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Abstract

The a2b1 integrin, also known as VLA-2, GPIa-IIa, CD49b, was first
identified as an extracellular matrix receptor for collagens and/or laminins
[55, 56]. It is now recognized that the a2b1 integrin serves as a receptor for
many matrix and nonmatrix molecules [35, 79, 128]. Extensive analyses
have clearly elucidated the a2 I domain structural motifs required for
ligand binding, and also defined distinct conformations that lead to
inactive, partially active or highly active ligand binding [3, 37, 66, 123,
136, 137, 140]. The mechanisms by which the a2b1 integrin plays a critical
role in platelet function and homeostasis have been carefully defined via
in vitro and in vivo experiments [76, 104, 117, 125]. Genetic and
epidemiologic studies have confirmed human physiology and disease
states mediated by this receptor in immunity, cancer, and development
[6, 20, 21, 32, 43, 90]. The role of the a2b1 integrin in these multiple
complex biologic processes will be discussed in the chapter.
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3.1 Collagen Receptors-Structure
and Ligand Binding

The a2b1 integrin consists of an obligate het-
erodimer formed from the a2 integrin subunit
non-covalently associated with the b1 subunit. It

is one of four ‘I domain’ integrins, named for the
presence of a highly conserved, extracellular,
(inserted) I domain, which mediates specific
binding of ligands including, most prominently,
collagens [30]. The a2 subunit I domain is an
autonomously folding domain of approximately
220 amino acids [30]. The I domain found in the
collagen receptors is shared with the alpha
subunits of the leukocyte b2 integrins and is
highly homologous to the A domain found in
Von Willebrand factor, in cartilage matrix pro-
tein, in some collagen subtypes and in compo-
nents of the complement system. The crystal
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structure of the a2 integrin I domain was first
defined in 1997 (Fig. 3.1) [20]. The a2 subunit
shares many similarities in structure and ligand
binding with the other I domain integrins,
including the Mg2+ dependence for binding, and
enhancement of integrin function by Mn2+ [36,
60, 116, 118]. The I domain contains a con-
served cation binding site, the metal ion-depen-
dent adhesion site (MIDAS) with clear
preference for Mg2+/Mn2+. The MIDAS motif
is critical for collagen recognition [69].

Structural and other studies of the a2 I domain
have identified an inactive or closed conforma-
tion, an intermediate or low-affinity conforma-
tion, and an active or high-affinity conformation
[3, 37, 66, 123, 136, 137, 140]. Experimental
approaches have characterized the role that dis-
tinct I domain residues play in receptor confor-
mation and ligand binding capability. Mutation
of the Mg2+ binding site at T221 disrupts the
MIDAS site and inactivates I domain function
[112, 135]. Insertion of a disulfide bridge
between helices locks the I domain into a high
affinity conformation [124]. Within the a2 inte-
grin I domain, amino acid E318 forms a salt

bridge with amino acid R288, thereby main-
taining the a2 integrin I domain in a closed
conformation. Recent reports by Carafoli et al.
indicate that mutation of E318 to alanine causes
disruption of this salt bridge and promotes the
transition to the open, high affinity conformation
which enhances a2 integrin I domain binding to
low-affinity ligands [19].

Crystal structures of the active a2 I domain
E318W complexed with the GFOGER peptides
revealed two domains bound to a single triple
helix [19], suggesting that a single GxOGER
motif in the heterotrimeric collagen V or the
FACIT collagen IX, may support binding of the
activated integrin. Similarly, a crystal structure
of the analogous E317A mutant of a1 I domain
also resulted in an opening of the helices [89],
and modelling of a similar peptide, GLOGEN,
onto E317A [25] allows similar conclusions to
be drawn for a1b1.

The a2b1 integrin has high affinity for col-
lagen Type I. Evaluation of the role of the a2b1
integrin structure and function has led to the
identification of a number of novel ligands. The
other ligands can be subdivided into other

Fig. 3.1 A hypothetical model of an I-domain�collagen
complex. A collagen triple helix (white spiral) is shown
in a possible fit a groove on the MIDAS face. A
glutamate side chain from the collagen coordinating the

metal ion as indicated by arrow. The I domain is colored
according to surface charge distribution (blue positive,
red negative, white neutral. Two orthogonal views are
shown (Reprinted from Fig. 5, Emsley et al. 1997)
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collagens, non-collagenous molecules with col-
lagen-like triple helical structures, laminin and
molecules with laminin domains, proteoglycans,
as well as infectious organisms, primarily viru-
ses, and other potential non-matrix ligands.

Among collagens, the a2b1 integrin prefer-
entially binds fibrillar isoforms (I-III, V and XI).
Integrin a2b1 also recognizes the network
forming collagen IV [78], the beaded-filament
forming collagen VI, and the transmembrane
collagen XIII when in an active, high-affinity
conformation [67]. Modulation of integrin con-
formation by cytoplasmic signals provides an
integrin-specific mechanism for adjusting ligand
affinity known as ‘inside-out’ signaling. How-
ever, the binding of purified recombinant a2
integrin I domain to collagen type I or IV
reflects the same relative affinity for the ligand
as does the parent integrin; indicating that dif-
ferences in the integrin-binding motifs of these
isoforms most likely account for the differential
recognition by the integrin [18]. The develop-
ment of overlapping sets of collagen-derived
peptides, termed Toolkits, facilitated systematic
mapping of motifs for integrin binding and
identified the collagen sequence GFOGER as the
major high-affinity binding motif for the a2b1
integrin [82, 83, 112]. The GFOGER motif,
found in Type I, II and XI, is uniquely able to
bind platelet integrin a2b1 without prior acti-
vation [124], suggesting the ability to induce the
active conformation without the inside-out sig-
nals needed for lower-affinity motifs.

More recently, other collagens were defined
as a2b1 integrin ligands. Collagen XVI, a
member of the fibril-associated collagens with
interrupted triple helices (FACITs), binds to the
a2b1 integrin, as well as to the a1b1 integrin
[33]. The a2b1 integrin ligand, collagen XXIII, a
transmembrane collagen, has been reported as
the primary apical binding partner for the inte-
grin in keratinocyte adhesion in the epidermis
[47, 53, 141].

Many molecules of the immune system con-
tain segments of a collagen triple helix, includ-
ing C1q. As discussed below, our laboratory
showed that a2b1 integrin-mediated stimulation

of an innate immune response required a2b1
integrin dependent-adhesion to C1q in an
immune complex [34]. The full length a2b1
integrin and the a2 integrin I domain adhere to
C1q as well as to members of the collectin
family of proteins, including surfactant protein
A and mannose binding lectin. The a2 integrin I
domain adheres to C1q in the absence of acti-
vation. However, the activated E318A mutant of
a2 I domain bound to C1q with higher affinity
than wild type a2 integrin I domain.

As with collagens, adhesion to laminin iso-
forms is mediated by the a2 integrin I domain,
however laminin binding only occurs in the
active, high-affinity conformation [18, 22, 36].
Isolated full-length a2 integrin subunit has been
shown to bind to laminin-111 (previously lami-
nin-1) and laminin-332 (previously laminin-5).
Netrin-4, a member of the netrin family of
guidance signals, demonstrates high homology
to the beta 1 chain of laminins and binds to the
a2b1 integrin and to the a3b1 integrin [148]. To
date, an extensive and detailed molecular anal-
ysis to identify the recognition site/s on laminin
has not been performed. Laminin-binding has
proven to occur constitutively in some cell
types, and inducibly in others. However, the role
of these adhesive events is not well understood.

Perlecan, a heparin sulfate proteoglycan, and
its C-terminal fragment, endorepellin, bind the
a2b1 integrin [45, 46]. The terminal globular
domain of endorepellin, LG3, interacts directly
with the a2 I domain. This interaction has been
studied in the context of angiogenesis and shown
to be important for a2b1 integrin-dependent
angiogenesis.

Decorin, another small leucine-rich proteo-
glycan modulates a2b1 integrin matrix interac-
tions by playing an important role in regulating
extracellular matrix assembly as well as directly
interacting with the integrin [13, 40, 52, 143].
Decorin binding to collagen has been shown to
affect fibril formation by initially delaying lat-
eral fibril growth and reducing average fibril
diameter [142]. Additionally, decorin interacts
with a2b1, but not a1b1 integrin, at a site distinct
from the collagen-binding domain. Adhesive
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interaction between decorin and the a2b1 inte-
grin was first identified in platelets, and later
discovered to be important in angiogenesis.

Single nucleotide polymorphisms in the
integrin a2 gene, as discussed later in more
detail, have an important role in the predisposi-
tion of patients to cardiovascular disease. One
such minor allele difference (rs1801106;
G1600A) has now been shown to attenuate
adhesion of platelets to decorin but not to col-
lagen and is associated with increased risk for
recurrence of stroke [87]. The non-conservative
amino acid substitution E534K, is the basis of
the human platelet alloantigen system HPA-5,
providing the first evidence of a functional effect
of HPA-5 alleles.

The a2b1 integrin serves as a receptor for
many different infectious organisms. In many
cases the organisms usurp a2b1 integrin’s rou-
tine biology for attachment, cell entry and
transmission throughout the body. The best
studied interaction of a2b1 integrin is with
echovirus (EV1) [10–12, 31]. EV1, is a human
RNA virus which binds directly to the I domain
of human a2b1 integrin. Unlike most viruses
that exploit integrin receptors, EV1 does not
undergo clathrin-mediated endocytosis, but
instead clusters on caveosomes and is internal-
ized via a clathrin- and caveolin-independent
macropinocytosis-like mechanism [73, 93].
Additionally, EV1 binding has been demon-
strated to activate PKCa, while inhibition of
PKCa signaling blocks EV1 internalization
[138]. Interestingly, EV1, unlike other a2b1
integrin ligands, preferentially binds the inac-
tive, closed conformation of the integrin over the
active, high affinity conformation [68].

Not only do infectious organisms utilize the
integrin as a receptor, lectins that recognize high
mannose glycans on viruses are produced from
bacteria, algae, plants and animals and bind the
a2b1 integrin. A recently characterized anti-HIV
lectin from Pseudomonas fluorescens Pf0-1
exhibited potent antiviral activity against influ-
enza [121]. The lectin induced loss of cell
adhesion and viral death that was dependent on
binding to the a2b1 integrin. Following lectin
binding to the a2b1 integrin, the complex was

internalized to the perinuclear region and not
recycled. The process resembled that described
for echovirus mediated cell entry and death.

3.2 Signaling

The a2b1 integrin plays a unique contribution in
regulating cell migration, proliferation and sur-
vival. The a2, but not the a1, integrin cytoplas-
mic domain mediates p38 MAP kinase pathway
activation and a migratory phenotype [80, 81].
Expression of the constitutively active small G
protein Rac1 augmented p38 MAP kinase
phosphorylation and migration in mammary
epithelial cell expressing full length a2 subunit.
The role of the a2-cytoplasmic domain in acti-
vation of the p38 MAP kinase pathway was also
established in fibroblasts. Fibroblasts grown in
three-dimensional collagen gels require the a2-
cytoplasmic domain for p38 MAP kinase acti-
vation that leads to a2b1 integrin-mediated up-
regulation of collagen gene expression [62].
Together these results support an important and
specific role for the a2-cytoplasmic domain in
mediating p38 MAP kinase activation. Simi-
larly, the cytoplasmic domain of the a2 integrin
subunit specifically supports insulin-mediated
S-phase entry [81]. The a2, but not the a1, cyto-
plasmic domain mediated activation of the cyclin
E/cdk2 complex, which allows entry into S-phase
in the absence of growth factors other than
insulin. These results suggest that the a2 integrin
cytoplasmic domain and the insulin receptor
synergize to regulate cell cycle progression.

More recently, Ivaska et al. suggested that
the a2b1 integrin induced protein serine/
threonine phosphatase 2A (PP2A) activity in a
collagen-specific manner [63]. In their studies,
collagen-induced PP2A activation and resulting
dephosphorylation of Akt and glycogen synthase
kinase 3b (GSK3b) in Saos-2 cells was a2b1
integrin-dependent. PP2A is a master regulator
of a diverse set of cellular signaling pathways,
so its interaction with a2b1 integrin has the
potential to dramatically increase the scope of
the signaling activities of the integrin. Careful
investigation of these putative signaling
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mechanisms is necessary for a clearer under-
standing of the role for the integrin in various
cell types.

3.3 The a2b1 Integrin: Expression
and Function

In addition to differences in collagen recognition,
expression of the integrin is dependent on cell
type and stage of differentiation. The a2b1 inte-
grin is primarily expressed in vivo by epithelial
cells, platelets/megakaryocytes, and fibroblasts
[146]. In addition, a2b1 integrin expression on
T-cells and endothelial cells varies depending on
differentiation and the state of activation [29, 55,
56, 144]. The roles and functions of the integrin
are therefore highly dependent not only on cell
type but on signals from other cells and the
associated microenvironment.

The majority of earlier work defined the role
and function of the a2b1 integrin by studies of
human platelets and in vitro models. These early
studies implicated the a2b1 integrin in a wide
range of biologic and pathobiologic functions
including platelet adhesion required for hemos-
tasis and thrombosis, epithelial differentiation
and branching morphogenesis, tumor biology,
wound healing, angiogenesis, and inflammation
and immunity. Much has been learned over the
last 10 years since development of state of the
art inhibitory antibodies and gene silencing
approaches, novel in vitro culture systems, and
new animal models including the global a2
integrin-subunit deficient and the more recent
tissue-specific a2 integrin-subunit deficient
mouse. These studies and their impact on our
understanding of the integrin in human biology
and disease will be reviewed.

3.4 Platelet a2b1 Integrin
in Ligand Binding

Patient studies first established the link between
a2b1 integrin and platelet function. In 1985
Nieuwenhuis identified a deficiency of platelet
glycoprotein 1a (a2 subunit) in a patient with

abnormal bleeding [106, 107]. Later other
patients with either reduced levels of platelet
expression of the a2b1 integrin or the presence
of autoantibodies to the integrin were also
described to exhibit impaired platelet activation
by collagen but not by other agonists.

Studies using purified human platelets estab-
lished the a2b1 integrin-dependent adhesion to
collagens I-VIII in a Mg2+-dependent manner.
Although the a2b1 integrin is expressed at rela-
tively low copy number on platelets (2000–4000
copies per platelet), the integrin is required for
firm attachment of platelets to collagen in the
subendothelium after vascular injury [56, 85,
118]. Experiments with purified platelets from
genetically modified a2-deficient mice confirmed
these results. Platelets from a2-deficient animals
fail to adhere to type I collagen under both static
and flow conditions [24]. Platelets from animals
heterozygous for the a2-null allele adhere to type
I collagen to a lesser degree than platelets from
wild type animals, consistent with a gene dosage
effect.

Platelets however have not one, but two
major collagen receptors: the high affinity a2b1
integrin and the lower affinity glycoprotein
VI (GPVI)/Fc receptor c-chain (FcRc) complex
[65, 102, 105]. Despite the significant evidence
supporting the role of a2b1 integrin in platelet
adhesion to collagen, the relative contribution
and precise roles of a2b1 integrin and GPVI/
FcRc in collagen-induced platelet adhesion and
activation is still a focus on experimental
inquiry. The Santoro group originally proposed a
two-step, two-site model of platelet adhesion
and activation to collagen, in which the higher
affinity a2b1 integrin supports the initial rapid
platelet-collagen interaction that mediates
platelet adhesion to vessel wall under conditions
of flow [103, 116, 118, 128, 134]. This allowed
the subsequent engagement of a lower affinity,
signal-transducing co-receptor GPVI to bind
collagen and mediate collagen-induced platelet
activation and aggregation. GPVI, a member of
the immunoglobulin superfamily noncovalently
and constitutively associates with the FcRc
chain to form a multimeric signaling complex.
In this model, the a2b1 integrin mediates strong
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adhesion but does not contribute to platelet
activation.

Other work raised question about the two-
step, two-site model. Studies using a variety of
agonists and inhibitors, defined the contributions
and mechanisms leading to conformational
changes resulting from integrin activation and
provided evidence that the a2b1 integrin can
mediate GPVI-independent, collagen-induced
platelet activation [59, 70, 75, 131]. Collagen-
induced phosphorylation of PLCc2 and Syk was
inhibited by antibodies that block a2b1 integrin
adhesion to collagen or by selective proteases
that cleave the b1 integrin subunit of the a2b1
integrin. In other studies collagen-induced
phosphorylation of c-Src was mediated by the
a2b1 integrin [61]. Platelet adhesion to intact
collagen stimulated a different response than
adhesion to GPVI-mimetics, further supporting
distinct signaling from the a2b1 integrin and
GPVI/FcRc [57, 70].

New work attempted to reconcile these con-
flicting stories. Auger et al. used flourescence
video microscopy to monitor increases in intra-
cellular free Ca2+ concentration ([Ca2+]i), an
early stage in GPVI/FcRc-mediated platelet
activation, upon platelet adhesion to collagen
under flow conditions [5]. In both human and
mouse platelets under flow conditions, they
identified a population of platelets that displayed
an immediate increase in [Ca2 +]i upon collagen
contact, as well as a second population of
platelets that exhibited a delayed increase in
[Ca2 +]i (1–30 s after adhering to collagen). The
first population was unaffected by anti-a2b1
integrin antibody blockade suggesting a GPVI/
FcRc-centric mechanism for both adhesion and
activation as suggested by Nieswandt et al. The
second population conformed to the traditional
two-step model. The authors speculated that the
apparently heterogeneous mechanism would
allow for optimal response to different types of
vascular injury. A similar study by Mazzucato
et al. used inhibitory antibody-treated human
platelets as well as mouse platelets from null
animals to link short-lasting a-like and long-
lasting c-like [Ca2+]i oscillation peaks to a2b1
integrin and GPVI signaling, respectively [97].

Interestingly, they found that a2b1 integrin-
mediated a-like calcium oscillations occur even
in GPVI-null backgrounds indicating that inside-
out priming of the integrin may also come from
non-GPVI sources. Indeed Majoram et al.
reported a role for platelet GPCRs, including
protease activated receptor 1 and 4 (PAR1 and
PAR4), in PLC-mediated a2b1 integrin activa-
tion [94].

Together these studies demonstrated greater
synergy between a2b1 integrin and GPVI/FcRc
in mediating these processes than was previ-
ously understood. Resting platelets express the
integrin in a low-affinity conformation. Activa-
tion, downstream of activation of GPVI, PAR1
or PAR4, or another pathway, leads to a con-
formational change to a high-affinity state which
enhances adhesion to Type I collagen and pro-
motes a more permissive binding to other
ligands including Type IV collagen and laminin.

3.5 The a2b1 Integrin: Genetic
Risk for Hemostasis
and Thrombosis and Much
More

There is substantial variation in the baseline
expression of a2b1 integrin in the population;
quantitative measurements of platelet surface
membrane a2b1 integrin expression indicate as
much as a 10 fold difference among normal
patients [64]. The mechanism of genetic regu-
lation of the gene encoding the a2 integrin
subunit has been best delineated. The variation
is genetically determined and associated with
three alleles of the a2 integrin subunit gene,
ITGA2 [84, 86]. The three alleles have been
defined by 8 nucleotide polymorphisms in the
coding region of ITGA2 gene at nucleotide
807(C or T) and 873(G or A). Individuals car-
rying the 807T/873A allele express high levels
of platelet a2b1 integrin, whereas individuals
carrying the 807C/873G allele exhibit low levels
of a2b1 integrin expression. Cheli et al. descri-
bed another variant in CA repeat length in the
ITGA2 gene promoter that demonstrated linkage
disequilibrium with variants in the coding region
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[23]. Expression of a2b1 integrin may be simi-
larly regulated in other cell types.

Genetic regulation of a2b1 integrin expres-
sion has meaningful biological implications,
which have been most widely appreciated in the
area of hemostasis and thrombosis. Kunicki
et al. reported functional significance of a2b1
integrin expression levels by demonstrating that
the number of a2b1 integrin molecules per
platelet correlated with the ability of platelets to
adhere to Type I collagen [85]. Clinical and
epidemiologic studies based on genetic poly-
morphism analysis demonstrated direct clinical
significance of allelic differences in levels of
a2b1 integrin expression. The alleles associated
with high levels of a2b1 integrin expression
were associated with nonfatal myocardial
infarction in individuals less than a mean age of
62 years, with an increased risk of developing
diabetic retinopathy in patients with Type II
diabetes mellitus, and with an increased risk of
stroke [95, 119].

The original assumption was that increased
integrin expression led to increased platelet
adhesion to collagen and subsequent risk of
thrombosis. Recently an alternative mechanism
for the association was suggested. The level of
a2b1 integrin expression correlated with mean
platelet volume in humans and during megak-
aryocyte differentiation and proplatelet formation
in mice [88, 126]. Surprisingly, platelet specific
deletion of the integrin using the platelet factor 4
promoter-Cre construct and mice with a floxed
ITGA2 gene demonstrated that mice lacking
platelet-specific a2b1 integrin showed decreased
megakaryocyte differentiation, diminished pro-
platelet formation and decreased mean platelet
volume [49]. Since mice with global deletion of
ITGA2 failed to show altered megakaryocytic/
platelet differentiation, compensation by alter-
native integrins, cell types, or pathways was
sufficient to prevent this additional phenotype.
Epidemiologic data linking levels of the a2b1
integrin expression with risk of pathologic
thrombosis and other cardiovascular complica-
tions underscore the importance of further clari-
fying the role for a2b1 in platelet function.

3.6 The a2b1 Integrin During
Wound Healing and Fibrosis

Early in vitro studies suggested that the a2b1
integrin was required for wound healing. Studies
using skin explants ex vivo showed that kerati-
nocyte-specific a2b1 integrin expression was
re-oriented from the basal cell area to the for-
ward-basal aspect of migrating keratinocytes
where the integrin is in contact with type I col-
lagen [114]. Keratinocyte migration into the
wound was inhibited by antibodies against the
a2b1 integrin [110].

In the late phase of wound healing after
reepithelialization, tissue contraction of collagen
fibers results in a strengthened scar. The scar is
the result of extensive fibrosis, a process of tis-
sue replacement by dense extracellular matrix
composed of abundant collagen I. The a2b1 and
the a1b1 integrins, both expressed by fibroblasts,
are key regulators of collagen turnover in
the skin, and other organs including the kidney
[58, 62]. After binding to collagen, the a1b1
integrin activates a pathway that down-regulates
collagen synthesis. In contrast, activation of the
a2b1 integrin promotes collagen synthesis [99].
The alignment of the collagen fibers that occurs
in healing wounds is recapitulated in three-
dimensional collagen gels. The in vitro models
provided evidence supporting critical roles for
the a2b1 integrin wound healing and fibrosis.

Surprisingly, despite the results of in vitro and
explant studies of wound healing, a2-deficient
mice demonstrated no defect or delay in wound
repair compared to wild-type animals [47, 152].
The morphology of the wounds also failed to
demonstrate any difference in keratinocyte
migration over exposed dermis at the wound site,
suggesting that a2b1 integrin does not play an
obligatory role in wound healing. No differences
in scar formation or strength were noted.

Differences between the in vitro experiments
and a2-null mouse model systems have several
possible explanations. First, human and geneti-
cally altered mouse models may not be mecha-
nistically equivalent. Acute loss-of-function as
observed with use of inhibitory antibodies may
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have different effects than the germ-line deletion
of a2b1. In addition, antibodies that inhibit
integrin binding may produce ‘negative signal-
ing’ which is distinct from the absence of inte-
grin signaling in the null context.

Interestingly, Zweers et al. and Grenache
et al. both reported increased neoangiogenesis in
the wound microenvironment of a2-null mice,
providing in vivo evidence for an anti-angio-
genic role for a2b1 integrin [47, 152]. The
increased angiogenesis in the wound healing
model was quite surprising. Many studies have
focused on understanding the role of the integrin
in vascular development and angiogenesis, as
discussed below.

Fibrosis also occurs in other tissues; the
involvement of a2b1 integrin is particularly well
studied in the kidney [16]. Glomerulosclerosis,
characterized by excessive collagen deposition
in the glomerulus is the most common cause of
end stage kidney disease. The specific role of
a2b1 integrin in regulating glomerulosclerosis is
somewhat controversial. Mesangial cells and
podocytes express the a2b1 integrin. One report
studying a2-null mice on the C57Bl/6 back-
ground suggested that the integrin protected
from glomerular injury [44]. In contrast, a study
in which a2-null mice were crossed with the
COL4A3-null mice, a model of Alport disease
demonstrated that a2b1 integrin expression
exacerbates glomerular injury, decreased sur-
vival, and reduced glomerular matrix deposition
and scarring [48].

Consistent with a role for the integrin in pro-
moting collagen synthesis, Miller et al. showed
that inhibition of integrin a2b1, using a high-
affinity small-molecular weight inhibitor protects
mice from glomerular injury [100]. The anti-
a2b1 inhibitor also reduced collagen synthesis in
wild type but not a2-null mesangial cells, con-
sistent with the a2b1 integrin-dependence of its
antifibrotic effect.

In contrast to the kidney, the a2b1 integrin
appears to have an anti-fibrotic role in the lung.
Xia et al. reported that in idiopathic pulmonary
fibrosis (IPF), reduced fibroblast a2b1 integrin
levels allowed escape from anti-proliferative
signals that normally limit fibroproliferation

after tissue injury [147]. Fibroblastic foci in IPF
patients were shown to be characterized by
low fibroblast a2b1 integrin expression. IPF
fibroblasts demonstrated decreased a2b1 inte-
grin-mediated PP2A phosphatase activity.
Downstream increases in activity of GSK-3b
and b catenin provided the proliferative signals
that mark the pathological IPF fibroblast phe-
notype. Although this work provided an elegant
model for how a2b1 integrin downregulation
may contribute to the pathogenesis of IPF; the
relevant mechanisms for a2b1 integrin loss
remain uninvestigated. Additionally, it is unclear
how the established role for a2b1 integrin in
promoting collagen biosynthesis and ROS pro-
duction may be involved. Are the disparate
elements of a2b1 integrin function somehow
context or tissue-specific? Reconciliation of
the pro-fibrotic and anti-fibrotic properties of the
a2b1 integrin demands further study in light of
its potential clinical relevance.

3.7 The a2b1 Integrin
and Angiogenesis/
Vasculogenesis

Angiogenesis is coordinated by a complex
interplay between endothelial cells and their
microenvironment. During VEGF-induced
angiogenesis in vivo expression of a2b1 integrin
is up-regulated and a2b1 integrin expression has
been observed on the sprouting tips of neonatal
blood vessels [38, 122]. Together these results
suggested an important function for a2b1 in
angiogenesis, however the precise nature of the
integrin’s role is still incompletely understood.

The earliest investigations into the functional
role of a2b1 in angiogenesis employed inhibi-
tory antibodies during in vitro studies. Early
reports from Gamble et al. indicated that anti-
a2b1 antibodies inhibited endothelial cell pro-
liferation on collagen [41]. Soon after, Davis
reported that anti-a2 inhibited lumen and tube
formation by HUVECs in a 3D collagen matrix
[28]. Later studies using planar type I collagen
gel angiogenesis assays, confirmed that inhibi-
tion of a2b1 integrins with function blocking
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antibodies disrupted tube formation [132]. Sen-
ger et al. demonstrated in vivo using subcuta-
neous matrigel plug angiogenesis assays in mice,
that inhibition of a2b1 and a1b1 in combination
decreased new vessel growth in the implanted
plugs. Together these results suggested a pro-
angiogenic function for the a2b1 integrin [122].

Studies from a2-deficient mice have yielded
contradictory results. Several labs, including our
own, reported not only normal developmental
angiogenesis, but also increased neoangiogene-
sis during wound healing in genetically-altered
a2b1 integrin-null mice [47, 149]. Similarly, our
lab demonstrated that a2b1 integrin-deletion
increased tumor angiogenesis in a growth factor-
dependent manner via modulation of VEGFR-1
signaling. Additionally studies in the diet-
induced obesity model also showed increased
angiogenesis in a2-null mice compared to wild
type mice [71]. The contradiction between the
evidence for pro and anti-angiogenic functions
for a2b1 integrin are not totally based of dif-
ferences in mouse and human endothelial cells
or in vivo compared to in vitro models. Caille-
teau et al. used an a2 siRNA approach to alter
integrin expression in HUVECs. These studies
showed that a2b1 integrin engagement by lam-
inin promoted endothelial cell cycle arrest and
quiescence [17]. Additionally, a2b1 integrin
binding to endorepellin in both human and
mouse endothelial cells mediated the angiostatic
effects [14, 46, 145].

Based on these inhibitory studies pharmaco-
logical inhibitors of a2b1 may have potential
anti-angiogenic drug effects (see therapy sec-
tion). Small molecule inhibitors (SMI) of a2b1
blocked both endothelial tube-formation in vitro
and sprouting angiogenesis in zebrafish [115]. A
more thorough understanding of the role for
a2b1 in angiogenesis promises novel insight into
clinical application of a2b1 integrin targeting
compounds. Recent studies implicating the a2b1
integrin in notch signaling offer an alternative
paradigm for understanding a2b1 integrin in
angiogenesis [17, 39, 129]. The notch pathway
coordinates sprouting angiogenesis by organiz-
ing endothelial cells into migratory ‘tip’ and
proliferative ‘stalk’ cell conformations with

differential capacity to respond to VEGF stim-
ulation [54, 109]. Estrach et al. reported that
a2b1-mediated laminin signaling is necessary
but not sufficient for induction of the tip cell
determinant, Dll4 [39]. Clarifying the functional
relationship between a2b1 integrin and notch
signaling in the endothelium is a promising
avenue of future study.

3.8 The a2b1 Integrin in the Innate
and Acquired Immune
Response

The a2b1 integrin was initially identified as an
integrin expressed at very late stages of T cell
activation, thus the designation very late acti-
vation antigen-2 (VLA-2)(CD49b) [55, 56]. The
a2b1 integrin was then noted on a variety of
cells of the inflammatory and hematopoietic
system, including activated T cells, but not naïve
T cells in chronic inflammatory settings. Early
studies showed that a2b1-dependent adhesion to
collagen enhanced T cell receptor mediated T
cell proliferation and cytokine secretion [120].
Boisvert et al. defined one possible mechanism;
they reported that collagen I-stimulated, a2b1
integrin-mediated both activation-independent
and T cell receptor-dependent interferon c
expression via the ERK and JNK MAPKs and
PI3K/AKT signaling pathways [15].

The a2b1 integrin also influenced T cell
activation by inhibiting fas ligand expression
and apoptosis in effector T cells in a collagen I
dependent manner [2, 42]. In animals, inhibitory
monoclonal antibodies directed against the a2b1
integrin significantly inhibited the effector phase
of both contact and delayed type hypersensitiv-
ity. These early results established a role for the
a2b1 integrin in T cell mediated function. The
role of the a2b1 integrin in the innate and
acquired immune response has been an area of
active investigation.

To better the define the role of the a2b1
integrin in T cell function, expression of the a2b1
integrin on T cell subsets and in response to
antigenic challenges was investigated. Kassiotis
et al. reported that expression of a2b1 integrin
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defined two functionally distinct subsets of
memory T cells that played a role in the response
to infection and immunization [74]. a2b1 inte-
grin expression was stably induced by antigen on
approximately 50 % of memory T cells with
helper function and stimulated production of
tumor necrosis factor-a. The a2b1 integrin
expressing, CD49b+, memory Th cells demon-
strated enhanced ability to mediate macrophage
activation and to kill of intracellular bacteria.

Sasaki et al. demonstrated that mature Th1
and Th2 cells exhibited distinct a2b1 integrin
expression profiles [120]. Although naive Th
cells did not express a2b1 integrin, Th1 cells
acquired high levels of a2b1 integrin expression
during maturation in an interferon-c (IFN-c) and
interleukin (IL)-12-independent manner. This
study suggested that high level a2b1 integrin
expression on Th1, but not Th2, cells was
functionally important, because stimulation of
Th1 or Th2 cells with a2b1 integrin ligands
caused selective activation of Th1 cells to pro-
duce interferon-c after long-term culture.

Richter et al. studied a2b1 integrin expres-
sion during influenza infection in the lung [113].
During the acute phase of infection, the a2b1
integrin was expressed by a significant propor-
tion of both CD4+ and CD8+ T cells in the lung;
however, the integrin was expressed less fre-
quently on memory cells, particularly CD8+ T
cells. A similar expression pattern for the a2b1
integrin in the spleen was found in a model of
lymphocytic choriomeningitis viral infection [1].
The data suggested that a2b1 integrin expression
directed localization of CD4+ and CD8+ T cell
subsets within the lung and promoted T cell
migration within extralymphoid spaces, partic-
ularly during the acute phase of infection.

A role for a2b1 integrin expression by Th17
cells has been described. Boisvert et al. showed
that human naïve CD4 T cells stimulated toward
Th17 polarization preferentially upregulate a2b1
integrin [15]. Th17 cells adhered to collagens I
and II, but not IVin an a2b1 integrin-dependent
manner. a2b1 integrin-dependent adhesion
combined with anti-CD3 antibody co-stimulated
the production of IL-17A, IL-17F and IFN-c by
human Th17 cells.

The importance of a2b1 integrin to T cell
memory has remained controversial. Work by
several groups suggested that professional
memory CD4 cells reside and rest in the bone
marrow. Recently, Hanazawa et al demonstrated
that memory CD4 cells expressed high levels of
a2b1 integrin and that antibody-mediated inhi-
bition of a2b1 integrin of memory CD4 cell
precursors caused failure to transmigrate from
blood through sinusoidal endothelial cells into
the bone marrow [50]. These results suggested
that the a2b1 integrin was required for the
migration of memory CD4 cell precursors into
their survival niches of the bone marrow.

In addition to its expression on activated T
cells, the a2b1 integrin is expressed at high levels
on almost all NK cells and mast cells, and on
subpopulations of monocytes and neutrophils
[4, 133]. Arase et al. identified the NK cell rec-
ognition epitope of the widely used DX5 pan-NK
cell monoclonal antibody as CD49b or the a2b1
integrin. These investigators demonstrated that
a2b1-expressing and nonexpressing subsets of
NK cells are present in the mouse spleen and
raised the possibility that a2b1 integrin expres-
sion is important in NK cell function. The role of
the a2b1 integrin on subsets of neutrophils and
monocytes has also been studied. One study
found expression of the a2b1 integrin on
extravasated neutrophils in human skin blister
chambers and in the rat peritoneal cavity fol-
lowing chemotactic stimulation [144]. These
studies, as well as others, suggested that the a2b1
integrin on neutrophils is involved in neutrophil
migration from the vasculature into extravascular
tissue in response to cytokine induction.

Work from our lab has clarified the function
of the a2b1 integrin in mast call activation. We
initially observed decreased inflammatory
responses to Listeria monocytogenes in a2-null
mice [34]. This innate immunity defect was
determined to arise from a requirement for a2b1
integrin activation on peritoneal mast cells
(PMCs) for mast-cell activation and cytokine
release in vivo. We also identified C1q com-
plement protein and collectin family members,
including mannose binding lectin and surfactant
protein A, as novel ligands for the integrin in
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mast cell activation in vitro in response to Lis-
teria. Since ligation of the a2b1 integrin alone
was insufficient to activate cytokine secretion,
we hypothesized that an additional signal ema-
nating from a co-receptor was required to acti-
vate mast-cell cytokine secretion. We identified
the required co-receptor as hepatocyte growth
factor (HGF-R)/c-met [98]. We demonstrated
that Listeria induced mast cell activation and
cytokine secretion requires costimulatory signals
from a2b1 integrin ligation to either type I col-
lagen or C1q as well as c-met activation. The
synergistic signal from the two coreceptors
resulted in mast cell release of the proinflam-
matory cytokine IL-6 to trigger the early innate
immune response.

3.9 a2b1 in Epithelial Biology

The a2b1 integrin is expressed at high levels on
numerous epithelial cells including not only the
squamous epithelium, but also ciliated columnar
epithelium of the respiratory tract, the epithelial
cells of the gastrointestinal tract and urinary
tract, and the glandular epithelium of the breast
[24]. In contrast to the high a2b1 integrin
expression in the normal breast epithelium,
markedly reduced or undetectable levels of a2b1
integrin were seen in poorly-differentiated car-
cinomas. Expression of a2b1-integrin was
diminished or lost in a manner that correlated
with a loss of epithelial differentiation and tumor
progression in mammary carcinoma as well as
other adenocarcinomas, including those of the
prostate, lung, pancreas, and skin.

Our group’s early studies focused on under-
standing the correlation between a2b1 integrin
expression and a differentiated epithelial phe-
notype and conversely, whether dysregulated
a2b1 integrin expression contributed to the
malignant behavior of cancer cells. Gain of
function and loss of function models in vitro
suggested that a2b1 integrin expression con-
tributed to the differentiated epithelial phenotype
and branching morphogenesis of mammary and
other epithelial cells [130, 150, 151]. These
observations were supported by findings from

other laboratories. Using a primary human
nonmalignant, but immortalized, mammary
epithelial cell line, Berdichevsky et al. and
D’Souza et al. demonstrated that branching
morphogenesis can be blocked by inhibitory
monoclonal antibodies directed against the a2
integrin subunit or by altered a2b1-integrin
expression mediated by the expression of the c-
erbB2 proto-oncogene, respectively [9, 26, 27].

The development of genetically engineered
mice with global deletion of ITGA2 permitted
further analysis of the role for a2b1 integrin
in vivo. The major changes in branching mor-
phogenesis in vitro were not fully recapitulated
in vivo. The a2-null mice have only modest
defects in mammary morphology. The in vitro
experiments were designed to study a single
integrin interaction on epithelial cells with only
a small number of matrix molecules. Mammary
gland in vivo consists of epithelial cells, fibro-
blasts, endothelial cells, and immune cells
embedded in a complex matrix. The complexity
in in vivo systems and compensatory mecha-
nisms may both mitigate the consequences of
a2b1 integrin-deficiency.

3.10 The a2b1 integrin Plays a Role
in Cancer Progression

Interest in a2b1 integrin in breast cancer began
with the observation of a strong correlation
between diminished a2b1 integrin expression
and a less differentiated phenotype. The a2b1
integrin–deficient mouse model provided our
laboratory the opportunity to investigate a role
for integrin in the development and progression
of breast cancer in vivo. Our group demonstrated
that in the spontaneous MMTV-neu mouse model
of breast cancer, a2b1 integrin-deletion did not
significantly alter the incidence of tumor devel-
opment or tumor growth, but markedly increased
hematogenous metastasis [111]. Increased metas-
tasis in this model resulted in part from increased
capacity for cancer cell intravasation.

Detailed in silico examination of publically
available data from breast cancer patients sup-
ported this finding; expression of the a2 integrin
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subunit, but not a1 or b1 integrin subunits, was a
prognostic indicator of decreased metastasis and
better patient outcomes (Fig. 3.2). Similarly,
retrospective analysis of lymph node-negative
patients from the Wang cohort who relapsed
with metastatic disease, revealed an inverse
correlation between a2b1 integrin expression
and the occurrence of brain lesions; patients with
greater than twice the average a2b1 integrin
expression suffered no brain metastasis whereas
all nearly one third of all other patients suffered
brain metastasis (P = 0.0049).

Expression of the a2b1 integrin in prostate
cancer was also predictive of metastasis and
survival. The mouse and human studies sup-
ported the in vitro experimental analyses and the
reported epidemiologic linkage between the
single nucleotide polymorphisms regulating
a2b1 integrin expression and poor prognosis in
patients with breast cancer [90]. Together these
data suggested that a2b1 integrin is a valuable
biomarker for risk of metastasis in breast cancer.

Our data clearly showed in an animal model
of breast cancer and human breast and prostate
cancer that the integrin behaved as a metastasis
suppressor. Data from other laboratories suggest
that a2b1 integrin’s role in prostate and perhaps
other cancers may be more complicated. In vitro,
a2b1 integrin was required but not sufficient for
survival and metastasis of LNCaP prostate can-
cer cells to bone [91]. a2b1 integrin protein and
mRNA expression was enhanced in bone
metastases to the level observed in normal,
nonmalignant prostate tissue and significantly
higher than primary prostate cancer lesions or
metastasis to other sites such as lymph nodes
[127]. Similarly, a2b1 integrin expression
accelerated experimental metastasis or tumor
dissemination of melanoma and rhabdomyosar-
coma or melanoma, gastric and colon cancer,
respectively [7, 8, 51, 92, 96, 139].

Therefore, despite this progress several
important questions remain concerning the role
of the a2b1 integrin in cancer biology. What is
the precise molecular mechanism through which
a2b1 integrin loss enables increased intravasa-
tion? How does integrin down-regulation during
breast cancer progression occur? Many other

cancers including prostate, colon and lung cancer
also appear to have a2b1 integrin loss associated
with cancer progression and metastasis. How-
ever, some cancers are associated with high a2b1
integrin expression levels. Answers to each of
these questions will provide novel insight into
tumor biology, as well as suggesting new ave-
nues for clinical application of the a2b1 integrin
as a biomarker or therapeutic target.

3.11 Therapies

Over the past several years there has been
increased interest in pharmacological targeting
of the a2b1 integrin for treatment of thrombosis
and angiogenesis [72]. The a2b1 integrin is
viewed as a safe target because although over-
expression was associated with pathological clot
formations, mice with integrin deletion lack
severe bleeding defects, and inhibition causes
only minimal increases in bleeding time. Com-
pound 15, a nonpeptide inhibitor of the integrin,
has been demonstrated to block platelet adhesion
to collagen I under both static and flow condi-
tions [16]. The inhibitor was originally designed
to inhibit a2b1 on platelets by locking the inte-
grin a2b1 in the inactive low-affinity conforma-
tion [100]. Additionally, in vivo, the compound
inhibited thrombus formation in a mouse model
and inhibited angiogenesis in a zebrafish model.
Other a2b1 inhibitors have shown similar effects;
BTT-3016, a sulfonamide derivative prevented
platelet aggregation and reduced thrombus for-
mation in a vascular injury model [108]. Another
sulfonamide derivative that targets a2b1, E7820,
is currently in phase II clinical trials as an
adjuvant therapy for metastatic colon cancer
[77, 101]. The clinical impact of pharmacologi-
cal targeting the a2b1 integrin will require fur-
ther time and experimentation.

3.12 Summary and New Directions

It is increasingly clear that the a2b1 integrin
plays a nuanced but important role in critical cell
functions in many different cell types. Several
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new studies have suggested previously undocu-
mented roles for the integrin in diseases ranging
from type 2 diabetes, to dwarfism. In platelets,
the combination of animal and in vitro studies
have slowly revealed a more nuanced yet
equally important role for the integrin than had
previously been imagined. The recent develop-
ment of tissue-specific a2-null mice promises to
bring similar clarity and complexity to our
understanding of a2b1 integrin function in
inflammation, angiogenesis and tumor biology
in the years ahead.
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