga NG, Brown BR, Field JK, Davies MP (2014) Epigenetic biomarkers in

lung cancer. Cancer Lett 342(2):200–212

212. Chimonidou M, Tzitzira A, Strati A, Sotiropoulou G, Sfikas C, Malamos N, Georgoulias V,

Lianidou E (2013) CST6 promoter methylation in circulating cell-free DNA of breast cancer

patients. Clin Biochem 46(3):235–240

213. Deligezer U, Yaman F, Darendeliler E (2010) Post-treatment circulating plasma BMP6

mRNA and H3K27 methylation levels discriminate metastatic prostate cancer from localized

disease. Clin Chim Acta 411(19–20):1452–1456

214. Lo NC, Wang H, McHugh A, Lattanzio L, Matin R, Harwood C, Syed N, Hatzimichael E,

Briasoulis E, Merlano M, Evans A, Thompson A, Leigh I, Fleming C, Inman GJ, Proby C,

Crook T (2013) Methylated tissue factor pathway inhibitor 2 (TFPI2) DNA in serum is a

biomarker of metastatic melanoma. J Invest Dermatol 133(5):1278–1285

215. Salazar F, Molina MA, Sanchez-Ronco M, Moran T, Ramirez JL, Sanchez JM, Stahel R,

Garrido P, Cobo M, Isla D, Bertran-Alamillo J, Massuti B, Cardenal F, Manegold C, Lianes

P, Trigo JM, Sanchez JJ, Taron M, Rosell R (2011) First-line therapy and methylation status

Extracellular Nucleic Acids and Cancer 287

http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0041016/
http://dx.doi.org/10.1073/pnas.1310643110


of CHFR in serum influence outcome to chemotherapy versus EGFR tyrosine kinase inhib-

itors as second-line therapy in stage IV non-small-cell lung cancer patients. Lung Cancer 72

(1):84–91

216. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation,

the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30(7):1073–1081

217. Allavena P, Garlanda C, Borrello MG, Sica A, Mantovani A (2008) Pathways connecting

inflammation and cancer. Curr Opin Genet Dev 18(1):3–10

218. Candido J, Hagemann T (2013) Cancer-related inflammation. J Clin Immunol 33(Suppl 1):

S79–S84

219. Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumor-promoting chronic inflam-

mation: a magic bullet? Science 339(6117):286–291

220. Heikkila K, Ebrahim S, Lawlor DA (2007) A systematic review of the association between

circulating concentrations of C reactive protein and cancer. J Epidemiol Community Health

61(9):824–833

221. Wang CS, Sun CF (2009) C-reactive protein and malignancy: clinico-pathological associa-

tion and therapeutic implication. Chang Gung Med J 32(5):471–482

222. Moore MM, Chua W, Charles KA, Clarke SJ (2010) Inflammation and cancer: causes and

consequences. Clin Pharmacol Ther 87:504–508

223. Grivennikov SI (2013) Inflammation and colorectal cancer: colitis-associated neoplasia.

Semin Immunopathol 35(2):229–244

224. Okayama H, Schetter AJ, Harris CC (2012) MicroRNAs and inflammation in the pathogen-

esis and progression of colon cancer. Dig Dis 30(Suppl 2):9–15

225. Rogler G (2012) Inflammatory bowel disease cancer risk, detection and surveillance. Dig Dis

30(Suppl 2):48–54

226. Touati E (2010) When bacteria become mutagenic and carcinogenic: lessons from H. pylori.

Mutat Res 703(1):66–70

227. Miyashita T, Shah FA, Miwa K, Sasaki S, Nishijima K, Oyama K, Ninomiya I, Fushida S,

Fujimura T, Hattori T, Harmon JW, Ohta T (2013) Impact of inflammation-metaplasia-

adenocarcinoma sequence and prevention in surgical rat models. Digestion 87(1):6–11

228. Gukovsky I, Li N, Todoric J, Gukovskaya A, Karin M (2013) Inflammation, autophagy, and

obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastro-

enterology 144(6):1199–1209

229. Momi N, Kaur S, Krishn SR, Batra SK (2012) Discovering the route from inflammation to

pancreatic cancer. Minerva Gastroenterol Dietol 58(4):283–297

230. Steele CW, Jamieson NB, Evans TR, McKay CJ, Sansom OJ, Morton JP, Carter CR (2013)

Exploiting inflammation for therapeutic gain in pancreatic cancer. Br J Cancer 108(5):997–

1003

231. Jafri SH, Shi R, Mills G (2013) Advance lung cancer inflammation index (ALI) at diagnosis is

a prognostic marker in patients with metastatic non-small cell lung cancer (NSCLC): a

retrospective review. BMC Cancer 13:158. doi:10.1186/1471-2407-13-158

232. Mossman BT, Shukla A, Heintz NH, Verschraegen CF, Thomas A, Hassan R (2013) New

insights into understanding the mechanisms, pathogenesis, and management of malignant

mesotheliomas. Am J Pathol 182(4):1065–1077

233. Michaud DS (2007) Chronic inflammation and bladder cancer. Urol Oncol 25(3):260–268

234. Stauffer JK, Scarzello AJ, Jiang Q, Wiltrout RH (2012) Chronic inflammation, immune

escape, and oncogenesis in the liver: a unique neighborhood for novel intersections.

Hepatology 56(4):1567–1574

235. Moss SF, Blaser MJ (2005) Mechanisms of disease: inflammation and the origins of cancer.

Nat Clin Pract Oncol 2(2):90–97

236. Shan W, Liu J (2009) Inflammation: a hidden path to breaking the spell of ovarian cancer.

Cell Cycle 8:3107–3111

288 M. Fleischhacker and B. Schmidt

http://dx.doi.org/10.1186/1471-2407-13-158


237. Riva G, Barozzi P, Torelli G, Luppi M (2010) Immunological and inflammatory features of

Kaposi’s sarcoma and other Kaposi’s sarcoma-associated herpesvirus/human herpesvirus

8-associated neoplasias. AIDS Rev 12(1):40–51

238. Hasselbalch HC (2013) Chronic inflammation as a promotor of mutagenesis in essential

thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for

cancer development? Leuk Res 37(2):214–220

239. Demopoulos K, Arvanitis DA, Vassilakis DA (2002) MYCL1, FHIT, SPARC, p16(INK4)

and TP53 genes associated to lung cancer in idiopathic pulmonary fibrosis. J Cell Mol Med 6

(2):215–222

240. Samara KD, Tzortzaki EG, Neofytou E, Karatzanis AD, Lambiri I, Tzanakis N, Siafakas

NM (2010) Somatic DNA alterations in lung epithelial barrier cells in COPD patients. Pulm

Pharmacol Ther 23(3):208–214

241. Brentnall TA, Crispin DA, Bronner MP, Cherian SP, Hueffed M, Rabinovitch PS, Rubin CE,

Haggitt RC, Boland CR (1996) Microsatellite instability in nonneoplastic mucosa from

patients with chronic ulcerative colitis. Cancer Res 56(6):1237–1240

242. Rauh P, Rickes S, Fleischhacker M (2003) Microsatellite alterations in free-circulating serum

DNA in patients with ulcerative colitis. Dig Dis 21(4):363–366

243. Ranjha R, Paul J (2013) Micro-RNAs in inflammatory diseases and as a link between

inflammation and cancer. Inflamm Res 62(4):343–355

244. Link A, Balaguer F, Shen Y, Nagasaka T, Lozano JJ, Boland CR, Goel A (2010) Fecal

MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers

Prev 19(7):1766–1774

245. Shen J, Liu Z, Todd NW, Zhang H, Liao J, Yu L, Guarnera MA, Li R, Cai L, Zhan M, Jiang

F (2011) Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma

microRNA biomarkers. BMC Cancer 11:374

246. Kowalewska M, Nowak R, Chechlinska M (2010) Implications of cancer-associated systemic

inflammation for biomarker studies. Biochim Biophys Acta 1806(2):163–171

247. Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, Muramatsu K,

Fukuda Y, Ogura S, Yamaguchi K, Mochizuki T (2010) Let-7 microRNA family is selec-

tively secreted into the extracellular environment via exosomes in a metastatic gastric cancer

cell line. PLoS One 5(10):e13247

248. Turchinovich A, Samatov TR, Tonevitsky AG et al (2013) Circulating miRNAs: cell-cell

communication function. Front Genet 4:119

249. Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular

circulating microRNA. Nucleic Acids Res 39(16):7223–7233

250. Garcia JM, Garcia V, Pena C, Domı́nguez G, Silva J, Diaz R, Espinosa P, Citores MJ, Collado

M, Bonilla F (2008) Extracellular plasma RNA from colon cancer patients is confined in a

vesicle-like structure and is mRNA-enriched. RNA 14(7):1424–1432

251. Fischer S, Gesierich S, Griemert B (2013) Extracellular RNA liberates tumor necrosis factor-

alpha to promote tumor cell trafficking and progression. Cancer Res 73(16):5080–5089.

doi:10.1158/0008-5472.CAN-12-4657

252. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F,

Gonzalez MA, Bernad A, Sanchez-Madrid F (2011) Unidirectional transfer of microRNA-

loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282

253. Kosaka N, Iguchi H, Ochiya T (2010) Circulating microRNA in body fluid: a new potential

biomarker for cancer diagnosis and prognosis. Cancer Sci 101(10):2087–2092

254. Martins VR, Dias MS, Hainaut P (2013) Tumor-cell-derived microvesicles as carriers of

molecular information in cancer. Curr Opin Oncol 25(1):66–75

255. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-

Redondo M, Williams C, Garcı́a-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal

K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok

JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone

Extracellular Nucleic Acids and Cancer 289

http://dx.doi.org/10.1158/0008-5472.CAN-12-4657


marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18

(6):883–891

256. Vickers KC, Remaley AT (2012) Lipid-based carriers of microRNAs and intercellular

communication. Curr Opin Lipidol 23(2):91–97

257. Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, Azab F, Flores LM,

Campigotto F, Weller E, Anderson KC, Scadden DT, Ghobrial IM (2013) BM mesenchymal

stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 123

(4):1542–1555

258. Lee TH, Montalvo L, Chrebtow V, Busch MP (2001) Quantitation of genomic DNA in

plasma and serum samples: higher concentrations of genomic DNA found in serum than in

plasma. Transfusion 41:276–282

259. Vallee A, Marcq M, Bizieux A, Kouri CE, Lacroix H, Bennouna J, Douillard JY, Denis

MG (2013) Plasma is a better source of tumor-derived circulating cell-free DNA than serum

for the detection of EGFR alterations in lung tumor patients. Lung Cancer 82(2):373–374.

doi:10.1016/j.lungcan.2013.08.014

260. Kroh EM, Parkin RK, Mitchell PS, Tewari M (2010) Analysis of circulating microRNA

biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR).

Methods 50(4):298–301

261. Bryzgunova OE, Morozkin ES, Yarmoschuk SV, Vlassov VV, Laktionov PP (2008)

Methylation-specific sequencing of GSTP1 gene promoter in circulating/extracellular DNA

from blood and urine of healthy donors and prostate cancer patients. Ann N Y Acad Sci

1137:222–225

262. Molina-Pinelo S, Suarez R, Pastor MD, Nogal A, Marquez-Martin E, Martin-Juan J,

Carnero A, Paz-Ares L (2012) Association between the miRNA signatures in plasma and

bronchoalveolar fluid in respiratory pathologies. Dis Markers 32(4):221–230

263. Payne SR, Serth J, Schostak M, Kamradt J, Strauss A, Thelen P, Model F, Day JK,

Liebenberg V, Morotti A, Yamamura S, Lograsso J, Sledziewski A, Semjonow A (2009)

DNA methylation biomarkers of prostate cancer: confirmation of candidates and evidence

urine is the most sensitive body fluid for non-invasive detection. Prostate 69(12):1257–1269

264. Chan KC, Yeung SW, Lui WB, Rainer TH, Lo YM (2005) Effects of preanalytical factors on

the molecular size of cell-free DNA in blood. Clin Chem 51(4):781–784

265. El Messaoudi S, Rolet F, Mouliere F, Thierry AR (2013) Circulating cell free DNA:

preanalytical considerations. Clin Chim Acta 424:222–230

266. Jung M, Klotzek S, Lewandowski M, Fleischhacker M, Jung K (2003) Changes in

concentration of DNA in serum and plasma during storage of blood samples. Clin Chem

49:1028–1029

267. Fernando MR, Chen K, Norton S, Krzyzanowski G, Bourne D, Hunsley B, Ryan WL, Bassett

C (2010) A new methodology to preserve the original proportion and integrity of cell-free

fetal DNA in maternal plasma during sample processing and storage. Prenat Diagn 30:418–

424

268. Hidestrand M, Stokowski R, Song K, Oliphant A, Deavers J, Goetsch M, Simpson P,

Kuhlman R, Ames M, Mitchell M, Tomita-Mitchell A (2012) Influence of temperature during

transportation on cell-free DNA analysis. Fetal Diagn Ther 31(2):122–128

269. Schatz P, Tetzner R, Weiss G, König T, Frischmann I, Weizenegger M, Bartel J (2011)

Preservation of cell-free DNA in stored blood samples for the analysis of the mSEPT9

colorectal cancer screeing marker enables sample shipment by mail. Clin Chem Lab Med

49:S613

270. Madisen L, Hoar DI, Holroyd CD, Crisp M, Hodes ME (1987) DNA banking: the effects of

storage of blood and isolated DNA on the integrity of DNA. Am J Med Genet 27(2):379–390

271. Holdenrieder S, von Pawel J, Nagel D, Stieber P (2010) Long-term stability of circulating

nucleosomes in serum. Anticancer Res 30(5):1613–1615

290 M. Fleischhacker and B. Schmidt

http://dx.doi.org/10.1016/j.lungcan.2013.08.014


272. Boddy JL, Gal S, Malone PR, Harris AL, Wainscoat JS (2005) Prospective study of

quantitation of plasma DNA levels in the diagnosis of malignant versus benign prostate

disease. Clin Cancer Res 11(4):1394–1399

273. Cheng HH, Yi HS, Kim Y, Kroh EM, Chien JW, Eaton KD, Goodman MT, Tait JF,

Tewari M, Pritchard CC (2013) Plasma processing conditions substantially influence circu-

lating microRNA biomarker levels. PLoS One 8(6):e64795

274. Duttagupta R, Jiang R, Gollub J, Getts RC, Jones KW (2011) Impact of cellular miRNAs on

circulating miRNA biomarker signatures. PLoS One 6(6):e20769

275. Muller I, Beeger C, Alix-Panabieres C, Rebillard X, Pantel K, Schwarzenbach H (2008)

Identification of loss of heterozygosity on circulating free DNA in peripheral blood of

prostate cancer patients: potential and technical improvements. Clin Chem 54(4):688–696

276. Page K, Powles T, Slade MJ, DE Bella MT, Walker RA, Coombes RC, Shaw JA (2006) The

importance of careful blood processing in isolation of cell-free DNA. Ann NY Acad Sci

1075:313–317

277. Kirschner MB, Kao SC, Edelman JJ, Armstrong NJ, Vallely MP, van Zandwijk N, Reid

G (2011) Haemolysis during sample preparation alters microRNA content of plasma. PLoS

One 69:e24145

278. Leidinger P, Keller A, Borries A, Huwer H, Rohling M, Huebers J, Lenhof HP, Meese

E (2011) Specific peripheral miRNA profiles for distinguishing lung cancer from COPD.

Lung Cancer 74(1):41–47

279. Ulivi P, Foschi G, Mengozzi M, Scarpi E, Silvestrini R, Amadori D, Zoli W (2013) Peripheral

blood miR-328 expression as a potential biomarker for the early diagnosis of NSCLC. Int J

Mol Sci 14(5):10332–10342

280. Pritchard CC, Kroh E, Wood B, Arroyo JD, Dougherty KJ, Miyaji MM, Tait JF, Tewari

M (2012) Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker

studies. Cancer Prev Res (Phila) 5(3):492–497

281. Kirschner MB, Edelman JJ, Kao SC, Vallely MP, van Zandwijk N, Reid G (2013) The impact

of hemolysis on cell-free microRNA biomarkers. Front Genet 4:94. doi:10.3389/fgene.2013.

00094

282. Danese E, Minicozzi AM, Benati M, Montagnana M, Paviati E, Salvagno GL, Gusella M,

Pasini F, Guidi GC, Lippi G (2013) Epigenetic alteration: new insights moving from tissue to

plasma – the example of PCDH10 promoter methylation in colorectal cancer. Br J Cancer

109:807–813

283. Zhao X, Han RB, Zhao J, Wang J, Yang F, Zhong W, Zhang L, Li LY, Wang MZ (2013)

Comparison of epidermal growth factor receptor mutation statuses in tissue and plasma in

stage I-IV non-small cell lung cancer patients. Respiration 85(2):119–125

284. Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, Bertone P, Caldas

C (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation

sequencing technologies for measuring differential microRNA expression. RNA 16(5):991–

1006

285. Koshiol J, Wang E, Zhao Y, Marincola F, Landi MT (2010) Strengths and limitations of

laboratory procedures for microRNA detection. Cancer Epidemiol Biomarkers Prev 19

(4):907–911

286. Nelson PT, Wang WX, Wilfred BR, Tang G (2008) Technical variables in high-throughput

miRNA expression profiling: much work remains to be done. Biochim Biophys Acta 1779

(11):758–765

287. Willenbrock H, Salomon J, Sokilde R, Barken KB, Hansen TN, Nielsen FC, Møller S,

Litman T (2009) Quantitative miRNA expression analysis: comparing microarrays with

next-generation sequencing. RNA 15(11):2028–2034

288. Burgos KL, Javaherian A, Bomprezzi R, Ghaffari L, Rhodes S, Courtright A, Tembe W, Kim

S, Metpally R, Van Keuren-Jensen K (2013) Identification of extracellular miRNA in human

cerebrospinal fluid by next-generation sequencing. RNA 19(5):712–722

Extracellular Nucleic Acids and Cancer 291

http://dx.doi.org/10.3389/fgene.2013.00094
http://dx.doi.org/10.3389/fgene.2013.00094


289. Yuan H, Zhu ZZ, Lu Y, Liu F, Zhang W, Huang G, Zhu G, Jiang B (2012) A modified

extraction method of circulating free DNA for epidermal growth factor receptor mutation

analysis. Yonsei Med J 53(1):132–137

290. Keeley B, Stark A, Pisanic TR 2nd, Kwak R, Zhang Y, Wrangle J, Baylin S, Herman J, Ahuja

N, Brock MV, Wang TH (2013) Extraction and processing of circulating DNA from large

sample volumes using methylation on beads for the detection of rare epigenetic events. Clin

Chim Acta 425C:169–175

291. Kim DJ, Linnstaedt S, Palma J, Park JC, Ntrivalas E, Kwak-Kim JY, Gilman-Sachs A,

Beaman K, Hastings ML, Martin JN, Duelli DM (2012) Plasma components affect accuracy

of circulating cancer-related microRNA quantitation. J Mol Diagn 14(1):71–80

292. Ho AS, Huang X, Cao H, Christman-Skieller C, Bennewith K, Le QT, Koong AC (2010)

Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl Oncol 3(2):109–113

293. Kumar SV, Hurteau GJ, Spivack SD (2006) Validity of messenger RNA expression analyses

of human saliva. Clin Cancer Res 12(17):5033–5039

294. Mouliere F, El MS, Gongora C, Guedj AS, Robert B, Del RM, Molina F, Lamy PJ, Lopez-

Crapez E, Mathonnet M, Ychou M, Pezet D, Thierry AR (2013) Circulating cell-free DNA

from colorectal cancer patients may reveal high KRAS or BRAF mutation load. Transl Oncol

6(3):319–328

295. Pinzani P, Salvianti F, Zaccara S, Massi D, De Giorgi V, Pazzagli M, Orlando C (2011)

Circulating cell-free DNA in plasma of melanoma patients: qualitative and quantitative

considerations. Clin Chim Acta 412(23–24):2141–2145

296. Sikora A, Zimmermann BG, Rusterholz C, Birri D, Kolla V, Lapaire O, Hoesli I, Kiefer V,

Jackson L, Hahn S (2010) Detection of increased amounts of cell-free fetal DNA with short

PCR amplicons. Clin Chem 56(1):136–138

297. Dingle TC, Sedlak RH, Cook L, Jerome KR (2013) Tolerance of droplet-digital PCR vs real-

time quantitative PCR to inhibitory substances. Clin Chem 59(11):1670–1672

298. Cuk K, Zucknick M, Heil J, Madhavan D, Schott S, Turchinovich A, Arlt D, Rath M, Sohn C,

Benner A, Junkermann H, Schneeweiss A, Burwinkel B (2013) Circulating microRNAs in

plasma as early detection markers for breast cancer. Int J Cancer 132(7):1602–1612

299. Kan CW, Hahn MA, Gard GB, Maidens J, Huh JY, Marsh DJ, Howell VM (2012) Elevated

levels of circulating microRNA-200 family members correlate with serous epithelial ovarian

cancer. BMC Cancer 12:627

300. Perhavec A, Cerkovnik P, Novakovic S, Zgajnar J (2008) The hTERT mRNA in plasma

samples of early breast cancer patients, non-cancer patients and healthy individuals.

Neoplasma 55(6):549–554

301. Schwarzenbach H, Milde-Langosch K, Steinbach B, Müller V, Pantel K (2012) Diagnostic

potential of PTEN-targeting miR-214 in the blood of breast cancer patients. Breast Cancer

Res Treat 134(3):933–941

302. Zhang X, Wang C, Wang L, Du L, Wang S, Zheng G, Li W, Zhuang X, Zhang X, Dong

Z (2012) Detection of circulating Bmi-1 mRNA in plasma and its potential diagnostic and

prognostic value for uterine cervical cancer. Int J Cancer 131(1):165–172

303. Giraldez MD, Lozano JJ, Ramirez G, Hijona E, Bujanda L, Castells A, Gironella M (2013)

Circulating microRNAs as biomarkers of colorectal cancer: results from a genome-wide

profiling and validation study. Clin Gastroenterol Hepatol 11(6):681–688.e3

304. Wang J, Chen J, Chang P, LeBlanc A, Li D, Abbruzzesse JL, Frazier ML, Killary AM, Sen

S (2009) MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-

based biomarkers of disease. Cancer Prev Res (Phila) 2(9):807–813

305. Saccomanno G, Archer VE, Auerbach O, Saunders RP, Brennan LM (1974) Development of

carcinoma of the lung as reflected in exfoliated cells. Cancer 33(1):256–270

306. Hirsch FR, Franklin WA, Gazdar AF, Bunn PA Jr (2001) Early detection of lung cancer:

clinical perspectives of recent advances in biology and radiology. Clin Cancer Res 7(1):5–22

307. Carozzi FM, Bisanzi S, Falini P, Sani C, Venturini G, Lopes Pegna A, Bianchi R, Ronchi C,

Picozzi G, Mascalchi M, Carrozzi L, Baliva F, Pistelli F, Tavanti L, Falaschi F, Grazzini M,

292 M. Fleischhacker and B. Schmidt



Innocenti F, Paci E; ITALUNG Study Research group (2010) Molecular profile in body fluids

in subjects enrolled in a randomised trial for lung cancer screening: perspectives of integrated

strategies for early diagnosis. Lung Cancer 6(2):216–221

308. Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, Diaz LA Jr, Goodman SN, David KA,

Juhl H, Kinzler KW, Vogelstein B (2005) Detection and quantification of mutations in the

plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 102(45):16368–16373

309. Berger BM, Ahlquist DA (2012) Stool DNA screening for colorectal neoplasia: biological

and technical basis for high detection rates. Pathology 44(2):80–88

310. Tang D, Liu J, Wang DR, Yu HF, Li YK, Zhang JQ (2011) Diagnostic and prognostic value

of the methylation status of secreted frizzled-related protein 2 in colorectal cancer. Clin

Invest Med 34(2):E88–E95

311. Garcia-Olmo DC, Samos J, Picazo MG, Asensio AI, Toboso I, Garcia-Olmo D (2008)

Release of cell-free DNA into the bloodstream leads to high levels of non-tumor plasma

DNA during tumor progression in rats. Cancer Lett 272(1):133–140

312. Gorges TM, Schiller J, Schmitz A, Schuetzmann D, Schatz C, Zollner TM, Krahn T, von

Ahsen O (2012) Cancer therapy monitoring in xenografts by quantitative analysis of circu-

lating tumor DNA. Biomarkers 17(6):498–506

313. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) REporting

recommendations for tumor MARKer prognostic studies (REMARK). Nat Clin Pract Oncol 2

(8):416–422

314. Kidess E, Jeffrey SS (2013) Circulating tumor cells versus tumor-derived cell-free DNA:

rivals or partners in cancer care in the era of single-cell analysis? Genome Med 5(8):70

Extracellular Nucleic Acids and Cancer 293



Other Body Fluids as Non-invasive Sources

of Cell-Free DNA/RNA

Lisa Hui, Jill L. Maron, and Peter B. Gahan

Abstract In addition to plasma and serum as sources of nucleic acids circulating in

the whole body, amniotic fluid, saliva, urine, pleural effusion, bronchial lavage,

bronchial aspirates, breast milk, colostrums, tears, seminal fluid, peritoneal fluid,

pleural effusion and stools are all available for minimally invasive analysis of

nucleic acids. This chapter introduces the possibilities of using nucleic acids from

amniotic fluid, saliva, urine, cerebrospinal fluid and bronchial lavage/aspirates in

attempts to produce reliable early markers for diagnosis, prognosis and treatment

monitoring using minimally invasive methodology. Moreover, the data from amni-

otic fluid can be used also to further the understanding of normal and abnormal fetal

development in utero. In addition, the data from saliva can be employed for

monitoring the progress of premature born infants.
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1 Introduction

Although the first circulating DNA and RNA were found to be present in peripheral

blood plasma and serum, and hence the development of studies to find early

diagnostic and prognostic disease markers, other body fluids have also been

analyzed for the possibility of new approaches to diagnosis, prognosis and treat-

ment monitoring. These include saliva, urine, amniotic fluid and bronchial lavage/

aspirates. Breast milk, tears, seminal fluid, peritoneal fluid and colostrums have all

been mentioned as possible sources [1] together with fresh stools [2, 3]. Some

examples will be given concerning amniotic fluid, saliva, urine, cerebrospinal fluid

and bronchial lavage/aspirates in order to show how these alternative sources of

DNA/RNA have been exploited and for what purposes. Emphasis has been placed

upon the sources most likely to have broader applications in diagnosis, prognosis

and treatment monitoring.

2 Amniotic Fluid (AF)

AF is a complex fluid that surrounds the fetus throughout gestation and is involved

in diverse functions, including physical protection and organ development [4]. The

composition, volume and circulation of AF alters during pregnancy with the

maturation of fetal skin, progressive increases in urine production, swallowing

and respiratory movements. AF can be obtained during pregnancy via amniocen-

tesis where an ultrasound-guided, trans-abdominal needle puncture of the uterus

allows aspiration of AF from around live fetuses. The volume of AF withdrawn

depends upon the gestational age and the indication for testing but typically 10–

30 mL of AF can be removed safely from the amniotic sac from 15 weeks

gestational age. Amniocentesis is most commonly offered to women at increased

risk for bearing a child with a chromosome abnormality such as trisomy 21, but can

also be performed for the diagnosis of single gene disorders and for fetal Rhesus.

After amniocytes are removed for diagnostic testing, the remaining 10–15 mL of

AF supernatant, which contains cffNAs, can be retained for other purposes.

Although the obtention of amniotic fluid is an invasive procedure with a small

risk of causing pregnancy loss, this approach does permit the study of a number of

aspects of both normal and abnormal development of the fetus, including the

identification of fetal defects for which clinical management could commence in
utero. The following examples can give an idea of the range of problems that can be

tackled using AF cffNAs.
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2.1 cffDNA in AF

Most studies of cffDNA have been made on plasma and serum. However, with the

availability of residual AF supernatant after clinical testing, Bianchi et al. [5] were

able to demonstrate that its cffDNA content was present at concentrations much

higher (100–200-fold mL�1) than that observed in plasma. Subsequently, Lapaire

et al. [6] developed methodological improvements in cffDNA extraction from AF

that increased the median yield of GAPDH cffDNA from 10 mL of AF from

246 genomic equivalents (GE) mL�1 to 1,700 GE mL�1.

Methylation studies have demonstrated that DNA in AF is comprised essentially

of fetal, rather than placental, DNA. Using the RASSFIA gene, which is

hypermethylated in the placenta but hypomethylated in the fetal tissues and the

maternal blood cells, several investigators have shown that the placenta does not

appear to be the primary source of cffDNA in AF supernatant [7, 8]. Thus, AF

appears to contain a separate pool of cffDNA to that of the maternal plasma [9].

Aneuploidy

The first study of potential clinical applications of AF cffDNA involved compar-

ative genomic hybridization (CGH) microarray analysis. Using CGH array analysis

of AF cffDNA from fetuses with congenital abnormalities, it was possible to detect

fetal sex and whole chromosome gains or losses, (e.g. trisomy 21 and monosomy

X). In this work, Miura et al. [10] were able to correctly identify 12 fetuses with

chromosomal losses or gains using AF cffDNA, rather than the conventional

metaphase karyotype from intact amniocytes. Only one false-negative result

occurred with a fetus having a balanced translocation, 45, XY, der(14;21)(q10;

q10), which is a recognized limitation of CGH technology.

A further study of the molecular karyotype approach using AF cffDNA and array

CGH detected whole-chromosome differences between AF cffDNA samples for

chromosomes X, Y and 21 in both female and male, and euploid and aneuploid

fetuses [11]. The microarray approach appeared to provide a higher resolution and

sensitivity as well as a more specific localization (within 100–200 kb) of abnor-

malities in the fetal genome than those found in the standard metaphase karyotype

using cultured amniocytes (generally limited to pattern recognition of ~450

Giemsa-stained bands). Of 17 AF cffDNA samples there were four euploid females,

nine euploid males, two male trisomy 21, one female trisomy 21 and one female

single X (Turner syndrome).

Fetal Sex

The method used above for the detection of fetal chromosomal abnormalities can

also be used for the determination of fetal sex [11].
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2.2 cffRNA in AF

Although most studies of cffRNA have been made on plasma and serum, cffRNA

has also been shown to be present in AF [12, 13]. AF contains a heterogeneous

population of suspended cells that originate from all three germ layers of the

embryo. These range from unspecified progenitors and pluripotent stem cells to

mature differentiated cells, including those of the renal, heart, lung, liver and

haematopoietic cell lineages [14]. Subcellular fragments from different organs are

also released into the AF, including kidney-derived exosomes containing cffmRNA

[15, 16].

These features of AF indicate that it can provide gene expression information

from multiple cell types in a manner analogous to plasma. At least a proportion of

AF cffRNA is contained within secreted micro-particles such as exosomes

[15]. Fetal kidney-derived exosomes have been demonstrated in AF and their

RNA contents have been used to perform fetal sexing, suggesting future applica-

tions in clinical diagnostics [16]. Other studies have shown real differences

according to gestation for several genes expressed in lung, intestine and skin

epithelial cells, all of which are in contact with the AF. Data obtained at different

gestational ages have documented the appearance and concentration of a variety of

genes for surfactants, mucins and keratin that mirror known developmental

physiology [17].

To date, published global gene expression studies of AF cffRNA have been

almost exclusively performed using whole genome microarrays. The application of

newer techniques such as RNA sequencing are currently being explored for their

potential to provide information on novel fetal RNA transcripts and transcript

isoforms in AF [18].

Human Fetal Development

Due to ethical considerations, gene expression data from live human pregnancies is

extremely limited. AF cffRNA thus represents a potential source of biological

information about live human fetuses that can be obtained without the risks

associated with fetal blood or tissue sampling. Two studies in particular have

investigated the AF RNA from normal pregnancies ranging from mid-gestation to

delivery at term [19, 20]. The first systematic description of the AF transcriptome

was an in-silico study by Hui et al. [19]. These investigators identified 476 well-

annotated genes that were consistently present in the AF from 12 euploid

mid-trimester AF samples. The three most common types of molecules represented

by transcripts in the AF core transcriptome were enzymes, ribosomal proteins and

transcription regulators. Functional analysis identified six statistically significant

physiological systems enriched in the AF transcriptome (skeletal and muscular

system development and function, tissue development, hematological system

development and function, nervous system development and function, embryonic
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development and organismal development). A key canonical pathway identified

was that of the mammalian target of rapamycin (mTOR) signalling. Using a gene

expression atlas, AF core transcriptome was found to contain 23 highly organ-

specific transcripts, six of which were highly expressed in the fetal brain. These

findings indicated that developmental information from multiple organs including

fetal brain could be obtained from AF.

There are relatively few AF studies aiming to characterize normal third trimester

fetal physiology using high dimensional biology techniques such as functional

genomics or proteomics. Existing studies fail to provide a detailed biological

interpretation of the proteins differentially expressed in the third compared with

the second trimester [21]. However, Hui et al. [20] made a further study on global

gene expression analysis comparing AF cffRNA from eight normal-term pregnan-

cies with eight second-trimester controls. Using bioinformatics tools for functional

analysis and tissue expression profiles, they sought differences between the relative

representation of specific organs in term and second-trimester AF cffRNA. The

methodologies for the biological interpretation of the gene data are given in

Table 1.

The average microarray hybridization rate for all samples was 41 % (range 33.0–

50.1 %). In total, there were 2,871 genes that were significantly differentially

regulated in term compared with mid-trimester AF. Of these genes, 1,307 were

up-regulated and 1,564 were down-regulated.

Overall, the results demonstrated changes in tissue expression profiles according

to gestation and up-regulation of fetal maturation processes at term. In term AF

supernatant, tissue expression analysis showed enrichment of salivary gland, tra-

cheal and renal transcripts, as compared to brain and embryonic neural cells in

mid-trimester AF. Furthermore, in the term group, all five pulmonary surfactant

protein genes (SFTPA1, SFTPA2, SFTPB, SFTPC, SFTPD) were significantly up

regulated compared with mid-trimester, reflecting known patterns of increasing

pulmonary maturation.

A comparison between term and mid-trimester AF showed 609 well-annotated

genes that were up-regulated by at least fourfold in the term group. Core pathways

analysis of these genes indicated enhancement of physiological systems involved in

newborn functions e.g. immune defense, eating and respiration. As might be

predicted for term fetuses, statistically significant up-regulation of molecular and

cellular functions was observed for 41 genes for carbohydrate metabolism,

139 genes for cellular movement and 93 genes for lipid metabolism. In the

mid-trimester there were six upstream regulators that were statistically significantly

predicted to be activated including genes related to thyroid function, oxidative

stress and liver development.

One of the limitations of these data is the sample size. Nevertheless, even with

these small numbers, the authors claim to have demonstrated significant differential

gene expression in 7.44 % of the total probe sets at a very stringent false discovery

rate (Benjamini-Hochberg P< 01).
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Aneuploidies

Functional analysis of AF cffmRNA from fetuses with trisomies 21 or 18 using

global gene expression microarrays has provided new insights into the pathophys-

iology of aneuploidy. In the first of these reports, Slonim et al. [13] performed a

paired analysis of seven fetuses with trisomy 21 matched for gestational age and

fetal sex with euploid controls. There were 311 differentially expressed genes of

which only five were physically located on chromosome 21. Pathways analyses

showed that trisomy 21 fetuses had an altered response to oxidative stress as well as

disruptions of ion transport, G protein signalling, immune and stress response,

circulatory system function and sensory perception [13].

In a subsequent work using AF from five second trimester fetuses with trisomy

18, 251 differentially-expressed genes were identified of which only seven genes

were physically located on chromosome 18. Functional analysis of the trisomy

18 fetuses indicated abnormalities in ion transport, immunity, DNA repair and G

protein signaling and dysregulation of adrenal development-associated

pathways [22].

One initial conclusion to draw from these results is that each fetal aneuploidy has

multiple dysregulated genes that are not physically located on the trisomic chro-

mosome, suggesting that the abnormal phenotype is not solely due to a gene dosage

effect but rather a global downstream effect on gene expression [23].

Another important result of these transcriptomic studies of AF cffRNA is the

generation of hypotheses for future studies of potential treatments for aneuploidy.

The finding that fetuses with Down syndrome experience oxidative stress in the

second trimester by Slonim et al. [13] has led to further studies assessing whether or

not treating oxidative stress in utero could improve brain development in a mouse

model of Down syndrome [24]. In this way, studies utilizing AF cffRNA have the

potential to translate into new candidate therapies and future improvements in

clinical care.

The novel finding by Hui et al. [19] that nervous system development and

function is enriched in the euploid AF transcriptome led to a more detailed analysis

of fetal neurodevelopment in aneuploid pregnancies using AF cffRNA [25].

Table 1 Methodologies employed for the biological interpretation of whole transcriptome data

from mid-trimester and term samples after identification of significantly regulated genes (After

Hui et al. [20])

Methodology Identification

BioGPS mapping of top

10 upregulated genes

Inferred tissue sources and gene functions

DAVID tissue expression profile

analysis

Identified tissues that highly express the same genes

IPA analysis of genes up-regulated

at term

Enriched physiological systems and cellular functions in

term AF cffRNA

IPA upstream regulator analysis Up-regulated transcription factors with significant down-

stream effects
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Gene expression data from mid-trimester aneuploid AF supernatants were

reanalyzed [13, 22] focussing on the transcripts associated with nervous system

development. This permitted the development of the trisomy 18 and

21 transcriptomes consisting of universally detected transcripts from

mid-trimester fetuses with the respective aneuploidies. Multiple bioinformatics

resources were involved in the analysis, including DAVID, Ingenuity Pathway

Analysis (IPA), and the BioGPS Gene Expression Atlas.

The trisomy 21 transcriptome was comprised of 1,184 individual genes that were

consistently present in seven of seven samples. The trisomy 18 dataset comprised

746 genes present in all five samples. The euploid dataset contained 536 genes

present in twelve of twelve AF samples. Nervous system gene expression was

consistently enriched in all of these datasets. The trisomy 21 AF transcriptome

included four genes physically present on chromosome 21 (APP, SOD1, DYRK1A,
and RCAN1). The functional analysis of the transcriptomes of the aneuploid fetuses

indicated that neurological disease highly enriched in both the trisomy 21 and

18 datasets (Table 2).

Differentially regulated genes that were specifically expressed by the nervous

system were identified in the AF supernatants of trisomy 18 and 21 fetuses. In

trisomy 18, PTPRD, SOBP and NEUROD2 were down-regulated while PLEKHA4,
GPM6A and PRPH2 were up-regulated. In trisomy 21, the down-regulated genes

included SOX11 and DAAM2 while MEF2C and CELSR2 were up-regulated.

Notably, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway for

Alzheimer’s disease was found to be significantly enriched in both the trisomy

21 AF transcriptome and an independent Down syndrome meta analysis based on a

variety of tissues sources [26]. This is consistent with the known neuropathology of

Down syndrome, where >25 % of Down syndrome individuals aged over 35 years

show the signs and symptoms of Alzheimer’s-type dementia. Thus, the data

obtained from AF supernatant is consistent with findings from cellular RNA

including brain tissue, confirming that the approach using AF supernatant can

have a real biological relevance for studies of human development in live fetuses.

Twin-to-Twin Transfusion Syndrome (TTTS)

TTTS is a serious perinatal complication unique to monochorionic twins. Due to the

presence of a shared single placenta, monochorionic twins always have some

placental vascular anastomoses resulting in a shared blood circulation. In approx-

imately 15 % of cases, however, the placental anastomoses are unbalanced leading

to blood flowing disproportionately from one twin (known as the “donor”) to the

other (the “recipient”). The resulting hypovolemia in the donor twin leads to growth

restriction, anaemia and oliguria, producing a clinical result of a small fetus with

oligohydramnios. In contrast, the blood volume of the recipient twin increases,

which can lead to fetal heart dysfunction, hydrops fetalis and polyhydramnios.

TTTS is historically associated with a very high perinatal mortality rate, but
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significant improvements in survival have been achieved with prenatal laser abla-

tion of the placental anastomoses [27, 28].

TTTS is unusual in that there is no suitable animal model with which to study the

pathophysiology in vivo. AF has been explored as a potential biofluid in which to

obtain gene expression data on fetuses with active disease. Larrabee et al. [17] first

compared gene expression in a small number of TTTS cases compared with pooled

normal singleton controls. They identified significant up-regulation of an aquaporin

water transport gene in the TTTS cases, indicating a possible role for this gene in

the transport of water out of the fluid-overloaded recipient compartment.

In a subsequent, larger prospective study of TTTS, Hui et al. [20] provided the

first transcriptome-wide data on the impact of TTTS on fetal development. AF

samples were obtained from recipient fetuses at 17–22 weeks gestational age at the

time of clinically-indicated laser therapy for TTTS. AF controls were obtained from

normal singleton fetuses matched for gestational age and fetal sex. Total RNA was

extracted from 15 to 30 mL of AF from TTTS cases and compared with 5 mL AF

from singleton controls. Five micrograms of cDNA prepared from each sample

were biotinylated, fragmented and hybridized to a whole human genome expression

array (Affymetrix GeneChip Human Genome U133 Plus 2.0). Analysis of paired

data (TTTS cases versus controls) showed differential expression for 801 genes.

Neurological disease and cardiovascular system pathways were specifically

enriched whilst 13 molecular and cellular pathways were dysregulated in the

TTTS cases. The gene expression profiles of five recipient fetuses with ultrasound

evidence of abnormal fetal blood flow were also compared with five TTTS cases at

a less critical clinical stage. Cardiovascular genes and pathways associated with the

presence of critically abnormal Doppler measurements in TTTS recipients were

thus identified, providing new molecular evidence for the haemodynamic deterio-

ration seen in severe disease. This approach confirmed that gene expression involv-

ing neurological and cardiovascular pathways are already altered in recipient

fetuses prior to surgical treatment, so raising potential explanations for the origins

of long-term complications seen in treated survivors and suggesting the utility of

AF cffmRNA for the development of future fetal biomarkers for staging or prog-

nosis in TTTS.

Table 2 Trisomy 18 and 21 significant diseases and disorders using IPA (After Hui et al. [25])

Category No of genes Trisomy 18 No of genes Trisomy 21

Neurological disease 107 201

Dermatological diseases and conditions 45 114

Infectious disease 119 177

Reproductive system disease – 96

Connective tissue disorders 5 6

Respiratory disease – 6

Cardiovascular disease – 4

Skeletal and muscular disorders 9 –
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3 Saliva

Saliva, produced primarily by the parotid, submandibular and sublingual salivary

glands, aids chewing and swallowing as well as the initial digestion of food. Many

of the compounds found in blood are also present in saliva and appear to mirror a

range of states of bodily health. Comparative analyses between plasma and saliva in

both adult and neonatal subjects have shown a 27 % concordance between proteins

found in saliva and plasma of adults [29]; and a 37 % concordance between gene

transcripts found in neonatal saliva and blood [30].

3.1 Saliva cfRNA

Saliva provides a non-invasive alternative for obtaining samples for clinical anal-

ysis. Amongst the components of saliva are cfRNAs both cfmRNA and cfmiRNA

as well as proteins. Historically, there has been some debate regarding the source of

RNAs in salivary samples. Following gene expression microarray analyses, an

initial study by Kumar et al. [31] concluded that saliva arose from genomic DNA,

not RNA. This was in contrast to the studies of Li et al. [32], and others, demon-

strating the presence of RNAs in cell-free saliva supernatant using RT-qPCR and

microarray analysis. Park and colleagues [33] provided further proof for the

presence of salivary cfRNA when the integrity of ß-actin cfmRNA found in cell-

free saliva supernatant from the three major salivary glands and gingival crevice

fluid was assessed. After passing the supernatant through filters of either 0.22 or

0.45 μm pore-size and incubating with Triton X-100 prior to RT-qPCR, the authors

concluded that both full-length and partially degraded forms of mRNA were

present. The authors went on to further demonstrate through RT-qPCR and micro-

array analyses the presence of RNA in both whole saliva and saliva supernatant

taken from the three major salivary glands (the parotid, submandibular and sublin-

gual glands), minor glands and gingival crevice fluid. They found over 6,000 gene

sequences and identified what is now considered as the 183 normal ‘salivary core

transcriptome’ in human salivary supernatant. More recently, Spielmann et al. [34]

applied transcriptome profiling to RNA isolated from both whole and cell-free

saliva from healthy individuals using MPS. This study not only confirmed the

preservation of the structural integrity of the RNA but also demonstrated that

~20–25 % of the sequenced reads from cell-free saliva aligned to the human

genome. Over 4,000 coding and non-coding genes appeared to be expressed in

both whole and cell-free saliva. Thus, it is now believed that salivary cfRNAs are

plentiful and can be readily analyzed for a broad range of physiological and

pathological conditions.

Research on the characteristics of salivary cfRNAs is not limited to the adult

population. Neonatal studies conducted by Deitz et al. [35] compared gene expres-

sion differences between whole saliva with cell-free salivary supernatant through
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microarray and RT-qPCR analysis. Total cfRNA was successfully extracted from

all neonatal salivary supernatant samples, even from volumes as low as 10 μl (range
10–100 μl). Paired whole saliva and cell-free salivary supernatant samples showed

a 92.5 % gene expression concordance following microarray analysis. Interestingly,

16 unique biological systems were identified in the cell-free supernatant layer but

were absent from whole saliva. These data indicate that the salivary supernatant

more readily detects rare gene transcripts on the microarray platform once cellular

material is removed.

Since these original studies classifying and describing salivary cfRNAs, many

reports have been published linking distinct salivary transcriptomic profiles to

disease states. Diagnostic platforms have been described for adult patients with

oral cancer [32, 36], breast cancer [37], Sjögren’s disease [38], pancreatic cancer

[37], melanoma [39], lung cancer [39, 40] acute myocardial infarction [41], diabe-

tes [42] and ovarian cancer [43]. In addition, in a study by Maron and colleagues

[44] it was found that as little 50 μL of whole saliva provided diverse developmen-

tal information that could be monitored in real-time in the developing premature

neonate. As technology continues to advance, there is great diagnostic potential to

not only identify gene expression differences in diseases and development, but to

further our understanding of transcriptional regulation driving these processes.

Salivary proteomic studies are equally robust and are contributing significantly

to our understanding of human health and disease. Over the past decade, multiple

efforts have been made to describe and characterize the human salivary proteome.

To date, more than 3,000 different protein species have been identified [45] High-

throughput screening tools and advances in mass-spectrometry have largely con-

tributed to the success of this work. Combined with ongoing research on cfNAs, the

field of salivary diagnostics is poised to improve non-invasive diagnostics for a

breadth of disease states across the human lifespan.

Premature-Born Infants

Preterm birth is considered as birth before 37 completed weeks of gestation (WHO

guidelines), its rate having risen dramatically during the past 20 years e.g. the

preterm birth rate in the USA was 12.2 % in 2009 [46] being even higher among

African Americans, 17.5 % in 2009. Other developed countries have had similar

rising preterm birth rates over the past decade [47–49]. A number of possible,

though not certain, explanations have been cited including the increases in multiple

births, older maternal age, elective caesarean sections before 37 weeks of gestation

and the use of assisted reproductive technologies such as in vitro fertilization.

However, the rise in preterm birth can only be partially attributed to these factors

[50] and the high level of such preterm births results in very high annual health care

costs.

The International Preterm Birth Genome Project plans to publish a large genome

wide association study (GWAS) in early preterm birth. The GWAS should be able

to identify common genetic variants influencing health and disease including those
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that are associated with preterm birth [51]. Clearly, such preterm infants need to be

handled with extreme care and the development of a method to identify biomarkers

for the detection of their disorders at a very early stage would permit the initiation

of treatment. To this end, Maron et al. [44] developed a method for the isolation and

identification of cfRNAs from the saliva of premature infants, cfDNA not being

present. They used saliva cfRNA amplification together with hybridization onto

whole genomic microarrays and bioinformatic analyses. The big advantage of such

an approach concerns the screening of premature infants employing only a small

volume of saliva (10–200 μL) taken by a minimally invasive approach. Since the

saliva samples can be taken at successive times from any one infant, this will allow

not only possible treatment to be instigated but also have its effect monitored over a

time period. Using this approach, Maron et al. [44] were able to identify 9,286 gene

transcripts showing statistically significant gene expression changes across individ-

uals over time. Thirty seven point nine percentage of such genes were down-

regulated and 62.1 % genes up-regulated with gene expression changes being

closely linked to developmental pathways. As might be predicted, the down-

regulated expression was related to embryonic development (e.g. connective tissue

and hematological system development and function). Interestingly, the signifi-

cantly up-regulated genes involved those linked to behaviour and the development

of the nervous system, tissue, organ and digestive system.

Cancer

A major study of the use of saliva cfRNA in the early detection of cancers has

emanated fromWong’s group. Working with both whole saliva and the supernatant,

they were able to identify a number of mRNAs and miRNAs associated with

various cancers that could possibly be exploited as early markers. RT-qPCR and

microarray were used to analyze cfRNA isolated from saliva from both healthy and

oral squamous cell carcinoma (OSCC) patients. Some 1,679 genes exhibited sig-

nificantly different expression levels with seven cancer-related cfmRNA bio-

markers showing, minimally, a 3.5-fold increase in the OSCC saliva namely,

cfRNA transcripts of IL8, IL1B, DUSP1, HA3, OAZ1, S100P, and SAT. Various

combinations of these biomarkers gave a sensitivity of 91 % and a specificity of

91 % in separating the OSCC patients from the controls [32]. An analysis of

cfmiRNAs [52] using RT-preamp-qPCR was performed on whole and cell-free

saliva samples from 50 OSCC patients of whom ten were at tumor stage I, 14 at

stage II, 16 at stage III and ten at stage IV versus 50 matched control patients. A

total of 314 cfmiRNAs were analyzed of which 71 were found to be present in at

least two participants. An initial analysis of a subset of 12 control and 12 OSCC

patient datasets identified four possible cfmiRNAs as being present at statistically

significant levels between the groups (P <0.05) namely, miR-93, miR-125a,

miR-142-3p and miR-200a. A further analysis of these cfmiRNAs in all patients
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and controls gave significantly different average p-values for miR-200a and

miR-125a between the two groups i.e. 0.01 and 0.03, respectively. In contrast,

p-values for miR-142-3p and miR-93 were not significantly different between the

two groups. The combined AUC between miR-200a and miR-125a was 0.66 whilst

the AUCs for miR-142-3p and miR-93 were lower i.e. 0.58 and 0.57, respectively.

It is possible that both miR-200a and miR-125a could be used as potential early

markers for OSCC [52].

Liu et al. [53] examined 43 OSCC patients and 21 controls for the presence of

miR-31 in serum both before and 6 weeks after tumor resection. A similar study was

made with saliva supernatant when eight out of nine patients exhibited decreased

saliva miR-31 following tumor resection. However, the importance of saliva

miR-31 for use as an early marker was diminished by the limited number of samples

employed. Interestingly, the saliva miR-31 level was higher than that of the plasma

miR-31 in both patients and controls. Zhang et al. [37] employed Affymetrix HG

U133 Plus 2.0 Array in the identification and validation of 12 cfmRNA biomarkers

to distinguish between pancreatic cancer patients and both chronic pancreatitis and

healthy controls. A combination of four of the cfmRNA biomarkers (KRAS,
MBD3L2, ACRV1 and DPM1) permitted the differentiation of pancreatic cancer

patients from the two controls (90.0 % sensitivity and 95.0 % specificity). In

contrast, no significant differences were found in the level of four saliva internal

reference genes (GAPDH, ANXA2, RPL37 and RPS16) between pancreatic cancer

and healthy controls.

4 Urine

Urine is a relatively easily obtained, non-invasive source of cfDNA/cfRNA for the

detection of disorders and pathologies. Although there were many problems

concerning cfNA isolation from urine, these seem to have been overcome with

cfNA extraction kits now available. Much of the DNA so obtained would appear to

be genomic DNA (>1 kb) from exfoliate cells present in urine and only low levels

of small M Wt fragments (150–250 bp) represent the actual cfNA [54]. Such DNA

was considered to be transrenal and to pass from the circulatory system through the

kidney barrier to enter the urinary tract, producing so-called transrenal DNA

[55]. Nevertheless, although a number of workers have indicated that the DNA in

the urine was transrenal (reviewed in Umansky and Tomei [56, 57]), other

researchers disagreed. Thus, cffDNA was not detectable in maternal urine inclu-

ding the urine from pregnant women with a compromised kidney barrier

function due to hemolysis, increased liver enzymes and low platelet count syn-

drome [58–60].
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4.1 Urine cfNAs (See also Sect. 7)

Hung et al. [56] re-examined the topic using blood and urine samples from

22 hematopoietic stem cell transplant (HSCT) patients all of whom exhibited

high amounts of donor-derived DNA in plasma samples. In particular, five female

sex mismatched HSCT recipients had male donor-derived DNA in the urine.

Interestingly, although the urine cfDNA contained fragments that were >350 bp,

such fragments were absent from the plasma. The data may be interpreted as

demonstrating that much of the cfDNA was donor-derived as opposed to being

transrenal from plasma cfDNA [58].

Many of the successful attempts to determine early tumor markers tend to extract

DNA/RNA from cellular material present in the urine. An example concerns the

isolation of mRNAs for TMPRSS2:ERG fusion transcripts [61] which, together

with prostate cancer antigen 3 (PCA3) enhances the standard serum PSA test

[62]. A fraction of the mRNAs of the TMPRSS2:ERG fusion transcripts would

appear to be derived from exosomes [63].

Nevertheless, Melkonyan et al. [64] developed a method for the isolation of 10–

150 bp cfDNA fragments as well as cfmiRNAs that could open up an alternative

form of diagnosis. Such small DNA fragments from peripheral blood have proved

valuable in the early detection of colorectal cancer [65].

In the examples given below, urine supernatant cfNAs have been analyzed so

demonstrating their possible uses for a number of different situations. There is

clearly more work needed in this promising area.

Bladder Tumors

Bladder tumors represent about 3 % of all tumors and are the second most frequent

urinary tract tumor after prostate cancer, being most common in men. Of the

various types of bladder cancers, urothelial or transitional cancers form about

90 % in advanced countries being derived from the transitional cells lining the

bladder. Recent studies have indicated a number of DNA sequences that may be

useful as markers for bladder cancer [66–68] whilst an earlier study indicated that

the DNA circulating in urine supernatant increased in content in the presence of a

tumor whilst that of the urine sediment after centrifugation of the urine did not

[69]. Blood, urine and tumor samples (20 control and 44 patients with bladder

cancer plus16 healthy volunteers) were analyzed using 12 microsatellite markers

mapped on six chromosomes. Alterations in the latter were found in both the

sediment and supernatant (86 % of cancer cases) with urine sediment alone having

68 % and urine supernatant 80 % of the tumor markers. A loss of the 16q24

chromosomal region gave a significant correlation with the tumor stage

(p¼ 0.02). The most effective marker was found to be IFNA (9p21 chromosomal

region) showing LOH in 46 % of the cases or 57 % if combined with D4S243
(4q32). D16S476 (16q24) used as a third marker increased the sensitivity to 64 %.
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The authors proposed the chromosomal region 16q24 as a marker for its prognostic

value [69].

A study of micro-satellite analysis was performed using cfDNA from urine in

parallel with serum and plasma cfDNA and in comparison with DNA from normal

lymphocytes and tumors of 40 patients with conspicuous bladder lesions [70]. Six

micro-satellite markers were used for the detection of alterations on chromosomes

4, 9 and 17. Twenty-six of the 36 micro-dissected bladder tumor tissue samples

showed alterations. Micro-satellite changes matching those in the tumor tissues

were detected in at least one of the body fluids in 23 cases. However, the amount of

urine cfDNA was very low and the fact that alterations were detectable in just 29 %

of the all tumor tissue samples indicated that the results are very dependent upon the

markers selected for the analysis. It is suggested that the results could be improved

by using many multiple markers from different chromosomes, their specificity

being crucial for bladder tumor diagnosis.

This preliminary study indicated that simultaneous and multiple investigations

of micro-satellite markers on cfDNA from urine and blood could have clinical

relevance as a minimally invasive method for both diagnosis and screening for

bladder cancer [70].

Prostate Cancer

A recent approach has involved a comparative study of the integrity of urine cfDNA

with that isolated from a human bladder cancer cell line (MCR) [71]. Total cfDNA

(6 ng μL�1 – range 2–36 ng μL�1) was not statistically significantly different

between urine cfDNA in cancer patients and healthy individuals. However, an

analysis of the diagnostic accuracy for the cfDNA integrity of three oncogenes

(c-MYC, HER2, and BCAS1) showed c-MYC having the highest AUC. These genes

are known to be involved in bladder cancer development with c-MYC involved in

prostate tumorigenesis [72]. The diagnostic accuracy for the three genes was

c-MYC>HER2>BCAS1 [71].

A novel approach involved isolating exosomes from the urine of patients after

removal of cells and cell debris by centrifugation. The exosomes can then be

removed by filtration through a 0.45 μm filter device prior to pelleting on ultracen-

trifugation [63]. Total exosomal RNA was isolated, purified and subjected to nested

qPCR analysis. Patients were grouped into untreated prostate cancer (4), treated

with androgen deprivation therapy/medical castration (2) and patients with verified

bone metastases, either medically castrated or prostatectomised (3). mRNA tran-

scripts for the fusion gene TMPRSS2:ERG were detected in two out of the four

patients with a high Gleason score and PSA levels though not in two low-risk

tumors (untreated), whereas PCA-3 transcripts were detected in all of the patients

after mild prostate massage, This pilot study shows the possibility of utilizing

exosomal mRNA and miRNA in the search for tumor markers [63].
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Colorectal Cancer (CRC)

Human urine contains, sub-microgram per milliliter amounts of cfDNA of between

150 and 250 bp [54]. A comparison was made of the mutated K-RAS sequences

present in DNA isolated from tumor, blood and urine obtained from a CRC patient

with a mutation in codon 12 of the K-RAS proto-oncogene. There was an abundance
of the low molecular weight mutated K-RAS sequences in the urine. A blinded study

determined the correlation between mutant K-RAS sequences found in the urine, the
diagnosis of CRC and polyps containing the mutant K-RAS. When DNA from

paired urine and tissue sections (20 patients with either CRC or adenomatous

polyps) were analyzed for the K-RAS mutation, an 83 % concurrence of mutated

urine cfDNA and its corresponding disease tissue was obtained. The authors

proposed that apoptotic cells were the source of the cfDNA [54]. Moulière and

Thierry [65] demonstrated that CRC K-RAS fragments isolated from peripheral

blood tended to be smaller than 100 bp, and given that the study of Su et al. was

based upon fragments of 150–250, it would be of interest to determine if smaller

fragments could be present in urine and in high abundance.

Transplant Rejection Markers

Since the first kidney transplant in 1950, thousands of people across the world have

had such transplants, an increased success rate occurring on the development and

application of immuno-suppressors. Nevertheless, transplant rejection is still a

possibility for a variety of reasons including immune rejection. More recently,

studies have been performed on urine cfDNA and cfRNA in order to determine if

they may be used as markers for the rejection of allograft kidneys.

Initial studies were made exploiting cfDNA as a possible marker of kidney graft

rejection. Thus, Zhang et al. [73] examined 35 females with kidney grafts, 17 of

these having male kidney donors. This permitted the determination of the

Y-chromosome SRY gene which was found to be present in the urine of all such

patients, but absent from the urine of all patients with kidneys from female donors.

Urinary concentrations of the ß-globulin gene were markedly increased during the

acute rejection period, but returned to lower levels on anti-rejection treatment so

offering a possible means of the early detection of rejection. Using both nested and

qPCR, Zhong et al. [60] were able to confirm these results.

mRNA has been exploited in assessing rejection and its successful reversal.

However these studies were based upon the use of mRNA extracted from the cell

pellets isolated from the urine samples and not by using cfmRNA. Muthukuma

et al. [74] assayed mRNA for FOXP3, CD25, CD3, perforin and 18S rRNA from

urine specimens of 36 subjects with acute rejection, 18 subjects with chronic

allograft nephropathy and 29 subjects with normal biopsy results. However, only

FOXP3 proved a useful marker of acute rejection, the levels of FOXP3 diminishing

on the reversal of rejection. Mas et al. [75] also studied mRNA levels of AGT,
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TGF-ß1, EGFR, IFN- gamma, TSP-1 and IL-10 in urine cell pellets using

RT-qPCR. Only AGT, EGFR, and TGF-ß1 were identified as predictors of chronic

allograft nephropathy (CAN) and stable kidney function (SKF) with or without

proteinuria. AGT, EGFR and TGF-ß1 appeared to be usable as predictors of CAN,

SKF� proteinuria. Many other studies also use the pelleted cells and fragments

from urine e.g. studies on mRNA FOXP3, CD25, CD3ε, perforin and 18S rRNA of

which the authors found that FOXP3 mRNA could offer a non-invasive means

predicting acute rejection of renal transplants [74].

Clearly, the majority of workers are those used to using the pellets for other

investigations and have discarded the supernatant. Whether or not the supernatant

has also been investigated is not given in these papers. However, it could be

interesting to examine the supernatant for some of the markers proposed from the

pellets.

Although the following two situations are based upon urine sediment analyses

they offer examples of analyses that might be further extended via cell/sediment

free urine studies. For this reason they are included here.

Diabetic Nephropathy (DN) (see also Chapter “Circulating Nucleic Acids

and Diabetes Mellitus”)

Szeto et al. [76] demonstrated that the mRNA expressions of nephrin (NephRNA),

podocin (PodRNA) and synaptopodin (SynRNA) in urinary sediment gave signif-

icant differences for those of NephRNA and PodRNA between patients with

acquired proteinuric diseases including nephropathy. Furthermore, after a median

follow-up over a period of 2 years, there was a significant correlation between the

rate of decline in renal function for both NephRNA (r¼ 0.559, p¼ 0.001) and

PodRNA (r¼ 0.530, p¼ 0.002), but not SynRNA (r¼ 0.054, p¼NS) mRNAs.

Wang et al. [77, 78] then extended the study to 21 patients with biopsy-proven

DN when significant expression differences were observed for nephrin, podocin,

synaptopodin, alpha-actinin-4 and WT-1 mRNAs when compared to results from

healthy controls. In particular, nephrin expression was significantly correlated with

proteinuria (r¼ 0.502, p¼ 0.020); urinary synaptopodin was significantly corre-

lated with proteinuria (r¼ 0.585, p¼ 0.005), serum creatinine (r¼ 0.516,

p¼ 0.017) and estimated glomerular filtration rate (GFR) (r¼�0.560, p¼ 0.008)

while urinary WT-1 expression was significantly correlated with the degree of

tubulointerstitial fibrosis (r¼ 0.558, p¼ 0.009. In a further study, Wang

et al. [79] showed that in patients treated with ACE1 + angiotensin receptor blocker

as opposed to treatment only with ACE1 during a period of 12 weeks, the combi-

nation group had a significantly lower urinary synaptopodin expression (7.49 (95 %

confidence interval (CI), 0.62–115.29) vs 14.83 (95 % CI, 1.03–241.43), P¼ 0.026)

than the control group. The percentage change in urinary podocin expression over

the 12- week treatment period had a small correlation with the rate of GFR decline

in 1 year (r¼�0.243, P¼ 0.041) [80].
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In more recent experiments Zheng et al. [81] separated DN patients (N¼ 51) into

a normoalbuminuria group, a microalbuminuria group and a macroalbuminuria

group according to their urinary albumin excretion. Relative mRNA abundance

of synaptopodin, podocalyxin, CD2-AP, α-actin4, and podocin were quantified. All
mRNA levels studied were significantly higher in the DN group compared with

controls (p< 0.05), mRNA levels increasing with DN progression. Urinary mRNA

levels of all target genes positively correlated with both UAE and BUN. The

expression of podocalyxin, CD2-AP, α-actin4, and podocin mRNA correlated

with serum creatinine (r¼ 0.457, p¼ 0.001; r¼ 0.329, p¼ 0.01; r¼ 0.286,

p¼ 0.021; r¼ 0.357, p¼ 0.006, respectively). Furthermore, podocalyxin mRNA

was found to negatively correlate with eGFR (r¼�0.349, p¼ 0.01). They con-

cluded that the quantification of podocyte-associated molecules will be useful

biomarkers of DN.

Once again, as with mRNAs in renal transplant rejection, only pelleted material

was used as the source of the mRNAs. It will be of interest to determine if such

mRNAs occur in the urine supernatant and their possible use as DNA markers.

Lupus Nephritis (LN)

The following analyses have been performed on urinary pellets but are included as

examples that may give some directions for studies on urine cfNAs.

Wang et al. [77] examined the urinary expression of podocyte-associated mol-

ecules in patients with LN. mRNA expression of nephrin, podocin and

synaptopodin in urinary sediment was determined for 32 patients with active LN

(Active group) and 17 patients with inactive lupus (Silent group). Although there

was no relation between urinary gene expression and the histological class of LN,

urinary nephrin expression correlated with proteinuria (r¼ 0.480, p< 0.01) and the

score of the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI)

(r¼ 0.578, p< 0.01). In addition, urinary podocin expression also correlated with

the SLEDAI score (r¼ 0.389, p¼ 0.006). All patients were followed for about a

year after the initiation of immunosuppressive treatment, the declining of the

glomerular filtration rate (GFR) correlating with urinary expression of podocin

(r¼ 0.406, p¼ 0.005) and synaptopodin (r¼ 0.337, p¼ 0.021). Thus, the concen-

tration of podocyte-associated molecules in urinary sediment correlated with lupus

activity and GFR declined.

5 Cerebrospinal Fluid (CSF)

The CSF is a colorless fluid derived primarily from arterial blood by the choroid

plexuses of the lateral and fourth ventricles with a small amount being produced by

the ependymal cells. It is present in the subarachnoid space, the ventricular system

and the spinal cord. In adults, there is a total CSF volume of 140–270 mL with a
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production of 600–700 ml per day. CSF passes into the venous circulation although

a significant amount could drain into the lymphatic vessels around the cranial cavity

and spinal canal. It acts as a cushion that protects the brain from shocks and

supports the venous sinuses as well as playing an important role in the homeostasis

and metabolism of the central nervous system. In addition to ions, protein, glucose

and albumin, CSF also contains lactate, creatine, urea, CO and 0–5 white blood

cells μL�1.

More recently, DNA and RNA have been identified in the CSF and so permitted

studies on their possible use in early diagnosis and prognosis. Initial studies

included the development of methods for viral nucleic acids ranging from entero-

viral RNA, herpes simplex virus and Varicella-zoster virus using qPCR following a

single extraction with a guanidinium thiocyanate acid buffer, so eliminating the use

of organic solvents [82]. Subsequently, van Harten et al. [83] proposed a method

based upon cfmiRNA extraction from the CSF of either at risk of or Alzheimer

disease (AD) patients (compared with healthy controls) using acidified phenol:

chloroform. The cfmiRNAs were q-PCR treated and quantitatively analyzed

using the Megaplex protocol with Taqman Array MicroRNA cards on small

RNAs permitting analysis of 667 different cfmiRNAs and six endogenous controls.

MiR-16 was used as a control since it is a housekeeping gene that is relatively

uniformly expressed in all tissues [84]. This sensitive approach was used for a

number of reasons including speed of a quantitative analysis (2d for a complete

analysis), the small volumes necessary and the stability of cfmiRNAs [83]. Prelim-

inary results using MiR-802 differed significantly between AD patients and the

controls whilst there was little variation for MiR-16. NGS of cfmiRNA from the

CSF of patients with neurological diseases, CNS tumors and traumatic brain injury

has been developed [85]. This approach exploited small RNA sequencing libraries

using Illumina’s TruSeq sample preparation kit followed by sequencing the sam-

ples on the HiSeq 2000.

5.1 Aneurysmal Subarachnoid Hemorrhage

Other examples of the use of CFS nucleic acids in early diagnosis include the

studies of Wang et al. [86]. Released DNA from nuclear and mitochondrial origins

in CSF, in parallel with those from plasma, of patients with aneurysmal subarach-

noid hemorrhage were examined with a view to predicting the treatment outcomes

for such patients. Healthy donors were used as controls. Patients with a worse

outcome presented with higher CSF cfDNA (>85.1 ng ml�1) and mitochondrial

cfmitDNA levels (>31.4 ng ml�1). The authors concluded that higher CSF cfDNA

levels, rather than plasma cfDNA levels, are associated with worse outcomes in

patients presenting with acute spontaneous aneurysmal subarachnoid hemorrhage.
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5.2 Primary Central Nervous System Lymphoma (PCNSL)

Primary central nervous system lymphoma (PCNSL) is a form of extranodal, high-

grade non-Hodgkin B-cell neoplasm, usually a large cell or immunoblastic type

originating in either the brain or leptomeninges or spinal cord or eyes. About 90 %

of PCNSLs are diffuse large B-cell lymphomas, the remaining 10 % being poorly

characterized low-grade lymphomas, Burkitt lymphomas and T-cell lymphomas

[87]. The diagnosis of PCNSL depends on the histopathology of brain biopsies

because disease markers in the CSF with sufficient diagnostic accuracy are not yet

available. Central nervous system (CNS) biopsies do not always give a definitive

histopathological diagnosis and can be associated with a risk of haemorrhage and

neurological damage. Moreover, the less invasive analysis of cells from the CSF by

genetic, cyto-pathological and immuno-phenotypical analyses appear to be much

less sensitive than the biopsies [88–90].

Baraninskin et al. [91] considered the exploitation of cfmiRNAs in the CSF as

possible primary markers to distinguish PCNSLs from other healthy individuals. A

candidate miRNA approach assessing cfmiRNA expression using RT-qPCR of the

cfRNA isolated from the CSF of PCNSL patients and control subjects with different

neurological disorders was selected for the evaluation of the cfmiRNA potential.

Six candidate cfmiRNAs (miR-15b, miR-19b, miR-21, miR-92a, miR-106b,

miR-204) were selected for further investigation after compiling a list of published

miRNA expression data in diffuse large B-cell lymphomas and primary CNS

lymphomas based upon published miRNA expression data in lymphoma tissues

[92]. Four cfmiRNAs (miR-24, RNU48, RNU6b, RNU44) were selected as controls

due to likely uniform expression levels and an adequate amount in the CSF for

potential normalization.

The initial screening indicated that three cfmiRNAs (miR-21, miR-19b,

miR-92a) gave significantly increased levels in the CSF of PCNSL patients com-

pared with those of control patients. Of these, miR-21 appears to be expressed in a

number of tumors and is associated with the down-regulation of bcl-2 and phos-

phatase and tensin homologue whilst miR-19b and miR-92a are present in the poly-

cistronic miRNA-17� 92 cluster located on human chromosome 13.13 [93]. Inter-

estingly, the miRNA-17� 92 cluster is often over-expressed in B-cell lymphoma

cell lines, the majority of diffuse large B-cell lymphomas [94] and also in

PCNSL [95].

miR-15b, miR-106b, and miR-204 were detected by RT – qPCR but the expres-

sion levels were similar in both patients with PCNSL and control patients. Control

cfmiRNAs, RNU48, RNU6b and RNU44, were undetected in the CSF though

low-abundant expression of miR-24 was present in all PCNSL and control patient

samples. Thus, it was used to normalize miRNA expression levels in subsequent

analyses of CSF cfmiRNA expression in individual CSF specimens. To further

distinguish PCNSL from other diseases using CSF cfmiRNAs, miR – 21, miR-19b,

and miR-92a RELs were combined leading to the correct identification of 22 from

23 PCNSL patients (95.7 %) and 96.7 % of the control patients [91].
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Popsipil et al. [95] investigated the abundance of cfmiRNAs in the CSF and sera

in order to determine their levels during the diagnosis and treatment of PCNSLs.

The patients studied included three primary PCNSL, three cases of systemic

lymphomas with CNS dissemination and 11 cases without. Histologically,

13 cases were of diffuse large B cell lymphoma (DLBCL). Total cfRNA was

isolated from 200 μL of cell free CSF and sera followed by RT-qPCR, the data

being adjusted to levels of control miRNAs (either miR-let-7a or miR-24).

miR-19a, miR-20a, miR-92a of the miR-17–92 cluster, miR-106b, miR-25 of the

miR-106b – 25 cluster and miR-155 were detected in both the CSF and sera, but not

miR-106a and miR-18a. In addition, miR-17–92 and miR-106b-25 were increased

in the CSF of the PCNSLs and the systemic lymphomas with CNS involvement

when compared with the systemic lymphomas without CNS involvement. The

analysis at nine different time points within 3 months were made for one case of

systemic DLBCL with CNS dissemination. During the treatment (R-CHOP alter-

nating with RMPV) resulting in complete remission, a gradual decrease (~sixfold)

of the levels of miR-19a, miR-20a, miR-92a, miR-106b and miR-25 were observed.

Both of the above studies show that the measurement of CSF cfmiRNAs could

offer a sensitive tool for PCNSL tumor detection as well as for estimating the

monitoring of therapy efficiency.

5.3 Detection of Glioma

A study by Chen et al. [96] involved the use of BEAming RT-qPCR as well as

ddPCR to identify nucleic acid components of vesicles present in both the CSF and

serum of glioma patients. Using these approaches, it was possible to reliably detect

and quantify both mutant IDH1 and wild-type IDH1 RNA transcripts in the CSF of

these patients. It was also possible to show that extracellular vesicles derived from

the CSF patients with tumors have higher levels of IDH1 mRNA than CSF EVs

from controls i.e. suspected non-malignant, neurological diseased individuals later

shown to have normal CSF profiles.

Monitoring Treatment of Glioblastoma

An alternative approach concerns a study of nucleosomes present in CSF and their

use in monitoring treatment. Holdenrieder et al. [97] compared the CSF nucleo-

some levels, pre- and post-operative in ten glioblastoma patients versus 20 with

non-acute neurological disorders (ten with subarachnoid haemorrhage and five with

non-ruptured aneurysms).

Therapy can include surgical resection of the visible tumor plus radiotherapy

with chemotherapy both during and after radiotherapy [98, 99]. Nevertheless,

glioblastoma often progresses despite initial tumor response, often with complica-

tions e.g. epileptic seizures and brain edema development [98, 99]. Thus, the study

314 L. Hui et al.



involved nucleosomal levels in the CSF of patients with glioblastoma receiving

intra-cerebral chemotherapy and their correlation with the appearance of compli-

cations. Nucleosome levels did not differ in pre-therapeutic CSF samples of

patients with glioblastoma (median 13.7 ng mL�1), control groups of patients

with non-acute neurological disorders (16.6 ng mL�1), subarachnoid haemorrhage

(24.6 ng mL�1) and non-ruptured aneurysms (10.3 ng mL�1). Patients with recur-

rent glioblastoma and receiving tumor resection plus local, intra-cavity chemother-

apy showed a constant increase of nucleosome levels in CSF from 13.7 ng mL�1

(day 0) to 24.9 ng mL�1 (day 4).

During the first postsurgical week, a significant cerebral oedema occurred in

three out of the ten patients with treated glioblastoma. Only a slight increase of

nucleosomes in the CSF occurred for the seven patients without oedema during the

observation period (pre-operatively 16.6 ng mL�1 to reach a maximum level of

22.3 ng mL�1 on day 3). Those patients who developed postoperative oedema

started pre-therapeutically from similar levels (11.4 ng mL�1 in CSF) followed by a

dramatic increase to reach a maximum of 2,051 ng mL�1 (day 3). Such results led

the authors to suggest that the preliminary data may be valuable in the monitoring

of complications during intra-cerebral cytotoxic treatment of glioblastoma and that

further studies would be beneficial [97].

5.4 Fetal DNA from Pregnant and Post Delivery Women

A further involvement of cfNAs in CSF concerns the presence of fetal DNA in the

CSF of pregnant and post delivery women. In an initial study, Angert et al. [100]

considered that since CSF is secreted by the choroid plexus and, therefore, is

protected by the blood-CSF barrier, a mechanism similar to the blood-brain barrier.

Normally, only hydrophobic and non-polar molecules of a molecular weight of

<500 Da are permitted to enter and only during e.g. either infection or inflamma-

tion are other molecules or cells are permitted to breech the blood-CSF barrier.

Although peptide nucleic acids can cross the blood-brain barrier and exhibit gene

expression [101], DNA is a large, negatively charged molecule that would not be

expected to be present in the CSF. However, if cffDNA can act similarly to tumor

DNA, then it may also breech the blood-CSF barrier.

Hence, CSF was collected from nine woman of whom 26 carried male fetuses,

the rest carrying female fetuses and the DNA isolated subjected to qPCR. ß-globin

DNA was found to be present in all CSF samples whilst DYS-1 gene sequences

were found in four samples from male fetus carriers, three during pregnancy and

one after delivery; none was present in CSF from female fetus carriers.
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6 Bronchial Lavage & Aspirates

The isolation of DNA/RNA from cell-free bronchial lavage supernatant (BLS) was

first demonstrated by Schmidt et al. [102] and an improved methodology followed

based upon the use of the Nucleo-Spin Plasma XS Kit for the isolation of cfDNA

[103]. In a study of 33 lung cancer and 27 benign lung disease patients, no

difference in cfDNA levels was observed for that isolated from serum and plasma

though there was a difference between the two groups using BLS with a greater

amount in the BLS from the lung cancer group. The lack of difference overall may

have been due to the fact that there is a severe inflammatory reaction present in most

of the control patients, severe inflammation being known to be associated with

higher cfDNA levels in serum and plasma [104]. Kneip et al. [105] developed a

novel technique for the detection of DNA methylation biomarkers, based on qPCR

of bisulfite-treated template with enzymatic digestion of background DNA during

amplification using the heat-stable enzyme Tsp509I. The lung cancer methylation

biomarker BARHL2 assay was compared with the methylation-specific PCR tech-

nology to indicate the clinical and analytical performance of the new method. Both

methods gave comparable results when analyzing both cfDNA mixtures and BLS

samples from 75 suspected lung cancer patients. This approach was found to be

useful especially when there are few copies of methylated cfDNA present in

samples having a high background of unmethylated cfDNA, as is found with

body fluid clinical samples. Kneip et al. [105] extended this approach for use

with plasma SHOX2 cfDNA methylation.

Schmidt et al. [106] were able to show that SHOX2methylation could be used as

a biomarker for lung cancer based upon bronchial aspirate samples that were either

fresh-frozen or Saccomanno-fixed samples. A study of 281 lung cancer cases and

242 control, benign lung disease patients employed the use of differential methyl-

ation hybridization and qPCR based on HeavyMethyl technology. The results

showed the ability to distinguish between malignant and benign lung disease with

a sensitivity of 68 % and a specificity of 95 %.

As already seen to be a useful biomarker for lung cancer using BLS, a new

method to measure the methylation of the SHOX2 gene locus was developed and

applied especially when there was no clear-cut outcome from standard cytological,

histological and bronchoscopy results [107]. This new method was based on

(a) generation of bisulfite converted template DNA from patient bronchial aspirate

samples and (b) qPCR determination of SHOX2 biomarker methylation. The

application of the method to 125 lung cancer patients and 125 controls resulted in

a diagnosis for the cancer with an AUC 78 % sensitivity and a 96 %

specificity [107].

Early studies on the presence of cfRNA in BLS using RT-qPCR permitted the

identification of intact cfRNA in the BLS from 126/129 patients. In parallel, the

cfRNA content of 64 serum samples was also determined when cfRNA levels were

higher in the BLS than in the serum. Moreover, higher BLS cfRNA concentrations

were found in tumor patients than in patients with benign lung disease. Although
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quantification of intact cfRNA present in BLF could be used as a tool for

distinguishing between tumor and non-tumor patients, there has been little

follow-up to this work.
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CNAPS in Therapy Monitoring

Stefan Holdenrieder

Abstract Monitoring of disease state and of therapy response is highly relevant for

efficient patient management. Monitoring tools comprise observation of clinical

signs and performing specific examinations such as imaging or blood analyses. This

review focusses on the relevance of blood-based biomarker monitoring by circu-

lating nucleic acids for diverse indications that is exemplified on patients who

develop or suffer from cancer disease. These indications include (i) screening of

patient groups who have a risk to develop a disease, (ii) monitoring response to

local or systemic therapies in patients with a defined diagnosis and (iii) early

detection of disease recurrence after the primary therapy has ended. Useful bio-

markers have to fulfill the highest methodical, pre-analytical and clinical quality

criteria and have to be implemented in standardized patient management proce-

dures. The current situation of circulating nucleic acids is summarized on the levels

of genetic, epigenetic, transcript, non-coding RNA and nucleosome markers and an

outlook is presented as to how these markers can be integrated into a future strategy

that enables a personalized management of the patients.
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1 Introduction – The Advantage of the Monitoring

Approach

Risk assessment or diagnosis of a disease is often done by one-time investigations if

the situation is very clear. This applies to acute pathologies such as trauma, stroke

and some infections in which radiology or laboratory examinations clearly indicate

the diagnosis. Further typical laboratory constellations or radiological findings

suggest a specific risk of disease; for example suspicious blood lipid profiles and

calcification of coronary arteries are associated with an elevated risk for myocardial

infarction. In addition, a one-time judgment is required if an examination is highly

invasive and the material is difficult to obtain such as organ tissue biopsies and

either cerebrospinal or amniotic fluids.

In other situations that are not unambiguous, that develop chronically and that

have no clear disease signs, the monitoring of the health or disease state of the

individual has high importance. Serial observation of clinical signs, laboratory and

radiological examinations, is performed for instance on persons with high familiar

risk of developing either diabetes or cardiovascular or cancer disease. Regarding

biochemical biomarkers, it has to be considered that blood levels sometimes vary

greatly among healthy individuals as well as within a specific person over time.

Therefore, the interpretation of serial biomarker values that were obtained under

standardized conditions is often superior to one-time marker determinations.

This aspect applies also to the situation when a definitive diagnosis has been

established and the course of disease during or after a therapy has to be estimated.

Then, monitoring serial individual biomarker courses yields much more reliable

results for a specific person than a single “snapshot”-examination. The monitoring

approach is essential for the management of patients with diverse diseases. Histor-

ically it has been introduced into patient care in form of “fever curves” or “blood

pressure profiles” and, nowadays, has spread beyond to blood biomarker applica-

tions. This review will focus on CNAPS and will show their relevance for moni-

toring purposes. To make it as practicable as possible the application of cfNAs will

be exemplified on patients who develop or suffer from cancer disease. In addition,

the clinical usefulness of monitoring CNAPS will also be shown for other

non-cancer diseases.

2 Indications for the Use of Circulating Biomarkers

Biomarkers that circulate in the blood can be used to answer many questions that

are highly relevant for the management of health and disease in a specific person. In

detail they are applied for the following indications (Fig. 1):

– the screening of presumably healthy persons (without any symptoms)

– the monitoring of persons at risk for a specific disease (but without symptoms)
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– the risk estimation of a person with suspicious symptoms or disease signs

– the definitive estimation of differential diagnosis in persons with specific

symptoms

– the estimation of severity (and staging) of a diagnosed disease

– the estimation of prognosis in patients with a defined diagnosis

– the stratification of patients with a diagnosis for a certain therapy

– the monitoring of the response to therapy in a diseased patient

– the early estimation of therapy response as a special application

– the monitoring of a patient after the primary therapy for

– the early detection of recurrent disease.

The monitoring of serial biomarker concentrations in the blood can be made for

all of these indications. At least in cancer patients, it is mostly applied for (i) the

screening of patient groups who are at risk of developing a disease, (ii) the

monitoring response to local or systemic therapies in patients with a defined

diagnosis, (iii) the early detection of disease recurrence after the primary therapy

has been finished.

For newly developed targeted cancer therapies, CNAPS are highly meaningful

as companion diagnostics to stratify patients for a certain therapy and to monitor the

responsiveness of this therapy as well as for the detection of drug resistance and

biochemical recurrence in order to enable an early and specific therapy adaptation

on an individual basis.
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Fig. 1 During the course of cancer disease there are multiple indications for the use of circulating

biomarkers: They are applied for (i) cancer detection and differential diagnosis, (ii) estimation of

prognosis, (iii) prediction and monitoring of therapy response, (iv) early detection of therapy

resistance and of recurrent disease. Biomarker changes in relation to individual baseline values

often mirror the course of disease most sensitively. Only a few markers are suited for accurate

cancer screening in “not-diseased” individuals
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3 Requirements and Quality Criteria of Circulating

Biomarkers

In order to give reliable and meaningful results that can be used for patient

guidance, circulating biomarkers and the methods that are applied for their deter-

mination have to fulfill the highest methodical, preanalytical and clinical quality

criteria it they are to be implemented into standardized patient management pro-

cedures (see also chapter “Quality Assurance”).

3.1 Methodical Aspects

An assay for the detection of biomarkers has to meet many methodical precondi-

tions [1–3]. They include a:

– high analytical sensitivity (the analyte is detected at very low concentrations)

– high analytical specificity (only the analyte is measured)

– high accuracy including a high intra- and between-run imprecision

– high recovery and dilution linearity in the given matrix

– high robustness against potentially disturbing factors.

For CNAPS methods, the sensitivity and specificity depending on primers and

probes in the setting is usually high. The accuracy and also the interlaboratory

comparability of quantitative measurements are strongly influenced by methods of

CNAPS extraction and gene sequence chosen [4] and can be controlled by the

inclusion of internal controls that undergo all of the methodical steps of the samples

[5–7]. Further, the introduction of internal and external quality control systems of

the laboratory are necessary if standardized CNAPS measurements are to be

implemented in laboratory routine and standardized patient care (chapter “Quality

Assurance”).

3.2 Pre-analytical Aspects

Pre-analytical aspects may greatly influence the results of quantitative CNAPS

measurements while they are less important for qualitative information on

CNAPS. Nevertheless, pre-analytics should be standardized for routine diagnostics

as well as for study settings. The following aspects have to be considered (Fig. 2):

– the conditions of the patient and the blood drawing (e.g. time, fasting, position of

the patient, tourniquet time, type of needle)

– the conditions of the material (e.g. type of blood matrix i.e. serum or plasma,

additives, tubes, volumes)
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– the conditions of the transport to the lab (e.g. time, temperature, pneumatic

delivery)

– the conditions of the centrifugation (e.g. time, temperature, speed, braking)

– the conditions of the sample handling (e.g. storage time, temperature, extraction,

deep freezing, thawing frequency).

As CNAPS have different stabilities, defined pre-analytically standardized

operation procedures (SOPs) including specific blood collection tubes have to

be followed particularly for RNA determinations ([8]; chapter “Pre-analytical

Requirements for Analyzing Nucleic Acids from Blood”). However also quanti-

tative DNA investigations are influenced by pre-analytic variables. Therefore,

pre-analytic SOPs should be particularly considered when monitoring patients by

CNAPS [9–13]. cfmiRNA concentrations in plasma and serum are reported to be

stable and not to be affected i.e. be freezing conditions facilitating its use for

monitoring purposes [5, 7] although some recent studies identified some preanalytic

influencing factors as well [14, 15].

Drawing conditions: 
Biological variations? Time? 
Sample type? Tubes? 

Transport conditions:
Time? Temperature?  
Rolling / Shaking? 

Centrifugation:
Time? Temperature?  
Speed?

Storage:
Time? Temperature?  
Freeze Thawing?

Stabilization:
Time? Temperature?  
Concentration?

Analytical conditions: 
Extraction? 
Preparation? Primers? 
Detection?

Fig. 2 Preanalytical variations of blood handling may influence the test results. They include the

conditions of (i) the individual patient, (ii) the blood drawing procedure, (iii) the material used,

(iv) the transport to the laboratory, (v) the handling in the laboratory or biobank facility, (vi) the

analytical procedure and (vii) the instrumental setting
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3.3 Clinical Aspects

If biomarkers are successfully applied to the diverse clinical indications, some

measures are informative as to how accurately they answer the questions posed.

For differential diagnosis, the clinical sensitivity and specificity of a biomarker are

very meaningful. The sensitivity indicates the percentage of positive results of the

marker in the diseased patient group while the specificity is the percentage of

negative results in the control group. Because, in the case of cancer disease, the

value ranges of cases and controls often overlap, it is not possible to define optimal

cutoffs that enable cancer detection with 100 % sensitivity and specificity. This is

even more difficult if cancer patients need to be distinguished from the differential

diagnostically relevant group of patients with organ-related non-malignant

diseases [16].

The diagnostic performance of a biomarker can best be shown by the complete

profile of sensitivity and specificity using ROC curves (Fig. 3). This figure gives the

sensitivity and specificity at all possible cut-off points and it is highly informative to

compare the performance of diverse biomarkers with each other. Meaningful

measures are: (i) the area under the curve (AUC); ideally this should be close to

1.0 while it indicates no discriminative potential of the marker if it is close to 0.5 or

(ii) the sensitivity at a defined specificity (e.g. 95 %) or (iii) an optimized

sensitivity-specificity combination that is reflected in the figure by the point closest

to the left upper corner. Most importantly it should be considered as to which

groups are compared in this approach. Best curves will result if patients with

advanced cancer disease are compared with young healthy individuals. However,

it is clinically more relevant to distinguish equally aged persons with suspicious

symptoms whether they suffer from an early cancer or a non-malignant pathology.

Then the curves often will be less optimistic ([16, 17]; chapter “Extracellular

Nucleic Acids and Cancer”).

Beyond diagnostic approaches, ROC curves can also be used to illustrate the

performance of a biomarker for the staging of disease (e.g. early stage cancer

vs. metastatic cancer) or for the staging of therapy response (e.g. remission vs. -

non-remission). In the monitoring of a disease, kinetic information (increases or

decreases in marker values) also can be used as marker variables.

It has to be pointed out that for screening purposes the positive and negative

predictive values (PPV and NPV) are more informative than the sensitivity and

specificity. While PPV indicates the probability of disease if the value is positive,

NPV gives the probability of being disease-free if the value is negative. Because, at

least for cancer diseases, the frequency of cases is very low, PPV may be low even

if the sensitivity and specificity are higher than 90 % [17]. Further, predictive values

are important if patients should be stratified for specific therapies and responses

have to be anticipated.

While prediction always relies on the response of a specific therapy, prognosis is

related to the time of either disease-free (DFS) or progression-free (PFS) or overall

survival (OS). Clinical and biomarker values can be obtained either before or
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during a therapy. When monitoring therapy response, biomarker information that is

available at the same time as the radiological staging can support the accurate

estimation of the individual therapy response. If the information is available prior to

the radiological staging, i.e. after one application of chemotherapy, the biomarker

determination leads to a time advantage in terms of the early estimation of therapy

response that would enable an early and individual adaptation of the therapy

strategy (Fig. 4).

When a new cancer biomarker has to be evaluated clinically, a relevant number

of patients with the target cancer disease has to be compared with healthy controls

and patients with the organ-related benign diseases that are differential diagnostic

relevant. To get a whole picture of the usefulness of a biomarker, further cancer

diseases and benign diseases that are involved in the marker catabolism, such as

renal and hepatic disorders, have to be included as well. For therapy monitoring

studies, a meaningful number of patients with a certain cancer that undergo a

homogeneous type of therapy with objectifiable, favorable and non-favorable out-

comes have to be considered. Recently published guidelines support the profes-

sional validation of biomarkers for diagnostic and monitoring purposes [3, 18–20]

as well as for the development and incorporation of biomarker studies in early

clinical trials [1].

Although these aspects seem to be self-evident, many CNAPS studies show a

lack of, at least, some of these points; i.e. either inappropriate controls are chosen or

numbers of patients, particularly in monitoring studies, are too small to allow

general and robust conclusions.
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Fig. 3 The value distributions of most cancer biomarkers show an overlap of cancer patients and

healthy individuals. The diagnostic performance of a biomarker is illustrated best by ROC curves.

To establish this figure, the portion of correctly negative controls (specificity) and correctly

positive cancer patients (sensitivity) are identified for all possible cut-off points (decreasing

stepwise from 100 % specificity) and transferred to the scheme. The area under the curve

(AUC) and the sensitivity at a fixed specificity (e.g. 95 %) are most informative for the comparison

of diagnostic markers. As control groups, healthy individuals and patients with differential-

diagnostically relevant benign diseases are considered
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3.4 Multimarker Approaches

A new biomarker is only of clinical usefulness if it is superior to an existing

biomarker or offers additive diagnostic, predictive or monitoring information.

Therefore, new biomarkers should always be compared with those that currently

are used in clinical routine [3, 18, 20, 21]. Although only very few single markers

show a clear and reproducible advantage in these comparisons, the combination of

multiple biomarkers could lead to a significant improvement of sensitivity and

specificity. These combinations could result from a bottom-up approach that

assembles biologically complementary markers – mostly based on convenient

multiplex technologies – or from a top-down approach that extracts meaningful

markers out of a plentitude of markers delivered from proteomic or genomic

technologies. While the first approach is supported by logistic regression-, sup-

porter vector machine- or neuronal network-models, the latter one often comprises

even more complex approaches. In all cases a validation in an independent patient

set is paramount to confirm the findings [1, 2, 19].

This is highly relevant for some groups of CNAPS biomarkers such as epigenetic

markers and miRNAs. Studies often identify several “promising” marker candi-

dates that may have a superior performance when combined with each other.

Further, NGS approaches require sophisticated biostatistics to interpret the pattern

of suspicious findings [22, 23].

Chemo 2

Diagnosis

Time

Chemo 1

Staging
Therapy Response

Survival
DFS  / OS

Prognosis

Therapy Monitoring

Prediction

Fig. 4 Biomarkers prior to and during therapy provide prognostic information if they are related

to the time of either disease-free (DFS), progression-free (PFS) or overall survival (OS). Predictive

biomarkers indicate the response of a specific therapy before the start and are used for therapy

stratification, while biomarkers during the course of therapy are suited to (early) estimate the

(non-) response to therapy and indicate the potential need for treatment change
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4 Monitoring Disease State and Therapy Response

The easiest way of looking at circulating biomarkers in the monitoring of the

disease state or therapy response is to determine the biomarkers at occasions

when clear clinical correlates are present e.g. either after surgical tumor resection

and at time of recurrent disease or alternatively before the start of a systemic

therapy and at the time of radiological staging assuming that the marker levels

ideally are only influenced by disease activity or therapy response. This approach is

often sufficient to see whether or not biomarkers show a correlation with disease

states in groups of patients with similar preconditions and therapies. However, this

is only the starting point for developing rules as to how the markers are

implemented in clinical routine and can be used for the individual interpretation

of marker changes over time. Therefore, several additional aspects have to be

considered:

– the biological variation of a biomarker in individual patients

– the role of influencing factors

– the disease state when the therapy is applied

– the type of therapeutic interventions

– the monitoring schedule for a biomarker and the data interpretation

– the accuracy of biomarker monitoring and its consequences for patient

management.

4.1 Role of Biological Variation and Influencing Factors

For several biochemical markers, it is well known that their concentrations in blood

depend on age, gender, ethnicity and can vary due to diurnal, mensal, annual or

other cycles. Further influencing factors are fasting, hydration, medication, the

position at blood drawing, marker-specific factors such as stress, sports and

comorbidities or drug-related immune reactions. Although influencing factors

cannot be ruled out completely, standardized procedures for blood collection are

recommended [1]. As heterogeneity among individuals is considerable for many

markers, relative marker changes on an individual basis are preferred to absolute

cutoff rules orientated towards diseased patient groups.

4.2 Therapeutic Interventions

Disease states of cancer patients may be very different when a certain therapy is

applied: The tumor may (i) be locally confined to the organ, (ii) be in an early,

median or advanced stage, (iii) have spread to distant lymph nodes or other sites in

the body, (iv) already have recurred after a successful primary treatment or (v) be
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continuously progressive. Although all of these states are obviously greatly differ-

ent, they have as common ground that malignant masses are present that should be

reduced by the therapy.

The treatment itself can be focused on the local eradication of the tumor such as

by either surgery or external or internal radiotherapy or the local application of

cytotoxic therapies, e.g. in liver metastases. Alternatively, systemic approaches are

applied if the cancer disease is already in an advanced stage, such as endocrine

therapies, cytotoxic chemo- or radiotherapies, biological (targeted) therapies,

immune, gene, vaccine or other therapies. Recently, the application of new anti-

body or tyrosine kinase inhibitor (TKI) drugs that target growth factor receptors or

signaling pathways has gained much attention. As they are only applicable if

specific pathways are altered in cancer cells, so-called “companion diagnostics”

are required to check the mutation status of relevant pathway components

[24]. Though all of these therapies are intended to reduce the tumor mass effi-

ciently, they may do this with different velocities in different organs so suggesting

the need for a differentiated monitoring procedure for each situation. This applies

also to the different types of treatment strategy being neoadjuvant therapy before

surgery, as well as primary, recurrent or palliative therapy without surgery.

In addition, there are situations of no direct evidence of cancer disease when the

health/disease state of a subject has to be monitored and the (re)occurrence of a

tumor has to be detected as sensitively and as early as possible. This applies to the

monitoring of (i) individuals at risk of developing cancer disease and (ii) patients

after successful tumor eradication. The last group is further sub-classified into

patients who receive post-surgery adjuvant chemo- or radiotherapy to control

potential micrometastases and patients who are purely followed without receiving

any treatment. Although biomarker monitoring has not been widely established for

these situations in routine patient management, a sensitive detection of

micrometastases could trigger early intervention trials that lead to improved

tumor control and better outcomes in recurrent or advanced tumor stages [25–27].

4.3 Biomarker Monitoring Schedule and Data Interpretation

To show the correlation with the disease state, biomarker levels are considered that

are available at time points when clinical or radiological staging investigations are

made. However, to guide the individual patient management by biomarkers, a

prospective scenario of appropriate determination intervals has to be defined that

allows the sensitive and accurate estimation of either therapy response or tumor

(re)occurrence. These intervals depend very much on the efficiency of the therapy

and the expected half-life of the biomarker response. It is recommended that they

do not only meet the regular staging time points, but also cover the initial phase of

the therapy – e.g. before every new cycle of chemotherapy and sometimes even the

first hours or days after the first application of the therapy – to enable a very early

estimation of the biochemical response. Then they offer a real time advantage over
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the conventional strategy and trigger an early adaptation of the therapeutic plan.

This will be beneficial for the patient in terms of more efficient therapies, less toxic

side effects and co-morbidities and considerable cost reduction (Fig. 5).

However, this approach is only helpful if clear rules are defined in which relative

changes of markers over time in an individual indicate a response or – even more

relevant – a non-response to the therapy – with high sensitivity and specificity. Only

in the latter case, will the consequence be a change in the therapeutic procedure.

Therefore, the biomarker information should be highly specific for non-response

because all patients, who are not clearly identified as non-responders by biomarker

changes, will be followed by regular staging methods. Most cancer-related marker

levels will increase in the case of insufficient response and decrease if the therapy is

efficient. Thereby, it should be taken into account that (i) blood levels of some

biomarkers may rise immediately after treatment as a reflection of tumor lysis,

(ii) marker levels decrease with different velocity, (iii) this decrease depends on

various components such as marker release, marker binding to blood constituents

and marker elimination dynamics and (iv) some markers may always show a

primary decrease but re-increase early in case of disease progression.

Generally, there are three major indications for the early estimation of therapy

response:

Staging

Remission Continuation

Progression Change of therapyDiagnosis

Chemo 1 2 3

No change

Months0 1 2 3 4

Benefits:
More efficient therapy 
Decreasing morbidity
Cost reduction?

Blood Biomarkers 

Markers

Fig. 5 Early estimation of response to cytotoxic therapies is particularly useful in patients with

tumor burden undergoing systemic treatments. As macroscopic changes of tumor volume often are

detected by imaging techniques only after weeks or months, the biochemical changes are fre-

quently detected through the course of biomarkers already during the first days or weeks of

therapy. Then they enable an early adaptation of the therapeutic plan that is beneficial for the

patient (more efficient therapies, less toxic side effects and comorbidities) and the health care

system (cost reduction)
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– monitoring the completeness of surgical tumor eradication and potentially

suggesting adjuvant therapies

– monitoring response to systemic therapies (neoadjuvant, primary, palliative) and

potentially suggesting alternative or additional therapies

– monitoring resistance to a part of the (targeted) therapies and potentially

suggesting an alternative approach.

For patients presenting with no direct evidence of disease who are followed for

an early detection of either micrometastases or recurrence of cancer disease, the

intervals will depend on the probability of the tumor in the diagnosed stage to

reoccur and on the regular follow-up program. Nevertheless, the intervals should be

close enough so as not to miss incidental recurrences and to offer a real time

advantage as opposed to regular radiological examinations. Only if the biomarker

monitoring leads to earlier therapeutic interventions and to a clear benefit for the

patients in terms of better overall survival and life quality, will it be implemented in

standardized patient guidance programs. Once again, clear rules with defined

critical marker dynamics are needed to enable an accurate data interpretation and

disease prediction on an individual level.

For example, in a prospective intervention trial, blood levels of cancer biomarkers

CEA and CA 15–3 of patients with breast cancer were controlled three times after

successful primary treatment to define the individual baseline values. During the

further follow-up, the interpretation of the 6-weekly assessed biomarkers relied only

on the changes of marker levels from this baseline value irrespective of whether or

not they were either within or outside the reference range. Increases of more than

100 %, which were confirmed by an additional measurement, indicated distant

metastases with a specificity of nearly 100 % and a sensitivity of 60–70 % – often

with a lead-time of many months prior to the occurrence of symptoms [28]. Similar

results can be assumed for CNAPS-based markers as well.

5 CNAPS in Cancer Disease Monitoring

While CNAPS has often been investigated for its role in the diagnosis and prognosis

estimation in cancer disease (as reviewed by [29, 30]; chapters “CNAPS and

General Medicine” and “Extracellular Nucleic Acids and Cancer”), the focus has

recently shifted to the direction of the monitoring of therapy response and early

detection of recurrent disease as new techniques are available that sensitively detect

tumor-specific mutations in circulating cfDNA [26, 27]. In general, CNAPS is

comprised of biomarkers at diverse levels:

– Genetic markers (DNA, viral DNA, nucleosomes, DNA integrity, DNA

mutations)

– Epigenetic markers (DNA methylation, histone modifications)

– Transcript markers (mRNA)

– Non-coding RNA markers (e.g. miRNA, lncRNA; chapter “The Biology of

CNAPS”).
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5.1 cfDNA

For many cancer diseases it was reported that serum or plasma levels of total

cfDNA are elevated as compared with healthy controls and that levels decrease

after surgical tumor resection [5, 29]. As is well known for other cancer biomarkers,

the pre-therapeutic cfDNA levels and the velocity and completeness of cfDNA

decrease after surgery is indicative of the further outcome for the patients [29, 31,

32]. After a potential short term increase immediately after the surgical intervention

due to DNA release from operatively damaged normal and tumor tissue, the decline

depends on both the biological marker half-life and residual tumor cells. Cor-

relations of decreasing cfDNA levels and successfully performed tumor resections

were reported for lung [33], breast [34], colon [31, 35], esophageal [36] and renal

cancer [37]. In contrast, incomplete tumor resection or primary systemic tumor

dissemination was assumed in patients with persistently increasing cfDNA values

[31, 36]. In the further follow-up of patients with esophageal and colon cancer,

circulating cfDNA was found to be more sensitive for tumor relapse than the

established tumor marker CEA [31, 38].

While in many solid cancers, serum and plasma cfDNA can derive from

malignant and non-malignant cells, a special situation is given in virus-associated

cancer diseases. For example, human papilloma virus (HPV) DNA in cervical

cancer or Epstein-Barr virus (EBV) in nasopharyngeal cancer and Hodgkin’s

lymphoma correlate with the presence and extent of disease and decrease after

surgical removal of the tumor [29, 39–46]. A half-life of 3.8 days was calculated for

EBV DNA after radiotherapy and of 139 min after surgery [44, 47]. During

systemic therapies, decreasing values were observed in patients with remission

during therapy while progressive patients had stable or increasing EBV DNA

values [39, 45, 48–50]. Interestingly, a primary increase of EBV DNA was seen

during the first days after the first application of therapy [44].

Similarly, this initial peak was reported in an animal model with ovarian cancer

xenograft that was treated by chemotherapy. The cfDNA levels clearly correlated

with tumor size and decreased strongly after tumor resection or chemotherapy [51–

53]. In line with these results, cfDNA levels in human cancers decreased in patients

with response to radiotherapy and showed stable or increasing values in progressive

patients [54]. The results of this first study were later confirmed in patients with

lung cancer undergoing chemotherapy [55–57], in patients with rectal cancer

receiving neoadjuvant radiochemotherapy [58], in patients with ovarian cancer

treated by chemotherapy [59, 60] and in patients with renal cancer treated by

tyrosine kinase inhibitors [61]. However, it has to be mentioned that some minor

studies with lower numbers of patients reported no association between cfDNA

kinetics and tumor relapse or treatment response [37, 62].

Beyond the general observation that cfDNA yields in plasma and serum corre-

late with tumor burden and therapy response, there have not been any further
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endeavours to define clinically relevant intervals of cfDNA determination, nor any

rules that could be useful for the interpretation of cfDNA kinetics in the individual

patient. Furthermore, it has to be pointed out that different DNA extraction and

quantification methods led to greatly differing absolute cfDNA levels in various

studies [4, 5]. Further, blood often was only drawn at times of staging or at the end

of therapy, but not during the first week of treatment.

5.2 Nucleosomes

As a significant portion of cfDNA circulates in blood in form of nucleosomes that

are complexes of 147 bp of DNA wrapped around a central protein core comprised

of the double-represented histones H2A, H2B, H3 and H4 [63–65]. They are the

product of DNAses that are particularly active during apoptotic cell death. The

chromatin is cut into its basic elements resulting in the typical apoptotic DNA

ladder with fragments of nucleosomal size and multiples thereof on agarose gel

([32, 63]; chapter “The Biology of CNAPS”).

Similarly to DNA, the levels of circulating nucleosomes that were determined by

ELISA technique were found to be elevated in serum and plasma of cancer patients

[10, 66–68]. In patients undergoing systemic cytotoxic chemo- and radiotherapy,

the changes in nucleosome levels were associated with tumor response to therapy.

While strongly decreasing levels were mainly found in patients achieving remis-

sion, constantly high or even increasing values were associated with progression in

solid and systemic tumor diseases (reviewed in [69]). In addition to these general

observations, nucleosome levels increased rapidly after the start of therapy, reached

a maximum after 2–4 days (as with EBV DNA) followed by a subsequent decrease.

Various factors may contribute to these typical courses observed in patients with

lung, colorectal, pancreatic, breast and hematologic cancers who received systemic

or local chemo-, radio-, and immunotherapy (reviewed in [69]):

– the spontaneous release of nucleosomes indicating the cellular turnover rate

– the therapy-induced release of nucleosomes

– the individual elimination capacity of nucleosomes from the circulation.

Though nucleosomes are not specifically related to tumor cell death, in vitro
radiation experiments have revealed that lung cancer cells release more nucleo-

somes and at a faster rate than physiological bronchioepithelial cells under the same

conditions [70]. Interestingly, this initial peak was found to give predictive infor-

mation in cancer patients undergoing systemic therapies: In a prospective study

with more than 300 patients suffering from advanced non–small cell lung cancer

(NSCLC) who were treated by first-line chemotherapy, nonresponsive patients

initially started from higher nucleosome values, had higher maximum values and
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a less-complete elimination of nucleosomes from circulation at the end of the first

week of therapy than did patients responsive to therapy [71, 72]. An explanation

can be found in the presence of potentially more aggressive tumors with higher

cellular turnover rates and less efficient immunological and DNA elimination

capacities in patients with non-sufficient response to therapy. If nucleosome values

after this first week were combined with early values of the lung-cancer-related

marker CYFRA 21–1, later radiological therapy failure was anticipated in 29 % of

progressive patients with 100 % specificity and in 55 % of the patients with 90 %

specificity. By use of this approach, highly specific and early detection of insuffi-

cient therapy response enabled the early modification of the therapy strategy after

only one application of chemotherapy while others would be followed by conven-

tional imaging staging exams [72].

These results were confirmed in a similar set of 42 NSCLC patients with even

higher sensitivities for the early estimation of non-response [73]. Data obtained

from 161 patients with recurrent NSCLC were also in line with the first study

[74]. Moreover, nucleosomes, progastrin-releasing peptide (ProGRP) and CYFRA

21–1 indicated therapy response after the first course of treatment in 128 patients

with small cell lung cancer, too [75]. Furthermore, the capacity of nucleosomes to

indicate early tumor response to therapy was demonstrated for patients with

colorectal [76, 77], pancreatic [78, 79] and breast cancer [80] undergoing systemic

chemo- and radiotherapy as well as for patients with primary and secondary liver

cancer receiving local chemo- and radiotherapies such as transarterial chemoembo-

lization (TACE) and selective internal radiotherapy (SIRT) [81, 82]. According to

these approaches, the blood collection before every treatment cycle and during the

first therapy week, as well as the consideration of a strictly standardized

pre-analytical collection protocol, were very important in obtaining reliable data.

5.3 cfDNA Integrity

cfDNA in blood may result from apoptotic or necrotic or other forms of cell death

or it is secreted actively from stimulated cells [83]. Due to more efficient DNAse

activity it is assumed that apoptosis produces short, nucleosomal DNA fragments

while cfDNA pieces are longer if released passively during necrosis [84]. Therefore,

the ratio of long to small cfDNA fragments, also called the DNA integrity index,

can be an indicator of necrosis-abundant cancer disease. Indeed, Wang et al. [85]

reported a higher cfDNA integrity in cancer patients using 400 bp and 100 bp DNA

amplicons. These results were confirmed with different amplicon sizes in breast

[86], colorectal [87, 88], esophageal [89], prostate [90], head and neck [91],

nasopharyngeal cancer [92], melanoma [93] and acute leukemias [94] while

cfDNA integrity was not elevated in other studies on prostate [95], lung [96, 97]

and breast cancer [98]. In addition, a few studies also found some prognostic

relevance of cfDNA integrity for bladder [99], prostate [100], breast [86] and

nasopharyngeal cancer [92].
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Concerning monitoring therapy response, a low cfDNA integrity index in

patients with nasopharyngeal cancer undergoing radiotherapy that was detected in

the follow-up after the treatment was associated with better survival than higher

cfDNA integrity values [92]. In breast cancer patients who received preoperative

chemotherapy, dynamics of cfDNA fragments (115 and 247 bp) correlated with

therapy response but not the resulting DNA integrity index [101]. In summary, the

data available on DNA integrity so far are considerably heterogenous, methods are

not standardized and preanalytical and analytical factors may influence the results

preventing its application as biomarker in clinical routine at the moment.

5.4 Genetic Changes in cfDNA

The most limiting factor for the clinical use of the above-mentioned approaches is

the lack of tumor specificity. Looking for tumor-specific markers has led to

numerous studies on neoplastic alterations of the cfDNA such as microsatellite

instability (MSI), loss of heterozygosity (LOH) or mutations that contribute to the

cancerogenesis and can be detected in both tissue and blood of cancer patients

(reviewed in [5, 29]).

Microsatellites are short nucleotide sequences that are repeated up to 60 times in

tandem and are dispersed throughout the genome. The number of repeated units

varies between different alleles defining a heterogenous fingerprint for a gene locus.

As a consequence of (cancer-related) defective DNA mismatch repair genes, a

complete or partial allelic loss can occur which is detected either as LOH or novel

microsatellites appearance which is a sign of MSI. In many studies, different MSI

and LOH markers were identified in the tissue and blood of cancer patients

(reviewed in [29]). However, the range of detection and of concordance rates

between tissue and blood showed great variations that may be attributed to the

different quality of the study designs, patient numbers and methods used. As the

sensitivity of single markers was only up to 30–40 %, combinations of several LOH

and MSI markers were proposed. However, it appeared that the specificity of this

approach is limited as positivity was found in non-cancerous conditions, too

[5]. Some studies indicate also a correlation with clinical characteristics, prognosis,

prediction of therapy response and appearance of tumor relapse as in breast cancer

[102–104], gastrointestinal stromal tumors [105, 106], renal cancer [37] and mela-

noma [107]. However due to the lack of sensitivity, standardization and of large

prospective studies, at present, assessment of MSI or LOH is currently not used in

clinical routine.

Mutations in oncogenes and tumor suppressor genes are considered as key

regulators of cancerogenesis that affect various signaling pathways in different

tumor types [108, 109]. K-Ras, N-Ras and TP53 mutations were the first to be

detected in plasma and serum of cancer patients, mutations of the APC, MYC,
B-Raf, EGFR and other genes following later [110–115]. Similarly to MIS and

LOH, concordance rates between mutation findings in tumor tissue and plasma
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varied greatly between studies and plasma positivity was found only in 10–60 % of

tissue-positive patients [5]. The relevance of analytical standardization was obvious

as mutations were mainly found in the small cfDNA isolation fraction [116]. In

addition, sensitivity of a single mutation was limited to around 40 % while speci-

ficity was not found to be 100 % [29]. Although some studies reported associations

with clinico-pathological features and prognosis, assessing the mutation status in the

blood of cancer patients appeared not to be useful for patient management.

This situation has completely changed during recent years. Major advances in

technical development nowadays enable a highly sensitive, qualitative and quanti-

tative detection of mutations in circulating cfDNA in the blood. New methods such

as BEAMing (beads, emulsion, amplification, and magnetics) short oligonucleotide

mass analysis (SOMA), ddPCR, tagged-amplicon deep sequencing (TAm-Seq) and

others have facilitated the diagnostics and improved the detection rates consider-

ably ([117–120]; chapters “Circulating DNA and miRNA Isolation” and “Detection

of Genetic Alterations by Nucleic Acid Analysis: Use of PCR and Mass

Spectroscopy-Based Methods”). In addition, there is an actual clinical need for

assessing the mutation status in cancer patients since it has been shown that some of

new targeted antibody or tyrosine kinase inhibitor (TKI) therapies are only efficient

in patients who bear or do not bear a specific mutation. Therefore, tumor tissues

from patients with lung cancer, colorectal cancer and melanoma are regularly

examined molecular biologically to stratify them for appropriate therapies [24, 26].

In NSCLC, the TKIs gefinitib and erlotinib directed against the intracellular part

of the epidermal growth factor receptor (EGFR) showed only benefit in patients

with an activating mutation (L858R or exon 19 deletion) in the EGFR gene,

identifying EGFR tissue mutation analysis as stratification tool for TKI treatment

of NSCLC patients [121–123]. However, although better than chemotherapy, TKI

response rates in preselected patients were only around 70 % in first-line and 50 %

in second-line treatment [124, 125]. Recent whole genome analyses permit the

explanation that there is considerable genetic heterogeneity including spatial (either

within a tumor or between primary tumor, lymph node and distant metastases) and

temporal variability [126]. But also, resistance to TKI by further mutations such as

EGFR (T790M) that prevents erlotinib binding or downstream mutations such as

K-Ras, PIK3CA, ALK and BRAF may occur [26, 124]. Identification of these

mutations enables the use of alternative targeted drugs such as crizotinib in case

of the presence of an ALK-EML fusion gene ([24, 127]; Fig. 6) While primary

resistance can be assessed in tissue by pre-therapeutic multigene analysis, second-

ary resistance is more difficult to identify. Even if a rebiopsy is possible, hetero-

geneity of mutations in diverse lesions may prevent accurate classification leading

to mutation monitoring in blood as an attractive diagnostic tool.

Similarly to lung cancer, patients suffering from malignant melanoma will only

benefit from inhibitor of the serine-threonine protein kinase B-RAF therapy

(vemurafenib or dabrafenib) in the presence of an activating B-RAF mutation

(V600E) [128, 129]. As resistance to vemurafenib will develop by activation of

the MAP kinase pathway, MEK-inhibitors (trametinib) show some efficacy in these

cases [130].
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Finally, patients with colorectal cancer are unlikely to benefit from anti-EGFR

antibody therapies (cetuximab or panitumumab) if mutations of the K-Ras gene are
present. While pre-therapeutic mutation status assessment in tumor tissue has been

established as “companion diagnostics” in routine patient management [24, 131–

133], the monitoring of the therapy response and early identification of resistance

development and tumor relapse detection is a new field for CNAPS diagnostics.

As source of DNA for the analysis of therapeutic targets and drug resistance-

conferring genes mutations, circulating tumor cells (CTC) and circulating tumor

cfDNA that are released from primary or metastatic tumor sites into the blood

stream were suggested. The so-called “liquid biopsy” could outrun the limits of

genetic heterogeneity as circulating cfDNA reflects a mixture of all cancerous DNA

changes in the body. Because this concept is only minimally invasive it can be

applied for the serial monitoring of successfully treated and newly occurring

resistant cell clones at an individual level [25–27, 121].

CTCs are particularly present in the blood of patients with metastastic cancer

disease. For example, CTCs were detected in 27 patients with metastastic lung

cancer and expected EGFR mutations were identified in 11 out of 12 patients. If

TKI resistance mutation T790M was detected in CTCs, progression-free survival

was considerably shorter. In a follow-up, the number of CTCs correlated with the

radiographic tumor response, EGFR T790M mutations being found in progressive

patients [134]. Further CTCs were detected in 21 of 37 patients with metastatic
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colorectal cancer. By use of massive parallel sequencing (MPS), striking mutations

in driver genes APC, K-RAS and PIK3CA were observed in primary tumors,

metastases and CTCs in a few index patients. Some private mutations only detected

in CTCs were also confirmed in either primary tumors or metastases at subclonal

levels after ultra-deep sequencing was performed supporting the highly valuable

diagnostic information provided by CTC sequencing [135]. However, it has to be

pointed out that these promising results were obtained in a small group of metastatic

cancer patients with high CTC counts and CTCs were not detectable in a consider-

able portion of patients. In addition, low CTC counts could limit the interpretation

of discrepancies between tissue and CTC results [136].

These limitations can possibly be overcome by circulating cfDNA diagnostics.

Current techniques enable the reliable monitoring of tumor-associated mutations in

circulating plasma cfDNA at frequencies as low as 0.01 % [26, 31]. Recent studies

showed a concordance of PIK3CA and EGFR mutations in primary tumor tissue

and plasma cfDNA between 92 and 100 % [137–139]. Diehl et al. [31] demon-

strated the high accuracy of APC, TP53 and K-RAS monitoring on plasma cfDNA

of colorectal cancer patients by BEAMing for control of therapy efficacy and

detection of tumor recurrence. This technology allows the quantification of

tumor-related mutations in blood as it parallelly assesses the absolute concentration

and the mutation rate of circulating cfDNA. After surgical tumor resection, tumor-

related cfDNA levels decreased rapidly with a half-life of 114 min to less than 1 %

of the initial value within 24 h (while total cfDNA levels could increase due to

traumatic damages). Persistently high mutation values after surgery indicated

residual disease. cfDNA showed more pronounced dynamics and had a higher

predictive value for tumor recurrence than the conventional tumor marker CEA.

If patients were monitored after successful surgery, measurable cfDNA levels after

1–2 months accurately identified patients with later tumor recurrence [31]. Simi-

larly, promising results were obtained with metastatic breast cancer patients in

whom tumor-related mutations PIK3CA and TP53 were successfully found in

plasma cfDNA in 97 % (29 out of 30) while CTCs and CA 15–3 were positive

only in 87 % and 78 %, respectively. Circulating tumor cfDNA levels correlated

better with tumor burden and indicated tumor recurrence more accurately (89 %)

than either CTC (37 %) or CA 15–3 (50 %). Thereby cfDNA provided the earliest

measure of treatment response in 53 % of the progressive patients with an average

lead time of 5 months to recurrence detection [140].

TAm-Seq is a highly sensitive and specific method (>97 %) for entire gene

sequencing as demonstrated by the screening of nearly 6000 bases for

low-frequency mutations with allele frequencies as low as 2 % in plasma cfDNA

of advanced ovarian cancer patients. This approach is also useful for the detection of

new or unknown mutations [119]. A more simple, inexpensive and robust array-

based method enabled the efficient monitoring of multiple EGFR mutations in

plasma cfDNA during TKI therapy of NSCLC patients. However, only 56 % of

patients with response had non-detectable values and only 44 %with progression had

an EGFR increase while other resistance mechanisms were not covered by this

technique [141]. By use of other approaches, EGFR mutations frequency on plasma
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DNAwas reported to decrease during chemotherapy and to correlate with response to

therapy [142]. Furthermore, resistance mutation (T790M) of the EGFR gene was

detected in plasma of 53 % and 28 % of patients with acquired resistance to TKI

therapy, respectively [143, 144]. In addition, circulating B-RAFDNAmutations were

shown to correlate with response to biochemotherapy in melanoma patients [145].

Sensitive detection of newly acquired mutations that cause resistance to anti-

EGFR therapy in colorectal cancer were reported recently. Misale et al. [146]

detected newly appearing K-RAS mutations in 6 out of 10 patients with resistance

to cetuximab or panitumumab. K-RAS mutations occurred up to 4 months before

CEA increase and up to 9 months before radiographic documentation of tumor

progression. While cells were resistant to EGFR-inhibition, they remained suscepti-

ble to combined EGFR- and MEK-inhibition so opening a window of opportunity for

early and individualized treatment adaptation [146]. Diaz et al. [147] found K-RAS
mutations in 9 out of 24 patients whose tumors were initially K-RAS wild type and

who were treated with panitumumab monotherapy. Mutations generally occurred 5–

6 months after the start of therapy and were parallelled by CEA increase and

treatment resistance. By mathematical modeling, the authors showed that the muta-

tions were present in expanded subclones already before commencing the

panitumumab treatment [147]. Murtaza et al. [148] monitored the acquired genomic

changes of cfDNA in serial plasma of six patients with advanced cancers by mas-

sively parallel exome sequencing and identified resistance-conferring and activating

mutations such as EGFR (T790M), PIK3CA and RB1 that appeared after cytotoxic

therapies were performed. Leary et al. [149] reported on a highly sensitive method

with MPS for the identification of translocations in circulating cfDNA of patients

with solid tumors. By so-called personalized analysis of rearranged ends (PARE)

they found an average of nine rearranged sequences in four colorectal and two breast

cancers. Interestingly, copy number variations on circulating cfDNA specific for the

primary tumor were detected in the blood of breast cancer patients up to 12 years after

diagnosis, despite no other evidence of disease, indicating dormancy of breast cancer

cells [150]. Although these findings seem to be highly attractive for personalized

medicine, they have to be validated in larger patient cohorts.

The current status of knowledge about circulating cfDNA as a basis of “liquid

biopsy” for assessment of prognosis, recurrence detection, prediction of therapy

response and acquired resistance in cancer patients is summarized by Crowley

et al. [26].

5.5 Epigenetic Changes on Cell-Free DNA

Epigenetic markers comprise reversible changes on the chromatin that regulate

transcription processes. DNA methylation, histone modifications and nucleosome

remodeling processes play an important role and their patterns at specific chromatin

sites are altered in diverse pathologies [151, 152]. In cancer disease, it is known that

CG-rich islands in promotors of tumor suppressor genes often are hypermethylated
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leading to silencing of these genes while most parts of the chromatin are hypo-

methylated resulting in a higher DNA instability. Modifications of histones often

consist of adding specific methyl-, acetyl-, phospho-, ubiquitin-, and other groups to

basic amino acids at the tails protruding from the nucleosome, that can open or

close the chromatin structure and regulate the access of transcription factors

(reviewed in [152–154).

As blood-based cancer biomarkers, several specific methylation markers such as

APC, DAPK, GSTP1, MGMT, p16, RASSF1A, RARß2 and Septin 9, have been

exploited particularly for diagnostic and prognostic purposes (reviewed in [29, 151,

153]). While generally a high concordance of tissue and blood methylation markers

was detected, only a portion of the studies reported on an association with clinico-

pathological features. The strongly varying rates of hypermethylated markers in

blood points to shortcomings in (pre)-analytics and study designs [5]. Nevertheless,

assessment of Septin 9 promotor hypermethylation has reached some practical

relevance for the detection of colorectal cancer [155, 156]. Furthermore,

hypermethylation of the O(6)-methylguanin-DNA methyltransferase (MGMT)
promotor in glioma tissue is considered as an indicator for the response of the

tumor to alkylating antineoplastic agents [157]. In addition, plasma SHOX2
hypermethylation was suggested as a diagnostic parameter for NSCLC [158].

Only a few studies focus on the relevance of methylation markers in monitoring

the disease state or therapy efficacy. RARß2 and RASSF1A were two to three times

hypermethylated on plasma DNA and cell-surface-bound circulating DNA of

patients with lung cancer as compared with controls and decreased significantly

after neoadjuvant chemotherapy and total tumor resection. RARß2 methylation

increased again in cases of cancer relapse [159]. In breast cancer patients under-

going neoadjuvant chemotherapy, levels of RASSF1A hypermethylation became

undetectable in serum in patients with complete remission while RASSF1A methy-

lation persisted longer or throughout the treatment if partial or minimal pathological

response was achieved [160]. Recently, courses of plasma SHOX2 hyper-

methylation were found to correlate strongly with the response of patients with

NSCLC to cytotoxic chemotherapy [161]. In a genome-scale screen, IFFO1methy-

lation was identified as a meaningful marker for ovarian cancer that showed, in a

subsequent validation study, similar post-resection kinetics to CA 125 [162]. Further

small follow-up studies identified concordances of serum methylation markers and

disease status for RASSF1A and ovarian cancer [163], for ESR1 and 14-3-3-sigma

and breast cancer [164], and for p16INK4a and colorectal cancer [165]. Presurgery

RUNX3 methylation was predictive for the relapse of colorectal cancer [166] and

serum RASSF1A methylation status one year after breast cancer surgery indicated

the long-term outcome [167]. To establish serum or plasma methylation markers for

the monitoring of cancer patients in a clinical laboratory, further endeavours are

necessary to both standardize pre-analytics and analytics and define clear inter-

pretation rules.

The same applies to blood-based histone modification markers. Though there are

some studies on altered histone markers on circulating nucleosomes that detected

lower levels of H3K9me9 and H4K20me3 in plasma and serum of patients with
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colorectal cancer [168, 169], these modifications were found to be mainly associ-

ated with repetitive sequences on circulating nucleosomes [170]. Further trials are

necessary to reveal the possible clinical usefulness of this new biomarker class.

5.6 Gene Expression Markers

Transcript markers outrun the mere genetic disposition and indicate the function-

ality of gene expression leading to disturbed metabolism in cancer cells. Therefore,

they are highly relevant in cellular experimental approaches as well as in tissue

diagnostics. Due to their lacking stability in blood, they require specific

pre-analytical procedures that limit their practical use as blood-based markers to

some extent.

Nevertheless, there are several studies reporting the over-expression of some

genes that was partially associated with clinico-pathological features (reviewed by

Fleischhacker and Schmidt [29]) such as tyrosinase mRNA in melanoma [171],

mammaglobin and CK 19 mRNA in breast cancer [172], CEA and CK 19 as well as

ß-catenin in colorectal cancer [173, 174], S100A4 in gastrointestinal cancers [175]

and MUC-18, tyrosinase and MAGE-3 in melanoma [176]. Recently, a PBMC-

based gene expression signature assay was developed and validated for the detec-

tion of NSCLC that achieved high sensitivities and specificities [177]. Furthermore,

BEAMing and ddPCR analysis were applied for mutant IDH1 mRNA detection in

glioma patient serum and cerebrospinal fluid extracellular vesicles [178].

Concerning therapy monitoring and prediction of treatment response, only rare

data are available. In small patient cohorts it was reported that ß-catenin mRNA

decreased after successful surgery of colorectal cancer [174], PSA mRNA corre-

lated with hormonal therapy albeit that there was no correlation with PSA protein

kinetics [179], and thyroglobulin mRNA kinetics may be additive to thyroglobulin

protein assessment for detection of thyroid cancer relapse [180]. While the appli-

cation of gene expression arrays in tissues are already established in clinical

routine, such as for the stratification of patients with breast cancer for adjuvant

chemotherapy [181], there is no clear clinical relevance of blood-based gene

expression markers for the management of cancer patients up to now.

5.7 Non-coding RNA Markers

Beyond mRNAs that code for specific proteins there are more than a thousand

non-coding RNAs that influence and post-transcriptionally regulate gene expres-

sion. This marker group comprises short, mid-size and long non-coding RNAs

([182]; chapter “The Biology of CNAPS”). Particular interest was given to the

19–24 bp small miRNAs that are involved in many regulatory functions during

cancerogenesis and are remarkably stable in serum and plasma, suggesting them to
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be promising cancer biomarkers ([183–186]; chapter “Extracellular Nucleic Acids

and Cancer”). Similarly to other CNAPS, miRNA can be released non-specifically

from lysed or necrotic cells, but also can be actively secreted packaged in exosomes

or as free miRNA bound to RNA-binding carrier proteins, such as HDL and

Argonaut, and then play a major role in intercellular communication [184]. While

some groups have investigated miRNA in serum or plasma, others have looked for

exosomal miRNA as they assumed an enrichment of cancerous miRNA therein

[187–189]. In addition miRNA can also be extracted from circulating tumor

cells [190].

In cancer diseases, many of them are up- or down-regulated resulting in a

miRNA-pattern that can be used for diagnosis and prognosis estimation. Alter-

natively, most meaningful single miRNA markers, or clusters of them, can be

chosen as a diagnostic tool [183, 184, 191]. Clinically relevant miRNAs are

among others the let-7 and miRNA 34 families that are down-regulated in many

cancers, miRNA 21, 155 and 221 that are up-regulated in many cancers and are

involved in the regulation of tumor growth and invasiveness [182, 191]. Some

miRNAs are up-regulated only in some cancers e.g. miR-372 and miR-373 in

testicular cancer. Interestingly, the cellular and extracellular pattern of miRNAs

is not identical [184]. Therefore, the levels of some circulating miRNA markers do

not necessarily reflect the intracellular situation.

In the serum and plasma of cancer patients, several miRNAs were found to

distinguish between cancer patients and controls, partly correlating with clinico-

pathological characteristics and prognosis (reviewed in [192]). For single miRNAs,

specific assays have been developed such as for miRNA 21 in breast cancer

[193]. However, plenty of studies also show either only a minor or no diagnostic

usefulness for miRNAs e.g. in urological cancers [194–196].

Concerning monitoring disease and response to therapy, some minor studies

report positive results regarding miRNA clusters 371–373 and 302 for following

patients with germ cell tumors [197], miRNA 92a for non-Hodgkin’s lymphoma

patients [198] and a miRNA pattern in head and neck patients during radio-

chemotherapy [199]. In melanoma patients, a miRNA pattern was identified that

predicted the recurrence-free survival and showed tumor-related dynamics in serum

[200]. A recent study found small nuclear U2-1 RNA fragment (RNU2-1f) to be

increased in sera of ovarian cancer patients, to correlate with the residual tumor

burden after surgery and to be predictive for response to post-operative chemother-

apy. Furthermore, persistently high RNU2-1f values during therapy identified a

subgroup of patients with poor prognosis [201]. In addition, circulating lncRNAs

have been suggested as cancer biomarkers such as in gastric cancer [202].

Obviously, non-coding RNA markers will have to be more developed, to

undergo a pre-analytical and analytical standardization process and to be included

into large therapeutic trials.
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6 Integration Strategies

As recommended by guidelines for the use of cancer biomarkers [19, 20] and for the

development and incorporation of biomarker studies in early clinical trials [1], new

biomarkers have to undergo a rigorous analytical, pre-analytical and clinical vali-

dation process that finally shows their usefulness for patient management in large

clinical trials and in comparison with already established markers. For CNAPS, and

many other biomarkers, this process is still ongoing and more robust data are

needed before they can be implemented into clinical routine laboratory diagnostics.

However, there are three approaches that seem to be particularly relevant for

CNAPS and their application in disease and therapy monitoring:

– As cancerogenesis affects changes of the genetic, epigenetic, gene expression

and protein levels it seems necessary to integrate all of these marker classes to

see which changes are most meaningful for the clinical questions the patient and

doctor face at a certain time point.

– Liquid biopsy is only one component in the diagnostic process. Diverse

approaches including clinical, tissue, blood and radiographic investigations

have to be integrated into a comprehensive strategy leading to the best patient

management possible.

– The assessment of single markers will hardly be appropriate to answer different

questions at different time points for different individuals suffering from mole-

cularly different diseases having different preconditions (and metabolic consti-

tutions) for a defined therapy. Marker multiplexing will be the future standard

and interpretation of the resulting data will be the challenge for the individual

decision-making.

6.1 Encode Project

The Encyclopedia of DNA Elements (ENCODE) project has started in 2007 with a

large number of sequence-based studies to systematically map functional regions

across the human genome. The elements mapped include chromatin structure (by -

DNase-seq, FAIRE-seq, histone ChIP-seq and MNase-seq), DNA methylation sites

(by RRBS assay), transcription-factor-binding sites (by ChIP-seq and DNase-seq),

protein-coding regions (by mass spectrometry) and RNA transcribed regions (by -

RNA-seq, CAGE, RNA-PET and manual annotation). Studies using 24 experimen-

tal types were performed on 180 cell lines and tumor xenografts and are still

ongoing. Beyond simple mapping, ENCODE aims at investigating the interactions

of the various levels and understanding the biochemical functions of the genome

[22, 203–208]. Up to now, the data give insight into the function of 80 % of the

genome that mainly covers the gene regulatory elements outside of the well-studied

protein-coding regions. For clinical application, the new knowledge concerning the

statistical correspondence of the recently discovered elements with sequence
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variants linked to human disease is highly relevant. Thus, the project can – beyond

its aim to provide new insights into the organization and regulation of our genome –

help to integrate various marker classes into biochemical functional entities and so

provide an enormous resource for future diagnostic approaches [204, 206].

6.2 Combination of Tissue and Liquid Biopsy

Monitoring health, disease and therapy response has been the mainstay of clinical and

radiographic diagnostics for a long time. In the recent decade, molecular character-

ization of tumor tissue and cells after biopsy or surgery has successfully been

implemented in the patient management process to better stratify them for targeted

antibody and TKI therapies. While in some cancers the absence of a particular

mutation (K-Ras in colorectal cancer) is the precondition for the application of an

anti-EGFR antibody treatment, in other cancers the presence of a mutation (EGFR in

lung cancer, V600E in melanoma) is the basis for an efficient TKI therapy [24,

26]. However, this is only a rough estimate leaving a series of open clinical questions:

– Due to the genomic heterogeneity within a tumor and between primary and

secondary lesions of a tumor [126], molecular tissue analysis enables only a

snapshot at a given time of a given tumor specimen and may miss relevant

information of dormant or already resistant tumor cells. Liquid biopsy could

provide a more comprehensive picture on the overall mutation status mirrored by

circulating cfDNA in the blood deriving from different tumor sites in the body

[26, 27].

– In case of an appropriate mutation state that indicates antibody or TKI therapy,

only a portion of patients will respond to it (e.g. 60 % of K-RAS negative

colorectal cancer patients to cetuximab therapy [133]). As non-responsive

patients cannot be identified by pre-therapeutic tissue biopsy it would be neces-

sary to monitor the therapy efficacy by serial assessments of biochemical

markers or mutation status e.g. in circulating cfDNA. This would be helpful

for the early detection of progressive or recurrent disease and enable an early

modification of the treatment.

– Development of resistance to antibody or TKI treatment during or after the

therapy is a frequent problem that cannot be predicted by tissue biopsy but could

be addressed by monitoring the relevant mutations on circulating cfDNA. As it is

known that a combination, e.g. with MEK or ALK inhibitors, is effective also in

resistant cells, patient management could be considerably improved by serial

liquid biopsies [24, 26].

– In many patients with either recurrent or metastatic disease or multimorbidity,

invasive tissue biopsy is not supposed to be performed or does not lead to

meaningful information. Either individual kinetics of mutation changes or single-

time assessment of mutational status in circulating cfDNA can overcome these

limitations and lead to better stratification of the patients for appropriate therapies.
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For best patient management, the combination of pre-therapeutic tissue biopsy

and serial liquid biopsies is recommended (Fig. 7). This could ideally support the

clinical and radiographic estimation of disease status and help to improve (i) the

therapy stratification, (ii) the assessment of prognosis, (iii) the monitoring of

therapy response, (iv) the early detection of disease progression, (v) of recurrence

detection and (vi) the identification of acquired resistances that leads to a more

accurate individual patient guidance and be the future mainstay of personalized

medicine in cancer disease.

6.3 Marker Multiplexing

New technologies such as multiplex PCRs, MPS of amplicons, exomes or the whole

genome, array techniques, mass spectrometry, BEAMing and others (see ENCODE

projects) enable the parallel assessment of multiple genomic, epigenomic,
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Fig. 7 The combination of pre-therapeutic tissue biopsy and serial liquid biopsies during and after

therapy may improve the guidance of cancer patients considerably. The mutation status in tissue is

currently required to stratify patients for certain targeted therapies although it allows only a

spatially and temporally restricted “snapshot”, and genetic heterogeneity, not detectable dormant

and resistant cell clones and adverse patient conditions limit this approach. Liquid biopsy,

however, indicates the overall mutation status in the body mirrored by cfDNA in the blood, and

can be applied serially due to its non-invasive nature. It provides essential information on the

dynamics of tumor biology that can be used at various time points during the course of the disease

for (i) therapy stratification, (ii) assessing prognosis, (iii) monitoring therapy response, (iv) early

detection of disease progression, (v) recurrence detection and (vi) identification of acquired

resistances (see text)
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transcriptomic and protein markers. Beyond the integration of many markers and

biomarker classes, multiplexing will be necessary to integrate many relevant

clinical questions in order to obtain a holistic view on the patient including (i) the

disease characteristics, (ii) the co-morbidities, (iii) the disponibility to respond to

specific drugs, (iv) the capacity and velocity of drug metabolization, (v) the

disponibility to toxic reactions, (vi) the reactivity status of the immune system,

(vii) the necessity of accompanying drugs, (viii) the interaction of diverse drugs,

(ix) the development of resistances and (x) the probability of sustained drug

response and patient outcome.

To answer these questions, the future challenge will be to bring all relevant

biomarkers classes to a single platform to facilitate a quick, robust, quality-

controlled and reliable determination of the markers, to integrate the resulting

data in appropriate algorithms, to extract the meaningful interpretation and enabling

accurate decisions for the patient management.

While technical developments should lead to continuously decreasing costs,

these innovations will have to be seen as a part of monitoring and optimization of

highly expensive new treatment strategies. Offering the patients more efficient

therapies that will lead to better outcomes, reducing toxic side effects and compli-

cations and avoiding unnecessary risks and costs by non-effective therapies, addi-

tional invasive biopsies and radiographic examinations will compensate the higher

costs of laboratory assessment by far. To document these positive effects, medico-

economic evaluations that investigate the overall benefit for the patients and the

health care system as a whole should accompany future therapeutic trials using

companion diagnostics in the form of tissue and liquid biopsies.

7 Requirements for Individualized Diagnostics

and Interventional Approaches in Cancer Disease

Essential aspects of biomarker validation and incorporation into clinical trials have

been documented by several guidelines [1, 3, 19, 20]. These principally apply to the

more complex and multimarker approaches and include the comprehensive evalu-

ation of analytical preconditions, pre-analytically influencing factors and the esta-

blishment of standardized operating procedures (SOPs) to guarantee a reliable and

highly quality controlled application of the methods. For monitoring purposes, the

role of e.g. individual biological variation and drug-interactions also have to be

considered.

Monitoring of disease by circulating biomarkers is only useful if it supports the

decision making of relevant clinical questions and if it potentially leads to bene-

ficial consequences for the patient e.g. in escalating or deescalating therapy inten-

sities. In order to be applied in a meaningful way, biomarkers should not only

correlate with the disease state and tumor burden at time points of regular staging

investigations, but should contain either additional information (such as the
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mutation status of cfDNA) or provide a time advantage i.e. by early indication of

either therapy response or tumor progression or relapse prior to radiographic or

clinical methods, and thus enable an early modification of the treatment strategy.

Therefore, the biomarkers require the highest levels of sensitivity and specificity as

well as positive and/or negative predictive values.

To achieve an accurate as possible prediction for the single patient, individual

changes of marker levels over time may be superior in most clinical questions as

compared with absolute cutoff levels orientated at patient groups with similar

disease conditions. Interpretation criteria for those individual, longitudinal obser-

vations have to be defined in large-scale clinical studies in homogenous patient

groups with comparable therapies or disease states (such as the follow-up situation

after primary therapy) and particularly with appropriate determination intervals of

the biomarkers that depend very much on the half-life or doubling time of the

biomarkers. These intervals will also have to be implemented in later routine

monitoring plans of regular patients. In many therapeutic situations it will be

advantageous to monitor biomarkers very closely during the initial phase of the

therapy, i.e. not only prior to every new cycle of chemotherapy but already during

the first hours or days after the first application of the therapy, in order to enable a

very early estimation of the biochemical response.

In patients with no evidence of disease who are followed for the early detection

of micro-metastases or tumor recurrence, the intervals may be adjusted to the

probability of a relapse for a specific tumor and the regular follow-up program. In

any case, the intervals should be close enough in order not to miss incidental

recurrences. The following major monitoring indications are relevant to trigger

interventional approaches in cancer patients:

– monitoring the incompleteness of surgical tumor eradication may lead to addi-

tional adjuvant therapies

– early estimation of the non-response to systemic therapies (neoadjuvant, pri-

mary, palliative) may suggest therapy termination or modification

– monitoring resistance to antibody or TKI therapies may lead to modification or

combination of therapies

– early detection of tumor relapse offers the possibility of earlier intervention.

The successful implementation of individualized intervention strategies into

standardized patient guidance programs depends very much on a clear benefit for

the patients in terms of better overall survival and quality of life, which has to be

proven in large prospective intervention trials.

8 Other Areas of Disease Monitoring by CNAPS

Besides the application in monitoring disease and therapy response in cancer

patients, CNAPS has shown utility in the estimation of diagnosis, prognosis,

therapy monitoring and clinical follow-up of many other disease areas. Regarding
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the monitoring approach, CNAPS have been applied in diverse situations (reviewed

in [29, 32]; chapter “CNAPS and General Medicine”) including monitoring:

– after acute events such as myocardial or cerebral stroke, burns or major trauma

([209–217]; chapter “CNAPS and General Medicine”)

– the early detection of bacterial sepsis and the monitoring sepsis treatment

[218–220]

– viral infections in the acute and chronic stage [221, 222]

– the monitoring of autoimmune diseases such as systemic lupus erythematosus

[223–226]

– metabolic disease such as diabetes mellitus (reviewed in [227]; chapter

“Circulating Nucleic Acids and Diabetes Mellitus”)

– graft-versus-host disease after transplantation [228]

– the early detection of preeclampsia [229, 230]

– the detection of cffDNA in maternal plasma during pregnancy ([231, 232];

chapter “Fetal CNAPS – DNA/RNA”)

– physical exhaustive exercises [233, 234].

For most applications – with the exception of infectious diseases and cffDNA in

maternal plasma – CNAPS diagnostics are still in a preclinical stage. New highly

sensitive technologies will presumably accelerate the implementation of CNAPS

into routine diagnostics and pave the way for further clinical applications (chapters

“Genomic Approaches to the Analysis of Cell Free Nucleic Acids”, “CNAPS and

General Medicine”, “Fetal CNAPS – DNA/RNA”, “Circulating Nucleic Acids and

Diabetes Mellitus” and “Extracellular Nucleic Acids and Cancer”).
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Petricoin EF, Schmitt M, Semmes OJ, Söletormos G, van der Merwe E, Diamandis EP;

National Academy of Clinical Biochemistry (2008) National academy of clinical bio-

chemistry laboratory medicine practice guidelines for use of tumor markers in clinical practice:

quality requirements. Clin Chem 54(8):e1–e10

4. Fleischhacker M, Schmidt B, Weickmann S, Fersching DM, Leszinski GS, Siegele B,

Stötzer OJ, Nagel D, Holdenrieder S (2011) Methods for isolation of cell-free plasma DNA

strongly affect DNA yield. Clin Chim Acta 412(23–24):2085–2088

CNAPS in Therapy Monitoring 353

http://dx.doi.org/10.1007/978-94-017-9168-7_7
http://dx.doi.org/10.1007/978-94-017-9168-7_7
http://dx.doi.org/10.1007/978-94-017-9168-7_9
http://dx.doi.org/10.1007/978-94-017-9168-7_8
http://dx.doi.org/10.1007/978-94-017-9168-7_6
http://dx.doi.org/10.1007/978-94-017-9168-7_7
http://dx.doi.org/10.1007/978-94-017-9168-7_7
http://dx.doi.org/10.1007/978-94-017-9168-7%20_8
http://dx.doi.org/10.1007/978-94-017-9168-7_9
http://dx.doi.org/10.1007/978-94-017-9168-7_9
http://dx.doi.org/10.1007/978-94-017-9168-7_10


5. Jung K, Fleischhacker M, Rabien A (2010) Cell-free DNA in the blood as a solid tumor

biomarker – a critical appraisal of the literature. Clin Chim Acta 411(21–22):1611–1624

6. Sanders I, Holdenrieder S, Walgenbach-Brünagel G, von Ruecker A, Kristiansen G,

Müller SC, Ellinger J (2012) Evaluation of reference genes for the analysis of serum miRNA

in patients with prostate cancer, bladder cancer and renal cell carcinoma. Int J Urol 19(11):

1017–1025

7. Sourvinou IS, Markou A, Lianidou ES (2013) Quantification of circulating miRNAs in

plasma: effect of preanalytical and analytical parameters on their isolation and stability.

J Mol Diagn 15(6):827–834

8. Pazzagli M, Malentacchi F, Simi L, Orlando C, Wyrich R, Hartmann CC, Verderio P,

Pizzamiglio S, Ciniselli CM, Tichopad A, Kubista M, Gelmini S (2013) SPIDIA-RNA:

first external quality assessment for the pre-analytical phase of blood samples used for

RNA based analyses. Methods 59(1):20–31

9. Chiu RW, Poon LL, Lau TK, Leung TN, Wong EM, Lo YM (2001) Effects of blood-

processing protocols on fetal and total DNA quantification in maternal plasma. Clin Chem

47(9):1607–1613

10. Holdenrieder S, Stieber P, Bodenmueller H, Fertig G, Fürst H, Schmeller N, Untch M,

Seidel D (2001) Nucleosomes in serum as a marker for cell death. Clin Chem Lab Med 39:

596–605

11. Lo YM, Tein MS, Lau TK, Haines CJ, Leung TN, Poon PM, Wainscoat JS, Johnson PJ,

Chang AM, Hjelm NM (1998) Quantitative analysis of fetal DNA in maternal plasma and

serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 62(4):768–775

12. Malentacchi F, Pazzagli M, Simi L, Orlando C, Wyrich R, Hartmann CC, Verderio P,

Pizzamiglio S, Ciniselli CM, Tichopad A, Kubista M, Gelmini S (2013) SPIDIA-DNA: an

external quality assessment for the pre-analytical phase of blood samples used for

DNA-based analyses. Clin Chim Acta 424:274–286

13. Wong D, Moturi S, Angkachatchai V, Mueller R, DeSantis G, van den Boom D,

Ehrich M (2013) Blood collection, transport and storage conditions for cell free DNA

increases access to prenatal testing. Clin Biochem 46(12):1099–1104
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82. Kohles N, Nagel D, Jüngst D, Durner J, Stieber P, Holdenrieder S (2011) Relevance of

circulating nucleosomes and oncological biomarkers for predicting response to transarterial

chemoembolization therapy in liver cancer patients. BMC Cancer 11:202

83. Lichtenstein AV, Melkonyan HS, Tomei LD, Umansky SR (2001) Circulating nucleic acids

and apoptosis. Ann N Y Acad Sci 945:239–249

84. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R (2001)

DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their

origin from apoptotic and necrotic cells. Cancer Res 61:1659–1665

85. Wang BG, Huang HY, Chen YC, Bristow RE, Kassauei K, Cheng CC, Roden R, Sokoll LJ,

Chan DW, Shih IM (2003) Increased plasma DNA integrity in cancer patients. Cancer Res

63:3966–3968

86. Umetani N, Giuliano AE, Hiramatsu SH, Amersi F, Nakagawa T, Martino S, Hoon DS (2006)

Prediction of breast tumor progression by integrity of free circulating DNA in serum. J Clin

Oncol 24:4270–4276

87. Umetani N, Kim J, Hiramatsu S, Reber HA, Hines OJ, Bilchik AJ, Hoon DS. (2006)

Increased integrity of free circulating DNA in sera of patients with colorectal or

periampullary cancer: direct quantitative PCR for ALU repeats. Clin Chem 52:1062–1069

88. Leszinski G, Lehner J, Gezer U, Holdenrieder S (2014) Elevated DNA integrity in

colorectal cancer. In Vivo 28:287–292

89. Tomita H, Ichikawa D, Ikoma D, Sai S, Tani N, Ikoma H, Fujiwara H, Kikuchi S,

Okamoto K, Ochiai T, Otsuji E (2007) Quantification of circulating plasma DNA fragments

as tumor markers in patients with esophageal cancer. Anticancer Res 27:2737–2741

90. Hanley R, Rieger-Christ KM, Canes D, Emara NR, Shuber AP, Boynton KA, Libertino JA,

Summerhayes IC (2006) DNA integrity assay: a plasma-based screening tool for the detec-

tion of prostate cancer. Clin Cancer Res 12(15):4569–4574

91. Jiang WW, Zahurak M, Goldenberg D, Milman Y, Park HL, Westra WH, Koch W,

Sidransky D, Califano J (2006) Increased plasma DNA integrity index in head and neck

cancer patients. Int J Cancer 119:2673–2676

358 S. Holdenrieder



92. Chan KC, Leung SF, Yeung SW, Chan AT, Lo YM (2008) Persistent aberrations in

circulating DNA integrity after radiotherapy are associated with poor prognosis in naso-

pharyngeal carcinoma patients. Clin Cancer Res 14(13):4141–4145

93. Pinzani P, Salvianti F, Zaccara S, Massi D, De Giorgi V, Pazzagli M, Orlando C (2011)

Circulating cell-free DNA in plasma of melanoma patients: qualitative and quantitative

considerations. Clin Chim Acta 412(23–24):2141–2145

94. Gao YJ, He YJ, Yang ZL, Shao HY, Zuo Y, Bai Y, Chen H, Chen XC, Qin FX, Tan S,

Wang J, Wang L, Zhang L (2010) Increased integrity of circulating cell-free DNA in plasma

of patients with acute leukemia. Clin Chem Lab Med 48(11):1651–1656

95. Boddy JL, Gal S, Malone PR, Shaida N, Wainscoat JS, Harris AL (2006) The role of cell-free

DNA size distribution in the management of prostate cancer. Oncol Res 16:35–41

96. Holdenrieder S, Burges A, Reich O, Spelsberg FW, Stieber P (2008) DNA integrity index in

plasma and serum of patients with malignant and benign diseases. Ann N Y Acad Sci 1137:

162–170

97. Schmidt B, Weickmann S, Witt C, Fleischhacker M (2008) Integrity of cell-free plasma DNA

in patients with lung cancer and nonmalignant lung disease. Ann N YAcad Sci 1137:207–213

98. Stötzer OJ, Lehner J, Fersching-Gierlich D, Nagel D, Holdenrieder S (2014) Diagnostic

relevance of plasma DNA and DNA integrity for breast cancer. Tumour Biol 35(2):

1183–1191

99. Ellinger J, Bastian PJ, Ellinger N, Kahl P, Perabo FG, Büttner R, Müller SC, von Ruecker A
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transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.

Nat Cell Biol 9(6):654–659

364 S. Holdenrieder



190. Mostert B, Sieuwerts AM, Martens JW, Sleijfer S (2011) Diagnostic applications of cell-free

and circulating tumor cell-associated miRNAs in cancer patients. Expert Rev Mol Diagn

11(3):259–275

191. Spizzo R, Nicoloso MS, Croce M, Calin GA (2009) SnapShot: microRNAs in cancer.

Cell 137(3):586–586

192. Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, Musolino C (2012)

Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer.

Int J Oncol 41(6):1897–1912

193. Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE, Hoon DS (2011) Direct serum assay

for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem 57(1):

84–91

194. Hauser S, Wulfken LM, Holdenrieder S, Moritz R, Ohlmann CH, Jung V, Becker F,

Herrmann E, Walgenbach-Brünagel G, von Ruecker A, Müller SC, Ellinger J (2012) Ana-

lysis of serum microRNAs (miR-26a-2*, miR-191, miR-337-3p and miR-378) as potential

biomarkers in renal cell carcinoma. Cancer Epidemiol 36:391–394

195. Scheffer AR, Holdenrieder S, Kristiansen G, von Ruecker A, Müller SC, Ellinger J (2012)

Circulating microRNAs in serum: novel biomarkers for patients with bladder cancer? World J

Urol 32(2):353–358. doi:10.1007/s00345-012-1010-2

196. Wulfken L, Moritz R, Ohlmann C, Holdenrieder S, Jung V, Becker F, Herrmann E,

Walgenbach-Brünagel G, von Ruecker A, Müller SC, Ellinger J (2011) MicroRNAs in

renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PLoS One 6(9):

e25787

197. Murray MJ, Halsall DJ, Hook CE, Williams DM, Nicholson JC, Coleman N (2011) Identi-

fication of microRNAs From the miR-371 ~ 373 and miR-302 clusters as potential serum

biomarkers of malignant germ cell tumors. Am J Clin Pathol 135(1):119–125

198. Ohyashiki K, Umezu T, Yoshizawa S, Ito Y, Ohyashiki M, Kawashima H, Tanaka M,

Kuroda M, Ohyashiki JH (2011) Clinical impact of down-regulated plasma miR-92a levels

in non-Hodgkin’s lymphoma. PLoS One 6(2):e16408

199. Summerer I, Niyazi M, Unger K, Pitea A, Zangen V, Hess J, Atkinson MJ, Belka C, Moertl S,

Zitzelsberger H (2013) Changes in circulating microRNAs after radiochemotherapy in

head and neck cancer patients. Radiat Oncol 8(1):296

200. Friedman EB, Shang S, de Miera EV, Fog JU, Teilum MW, Ma MW, Berman RS,

Shapiro RL, Pavlick AC, Hernando E, Baker A, Shao Y, Osman I (2012) Serum microRNAs

as biomarkers for recurrence in melanoma. J Transl Med 10:155

201. Kuhlmann JD, Baraniskin A, Hahn SA, Mosel F, Bredemeier M, Wimberger P, Kimmig R,

Kasimir-Bauer S (2014) Circulating u2 small nuclear RNA fragments as a novel diagnostic

tool for patients with epithelial ovarian cancer. Clin Chem 60(1):206–213

202. Arita T, Ichikawa D, Konishi H, Komatsu S, Shiozaki A, Shoda K, Kawaguchi T, Hirajima S,

Nagata H, Kubota T, Fujiwara H, Okamoto K, Otsuji E (2013) Circulating long non-coding

RNAs in plasma of patients with gastric cancer. Anticancer Res 33(8):3185–3193

203. Ecker JR, Bickmore WA, Barroso I, Pritchard JK, Gilad Y, Segal E (2012) Genomics:

ENCODE explained. Nature 489(7414):52–55

204. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the

human genome. Nature 489(7414):57–74

205. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK, Cheng C, Mu XJ, Khurana E,

Rozowsky J, Alexander R, Min R, Alves P, Abyzov A, Addleman N, Bhardwaj N, Boyle AP,

Cayting P, Charos A, Chen DZ, Cheng Y, Clarke D, Eastman C, Euskirchen G, Frietze S,

Fu Y, Gertz J, Grubert F, Harmanci A, Jain P, Kasowski M, Lacroute P, Leng J, Lian J,

Monahan H, O’Geen H, Ouyang Z, Partridge EC, Patacsil D, Pauli F, Raha D, Ramirez L,

Reddy TE, Reed B, Shi M, Slifer T, Wang J, Wu L, Yang X, Yip KY, Zilberman-Schapira G,

Batzoglou S, Sidow A, Farnham PJ, Myers RM, Weissman SM, Snyder M (2012) Archi-

tecture of the human regulatory network derived from ENCODE data. Nature 489(7414):

91–100

CNAPS in Therapy Monitoring 365

http://dx.doi.org/10.1007/s00345-012-1010-2


206. Maher B (2012) ENCODE: the human encyclopaedia. Nature 489(7414):46–48

207. Sanyal A, Lajoie BR, Jain G, Dekker J (2012) The long-range interaction landscape of gene

promoters. Nature 489(7414):109–113

208. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC,

Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boatman L,

Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM,

Kutyavin T, Lajoie B, Lee BK, Lee K, London D, Lotakis D, Neph S, Neri F, Nguyen ED, Qu

H, Reynolds AP, Roach V, Safi A, Sanchez ME, Sanyal A, Shafer A, Simon JM, Song L,

Vong S, Weaver M, Yan Y, Zhang Z, Zhang Z, Lenhard B, Tewari M, Dorschner MO,

Hansen RS, Navas PA, Stamatoyannopoulos G, Iyer VR, Lieb JD, Sunyaev SR, Akey JM,

Sabo PJ, Kaul R, Furey TS, Dekker J, Crawford GE, Stamatoyannopoulos JA (2012) The

accessible chromatin landscape of the human genome. Nature 489(7414):75–82

209. Chang CP, Chia RH, Wu TL, Tsao KC, Sun CF, Wu JT (2003) Elevated cell-free serum DNA

detected in patients with myocardial infarction. Clin Chim Acta 327:95–101

210. Chiu TW, Young R, Chan LY, Burd A, Lo DY (2006) Plasma cell-free DNA as an indicator

of severity of injury in burn patients. Clin Chem Lab Med 44:13–17

211. Geiger S, Holdenrieder S, Stieber P, Hamann GF, Bruening R, Ma J, Nagel D, Seidel D (2006)

Nucleosomes in serum of patients with early cerebral stroke. Cerebrovasc Dis 21:32–37

212. Geiger S, Holdenrieder S, Stieber P, Hamann GF, Bruening R, Ma J, Nagel D, Seidel D

(2007) Nucleosomes as a new prognostic marker in early cerebral stroke. J Neurol 254:

617–623

213. Lam NY, Rainer TH, Chan LY, Joynt GM, Lo YM (2003) Time course of early and late

changes in plasma DNA in trauma patients. Clin Chem 49:1286–1291

214. Lam NY, Rainer TH, Wong LK, LamW, Lo YM (2006) Plasma DNA as a prognostic marker

for stroke patients with negative neuroimaging within the first 24 h of symptom onset.

Resuscitation 68:71–78

215. Lo YM, Rainer TH, Chan LY, Hjelm NM, Cocks RA (2000) Plasma DNA as a prognostic

marker in trauma patients. Clin Chem 46:319–323

216. Rainer TH, Wong LK, Lam W, Yuen E, Lam NY, Metreweli C, Lo YM (2003) Prognostic

use of circulating plasma nucleic acid concentrations in patients with acute stroke. Clin Chem

49:562–569

217. Rainer TH, Lam NY, Man CY, Chiu RW, Woo KS, Lo YM (2006) Plasma beta-globin DNA

as a prognostic marker in chest pain patients. Clin Chim Acta 368:110–113
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Part IV

Other Aspects



Quality Assurance

Rob Elles, Simon Patton, Outi Kamarainen, and Zandra Deans

Abstract The analysis of cell free DNA is increasingly being used for the early

detection of biomarkers relevant to obstetric and oncology practice. Guaranteeing

the quality of these analyses is critical to retaining the confidence of the public in

these tests. This chapter outlines internal and external quality control and assess-

ment procedures open to laboratories to ensure the production of valid test results.

As an example clinical test, the chapter considers non-invasive prenatal testing to

determine fetal sex using cell free DNA isolated from maternal plasma. External

Quality Assessment as a method through which laboratories can compare their

results with a set of peers is also discussed.

Keywords Quality management • External quality assessment • Internal quality

control • Test design/validation • Laboratory medicine • Good practice

1 Introduction

The analysis of circulating cfNAs as the analyte for key biomarkers is a developing

field in biomedical diagnostics. Much of the interest in this area arises from the

improving utility of minimally invasive sampling methods of biological fluids to

allow early phase and regular monitoring of both tumor and fetal markers. However

many of the potential clinical applications of these techniques critically inform the

choice of treatment of a patient with a life threatening condition or a decision
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concerning a pregnancy at risk of a genetic condition. With this in mind there is a

duty, on the part of the Directors of all public sector and commercial laboratories

involved, to quality assure these tests both during the design and validation phase of

laboratory developed assays and following their inception into routine clinical

service. Quality assurance can be considered as the sum of two components namely

(a) internal control of materials, information, processes and (b) human factors, plus

independent scrutiny through inter-laboratory comparisons by External Quality

Assessment (EQA) agencies and audit by national accreditation bodies. This

chapter will consider the role of these facets of quality assurance as applied to the

analysis of cfNAs. It will use prenatal diagnosis of fetal sex as the principle

example application and focus on EQA as a powerful tool to facilitate peer review.

2 Quality Management in the Clinical Laboratory

A systematic approach to quality assurance begins with the adoption of a Quality

Management System (QMS). These systems have spread from a common set of

principles developed first in manufacturing and then in service industry. In the

clinical laboratory context, the core values within a QMS aim to engage the service

recipient (patient and clinical user) to help define and shape the service product (the

clinical test) and how it is delivered. The QMS relies on a set of documented,

accessible policies and procedures plus a regular, open and honest review of

laboratory performance. All of these components contribute to developing and

sustaining a culture of continuous improvement that becomes second nature to

the staff working in the laboratory. These principles have become embedded in a set

of standards against which certification and accreditation agencies may judge the

competence of a commercial company or public service unit. Over time these

requirements have become more specific and prescribed. For example the Interna-

tional Organization for Standardization (ISO) EN BS 9001:2010 standards are

applicable to certify any QMS in any setting (http://www.iso.org/iso/home.html).

More specifically EN BS ISO17025:2005 addresses quality management in general

measurement and testing laboratories and finally EN BS ISO15189:2012 describes

a set of standards applicable only to medical laboratories. Each country has a

recognized authority established to accredit a service provider against the appro-

priate standards. In the UK, medical laboratories are assessed against a set of

standards aligned to EN BS ISO15189:2012 by Clinical Pathology Accreditation

which is part of the UK Accreditation Service. In the US similar standards were

developed from the Clinical Laboratories Improvement Act (CLIA) and applied by

the Centers for Medicare and Medicaid Services and the College of American

Pathologists (CAP) (http://www.cms.gov; http://www.cap.org). Other relevant ref-

erences in considering quality management in clinical laboratories are the Organi-

sation for Economic Co-operation and Development (OECD) Good Laboratory

Practice standards plus the OECD recommendations for Quality Assurance in

Clinical Molecular Genetic Testing (2007) which are specific to the context of
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nucleic acid analysis (http://www.oecd.org/env/ehs/testing/; http://www.oecd.org/

science/biotech/38839788.pdf). Although a single world-wide accreditation stan-

dard has not been achieved, international comparability remains an aspiration.

Nonetheless, accreditation to internationally recognized standards allows patients

and clinicians to choose a laboratory with a public ‘badge’ of competence and have

confidence that the analyses are valid and comparable. This is increasingly impor-

tant since it is common-place for clinical samples to cross national borders for

analysis.

2.1 Design and Validation of Laboratory Developed Tests
and Verification of Kits

Tests developed in-house and for the use of a single clinical laboratory are a

frequent feature of this field and reflect the pace of translation from the research

laboratory to clinical service. Although this allows the benefits from new technol-

ogies to be more rapidly realized, patients are entitled to expect that laboratory

developed tests will be subject to an appropriately rigorous design and validation

process. For example, the design of tests using primers for PCR should always

include a search for common SNPs that may affect primer annealing and risk allelic

drop-out (https://secure.ngrl.org.uk/SNPCheck/).

A series of experiments establishing the robustness (test precision under various

input challenges), repeatability (within-run precision) and reproducibility

(between-run precision) of the assay should be performed to constitute a thorough

validation and define the performance characteristics of the analytical system. The

correct outcome of a test should be judged against previous test results using an

existing well-characterized analytical system and/or a known clinical outcome or

phenotype. Publishing key elements of the information established during valida-

tion (e.g. sensitivity and specificity of the test) as a service profile allows the end

user to be informed of the limitations of the test and helps give realistic expectations

of and increased confidence in the service. Accreditation standards require labora-

tories to have a formal policy and procedure for validating tests and to document

their findings. Publishing a validation study in a peer reviewed journal is one way to

ensure these data are robust and to make it public. A series published to validate a

prenatal test for fetal sex based on cffDNA in the maternal circulation is an example

[1]. Recommendations specific to the validation and verification of clinical molec-

ular genetic tests have been published and form a detailed guide to the development

and introduction of clinical tests [2].

As a field matures, commercial products (kits and services) may be marketed

with Federal Drug Authority approval and/or CE marking under the European

Union In Vitro Diagnostic Device Directive. Accreditation authorities require,

and good practice dictates, that the laboratory verifies and documents that the test
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‘in it’s own hands’ meets the performance specification indicated by the kit

manufacturer before it is introduced into clinical service.

2.2 Aspects of Internal Quality Control

Standard Operating Procedures

The file describing the series of experiments to establish the validation or verifica-

tion of a test allows a standard operating procedure (SOP) to be written. This forms

the key reference for training staff to perform the test in a reliable and reproducible

manner, to reduce variability and to consistently produce valid results. The SOP

documents the minimum requirements (clinical information, identity, demo-

graphics and the condition of the biological material) for samples to be accepted

into the laboratory for testing. Examples of acceptance criteria from NIPT include a

minimum gestational period (typically 8 weeks), the period from removal of blood

to analysis to be less than 72 h and samples to be protected from freezing. The SOP

defines individual handling steps and checks to assure the integrity and traceability

of the sample through the process. The test examination process should be detailed

as a simple step-by-step guide to ensure ease of use. In addition, a risk analysis

should be included which covers both safety considerations for the operatives and

to manage potential handling errors that might prejudice the secure journey of the

patient sample through the analytical process. Finally, the SOP may describe the

reporting process and standard wording to be used. Fetal sexing results may be

reported variously as: ‘This result indicates a male fetus.’ ‘This result is consistent

with a female fetus although the result could be due to insufficient fetal DNA.’ and

‘The laboratory was unable to obtain a result.’ The SOP may indicate reporting

caveats e.g. ‘The test is not valid for multiple pregnancies and may be affected by a

vanishing twin conception.’ Finally the SOP will also mandate the process of

reviewing and the final authorization of the report. SOPs should always be held

within a document control system designed to ensure that procedures are subject to

regular review and that only a valid and current version of the document is available

for use in the laboratory.

Use of Internal and External Controls

1. The choice, availability and appropriate use of every-day run controls is a key

element in the production of a valid result. This is particularly true in the

challenging assays represented by the analysis of circulating cfNA biomarkers.

Internal controls that may be sourced from surplus archived patient samples may

be characterized as an adjunct to the test validation process. Run controls may

also be sourced from cell lines or processed DNA from a commercial supplier or

cell bank. One of the critical steps in assays using circulating cfDNA is
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pre-analytical extraction. This process also requires positive and negative con-

trols to allow the analytical steps to proceed. In the specific context of cffDNA

analysis assaying the methylation status of the analyte using a methylation

sensitive restriction enzyme for a universal marker such as the RASSF1A

promoter is a useful control to ensure that sufficient fetal material is present in

the sample for analysis [3]. Periodic use of a higher order reference material is

recommended to revalidate an assay against an external standard. Reference

materials are formally certified by an accredited institution or standardization

body. Examples are the reference materials produced by the US National

Institute for Standards in Technology, the UK National Institute for Biological

Standards and Controls on behalf of the World Health Organization and the

European Union Institute for Reference Materials and Measurements. Commer-

cial sources of external control materials may also be relevant (http://www.nist.

gov/; http://www.nibsc.ac.uk/; http://irmm.jrc.ec.europa.eu/html/homepage.

htm).

In practice, few reference materials are applicable to this field although the UK

National Institute for Biological Standards and Controls has derived a reference

material for the standardization of RHD and SRY fetal genotypes in the cffDNA

fraction of the maternal circulation [4].

Human Factors – Operator Training and Competence

Clearly operator competence is a critical factor in the reliable production of valid

test results. The clinical laboratory must have in place a process, separated from live

test situations, for training staff in the pre-analytical, analytical and reporting

procedures, giving them confidence and signing off their initial competence. Peri-

odically checking that individual staff competence is maintained by observation

(a witness audit) may also be part of the Quality Management routine.

Test Acceptance Criteria

The validation process will establish and define a set of criteria for accepting a set of

assays as a valid test result. Assays that fall short of the validation criteria must not

be accepted as reportable and must be repeated on the original analyte material or

reported as inconclusive.

In the context of NIPT examples of test acceptance criteria that have been used

include a minimum number of concordant replicate assays, concordant assays on

two different genetic marker loci and/or using two different analytical methods

and/or consistent test results from two separate maternal plasma samples collected

at different times.

Quality Assurance 375

http://www.nist.gov/
http://www.nist.gov/
http://www.nibsc.ac.uk/
http://irmm.jrc.ec.europa.eu/html/homepage.htm
http://irmm.jrc.ec.europa.eu/html/homepage.htm


2.3 External Quality Assessment

Outline of External Quality Assessment

External Quality Assessment (EQA) is also termed Laboratory Proficiency Testing.

It has a long history in Clinical Laboratory practice as a way of systematizing inter-

laboratory comparisons amongst a group of peer laboratories sharing a particular

test service. In its simplest form it may consist of the informal sharing of a sample to

be tested by a small group of laboratories with a subsequent comparison of the

results, often called a Ring Trial. At a more formal level a competent agency

(accredited to the ISO/IEC17043:2010 standard for proficiency testing) regularly

ships a sample to subscribing laboratories. The sample is accompanied by mock

identifiers, demographic information and a medical scenario designed to resemble

as closely as possible a normal clinical request for a specific test. Participating

laboratories are asked to perform the test according to routine testing protocols and

to return their results to the EQA agency by a deadline for a formal assessment by a

panel of experts. In Clinical Molecular Genetics levels of assessment consist

principally of scoring a qualitative genotype or assessing a quantitative result

against an accepted range of values around an assigned or consensus value. In

addition, the EQA return from the participating laboratory may consist of the test

result in its normal report format with the clinical interpretation and comments

added. This allows a more detailed evaluation of the report for accuracy of the

genotype and use of standard mutation nomenclature. Additional assessment

criteria include accuracy of transcription of demographic and identifier information,

clarity of presentation of information, accurate description of the methodology used

including its limitations, a commentary on the result including any caveats or

recommendations for further tests or clinical actions and an indication that the

report has been formally authorized for release by a suitably qualified person.

Sourcing Manufacture and Validation of EQA Materials

The ideal EQA challenge is the biological source material normally received by the

testing laboratory. For non invasive prenatal-testing or tumor detection this is most

frequently a plasma sample. Although processed DNA is accepted as the distributed

material for most Clinical Molecular Genetics EQA schemes it is not appropriate as

the challenge material for the EQA of circulating cf(f) DNA tests as measuring

laboratory performance in the pre-analytical part of the process is a key issue. The

challenge for an EQA scheme organizer is to source material that is homogenous,

stable in storage and transit and available in sufficient quantity to meet the testing

requirements of a relatively large number of laboratories participating in the

scheme. Sufficient quantities of material are also required to allow for validation

of the genotype or establishment of the assigned quantitative analytical value by

one or more reference laboratories in advance of the distribution. If possible,
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additional material should also be stored to allow for a limited number of repeat

shipments to laboratories that make this request. Some material must be retained to

form a reference in the event of the need for an investigation if there is a significant

level of discrepancy in the scheme results that cannot be explained by variation in

laboratory performance that subsequently calls into question the validity of the

scheme. Finally, in advance of distribution, the EQA materials require testing to

meet appropriate bio-safety requirements and to be shown to be free of a range of

detectable blood borne infectious agents.

For NIPT, a number of approaches to EQA sample manufacture have been

explored. These include the production of artificial material, which is a recognized

approach in Clinical Laboratory EQA. To assess the feasibility of this approach a

batch of material was prepared from fetal (male) DNA isolated from chorionic

villus biopsy (CVB) and sheared by sonication to an average fragment length that

replicated the size of cffDNA found naturally in maternal circulation. CVB DNA

was diluted in quantities designed to match the concentration of cffDNA found in

maternal circulation in a sufficient volume of cell free plasma from a non-pregnant

female. In a series of tests this artificial product did not meet the minimum

requirements for an EQA material; failing to produce a male specific signal to

mimic the qPCR signal curve observed in natural plasma samples from women

carrying a male fetus (Deans Z, Karamainen O, Patton P, unpublished result).

Since it is not possible to source sufficient material from a single volunteer, an

alternative method involves pooling natural cell free plasma samples from a

number of pregnant women. The challenges of this method include sourcing

sufficient material to satisfy the requirements for an international EQA scheme

that may involve many laboratories plus the back-up validation and reference

requirements as previously described. This method has been trialed in a small

number of pilot schemes involving a limited number of centers in the UK that

established that an EQA scheme using this approach is feasible. Research biobanks

are a potential source for this program and the recruitment of testing centers is

underway in order to prospectively collect suitable samples for pooling for future

EQA runs. However the full scale-ability of this method of EQA material manu-

facture for NIPT remains to be established.

Experience from Pilot EQA Schemes

Selection of Cases

The EQA scheme organizer is responsible for selecting materials to be distributed

and matching a mock clinical scenario appropriate to the genotype of the material.

It must be remembered that EQA is primarily educational and not an opportunity

for scheme organizers to ‘trip-up’ participants with a particularly difficult chal-

lenge. Over time the EQA organizers should choose material/clinical scenario

combinations that reflect the general range of cases referred to a clinical center.

For an EQA of NIPT for fetal sexing these may include cases that reflect samples
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from male pregnancies validated as representing a male specific signal well within

the detection range expected of a test validated for clinical use. In addition, samples

from female pregnancies validated by at least two reference centers as being free

i.e. below the limit of detection of contaminating male material by more than one

sensitive methodology may be included. In addition, samples can be included from

a range of gestational age (within the known detectable limits) to reflect the samples

routinely tested by the laboratory. More challenging cases designed to be close to

the limit of detection expected of a clinical assay should be presented infrequently

and laboratories should not be penalized for failing to detect a signal that falls

outside of their stated assay limit of detection.

The information accompanying the EQA referral should be adequate and for an

NIPD EQA must include the estimated gestational age of the referred pregnancy.

The cases should be sufficiently documented to allow the laboratory to select its

approach and analytical methods and answer the clinical question associated with

the challenge and issue appropriate recommendations, for example, for a repeat

sampling. It is imperative that laboratories understand that their testing protocols

should not be amended in order to test the EQA samples and participate in the EQA

scheme. EQA is an assessment of routine testing to give a measure of the standard

of service provided to their service users.

Assessment of EQA Performance; Genotype, Interpretation

and Reporting

The primary measure of performance resulting from molecular genetics EQA is the

ability of the participating laboratory to detect and correctly call the qualitative

genotype (in this case, either the presence or absence of a male specific signal

within the limit of detection).

Molecular genetics EQA schemes frequently include an interpretative element.

This may be split into the clinical interpretation of the genotype and the accuracy

and clarity of the clinical report. Therefore, EQA assessors make a judgement on

the utility of the report as a document conveying information to the recipient,

advising on clinical actions and forming a permanent part of the medical record.

To do this, they use a number of specific performance requirements informed by

Good Practice for the participant to achieve a full score. For both the genotype and

interpretative elements the assessment team will assemble a proforma for assigning

a quantitative score. A system used by some EQA schemes is a presumptive score

of 2.0 with fractions of marks deducted for failure to indicate key interpretive

points.

EQA assessors may consider that some elements of a report are essential and

deduct marks if they are not present. Assessors may expect that choices for the

patient are mentioned; examples include further tests. Although clear advice may

be offered to the clinician to help avoid failure to act on critical implications of the

test, it is vital that reports should not be in any way be interpreted as being directive

to the patient. In assessing the EQA returns, assessors do not penalise the same error
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twice. If an incorrect genotype is indicated the interpretation of that genotype is not

marked. If a systematic error appears across more than one EQA challenge or case

(for example a sample exchange problem) this is penalized once.

EQA schemes comment on the style of report layout and clarity referring to

guidelines on clinical reporting (http://www.oecd.org/env/ehs/testing/).

However assessment of report style is usually restricted to comments. The

presence of sufficient unique patient and sample identifiers are required on each

report and errors in the transcription of essential data for example in such patient

identifiers will lead to a deduction of marks.

EQA and Poor Performance

EQA providers have a duty to protect the public from sub-standard and potentially

dangerous clinical laboratory practice. Many EQA providers therefore set peer

reviewed minimum performance criteria. Laboratories may make errors in EQA

schemes indicative of ‘poor performance.’ The EQA scheme organizer will contact

the laboratory director to advise them to take measures to correct the process error

detected. Laboratories may be offered either assistance or reference samples or

technical advice from a peer center and be offered or required to participate in a

supplementary round of EQA.

In some jurisdictions, EQA providers are obliged to report poor laboratory

performance to a regulatory body that may monitor the laboratory’s performance.

Where EQA performance does not improve, the official body may take additional

measures to protect the public, for example stopping the lab offering that test. Poor

performance in EQA is a powerful indicator of competence in a specific area and

EQA providers have reported that some laboratory directors have decided to

withdraw from providing individual services on the basis of errors revealed through

an EQA scheme.

Learning Lessons from EQA

EQA participation is a valuable opportunity for clinical laboratories to compare

their performance against their peers and against agreed standards of practice. It

also serves to complement and validate the internal quality control measures they

have in place [5]. To be compliant with accreditation standards laboratories should

review their performance immediately after they receive their EQA report with all

levels of staff and put into action measures to correct serious deficiencies. Less

critical comments should also be considered from EQA assessors relevant to

accepted good practice (ISO standard 15189). Overall EQA performance especially

where laboratories are involved in a number of test specific schemes must be a part

of the annual management review of the Quality Management System. A review of

EQA records is also a key part of an external accreditation audit.
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EQA and Post Market Surveillance

EQA is a valuable method of assessing the performance of in vitro diagnostic

devices (IVDD). Manufacturers ought to be alerted by the EQA provider when an

IVDD performs poorly in a number of laboratories in an EQA challenge. The EQA

provider should issue an alert to relevant national and multinational authorities

responsible for the surveillance of IVDDs for example the US Federal Drug

Administration (FDA) and UK Medicines and Healthcare Products Regulatory

Agency (MHRA).

EQA and Good Practice

There is a strong relationship between EQA and the formulation of best practice

guidelines. Data gathered from EQA showing an unacceptable variation in perfor-

mance and practices can help set the agenda of a best practice meeting. In turn,

guidelines inform both EQA assessors in marking EQA returns and help laborato-

ries develop their internal quality control systems.

3 Conclusion

Medical tests based on the analysis of cfDNA are often critical to the care of

patients. It is vital that laboratories embarking on these tests thoroughly validate

their analyses, offer them in the context of an operating Quality Management

System and submit their procedures to external audit through EQA as it is devel-

oped and accreditation by a recognized authority.
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Societal Aspects: Ethics

Celine Lewis and Lyn S. Chitty

Abstract Non-invasive techniques to diagnose genetic disease have advanced

rapidly in recent years and include prenatal diagnosis for fetal aneuploidy and single

gene disorders, and early screening and diagnosis for people affected by cancer and

diabetes. In this chapter we consider some of the key ethical issues arising as a result

of this new technology. We highlight how non-invasive testing offers a number of

significant benefits to patients including safe and early testing. Issues that have been

raised as concerns include the erosion of informed decision-making, pressure to test,

testing for non-medical reasons or for information only and the broader societal

impact that the widespread introduction of non-invasive testing may have. These are

issues that should be considered when developing practice guidelines.

Keywords Circulating DNA • NIPD • Prenatal diagnosis • Regulation • Consent

guidelines • Direct-to-consumer testing • Ethics • Predictive medicine • Non-

invasive tests • Social impacts

1 Introduction

The recent advances that have taken place in the molecular analysis of circulating

nucleic acids have opened up a whole host of new opportunities for the diagnosis of

genetic disease. These include the development of new non-invasive techniques for
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prenatal diagnosis (NIPD) for fetal aneuploidy and single gene disorders, and the

possibility for early screening, diagnosis and monitoring of treatment for people

affected by conditions such as cancer and diabetes. Whilst these advances have the

potential to offer significant benefit to patients, as with any new technology, it is

important to pause and consider the wider ethical implications before they are

implemented into clinical practice. In this chapter we will reflect on some of the

key ethical issues that have arisen in light of these new diagnostic capabilities, the

first part relating to current, clinically applied, fetal analyses and the second part

considering the more general applications of CNAPS in disease both actual

e.g. cancers and diabetes and genetically possible-but-not-probable.

2 cffDNA in Maternal Plasma

The discovery of cell free fetal DNA (cffDNA) in maternal plasma in the late 1990s

was a seminal step towards the goal to develop a non-invasive test to diagnose

genetic conditions during pregnancy [1]. Traditionally, prenatal diagnosis has

involved the use of invasive tests – either amniocentesis from 15 weeks or chorionic

villus sampling (CVS) from 11 weeks – for definitive diagnosis. However, these

tests carry a small but significant risk of miscarriage, between 0.5 and 1 % [2]. An

approach to prenatal diagnosis based on the analysis of cffDNA offers the possi-

bility for a safer, non-invasive approach based on a maternal blood sample rather

than current invasive diagnostic techniques which require the insertion of a needle

into the uterus. Furthermore, as cffDNA has been detected in the maternal circula-

tion from around 5 weeks and increases with gestation before being rapidly cleared

from the circulation after delivery [3], NIPD can potentially be offered earlier than

traditional invasive prenatal tests and is pregnancy specific.

The first clinical applications of NIPD have included fetal sex determination [4],

Rhesus D genotyping in mothers who are Rhesus D (RhD) negative [5] and

paternally inherited single gene disorders or conditions arising de novo, such as

achondroplasia [6]. NIPD for recessively inherited single gene disorders where both

parents carry the same mutation or for X-linked conditions is more complex as there

are high circulating levels of mutant DNA emanating from the mother. However,

research taking advantage of new technologies indicates that NIPD may soon be

possible for these conditions [7, 8]. Similarly, NIPD for aneuploidies has advanced

rapidly and it is now possible to identify pregnancies affected by Down’s syndrome

from 10 weeks gestation with high accuracy (>99 %) and a low false-positive rate

(around 0.3–0.5 %) [9]. Detection rates are also high for trisomy 18 (>99 %) and

trisomy 13 (up to 90 %) [10–12]. Indeed, following the publication of a number of

large validation studies, several companies now offer NIPD for aneuploidy, and

these tests are widely available in the private sector in the US, parts of Asia and

parts of Europe [13]. NIPD for aneuploidy is currently not considered as accurate as

invasive testing with false negative results being reported, probably due to low

levels of cffDNA either because of early gestation or because the fetal fraction
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tends to be lower in obese women [14]. False positive or discordant results are also

regularly reported and are a result of a variety of factors but reflect the fact that

NIPD analyses both maternal and fetal cell free DNA, and that the cffDNA

emanates from the placenta. Thus, the reported aetiology of discordant results

includes confined placental mosaicism [15], maternal chromosome abnormalities

and mosaicism [16] and, very rarely, maternal malignancy [17]. In view of these

observations, invasive testing is recommended to confirm a positive NIPD for

aneuploidy result (for that reason the test is often referred to as non-invasive

prenatal testing or NIPT, however for consistency we will refer to NIPD throughout

this chapter). In addition, in some cases (~4 %) the test may have to be repeated,

particularly when the fetal fraction is low.

Whilst the clinical benefits of a non-invasive test are clear, it is also important

that we consider the ethical and psychosocial issues that arise as a result of this

technology, and in recent years a number of studies have been conducted in this

area. These include studies examining the attitudes of pregnant women [18–20],

couples who have used NIPD for fetal sex determination or for the diagnosis of a

monogenic disorder [19, 21, 22], the general public [23], health professionals

[24–28] and ethical commentators [29–36]. As a result, the practical and ethical

implications of NIPD have been explored widely. Whilst many of the issues raised

are not necessarily new to the ethical and social debates associated with existing

prenatal diagnostic practices, the ease with which NIPD can be conducted and the

risk-free nature of the test may exacerbate existing issues. For that reason,

re-examination of the key ethical issues in light of this new technology is important.

Here we present a summary.

3 Benefits of NIPD

Research, with key stakeholders, highlights that NIPD is seen as a positive advance-

ment in prenatal care with a number of notable advantages over invasive testing and

screening in the case of aneuploidy. The practical benefits are that the test is safe

(i.e. there is no miscarriage risk); it reduces the need for invasive testing; and can be

conducted early in pregnancy (from as early as 7 weeks for fetal sex determination),

allowing more time for decisions around invasive testing and termination of

pregnancy. Termination is considered to be safer if conducted earlier in pregnancy

as the risk of complications associated with a surgical procedure, which can be

performed in most units up until around 12 weeks gestation, is considered to be less

than that associated with a medical procedure. For those continuing with the

pregnancy, the information can be useful as it allows parents time to prepare

practically for the birth of an affected child. In some cases the information may

inform pregnancy management, such as the provision of antenatal dexamethasone

that is used to reduce external genital virilisation in female fetuses affected by

congenital adrenal hyperplasia, or obstetric management around delivery for male

pregnancies at risk of haemophilia. Other advantages cited by stakeholders include
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that the test is procedurally easy to conduct as it is a blood test and has a high level

of accuracy [20–24].

As well as the practical benefits of NIPD such as venepuncture being easier to

perform requiring less specialised healthcare professionals, earlier diagnosis has

been found to provide a number of psychological benefits. For prospective parents

who choose to continue with the pregnancy where the fetus is affected, there is

more time to come to terms with the diagnosis and adjust to the information.

Knowing the status of the fetus may also provide peace of mind early on during

the pregnancy: if the fetus is unaffected the prospective parents can relax and enjoy

the remainder of their pregnancy, if the fetus is affected there is peace of mind

knowing that appropriate pregnancy management is in place. Women have also

spoken about NIPD empowering them to regain, at an early stage, a sense of control

over their pregnancy [19, 21, 22]. Finding out that the fetus is unaffected within the

first trimester can also help to ‘normalise’ the pregnancy for some women as all

pregnancies are at increased risk of spontaneous miscarriage during that time

[22]. For some women, particularly those that have purposely disengaged with

the pregnancy due to the risk of the fetus being affected, NIPD enables them to

reengage and bond with the fetus much earlier than they would have otherwise [21,

22]. For those who do not want to continue with the pregnancy, the possibility of an

earlier termination may also be less emotionally traumatic and procedurally easier

as surgical rather than medical termination can be performed. An early termination

is also perceived by some as being less contentious ethically [22, 25]. This view

accords with the predominant view in most Western countries that the moral status

of the fetus increases with gestational age [37]. Thus, NIPD offers a range of

practical and psychological benefits to women.

4 Concerns About NIPD

Whilst the practical and psychological advantages of a safe and early test are clear,

a number of concerns have been expressed. These include to how to ensure the test

is offered appropriately in a way which safeguards informed consent, to whom we

offer testing and for what conditions, and the broader societal impact that wide-

spread introduction of such testing may have.

4.1 Informed Consent and Routinisation of Testing

It is widely accepted that a key goal of genetic counselling for prenatal testing is to

support women to make an informed choice, which is defined as one that is based on

relevant knowledge, consistent with the decision-maker’s values, and behaviourally

implemented [38] and as such, allows women to exercise their reproductive auton-

omy [39, 40]. One of the major concerns that has been raised is the potential for
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NIPD to undermine informed consent [30, 41], an ethical principle that is seen as

having been assured when clients are ‘enabl[ed] . . . to make informed independent

decisions, free from coercion’ [42]. This concern is particularly relevant to imple-

mentation of NIPD into routine antenatal practice as part of the Down’s syndrome

screening pathway. Currently, all pregnant women in the UK are offered prenatal

screening for Down’s syndrome. These tests are increasingly delivered by a com-

bination of fetal ultrasound and maternal serum biomarkers in the first trimester and

provide an individual risk estimate [43]. Women who are ‘high risk’ (�150 in the

UK) are then offered invasive testing for definitive diagnosis. Thus, the process

currently includes two steps; first, a decision whether or not to accept screening

followed, for women predicted to be at high risk by the first stage, by a further

decision of whether to undergo invasive testing. The nature of having a ‘2-step’

process as well as the risk of miscarriage associated with invasive testing are

thought to be psychological barriers that prompt women to think carefully about

their options. By reducing the testing process to just 1-step as well as removing the

risk of miscarriage, the concern is that women may not fully consider their decision

to take the test, particularly if pre-test counselling is not delivered appropriately.

This concern is particularly acute given that research has already shown some

women do not making fully informed decisions about current screening tests

[44]. Furthermore, evidence indicates that health professionals may view the

consent procedure for NIPD less stringently than they would for invasive testing

[28] and that health professionals may view aspects of testing very differently from

the women undergoing testing [45]. These concerns highlight the need for thorough

counselling and consent procedures when offering NIPD. Practices that may serve

to maintain good levels of informed consent include the availability of written

patient information, a delay between the discussion of the test and test delivery, and

the use of a formal signed consent form, as is currently the practice when offering

invasive diagnostic testing.

The following practices are considered important in enabling informed

consent to take place:

• Professionals who provide genetic counselling should have appropriate

education and training to enable them to facilitate decision-making and

understand the individual needs of the counsellee.

• Provision and understanding of information related to:

• The condition being test for

• The risk that the fetus will be affected

• The test itself (including test procedure, when the test can be

conducted, accuracy of test results, risks associated with the test,

limitations of the test, when the results will be delivered, how and by

whom, and the options available after the results are known)

• Confidentiality of test results

(continued)
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• Whether the test results could have implications for future insurance of

individuals involved.

• Assurance of the counsellee’s understanding.

• Psychological support which includes ensuring counsellee’s:

• Take time to think through the decision, including what they would do

if the fetus is affected

• Think about the impact of the condition on the child and his or her

quality of life

• Think about the impact of having a child with the condition in the

context of their own lives and those of their family members.

• Signposting to support groups and good quality information sources,

including the opportunity to access information about quality of life and

living with a condition from people with first-hand knowledge

(e.g. disease specific lay support organisations).

• Availability of written information.

• Allowing sufficient time between the discussion of the test and test

delivery.

• Encouraging independence in the decision-making process.

• Ensuring consent is given freely without undue coercion after having

received appropriate information.

• The use of a formal signed consent form.

These guidelines have been adapted from the following sources: [26, 46]

A related concern is that offering NIPD to women on a wide scale through a

blood test with no risk of miscarriage may lead to ‘routinisation’ of testing. This

implies that the test will come to be seen as part of routine prenatal care rather than

a choice which a person actively chooses (i.e. a test which you opt-in to rather than

opt-out of). Commentators have generally aired this concern in relation to using

NIPD for aneuploidy as this is the most common genetic condition tested for during

pregnancy, although this should not detract from the possibility of NIPD becoming

routinised in other circumstances, for example, following sickle cell or thalassae-

mia carrier screening during pregnancy [33].

4.2 Pressure to Test

As highlighted previously, when a person acts autonomously, they exercise an

informed choice free from undue influence. Autonomy is seen to be compromised

(and thus informed consent invalidated) when an individual’s decision is subject to

coercion or illegitimate pressure. It is possible that, by removing the risk of

miscarriage, the ease of testing will contribute to women feeling pressured to take

386 C. Lewis and L.S. Chitty



the test as they can no longer argue that the risk of loosing a normal pregnancy

precludes them from undergoing testing. This pressure may stem from a number of

sources; women’s fear of being judged irrational or irresponsible if they don’t take

the test, due to pressure from a partner or family member, as a result of how the test

is conveyed in pre-test counselling, or because it is freely available and offered by a

‘trusted’ health professional. Subtle pressure may also result from the way we as a

society view prenatal testing, for example, evidence indicates that the availability

of prenatal tests can create a situation whereby women feel they are being ‘bad

mothers’ if they do not use all the technology available to them [19, 23, 29]. As a

result, women who do not want to have the test, for whatever reason (such as they

would not terminate an affected pregnancy) may not feel justified in declining

NIPD. Again, such concerns highlight the need for appropriate pre-test counselling

to ensure that women make informed decisions in line with their own beliefs and

values.

4.3 Scope of NIPD

One of the most debated issues raised in relation to NIPD is how the ease and risk-

free nature of the test will impact the scope of prenatal testing. Will people test for a

wider range of conditions? How will we draw the line between medical and

non-medical testing and what we should and should not test for? And how will

these technologies be regulated? Whilst the spectrum of conditions tested for will

partly depend on the capabilities of the test itself, it is worth reflecting on the

potential implications of testing for a broader spectrum of conditions including

complex conditions, adult onset conditions and testing for increasingly minor

abnormalities, something referred to as ‘specification creep’. Whilst these concerns

are not necessarily new to prenatal testing, the ease and risk-free nature of NIPD

could be an incentive to test for conditions that we would not have tested for

previously through invasive testing given the risk of miscarriage.

As stated by Hall et al. [35], it seems likely that existing standards of clinical

practice in prenatal testing will be used as a benchmark for deciding whether NIPD

should be used for a particular clinical application. At present, prenatal testing

(either invasive testing or pre-implantation genetic diagnosis) is allowed in the

UK for adult onset conditions which are serious or life-limiting or where there is

likely to be exceptional psychosocial burden experienced by parents, such as

Huntington’s disease or BRCA1 testing, where the information is used to guide

pregnancy management. As such, NIPD does not raise any new ethical concerns as

long as professionals continue to exert the same standards of care when offering

these tests as they do currently. One ongoing concern, however, is where parents

want prenatal testing for adult-onset conditions but are not considering terminating

an affected pregnancy, and whether this scenario will occur more frequently as a

result of the availability of NIPD. In such a scenario, the rights of the future child

may be violated as they have not given their consent. Testing of children is
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generally regarded as unacceptable because it deprives the child of his or her right

to self-determination including the decision of whether to be tested once mature

enough to do so [31]. As such, using NIPD for this reason would also be considered

morally unsound unless there were extenuating circumstances. Furthermore, in

some circumstances, knowledge of carrier status for a gene with high penetrance

such as Huntington’s disease or BRAC1 may affect the individuals access to health

insurance and other benefits. Whilst this is not currently an issue in the UK, the

issue is debated frequently and attitudes may change over time and with increasing

use of NIPD.

Concerns about the use of NIPD for social sexing are also frequently cited in the

ethics literature [41, 47]. Currently, the application of NIPD for fetal sex determi-

nation is allowed if the fetus is at risk of a condition that affects a particular sex,

such as Duchenne muscular dystrophy or congenital adrenal hyperplasia. The use of

NIPD to determine the sex of the fetus for these conditions is not considered to be

ethically contentious as the information can be used to guide the need for invasive

testing and/or inform treatment [4]. However, the ability to determine the sex of the

fetus using NIPD has raised concerns that people might use this technology for

non-medical reasons. Parents may want their child to be a particular sex for

personal, cultural or economic reasons such as family balancing or because a

particular sex is more highly valued within a society, and there is general agreement

amongst health professionals that this should not be permitted. There have also

been calls for international guidelines to regulate the non-invasive detection of fetal

sex [48]. As highlighted by Newson [41], the burden of proof for consent to testing

should be made the responsibility of the test provider to ensure that sex selection is

conducted for legitimate medical reasons.

A further concern is what impact NIPD will have on the disabled community

[23, 29, 49]. Given that the risk of miscarriage related to invasive testing is a key

psychological barrier to diagnostic testing [50], it seems inevitable that removing

this barrier will invariably lead to an increase in the number of fetuses diagnosed

prenatally which may in turn lead to an increase in the number of terminations,

particular for Down syndrome, the most common chromosome abnormality. Pre-

natal testing has been widely criticised in the disability rights literature because it is

perceived that the very endeavour of seeking to prevent genetic disability and

disease discriminates against and devalues the disabled community [51]. Assuming

that NIPD will reduce the number of people being born with genetic conditions, the

concern is that this discrimination will be exacerbated or that attitudes about the

acceptability of continuing with a pregnancy where the fetus is affected will be

subtly altered. For that reason, disability rights activists have highlighted the

importance of providing prospective parents with information, based on the expe-

riences of families who have children with disabilities, about what that particular

disability is like for the child and their family.
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4.4 Genome-Wide Sequencing

Studies have shown that it is now possible to conduct a genome-wide analysis of

fetal DNA to diagnose genetic disorders prenatally in a non-invasive way

[52–54]. This would, in theory, make it possible to conduct multiple genetic tests

concurrently with a single non-invasive test. This new approach raises a number of

ethical, legal and social issues that require consideration. One argument for this

type of testing is that, assuming parents have made an informed choice to take the

test, they are empowered with more information and control over their pregnancy

than they would otherwise have had. Thus, the information derived through whole

genome sequencing would enable them to make informed decisions which would

lead to the best possible outcome for them, i.e. the prevention of the birth of a child

with a genetic condition or time to prepare for the birth of a child with a genetic

condition. It could also be argued that if it is possible to conduct such a test and if

parents make an informed decision to take the test, not allowing them to do so

would be to deprive them of their right to autonomous reproductive choice

[33]. Despite these potential advantages, a number of concerns have been identified

which we will briefly summarise.

One major concern is whether it would be truly possible to give informed

consent given the spectrum of genetic conditions that might be identified through

whole genome testing. Even if we only tested for the most common chromosomal

conditions and single gene disorders, these will all differ significantly in terms of

prognosis, treatment and outcome. Complex testing will also inevitably uncover

findings of unclear significance which are difficult for health professionals to

interpret and patients to understand. Instead of empowering parents, we may end

up ‘overloading’ them with information, creating additional anxiety and confusion,

and ultimately diminishing their capability to make informed decisions about

testing. Counselling sessions would also require more in-depth discussion about

the different conditions being tested for and the possible outcomes of test. This

would be likely to require more intensive and lengthy counselling sessions which

would be costly.

4.5 Need for Regulation and Ongoing Research

To address these concerns, the development of regulations and best practice

guidelines will be essential to ensure that NIPD is offered within agreed clinical

pathways. These will need to take into account the views of all stakeholders

(including patients, clinicians, scientists, policy makers and ethicists) to ensure

that the range of conditions for which NIPD is available lies firmly within the

boundaries of what is considered ethically as well as clinically acceptable. Ongoing

monitoring and research is therefore vital. An important issue will be how NIPD is

regulated, particularly if it is available outside the realm of clinical genetics where

high standards of ethical practice are firmly entrenched through bodies such as the

Association of Genetic Nurses and Counsellors and the European Society of Human
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Genetics. Establishing regulations of testing and guidance from professional bodies

outside of clinical genetics is therefore critical.

4.6 Equity of Access to Testing

NIPD for aneuploidy is currently only available in the private sector with costs

ranging from £400–£750 in the UK. Implementation of this test has been wholly

commercially driven, however, there is currently research being conducted in the

UK looking at whether and how NIPD for aneuploidy should be implemented into a

public sector health care system [55]. The cost of these tests, which are based on next

generation sequencing technology, are high and economic constraints are likely to

restrict the way they are offered in the NHS [56]. This may result in the test being

offered as a sequential test to those women identified as high risk through current

screening (i.e. as an alternative to invasive testing), rather than to all women.

However NIPD for aneuploidy is offered, screening policy and practice will need

to ensure that access to testing is offered equitably to avoid a ‘postcode lottery’

systemwhere only women in selected antenatal clinics have access to it, an issue that

has caused much furore in the past in the case of the combined test or access to IVF.

4.7 Testing for Information Only

A further consideration is whether, particularly in times of economic hardship,

public sector health services should be offering tests if women would not use the

information to guide decisions about termination or treatment during pregnancy.

Whilst this issue is not necessarily new to prenatal testing, given the non-invasive

nature of NIPD, it seems likely that a larger number of women will use the test for

information only (i.e. to plan and prepare for the birth) rather than to guide

pregnancy management, and raises the question of whether the advantages of a

diagnosis that has no immediate clinical benefit are outweighed by the cost of

offering that test. Further concerns also relate to the use of NIPD for an early result

when the same information can be achieved safely later in pregnancy at the time of

other routine tests, for example fetal sex determination in pregnancies at high risk

of haemophilia to inform the management of labour. This information is only

required at the end of pregnancy and can be easily obtained at no extra cost at the

time of the routine fetal anomaly scan [24].

The practical and psychological benefits of NIPD for information only are

difficult to quantify from a cost perspective, however we do know that for many

women reassurance, control, peace of mind and relief from uncertainty during their

pregnancy are important, particularly for those women who may be at increased

risk either as the result of a family history of a single gene disorder, as the result of a

previously affected pregnancy, or because they have been identified as high risk

through screening [19, 21, 22]. Furthermore, women may not know how they will
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react to a prenatal result prior to receiving it, and their views on what constitutes the

best course of action for them and their family may change after receiving an

adverse result. Service providers and health care commissioners will therefore have

to carefully consider whether they can justify only offering NIPD to those women

who are using the test to make decisions about whether to continue their pregnancy

given that the benefits of information for preparation and planning are well

established.

4.8 Prenatal Diagnosis of Single Gene Disorders

Autosomal recessive conditions such as sickle cell or cystic fibrosis can only be

passed on to the child if both parents are carriers. To be certain that the pregnancy is

at risk, the carrier status of both parents must be known. Nevertheless, one can

identify certain situations where this might be complicated, for example when the

father of the child is unknown or absent, or where the father does not want to be

tested. In such cases, the decision to undergo invasive testing is likely to be difficult

given the uncertainty around whether the fetus is even at risk of inheriting the

condition. An advantage of NIPD is that it enables confirmation of the status of the

fetus without the risk of miscarriage, without the need to know the carrier status of

the father.

One issue that has raised concern, however, is if the father does not want to know

his carrier status. Testing the fetus would violate his right not to know as if the fetus

was found to be affected, this would then confirm the father’s carrier status. Again,

this is not an issue which is unique to NIPD as it also applies to invasive testing, but

given the risk-free nature of NIPD it is a situation that may arise more frequently. In

the UK, the ultimate decision-maker concerning prenatal testing is the mother, as it

is her body, her pregnancy and therefore her right to accept or decline tests. As such,

even if her partner did not want to be tested, she would legally have the right to

overrule the father’s right not to know. One can also apply the ethical argument that

finding out the status of the fetus is justified on the grounds that the information is

primarily about the fetus; finding out the father’s carrier status is a foreseen but

secondary consequence. Nevertheless, even though the mother would be ethically

and legally justified in testing the fetus without the consent of the father, such

situations would still need to be handled sensitively.

4.9 Circulating cell free DNA for Use in Early Diagnosis
and Prognosis

Much of the social and ethical discussion around the uses of circulating cell free

DNA (cfDNA) has focused on its use prenatally, mainly because the clinical

application are most developed in this area. Nevertheless, other possible applica-

tions of this technology including early screening and monitoring of patients for
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conditions such as cancer and diabetes are being researched [57]. Non-invasive

testing for screening purposes has a number of notable advantages over traditional

tests. First, the test may be more sensitive and easier to deliver and eliminate the

need for more invasive approaches. This may make such screening available to a

wider proportion of the population. Moreover, this approach may enable diagnosis

at a much earlier stage in the disease process resulting in earlier intervention or

treatment and thus a potentially better outcome for the patient. In considering the

ethics, some of the concerns raised in relation to NIPD are also relevant here. For

example, the relative ease and risk-free nature of the test may create a situation

whereby patients feel pressured or coerced into testing. Nevertheless, we have

considered some further ethical issues that might apply to using non-invasive

testing for screening, diagnosis, prediction of prognosis and monitoring treatment

of patients.

4.10 Testing for Conditions of Variable Severity or for Which
There Is No Cure

Some conditions have variable severity. This means that one patient who is

suffering from the disease may have more severe symptoms than another. For

patients affected by conditions of varying severity, receiving an early diagnosis

can be a mixed blessing. A good example of this is prostate cancer. Some patients

will find an early diagnosis of prostate cancer helpful. They may choose to have

surgery or more regular check-ups to monitor the progress of the condition. They

may feel that the information enables them to take pro-active steps to look after

their health. For others, early diagnosis can cause a great deal of anxiety, particu-

larly if the cancer is slow-growing, does not reduce life expectancy and does not

need treatment. Thus, one concern is that because tests based on circulating nucleic

acids can be done early and easily, we may end up ‘over treating’ patients and

ultimately cause more harm than good. A good example is the use of mammogra-

phy in current breast cancer screening programmes, where it now appears that many

lesions detected are benign but yet have resulted in significant stress, and in some

cases unnecessary surgery. Accurate prediction of prognosis through knowledge of

the natural history of disease is an essential prerequisite of any screening

programme. It is to be hoped that the increasing understanding of the genetic

markers associated with many cancers, will help predict outcome on a personalised

basis and thereby facilitate tailored counselling and treatment [58].

A further concern relates to whether the benefits of early diagnosis for conditions

for which there is no cure or treatment outweighs the potential harms that may arise.

For example, some people may find an early diagnosis useful as it provides an

opportunity to plan one’s future. For others, the information might cause worry and

feelings of helplessness. Any decision to test for conditions with variable severity or

for which there is no cure or treatment will require appropriate support and

counselling prior to decision-making so that patients do not make decisions they
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later regret. Furthermore, the knowledge of carrier status these tests may provide

may, as discussed for NIPD, impact on the individual’s ability to access life or

health insurance, or restrict ability to get a mortgage or impact on the practical

aspects of life in many other ways.

4.11 Accuracy and Reliability

In considering the application of this technology to diagnose and treat patients, we

must take into account the accuracy and reliability of the tests. Current research

indicates, for example in some cancers, that sequencing techniques can be targeted

to detect very low levels of known mutations in tumour DNA. However, screening

populations to detect any one of many potential DNA changes will require whole

genome scanning with the associated generation of vast quantities of data

[59]. Given that much of the work in this area is being conducted on a research

basis, thorough validation of this approach will be required prior to its use as a

screening, diagnostic or monitoring tool [57]. Additionally, there will be issues

around data storage, who has access to the data, how long it should be stored for and

in what format. Analytical techniques based on sequencing are generating a

completely new set of challenges, both technical and ethical which need to be

addressed before widespread implementation. Furthermore, some patients may

have greater confidence in traditional tests which target the part of the body affected

by the illness, for example cervical smears or mammography, and may prefer to go

down traditional testing routes. As such, pre-test counselling will require reassur-

ance about the accuracy and scientific background underpinning the test which

some may find difficult to understand (this is, of course, also an issue for NIPD and

much work developing patient information has been conducted to address this

issue).

5 Interpretation and Delivery of Test Results

Pre-test counselling and interpretation of genetic tests has traditionally been deliv-

ered by a genetic healthcare specialist. If the promise of non-invasive testing for

complex conditions is realised, these may increasingly be delivered by healthcare

professionals outside the genetic specialty, such as oncologists or endocrinologists.

Whilst these practitioners are clearly best placed to discuss the diseases in question,

one concern is how to ensure the practitioners offering these test are sufficiently

trained in order to interpret the test results, particularly if they rely on a significant

level of knowledge and understanding of genetics and genetic technology. More-

over, if those practitioners offering the test are unable to adequately interpret the

test results, genetic specialists will increasingly be relied upon to conduct this work.

This raises questions around whether genetic departments will have the capabilities

to take on this additional workload and if not how this can be managed. It will be
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important to consider these issues now so that we do not reach a situation whereby

technology outpaces clinical capability.

6 Direct-to-Consumer Testing

Finally, one area that has received much attention in the past few years is the issue

of direct-to-consumer (DTC) testing. Genetic testing (prenatally and postnatally),

traditionally has been delivered by specialist health professionals who provide

pre-test counselling as well as convey and interpret test results to patients and

families. Given the relative ease of conducting non-invasive tests, it is possible that

these tests could become easily accessible for a range of conditions outside of the

genetic clinic (or other health specialist for that matter) and delivered direct-to-

consumer without adequate regulation. DTC tests are becoming increasingly pop-

ular given their accessibility over the internet along with the public’s growing

‘genetic curiosity’ in the post genomics era [60]. These tests are fairly controversial,

with many ethical arguments for and against them. One of the arguments in support

of DTC testing is that such tests enable individuals to make autonomous choices

about their health, or in the case of prenatal testing, the health of their future

children. Thus, DTC testing might be seen to empower individuals to take control

of their health. Moreover, it could be argued that my genetic make-up is something

which belongs to me personally and I therefore have a right to access it without the

need to involve a health professional.

Nevertheless, whilst these might be persuasive arguments, they must be weighed

up against the potential for DTC testing to threaten the wellbeing of the individual.

One key criticism of DTC tests is that in order to make an informed choice about

whether or not to take a test, the individual needs to be appropriately informed

about the value, risks and benefits of that test [61]. Although some DTC companies

offer genetic counselling following receipt of test results (usually online or via

telephone), it may not stand up in quality to the pre and post test counselling

provided through genetic clinics. Genetic counselling, usually conducted face-to-

face with a qualified health professional, is viewed as an important aspect of

ensuring that individuals make informed decisions in line with their personal beliefs

and values based on a clear understanding of the clinical and psychosocial value of

the test. Where this is not provided, individuals may misunderstand the nature of the

test, misinterpret the test results or receive information that is harmful to them. For

these reasons, the professional community have tended to err on the side of caution

when it comes to DTC testing (with some actively discouraging the tests) [61]. Fur-

ther concerns exist with regards to the privacy and confidentiality of personal

genomic information stored by private companies [60]. How will such companies

use this information and who will have access to it? Will personal information be

transferred to third parties for profit? Effective legislation is therefore essential to

protect consumers. Wherever you may stand on the issue of DTC tests, patients and

the public require clear unbiased information as to the benefits and potential
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disadvantages of DTC testing and the legislations in force to protect their privacy so

that they can make informed decisions when considering testing.

7 Concluding Remarks

We have tried to present a brief overview of the key ethical issues associated with

the use of circulating nucleic acids to diagnose and monitor disease. The application

of this new and powerful technology is advancing rapidly. Yet, reflection on how it

is likely to impact us as service users and more broadly as a society is vital if we

want to ensure the ethical use of the technology and protect against its misuse. It is

only by taking part in such dialogue that we can ensure policy and practice is in line

with our values and beliefs.
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Höfler, G., 244, 343

Hofman, P., 256

Hofmann, A., 346

Hogan, B.V., 258

Hogg, J., 382, 388

Hogge, W.A., 193, 194

Hol, B.E., 241

Holdenrieder, S., 9, 18, 48, 50, 51, 56, 60, 61,

63, 64, 94, 242, 268, 314, 315, 325–353

Holen, I., 50, 51, 61

Holford, N.C., 22, 64

Holland, J.F., 16

Holländer, B.S., 173

Hollemon, D., 187, 189, 190, 382

Hollenbeck, B., 307

Holloway, A., 50, 51, 53, 54

Holroyd, C.D., 268

Holten-Andersen, M., 331, 332, 348, 351

Holubec, L., 262

Holubec, L. Jr., 339

Holzer, S.E., 228

Holzgreve, W., 9, 17, 173, 174, 203, 306,

309, 353

Homburg, K.M., 173

Hong, L., 259

Hong, M., 30

Hönig, A, 81

Hook, C.E., 347

Hoon, D.S., 20, 46, 47, 82, 93, 101, 336, 339,

340, 344, 346, 347

420 Author Index



Hoon, D.S.B., 46, 61

Hooten, N.N., 259

Hoover, R.N., 308

Hoque, M.O., 244

Horgan, K., 258

Horiike, A., 243, 344

Horinek, A., 150, 241

Hornung, V., 312

Horswell, S., 341, 349

Hortobagyi, G.N., 246

Hortopan, S., 261

Horvath, L.G., 256

Hoshi, S., 203

Hösli, I., 353

Hosomi, T., 344

Hotchkiss, R.D., 20

Houbao, H., 242

Hougaard, P., 216, 217

Houghton, M., 22

Houlihan, C.A., 223

Hounsell, A.R., 30

Hourpai, N., 20

Houshdaran, S., 345

Howard, A.D., 214

Howell, S., 343

Howell, V.M., 272

Hruszkewycz, A.H., 328, 331–333, 348, 351

Hsiao, Y.Y., 241

Hsiung, G.Y., 104

Hsu, C.M., 256

Hu, G., 19

Hu, H., 132, 183, 189, 251, 256

Hu, H.X., 245

Hu, L., 185, 186, 189, 190

Hu, Q., 255, 259

Hu, S., 304

Hu, Y., 257

Hu, Z., 174, 219, 220, 251, 252, 256, 259, 272

Hua, D., 257, 337

Hua, S., 183

Huang, C.R., 148

Huang, D., 137, 255, 259

Huang, D.P., 18, 337

Huang, D.W., 32, 94, 167, 174

Huang, D.Y., 79, 240, 270, 296

Huang, G., 75, 76, 270

Huang, H., 66, 132, 183, 189, 193, 194, 337

Huang, H.W., 262

Huang, H.Y., 18, 93, 242, 339

Huang, J., 304

Huang, J.J., 254

Huang, K.H., 79, 240, 270, 296

Huang, L., 151, 152

Huang, P., 8, 95, 155, 244, 248, 343

Huang, X., 20, 23, 134, 136, 183, 271

Huang, Y., 156, 259

Huang, Y.H., 104

Huang, Y.Y., 256

Huang, Z., 255, 257, 259, 345

Huang, Z.H., 337

Hubacek, P., 337

Hubbard, L.D., 221

Huber, R.M., 338

Hubers, A.J., 243

Hubner, S., 27

Hudemann, J., 241, 353

Hudgins, L., 117–120, 122, 123, 127, 132, 181,

183, 184, 193, 383, 384

Huebers, J., 269

Hueffed, M., 265

Huegli, B., 337

Hugget, J.F., 96

Huggett, J., 91, 97

Huggett, J.F., 97, 248

Hughes, A., 50, 51, 75, 76, 82, 343

Hughes, A ., 95

Hughes, E., 179, 242

Hughes, T.A., 258

Huh, J.Y., 272

Hui, A.B., 94, 167, 174

Hui, A.J., 260

Hui, E.P., 337

Hui, L., 189, 295–316

Hui, N., 174

Hui, P., 249

Huland, H., 263

Hullinger, T.G., 147

Hulte’n, M.A., 175

Humbert, R., 348

Humblet, Y., 342

Hummel, M., 313

Humphray, S., 66, 75, 96, 97, 104, 120, 133,

246, 249, 343, 344

Hung, E.C., 22, 220, 306, 307

Hunsley, B., 53, 54, 268

Hunter, D.J., 308

Huo, R., 219, 220

Hurme, M., 157, 241

Hurtado, A., 22

Hurteau, G.J., 271, 303

Huso, D.L., 101, 337

Hussain, M.S., 145

Hutchinson, A., 308

Hutchison, D., 183, 189, 190

Hutchison, J.B., 95, 96, 99, 102, 247, 249, 341

Hutvagner, G., 215

Author Index 421



Huwer, H., 269

Hveem, K., 308

Hyltoft-Petersen, P., 331, 332, 348, 351

Hyun, D.S., 249

I
Iadecola, C., 148

Iafrate, A.J., 342

Ibrahim, N., 28

Ichikawa, D., 242, 254, 256, 258, 339, 345, 347

Ichikawa, Y., 340

Iczkowski, K.A., 18

Ida, H., 345

Ido, Y., 103

Ieong, S., 304

Ignatiadis, M., 246

Iguchi, H., 227, 266

Iishi, H., 257, 258

Ijzermans, J.N., 343

Ikoma, D., 242, 339

Ikoma, H., 242, 339, 345

Ikuta, N., 241

Ilie, M.I., 256

Illanes, S., 306, 307

Ilsley, D., 303

Ilyayev, N., 296

Imamura, F., 248, 340

Imamura, S., 167

Imelmann, E., 256

Imperiale, T.F., 259

Inman, G.J., 265, 270, 312

Innocenti, F., 273

Inoue, K., 257, 258, 266

Inoue, T., 241, 242

Inserra, E., 342

Invernizzi, L., 241, 337, 340

Ioannou, G.N., 151

Iovino, N., 312

Ip, M., 343

Irimia, D., 342

Irvine, B., 22

Irwin, D.L., 243, 344

Isaacs, D., 384

Isaacs, S., 308

Isaacs, W., 308

Iseli, C., 189, 190

Ishiguro, Y., 228

Ishimaru, T., 167, 297

Ishiura, Y., 340

Isla, D., 265

Itagaki, K., 28

Itagaki, Y., 103

Ito, A., 228

Ito, K., 345

Ito, Y., 345, 347

Itzhak, A., 296

Itzkowitz, S.H., 261

Ivanov, V.N., 30

Ivanova, E.M., 26, 27

Ivanovska, I., 214

Ivey, K.N., 79

Iwanaga, K., 344

Iwasaki, M., 203

Iyer, A., 22

Iyer, S., 341

Iyer, V.R., 348

Izbicki, J.R., 251, 340

J
Jablonski, N.G., 145

Jachertz, D., 29

Jackson, L., 193, 194, 271, 386, 394

Jackson, L.R., 173

Jackson, P.E., 105

Jackson, T.J., 347

Jacob, A., 104

Jacob, H., 20, 23, 134, 136

Jacob, K., 6

Jacob, T., 299

Jacobs, K.B., 308

Jacobsen, D.M., 353

Jacobsson, B., 189, 190, 382

Jacovetti, C., 221

Jaffe, R.B., 337

Jafri, S.H., 266

Jahr, S., 18, 19, 73, 75, 95, 339

Jain, G., 348

Jain, P., 348

Jakobs, T., 339

Jakobsen, A., 100

Jakobsen, M.A., 173

Jakobsen, T.R., 203

Jakupciak, J.P., 244

James, S.J., 76

Jamieson, N.B., 266

Jamur, M.C., 25, 26

Jan, C.R., 148

Jan, J.S., 337

Janakiraman, M., 66, 75, 248, 344

Jandrig, B., 316

Jang, S.H., 249

Jani, A., 26

Janikoun, S., 225, 227

Jankovska, M., 313, 314

422 Author Index



Jänne, P.A., 96, 244, 341, 342

Janni, W., 100, 263, 271, 340

Jans, D.A., 27

Jansen, K., 315

Janssen, J.W., 298

Jansson, Y., 173

Jarrah, Z., 134, 298, 300, 301

Jarrousse, A.S., 60, 95, 99, 100

Jassem, J., 342

Javaherian, A., 270, 312

Jeffrey, S.S., 275

Jelovac, D., 95, 244, 248, 343

Jemal, A., 240

Jen, J., 46

Jenkins, L., 195, 382

Jenkins, R.H., 152

Jenne, D.E., 17

Jensby Nielsen, S., 83

Jensen, K., 173

Jensen, S.G., 83

Jensen, T., 184–186

Jensen, T.J., 193, 194

Jeong, P., 250

Jermann, M., 337

Jerome, K.R., 271

Jeronimo, A.L., 353

Jerums, G., 223

Jessup, J.M., 328, 331–333, 348, 351

Jeter, S.C., 95, 244, 248, 343

Jeyaseelan, K., 217, 219

Ji, Q., 243

Jia, Y., 151, 152

Jia, Y.H., 149, 150

Jiang, B., 75, 76, 270

Jiang, F., 132, 183, 189, 192, 197, 198, 251,

252, 254, 259, 266

Jiang, F.M., 192, 383

Jiang, H., 132, 183, 189, 197, 198

Jiang, P., 8, 98, 119, 167, 168, 183, 184, 187,

188, 192–194, 197–199, 201, 203,

353, 389

Jiang, Q., 266

Jiang, R., 269, 272

Jiang, R.S., 337

Jiang, T., 219, 220

Jiang, W.Q., 337

Jiang, W.W., 242, 339

Jiang, X., 76, 79, 216, 217, 219, 251, 255,

256, 269

Jiang, Y., 343

Jiang, Z.V., 251

Jiao, D., 254

Jiao, Y., 245

Jimbo, M., 203

Jimenez, C.R., 262

Jimenez-Linan, M., 96, 97, 99, 120, 129, 133,

246, 341, 343

Jin, G., 252

Jin, H., 255, 256

Jin, S., 175, 179

Jin, T., 242

Jin, Y., 9, 105, 175–178, 183, 184

Jin, Y.Y., 181

Jing, Q., 254, 272

Jing, R., 146

Jing, R.R., 146, 241
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Köhne, C.H., 342, 349

Kohner, E., 221

Koide, K., 298, 300, 301

Koike, I., 241, 242

Koike, M., 345

Kok, K., 193

Kokuba, Y., 345

Kolberg, J., 22

Kolesnikova, E.V., 16, 17, 262

Kolla, V., 271

Kolonel, L., 308

Komatsu, S., 254, 256, 258, 347

Komiya, K., 344

Komiyama, S., 345

Kompier, L.C., 307

Komuro, I., 28

Kong, A., 199

Kong, L., 216, 217, 219

Kong, X., 254, 272

Kong, Y.W., 347

König, T., 268

Koning, R., 243

Konishi, H., 254, 256, 258, 347

Konkova, M.S., 30

Konstantinov, Y., 28

Kooij, L., 383

Koong, A.C., 271

Kopans, D.B., 240

Kopeckova, M., 334, 342

Kopecky, C., 150

Kopreski, M.S., 63, 340, 346

Korabecna, M., 150, 241

Korfel, A., 313

Korkonikitas, P., 9

Kornfeld, S., 19
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László, V., 262
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