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Preface

What Has Been

The integrin family is composed of 24 members [5]. Ten years ago we
published a book devoted to the nine aI domain integrin subunits [24]. These
are shown in Fig. 1. I am pleased that most of the original authors have been
able to contribute to the updated version.

In 2003, the knockout mouse phenotypes for all of the aI domain inte-
grins had not yet been published. They are now. The phenotypes of mouse
strain deficient in individual aI integrins are summarized in Table 1.

During the last decade we have learned more about the role of b2 integrins
in leukocytes and in leukocyte adhesion deficiencies [29, 27], and the role of
b7 integrins in different subsets of immune cells [20]. Much of this knowl-
edge would not have been possible without the use of animal models and
have generated results which could not have been predicted from in vitro
analyses. Separate from the interesting results in disease models, analyses of
aE knockout mice indicate that there is a missing ligand that has not yet been
identified for this integrin [20]. Indeed, in human skin and oral mucosa, there
is evidence of a ligand for aEb7 other than E-cadherin [30].

Regarding the role of collagen-binding integrins the knockout phenotypes
of mice deficient in integrin a10 and a11, respectively, have now been
published [6, 45] and interestingly the enigmatic DDR collagen receptors
have recently been shown to affect the function of collagen-binding integrins
[1, 53, 62]. In coming years we are likely to learn more about the cross-talk of
collagen-binding integrins with other receptor groups. Maybe most surpris-
ing in the field of collagen receptors are the relatively mild phenotypes seen
in individual knockout strains and the limited role collagen-binding integrins
appear to play in classical connective tissue diseases like fibrosis. This is in
contrast to the phenotypes observed for different members of the collagen
family, where mutants are characterized by major structural defects
impacting tissue structure during development and tissue integrity in adult
animals [63]. This discrepancy between collagen and collagen receptor-
knockout mouse phenotypes is summarized in Table 2. Interestingly, a recent
a10 integrin mutation in dogs have indicated that collagen-binding integrins
in the muscoskeletal system might have much more severe phenotypes in
larger animals/humans compared to the mild integrin phenotypes observed in
collagen-binding integrin deficient mice [33].
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Fig. 1 The integrin family
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Table 1 aI integrin knockout phenotypes

Integrin
subunit

Distribution Ligands Knockout
viability

Knockout phenotype

Collagen receptors

a1 Endothelial cells, smooth muscle
cells, fibroblasts, and more cell
types [19]

Collagens + Normal development [19],
hypocellular dermis [18, 47], isolated
cells display defect in collagen IV
cell attachment

a2 Platelets, epithelial cells,
endothelial cells [65],
mesenchymal stem cells [44],
fibroblasts, and more cell types

Collagens + Mild mammary gland phenotype,
otherwise normal development [13,
28], cell attachment defect to
collagen I of isolated platelets [49],
needed for thrombus stabilization
[32]

a10 Chondrocytes and subsets of
junctional fibroblasts [9, 10]

Collagens + Mild cartilage phenotype [6]

a11 Subsets of fibroblasts [46, 55, 57],
cancer associated fibroblasts [64],
increased levels on
myofibroblasts [11],
developmental expression in
odontoblasts, mesenchymal stem
cells [44], induced in cultures of
mesenchymally derived cells
including myoblasts (do not
express a11 in vivo) [25]

Collagens + Defective incisor eruption [45],
dwarfism [8], increased mortality

Leucocyte receptors

aD Macrophages and eosinophils
[23, 56]

ICAM-3, VCAM-1 + Fertile, no gross abnormalities, mild
T-cell phenotypic changes [61]

aE Intraepithelial lymphocytes, some
circulating lymphocytes, lamina
propria lymphocytes, subsets of
CD4+ T-cells, CD8+ T-cells,
dendritic cells, mast cells
[12, 31, 35]

E-cadherin,
uncharacterized
ligand

+ Impaired development of gut
associated lymphoid tissue [51]

aL All leucocytes [54] ICAM-1,-2,-3,-4,-5,
JAM-1

+ Splenomegaly and reduced lymph
node size [50], increased white blood
cells counts [15], reduced lymphocyte
homing [7], reduced neutrophil
adhesion [15], Treg and NKT cell
development affected [42, 59]
reduced T-cell proliferation and co-
stimulation [21, 50, 52 ]

aM Monocytes, macrophages, NK
cells, neutrophils, and subsets of
T-cells [22, 34, 41]

iC3b, fibrinogen, and
more ligands

+ Neutrophil phagocytosis and
degranulation reduced [14, 40],
impaired mast cell development and
function [48], excessive macrophage
and dendritic cell toll-like receptor
signaling [26, 4], excessive Th17
differentiation [17]

aX Monocytes, macrophages,
dendritic cells, NK cells [41]

iC3b, fibrinogen and
more ligands

+ Fertile, no gross abnormalities,
affects monocyte firm adhesion [60]
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Table 2 Phenotypes of mice deficient in fibrillar collagens and integrin collagen receptors

Ligand Receptor

Fibrillar
collagen

KO phenotype in
mouse

KO phenotype in
human

Putative
collagen
receptor
in vivo

Correlation
KO
phenotypes
collagen/
receptor in
mouse

KO phenotype in
human/dog

I Mov13 mice [39]:
embryonic lethality
E12-14, major
blood vessel
rupture

EDSa VIIA, EDS VIIB,
OIb, osteoporosis, joint
hypermobility

a2b1
a11b1

Not in
single
integrin
mutant
strains

?

II Perinatal lethality
[2, 36] short long
bones, rudimentary
vertebral arches,
lack of inter-
vertebral discs,
notochord defect

Lethal achondrogenesis
II,
osteochondrodysplasia,
osteoarthrosis

a1b1
a2b1
a10b1

a10 integrin
mutation
[6], mild
cartilage
defect
b1 integrin
[3], severe
cartilage
defect

Chondrodysplasia
in dogs, integrin
a10 mutation [33],
severe cartilage
phenotype

III Neonatal lethality
[38], 5 % survival
with shorter
lifespan, intestinal
defect, skin lesions,
arterial rupture

EDS IV, arterial
aneurysms

a2b1
a11b1

? ?

V Embryonic
lethality E10-11
[58],
cardiovascular
insufficiency, lack
of collagen
fibrillogenesis

EDS I, EDS II a2b1
a11b1

? ?

XI Cho mice:
perinatal lethality
by asphyxia [37],
weak tracheal
cartilage, short
snout and
mandible, cleft
palate, short limbs,
externally rotated
distal portion of
hindlimbs

Schmid
chondrodysplasia, non-
syndromic hearing loss,
osteoarthrosis

a2b1
a10b1
a11b1

a10 integrin
mutation
[6], mild
cartilage
defect
b1 integrin
[3], severe
cartilage
defect

Chondrodysplasia
in dogs, integrin
a10 mutation [33],
severe cartilage
phenotype

XXIV ? ? ? ?

XXVII Mutant transgene
[43]: perinatal
lethality, lung
defect,
chondrodysplasia

? a2b1
a11b1

? ?

a Ehlers–Danlos syndrome
b Osteogenesis imperfecta
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What Will Come

As in all biological fields, techniques are moving the fields forward as
methods become more refined. We now have access to new tools, enabling
studies at the nano-scale, and reagents designed to block integrin function
can thus be applied to nanoparticles.

In the cancer field, the microenvironment is taking center stage, and here
integrins on fibroblasts are predicted to play important roles in paracrine
signaling, in regulating tissue stiffness [16] and matrix remodeling.

With exome sequencing of rare genetic diseases becoming more widely
used, this will enable new human integrin mutations to be tested in disease
models. The development of new molecular techniques to more easily
generate mutations in vivo might also contribute to more animal disease
models being established.

New technologies, new mouse models in combination with analyses of aI
integrins in larger animals/humans are thus predicted to increase our
knowledge about this group of receptors. With these things in mind we look
forward to another 10 years of research with aI domain integrins.
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1Evolution of Integrin I Domains

Mark S. Johnson and Bhanupratap Singh Chouhan

Abstract

In humans, an *200-residue ‘‘inserted’’ I domain, a von Willebrand
factor A domain (vWFA), buds out from the b-propeller domain in 9 of
18 integrin a subunits. The vWFA domain is not unique to the a subunit
as it is an integral part of all integrin b subunits and many other proteins.
The bI domain has always been a component of integrins but the aI
domain makes its appearance relatively late, in early chordates, since it is
found in tunicates and later diverging species. The tunicate aI domains
are distinct from the human collagen and leukocyte recognizing integrin
a subunits, but fragments of integrins from agnathastomes suggest that
the human-type aI domains arose in an ancestor of the very first
vertebrate species. The rise of integrins with aI domains parallels the
enormous changes in body plan and systemic development of the
chordate line that began some 550 million or more years ago.
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1.1 Introduction

Integrins are cell-surface receptors that straddle
the plasma membrane by means of a single trans-
membrane helix in each of two subunits. Integrins
in general function to mediate cell-cell and cell-
matrix interactions (for a review, see Eble and

Kühn [26]); furthermore, integrins are mechanical
receptors. Thus, they respond to both external and
internal ligands through large changes in receptor
conformation that are tightly coupled to function.
Integrin signalling is also bi-directional [36],
meaning that the presence or absence of molecular
interactions in either the cytoplasm or in the
extracellular space can modulate the integrin-
mediated functions within the other compartment.
Thus, integrins are dynamic communicators of
both the intracellular wishes of a cell for its
extracellular environment as well as mediating
environment feeding back to intracellular signal-
ling and downstream intracellular events.
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Integrins are ab heterodimers and in humans
there are 18 a subunits and 8 b subunits that
associate to form 24 non-covalently linked het-
erodimers. The human a subunits range between
about 1,050 and 1,190 residues and b subunits
between about 770 and 800 residues (with the
exception of b4 at over 1,800 amino acids, having
a unique additional C-terminal domain). Integrin
a and b subunits are known to mutually form a
large, N-terminal, extracellular multi-domain
‘‘ectodomain’’ structure, with a globular head and
tails, followed by a transmembrane region and
relative short C-terminal cytoplasmic sequences.
This view was initially based on both electron
microscopy data [12, 62] and the analysis of
sequences of integrin subunits and the location of
a single hydrophobic stretch of residues towards
the C-termini of each subunit identified as the
presumptive membrane-spanning helical region
(e.g. [4, 62]). The complex domain structure [5,
54, 102]; see e.g. Fig. 9.1 in [43] of each subunit
appears to be key to the overall dynamic structural
changes [55, 58, 103] that are associated with
integrin functions and the ability to communicate
signals from inside-out and from outside-in.

From the earliest X-ray studies, i.e. aL [72] and
aM [52, 51], focus was placed on the human aI
domains. Today, structures are also known for I
domains of integrin a2 and a1 without (e.g. [27, 76,
64]) and with bound collagen-like triple helical
peptides [14, 28], and aX [95]; the latter also within
the context of theaXb2 ectodomain [100]. A region
near the N-terminus of the b subunit was predicted
to be a von Willebrand Factor type domain based
upon the analysis of sequence data [52, 90, 92]. The
overall structure of the integrin subunits has thus
been detailed by multiple three-dimensional struc-
tures of ectodomains and other parts thereof
(transmembrane and C-terminal regions) as
revealed using structural techniques including X-
ray crystallography, NMR spectroscopy, and
cryoelectron microscopy. Because the integrins
undergo dynamic structural changes, the available
structural snapshots provide only a partial descrip-
tion of their full range of functional conformations.

The X-ray structure of the ectodomain of
human integrin aVb3 (PDB code: 1JV2; [102])
was the first reported structure of the extracellular

regions of the a and b subunits and their mutual
interactions, and those features have been found
to be generic features of integrins also observed in
the subsequent structures solved for, e.g. the
ectodomains of aIIbb3 [99] and aXb1 [100] and
the N-terminal headpieces (includes the b pro-
peller of the a subunit and b I domain of the b
subunit) of a4b7 [105] and a5b1 [60]. Ligand
complexes [82, 104] with peptides, having e.g.
the ‘‘RGD’’ recognition sequence, pinpointed the
narrow binding region suitable for loop recogni-
tion, located between the b propeller of the a
subunit and the bI domain of the b subunit.

The ectodomain structure of aXb2 [100]
illustrates the relative disposition of the aI
domain and revealed the high exposure of the
binding site of the aX I domain that would allow
integrins to recognize an entirely new class of
ligands, such as immunoglobulin fold domains
and triple-helical collagens. The aI domain buds
out of the N-terminal *440-residue 7-bladed
repeat b-propeller domain within the loop
between blades 2 and 3. The b propeller is
highly conserved and has been identified in
some non-integrin bacterial sequences [15, 40].

In humans, I domains are present in one-half
of the integrin a subunits. Four of these nine a
subunits, namely a1, a2, a10, and a11, partner
with the b1 subunit and are generally referred to
as collagen receptors. Five other a subunits, aD,
aE, aL, aM and aX, are associated with cells of
the immune system, where aE forms heterodi-
mers with b7 but aD, aE, aM, and aL form
dimers with the b2 subunit.

The integrins and their evolution were
already key topics of study from around the mid-
1980’s as functional, sequence and structural
studies were taking place in multiple laborato-
ries, and the ‘‘inserted’’ I domain [50] or ‘‘A’’
domain [4] was recognized as a novel addition in
multiple integrin a subunits. In 2003 (Johnson
and Tuckwell), based on the fairly high
sequence similarity seen between orthologous
human and bony fish integrin subunits with aI
domains and the presence of a single aI domain
detected in tunicates [57], it was fully expected
to find broad coverage of aI domains and even
human orthologues throughout the bony fish,
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sharks and rays, lamprey and hagfish, and even
within the invertebrate chordates. Over more
recent years, considerable genomic data has
become available and in 2014 we have the
benefits of all of the accumulated data and their
interpretation from many sources, leading to a
more coherent view of integrin and especially aI
domain evolution. These data not only clarify
the likely range of aI domains within extant
species, they also help clarify the development
of a subunits with I domains orthologous to the
types seen in humans and other higher
vertebrates.

1.2 Relationships Among Integrin
a and b Subunits

In order to set the stage for the appearance and
diversification of a subunits containing I
domains it is important to recount the evolu-
tionary range of integrin a and b subunits.
Complete a and b subunits are present in the
earliest metazoans (reviewed in [43]), which
suggested that integrins would even predate the
first animals. Integrin-like domains and folds-
types corresponding to individual integrin
domains are also found in some prokaryotes. For
example, compared with the integrins the
repeats within the b-propeller domain of pro-
karyotes are even more similar to each other in
terms of the loops and calcium binding sites; the
latter present in all 7 repeats instead of only 3 or
4 repeats seen with the integrins [15]. But, the
domain is present in only some prokaryotes and
there is the possibility that they were acquired
through non-Darwinian means, i.e. horizontal
gene transfer. Moreover, where it was detected
the b-propeller domain was present in protein
sequences whose function is unknown and
without the hallmarks of any other integrin
subunits. Similarly, most other domains from
which integrins are composed of (e.g. vWFA
domain—in both a and b subunits, epidermal
growth factor domains—in the b subunit, and
immunoglobulin domains—in both a and b
subunits) can be located within prokaryotic
proteins (reviewed in [43]).

The earliest integrin subunits have been
reported in single-cell eukaryotes, the choano-
zoa, which are the closest relatives of the ani-
mals. An integrin-like b subunit fragment was
identified in Ministeria vibrans [80] and Cap-
saspora owczarzaki contains four a and b inte-
grin subunits each [79, 86], and these sequences
can be identified through a simple BLAST
search even though, for example, a b subunit
shares only between 11 and 21 % sequence
identity with a set of known integrin b subunits
[43].

Integrin subunits occur across the full range
of invertebrates [10] and integrin a and b sub-
units have long been known to exist within the
earliest-appearing animals, e.g. sponges, corals
and jellyfish [9, 59, 67, 73]. Similarly, integrin a
and b subunits have been identified in the gen-
omes of other early diverging metazoans,
including other sponges Oscarella carmela
(Porifera [63]) and Amphimedon queenslandica
[84], the placozoan Trichoplax adhaerens [78,
83], the coral Acropora millepora (Cnidaria [48]
and the sea anemone Nematostella vectensis
(Cnidaria [48]). Like C. owczarzaki, these early
metazoans have multiple copies of subunits: For
example, T. adhaerens has two a subunits and
one b subunit; and N. vectensis has three or more
a and b subunits.

Based on sequence data, evolutionary rela-
tionships including multiple phylogenetic repre-
sentations of the relationships among integrins
subunits have been described over the past
25 years [20, 32, 10, 30, 33, 37, 29, 34, 42–43, 87]
among others), and they are in close agreement
with each other although the naming of individual
sequences may have changed and clustered
groups may differ somewhat. Hynes and Zhao
[37] and Hughes [33] segregated the a subunits
with respect to the Drosophila melanogaster a
subunits into the laminin receptor-like ‘‘PS1’’, the
RGD-recognising ‘‘PS2’’ clades and a unique set
of duplicated a subunits in the ‘‘PS3’’ clade,
containing only invertebrate members (see Bökel
and Brown [11] for a review). ‘‘Position Specific’’
antigens from D. melanogaster had been known
for some time before the full complement of
integrin a subunits was defined by the fruit fly
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genomic sequence [1, 75]. The summary tree for
integrin a subunits represented in Fig. 1.1 reflects
this classification scheme. The two a subunits of
the nematode Caenorhabditis elegans, Ina-1 and
Pat-2, respectively cluster with the PS1 and PS2
clades. In human, a3, a6 and a7 are found in the
PS1 group and aIIb, aV, a5 and a8 cluster within
the PS2 clade. The aA and aB subunits of the
placozoan T. adhaerens, depending on the other
sequences being compared, cluster respectively
with the PS1 group and PS2 group (Fig. 1.1), or
together with the PS1 clade [43], but the bootstrap
significance in either case is low. In addition to the
human members of the PS1 and PS2 clades, there
is an a4/a9 clade and clades involving a subunits
with inserted I domains (Fig. 1.1).

The b subunits have been clustered into two
vertebrate clades, vertebrate A and vertebrate B,
as well as an invertebrate clade [10, 34]. Of the

human b subunits, b1, b2 and b7 belong to the
vertebrate A clade and b3–b6 and b8 belong to the
vertebrate B cluster. The b subunits of the verte-
brate A clade pair with a subunits having the
inserted I domain, but in human b1 is overall the
most promiscuous subunit, pairing with the four
collagen receptor a subunits plus eight a subunits
lacking an I domain. Human b7 clusters with both
aE and a4 (which also pairs with b1), the latter
lacking the I domain; and human b2 partners only
with the immune cell subunits aD, aL, aM and aX.
The third major cluster contains invertebrate b
subunits, e.g. the two b subunits, bv and bvPS
from D. melanogaster and pat-3 from C. elegans
(see Fig. 1.4, [34]). The invertebrate cluster also
includes 4 of 5 b subunits in the genome [21] of an
early diverging invertebrate chordate—the tuni-
cate Ciona intestinalis (Urochordate). A fifth b
subunit—Cib5—clusters within the vertebrate B

Fig. 1.1 Summary tree for integrin a subunits display-
ing the phylogenetic relationship among sequences from
human, the sea lamprey P. marinus (Pmaf3), the
tunicates C. intestinalis (Ci) and H. roretzi (Hr) as well
as the arthropod D. melanogaster (Dm) and the placo-
zoan T. adhaerens (Tad). This summary tree is based on

a sequence comparison of 38 vertebrate and invertebrate
sequences. The I-domain clade consists of nine repre-
sentative sequences each from human and the tunicates.
The branching patterns for the two T. adhaerens
sequences have low bootstrap support. The branch
lengths in the tree are arbitrary
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clade [34], so the vertebrate B clade extends at
least to one invertebrate species; we have thus
labeled it the ‘‘Chordate’’ group to reflect Ciona’s
inclusion (Fig. 1.2). Representatives of the earli-
est diverging metazoans, T. adhaerens and A.
queenslandica cluster as outliers of all of the other
species when the single-cell eukaryote C. ow-
czarzaki is used as an out-group to root the tree
(Fig. 1.2).

1.3 Human Integrin a Subunits
with the I Domain Have Unique
and Common Features

The clustering of the nine human a subunits
containing the I domain (Fig. 1.1) follows the
phylogeny described by Hughes [33]. When the
sequences of full-length integrin a subunits are
compared two major clusters are observed, with
the collagen-binding cluster ((a1, a2) (a10, a11)),
separating cleanly from the integrin a subunits of
the immune system: ((((aD, aX)aM)aL)aE).

In contrast to the human integrins, no I
domains were found in the a subunits from the
genomes of either C. elegans or D. melanogaster
[37], nor in sequences from other invertebrates
including very early diverging metazoan species
like the placozoa, porifera and cnidarians. Neither
are aI domains found among the first diverging
deuterostomes—the echinoderms—that directly
precede the appearance of the chordate line.
Orthologues of the human aI-containing subunits
(and other subunits) were, however, identified in
sequences from mouse, other mammals, birds and
amphibians [33, 42, 96], among others) and likely
orthologues in bony fish were identified [42].

One characteristic feature of integrin aI and
bI domains (and of many vWFA domains) is the
metal ion dependent adhesion site ‘‘MIDAS’’
(Fig. 1.3) where a metal cation, e.g. Mg2+, is
bound. Thus, MIDAS is present in all integrins,
but the binding modes and the ligand features
that can be recognized in the presence or
absence of an aI domain are different [88]. The
metal ion at MIDAS is bound by conserved

Fig. 1.2 Summary tree for integrin b-subunits display-
ing the phylogenetic relationship based on 40 vertebrate
and invertebrate sequences including sequences from the
poriferan A. queenslandica and the choanozoan C.

owczarzaki. The integrin b-subunit sequences derived
from C. owczarzaki have been utilized to root the tree.
The branch lengths in the tree are not to scale
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residues of the I domain; in the a2 I domain [27,
28] by 151DxSxS155, T221 (and D151) via a water
molecule, and D254 (Fig. 1.4a). The other coor-
dination positions of the metal ion bind water
molecules and the negatively-charged residue
from the ligand recognized by the I domain
displaces a water molecule and binds directly to
the metal ion. The bI domain, in addition to
MIDAS, contains the synergistic metal ion-
dependent site (SyMBS) and the adjacent to
metal ion-dependent adhesion site (ADMIDAS),
both of which bind calcium.

In integrins without aI domains, the bI
domain binds a negatively-charged aspartic acid
from the ligand via a positively charged metal
ion at MIDAS as seen in the X-ray structures of
aVb3 (cyclic ‘‘RGD’’ peptide, PDB code 1L5G,

[104] and aIIbb3 (fibrinogen c chain ‘‘AGD’’
peptides: e.g. PDB code 2VDO, and chimeric
‘‘RDG’’ peptide in 2VDR; [82]. In integrins with
aI domains, an ‘‘intrinsic ligand’’—a glutamate
residue—is conserved across the aI domains
(e.g. E336 in the a2 I domain; Figs. 1.3, 1.4b) and
when ligands bind to MIDAS of aI the glutamate
is proposed to bind to MIDAS of the bI domain
as a part of the integrin conformational regula-
tory mechanism [2]; Yang et al. 2004; [44, 100].

In comparison with extrinsic ligand binding
to the bI domain, ligands that bind to MIDAS of
the integrin aI domain [57] do so through a
slightly larger, negatively charged glutamic acid
side chain, as illustrated for the two subsets of aI
domains in human: The collagen-type, e.g. from
the collagen-like triple helical-peptide GFOGER

Fig. 1.3 Sequence alignment over regions of represen-
tative integrin aI domains with key amino acids high-
lighted: residues of MIDAS involved in binding the metal
cation where ligand binding takes place via a glutamate
residue as in the X-ray structures of the a2 I domain with
bound GFOGER3 collagen-like triple helical peptide
(PDB code: 1DZI; [28] and the aL I domain with bound
ICAM3 (PDB code: 1T0P; [81]; the diagnostic region
referred to as the aC helix, is formed in the ligand-free

form of the a2 I domain (PDB code: 1AOX; [27], but the
corresponding region is missing from members of the
leukocyte aI clade and the ascidian aI domains. The
intrinsic ligand, e.g. E336 in the a2 I domain, is located at
the opposite end of the domain from MIDAS and binds to
MIDAS of the bI domain in the b subunit, forming part
of the activation mechanism when external ligands bind
to MIDAS at the aI domain of the a subunit

6 M. S. Johnson and B. S. Chouhan



in complex with the a2 I domain (PDB code:
1DZI; [28] and the immune cell recognizing
integrin a subunits, e.g. from the immunoglob-
ulin domain of ICAM3 bound to the aL I domain
(PDB code: 1T0P; [81]. Note that some ‘‘unin-
tended’’ ligands can bind aI domains in a metal-
independent fashion, such as lovastatin to the aL
I domain [45], and the ‘‘RKKH’’ motif of a
peptide from a snake venom metalloproteinase
[38, 68] and echovirus 1 [6, 44, 47, 101] to the
human a2 I domain.

Whereas, the MIDAS site is a universal fea-
ture of integrin aI domains (Fig. 1.3), and even
of the bI domain of the b subunit and present in
some but not all vWFA domains, the collagen-
binding aI domains are easily distinguished from
those of the immune system and from other
vWFA domains by simply examining one key
feature of their sequence alignment: Neither the
leucocyte-specific aI domains (Fig. 1.3) nor
other vWFA domains contain the aC helix
present in all of the collagen receptor members.
The a2 I-domain structure described by Emsley
et al. [27]; PDB code: 1AOX) pinpointed this
major difference with the aL and aM I-domain
structures—there is an additional helix, aC
(Fig. 1.4), in the vicinity of MIDAS whose
conformation, along with adjoining regions,
changes in response to collagen binding as seen
in the a2 I domain bound to a collagen-like tri-
ple-helical GFOGER peptide (PDB code: 1DZI;
[28]). In the a2 I domain the aC helix corre-
sponds to the sequence 284GYLNR288 (GSYNR
in a1, GHYLR in a10 and GYYNR in a11). The
presence of the aC-helix region is diagnostic of
the collagen-binding aI domains, and it is nei-
ther found in I domains of the immune system
integrins (Fig. 1.3) nor in other vWFA domains
and it has been essential for identifying colla-
gen-type integrin aI domains in sequence frag-
ments e.g. from lamprey [16].

1.4 Tunicates and Bony Fish Set
Boundaries for Understanding
aI Domain Evolution

The answers to two questions posed earlier [31,
42, 40] on the evolution of integrins with aI
domains are increasingly being clarified, largely
as a result of the genome sequencing studies
occurring within chordate species. Firstly, what
are the earliest diverging species with integrins
having aI domains? And, related to this ques-
tion—are they orthologues of the human inte-
grins? And, if not, when did the first orthologues
arise?

Fig. 1.4 Key features of the aI domain based on the
human a2 I domain structure (PDB: 1AOX [27]). a The
MIDAS site and location of aC helix, including Mg2+

(yellow sphere), water molecules (W) key residues
involved in binding directly to Mg2+ or via water; dash
lines represent likely hydrogen bonds. b Relative posi-
tions of MIDAS, the aC helix and E336 with respect to
the C-terminal (c) and N-terminal (N) ends of the aI
domain, which buds out from the b propeller domain of
the a subunit. The residues of the aC helix in the a2 I
domain are GYLNR, and are shown in ball-and-stick
figures. Helices are in red and strands in blue. The figure
was rendered in Bodil [53]
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In 2001, Miyazawa et al. identified two inte-
grin a subunits in an early diverging chordate, the
ascidian Halocynthia roretzi (Urochordate; tuni-
cate). One, aHr2, belongs to the PS2 clade along
with the human subunits aIIb, aV, a5, and a8 (see,
e.g. [34]), but the second, aHr1, contained an aI
domain (Fig. 1.1). This was the first invertebrate I
domain to be identified and aHr1 was experi-
mentally associated with the recognition of
complement factors in the ascidian immune sys-
tem [57]. An early phylogenetic reconstruction
[42] placed aHr1 as an outlier to both the verte-
brate collagen and immune systems clades when
the tree was rooted by the position of the non-
integrin vWFA3 domain. Furthermore, aHr1 does
not have a sequence corresponding to an aC helix
(Fig. 1.3).

Soon thereafter, the genome sequence from
another ascidian, C. intestinalis [21], led to
identification of 11 a subunits. Three a subunits
lacked the aI domain (Cia9 and Cia10 cluster
with the PS1 clade and Cia11 cluster with PS2;
Fig. 1.1), but eight others, Cia1-Cia8, cluster
with aHr1 and separately from both the human
leukocyte clade and the collagen receptor clade
[29, 34]. The ascidian sequences, individual aI
domains or full-length integrins, with the
exception of Cia1 cluster consistently into two
main groups using multiple methods (e.g.
Bayesian, maximum likelihood, neighbor join-
ing) for phylogeny reconstruction [17], with
aHr1 and Cia2-3 in one group and Cia6-8 in the
other (Fig. 1.1). Based on the phylogenetic
reconstructions and closest sequence matches, it
is clear that the ascidian integrins are not
orthologues of any of the bony vertebrate a
subunits having I domains [34, 77]. It was
therefore not a surprise that, like aHr1 of H.
roretzi, none of the C. intestinalis sequences
have the aC helix characteristic of the collagen-
binding aI clade (Fig. 1.3).

Thus, the ascidian data show that some early
invertebrate chordates already had integrins with
I domains when they diverged within the chor-
date lineage, but they represent paralogues of the
nine human integrins; no orthologous pairs exist.
In contrast, at the other end of the spectrum,
orthologues of human I domains could be traced

back through other mammals, birds, reptiles,
amphibians, and even to bony fish [34, 42],
suggesting that orthologues of the human inte-
grins with aI domains might be found across the
whole range of vertebrate species [42]. Individ-
ual integrin sequences from bony fish (e.g. from
Cyprinus carpio, carp; Danio rereo, zebrafish)
had also become available as well as genome
sequences from e.g. the pufferfish Takifugu
rubripes [3] and Tetraodon nigroviridis [39].
Thus, human integrin subunit orthologues were
identified in fish, including a subunits with I
domains, and clustered these sequences to the
collagen and leukocyte clades (e.g. see [34]).
Fish, thought to have undergone an extra round
of whole genome duplication in comparison to
later diverging vertebrates (see e.g. [22, 89]),
also exhibited duplicate isoforms orthologous to
the human subunits (e.g. [34]), and today there
are orthologous representatives identified in
bony fish for nearly all of the human integrin
chains and duplicate isoforms are the rule rather
than an exception [17].

Thus, the ascidians and the bony fish now
provide key and well-established demarcations
for integrin aI domain evolution. Urochordates,
thought at the time to be the earliest diverging
species of the chordate line, have non-human-like
integrin subunits with aI domains, whereas
human orthologues are present in bony fish. Only
three extant groups of organisms were considered
to have diverged after the urochordates and prior
to the bony fish: The lancelets, the cyclostomes
(or agnaths; jawless vertebrates) and the carti-
laginous fish. The lancelets, according to estab-
lished taxonomy, were positioned as the closest
living relatives of the vertebrates but this notion
has now been challenged by the molecular data.

1.5 Lancelets, the Jawless
Vertebrates, the Cartilaginous
Fish and the Origin
of Vertebrate Orthologues

The last common ancestor of the echinoderms
and chordates is estimated to have occurred
around 520–550 million years ago according to
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the fossil record, and considerably earlier when
based on sequence comparisons and phyloge-
netic reconstructions (see e.g. [8, 24]). There are
two extant invertebrate chordate groups, the
cephalochordates and the urochordates. The
presence of an I-domain containing the a subunit
in the urochordate H. roretzi supported the idea
that a subunits containing I-domains would be
found in the ‘‘later-diverging’’ cephalochordates
(lancelets), and especially within the agnathast-
omes (cyclostomes; hagfish and lamprey) and
chondrichthyes (sharks and rays) [42, 40]. In
2008, the genome of the lancelet Branchiostoma
floridae (Cephalochordate; amphioxus; [71])
was reported. A search of the genome revealed
integrin a and b subunits but a subunits with I
domains were not identified [31].

This then led to the following quandary: If
the urochordates have aI domains, then how is it
possible that they are absent in the later-
diverging lancelet? Interestingly, a controversy
on the relative divergence times of the two
earliest representatives of the chordates was also
underway. The lancelets, based on e.g. mor-
phological features (for a considered review of
the non-sequence based evidence, see [85], were
long thought to have diverged after the tuni-
cates—i.e. after the divergence of H. roretzi and
C. intestinalis and other urochordates from the
chordate line. In such a case, it would be difficult
to reconcile how the lancelet would have ‘‘lost’’
the integrin subunits with aI domains. However,
the comparison of 146 genes across 49 species
[69], 1,029 concatenated sequences among the
deuterostomes [71], and *40 Mb of expressed
sequence tags across 21 phyla [25] all concluded
that the urochordates, not the cephalochordates,
are the closest extant relatives of the vertebrates.
Earlier, a similar controversy led to the reas-
signment of hagfish and lamprey to a mono-
phyletic group based on the molecular data (see,
e.g. [65]) and in contrast to the morphological
arguments. Considered in this light, the absence
of aI domains in echinoderms and all earlier
animals, as well as the lancelet, coupled with the
aI domain presence in the ascidians, is congru-
ent and pinpoints the origin of the integrin aI
domain integration event to have occurred after

the divergence of the cephalochordates and prior
to the divergence of the urochordates.

Since the urochordates have integrin aI
domains that are not orthologues of the human
types, the remaining two groups of extant spe-
cies diverging prior to the bony fish—namely,
the hagfish/lampreys (Agnatha; jawless verte-
brates) and the sharks/skates/rays/chimera
(Chondrichthyes; cartilaginous fish)—should
provide evidence for the origin of the human-
type integrin aI domains.

Fragments of sequences have appeared from
the genomic sequencing of Petromyzon marinus
(sea lamprey) and searches against the ENSEM-
BL data (http://www.ensembl.org/Petromyzon_
marinus/Info/Index) yielded several fragments
and a near full-length integrin sequence [16].
Phylogenetic reconstructions with the nearly
full-length lamprey integrin and the fragments
clearly showed that they are not part of the uro-
chordate cluster, nor are they part of the immune
cell recognizing set of aI domains; however, they
have the aC-helix (Fig. 1.3; [16]) and they do
cluster within the collagen recognizing integrin
aI domain set that includes human a1, a2, a10
and a11 (Pmaf3 in Fig. 1.1; Fig. 1.5; [17]). Fur-
thermore, preliminary binding studies on
expressed sequences suggest that the lamprey
sequences bind different collagens and, unlike the
a1I domain of C. intestinalis [93], the binding is
metal-dependent [17]. Thus, the P. marinus
sequences are functional members of the collagen
recognizing set of integrin aI domains; e.g.
Pmaf3 branches as an outlier to both the a10 and
a11 I domains (Fig. 1.1) and Pmaf1 and Pmaf2
associate with the collagen recognizing aI
domains too (Fig. 1.5). A short sequence frag-
ment, an Expression Sequence Tag from Eptatr-
etus burgeri—the inshore hagfish, was also
identified in searches and may correspond to the
N-terminal portion of an aI domain but the
sequence ends just at the junction where the aC
helix would have begun if present (Fig. 1.3; [16].
Nonetheless, if that fragment does in fact corre-
spond to part of an aI domain then the sequence is
clearly not of the urochordate type, nor is it a
member of the collagen-binding clade. Instead, it
seems most similar in sequence to the
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leukocyte-binding, human-type integrin aL I
domains (Fig. 1.5). Two other C-terminal aI
domain fragments were found in searches of
sequence data from the genome sequencing of
Callorhinchus milii (Chondrichthyes; ghost
shark, elephant shark). The fragments began at
the aC helix junction, having the sequences
GSYNR (an a1 orthologue) and GYYNR (an a11
orthologue) of the aC helix, and they correspond
closely to human collagen-binding aI domains.
Indeed, they represent true orthologues (see Fig.
1.3 for the comparison with the extracts from the
full-length sequences) and with the recent pub-
lished genome data for C. milii [94], a large hole
in the vertebrate data coverage is plugged; thus,
full-length orthologues to the human sequences

aE, a1, a2 and a11 are at least present in this
cartilaginous fish [17].

1.6 A Nebulous Origin
of the Integrin I Domain

The vWFA domain, present as the aI domain is
some a subunits and as bI domains in all b
subunits, is found in a wide range of other pro-
teins with diverse function (e.g. collagens,
complement factors, copines, matrilins, ion
channels, protease inhibitors, among others),
which are distributed across all of the domains
of life [42, 70, 97]. vWFA domains are highly
represented in proteins that have roles especially

Fig. 1.5 Multivariate analysis showing the mutual rela-
tionships among aI domains from human integrins and
other vertebrate integrins, ascidians, and fragmentary
sequences from lamprey (Pmaf1-3) and hagfish (Ebu_f).
Spheres represent individual aI domains and some
domains are superimposed at the same location or
‘‘behind’’ other I domains and thus may not be separably

visible. Sequences were aligned with Malign [41] and the
C program PCA (MS Johnson) was used to compute the
three-dimensional projections maximizing the view of
the overall variance among the data, generating pseudo-
PDB coordinates, displayed and rendered in Bodil [53].
The percentage of the total variance displayed along the
P, Q and R axes is shown
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related to processes within the immune and
circulatory systems, and are associated with cell-
cell and cell-extracellular-matrix (ECM) recog-
nition, being component domains of adhesion
molecules at cell membranes as well as proteins
of the ECM (see e.g. [18, 19, 97]), among others.

Despite the wealth of information that exists
on vWFA domains, it has so far not been pos-
sible to establish the likely source for the vWFA
domains inserted into the integrin subunits [42,
91]. The branch orders in trees constructed from
sequence comparisons of vWFA domains may
be robust for similar members within a clade
(according to bootstrapping of the sequence
alignments), but the relative branching orders
among clades are not reliable [42, 91]. The
reasons for this is unknown. The dynamic
expansion of proteins domains within composite
proteins, especially related to extracellular pro-
cesses, took place in the eukaryotes [61]. One
can thus speculate that if multiple vWFA
domain duplication events and incorporation
into different proteins occurred over a relatively
short period of time, for instance with the ear-
liest eukaryotes and perhaps later as the inver-
tebrate chordate line led to the vertebrates, that
the similar degree of differences among groups
of vWFA domains may make it impossible to
resolve the relationships among them because
they are all fairly equidistant from each other. Or
perhaps the aI domain has arisen from duplica-
tion of the bI domain itself, but this appears not
to be the case since the bI domain is among the
most dissimilar of the vWFA domains in com-
parison of the aI domain (Fig. 1.6). The vWFA
domain is small and even within the closely
related human a subunits with I domains, or
consider Cia1 in Fig. 1.6, differences in some
branching orders may arise if only the aI domain
is compared rather than the full-length integrins
having longer sequences and hence higher
information content; this effect would likely be
magnified when sequences are at even greater
distances from each other. Whatever the reason,
at the present there is insufficient information in
the known sequences to resolve this issue.
Interestingly, the sequence ‘‘Uncharacterized
Protein 2’’ clusters closely with the ascidian aI

domain as does one collagen IV a4 chain
(Fig. 1.6).

1.7 A Summary of aI Domain
Evolution and the Origin
of the Vertebrate aI Domains

The integrin a and b subunits have a long his-
tory, likely originating in single-cell eukaryotes
and thus predating the rise of the metazoans
(Fig. 1.7). Despite the presence of homologues
of most of the component domains of integrins
within prokaryotes, integrins subunits have not
been detected in bacteria. Integrins have also not
been identified in non-metazoan multicellular
organisms, namely fungi and plants (despite
attributing a small protein from Arabidopsis
thaliana as an integrin-like protein rather than
possibly a fibronectin-like domain that might be
recognized by an integrin; [49].

The earliest observed integrin subunits are in
single cell eukaryotes diverging close to the
origin of the metazoans [79]. Already in C.
owczarzaki multiple integrin a and b subunits
are observed and this is true for the first meta-
zoans too, e.g. T. adhaerens and A. queenslan-
dica, suggesting that integrin function assumed
multiple roles from the very beginning. In a
single species, integrin a subunits of humans
frequently outnumber b subunits and thus a
single b subunit may have multiple a subunit
partners; in humans, for example, the b1 subunit
forms dimers with 12 of 18 a subunits.

From the earliest integrins, ligand binding
(e.g. [98]) was likely based on interactions at
MIDAS of the bI domain and with the b pro-
peller domain of the a subunit. The proteins
ligands recognized by these early integrins likely
also had short recognition signatures, e.g. RGD,
LVD and variants, that were presented on sur-
face loops that could occupy the fairly narrow
site between the b propeller of the a subunit and
the bI domain of the b subunit. The integrin
domain structure then remained quite static in
terms of domain structure throughout the
invertebrates and into the first invertebrate deu-
terostomes, e.g. the echinoderms. This is also
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true for the lancelets. The cephalochordates are
now accepted to have diverged prior to the tu-
nicates and are the earliest diverging extant
chordate subphylum.

In an ancestor of the urochordates, a key
change in an integrin a subunit gene led to a
major alteration of the protein structure and
function of some integrin heterodimers: A
vWFA-type domain was inserted within a loop
at the surface of the b-propeller domain of the a
subunit. The urochordates remain the earliest
diverging extant species found to have aI
domains, with one in H. roretzi and eight in C.
intestinalis. The nine integrins a subunits with I
domains for their own clade are clearly not of

the collagen or leukocyte types seen in humans
and other vertebrates. The a1 I domain of C.
intestinalis has been tested for collagen binding
and, unlike the human collagen binding set, does
not bind to fibril forming collagens I–V nor to
GFOGER-like peptides, but it does bind strongly
to collagen IX through a mechanism that is
metal and MIDAS independent [93]. MIDAS-
independent binding occurs with other vWFA
domains: e.g. vWFA3 [7, 35, 74], known to bind
collagen I and III, and vWFA1 [13], which binds
platelet glycoprotein 1b alpha.

The aI domain thus appeared early in chor-
date evolution and within an invertebrate. This
inserted domain relocated the integrin external

Fig. 1.6 Multivariate analysis showing the mutual rela-
tionships among integrin aI and bI domains from human
and the ascidians, and other vWFA domains. The integrin
bI domains from human and the ascidians cluster
together and are the most dissimilar cluster from all
others. Cia1 clusters with a group A, whereas UP2
(Uncharacterized Protein 2) clusters with the Ciona aI
domains. A Chains from collagen type VI, XII, XXII,
UP1, Sushi 2–3, Fibrillins, Cartilage matrix protein.

B Chains from collagen type XIV, XII; Selectins (E,F,P);
Matrillin, Sushi 1,3; Fibrillins; UP3-6; C Collagen type
VI chain, Anthrax toxin receptor 1, Plasmodium CTRP,
Plasmodium micronemal protein. D Calcium channels;
Trypsin inhibitors; Copines; Midasin: Bacterial Mg2+

chelatase; Yeast DNA repair factor; Yeast Proteosome
regulatory factor). The comparisons and figure were
generated as in Fig. 1.5
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ligand binding site away from the b propeller—
bI domain interfacial cleft to location on the aI
domain, which itself budded out from the b
propeller. The aI domain in humans make use of
a key feature of many vWFA domains, including
the bI domain; that is, MIDAS for binding
negatively-charged amino acids at the posi-
tively-charged metal ion located at the site. But,
it is not clear what mechanisms are employed by
the ascidian tunicate aI domains for ligand rec-
ognition. Nevertheless, MIDAS is conserved and
the majority of the known ascidian sequences
contain the intrinsic glutamate ligand involved
in triggering the receptor activation mechanism
(Fig. 1.3). A major advantage of the aI domain

in integrins is high solvent exposure near
MIDAS, meaning that recognized proteins no
longer needed flexible loop regions to snake into
a binding cleft. Instead, larger and more bulky
surfaces and fibrils could now directly interact
with the integrins. Thus, we see that glutamate
within collagen-like triple helical peptides bind
to MIDAS and, similarly for ICAMs, glutamate
extends from the end of a beta-strand at the
immunoglobulin fold surface and binds to
MIDAS at the aI domain.

In humans there are nine integrin a subunits
with I domains; four are within the collagen-
binding set and five belong to the leukocyte-
specific clade. Orthologues extend across the

Fig. 1.7 The spectrum of identified integrin and aI
domain sequences. The earliest diverging species with
identifiable integrin sequences are in the single-cell
eukaryotes, phylum choanozoa, e.g. C. owczarzaki.
Multiple a and b subunits found in the choanozoan are
typically found in the metazoans and the number of a and
b subunits generally increases for species with later
divergence times too, and especially within the chor-
dates. bI domains are an essential part of the heterodi-
meric structure and are found in all b subunits. aI
domains have not been detected among non-

deuterostome invertebrates, nor in echinoderms and the
earliest diverging chordate invertebrate, the lancelet. The
earliest diverging species having integrin a subunits with
I domains are the invertebrate urochordates, but these a
subunits form a clade distinct from the aI domains found
in the vertebrates. Fragments of a subunits with I
domains are found in lamprey and possibly hagfish and
they appear most similar to sequences from the collagen-
binding group and the leukocyte group found in other
vertebrates, including the elephant shark, bony fish and
other vertebrates through to humans
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mammals, birds, reptiles, amphibians, and bony
fish—the latter often having duplicate isoforms.
The cartilaginous fish also have orthologues of
human-type a subunits with I domains. Pre-
liminary data now exist that the earliest diverg-
ing extant vertebrates have human-like integrins
with aI domains too, since lamprey and perhaps
hagfish appear to have integrin aI sequences that
are respectively most similar to the collagen
binding (i.e. a1, a2, a10 and a11) and immune
cell recognizing (i.e. aD, aE, aL, aM, aE) inte-
grin a subunits.

The I domain in the integrin a subunit may
have helped to facilitate or accommodate the
large scale changes and stresses that accompa-
nied the rise and diversification of chordates,
and the added complications of expanded inter-
related physiological systems and specific
functional organs and tissues. The incorporation
of the aI domains into some a subunits, no
matter how this occurred, did provide the chor-
dates with a broad spectrum of tools for recog-
nizing the extracellular matrix and other cell
types, and allowed cells to deal with a wider
range of complications associated with the
multicellular complexity of the rapidly expand-
ing vertebrate line.

A key defining feature of the vertebrates is
cartilage and bone, and collagen receptors with
high avidity may have been necessary for their
development as well as for other tissues [31].
The skeletal system is also tightly intercon-
nected to the immune and circulatory system,
two other systems where major changes also
took place during chordate and especially ver-
tebrate evolution. In the cyclostomes, e.g. lam-
prey, the circulatory system has fibrinogen-
based blood clotting [23], and integrins with aI
domains are key receptors involved in e.g. ver-
tebrate platelet aggregation. The vertebrate
adaptive immune system relies heavily on I
domain containing integrins. In the ascidian H.
roretzi, aHr1 is associated with the innate com-
plement system of defense, whereas lamprey and
hagfish had developed a unique adaptive
immune system preceding that seen in higher
vertebrates [66, 106, 46]. The interrelationships
between these systems for support, defense, and

mediation of nutrition and waste removal from
distant tissues would have benefited from a
expanded functional set of both classes of ver-
tebrate integrins with aI domains that could
recognise a wider array of ECM ligands and
cell-surface receptors.

Finally, we can state with relative certainty
based on the data now at hand, that [1] the aI
domain originated early in chordate evolution
but after the divergence of the lancelets and in
an common ancestor of the tunicate and the
vertebrate lines. We can also state that [2] spe-
cialization of a subunits with I domains towards
collagen recognition and leukocyte binding took
place soon thereafter as reflected in preliminary
data from the lamprey and hagfish genomes; and
[3] already within the cartilaginous fish several
orthologues of the human type integrin a sub-
units with I domains are identifiable and thus,
given the range of observations, the collagen-
binding integrin clade and the leukocyte clade
are characteristics not just of humans and other
later diverging vertebrates, but of the vertebrates
as a whole (Fig. 1.7) including the agnathosto-
mes—they are the vertebrate aI domains.
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2Integrin a1b1

Humphrey Gardner

Abstract

Integrin a1b1 is widely expressed in mesenchyme and the immune
system, as well as a minority of epithelial tissues. Signaling through a1
contributes to the regulation of extracellular matrix composition, in
addition to supplying in some tissues a proliferative and survival signal
that appears to be unique among the collagen binding integrins. a1
provides a tissue retention function for cells of the immune system
including monocytes and T cells, where it also contributes to their long-
term survival, providing for peripheral T cell memory, and contributing
to diseases of autoimmunity. The viability of a1 null mice, as well as the
generation of therapeutic monoclonal antibodies against this molecule,
have enabled studies of the role of a1 in a wide range of pathophys-
iological circumstances. The immune functions of a1 make it a rational
therapeutic target.

Keywords

Integrin � Collagen � Knockout mouse � Phenotype

2.1 Introduction

The integrin a1 subunit was first discovered by
Hemler et al. as the a component of the Very Late
Antigen I (VLA1) expressed on a subset of T
cells in the joints of patients with rheumatoid
arthritis [57], as well as in a subset of lympho-
cytes after long term in vitro culture. a1 is the

largest of the a subunits, with an apparent mw of
190 kDa nonreduced and 210 kDa reduced [60].
a1’s larger size compared to a2 is due to a higher
degree of glycosylation [59]. At the C terminus,
the intracellular portion of a1 is the shortest of
the a subunits, at 13 residues. Functionally, a1 is
one of four collagen binding I-domain containing
b1 partners, along with a2, a10 and a11. None of
the four are known to partner with any b subunit
other than b1. The a1 I domain shows, like a2, 10
and 11, affinity modulation of ligand binding
activity in the same way as has been described
for aL [89, 133].H. Gardner (&)
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2.2 Tissue Distribution and Gene
Regulation

a1b1, like a11b1, is predominantly present in
mesenchyme. In the adult a1 is most abundant in
vascular and visceral smooth muscle. This
smooth muscle expression has been shown, in the
chicken, to be due to a unique combination of
transcription factors, GATA6, SRF, and Nkx3.2
[101]. The latter is not found in mammals, but
similar factors such as Bapx1 and its family
members may play the same role. a1 expression is
switched off during megakaryocytic differentia-
tion and this appears to be due to gene methyla-
tion [20]. The regulation of a1 baseline
expression in other tissues has not been exten-
sively explored. Other sites of a1 expression
include fibroblasts [136, 142] and, particularly,
specialized fibroblast related cells such as hepatic
stellate (Ito) cells [112], pericytes [142] and
mesangial cells [60, 96]; bone marrow mesen-
chymal stem cells [36, 54]; chondrocytes [85], in
concert with integrin a10 [18] and a2 [152];
neural cells including undifferentiated Schwann
cells [139] and neurons [37]; and many white
blood cells [44, 59]. Microvascular endothelium
shows abundant a1 expression [33], which is
upregulated during angiogenesis. Surprisingly,
immunoelectron microscopy shows the presence
of abundant a1b1 on the luminal, as well as
abluminal, endothelial surface [16], where no
canonical a1 ligand would be expected to be. a1 is
generally absent from normal epithelia, other than
the endoderm derived hepatocytes [55, 86, 137],
retinal pigment epithelium [99], and endometrial
glands [10], where it is cyclically expressed.

Although SNPs in ITGA1 have been associated
with osteoporosis in Korean populations [80],
these are synonymous and do not have associated
expression data to corroborate their relevance.

2.3 Expression During
Development

During development, there is abundant and
dynamic expression of a1 in embryonic tissues.
It is first seen at the leading edge of invading

trophoblast shortly after implantation [140], and
antibody blockade of a1 inhibits trophoblast
invasion in vitro [32]. During early to mid
embryogenesis a1 is expressed transiently by
neurons of the CNS [37], by maturing skeletal
and cardiac muscle [144], in the skin [61],
throughout the developing kidney [73], and in
neural crest cells as they mature to dorsal root
ganglia [37].

2.4 Expression in Malignancy

Dysregulation of a1 has been noted in tumors.
Some studies of melanoma have shown a cor-
relation of worse clinical behavior with the
presence of a1 [124, 125], and others with the
absence of a1 [50]. Leiomyosarcomas often
show loss of a1 and gain of a2 [94]. Broncho-
alveolar [75] and gastric [46] carcinomas
sometimes show gain of a1 expression, as do
squamous cell carcinomas of the head and neck
[114]. Survey of RNAseq signatures of the
GATC database shows that a1 is in general
reduced in total expression in tumors compared
to normal tissues, probably reflecting the
increased epithelial to mesenchyme ratio of the
tumors, whereas the reverse is seen for the more
epithelially expressed a2 (Fig. 2.1). The two
exceptions to this finding are head and neck
SCC, corroborating Ratzinger et al. [114], and
clear cell carcinoma of the kidney (Fig. 2.1).
Lastly, dermatotrophic T cell lymphomas show
expression of a1 [138] probably consistent with
the ontogeny of their derivation in the T cell
lineage. There is no consistent relationship
between a1 expression and tumor behavior, in
contrast to, the well-characterized and func-
tionally significant a6b4 to a6b1 switch seen in
some epithelial malignancies.

2.5 Integrin a1 Ligands

The best-known ligands for a1 are the collagens,
investigated mostly in fibroblast studies, and
laminin 111, investigated primarily in studies of
neural cells. Other a1 ligands include matrilin-1,
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expressed in cartilage, galectins 1, 3 and 8, and
the NC1 domain of collagen IV(1), which will
be discussed in the context of endothelial regu-
lation. Lastly, semaphorin 7A expressed on
macrophages appears to be a counterreceptor to
a1b1 [141]. Ligands are listed in Table 2.1.

2.5.1 Collagens

a1 and a2 b1 integrins have collagen binding
preferences that are at first glance discordant with
their tissue distributions. a1b1, predominantly
expressed on connective tissue, has a higher
affinity for collagen type IV than for type I;
whereas a2b1, predominantly on epithelial cells,
favors collagen I, which epithelial cells do not
normally see, over the collagen IV abundant in

epithelial basement membranes. a1 and a2 (and
probably a10 and a11) bind the triple helical
domains of the collagens with highest affinity,
and biochemical, cell biological and crystallo-
graphic studies show that this binding is con-
tributed to by more than one chain of the triple
helix [39, 42]. As such, the binding is dependent
on the chains being in register, and would thus be
exquisitely sensitive to melting. As collagen
melting occur at or below physiological temper-
atures in a very dynamic fashion [81], it is likely
that a1 ligand binding, and hence signaling, can
be affected by events distal to the receptor along
the collagen fibril. This might be especially
important in tissue remodeling.

The a1 I domain can bind the collagen triple
helix at multiple different sites [117, 153], with
the relative affinities being divisible into several
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Fig. 2.1 Expression of Integrins alpha1 and 2 in differ-
ent tumor types. Ratio of RNAseq counts for the gene in
tumor versus matched normal was determined. Data
taken from TCGA where total evaluable number of
samples for the tumor type exceeded 100. Numbers of
samples where the ratio of expression exceeded 2 were
quantitated. Red bars indicate the proportion of cases
where tumor expression is twofold or more greater than

matched normal, and blue bars where tumor expression
is twofold or more lower than matched normal. With the
exception of renal tumors, Itga2 tended to be increased in
expression in tumors in comparison to normal tissue.
With the marked exception of clear cell carcinoma of the
kidney and head and neck squamous cell carcinoma,
Itga1 tended to be downregulated in tumors versus
normal tissue
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classes. Among these there are approximately
three of the highest binding affinity, with Kds of
*0.25 uM, and about 13 in the next affinity
class, with Kds of *14 uM. The highest bind-
ing class regions are adjacent to or overlap with
the sites occupied by a2 I domain, and these can
be competed off both a1 and a2 I domains by
triple helical model molecules containing the
core sequence GLOGER or GFOGER, the latter
of which was also independently identified as an
inhibitor of a1 and a2 binding to collagen I [72]
as well as a11 [158]. This core peptide is not
effective in blocking a1 binding to collagen IV,
but is effective in blocking a2. Recently the
peptide GFPGEN was identified as a sequence
selective for binding a1 over a2 [130]. The
collagen IV binding site for a1 is unique and of
higher affinity [17], and has been shown by to
require Asp 461 in the a1 chain of collagen IV
and Arg 461 in the a2 chain [39]. The binding of
integrin a1, a2 and a10 I domains to other
collagens has also been explored [103, 147].
More recently a1 has been clearly identified as a
receptor for the FACIT collagens IX (predomi-
nantly in cartilage) [76] and XVI (predomi-
nantly in connective tissue) [40], in a region
close to that bound by a2. Mutation of Arg 218
to Asp in a1 causes loss of collagen IV and IX
binding, but only partial reduction in collagen I

binding [76]. Structural analysis based on
modeling from the a2 subunit demonstrates the
existence of closed and open states alternately
blocking or enabling binding of RKKH type
peptides. The two states are energetically very
similar, allowing for the possibility of control by
inside-out signaling [104]. Another mutation in
a1, Glu 317 to Ala, causes increased affinity of
the I domain for both collagens and laminin
[146], and reveals the possibility that the acti-
vated integrin, and ligand bound open integrin,
may be slightly different states [77]. Dramati-
cally, this I domain mutation Glu 317 to Ala
also causes increased activation of ERK, and
enhanced downregulation of collagen synthesis
[132], further affirming outside–in signaling and
attributing it to the integrin itself. The relation-
ship between the probable affinity modulation of
a1, the multiplicity of sites on the collagen fibril
along which a1 can bind, and the dynamic
instability of the triple helix, suggest a highly
dynamic interaction between integrin and col-
lagen. For example, one could see how fibro-
blast motility along collagen I might be
contributed to by detachment and reattachment
of the integrin along the fibril. Another possi-
bility is that collagen fibril assembly and
extrusion from the fibroblast might be aided by
a1b1 protruding from the plasmamembrane

Table 2.1 Known ligands of Integrin a1b1

Ligand Likely cellular context References

Collagen I Fibroblasts [39]

Collagen IV Fibroblasts, myoepithelium [39]

Collagen IX Cartilage [76]

Collagen XVI Connetctive tissue [40]

Arresten (Col4A1 NC1 domain) Angiogenesis [25]

Laminin 111 Neural tissue [143]

Laminin 112 Neural tissue [143]

Matrilin I Cartilage [91]

Galectin 8 T cells [31]

Galectins 1, 3 Vascular smooth muscle [98]

Jararhagin Snake venom [104]

Obtustatin Snake venom [92]

Ross River Virus Viral infection [82]

Semaphorin 7A T cell macrophage interactions [141]

24 H. Gardner



surrounding the fibril. Indeed, the a1 null mouse
has narrower and less well formed collagen
fibrils than the wild type animal (Gardner,
unpublished). However, the relative importance
of a1 binding to collagen I versus the basement
membrane and facit collagens in vivo has not
been established.

2.5.2 Laminins

Laminin 111 and 211 binding by a1 is seen in
fibroblasts, and is particularly evident on neural
cells, for which the pheochromocytoma line
PC12 is used as a prototype [143, 159]. These
cells show a1 dependent adhesion to domain VI
of the laminin a chains 1 and 2, at sites adjacent
to or congruent with a2, at the opposite end of the
laminin molecule from the binding regions of
the epithelial laminin receptor a3b1 and the
hemidesmosome integrin a6b4 [24]. This seems
reasonable in the context of an epithelial base-
ment membrane, where epithelial cells would
bind at one end of the molecule and mesenchy-
mal cells at the other (although binding to lami-
nin 332 by a1 is not seen). In vitro, a1 has been
[13] found to be important for neurite outgrowth
on laminin [145] and neural crest cell attachment
to collagen [108]. Neural crest cell attachment to
laminin can be inhibited by antisense oligonu-
cleotides to a1 mRNA [78]. Further studies have
shown that neural crest cells migrating on lami-
nin 111 interact, via a1, with two distinct sites on
the molecule. LN E8—a1 interaction drives FAK
activation, focal adhesion formation, and
migration, while LN E1—a1 interaction drives
ERK activation and survival [35]. While it is
tempting to suggest that this specificity is
attributable to subtleties of outside in signaling,
the work does not rule out the possibility of some
essential coreceptor for one or other interaction.
The a1 null mouse, however, has normal pig-
mentation on all genetic backgrounds and
appears neurologically and neuroanatomically
normal except for a sensitivity to ketamine/
xylazine anesthesia (Davidson J, unpublished
observations) which may have a neurological

basis. Whether a2, possibly co-expressed on
neurons, provides an adequate alternative for
neurite outgrowth, will be seen in the a1/a2
double null animal.

2.5.3 Matrilin and Galectin

Matrilin-1 is found in cartilage, and appears to
cause increased chondrocyte adhesion to colla-
gen II, via its association with a1 [91]. Galectin
8 [31] binds several integrins including a1 but
not a2, and induces Erk phosphorylation inde-
pendently of cell attachment. Galectins 1 and 3,
secreted by vascular smooth muscle, also appear
to bind integrin a1, the latter in a lactose
dependent manner [98]. These glycoproteins, in
contrast to matrilin-1, appear to inhibit cell
attachment to other matrix components.

2.5.4 Semaphorin 7A

The semaphorins are best known as guidance
molecules in the CNS. Interestingly, Sema7A, a
subset of semaphorins primarily found in the
immune system, appears also to be a component
of the immunological synapse in some activated
T cells [141], where it interacts specifically with
macrophages expressing integrin a1b1, inducing
downstream effects of a1 activation. Similarly to
a1 null mice, sema7A null animals are resistant
to encephalitis and DTH models. a1b1 is widely
expressed in the CNS. Whether it interacts with
other semaphorins is to be seen.

2.6 Peptide Inhibitors of a1

While Jararhagin, a venom protein first noted to
bind the alpha2 I domain, also binds the a1 I
domain [104], Marcinkiewicz and colleagues
also identified Obtustatin [92] as a specific
inhibitor of a1 which does not bind to the I
domain. Using blockade of FGF2 driven angio-
genesis in the chick CAM model as an assay,
they pinned down a specific inhibitory peptide

2 Integrin a1b1 25



with affinities in the millimolar range, with
sequence CWKTSLTSHYC. No further work
has been published on this interesting molecule.

2.7 Co-receptors of a1

Many non-I domain containing integrins have
been shown to associate in the membrane with
other receptors, the best examples being the
tetraspanins [8] and Integrin Associated Protein
[15]. These may modulate integrin behavior and
binding to ligands. a1 has not been shown to
associate with such proteins, but this is an area
meriting further exploration. On the other hand,
a1 is one of a subset of integrins (including
a5b1, avb3, and a6b4) which associate in the
membrane with caveolin and stimulate the Erk
pathway via Fyn and Shc [150, 151].

2.8 Integrin a1 Regulation
by Cytokines

Most studies of regulation of a1 expression in
the adult relate to expression during lymphocyte
ontogeny, and in fibroblasts in response to a
variety of cytokines. Like integrins a2, a3, a4,
and a5b1, a1b1 is upregulated in fibroblast lin-
eages by TGF-b [56], as well as interleukin-1b
[123], TNF-a, and interferon gamma [47]. The
only cytokine which appears to cause differential
regulation of a1 is platelet derived growth fac-
tor—BB, which causes downregulation of a1
integrin and upregulation of a5 integrin in
fibroblasts [47] and mesangial cells [68].

2.9 The a1 Null Mouse

Aspects of the a1 null mouse will be discussed in
subsequent sections. A brief overview is provided
here to provide perspective on the known and
suspected roles of a1. a1 null mice are viable and
fertile, and embryogenesis proceeds normally
despite the broad and dynamic expression in
trophoblast and developing nervous system. Ini-
tially, adult animals are remarkably normal with a

mild decrease in weight, normal smooth muscle
function, normal rates of wound healing, normal
liver function, normal behavior, and no blatant
immunodeficiency in a laboratory environment
[48]. With ageing, the animals exhibit a series of
progressive phenotypes, notably osteoarthritis
[156], and retinal degeneration [107], as well as a
variety of other vulnerabilities.

2.10 Integrin a1, Signaling,
and the Cell Cycle

The potential role of a1 as a cell cycle regulator
was suggested by studies showing that a1b1 was
a member of a small group of integrins which
could activate the adaptor protein Shc, resulting
ultimately in MAP kinase activation [150].
Several observations from the a1 null mouse
confirmed this, including a reduction in fibro-
blast proliferation rate in embryonic skin and
dermal fibroblast number in the adult, as well as
the observations that embryonic fibroblasts from
the a1 null failed to activate Shc in response to
adhesion to collagen, and that they failed to
grow on collagen in conditions of limiting serum
whereas growth on the a5 ligand fibronectin or
the av ligand fibrinogen, was normal [109]. As
a2 and probably a11 are present on these cells,
this suggests that a1 is unique among collagen
binding integrins in mesenchyme in being able
to stimulate proliferation. Fracture calluses are
smaller in a1 null mice, concomitant with a
deficiency in bone marrow derived mesenchy-
mal stem cell proliferation [41]. Interestingly,
the number and proliferation of mesenchymal
stem cell derived hypertrophic chondrocytes in
this model is normal—suggesting a specific and
transient dependence on a1 for proliferation in
the mesenchymal stem cell differentiation path-
way. Indeed, a1 has been identified as a very
effective tool for the isolation of mesenchymal
stem cells [36], and more recently for the
selection of the most proliferative subclones of
mesenchymal stem cells with the highest multi-
differentiation potential [120]. A role for a1 has
also been described in osteoblast differentiation
[66]. Similar phases of a1 dependence for

26 H. Gardner



proliferation appear to be present at some stages
of lymphocyte ontogeny [95]. Furthermore,
tumor cells derived from Kras transgenic mice
are less proliferative on an a1 null background
[90]. Overall, the subtlety of the proliferative
deficit in the a1 null mouse must be accounted
for by the large number of overlapping prolif-
erative pathways, ligands, and integrins present
in the organism.

The a1 cytoplasmic domain is very short. It is
required for a1b1 migration into focal adhesions
[12], and has a role in binding cytoskeletal
components [87, p. 125] FAK, and phospholipase
C gamma [149]. A remarkable study by Abair
et al. [1], taking advantage of a1 null endothelial
cells, demonstrated very specific requirements of
components of the tail for full activity. The lysine
triplet is required for migration and adhesion, and
for activation of the Akt and p38 pathways, but
not for Erk activation. Furthermore, alanine
scanning shows that the most membrane proxi-
mal lysine is required for endothelial tubulogen-
esis, and migration on collagen IV, and that Lys
1151 is required for all functions except for
proliferation. It appears that the integrin a1
cytoplasmic tail is quite unique among the inte-
grins in being able to bind and activate the small
nuclear shuttling phosphatase TCPTP. This
phosphatase has many targets, but in the context
of collagen ligand binding, TCPTP acts to cause a
reduction in EGFR signaling [93], either by
dephosphorylating EGFR directly or by reducing
the amount of phosphorylated caveolin available
to activate EGFR [11]. Whatever the mecha-
nisms, the implication that active ligand binding,
which in general would cause Erk activation, can
serve to dampen an alternative pro-mitotic sig-
naling pathway is intriguing. The specificity to a1
is also intriguing. While the genomic region
containing a1 is lost in some tumors, and thus a1
might be regarded as a candidate tumor sup-
pressor [93], the molecule is not expressed in
most epithelial tissues. One physiological site
where a1 might usefully downregulate EGFR
activity is in myoepithelial cells of the breast,
where cells express a1 [74], as well as EGFR
[100], and are juxtaposed to basement membrane.

2.11 Integrin a1, Fibroblasts,
and Collagen and Collagenase
Regulation

Many studies have shown that a1b1 is a negative
feedback regulator of collagen synthesis by
fibroblasts. These were initiated by Langholtz
et al., who showed that an activating antibody to
a1 accentuated the normal downregulation of
collagen synthesis seen when fibroblasts are
suspended in collagen gels [79]. It was also
noted that a1 levels appeared to be reduced on
scleroderma fibroblasts, in conjunction with their
upregulation of collagen synthesis [64]. Data
from the a1 null mouse lent strong support to this
role: in vivo the mice show a 20 % increase in
the rate of collagen incorporation into the skin,
and fibroblasts from these animals are deficient
in downregulating synthesis in response to gel
suspension [49]. We subsequently examined
keloids to determine whether loss of a1 could
account for the increased collagen expression in
these lesions [142]. A high proportion of lesional
fibroblasts expressed a1 (in contrast to sclero-
derma lesions), although the levels expressed
were somewhat lower than seen in chronic
wounds with low collagen production. Thus,
absence of a1 could not account for the excess
collagen production in keloids, but there may be
a relative deficiency compared to normal
wounds, which show distinct peaks in a1
expression at 8 and 30 days [9].

The mechanism for downregulation of colla-
gen synthesis mediated by a1 has been exten-
sively dissected. a1b1 stimulation by ligand
activates the MAP kinases Erk1 and 2 via Fyn
and Shc [109, 150], and Erk1/2 activation
reduces collagen synthesis [116]. Reciprocally,
the Erk1/2 inhibitor PD98059 causes upregula-
tion of fibroblast collagen synthesis [1]. This is
the reverse of the effect of a2b1 stimulation,
which activates p38 and causes induction of
collagen synthesis [65]. Thus, in general, a1b1
and a2b1 are opponents in their effect on col-
lagen synthesis, the former inhibitory and the
latter activatory. More specific mechanisms of
collagen regulation involving reactive oxygen
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species in mesangial cells will be discussed in
the kidney chapter.

The regulation of metalloproteases has simi-
lar themes but appears more complex and is
probably very cell type specific. Firstly, the
structure and function of the mouse and human
collagenases is not congruent: MMP1, which is
the major fibroblast collagenase in humans, is
upregulated by Erk1/2 activation, but the mouse
MMP1 structural equivalents, McolA and
McolB, are not seen in skin fibroblasts, and have
a restricted expression in the placenta and uterus
[3]. On the other hand human MMP13, found in
chronic ulcers [148], is downregulated by Erk1/2
activation as well as being upregulated by p38
activation [115], and MMP13 is the major
fibroblast collagenase in mouse [83]. Although
functionally equivalent to human MMP1, mouse
MMP13 appears to be regulated like human
MMP13, as it is markedly upregulated in a1 null
mice where there is loss of Erk1/2 signaling but
normal a2-p38 signaling. The a1 null animal
shows an increase in expression of several other
MMPs, including 7, 9 and 2 in endothelial cells,
and 9 and 2 in fibroblasts [49, 111]. For want of
other evidence, this may be attributed to reduced
Erk1/2 activation. However, whereas a1 stimu-
lation is always inhibitory to collagen synthesis,
it is sometimes activatory to MMP synthesis. In
some systems a1 activation by laminin [84] or
by collagen IV (Pozzi and Gardner, unpub-
lished) or collagen I [121] causes an increase in
MMP synthesis.

In many studies of fibroblast collagen inter-
action, the complex process of collagen gel
contraction is addressed. In dermal fibroblasts
integrin a2b1 is seen to be the dominant player
in this process [79], which can be uncoupled
from MMP synthesis [14], and is dependent on a
functional cytoskeleton. However, in studies of
specialized cardiac fibroblasts [19], smooth
muscle cells [53], stellate cells [113] and mes-
angial cells [69], a1 blockade has been shown to
prevent gel contraction, as has integrin avb3
blockade in other cell types [27]. It is possible
that whereas a2 is structurally more suited to gel
contraction (having a far higher affinity for
collagen I), a1 expression may be required for

maintenance of the contractile myofibroblastoid
phenotype. It is striking that a1 expression is
upregulated in vivo in all activated contractile
myofibroblastoid cells including myofibroblasts
in wound repair, mesangial cells, pericytes,
myoepithelial cells [74], and hepatic stellate
cells.

In summary, there may be several roles for a1
and its interplay with a2 in the fibroblast during
dermal wound healing and other episodes of
mesenchymal repair. a1 upregulation in fibro-
blasts contributes to collagen stimulated cell
proliferation, and probably to the myofibroblast
transition. a2 is the major contributor to the
synthetic phenotype, where it contributes the
major part of collagen matrix contraction and
activates collagen synthesis, as well as activat-
ing MMP synthesis for matrix remodeling. a1
fine tunes the MMP response, possibly providing
general inhibition of MMP release, but allowing
for specific activation near the epidermal
boundary where there is a greater abundance of
the a1 high affinity ligand, collagen IV. a1 also
provides feedback inhibition against excessive
collagen synthesis. Consistent with these sug-
gestions, the a1 null shows excessive collagen
and collagenase synthesis at overlapping phases
of wound healing [49], and collagen fibrils are
densely aggregated and irregular in the dermis of
the a1 null, while being individually smaller
(Gardner, unpublished observations). Some
aspects of this paradigm appear to be different in
mesangial cells, which are discussed in the
kidney chapter.

2.12 Integrin a1 and Angiogenesis

Immunohistochemical analysis of murine and
human tissue shows that a1 is present on at least
some normal microvascular endothelium. a1 has
also been shown to be upregulated on endothelia
in MS lesions [135]. New tumor microvessels
appear always to express a1, while a smaller
proportion of them, predominantly the slightly
larger ones, also express a2 [111]. Vascular
endothelial growth factor (VEGF/VPF) can
induce a1 on endothelial cells, and as the only
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collagen receptors expressed, a1 and a2 are
required for endothelial haptotaxis through col-
lagen. Antibodies to a1 and a2 reduce angio-
genesis in response to subcutaneously implanted
gels of fibrin or collagen containing VEGF, or to
tumor xenografts [128, 129]. However, tumor
matrix contains a great variety of alternative
integrin ligands. As we have learned from
fibroblasts, a1b1 can activate an Erk1/2 prolif-
eration pathway mediated by Shc. a2b1 can also
positively regulate the progression through the
cell cycle in epithelial cells by non overlapping
mechanisms [71]. Thus, a1 and a2 blockade
in vivo may cause a simple reduction in endo-
thelial proliferation. With this in mind, there is
no deficiency in normal vasculo- and angio-
genesis in a1 null mice. Analysis of the null
mice, however, reveals other, subtler roles for a1
in angiogenesis.

Detailed analysis of endothelial cells and
tumor vasculature in a1 null animals [111] led to
independent verification of the significance of
plasminogen fragments, the angiostatins [105],
in endothelial growth regulation. Pulmonary
microvascular endothelial cells from a1 null
mice grew poorly compared to wild type,
regardless of the substratum on which they were
grown. This growth deficiency could be com-
pletely rescued by frequent media change even if
the cells were grown on collagen. Furthermore,
media conditioned by a1 null endothelial cells
was inhibitory to the growth of wild type cells.
The growth deficiency in a1 null endothelial
cells was also corrected by antibodies to angio-
statin, or growth in media containing serum
from plasminogen null mice (from which no
angiostatin could be generated) instead of fetal
calf serum. Lastly, the growth deficiency could
be rescued by MMP9 blockade. Analysis of
conditioned medium from a1 null endothelial
cells as well as plasma from wounded (but not
unwounded) or tumor bearing a1 null mice
showed an increase in MMP9 and angiostatin
compared to wild type animals. These findings
in endothelial cells were consistent with the
increased MMP expression seen in a1 null
fibroblasts, due to loss of a1-Erk1/2 inhibitory
signaling with normal a2-p38 activatory

signaling. Thus, increased MMP9 released by
the a1 null cells cleaves plasminogen [106] to
yield the endothelial inhibitor, angiostatin.

In vivo, a1 null mice, with higher plasma
MMP9 and angiostatin levels are less able to
vascularize subcutaneous tumors than wild type,
but this deficit can be reversed by oral treatment
of the animals with the MMP9 inhibitor doxy-
cycline, and consequent reduction of their
angiostatin levels [110]. MMP9 levels in the
vasculature correlate inversely with tumor vas-
cularization even in wild type mice. These studies
have been repeated in several tumor systems with
essentially similar results, namely that tumors in
the a1 null host are smaller and less vascular and
the phenotype can be reversed by MMP inhibi-
tion [22, 23]. These studies showed that the
interplay between a1 and a2 integrins has sig-
nificant consequences in the vascular system.
Thus, during vascular remodeling, upregulation
of endothelial a1 and a2 occurs, and the balance
between them regulates MMP release, and ulti-
mately vessel number.

While plasminogen is an MMP9 target, and its
cleavage product angiostatin was entirely
responsible for endothelial growth inhibition
in vitro, other MMP targets might be of impor-
tance in this feedback system in vivo. These
include the collagens themselves. In this regard
the finding that a collagen NC1 domain is a ligand
for a1 may be of significance. The NC1 domain
of collagen IV a3, also known as tumstatin,
causes endothelial cytostasis and blocks angio-
genesis by binding to integrin avb3, and a similar
mechanism appears to exist for a1 binding to the
collagen IV(1) NC1 domain (arresten) [25]. This
might be an explanation for the presence of a1 on
the luminal surface of endothelium, where it
could act as a detector of collagen fragments
released during remodeling, and provide negative
feedback to angiogenesis. While in general a1
binding to collagen in fibroblasts causes activa-
tion of Erk1/2 via Shc, arresten may provide a
growth inhibitory signal. In fact this has been
strongly suggested by the work of Nyberg et al.
where the arresten—a1 interaction appears to
mediate an apoptotic response [102], and this
interaction has been invoked in the blockade of
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growth of HSC tongue carcinoma cells [2]. The
absence of both signals—collagen IV driving
growth and arresten being pro-apoptotic—in the
a1 null could explain why normal angiogenesis is
unaltered in a1 null mice.

2.13 Smooth Muscle and a1

a1 is extremely abundant on smooth muscle,
both visceral and vascular [6], and, in vivo,
expresses no other collagen binding integrin
(explanted smooth muscle rapidly upregulates
a2, complicating studies [134]). Furthermore,
smooth muscle basal lamina has abundant col-
lagen IV. There is no upregulation of a2 or a10
in the a1 null smooth muscle in vivo, as assessed
by immunostaining [48]. Yet in the a1 null
mouse digestion and parturition is entirely nor-
mal, and EM studies reveal no alterations in
smooth muscle structure. Studies of mesenteric
arteries have shown that a1 deficient vessels
rupture at lower stresses than wild type, due to a
deficiency in the hypertrophic response [88].
Integrin a8b1, a fibronectin receptor, is also
abundant in smooth muscle, but the double
knockout a1/a8 animal also had histologically
normal smooth muscle (Gardner and Branden-
burger, unpublished). Further collagen binding
integrin double knockouts may reveal the
answer to this mystery.

2.14 Integrin a1 and the Retina
and CNS

Retinal pigment epithelium (REPE) cells have
been shown to use a1 as one among other
receptors for collagen gel contraction [99] but a1
signaling of MAP kinase activation is clearly of
unique importance. Peng et al. [107] found that
older a1 null mice become blind, with loss of
retinal evoked potentials, degeneration of the
peripheral retina, irregularities in basal lamina
thickness, rod degeneration and synaptic mal-
formation in rod and cone terminals, and failure
of transducin a translocation to the outer rod
segments upon light exposure.

Frasca et al. [45] have made observations on
the role of a1 in contributing to the neurotoxicity
of amyloid. This appears to be due to a1-ligand
interaction, via Erk activation, being permissive
to neuronal entry into the cell cycle after their
stimulation by A-beta. Neurons, in contrast to
other cell types, appear to meet their demise
after cell cycle entry.

2.15 Integrin a1 as a Viral Receptor

Many integrins have been recognized as recep-
tors for viruses. a1 appears to be one of several
receptors for Ross River virus, a semliki forest
type alphavirus one of whose coat proteins has a
region which appears to mimic a collagen fold
[82]. There is a possibility that a1 is also a
receptor for rotavirus enterotoxin [131].

2.16 Integrin a1 and the Kidney

Expression of a1 by glomerular mesangial cells
[30, 60] as well as the developing kidney [73] led
to a great deal of interest in the role of this integrin
in the kidney. a1 null mice showed no functional
or anatomic renal abnormality alterations in a1
null glomeruli in the unperturbed state, but a
variety of challenges have exploited the under-
lying mesangial alterations to create new models
of renal disease. Ex vivo studies demonstrate
alterations in mesangial homeostasis in the
absence of a1, notably an alteration in MMP
profile rather different from that seen in cutaneous
a1 null fibroblasts [155]. a1 nulls also have poor
osmolarity regulation [97]. Streptozocin treated
a1 nulls get worse glomerular disease than wild
type [157], and the diabetic Akita mouse gets
dramatically accelerated renal dysfunction when
crossed into an a1 null background [154].

Cross of the a1 null with the collagen IV a3
chain null (COL4A3/Alports) mouse [29] led to
unexpected effects. Reduced glomerular base-
ment membrane stiffness in the COL4A3 null
leads to a progressive glomerulonephritis with
mesangial expansion and secondary tubulointer-
stitial fibrosis. Surprisingly, the double null
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animal lived twice as long as the COL4A3 null,
due to a delay in the progression of renal failure.
This unexpected result appears to be due to
several mechanisms. Firstly, in the normal pro-
gression of murine Alports, there is a marked
influx of monocytes into the interstitium in
response to glomerular epithelial damage. a1 null
monocytes are defective in migrating into the
renal interstitium, possibly due to the monocyte
requirement for a1 to adhere to the collagen XIII
generated by endothelium during injury [34], and
are therefore reduced in number in the double
null kidney. This reduces delivery of TGFb to the
kidney, delaying the onset and progression of
interstitial fibrosis [122]. Secondly, mesangial
cells are dependent on a1 and Rac to invade the
glomerular tuft [155], a key process in the initi-
ation of renal repair and injury. In the a1/
COL4A3 double null, the mesangial expansion is
greatly reduced [29]. In another glomerulone-
phritis model, anti-Thy-1 GN in the rat [69],
direct injection of anti-a1 in the renal artery
caused a marked reduction in mesangial prolif-
eration and matrix accumulation, an important
in vivo validation of a series of studies of the role
of a1 in mesangial cells [67–70]. The role of a1
in driving proliferation is complex in mesangial
cells. In contrast to studies in most systems
which ascribe a pro-proliferative role for a1
signaling, overexpression of a1 in mesangial
cells leads to activation of p27Kip and cell cycle
arrest [70]. In fact mesangial cells appear to be an
exception in many aspects of a1 physiology, in
that Erk phosphorylation is upregulated in a1
null mesangial cells and p38 is downregulated.
Notwithstanding the increased Erk phosphory-
lation, collagen synthesis is increased, via a
reactive oxygen species driven mechanism
[21, 28]. This may be due to some kind of inte-
grin crosstalk, where the excess integrin a1
activates a pathway normally associated with
another integrin [127]. A potential corollary of
this is that monomer and polymer collagen have
different effects on mesangial cell growth; on the
latter substrate growth is inhibited, a1 is exclu-
ded from focal contacts, and ERK1/2 phosphor-
ylation is diminished [126].

2.17 Integrin a1 and the Immune
System

Integrin a1 was first discovered as a very late
antigen on cultured T cells, and being the largest
of the a subunits, was named Very Late Antigen
1 (VLA1), a name which persists in immuno-
logical studies. Hemler et al. subsequently
showed that VLA1 was present on a large pro-
portion of T cells in the joints of rheumatoid
arthritics, but was almost absent from the cir-
culation, giving a first clue to a role for a1 in
tissue migration and T cell activation [60, 58].
More detailed study of the immune system
revealed that a1 is also expressed on a subset of
NK-T cells as well as populations of activated
monocytes and NK cells.

a1 deficiency generated by knockout or
antibody blockade has dramatic consequences in
the immune system. a1 null mice show no overt
immunodeficiency, but they show resistance to
many different disease models involving mono-
cyte function or peripheral T cell memory.
These include a resistance to anti collagen II
antibody induced and mycobacterium induced
arthritis [44, 62], colitis [43], DTH, contact
hypersensitivity [44], and LCMV induced
encephalopathy [7]. Inflamed tissues in these
models, as well as the normal gut mucosal epi-
thelium [95], show reduced infiltration by T
cells and monocytes. Furthermore, cultured
splenocytes from a1 null animals show reduced
proliferation in response to collagen, and fail to
express integrin a2 upon long-term culture.

In murine influenza models, a1 positive T
cells tend to be CD4 and associate with base-
ment membranes, while a2 T cells bias to CD4
and an interstitial location. Memory to influenza
is maintained by the a1 positive T cells, as they
are protected from TNF driven apoptosis [119,
118]. Treg cells are VLA1 negative, and stim-
ulated PBMCs can be diverted from generating
VLA1 + T effector cells into Treg cells if TNF
signaling is blocked [51]. Taken together, the
results suggest that a1 is needed both for lym-
phocyte migration into the collagen rich
periphery, and for the proliferation of activated
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T cells in those locations, or for their long term
survival as mediators of peripheral T cell
memory [38].

In rheumatoid arthritics, a1 positive T cells are
far more abundant and tend to be found in the
joints as oligoclonal populations, probably
responding to a restricted number of joint anti-
gens [4, 52]. Here they offer an obvious target for
therapy. Interestingly, a1 has also been noted to
be required for monocyte retention at sites of
inflammation in skin [5], and a role for the
receptor was similarly shown for T cells in a xe-
notransplantation model of psoriasis, where epi-
dermal, but not dermal, T cells expressed a1 [26].

2.18 Therapeutics

In the early 2000s Biogen Idec developed a
humanized function blocking anti-VLA1 anti-
body for immune diseases. This has now been
taken through a phase 1 single dose escalation
study by Santarus, as SAN-300, without
remarkable side effects, and with anecdotal
demonstration of efficacy in a single rheumatoid
arthritis RA patient recruited to the study [63].
The potential for this molecule may be very high
in diseases characterized by the persistence of
localized pathological effector T cell memory,
such as RA and psoriasis.

2.19 Summary and Prospects

Integrin a1 has major roles as a modulator of
mesenchymal proliferation and differentiation,
matrix turnover, and immune function. Its roles in
the immune system make it a clear target for
therapy. In its biochemical properties, a1 appears
to have a unique role in binding basement mem-
brane collagens, the significance of which in vivo
is not yet entirely clear. Like the other collagen
binding I domain containing integrins, a2, a10
and a11, its absence is not associated with major
structural deficits in the mouse, illustrating the
dense interweaving of redundant or partially
redundant pathways in tissue morphogenesis.
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3a2b1 Integrin

Aasakiran Madamanchi, Samuel A. Santoro,
and Mary M. Zutter

Abstract

The a2b1 integrin, also known as VLA-2, GPIa-IIa, CD49b, was first
identified as an extracellular matrix receptor for collagens and/or laminins
[55, 56]. It is now recognized that the a2b1 integrin serves as a receptor for
many matrix and nonmatrix molecules [35, 79, 128]. Extensive analyses
have clearly elucidated the a2 I domain structural motifs required for
ligand binding, and also defined distinct conformations that lead to
inactive, partially active or highly active ligand binding [3, 37, 66, 123,
136, 137, 140]. The mechanisms by which the a2b1 integrin plays a critical
role in platelet function and homeostasis have been carefully defined via
in vitro and in vivo experiments [76, 104, 117, 125]. Genetic and
epidemiologic studies have confirmed human physiology and disease
states mediated by this receptor in immunity, cancer, and development
[6, 20, 21, 32, 43, 90]. The role of the a2b1 integrin in these multiple
complex biologic processes will be discussed in the chapter.

Keywords

a2b1 integrin � Collagen � Disease models

3.1 Collagen Receptors-Structure
and Ligand Binding

The a2b1 integrin consists of an obligate het-
erodimer formed from the a2 integrin subunit
non-covalently associated with the b1 subunit. It

is one of four ‘I domain’ integrins, named for the
presence of a highly conserved, extracellular,
(inserted) I domain, which mediates specific
binding of ligands including, most prominently,
collagens [30]. The a2 subunit I domain is an
autonomously folding domain of approximately
220 amino acids [30]. The I domain found in the
collagen receptors is shared with the alpha
subunits of the leukocyte b2 integrins and is
highly homologous to the A domain found in
Von Willebrand factor, in cartilage matrix pro-
tein, in some collagen subtypes and in compo-
nents of the complement system. The crystal
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structure of the a2 integrin I domain was first
defined in 1997 (Fig. 3.1) [20]. The a2 subunit
shares many similarities in structure and ligand
binding with the other I domain integrins,
including the Mg2+ dependence for binding, and
enhancement of integrin function by Mn2+ [36,
60, 116, 118]. The I domain contains a con-
served cation binding site, the metal ion-depen-
dent adhesion site (MIDAS) with clear
preference for Mg2+/Mn2+. The MIDAS motif
is critical for collagen recognition [69].

Structural and other studies of the a2 I domain
have identified an inactive or closed conforma-
tion, an intermediate or low-affinity conforma-
tion, and an active or high-affinity conformation
[3, 37, 66, 123, 136, 137, 140]. Experimental
approaches have characterized the role that dis-
tinct I domain residues play in receptor confor-
mation and ligand binding capability. Mutation
of the Mg2+ binding site at T221 disrupts the
MIDAS site and inactivates I domain function
[112, 135]. Insertion of a disulfide bridge
between helices locks the I domain into a high
affinity conformation [124]. Within the a2 inte-
grin I domain, amino acid E318 forms a salt

bridge with amino acid R288, thereby main-
taining the a2 integrin I domain in a closed
conformation. Recent reports by Carafoli et al.
indicate that mutation of E318 to alanine causes
disruption of this salt bridge and promotes the
transition to the open, high affinity conformation
which enhances a2 integrin I domain binding to
low-affinity ligands [19].

Crystal structures of the active a2 I domain
E318W complexed with the GFOGER peptides
revealed two domains bound to a single triple
helix [19], suggesting that a single GxOGER
motif in the heterotrimeric collagen V or the
FACIT collagen IX, may support binding of the
activated integrin. Similarly, a crystal structure
of the analogous E317A mutant of a1 I domain
also resulted in an opening of the helices [89],
and modelling of a similar peptide, GLOGEN,
onto E317A [25] allows similar conclusions to
be drawn for a1b1.

The a2b1 integrin has high affinity for col-
lagen Type I. Evaluation of the role of the a2b1
integrin structure and function has led to the
identification of a number of novel ligands. The
other ligands can be subdivided into other

Fig. 3.1 A hypothetical model of an I-domain�collagen
complex. A collagen triple helix (white spiral) is shown
in a possible fit a groove on the MIDAS face. A
glutamate side chain from the collagen coordinating the

metal ion as indicated by arrow. The I domain is colored
according to surface charge distribution (blue positive,
red negative, white neutral. Two orthogonal views are
shown (Reprinted from Fig. 5, Emsley et al. 1997)
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collagens, non-collagenous molecules with col-
lagen-like triple helical structures, laminin and
molecules with laminin domains, proteoglycans,
as well as infectious organisms, primarily viru-
ses, and other potential non-matrix ligands.

Among collagens, the a2b1 integrin prefer-
entially binds fibrillar isoforms (I-III, V and XI).
Integrin a2b1 also recognizes the network
forming collagen IV [78], the beaded-filament
forming collagen VI, and the transmembrane
collagen XIII when in an active, high-affinity
conformation [67]. Modulation of integrin con-
formation by cytoplasmic signals provides an
integrin-specific mechanism for adjusting ligand
affinity known as ‘inside-out’ signaling. How-
ever, the binding of purified recombinant a2
integrin I domain to collagen type I or IV
reflects the same relative affinity for the ligand
as does the parent integrin; indicating that dif-
ferences in the integrin-binding motifs of these
isoforms most likely account for the differential
recognition by the integrin [18]. The develop-
ment of overlapping sets of collagen-derived
peptides, termed Toolkits, facilitated systematic
mapping of motifs for integrin binding and
identified the collagen sequence GFOGER as the
major high-affinity binding motif for the a2b1
integrin [82, 83, 112]. The GFOGER motif,
found in Type I, II and XI, is uniquely able to
bind platelet integrin a2b1 without prior acti-
vation [124], suggesting the ability to induce the
active conformation without the inside-out sig-
nals needed for lower-affinity motifs.

More recently, other collagens were defined
as a2b1 integrin ligands. Collagen XVI, a
member of the fibril-associated collagens with
interrupted triple helices (FACITs), binds to the
a2b1 integrin, as well as to the a1b1 integrin
[33]. The a2b1 integrin ligand, collagen XXIII, a
transmembrane collagen, has been reported as
the primary apical binding partner for the inte-
grin in keratinocyte adhesion in the epidermis
[47, 53, 141].

Many molecules of the immune system con-
tain segments of a collagen triple helix, includ-
ing C1q. As discussed below, our laboratory
showed that a2b1 integrin-mediated stimulation

of an innate immune response required a2b1
integrin dependent-adhesion to C1q in an
immune complex [34]. The full length a2b1
integrin and the a2 integrin I domain adhere to
C1q as well as to members of the collectin
family of proteins, including surfactant protein
A and mannose binding lectin. The a2 integrin I
domain adheres to C1q in the absence of acti-
vation. However, the activated E318A mutant of
a2 I domain bound to C1q with higher affinity
than wild type a2 integrin I domain.

As with collagens, adhesion to laminin iso-
forms is mediated by the a2 integrin I domain,
however laminin binding only occurs in the
active, high-affinity conformation [18, 22, 36].
Isolated full-length a2 integrin subunit has been
shown to bind to laminin-111 (previously lami-
nin-1) and laminin-332 (previously laminin-5).
Netrin-4, a member of the netrin family of
guidance signals, demonstrates high homology
to the beta 1 chain of laminins and binds to the
a2b1 integrin and to the a3b1 integrin [148]. To
date, an extensive and detailed molecular anal-
ysis to identify the recognition site/s on laminin
has not been performed. Laminin-binding has
proven to occur constitutively in some cell
types, and inducibly in others. However, the role
of these adhesive events is not well understood.

Perlecan, a heparin sulfate proteoglycan, and
its C-terminal fragment, endorepellin, bind the
a2b1 integrin [45, 46]. The terminal globular
domain of endorepellin, LG3, interacts directly
with the a2 I domain. This interaction has been
studied in the context of angiogenesis and shown
to be important for a2b1 integrin-dependent
angiogenesis.

Decorin, another small leucine-rich proteo-
glycan modulates a2b1 integrin matrix interac-
tions by playing an important role in regulating
extracellular matrix assembly as well as directly
interacting with the integrin [13, 40, 52, 143].
Decorin binding to collagen has been shown to
affect fibril formation by initially delaying lat-
eral fibril growth and reducing average fibril
diameter [142]. Additionally, decorin interacts
with a2b1, but not a1b1 integrin, at a site distinct
from the collagen-binding domain. Adhesive
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interaction between decorin and the a2b1 inte-
grin was first identified in platelets, and later
discovered to be important in angiogenesis.

Single nucleotide polymorphisms in the
integrin a2 gene, as discussed later in more
detail, have an important role in the predisposi-
tion of patients to cardiovascular disease. One
such minor allele difference (rs1801106;
G1600A) has now been shown to attenuate
adhesion of platelets to decorin but not to col-
lagen and is associated with increased risk for
recurrence of stroke [87]. The non-conservative
amino acid substitution E534K, is the basis of
the human platelet alloantigen system HPA-5,
providing the first evidence of a functional effect
of HPA-5 alleles.

The a2b1 integrin serves as a receptor for
many different infectious organisms. In many
cases the organisms usurp a2b1 integrin’s rou-
tine biology for attachment, cell entry and
transmission throughout the body. The best
studied interaction of a2b1 integrin is with
echovirus (EV1) [10–12, 31]. EV1, is a human
RNA virus which binds directly to the I domain
of human a2b1 integrin. Unlike most viruses
that exploit integrin receptors, EV1 does not
undergo clathrin-mediated endocytosis, but
instead clusters on caveosomes and is internal-
ized via a clathrin- and caveolin-independent
macropinocytosis-like mechanism [73, 93].
Additionally, EV1 binding has been demon-
strated to activate PKCa, while inhibition of
PKCa signaling blocks EV1 internalization
[138]. Interestingly, EV1, unlike other a2b1
integrin ligands, preferentially binds the inac-
tive, closed conformation of the integrin over the
active, high affinity conformation [68].

Not only do infectious organisms utilize the
integrin as a receptor, lectins that recognize high
mannose glycans on viruses are produced from
bacteria, algae, plants and animals and bind the
a2b1 integrin. A recently characterized anti-HIV
lectin from Pseudomonas fluorescens Pf0-1
exhibited potent antiviral activity against influ-
enza [121]. The lectin induced loss of cell
adhesion and viral death that was dependent on
binding to the a2b1 integrin. Following lectin
binding to the a2b1 integrin, the complex was

internalized to the perinuclear region and not
recycled. The process resembled that described
for echovirus mediated cell entry and death.

3.2 Signaling

The a2b1 integrin plays a unique contribution in
regulating cell migration, proliferation and sur-
vival. The a2, but not the a1, integrin cytoplas-
mic domain mediates p38 MAP kinase pathway
activation and a migratory phenotype [80, 81].
Expression of the constitutively active small G
protein Rac1 augmented p38 MAP kinase
phosphorylation and migration in mammary
epithelial cell expressing full length a2 subunit.
The role of the a2-cytoplasmic domain in acti-
vation of the p38 MAP kinase pathway was also
established in fibroblasts. Fibroblasts grown in
three-dimensional collagen gels require the a2-
cytoplasmic domain for p38 MAP kinase acti-
vation that leads to a2b1 integrin-mediated up-
regulation of collagen gene expression [62].
Together these results support an important and
specific role for the a2-cytoplasmic domain in
mediating p38 MAP kinase activation. Simi-
larly, the cytoplasmic domain of the a2 integrin
subunit specifically supports insulin-mediated
S-phase entry [81]. The a2, but not the a1, cyto-
plasmic domain mediated activation of the cyclin
E/cdk2 complex, which allows entry into S-phase
in the absence of growth factors other than
insulin. These results suggest that the a2 integrin
cytoplasmic domain and the insulin receptor
synergize to regulate cell cycle progression.

More recently, Ivaska et al. suggested that
the a2b1 integrin induced protein serine/
threonine phosphatase 2A (PP2A) activity in a
collagen-specific manner [63]. In their studies,
collagen-induced PP2A activation and resulting
dephosphorylation of Akt and glycogen synthase
kinase 3b (GSK3b) in Saos-2 cells was a2b1
integrin-dependent. PP2A is a master regulator
of a diverse set of cellular signaling pathways,
so its interaction with a2b1 integrin has the
potential to dramatically increase the scope of
the signaling activities of the integrin. Careful
investigation of these putative signaling
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mechanisms is necessary for a clearer under-
standing of the role for the integrin in various
cell types.

3.3 The a2b1 Integrin: Expression
and Function

In addition to differences in collagen recognition,
expression of the integrin is dependent on cell
type and stage of differentiation. The a2b1 inte-
grin is primarily expressed in vivo by epithelial
cells, platelets/megakaryocytes, and fibroblasts
[146]. In addition, a2b1 integrin expression on
T-cells and endothelial cells varies depending on
differentiation and the state of activation [29, 55,
56, 144]. The roles and functions of the integrin
are therefore highly dependent not only on cell
type but on signals from other cells and the
associated microenvironment.

The majority of earlier work defined the role
and function of the a2b1 integrin by studies of
human platelets and in vitro models. These early
studies implicated the a2b1 integrin in a wide
range of biologic and pathobiologic functions
including platelet adhesion required for hemos-
tasis and thrombosis, epithelial differentiation
and branching morphogenesis, tumor biology,
wound healing, angiogenesis, and inflammation
and immunity. Much has been learned over the
last 10 years since development of state of the
art inhibitory antibodies and gene silencing
approaches, novel in vitro culture systems, and
new animal models including the global a2
integrin-subunit deficient and the more recent
tissue-specific a2 integrin-subunit deficient
mouse. These studies and their impact on our
understanding of the integrin in human biology
and disease will be reviewed.

3.4 Platelet a2b1 Integrin
in Ligand Binding

Patient studies first established the link between
a2b1 integrin and platelet function. In 1985
Nieuwenhuis identified a deficiency of platelet
glycoprotein 1a (a2 subunit) in a patient with

abnormal bleeding [106, 107]. Later other
patients with either reduced levels of platelet
expression of the a2b1 integrin or the presence
of autoantibodies to the integrin were also
described to exhibit impaired platelet activation
by collagen but not by other agonists.

Studies using purified human platelets estab-
lished the a2b1 integrin-dependent adhesion to
collagens I-VIII in a Mg2+-dependent manner.
Although the a2b1 integrin is expressed at rela-
tively low copy number on platelets (2000–4000
copies per platelet), the integrin is required for
firm attachment of platelets to collagen in the
subendothelium after vascular injury [56, 85,
118]. Experiments with purified platelets from
genetically modified a2-deficient mice confirmed
these results. Platelets from a2-deficient animals
fail to adhere to type I collagen under both static
and flow conditions [24]. Platelets from animals
heterozygous for the a2-null allele adhere to type
I collagen to a lesser degree than platelets from
wild type animals, consistent with a gene dosage
effect.

Platelets however have not one, but two
major collagen receptors: the high affinity a2b1
integrin and the lower affinity glycoprotein
VI (GPVI)/Fc receptor c-chain (FcRc) complex
[65, 102, 105]. Despite the significant evidence
supporting the role of a2b1 integrin in platelet
adhesion to collagen, the relative contribution
and precise roles of a2b1 integrin and GPVI/
FcRc in collagen-induced platelet adhesion and
activation is still a focus on experimental
inquiry. The Santoro group originally proposed a
two-step, two-site model of platelet adhesion
and activation to collagen, in which the higher
affinity a2b1 integrin supports the initial rapid
platelet-collagen interaction that mediates
platelet adhesion to vessel wall under conditions
of flow [103, 116, 118, 128, 134]. This allowed
the subsequent engagement of a lower affinity,
signal-transducing co-receptor GPVI to bind
collagen and mediate collagen-induced platelet
activation and aggregation. GPVI, a member of
the immunoglobulin superfamily noncovalently
and constitutively associates with the FcRc
chain to form a multimeric signaling complex.
In this model, the a2b1 integrin mediates strong
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adhesion but does not contribute to platelet
activation.

Other work raised question about the two-
step, two-site model. Studies using a variety of
agonists and inhibitors, defined the contributions
and mechanisms leading to conformational
changes resulting from integrin activation and
provided evidence that the a2b1 integrin can
mediate GPVI-independent, collagen-induced
platelet activation [59, 70, 75, 131]. Collagen-
induced phosphorylation of PLCc2 and Syk was
inhibited by antibodies that block a2b1 integrin
adhesion to collagen or by selective proteases
that cleave the b1 integrin subunit of the a2b1
integrin. In other studies collagen-induced
phosphorylation of c-Src was mediated by the
a2b1 integrin [61]. Platelet adhesion to intact
collagen stimulated a different response than
adhesion to GPVI-mimetics, further supporting
distinct signaling from the a2b1 integrin and
GPVI/FcRc [57, 70].

New work attempted to reconcile these con-
flicting stories. Auger et al. used flourescence
video microscopy to monitor increases in intra-
cellular free Ca2+ concentration ([Ca2+]i), an
early stage in GPVI/FcRc-mediated platelet
activation, upon platelet adhesion to collagen
under flow conditions [5]. In both human and
mouse platelets under flow conditions, they
identified a population of platelets that displayed
an immediate increase in [Ca2 +]i upon collagen
contact, as well as a second population of
platelets that exhibited a delayed increase in
[Ca2 +]i (1–30 s after adhering to collagen). The
first population was unaffected by anti-a2b1
integrin antibody blockade suggesting a GPVI/
FcRc-centric mechanism for both adhesion and
activation as suggested by Nieswandt et al. The
second population conformed to the traditional
two-step model. The authors speculated that the
apparently heterogeneous mechanism would
allow for optimal response to different types of
vascular injury. A similar study by Mazzucato
et al. used inhibitory antibody-treated human
platelets as well as mouse platelets from null
animals to link short-lasting a-like and long-
lasting c-like [Ca2+]i oscillation peaks to a2b1
integrin and GPVI signaling, respectively [97].

Interestingly, they found that a2b1 integrin-
mediated a-like calcium oscillations occur even
in GPVI-null backgrounds indicating that inside-
out priming of the integrin may also come from
non-GPVI sources. Indeed Majoram et al.
reported a role for platelet GPCRs, including
protease activated receptor 1 and 4 (PAR1 and
PAR4), in PLC-mediated a2b1 integrin activa-
tion [94].

Together these studies demonstrated greater
synergy between a2b1 integrin and GPVI/FcRc
in mediating these processes than was previ-
ously understood. Resting platelets express the
integrin in a low-affinity conformation. Activa-
tion, downstream of activation of GPVI, PAR1
or PAR4, or another pathway, leads to a con-
formational change to a high-affinity state which
enhances adhesion to Type I collagen and pro-
motes a more permissive binding to other
ligands including Type IV collagen and laminin.

3.5 The a2b1 Integrin: Genetic
Risk for Hemostasis
and Thrombosis and Much
More

There is substantial variation in the baseline
expression of a2b1 integrin in the population;
quantitative measurements of platelet surface
membrane a2b1 integrin expression indicate as
much as a 10 fold difference among normal
patients [64]. The mechanism of genetic regu-
lation of the gene encoding the a2 integrin
subunit has been best delineated. The variation
is genetically determined and associated with
three alleles of the a2 integrin subunit gene,
ITGA2 [84, 86]. The three alleles have been
defined by 8 nucleotide polymorphisms in the
coding region of ITGA2 gene at nucleotide
807(C or T) and 873(G or A). Individuals car-
rying the 807T/873A allele express high levels
of platelet a2b1 integrin, whereas individuals
carrying the 807C/873G allele exhibit low levels
of a2b1 integrin expression. Cheli et al. descri-
bed another variant in CA repeat length in the
ITGA2 gene promoter that demonstrated linkage
disequilibrium with variants in the coding region
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[23]. Expression of a2b1 integrin may be simi-
larly regulated in other cell types.

Genetic regulation of a2b1 integrin expres-
sion has meaningful biological implications,
which have been most widely appreciated in the
area of hemostasis and thrombosis. Kunicki
et al. reported functional significance of a2b1
integrin expression levels by demonstrating that
the number of a2b1 integrin molecules per
platelet correlated with the ability of platelets to
adhere to Type I collagen [85]. Clinical and
epidemiologic studies based on genetic poly-
morphism analysis demonstrated direct clinical
significance of allelic differences in levels of
a2b1 integrin expression. The alleles associated
with high levels of a2b1 integrin expression
were associated with nonfatal myocardial
infarction in individuals less than a mean age of
62 years, with an increased risk of developing
diabetic retinopathy in patients with Type II
diabetes mellitus, and with an increased risk of
stroke [95, 119].

The original assumption was that increased
integrin expression led to increased platelet
adhesion to collagen and subsequent risk of
thrombosis. Recently an alternative mechanism
for the association was suggested. The level of
a2b1 integrin expression correlated with mean
platelet volume in humans and during megak-
aryocyte differentiation and proplatelet formation
in mice [88, 126]. Surprisingly, platelet specific
deletion of the integrin using the platelet factor 4
promoter-Cre construct and mice with a floxed
ITGA2 gene demonstrated that mice lacking
platelet-specific a2b1 integrin showed decreased
megakaryocyte differentiation, diminished pro-
platelet formation and decreased mean platelet
volume [49]. Since mice with global deletion of
ITGA2 failed to show altered megakaryocytic/
platelet differentiation, compensation by alter-
native integrins, cell types, or pathways was
sufficient to prevent this additional phenotype.
Epidemiologic data linking levels of the a2b1
integrin expression with risk of pathologic
thrombosis and other cardiovascular complica-
tions underscore the importance of further clari-
fying the role for a2b1 in platelet function.

3.6 The a2b1 Integrin During
Wound Healing and Fibrosis

Early in vitro studies suggested that the a2b1
integrin was required for wound healing. Studies
using skin explants ex vivo showed that kerati-
nocyte-specific a2b1 integrin expression was
re-oriented from the basal cell area to the for-
ward-basal aspect of migrating keratinocytes
where the integrin is in contact with type I col-
lagen [114]. Keratinocyte migration into the
wound was inhibited by antibodies against the
a2b1 integrin [110].

In the late phase of wound healing after
reepithelialization, tissue contraction of collagen
fibers results in a strengthened scar. The scar is
the result of extensive fibrosis, a process of tis-
sue replacement by dense extracellular matrix
composed of abundant collagen I. The a2b1 and
the a1b1 integrins, both expressed by fibroblasts,
are key regulators of collagen turnover in
the skin, and other organs including the kidney
[58, 62]. After binding to collagen, the a1b1
integrin activates a pathway that down-regulates
collagen synthesis. In contrast, activation of the
a2b1 integrin promotes collagen synthesis [99].
The alignment of the collagen fibers that occurs
in healing wounds is recapitulated in three-
dimensional collagen gels. The in vitro models
provided evidence supporting critical roles for
the a2b1 integrin wound healing and fibrosis.

Surprisingly, despite the results of in vitro and
explant studies of wound healing, a2-deficient
mice demonstrated no defect or delay in wound
repair compared to wild-type animals [47, 152].
The morphology of the wounds also failed to
demonstrate any difference in keratinocyte
migration over exposed dermis at the wound site,
suggesting that a2b1 integrin does not play an
obligatory role in wound healing. No differences
in scar formation or strength were noted.

Differences between the in vitro experiments
and a2-null mouse model systems have several
possible explanations. First, human and geneti-
cally altered mouse models may not be mecha-
nistically equivalent. Acute loss-of-function as
observed with use of inhibitory antibodies may
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have different effects than the germ-line deletion
of a2b1. In addition, antibodies that inhibit
integrin binding may produce ‘negative signal-
ing’ which is distinct from the absence of inte-
grin signaling in the null context.

Interestingly, Zweers et al. and Grenache
et al. both reported increased neoangiogenesis in
the wound microenvironment of a2-null mice,
providing in vivo evidence for an anti-angio-
genic role for a2b1 integrin [47, 152]. The
increased angiogenesis in the wound healing
model was quite surprising. Many studies have
focused on understanding the role of the integrin
in vascular development and angiogenesis, as
discussed below.

Fibrosis also occurs in other tissues; the
involvement of a2b1 integrin is particularly well
studied in the kidney [16]. Glomerulosclerosis,
characterized by excessive collagen deposition
in the glomerulus is the most common cause of
end stage kidney disease. The specific role of
a2b1 integrin in regulating glomerulosclerosis is
somewhat controversial. Mesangial cells and
podocytes express the a2b1 integrin. One report
studying a2-null mice on the C57Bl/6 back-
ground suggested that the integrin protected
from glomerular injury [44]. In contrast, a study
in which a2-null mice were crossed with the
COL4A3-null mice, a model of Alport disease
demonstrated that a2b1 integrin expression
exacerbates glomerular injury, decreased sur-
vival, and reduced glomerular matrix deposition
and scarring [48].

Consistent with a role for the integrin in pro-
moting collagen synthesis, Miller et al. showed
that inhibition of integrin a2b1, using a high-
affinity small-molecular weight inhibitor protects
mice from glomerular injury [100]. The anti-
a2b1 inhibitor also reduced collagen synthesis in
wild type but not a2-null mesangial cells, con-
sistent with the a2b1 integrin-dependence of its
antifibrotic effect.

In contrast to the kidney, the a2b1 integrin
appears to have an anti-fibrotic role in the lung.
Xia et al. reported that in idiopathic pulmonary
fibrosis (IPF), reduced fibroblast a2b1 integrin
levels allowed escape from anti-proliferative
signals that normally limit fibroproliferation

after tissue injury [147]. Fibroblastic foci in IPF
patients were shown to be characterized by
low fibroblast a2b1 integrin expression. IPF
fibroblasts demonstrated decreased a2b1 inte-
grin-mediated PP2A phosphatase activity.
Downstream increases in activity of GSK-3b
and b catenin provided the proliferative signals
that mark the pathological IPF fibroblast phe-
notype. Although this work provided an elegant
model for how a2b1 integrin downregulation
may contribute to the pathogenesis of IPF; the
relevant mechanisms for a2b1 integrin loss
remain uninvestigated. Additionally, it is unclear
how the established role for a2b1 integrin in
promoting collagen biosynthesis and ROS pro-
duction may be involved. Are the disparate
elements of a2b1 integrin function somehow
context or tissue-specific? Reconciliation of
the pro-fibrotic and anti-fibrotic properties of the
a2b1 integrin demands further study in light of
its potential clinical relevance.

3.7 The a2b1 Integrin
and Angiogenesis/
Vasculogenesis

Angiogenesis is coordinated by a complex
interplay between endothelial cells and their
microenvironment. During VEGF-induced
angiogenesis in vivo expression of a2b1 integrin
is up-regulated and a2b1 integrin expression has
been observed on the sprouting tips of neonatal
blood vessels [38, 122]. Together these results
suggested an important function for a2b1 in
angiogenesis, however the precise nature of the
integrin’s role is still incompletely understood.

The earliest investigations into the functional
role of a2b1 in angiogenesis employed inhibi-
tory antibodies during in vitro studies. Early
reports from Gamble et al. indicated that anti-
a2b1 antibodies inhibited endothelial cell pro-
liferation on collagen [41]. Soon after, Davis
reported that anti-a2 inhibited lumen and tube
formation by HUVECs in a 3D collagen matrix
[28]. Later studies using planar type I collagen
gel angiogenesis assays, confirmed that inhibi-
tion of a2b1 integrins with function blocking
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antibodies disrupted tube formation [132]. Sen-
ger et al. demonstrated in vivo using subcuta-
neous matrigel plug angiogenesis assays in mice,
that inhibition of a2b1 and a1b1 in combination
decreased new vessel growth in the implanted
plugs. Together these results suggested a pro-
angiogenic function for the a2b1 integrin [122].

Studies from a2-deficient mice have yielded
contradictory results. Several labs, including our
own, reported not only normal developmental
angiogenesis, but also increased neoangiogene-
sis during wound healing in genetically-altered
a2b1 integrin-null mice [47, 149]. Similarly, our
lab demonstrated that a2b1 integrin-deletion
increased tumor angiogenesis in a growth factor-
dependent manner via modulation of VEGFR-1
signaling. Additionally studies in the diet-
induced obesity model also showed increased
angiogenesis in a2-null mice compared to wild
type mice [71]. The contradiction between the
evidence for pro and anti-angiogenic functions
for a2b1 integrin are not totally based of dif-
ferences in mouse and human endothelial cells
or in vivo compared to in vitro models. Caille-
teau et al. used an a2 siRNA approach to alter
integrin expression in HUVECs. These studies
showed that a2b1 integrin engagement by lam-
inin promoted endothelial cell cycle arrest and
quiescence [17]. Additionally, a2b1 integrin
binding to endorepellin in both human and
mouse endothelial cells mediated the angiostatic
effects [14, 46, 145].

Based on these inhibitory studies pharmaco-
logical inhibitors of a2b1 may have potential
anti-angiogenic drug effects (see therapy sec-
tion). Small molecule inhibitors (SMI) of a2b1
blocked both endothelial tube-formation in vitro
and sprouting angiogenesis in zebrafish [115]. A
more thorough understanding of the role for
a2b1 in angiogenesis promises novel insight into
clinical application of a2b1 integrin targeting
compounds. Recent studies implicating the a2b1
integrin in notch signaling offer an alternative
paradigm for understanding a2b1 integrin in
angiogenesis [17, 39, 129]. The notch pathway
coordinates sprouting angiogenesis by organiz-
ing endothelial cells into migratory ‘tip’ and
proliferative ‘stalk’ cell conformations with

differential capacity to respond to VEGF stim-
ulation [54, 109]. Estrach et al. reported that
a2b1-mediated laminin signaling is necessary
but not sufficient for induction of the tip cell
determinant, Dll4 [39]. Clarifying the functional
relationship between a2b1 integrin and notch
signaling in the endothelium is a promising
avenue of future study.

3.8 The a2b1 Integrin in the Innate
and Acquired Immune
Response

The a2b1 integrin was initially identified as an
integrin expressed at very late stages of T cell
activation, thus the designation very late acti-
vation antigen-2 (VLA-2)(CD49b) [55, 56]. The
a2b1 integrin was then noted on a variety of
cells of the inflammatory and hematopoietic
system, including activated T cells, but not naïve
T cells in chronic inflammatory settings. Early
studies showed that a2b1-dependent adhesion to
collagen enhanced T cell receptor mediated T
cell proliferation and cytokine secretion [120].
Boisvert et al. defined one possible mechanism;
they reported that collagen I-stimulated, a2b1
integrin-mediated both activation-independent
and T cell receptor-dependent interferon c
expression via the ERK and JNK MAPKs and
PI3K/AKT signaling pathways [15].

The a2b1 integrin also influenced T cell
activation by inhibiting fas ligand expression
and apoptosis in effector T cells in a collagen I
dependent manner [2, 42]. In animals, inhibitory
monoclonal antibodies directed against the a2b1
integrin significantly inhibited the effector phase
of both contact and delayed type hypersensitiv-
ity. These early results established a role for the
a2b1 integrin in T cell mediated function. The
role of the a2b1 integrin in the innate and
acquired immune response has been an area of
active investigation.

To better the define the role of the a2b1
integrin in T cell function, expression of the a2b1
integrin on T cell subsets and in response to
antigenic challenges was investigated. Kassiotis
et al. reported that expression of a2b1 integrin
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defined two functionally distinct subsets of
memory T cells that played a role in the response
to infection and immunization [74]. a2b1 inte-
grin expression was stably induced by antigen on
approximately 50 % of memory T cells with
helper function and stimulated production of
tumor necrosis factor-a. The a2b1 integrin
expressing, CD49b+, memory Th cells demon-
strated enhanced ability to mediate macrophage
activation and to kill of intracellular bacteria.

Sasaki et al. demonstrated that mature Th1
and Th2 cells exhibited distinct a2b1 integrin
expression profiles [120]. Although naive Th
cells did not express a2b1 integrin, Th1 cells
acquired high levels of a2b1 integrin expression
during maturation in an interferon-c (IFN-c) and
interleukin (IL)-12-independent manner. This
study suggested that high level a2b1 integrin
expression on Th1, but not Th2, cells was
functionally important, because stimulation of
Th1 or Th2 cells with a2b1 integrin ligands
caused selective activation of Th1 cells to pro-
duce interferon-c after long-term culture.

Richter et al. studied a2b1 integrin expres-
sion during influenza infection in the lung [113].
During the acute phase of infection, the a2b1
integrin was expressed by a significant propor-
tion of both CD4+ and CD8+ T cells in the lung;
however, the integrin was expressed less fre-
quently on memory cells, particularly CD8+ T
cells. A similar expression pattern for the a2b1
integrin in the spleen was found in a model of
lymphocytic choriomeningitis viral infection [1].
The data suggested that a2b1 integrin expression
directed localization of CD4+ and CD8+ T cell
subsets within the lung and promoted T cell
migration within extralymphoid spaces, partic-
ularly during the acute phase of infection.

A role for a2b1 integrin expression by Th17
cells has been described. Boisvert et al. showed
that human naïve CD4 T cells stimulated toward
Th17 polarization preferentially upregulate a2b1
integrin [15]. Th17 cells adhered to collagens I
and II, but not IVin an a2b1 integrin-dependent
manner. a2b1 integrin-dependent adhesion
combined with anti-CD3 antibody co-stimulated
the production of IL-17A, IL-17F and IFN-c by
human Th17 cells.

The importance of a2b1 integrin to T cell
memory has remained controversial. Work by
several groups suggested that professional
memory CD4 cells reside and rest in the bone
marrow. Recently, Hanazawa et al demonstrated
that memory CD4 cells expressed high levels of
a2b1 integrin and that antibody-mediated inhi-
bition of a2b1 integrin of memory CD4 cell
precursors caused failure to transmigrate from
blood through sinusoidal endothelial cells into
the bone marrow [50]. These results suggested
that the a2b1 integrin was required for the
migration of memory CD4 cell precursors into
their survival niches of the bone marrow.

In addition to its expression on activated T
cells, the a2b1 integrin is expressed at high levels
on almost all NK cells and mast cells, and on
subpopulations of monocytes and neutrophils
[4, 133]. Arase et al. identified the NK cell rec-
ognition epitope of the widely used DX5 pan-NK
cell monoclonal antibody as CD49b or the a2b1
integrin. These investigators demonstrated that
a2b1-expressing and nonexpressing subsets of
NK cells are present in the mouse spleen and
raised the possibility that a2b1 integrin expres-
sion is important in NK cell function. The role of
the a2b1 integrin on subsets of neutrophils and
monocytes has also been studied. One study
found expression of the a2b1 integrin on
extravasated neutrophils in human skin blister
chambers and in the rat peritoneal cavity fol-
lowing chemotactic stimulation [144]. These
studies, as well as others, suggested that the a2b1
integrin on neutrophils is involved in neutrophil
migration from the vasculature into extravascular
tissue in response to cytokine induction.

Work from our lab has clarified the function
of the a2b1 integrin in mast call activation. We
initially observed decreased inflammatory
responses to Listeria monocytogenes in a2-null
mice [34]. This innate immunity defect was
determined to arise from a requirement for a2b1
integrin activation on peritoneal mast cells
(PMCs) for mast-cell activation and cytokine
release in vivo. We also identified C1q com-
plement protein and collectin family members,
including mannose binding lectin and surfactant
protein A, as novel ligands for the integrin in
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mast cell activation in vitro in response to Lis-
teria. Since ligation of the a2b1 integrin alone
was insufficient to activate cytokine secretion,
we hypothesized that an additional signal ema-
nating from a co-receptor was required to acti-
vate mast-cell cytokine secretion. We identified
the required co-receptor as hepatocyte growth
factor (HGF-R)/c-met [98]. We demonstrated
that Listeria induced mast cell activation and
cytokine secretion requires costimulatory signals
from a2b1 integrin ligation to either type I col-
lagen or C1q as well as c-met activation. The
synergistic signal from the two coreceptors
resulted in mast cell release of the proinflam-
matory cytokine IL-6 to trigger the early innate
immune response.

3.9 a2b1 in Epithelial Biology

The a2b1 integrin is expressed at high levels on
numerous epithelial cells including not only the
squamous epithelium, but also ciliated columnar
epithelium of the respiratory tract, the epithelial
cells of the gastrointestinal tract and urinary
tract, and the glandular epithelium of the breast
[24]. In contrast to the high a2b1 integrin
expression in the normal breast epithelium,
markedly reduced or undetectable levels of a2b1
integrin were seen in poorly-differentiated car-
cinomas. Expression of a2b1-integrin was
diminished or lost in a manner that correlated
with a loss of epithelial differentiation and tumor
progression in mammary carcinoma as well as
other adenocarcinomas, including those of the
prostate, lung, pancreas, and skin.

Our group’s early studies focused on under-
standing the correlation between a2b1 integrin
expression and a differentiated epithelial phe-
notype and conversely, whether dysregulated
a2b1 integrin expression contributed to the
malignant behavior of cancer cells. Gain of
function and loss of function models in vitro
suggested that a2b1 integrin expression con-
tributed to the differentiated epithelial phenotype
and branching morphogenesis of mammary and
other epithelial cells [130, 150, 151]. These
observations were supported by findings from

other laboratories. Using a primary human
nonmalignant, but immortalized, mammary
epithelial cell line, Berdichevsky et al. and
D’Souza et al. demonstrated that branching
morphogenesis can be blocked by inhibitory
monoclonal antibodies directed against the a2
integrin subunit or by altered a2b1-integrin
expression mediated by the expression of the c-
erbB2 proto-oncogene, respectively [9, 26, 27].

The development of genetically engineered
mice with global deletion of ITGA2 permitted
further analysis of the role for a2b1 integrin
in vivo. The major changes in branching mor-
phogenesis in vitro were not fully recapitulated
in vivo. The a2-null mice have only modest
defects in mammary morphology. The in vitro
experiments were designed to study a single
integrin interaction on epithelial cells with only
a small number of matrix molecules. Mammary
gland in vivo consists of epithelial cells, fibro-
blasts, endothelial cells, and immune cells
embedded in a complex matrix. The complexity
in in vivo systems and compensatory mecha-
nisms may both mitigate the consequences of
a2b1 integrin-deficiency.

3.10 The a2b1 integrin Plays a Role
in Cancer Progression

Interest in a2b1 integrin in breast cancer began
with the observation of a strong correlation
between diminished a2b1 integrin expression
and a less differentiated phenotype. The a2b1
integrin–deficient mouse model provided our
laboratory the opportunity to investigate a role
for integrin in the development and progression
of breast cancer in vivo. Our group demonstrated
that in the spontaneous MMTV-neu mouse model
of breast cancer, a2b1 integrin-deletion did not
significantly alter the incidence of tumor devel-
opment or tumor growth, but markedly increased
hematogenous metastasis [111]. Increased metas-
tasis in this model resulted in part from increased
capacity for cancer cell intravasation.

Detailed in silico examination of publically
available data from breast cancer patients sup-
ported this finding; expression of the a2 integrin
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subunit, but not a1 or b1 integrin subunits, was a
prognostic indicator of decreased metastasis and
better patient outcomes (Fig. 3.2). Similarly,
retrospective analysis of lymph node-negative
patients from the Wang cohort who relapsed
with metastatic disease, revealed an inverse
correlation between a2b1 integrin expression
and the occurrence of brain lesions; patients with
greater than twice the average a2b1 integrin
expression suffered no brain metastasis whereas
all nearly one third of all other patients suffered
brain metastasis (P = 0.0049).

Expression of the a2b1 integrin in prostate
cancer was also predictive of metastasis and
survival. The mouse and human studies sup-
ported the in vitro experimental analyses and the
reported epidemiologic linkage between the
single nucleotide polymorphisms regulating
a2b1 integrin expression and poor prognosis in
patients with breast cancer [90]. Together these
data suggested that a2b1 integrin is a valuable
biomarker for risk of metastasis in breast cancer.

Our data clearly showed in an animal model
of breast cancer and human breast and prostate
cancer that the integrin behaved as a metastasis
suppressor. Data from other laboratories suggest
that a2b1 integrin’s role in prostate and perhaps
other cancers may be more complicated. In vitro,
a2b1 integrin was required but not sufficient for
survival and metastasis of LNCaP prostate can-
cer cells to bone [91]. a2b1 integrin protein and
mRNA expression was enhanced in bone
metastases to the level observed in normal,
nonmalignant prostate tissue and significantly
higher than primary prostate cancer lesions or
metastasis to other sites such as lymph nodes
[127]. Similarly, a2b1 integrin expression
accelerated experimental metastasis or tumor
dissemination of melanoma and rhabdomyosar-
coma or melanoma, gastric and colon cancer,
respectively [7, 8, 51, 92, 96, 139].

Therefore, despite this progress several
important questions remain concerning the role
of the a2b1 integrin in cancer biology. What is
the precise molecular mechanism through which
a2b1 integrin loss enables increased intravasa-
tion? How does integrin down-regulation during
breast cancer progression occur? Many other

cancers including prostate, colon and lung cancer
also appear to have a2b1 integrin loss associated
with cancer progression and metastasis. How-
ever, some cancers are associated with high a2b1
integrin expression levels. Answers to each of
these questions will provide novel insight into
tumor biology, as well as suggesting new ave-
nues for clinical application of the a2b1 integrin
as a biomarker or therapeutic target.

3.11 Therapies

Over the past several years there has been
increased interest in pharmacological targeting
of the a2b1 integrin for treatment of thrombosis
and angiogenesis [72]. The a2b1 integrin is
viewed as a safe target because although over-
expression was associated with pathological clot
formations, mice with integrin deletion lack
severe bleeding defects, and inhibition causes
only minimal increases in bleeding time. Com-
pound 15, a nonpeptide inhibitor of the integrin,
has been demonstrated to block platelet adhesion
to collagen I under both static and flow condi-
tions [16]. The inhibitor was originally designed
to inhibit a2b1 on platelets by locking the inte-
grin a2b1 in the inactive low-affinity conforma-
tion [100]. Additionally, in vivo, the compound
inhibited thrombus formation in a mouse model
and inhibited angiogenesis in a zebrafish model.
Other a2b1 inhibitors have shown similar effects;
BTT-3016, a sulfonamide derivative prevented
platelet aggregation and reduced thrombus for-
mation in a vascular injury model [108]. Another
sulfonamide derivative that targets a2b1, E7820,
is currently in phase II clinical trials as an
adjuvant therapy for metastatic colon cancer
[77, 101]. The clinical impact of pharmacologi-
cal targeting the a2b1 integrin will require fur-
ther time and experimentation.

3.12 Summary and New Directions

It is increasingly clear that the a2b1 integrin
plays a nuanced but important role in critical cell
functions in many different cell types. Several
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new studies have suggested previously undocu-
mented roles for the integrin in diseases ranging
from type 2 diabetes, to dwarfism. In platelets,
the combination of animal and in vitro studies
have slowly revealed a more nuanced yet
equally important role for the integrin than had
previously been imagined. The recent develop-
ment of tissue-specific a2-null mice promises to
bring similar clarity and complexity to our
understanding of a2b1 integrin function in
inflammation, angiogenesis and tumor biology
in the years ahead.
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4Integrin a10b1: A Collagen Receptor
Critical in Skeletal Development

Evy Lundgren-Åkerlund and Attila Aszòdi

Abstract

Integrin a10b1 is the most abundant collagen-binding integrin in
cartilaginous tissues and its expression pattern is distinct from that of
other collagen-binding integrins. In vitro and in vivo studies have
identified integrin a10b1 as a unique phenotypic marker for chondrocyte
differentiation and a crucial mediator of cell-matrix interactions required
for proper cartilage development. This chapter describes the structure of
the integrin subunit a10, the tissue distribution of the integrin 10b1 and
updates available information regarding its regulation and ligand binding.
We also summarize current information on the functional roles of a10b1
in chondrogenesis of mesenchymal stem cells and in skeletal growth.

Keywords
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4.1 Introduction

The integrin a10b1 was identified as a collagen
type II binding receptor on chondrocytes in 1998
by Camper et al. [9]. Earlier studies in our labo-
ratory had indicated that an unknown a subunit in

the b1 integrin family with a molecular weight of
approximately 160 kDa was present on chon-
drocytes and chondrosarcoma cells [16]. To
identify this integrin subunit, large quantities of
chondrocytes (2.5 billion cells) were collected
from bovine articular cartilage and integrin a10
was isolated by affinity purification of the chon-
drocyte lysate on a collagen II-Sepharose col-
umn. The human ortholog of the a10 subunit was
subsequently characterized using a human chon-
drocyte library [9]. With an antibody raised
against the cytoplasmic domain of a10 we could
show that integrin a10b1 is a major collagen-
binding integrin on chondrocytes and that it is
highly expressed in cartilage, both during devel-
opment and in adult tissues [9, 10]. We have also
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shown that fibroblast growth factor -2 (FGF-2)
upregulates expression of a10 and improves
chondrogenic potential of mesenchymal stem
cells (MSCs) [30]. In 2005 we demonstrated that
mice lacking the integrin a10b1 have defects in
the cartilaginous growth plate and, as a conse-
quence, develop growth retardation of the long
bones [4]. A recent study revealed that a naturally
occurring mutation in the canine a10 integrin
gene is responsible for chondrodysplasia in
hunting dog breeds [19], supporting a critical role
for a10b1 in skeletal development.

This chapter summarizes current knowledge
on structure, distribution and function of the
integrin a10b1.

4.2 The a10 Structure

The a10 subunit has a Mr of around 160 kDa
under reducing conditions as determined by
SDS-PAGE. When compared to the other col-
lagen-binding integrins on cultured chondro-
cytes, the integrin subunit a10 appears distinctly
smaller than a1 in SDS-PAGE, slightly smaller
than a11 and similar in size to the a2 subunit
under reducing conditions [9].

Sequence analysis of the four collagen-bind-
ing integrins shows that a10 displays 43 %
sequence identity to a11, 33 % to a1 and 31 %
identity to a2 at the amino acid level. Similar to
the other collagen-binding integrin subunits a1,
a2 and a11, the I-domain in a10 is encoded by
exons 6-9. At the protein level, a10 I domain
extends from C140-G337 and consists of 198
amino acids which is inserted in the N-terminal
region of the extracellular domain between cat-
ion binding sites two and three. Three cysteine
residues are present within the a10 I-domain,
compared to one cysteine in a11, two in a1 and
three in a2. Like the other I-domain-containing
collagen-binding integrins, the a10 I-domain
contains a MIDAS (metal ion-dependent adhe-
sion site) motif [9]. The overall identity between
a10 I-domain and the I-domains of the other
collagen-binding integrins is high with the
highest identity to the a11 I-domain (60 %) [14].

The conserved sequence in the transmem-
brane/cytoplasmic region of a10 is GFFAH and
not GFFR/KR as in most other integrins [9].
Analysis by an in vitro glycosylation method has
shown that the length of the a10 transmembrane
(TM) domain is 29 amino acids and extends to
the Ala in the sequence GFFAH, 1-2 amino
acids further at the C terminus compared with
the TM domain of other a subunits [26]. Thus,
the cytoplasmic domain of a10 consists of 16
amino acids.

4.3 The a10 Gene

The human a10 gene, (ITGA10), which consists
of 30 translated exons distributed over a region
of 19kb has been located to chromosome 1,
locus q21 [5, 20]. It is the only integrin located
on this chromosome [5].

The mouse a10 gene (Itga10), located on
chromosome 3, F2.2, has a homology of 90 %
with ITGA10. The highest homology is found in
the I-domain (97 %) [5]. Itga10 consists of 30
translated exons spanning a region of about
18 kb genomic DNA. Primer extension analysis
determined that a major transcription start site is
located 38 nucleotides (nt) upstream from the
translation initiation site ATG. The 50-flanking
region of the transcription site at –38 nt lacks a
TATA box, as is the case for most other integrin
subunits [5].

We have previously demonstrated that the
human a10 subunit exists as two splice variants
due to alternative splicing of exon 25 (114 nt).
The spliced domain is located extracellularly,
close to the transmembrane region. Both forms
are expressed at the mRNA level in human
chondrocytes but it is not clear if the smaller
form, lacking exon 25, is present on the cell
surface of chondrocytes [5].

In contrast to human ITGA10, mouse exon 26
and not exon 25 is alternatively spliced [5]. In
the spliced variant, exon 26 containing 144 nt is
extended into the intron by 62 nt and results in a
shift in the reading frame and a premature stop
codon [5].
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Extracellular splice variants have been
reported for other integrin a-subunits, although
the functions of the variants are not understood
[11]. Similar to a10, a7 and aIIb have alterna-
tively spliced extracellular regions close to the
transmembrane spanning domain [7, 21]. In
addition, a11 has an inserted region of 22 amino
acids in exon 20 [32].

Sequence analysis of a promotor region of
human ITGA10, together with functionality
tests, have identified the transcription factors
AP-2e and Ets-1 as regulators of the integrin a10
gene in chondrocytes [34]. These transcription
factors are also known to control expression of
integrin a10 in melanoma cells [33].

Interestingly, a truncating mutation of the
ITGA10 gene on canine choromosome 17 was
recently shown to cause chondrodysplasia, short
stature dwarfism, in dogs (see below) [19].

4.4 Distribution of Integrin a10b1

Expression analysis of mouse and human tissues
has shown that distribution of integrin a10b1 is
quite restricted [10, 14]. It is strongly expressed
in the cartilage of joints and in other cartilage-
containing tissues such as vertebrae, ribs, tra-
chea and bronchi [10]. Integrin a10b1 is found
where collagen type II is expressed and is an
excellent cellular marker of cartilage tissue.
Integrin a10b1 is also expressed on chondro-
cytes in the growth plate and on bone lining cells
in the trabecular bone (Fig. 4.1).

We have also found a10b1 on cells in some
fibrous tissues such as perichondrium, perios-
teum and endosteum, and in the fascia lining
skeletal muscle fibers [10, 30]. These tissues are
known to house mesenchymal progenitor cells
with the potential to develop into different cell
types [3, 15, 22]. In addition, integrin a10 is
present in the junctions between cartilage/bone
and ligaments [10].

In the vertebral column, a10 was detected by
immunohistochemistry in the cartilage of the
vertebral body and in the inner annulus fibrosus
of the intervertebral discs [10]. In both tissues,
a10 expression was co-localized with collagen

II. The outer annulus fibrosus, which contains
collagen I, was negative for a10. Interestingly,
a11 has been detected in the outer annulus fi-
brosus [28].

An mRNA array of human tissues has also
suggested expression of a10 outside of the
musculoskeletal system, e.g. in heart and aorta
[14]. When we analyzed a10 protein in the
mouse heart, we found immunodetectable
expression in the aortic and atrioventricular
valves but not in the heart muscle [10]. Inter-
estingly, collagen II is expressed in the heart
valves during early development but the role for
this collagen during heart development is not
known [27]. On the other hand, we have not
been able to confirm expression of a10 on the
protein level in aorta. However, we have
detected a10 in atherosclerotic plaque both in
human and in a mouse model (Lundgren-
Åkerlund and Hultgård-Nilsson, unpublished
results). The plaques may represent the strong
aorta signal in the mRNA tissue array [14]. In
unpublished studies we found that a10 colocal-
ized with collagen II in atherosclerotic plaques.

The expression of integrin a10b1 in tissues
that are exposed to high mechanical load such as
articular cartilage, vertebral column and heart
valves implicates a role for a10b1 integrin in
mechanical integrity and/or in mechanical sig-
naling of these tissues.

We have earlier published that malignant
melanoma express integrin a10 and that anti-
bodies blocking a10 reduce migration of the
melanoma cells in vitro [33]. It is not known if
a10 is present in other tumors.

4.5 Integrin a10b1 in Mouse Limb
Development

The major part of the mammalian skeleton is
laid down by a process called endochondral
bone formation. Cartilage moulds form during
embryogenesis via the sequential steps of mes-
enchymal cell condensation, chondroprogenitor
commitment and chondrocyte differentiation
under the control of multiple mechanisms,
including cell-cell and cell-matrix interactions,
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cellular signaling and transcriptional and trans-
lational regulation. Most fetal cartilages are
transient and will gradually be replaced by tra-
becular bone during a series of events including
chondrocyte proliferation, hypertrophy and
apoptosis followed by cartilage matrix mineral-
ization, vascularization and matrix degradation.
These events take place within the growth plate.
Proliferation, matrix production and hypertrophy
of chondrocytes in the growth plate are essential
to achieve longitudinal elongation of endo-
chondral bones. Oppositely, in articular carti-
lage, the chondrocytes acquire a stable
phenotype that resists hypertrophy and vascular
invasion, thus maintain a mechanically adequate
ECM throughout the life [1].

We have demonstrated that a10b1 is the
major collagen-binding integrin in the cartilage
during development of the skeleton in mouse
[10]. Expression analysis of the hind limb
revealed that a10 appears at embryonic day 11.5
(E11.5) at the onset of chondrogenesis as
determined by collagen type II expression. At
E13.5, a10 is present throughout the anlage as
well as in the perichondrium and in the mesen-
chyme just outside of the perichondrium. In
newborn mice, a10b1 is expressed by all chon-
drocytes in the growing epiphyseal and growth
plate cartilage. 4 weeks after birth, a10 is
prominent both at the articular surface and in the
growth plate [10]. a10 is also detected in the

inner cartilaginous region of the meniscus where
collagen type II is expressed.

Interestingly, a10 is expressed by cells in the
ossification groove of Ranvier [10]. The ossifi-
cation groove contains precursors for both
chondrocytes and osteoblasts and has been sug-
gested to be involved in growth of the bone [23,
24].

4.6 Ligands Specificity

The integrin subunit a10 was originally isolated
by affinity purification on a collagen type II-
column [9]. Experiments using a10b1-express-
ing C2C12 cells and an a10 blocking monoclo-
nal antibody have confirmed that a10b1 is a
receptor for fibril-forming collagen types II and
XI and for the FACIT (fibril-associated collagen
with interruptions in triple helix) collagen type
IX in vitro (Fig. 4.2). The a10-expressing cells
also bound to the beaded filament-forming col-
lagen VI but, in contrast to the other collagens,
we could not block the adhesion of a10
expressing C2C12 cells to collagen VI with the
monoclonal antibody. This might be explained
by a different binding mechanism of a10b1 to
collagen VI or, alternatively, that other collagen
interacting receptors are involved in the attach-
ment of C2C12 cells to collagen VI. We have
also found that collagen type X, expressed by

Fig. 4.1 Immunohistochemical localization of the inte-
grin a10b1. Mouse hind limbs from 8-week-old mice
were cryosectioned and stained with an affinity purified
polyclonal antibody recognizing the cytoplasmic domain

of a10. The integrin a10b1 was expressed by all
chondrocytes in the epiphyseal cartilage and in the
growth plate and also by cells in the trabecular bone
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hypertrophic chondrocytes, can mediate adhe-
sion of a10b1-expressing cells (Lundgren-
Åkerlund, unpublished results).

Our findings that a10b1 is present in non-
cartilaginous tissues implicates that a10b1
in vivo interacts with other ligands than cartilage
collagens. Indeed, we have found that a10b1-
expressing cells also interact with collagen types
I and IV (Lundgren-Åkerlund, unpublished
results).

Using recombinant I-domains, the study by
Tulla et al. [29] suggested that the a10 I-domain,
similar to the a1 I-domain, has a preferred
affinity for collagen IV (a basement membrane
collagen) and collagen VI over the fibrillar col-
lagen types I-III.

It has previously been reported that I domains
of the collagen-binding integrin subunits a1, a2
and a11 interact with the trippel helical collagen
I peptides GFOGER and GLOGER [25, 35, 37].
We have found that a10b1-expressing cells
adhere to the peptides GFOGER and GLOGER
and that the adhesion can be inhibited by an a10-

blocking monoclonal antibody recognizing the I-
domain of a10 (Fig. 4.3) [8]. Recently, Käpylä
et al. has demonstrated that all collagen integrin
receptors, including a10b1, bind collagen IX via
a novel, GFOGER-independent mechanism
which does not resemble interactions with other
collagen types [17].

4.7 Integrin a10b1:
A Chondrogenic
Differentiation and Potency
Marker

Primary chondrocytes, with a differentiated
phenotype, express a10b1 on the cell surface
and synthesize the cartilage specific molecules,
collagen type II and aggrecan. During mono-
layer cultures chondrocytes are known to
dedifferentiate as characterized by a decrease in
expression of collagen II and increased synthesis
of fibrous matrix molecules, such as collagen
type I [6]. We have found that expression of
integrin a10b1 is gradually downregulated from
the cell surface during dedifferentiation of
chondrocytes in monolayer cultures (Fig. 4.4).
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Fig. 4.2 Adhesion of a10b1 expressing cells to the
cartilage collagen types II, VI, IX and XI. C2C12 cells,
expressing a10b1 as the only collagen-binding integrin,
were allowed to adhere for 1 h to collagen-coated (10 lg/
ml) culture dishes in the absence (-mAb) or in the
presence (+mAb) of a blocking monoclonal antibody
directed to the I-domain of a10 (5 lg/ml). The numbers
of adhered cells were compared to the total number of
cells added to the wells (1 = 100 %). The numbers
represent the mean ± S.D. of triplicate experiments. The
antibody reduced adhesion of a10b1 cells co collagen II,
IX and XI but not to collagen VI
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Fig. 4.3 Adhesion of a10b1 expressing cells to the
collagen peptides GFOGER and GLOGER. C2C12 cells,
expressing a10b1 as the only collagen-binding integrin,
were allowed to adhere for 1 h to culture dishes coated
with 10 lg/ml of the collagen peptides GFOGER and
GLOGER and collagen type II (CII) and blocked with
1 % bovine serum albumin (BSA). The adhesion exper-
iments were performed in the absence or in the presence
(+mAb) of an a10 blocking monoclonal antibody (5 lg/
ml). The number of adhered cells is shown as a
percentage of the total number of cells added to the
wells. The numbers represent the mean ± S.D. of
triplicate experiments. From Bryngelson Ohlsson [8]
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After 6 weeks of culture, only about 10% of the
cells expressed a10. However, after FACS
sorting, we found that the a10 positive cells had
a higher collagen II/collagen I mRNA ratio
compared to the a10 negative cells. Further-
more, dedifferentiated chondrocytes lacking a10
were able to restore expression of integrin a10b1
and redifferentiate when the cells were trans-
ferred to three-dimensional alginate cultures
(Fig. 4.5). This observation implicates that
integrin a10b1 is a unique cellular marker for
the differentiation state of the chondrocytes. In
agreement, Gouttenoire et al. [13] showed that
a10 together with the chondrogenic collagen
type IIB isoform are expressed by differentiated

mouse chondrocytes after treatment with BMP2,
while TGFb1 stimulated the expression of the
non-chondrogenic procollagen type IIA and a11
integrin. In another study it was demonstrated
that aggregation of phenotypically stable chon-
drocytes is mediated by integrin a10b1 and
collagen type II interaction [12].

We have previously reported that integrin
a10b1 is present on human mesenchymal stem
cells (MSCs) and that its expression increases
during in vitro chondrogenesis in aggregate
cultures [30]. We have also reported that
extended monolayer culturing of MSCs down-
regulates integrin a10, while treatment of the
cultured MSCs with fibroblast growth factor-2
(FGF-2) increases expression of a10. In contrast,
FGF-2 treatment of the MSCs decreases
expression of a11 [30] (Fig. 4.6). Transforming
growth factor-b3 (TGF-b3), on the other hand,
was found to decrease expression of a10 and
increase expression of a11 on MSCs [30]. The
effects of FGF-2 and TGF-b3 on a10 and a11
expression observed in MSCs appears to extend
to cultured human and bovine chondrocytes
(Lundgren-Åkerlund and Aszòdi, unpublished
results).

We have also reported that FGF-2-induced
upregulation of a10 in MSCs enhances chon-
drogenesis and synthesis of cartilage molecules
such collagen type II and aggrecan in pellet
cultures [30]. This demonstrates that a10b1 is a
unique cell surface biomarker and potency
marker of MSCs with chondrogenic potential
and will serve as a valuable tool in the quality
assurance of chondrocytes and chondrogenic
MSCs used in cartilage repair.

4.8 Loss of Integrin a10b1 Leads
to Chondrodysplasia

The essential role of integrin-mediated attach-
ment and signaling in endochondral bone for-
mation was first demonstrated by conditional
inactivation of the floxed b1 integrin gene in the
entire cartilaginous skeleton using a transgene
which drives the expression of the cre recom-
binase under the control of the collagen II
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Fig. 4.4 Expression of a10b1 and collagen types I and
II in cultured chondrocytes. a Chondrocytes were
isolated from human articular cartilage and the expres-
sion of integrin a10b1 was analyzed on primary chon-
drocytes and on chondrocytes cultured in monolayer for
1, 2 or 6 weeks by flow cytometry. The cells were
passaged once a week. The bars show percentage of a10
negative and a10 positive chondrocytes at each time
point. Expression of a10 gradually decreased with time in
culture and was approximately 10% after 6 weeks.
b After 6 weeks of culture, mRNA levels of collagens I
and II were analyzed in a10 positive and a10 negative
sorted chondrocytes. Expression of collagen II was
higher on a10 positive chondrocytes while expression
of collagen type I was higher on a10 negative
chondrocytes
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promoter (Col2a1cre) [2]. We have shown that
mutant mice (b1 fl/fl-Col2a1cre+) develop peri-
natal lethal chondrodysplasia, characterized by
the lack of columnar growth plate, reduced
chondrocyte proliferation, abnormal cell shape
and distorted collagen fibrillar network in the
ECM. These observations have demonstrated
that b1 integrin-mediated cell-matrix interac-
tions are mandatory for chondrocyte geometry,
motility and cytokinesis, essential mechanisms
necessary for the proper formation and function
of the growth plate.

Among mice lacking an a integrin subunit,
only the knockout of the a10 integrin gene [4]
results in skeletal abnormalities which partially
recapitulate the phenotype of the b1 fl/fl-
Col2a1cre+ mice (Fig. 4.7). We have shown that
a10-deficiency is dispensable for life but causes

chondrocyte shape change and mild disorgani-
zation of columnar arrangement resulting in
moderate growth retardation. Some other
abnormalities such as the shorter hypertrophic
zone, increased apoptosis and reduced chon-
drocyte proliferation also contribute for growth
plate dysfunction in both mouse models. It is
particularly interesting that the chondrocyte cell
cycle apparently is modulated by a10b1 inte-
grin. Both a10- and b1-deficient chondrocytes
display delayed G1/S transition accompanied by
increased nuclear translocation of Stat1 and
Stat5a, two members of the family of signal
transducers and activators of transcription,
inducing the upregulation of cell cycle inhibitors
p16 and/or p21 which in turn decreases the
proliferation rate [2, 4]. Another striking phe-
notype present in the two knockout strains is the

Chondrocytes in 

alginate culture

Chondrocytes in 

Extensive chondrocyte 

monolayer culture

expansion

10  11  

10  11  10  11  

Fig. 4.5 Integrin a10b1 expression is restored when
dedifferentiated chondrocytes are transferred to three-
dimensional alginate culture. Human chondrocytes were
dedifferentiated in monolayer cultures until expression of
the a10 protein was lost (8 weeks of culture, five
passages, in this experiment). One part of the chondro-
cytes was then transferred to alginate beads for rediffer-
entiation in three-dimensional culture. The other part was
kept in monolayer culture. The chondrocytes were
cultured for additional 2 weeks and then cell surface

biotinylated, lysed and immunoprecipitated with anti-
bodies directed to a10 and a11 followed by separation by
SDS-PAGE and western blot analysis. The results
demonstrate that expression of a10 was restored in
chondrocytes in alginate culture while expression of a11
appeared to decrease in alginate compared to monolayer
cultures. This demonstrates that integrin a10b1 is a
cellular marker for staging the differentiation status of
chondrocytes
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reduced density of the collagen matrix implying
a role of integrin a10b1 for matrix assembly.
Since the b1-deficient chondrocytes express
normal levels of collagen II, this matrix defect
suggest the direct involvement of b1 integrins in
collagen fibril polymerization and/or incorpora-
tion of the fibrils into the collagen meshwork.

Despite the aforementioned similarities, the
skeletal phenotype is more severe in b1 fl/fl-
Col2a1cre+ mice and some abnormalities such
as the defective cytokinesis or the disrupted
actin network are only observed in b1 null
chondrocytes suggesting partial redundancy
among b1 integrins. In vitro assays have indeed
demonstrated comparable adhesion and spread-
ing of primary wild type and a10 null chondro-
cytes on fibrillar collagens [4]. The integrin
a1b1, which is expressed on chondrocytes in the
articular cartilage, is a strong candidate for
compensating the a10-deficiency. The integrins
a2b1 and a11b1, on the other hand, appeared to
be absent or only weakly expressed in the car-
tilage and on isolated chondrocytes [4, 10].

However, mice lacking a1 integrin show no
growth plate phenotype but develop early onset
osteoarthritis [36], an ageing-dependent degen-
eration of the articular cartilage. We have shown
in 4-week-old mice that in contrast to the
epiphyseal cartilage, a1 is only weakly expres-
sed in the growth plate [10]. This may explain
why mice lacking a1 integrin have no growth
plate abnormalities. Integrin a10, on the other
hand, was strongly expressed both in the
epiphyseal cartilage and in the growth plate.
Taken together, the studies with genetically
modified mice support a hypothesis for both
overlapping and distinct role of collagen-binding
integrins in skeletal development and function
where a10b1 may play a specific role in growth
plate morphogenesis and skeletal growth.

Inherited chondrodysplasias are caused by
mutations in a range of gene families encoding
e.g. ECM proteins, transcription factors, growth
factor receptors, enzymes, or signaling mole-
cules, but so far no integrin mutations have been
associated with these skeletal disorders in

Fig. 4.6 FGF-2 increase expression of a10 and decrease
expression of a11 on mesenchymal stem cells. Human
bone marrow derived mesenchymal stem cells (MSCs)
were isolated by plastic adherence and cultured for
4 weeks. The MSCs were then transferred to 6-well
dishes and stimulated with 10 ng/ml of fibroblast growth
factor-2 (FGF-2,) for 1, 2, 4 and 6 days and subsequently

analyzed by flow cytometry using antibodies directed to
a10 and a11. The upper left panel represent the
background staining using an isotype antibody. The
results show that treatment with FGF-2 gradually
increases expression of a10 (y-axis) and decreases
expression of a11 (x-axis). From Varas et al. [30]
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human [18, 31]. Recently, genetic analysis of
two dog breeds has revealed that a naturally
occurring mutation in the a10 integrin gene is
responsible for canine chondrodysplasia [19].
The Nordic hunting dogs Norwegian Elkhound
and Karelian Bear Dog display disproportionate

short-limbed dwarfism characterized by growth
plate abnormalities resembling the a10 knockout
mouse phenotype. Using a genome-wide
approach, a recessive mutation in ITGA10 was
shown to be segregated with the disease in both
breeds. The nonsense mutation p.Arg695* in

phenotype

(a)

(b)

1fl/fl - Col2a1cre + 10-null

chondrodysplasia severe, lethal mild, vital

shape of proliferative 

chondrocytes 
round moderatelly rounded

growth plate disorganization complete lack of columns moderate disorganization

hypertrophic zone reduced reduced

chondrocyte proliferation decreased decreased

apoptosis increased increased

cytokinesis defect severe none

adhesion to collagen II diminished normal

actin cytoskeleton abnormal normal

collagen network reduced density slightly reduced density

collagen fibril diameter thickened thickened

Fig. 4.7 The lack of a10b1 integrin results in moderate
chondrodysplasia and growth plate dysfunction. a In
normal growth plate, chondrocytes form horizontal zones
reflecting their differentiation stage (proliferative, pre-
hypertrophic and hypertrophic). The flattened prolifera-
tive cells are oriented with their long axes perpendicular
to the direction of the longitudinal growth and arranged

into vertical columns. Proliferative chondrocytes are
gradually rounding up and lose their columnar organiza-
tion in mice lacking a10b1 integrin (a10-null) or all b1
integrin-containing heterodimers (b1 fl/flCol2a1cre+) on
chondrocytes. b Comparison of the cartilage phenotype
in a10-null and b1 fl/flCol2a1cre+mice
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exon 16 was predicted to produce a truncated
protein lacking the cytosolic tail, the trans-
membrane domain and part of the extracellular
domain. As judged by western blot, the trun-
cated protein was undetectable in tracheal car-
tilage suggesting a loss of function of a10b1 [19]
in these dogs.

The current nosology and classification of
human genetic skeletal disorders show that the
causative gene for many human genetic skeletal
disorders are still unknown [31]. Our results
from the a10 knockout mouse model together
with the results from the natural mutation in the
canine ITGA10, showing that loss of function of
the integrin a10b1 gene leads to disproportion-
ate chondrodysplasia, suggest that ITGA10 is a
likely candidate gene responsible also for human
disproportionate chondrodysplasias.

4.9 Perspectives

Integrin a10b1 has a specific role during skeletal
development that does not overlap with other
collagen-binding integrins. However, very little
is known about the molecular mechanisms behind
the specific function of a10 in skeletal develop-
ment and its involvement in different pathological
conditions such as chondrodysplasias and osteo-
arthritis. The fact that integrin a10 is expressed in
tissues that are exposed to high mechanical load
implicates a role for a10 in mechanical integrity
and/or in mechanical signaling of these tissues.

Integrin a10b1 is a prominent collagen
receptor on chondrocytes and its expression
correlates with expression of cartilage matrix
molecules such as collagen type II. This makes
a10 a unique and very useful differentiation
quality/potency marker of chondrocytes as well
as MSCs in tissue engineering of cartilage.
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5Integrin a11b1: A Major Collagen
Receptor on Fibroblastic Cells

Cédric Zeltz, Ning Lu, and Donald Gullberg

Abstract

Integrin a11 is the last addition to the vertebrate integrin family. In this
chapter we will summarize some basic facts about this integrin and update
with information that has been gained in the last decade. Integrin a11b1 is a
major collagen receptor on a subset of fibroblasts. Extensive character-
ization of the expression pattern in developing mouse embryos has
demonstrated expression restricted to subsets of fibroblasts and a transient
expression in odontoblasts, but comprehensive characterization of corre-
sponding expression in adult tissues is still lacking. Mice lacking integrin
a11 are dwarfed, primarily due to defective incisor eruption defect, which
can be traced back to need for a11 on periodontal ligament fibroblasts
during incisor eruption. Separate studies have suggested reduced levels of
IGF-1 in mice lacking a11. Analysis of lung cancer has identified a11b1 as
a functional important collagen receptor on carcinoma associated fibro-
blasts (CAFs) and a number of disease models are awaiting analysis to see
the importance of this collagen receptor in pathological models.

Keywords

Integrin a11 � Collagen � Fibroblasts � Carcinoma-associated fibroblasts �
Myofibroblast

5.1 Introduction

Integrins are evolutionary old molecules that have
been around for millions of years [11, 14], but we
first identified integrin a11 in 1995 [12]. Integrin
a11 is the last member of the integrin family to be
discovered. This integrin subunit was initially
named amt, since it was first identified on cultured
human fetal myotubes. In parenthesis, this dis-
covery was indeed serendipitous since the
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expression of a11 on myogenic cells is only seen
upon tissue culture (in muscle tissue in vivo a11 is
present on muscle fibroblasts). In 1999, we char-
acterized this integrin and identified it as the b1-
associated a11 subunit with properties of a colla-
gen-binding integrin chain [26]. Two years later,
we functionally described the a11b1 integrin as a
collagen receptor involved in cell migration and
collagen reorganization [24] and in 2004 we
described the mouse variant of integrin a11 [21].
The generation of a11 integrin-deficient mice was
a major advance in our efforts to elucidate a11
integrin function in health and disease [20].

5.2 The ITGA11 Gene

The human a11 integrin gene (ITGA11) is
localized on chromosome 15q23 and spans
130 kb, whereas the mouse a11 integrin gene
(Itga11; length of 106 kb), has been mapped to
chromosome 9. Both the human and mouse
genes contain 30 exons and 29 introns (Fig. 5.1).

5.2.1 Promoter and Transcription
Start

The ITGA11 promoter lacks both TATA and
CCAAG boxes. Promoters of other integrin a-
chains contain features of a conserved initiator
element often associated with an upstream Sp1
site found close to the transcription start [10, 32].

We used oligo-capping to identify a tran-
scription start site (TSS) 30 nucleotides
upstream of ATG in ITGA11 [30]. While the

consensus sequence for initiator sequences is
pypyANT/Apypy, the experimentally found
sequence ACACC in ITGA11 functions as an
abbreviated initiator sequence. Furthermore an
Sp1 binding site is located upstream of the
putative initiator sequence, supporting the view
that it is functional [18].

Using a panel of 15 serially-deleted promoter
constructs, the a11 integrin proximal promoter
spanning nt -176 and +25 nt has been charac-
terized in the 3 kb ITGA11 promoter region and
found to convey high level of transcription
activity. The presence of two Sp1 sites and an
Ets-1 site in the proximal promoter is essential
for its promoter activity [18] (Fig. 5.2).

Cytokines are able to regulate the a11 inte-
grin expression by inducing signaling molecules,
which regulate transcription factor binding to
promoters. Thus, TGF-b1 was shown to up-
regulate a11 expression in HT1080 fibrosarcoma
cell line, as well as in human dermal fibroblasts
and MRC-5 fibroblasts [13, 17]. The respon-
siveness to TGF-b1 is dependent on Smad2/3
and Sp1-regulated transcription. The Smad-
binding element SBE2 and the Sp1-binding site
SBS1 are closely located in the proximal pro-
moter (nt –182/–176 and –140/–134, respec-
tively). This proximity could promote a possible
interaction between the Smad and Sp1 tran-
scription factors. Activin A, which belongs to
the TGF-b family, is involved in the up-regula-
tion of a11 in mouse embryonic fibroblasts
(MEFs), in a mechanosensitive manner [8]. This
induction of a11 expression requires the Smad3
transcription factor. In transgenic reporter mice
the human 3 kb ITGA11 promoter drives a

Fig. 5.1 Schematic representation of ITGA11 gene. Top
part shows a schematic representation of human a11
protein, and lower part shows a schematic overview of
the organization of the ITGA11 gene with its 30 exons.

For the protein, the I domain, the 7 FG-GAP repeats
(1–7), transmembrane part (TM) and cytoplasmic tail
(ctpl) are marked. In the gene, exonic sequences repre-
senting untranslated regions are marked with open boxes
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fibroblast-specific expression in developing
mouse embryos (Fig. 5.3).

Type I interferons, including IFN-a and IFN-
b, have also been described to regulate a11
expression. IFNs are able to stimulate a11
mRNA and protein expression in the glioblas-
toma derived cell line T98G [16].

Down-regulation of a11 has been reported to
occur in mesenchymal stem cells and mouse
embryonic fibroblasts treated with FGF-2 [8,
25]. However, the responsive elements involved
in this down-regulation have not yet been
determined in the a11 promoter.

5.2.2 Exon Structure

As in other integrin genes, the signal peptide is
split by two exons, exon 1 and 2. Unlike some
other integrin genes, exon 1 in ITGA11 does not

solely contain an UTR sequence, but also
encodes the major part of the signal peptide,
similar to the organization observed in the a10
integrin gene [4].

Previous analysis of the exon structure of
leukocyte integrins has been very informative in
identifying I domain borders. In the case of a11,
the I domain is encoded by 4 exons (exons 6-9)
and flanking introns are in phase 1.

We have previously identified an inserted
region of 22 amino acids that distinguishes a11
from other integrin a chains [26]. It is likely that
the inserted region has arisen by reshuffling of the
existing sequence, which has then been inserted
at the beginning of exon 20 during evolution.
Comparison with ITGA2 exon 20 (Gen-
Bank:AC016619.5) shows that the homologous
sequence starts in a position immediately after the
insert observed in exon 20 of ITGA11. Compar-
ison of the a11 sequence with other integrin a-

Fig. 5.2 Conserved promoter elements in human and
mouse integrin a11 promoters. Alignment of the human
integrin a11 promoter region -330 to +25 with the
corresponding mouse promoter sequence. An E-box, two
putative Smad binding elements (SBE1 and SBS2),

tandem Sp1 binding sites (SBS1 and SBS2) and an Ets
binding site (EBS) are boxed in the sequences. The
human a11 transcription start site (TSS) is indicated by
an arrow and the translation start codon ATG is
underlined. From [17]
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Fig. 5.3 A 3 kb ITGA11 promoter drives LacZ reporter
expression in fibroblast precursors. The upper panel
shows a schematic map of the -3.0 ITGA11promoter-
LacZ reporter transgene used for generating transgenic
mice. The previously identified Sp1 binding sites (SBS1
and SBS2) and an Ets family binding site (EBS) are
indicated. The lower panel shows the whole-mount X-
Gal staining of transgenic embryos at different embryonic
days. LacZ expression is indicated by the blue staining.
At E11.5 a LacZ expression was observed in the
subpopulations of cranial neural crest cells cnc-cranial

neural crest cells; in the first branchial arch which give
rise to maxillary (single arrow) and mandibular (double
arrow) prominences, and in the second branchial arch
(asterisk) which will give rise to hyoid; h—heart; at
E13.5 b LacZ expression was detected in crm cranial
mesenchyme around calvarial bone, future location of the
intervertebral disc and in vf vibrissae follicle; at E14.5
c LacZ expression was shown in jt joints, tn tendons of
limbs, d in ns nasal septum, e in tm tongue mesenchyme,
f in df dental follicles and g close up for forelimb
showing positive staining in tn tendon (g). From [17]

76 C. Zeltz et al.



chains places the insertion in a region of the stalk
region called the calf-1 domain. Future studies
will reveal the possible importance of this region.
Interestingly, comparison with other integrins a-
chains has identified this region as being involved
in a/b chain interactions with the ability to
influence integrin activation [28].

Careful examination of intron sequences
using the program Genscan resulted in the
identification of three potential in-frame exon
sequences (with the tentative names 10B, 21L
and 22B). We, however, failed to detect RNA
messages for these variants, and currently no
experimental data is thus available to support
their existence. In ITGA10 alternative splicing in
a region corresponding to exon 25 has been
described [4]. PCR amplifications of RNAs from
different tissues covering this region in a11
transcripts suggest that corresponding splicing
does not occur in a11.

The cytoplasmic tail in integrin a chains has a
conserved sequence GFFXX, which in human
a11 corresponds to the sequence GFFRS. It is
interesting to note that for those integrin a chains
that undergo alternative splicing in the cytoplas-
mic tail, the alternative exons also encode
GFFKR, supporting the view that GFFKR toge-
ther with the cytoplasmic tail denotes a functional
unit. Biochemical analysis of the exact border of
the transmembrane domain has recently sug-
gested that GFFK residues are part of the trans-
membrane domain [1]. Comparison with the gene
structure for a11 shows that if the homologous
sequence GFFR is considered to be part of the
transmembrane domain, the majority of this
domain is encoded by exon 29, with the final four
residues being encoded by the terminating exon
30, which also encodes the cytoplasmic tail.

5.2.3 Comparison with Other aI-
Encoding Integrin Genes

Comparison of ITGA10 and ITGA11 genes lends
further support to the view that a10 and a11
have arisen by a gene duplication event. Unlike
ITGA1 and ITGA2, which are both located on

chromosome 5, ITGA10 and ITGA11 have been
mapped to human chromosome 1 and 15,
respectively. Unlike the ITGA11 gene, which
spans at more than 130 kb, ITGA10 is much
more compact and spans less than 19 kb. Com-
parison of ITGA11 with the aX exon structure
reveals a striking conservation of exon borders,
underlining the close evolutionary relationship
of integrin aI domain encoding genes.

The closely related ITGA2 has been shown to
display polymorphisms in the promoter region,
also identified as risk factors for thrombotic
disease [6, 7]. Based on the high expression of
integrin a11 in the periodontal ligament (PDL)
we hypothesized that single nucleotide poly-
morphisms (SNPs) in ITGA11 might predispose
to periodontitis. However, analyses of patients
with juvenile periodontitis failed to identify
polymorphism in the ITGA11 basal promoter
[3]. Further studies of the promoter will be
instructive in determining: the regions in the
upstream region that direct the fibroblast and
carcinoma- associated fibroblast (CAF) -specific
expression of a11 observed in vivo, the under-
lying mechanism for its mechanosensitivity and
finally the regions mediating responsiveness to
fibrogenic growth factors.

5.3 The Integrin a11 Subunit

ITGA11 encodes a mature protein of 1166 amino
acids with a predicted integrin alpha chain
structure. In SDS-PAGE, it runs as a 155kD
band in a position above integrin a2 and a10
chains, indicating a higher degree of glycosyla-
tion than these two related integrins (Fig. 5.4).
The extracellular domain contains seven FG-
GAP repeats and a 195-amino acid-long I
domain inserted between the repeats 2 and 3.
The I domain presents a metal ion-dependent
adhesion site (MIDAS) motif and three potential
divalent cation binding motifs. As already
mentioned the short cytoplasmic tail of 24 amino
acids contains the motif GFFRS instead of the
conserved GFFKR sequence most commonly
found in integrin a subunits. A 23-amino acid-
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long transmembrane domain links the extracel-
lular and cytoplasmic domains [26]. The mouse
a11 integrin chain shows an 89 % identity with
human a11 at the protein level and 97 % identity
in the I domain [21].

5.3.1 Expression of the a11 Integrin
Chain In Vivo

The expression of integrin a11 was first descri-
bed in cultured human fetal muscle cells in vitro
[12]. In human adult tissue, a11 mRNA was
expressed in high levels in uterus and heart and
in intermediate levels in skeletal muscle. How-
ever, in human and mouse embryos, no expres-
sion of a11 was detected in muscle cells [21,
24]. Later it was shown that in muscle tissue a11
is expressed in fibroblasts, hence explaining the
detection of a11 RNA in muscle tissues in
Northern blotting. a11 is present in fibroblasts
around ribs, vertebrae, in intervertebral discs and
in keratocytes of the cornea of 8-week human
embryos [24]. In the mouse embryo, a11 has

been localized to the ectomesenchyme in the
head including the PDL, in tendons and intesti-
nal villi fibroblasts [21]. The a11 chain expres-
sion appears to be specific to mesenchymal non-
muscle cells in vivo (Fig. 5.5), but a complete
characterization in adult tissues has not yet been
performed. a11 expression has also been repor-
ted in tumor tissue from melanoma and lung
carcinoma [27, 31]. The high levels of a11
integrin expression in lung carcinoma in situ are
derived from the CAFs and is thus in the lung
not contributed by the cancer cells. Recent data
indicates that a11 RNA is regulated during
epithelial mesenchymal transition [15].

5.4 Integrin a11b1 Functions

5.4.1 In Vivo Functions

The in vivo function of the a11 integrin has been
partially elucidated using the knockout mouse
model. The a11-deficient mice are smaller and
display an increased mortality compared to
heterozygous and wild-type mice [20]. Dwarf-
ism observed in these a11-deficient mice
appears not to be due to structural defects in
forming cartilage or bone. Instead the smaller
size and malnutrition of weaned a11-deficient
mice appear to correlate with delayed incisor
eruption and altered tooth shape (Fig. 5.6). The
incisor PDL, which plays a central role during
rodent incisor eruption, showed increased
thickness due to increased amount of collagen.
In this mutant tissue, a decrease of MT1-MMP
and MMP-13 mRNA levels were also noted. A
reproducible result was obtained in vitro, where
MEFs isolated from a11-deficient embryos
showed reduced MT1-MMP and MMP-13
mRNA expression, whereas MMP-2 and MMP-
9 activities were not affected. These observa-
tions suggest that a11 could be involved in the
regulation of metalloproteinases as MMP-13 and
-14, thus controlling the collagen turnover in
PDL. Later studies of PDL fibroblasts isolated
from mouse incisors confirmed a role for inte-
grin a11 b1 in regulating MMP-13 expression,
but failed to show regulation of MMP-14 at the

Fig. 5.4 Expression of a11 in cultured human fibro-
blasts. Cultures of subconfluent 1518 human foreskin
fibroblasts were metabolically labeled, proteins were
immunoprecipitated with antibodies, separated on a 6 %
SDS–PAGE gel under nonreducing conditions, and
visualized by fluorography. The antibodies used were
directed to integrin subunits b1, a1, a11 and a2. Positions
of different integrin chains are marked. From [24]
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protein level under the conditions used [2].
Intriguingly, later data has shown that a11-
deficient mice display reduced serum levels of
IGF-1 [5]. The mechanism for how a fibroblast
specific protein would affect the pituitary axis
responsible for IGF-1 secretion is unclear at this
stage. The study is however important since it
stresses that a11-deficient mice are smaller
already at birth, before the incisor eruption effect
on body weight has come into play and further
stresses that more detailed studies are needed to
sort out the underlying molecular mechanism for
reduced body weight observed in a11-/- mice.

As described above, a11b1 has been reported
to be up-regulated in the CAFs in non-small cell
lung cancer [31] (Fig. 5.7) and was also in a
xenograft model shown to enhance tumorige-
nicity by regulation of the IGF-2 expression.
However, the exact role of a11 in the tumor
stroma during TGF-b1-dependent myofibroblast
differentiation, tumor growth and tumor metas-
tasis remains to be determined and it will be
important to determine if a11 upregulation
occurs on CAFs also in other types of tumors.

5.4.2 In Vitro Functions

The a11 integrin chain is exclusively associated
with the b1 subunit at the cell surface, to form
the a11b1 integrin. The first study that demon-
strated that a11b1 promoted cell attachment to
collagen I was performed in 2001, when we
started using the system of transfecting cDNAs
encoding collagen-binding integrins into the
mouse satellite cell line C2C12 [24]. Using these
cells we could show that integrin a11b1 displays
certain collagen specificity, since it binds pref-
erentially type I collagen, whereas it interacts
with collagen IV with a low affinity. The a11 I
domain recognizes the triple-helical GFOGER
sequence present in collagen I as well as the
GLOGER motif [22, 29].

Another study has identified the GLPGER motif
of the recombinant Scl1 protein, a prokaryotic
collagen, as an a11b1 binding sequence [9]. The
interaction between the cell surface streptococcal
Scl1 and the human a11b1 integrin might increase
host colonization by pathogenic bacteria, but this
process remains to be determined.

Fig. 5.5 Localization of a11 mRNA during mouse
embryogenesis. Sagittal sections of mouse embryos from
E embryonic days E12.5–E16.5 were subjected to in situ
hybridization using an antisense RNA probe specific for
mouse a11. Darkfield images are shown. At E12.5 a11
mRNA can be detected around clb calvarian bone, in cfm
craniofacial mesenchyme, around mc Meckel’s cartilage,

around hb hyoid bone, around v vertebrae, and around the
r ribs. * denotes signal in descending aorta, not confirmed
by immunohistochemistry. At E14.5 a11 can also be
detected in ivd intervertebral discs in the tail region and
in tm tongue mesenchyme. At E16.5 tendons and lig
ligaments in the hind limb express high levels of a11
RNA. From [21]
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The role of a11b1 in PDGF-stimulated cell
migration on collagen I coating seems to be cell
type dependent. The C2C12 mouse cells, stably
transfected with human a11 integrin cDNA,
showed a stronger chemotactic response to
PDGF-BB, compared to C2C12 wild-type cells,
lacking endogenous collagen receptors [24]. In
contrast, MEFs depleted in a11b1 migrated
more on collagen I in comparison to wild-type
embryonic fibroblasts [21]. However, in this last

case, a compensatory mechanism, involving
other collagen receptors, cannot be excluded.

In several studies we have shown that a11b1
mediates the contraction of collagen lattices, an
important function, which contributes to the
regulation of the reorganization of collagen
matrices [2, 3, 20, 24]. Interestingly, when we
isolated PDL fibroblasts from a11 deficient
mice, these fibroblasts displayed reduced levels
of MMP-13 and cathepsin K, which in a11b1

Fig. 5.6 Phenotype of integrin a11-deficient mice. a 10-
week-old male mutant mice showed a reduction in size.
Hz, heterozygous (a11+/-); KO, homozygous (a11-/-).
b A lack of the outer portion of the upper incisors was
observed in the a11 null mice at 1 year of age. c The

incisors of 4-month-old mutant control (lower panel) and
mutant (upper panel) mice were excised from their
sockets, and the soft tissue was digested away. Note the
altered size and shape of the KO incisors. From [20]

Fig. 5.7 Expression of integrin a11 chain in tumor
stroma. Immunofluorescence images of human Normal
tissue (lung) and Tumor tissue (non small cell lung
adenocarcinoma) that were double stained with

antibodies to a11 (red) and epithelial cell marker
cytokeratin (green). The a11 staining was negligible in
non-neoplastic lung tissue and was mainly confined to the
stroma in the tumor sample. From [31]

80 C. Zeltz et al.



expressing fibroblasts seemed to facilitate the
collagen remodeling process during collagen
contraction [2].

Under certain conditions fibroblasts become
activated and differentiate into so-called myofi-
broblasts. Myofibroblasts are characterized by a-
smooth muscle actin (a-SMA) incorporated into
stress fibers. Corneal fibroblasts, under action of
TGF-b1, overexpress a-SMA. Since siRNA
directed against the a11 integrin completely
abrogated a-SMA up-regulation, these data
demonstrate that a11b1 also plays a role in
myofibroblast differentiation [8] (Fig. 5.8). The
regulation of myofibroblast differentiation by
a11b1 could be relevant in pathological pro-
cesses such as tumor-stroma interactions and
fibrosis, where myofibroblasts are involved
(Fig. 5.9).

More recently a11- and TGF-b2-dependent
myofibroblast differentiation in cardiac fibroblasts

has been observed, suggesting a potential role for
a11 in cardiac fibrosis [23].

Integrin turnover is an essential process
involved in cell adhesion and migration. Gen-
erally, integrins present on the cell surface are
either released and used in new adhesion sites or
internalized by endocytosis. Rab proteins,
including Rab21, regulate the traffic of endocy-
totic vesicles via interaction with the cytoplas-
mic tail of a integrin subunit, as shown for
integrin a2b1 [19]. The C-terminal part of
Rab21 was also able to bind to the cytoplasmic
domain of a11 integrin, thus suggesting that
a11b1 could be regulated by endocytosis. Since
Rab21 activity has been shown to regulate the
motility of breast and prostate cancer cells, it
could be interesting to examine if an association
between this small GTPase and a11b1 occurs in
cancer-associated fibroblasts and if it might have
an impact on the tumor progression.

Fig. 5.8 a11 influences myofibroblast differentiation in
human corneal fibroblasts. Immunolocalization of a-
SMA in corneal fibroblasts that remained untreated
(upper left), were stimulated with 5 ng/ml TGF-b1 only
(upper right), or were treated with 5 ng/ml TGF-b1 and

a11-specific siRNA (100 nM) (lower right), or an off-
target siRNA (NC negative control; lower left). The
exposure time when acquiring pictures was identical in
all conditions. From [8]
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5.5 Perspectives

Integrin a11b1 is expressed in mesenchymal
non-muscle cells in vivo at sites where collagens
are organized in a highly ordered manner. It
appears as a multifunctional integrin in different
contexts. However, little is known about the
detailed molecular mechanisms involved in
a11b1 functions including the major signaling
pathways utilized by a11b1 and its involvement
in various pathological conditions, and thus
much still remain to be learned about this col-
lagen receptor.
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6Regulation of Integrin Activity
by Phosphorylation

Carl G. Gahmberg, Mikaela Grönholm, and Liisa M. Uotila

Abstract

Integrins are heterodimeric complex type I membrane proteins involved
in cellular adhesion and signaling. They exist as inactive molecules in
resting cells, and need activation to become adhesive. Although much is
known about their structure, and a large number of interacting molecules
have been described, we still only partially understand how their
activities are regulated. In this review we focus on the leukocyte-specific
b2—integrins and, specifically, on the role of integrin phosphorylation in
the regulation of activity. Phosphorylation reactions can be fast and
reversible, thus enabling strictly directed regulatory activities both time-
wise and locally in specific regions of the plasma membrane in different
leukocytes.
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6.1 Introduction

About 30 years ago leukocyte cell surface pro-
teins were described to be involved in various
functions such as antibody production, cytotox-
icity, phagocytosis and chemotaxis [1, 2]. They
were given names such as leukocyte function
associated antigen (LFA-1) and macrophage
antigen-1 (Mac-1). Later work used phorbol

esters to induce cell adhesion. In the presence of
an array of monoclonal antibodies reacting with
the leukocyte surface we looked for antibodies,
which could inhibit the induced adhesion. One
antibody, called 60.3, was efficient, and immune
precipitation resulted in the identification of
protein dimers [3, 4]. Subsequently, these pro-
teins were shown make up a subfamily of
adhesion proteins named integrins [5, 6].
Because of their functional importance, they
drew large interest and the literature on integrins
is currently impressively large [7–11].

Integrins are present in the animal kingdom
from nematodes and fruit flies to humans, and
their amino acid sequences are remarkably well
conserved [10, 12]. The ligand binding domains
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on the outside of cells are large, and some
integrins, including the b2-integrins, contain an
I/A-domain. When present, the I-domain first
characterized in von Willebrand factor, forms
the ligand binding site and is located in the a-
chains of the integrins. In humans four b2-inte-
grins exist. The lymphocyte enriched LFA-1
(aLb2, CD11a/CD18) binds to the intercellular
adhesion molecules (ICAM) -1 to -5 [13–15],
but the other family members Mac-1 (aMb2,
CD11b/CD18), aXb2 (CD11c/CD18) and aDb2
(CD11d/CD18) bind to several additional types
of ligands including plasma proteins, extracel-
lular matrix components and even carbohy-
drates. In integrins lacking the I-domain, the
ligand binding site is formed by the b-propeller
domain on the a-chain and the bI-domain of the
b-subunit.

The b2 integrins are expressed on white blood
cells, but the expression profile on different leu-
kocytes is unique for each member of the family.
LFA-1 is expressed on all leukocytes, whereas
aMb2 is found on monocytes, macrophages, NK
cells, neutrophils and on cd subsets of T cells.
aXb2 is expressed on monocytes, macrophages,
dendritic cells, NK cells and some subsets of T
and B cells, and aDb2 on macrophages and
eosinophils [8, 10] The functions of leukocyte
integrins are vital for a functional immune sys-
tem, but, reflecting the variance in the expression
pattern, also the functions of the family members
are somewhat different. Leukocyte integrins and
especially aLb2 are essential for the extravasa-
tion of the immune cells from the circulation to
inflamed tissues. aLb2 is also necessary for the
proper formation of the immunological synapse
that forms between an antigen presenting cell and
a T cell [16]. The complement receptors aXb2
and especially aMb2 have been shown to be
important in phagocytosis. Other functions of
aMb2 include remodeling of ECM, survival of
neutrophils and development of immune toler-
ance [17, 18]. aXb2 on the dendritic cells has
been found to be an efficient target for antigen
uptake in eliciting T cell immune responses [19].
Other studies have demonstrated the role of aXb2

on hypercholesterolemic mouse monocytes in the
development of atherosclerosis [20]. aDb2 on
macrophages possibly takes part in phagocytosis
and migration [18].

The integrins are remarkable in the sense that
they can signal across the plasma membrane in
two directions: inside–out and outside–in. In the
former case, a ligand or activating agent is
bound to a non-integrin receptor and eventually
the signal is transmitted to the integrins. In
outside–in signaling the ligand binds directly to
the integrin on the outside of the cell and indu-
ces signaling. Increasing evidence shows that
inside–out signaling results in partial activation
of the integrins where the head piece remains
closed and the integrin weakly binds to the
ligand. When the ligand binds, the binding
region in the integrin opens up followed by
outside–in signaling. Thus inside–out and out-
side–in signaling may be coupled and occur
subsequently in an individual integrin.

6.2 Integrin Structural Features

Figure 6.1 shows schematic figures of leukocyte
b2-integrins [9]. The different domains are
schematically drawn in Fig. 6.1a. The external
domains are complex and interact non-cova-
lently on the outside of the cell. A major
advance in understanding integrins came when
the I-domain from aM was crystallized and the
structure determined [21]. Later the structures of
the external parts of the aVb3 and the aXb2
integrins were determined [22, 23]. Surprisingly,
the binding site formed by the a-chain propeller
and the b-chain I-like domain was turned
towards the lipid membrane (Fig. 6.1b). Later
work showed that upon activation the molecules
straighten out and now show intermediate
binding affinity (Fig. 6.1c). In the fully active
protein, the binding site has opened up, the
hybrid domain has moved out and presumably
the ‘‘legs’’ including the cytoplasmic tails have
moved apart (Fig. 6.1d). All results indicate that
the integrin a- and b-subunits play very different
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roles in adhesion. The a-chains have an impor-
tant structural role, including ligand specificity,
but not necessarily a regulatory role. The b
subunit cytoplasmic domains, on the other hand,
are largely conserved and are able to regulate
integrin activity. It has been proposed that in the
resting state, a salt bridge exists between an
aspartate in the b-subunit (SDLR in b2) close to
the membrane, and the arginine in the conserved
a-chain GFFKR sequence [24, 25]. Upon acti-
vation, this salt bridge may be broken enabling a
switch from a relatively parallel heterodimer to a
more X-like structure, which reaches out and
modifies the structure also on the outside of the
membrane. How this could take place is dis-
cussed below.

6.3 The Integrin Cytoplasmic
Domains Bind Several
Intracellular Regulatory
Proteins

Much work has focused on the cytoplasmic
domains of the integrins (Fig. 6.2). We now
know that the cytoplasmic regions of the inte-
grins are pivotal in the regulation of activity.
The structure of the cytoplasmic tails of aLb2,
aMb2 and aXb2 [26–28] as well as those of aIIb
[24] and a4 [29] have been solved by NMR. The
a-chains of b2-integrins show quite striking
differences, even though the membrane proximal
structures, forming a conserved helical structure,
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Fig. 6.1 Schematic figure of the aLb2 integrin. a The
domains are depicted. b In the resting state the integrin
head piece containing the binding site is turned towards
the membrane. c The integrin of intermediate affinity is
straightened out, but the head piece remains closed, and
the cytoplasmic domains are more closely packed. The
binding site of the KIM127 antibody, which recognizes

an integrin of intermediate affinity is shown. d The fully
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remain similar. All leukocyte integrin a and b
cytoplasmic tails studied appear to interact with
each other through multiple ionic and hydrogen
bonds in the membrane proximal helical area,
but the rest of the cytoplasmic a-chains form
different structures. aL, which has the longest
cytoplasmic part, forms three alpha helices that
are sustained by salt bridges and/or hydrogen

bonds. This structure forms a large negatively
charged surface that is able to bind metal ions
[26]. The membrane distal residues of two other
leukocyte integrins, aM and aX, form loops that
can adopt more conformational variations. These
findings suggest that the different members of
the leukocyte integrin family may have different
cytoplasmic binding partners, which can lead to

Fig. 6.2 The cytoplasmic sequences of the b2-integrins
and those of some other integrin subunits dealt with in
the text are shown. The functionally important a-chain

regions, the potential phosphorylation sites, the NPXY
sequences and other possibly important amino acids are
shaded. Confirmed phosphorylation sites are numbered
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different signaling events and outcomes. The
reported phosphorylation sites of aL, aM and aX
cytoplasmic tails as well as the b2 tail are situ-
ated outside the membrane-proximal helices and
are thus more easily available for kinases and
phosphatases involved in phosphorylation as
well as for other cytoplasmic molecules for
interactions. There are several recent articles and
reviews dealing with the binding of cytoplasmic
proteins to integrin intracellular domains [12,
30–37] and we will not try here to cover all
aspects of this fascinating, but large subject.
Instead, we focus on how integrin activities can
be regulated rapidly and specifically. We want to
put forward the proposition that integrin regu-
lation primarily takes place through specific
phosphorylation reactions, which in turn affect
the binding of specific adaptor proteins. Further
downstream binding components then relay
various integrin related cellular functions.

Few cytoplasmic proteins have been found to
specifically bind to the integrin a-chain cyto-
plasmic tails. These include paxillin, calreticulin,
CD45, RapL and the adhesion inhibitory protein
SHARPIN [38]. In contrast, more than 40 pro-
teins have been claimed to bind to the b-subunits
[35]. The integrin b-chain cytoplasmic regions
contain three important ‘‘hot spots’’ for binding
proteins. These are the two NPL(I)Y(F) and
N(XX)Y(F)(or NPXY for short) sequences and
the Ser/Thr enriched sequence between them.
Depending on the integrin, all three sequences are
also potential phosphorylation sites. It should,
however, be pointed out that several integrin
cytoplasmic domains have been used for studies
on interactions with cytoplasmic proteins, and
certainly different integrins have different bind-
ing preferences. Therefore, results obtained with
one cytoplasmic sequence must not necessarily
be true for another one. Furthermore, the cyto-
plasmic parts of the integrins are relatively short
with a limited binding capacity. Obviously, the
interactions are competitive to a large extent and
binding of a given cytoplasmic protein often
excludes the binding of another one.

The best studied cytoplasmic proteins inter-
acting with integrin b-chain COOH-terminal
regions are talin, filamin, kindlins and 14-3-3

(Fig. 6.3). The talin molecule is large with a
‘‘head’’ and a long ‘‘tail’’ (rod). The head binds
to integrins whereas the tail may interact with
the actin cytoskeleton, but also with integrins
[39]. The properties of talin and its interactions
with integrins have been described in several
recent reviews [12, 30, 32, 36, 39]. Importantly,
the integrin b-subunits have two binding sites
for talin, an acidic sequence close to the mem-
brane [40], and the proximal NPXY(F)
sequence. Filamin binds to a region extending
from the first to the end of the second NPXY(F)
sequence whereas kindlins bind to the region
beginning from the Ser-Thr enriched region
(Thr-Thr-Thr in b2) and covering the second
NPXY(F) sequence. The 14-3-3 proteins bind to
Thr-758 in the Thr-Thr-Thr sequence in b2, but
only after phosphorylation [41, 42]. A weaker
binding may also occur, which is not dependent
on phosphorylation [12].

6.4 Integrin Phosphorylations are
of Pivotal Importance
for Activity

An accumulating amount of recent results indi-
cate that specific integrin phosphorylations are
important in the regulation of integrin associated
activities [43]. The leukocyte integrins have
turned out to be especially useful models for
studies on phosphorylation mediated regulation.
In contrast to other cells, blood cells such as
lymphocytes, are normally completely resting,
but can be activated by various agents including
chemokines and lectins, but also through the T
cell receptor. In addition, immunologists have
obtained a vast knowledge of leukocyte func-
tions. Certainly, there exists a large clinical
interest in leukocytes and in several diseases in
which leukocytes play an important role. These
facts have further stimulated work on leukocyte
integrins.

The early finding that integrins can be acti-
vated by phorbol esters, which were known to
activate protein kinase C isoenzymes, led to
studies on integrin phosphorylation. It soon
turned out that the a-chains are constitutively
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phosphorylated, whereas the b-chains only
became phosphorylated upon activation [44, 45].
The leukocyte b2-integrins and the platelet aIIb/
b3 integrin have been best studied in this respect.
The possible and identified phosphorylation sites
in the most studied integrin subunits are shown in
Fig. 6.2. The aL, aM and aX subunits have sin-
gle phosphorylation sites, all on serine residues.
In contrast, the b-chains contain several phos-
phorylation sites. In b2, phosphate has been
found on Ser-745, Ser-756, Thr-758, Thr-759,
Thr-760 and possibly on Tyr-735 [41, 46]. aL is
phosphorylated on Ser-1140, aM on Ser-1126
and aX on Ser-1158 [47–49]. In human b1 and
b3 integrin subunits, both NPXY sequences can
be phosphorylated, but not in b2 where the ty-
rosines are replaced by phenylalanines. b7 is
similar to b2 in that the first threonine in the
threonine triplet is phosphorylated [46].

In addition to the protein kinase C family
enzymes known to be responsible for integrin
b2-chain phosphorylations [41, 50] other Ser/
Thr kinases may be important. Ser-756 is
strongly phosphorylated upon phorbol ester
treatment, and it seems possible that it is phos-
phorylated by calcium/calmodulin kinase II,
because the antagonist W7 inhibits the phos-
phorylation [51]. In addition, the integrin linked
kinase (ILK), and the mammalian sterile20-like1

kinase (Mst1) have been implicated in integrin
regulation [52, 53]. Also protein kinase A may
participate in integrin related intracellular com-
munication [54]. The p21-activated kinase 4
(Pak 4) phosphorylates Ser-759 and Ser-762 in
the integrin b5 subunit [55]. This is proximal to
the Ser/Thr phosphorylation site present in sev-
eral b-chains. Mutation of the serines in this
SERS sequence reduced the migration of the
aVb5-containing cells .

When T lymphocytes are activated through
the T cell receptor, the inside-out signaling
results in phosphorylation of Thr-758 in the b2
subunit of aLb2 [46]. The phosphorylated b2-
chain now binds 14-3-3 proteins, which are
dimers with two Ser/Thr-phosphate binding
domains [56]. This is followed by binding of the
adaptor protein Tiam1 [57], followed by acti-
vation of the small G protein Rac-1 by Tiam1
[47, 58], (Fig. 6.4). Importantly, the phosphor-
ylation signaling from the integrin b2-chain can
be mimicked using a membrane permeable
peptide containing phosphate at Thr-758. This
peptide, when introduced into lymphocytes, was
able to activate the pathway through the b2-
chain resulting in increased adhesion [47]. Fil-
amin is bound to the b2-chain in resting cells,
but phosphorylation of Thr-758 results in a
switch from filamin binding to 14-3-3 binding.

Fig. 6.3 The cytoplasmic domain of b2. The phosphor-
ylation sites are numbered, and the functionally impor-
tant amino acids shaded. The binding regions of some

major cytoplasmic proteins binding to the b2-integrin
cytoplasmic domain are indicated. Note that talin has
two binding sites in b2
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Surface plasmon resonance experiments showed
that the affinity of 14-3-3 proteins for phos-
phorylated b2 binding is high whereas filamin
showed no binding [42]. Talin can in fact bind
both to the unphosphorylated and phosphory-
lated chains, but its binding to the phosphory-
lated molecule is competed out when 14-3-3 is
present. The structural explanation for 14-3-3
and filamin binding to the b2 cytoplasmic frag-
ment has been determined. The phosphate on
Thr-758 interacts electrostatically with Arg-56
and Arg-127 and by a hydrogen bond to Tyr-128
in 14-3-3. The filamin pocket in domain 21 can
accomodate the unphosphorylated b2 peptide,
but after phosphorylation there is no room for
the peptide with the hydrophilic phosphate [42].

Less is known about the effect of phosphor-
ylation on Ser-756. Mutation of it to methionine
resulted in inhibition of phagocytosis of C3bi-
coated erythrocytes [17, 59]. The small G pro-
tein Rap1 was shown to bind to the phosphory-
lation mimicking Ser-756/Asp, but not to the
non-phosphorylatable mutant [59].

Relatively little is known the connection
between outside-in signaling and phosphoryla-
tion. aLb2 can be activated by integrin binding

activating antibodies [60] soluble ligands such
as ICAM-2 [61] and a peptide from the external
part of ICAM-2 [62]. Ser-745 in the b2-chain
was found to be phosphorylated by soluble
ICAM-2. This phosphorylation resulted in the
release of the transcription co-activator JAB-1
from the b2-chain enabling its downstream sig-
naling to the nucleus [63].

The a-chain phosphorylations have been
shown to be important. When aL, aM or aX,
which are phosphorylated at positions Ser-1140,
Ser-1126 and Ser-1158, respectively, are muta-
ted with non-phosphorylatable alanines, adhe-
sion was abrogated [47–49]. In aXb2 the a-chain
phosphorylatable residue could be replaced by
aspartic acid regaining adhesion [49]. Whether
this is true for the other b2-integrins is not
known. A large proportion of the a-chains are
constitutively phosphorylated, but there is still a
continuous turnover of the phosphate [64].
Interestingly, outside-in activation by an integrin
activating antibody resulted in activation of the
Syk kinase both in wild type aXb2 and aXSer-
1158/Ala transfected cells, but adhesion was
blocked in the Ser-1158/Ala transfected cells
[49]. The fact that adhesion was normal in
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Fig. 6.4 Signaling from the T cell receptor/chemokine
receptor resulting in active integrins. Ligand binding to
the receptors results in activation of protein kinase C,s
(PKC). This leads to phosphorylation of Thr-758 in the
integrin b2 subunit. The cytoplasmic tail of the integrin
is released from filamin and 14-3-3 proteins bind to the
b2 chain, and the protein straightens out. A complex of

the adaptor protein Tiam1 and talin is recruited to the
integrin. The phosphate is subsequently released by
phosphatase activity and talin can now directly bind to
the integrin and activates it to high affinity. The
interaction of talin with the actin cytoskeleton further
increases the cellular binding to ligands by clustering of
the integrin molecules resulting in increased avidity
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Ser-1158/Asp transfected cells shows that the
negative charge on residue-1158 is important,
but it must not be phosphate. Furthermore, when
cells were transfected with the constitutively
active small G protein Rap1, wild type cells
adhered but cells with the Ser-1158/Ala muta-
tion did not [49].

The aM cytoplasmic domain is the shortest of
the b2-integrin a-chain cytoplasmic domains
and it is phosphorylated on Ser-1126 (Fig. 6.2).
Interestingly, the corresponding amino acid in
the other a-chain domains is glutamic acid. This
could mean that the negative charge at this
position is important for activity, but it can be
either phosphate or amino acid based.

Tyrosine phosphorylation is important in
signaling events such as those taking place
downstream from the T cell receptor and it may
involve a number of kinases and substrates [65].
Src family tyrosine kinases (Src, Lck, Fyn etc.)
could be responsible for integrin tyrosine phos-
phorylation, but further details are poorly known
[43]. Integrin tyrosine phosphorylation has been
shown to take place upon ligand binding to the
aIIb/b3 integrin [66]. This integrin contains ty-
rosines in the two NP(I)XY sequences and they
become phosphorylated when platelets bind to
ligands such as fibronectin, fibrinogen and von
Willebrand factor [66–69]. In b1-integrins sim-
ilar tyrosine phosphorylations occur and these
may contribute to the phenotype of transformed
cells. When the tyrosines were mutated to
phenylalanines, cell movement was inhibited
[70, 71]. Importantly, tyrosine phosphorylation
of b1 has been shown to inhibit talin binding to
the proximal NPXY sequence leaving room for
other proteins to bind, for example filamin and
tensin [72]. The integrin b2-subunit does not
contain tyrosine in the NPXY sequences but
phenylalanine. Evidently, the b1- and b2-inte-
grins are regulated differently, in both cases by
phosphorylation, but it can be either on Ser/Thr
residues or on tyrosine. Interestingly, the b2
subunit has tyrosine at position 735 and muta-
tion of this residue impairs integrin recycling
[73]. In contrast, the b1- and b3-subunits contain

phenylalanine in the corresponding position.
Little is known about tyrosine phosphatases in
this connection. The CD45 tyrosine phosphatase
has been implicated in the regulation of T cell
signaling probably by activating Src family
kinases by removing the COOH-terminal phos-
phate. Interestingly, CD45 has been found to
bind to integrin a-chains and it could be part of a
signaling complex and the immunological syn-
apse [16].

6.5 How Does Integrin
Phosphorylation Affect Talin
Binding?

How does talin and kindlins fit into the story on
phosphorylations? Talin has been claimed to be
the final activator of integrins. Using nanodiscs
with a single lipid-embedded integrin Ye et al.
[36] showed that purified talin could activate the
aIIbb3 integrin. Although several details are still
incompletely understood, we propose the fol-
lowing model. Upon activation through the T
cell receptor or through chemokines, phosphor-
ylation takes place on Thr-758 in the b-subunit.
This results in release of filamin from the b-
chain and replacement by 14-3-3 proteins. The
14-3-3 proteins are homodimers and the free
binding site binds in turn to Tiam1 and activates
the small G protein Rac-1 resulting in remod-
eling of the cytoskeleton [57]. On the other
hand, it is possible that Tiam1 binds to talin [32]
and after dephosphorylation talin could bind to
the integrin b-subunit. Kindlin-3 has been shown
to bind to threonines-758-760 and the distal
NPKF sequence [31, 74]. Probably, phosphory-
lation of Thr-758 inhibits the binding, which can
be restored after dephosphorylation.

The negative charge on the integrin a-subunit
due to phosphorylation, combined with recruit-
ing of the b-chain-14-3-3-Tiam1-talin complex
to the actin cytoskeleton after activation, could
induce breaking of the bonds between the a- and
b-subunits resulting in separation of the integrin
tails. The talin head domain could then
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intercalate between the subunits. Serine/threo-
nine phosphatase(s) like PP1 could remove the
b2-chain phosphate enabling talin and kindlin
binding to the b-chain. The talin and kindlin
associations with the b-subunit would result in
an allosteric change in the integrin resulting in
activation of the molecule across the membrane.

6.6 Inhibition of Adhesion

Recently, natural inhibitors of integrins have
been reported. The Del-1 protein is deposited on
the surface of endothelial cells and binds to
aLb2 and aMb2 integrins [75]. Evidently, it
competes with the ICAM-molecules for integrin
binding, and due to the fact that it is a soluble
protein with relatively low affinity to integrins, it
does not support leukocyte adhesion in vivo, but
instead it inhibits binding by interfering with
integrin/ICAM binding. Whereas Del-1 binds to
the external surface of leukocytes, the intracel-
lular protein SHARPIN binds to the cytoplasmic
part of integrin a-chains and inhibits integrin
activation [38, 76]. The SHARPIN/integrin
interaction may compete out other a-chain
cytoplasmic protein interactions, such as that of
paxillin or inhibit the interaction of a-chains
with the integrin b-chains.

6.7 Concluding Remarks

Protein phosphorylation is certainly extremely
complex and because of its transient nature
difficult to study. On the other hand it is fasci-
nating to see how this relatively small protein
modification can induce remarkable cellular
changes enabling fast and precise adjustments in
the highly variable environments of circulating
and more stationary leukocytes. It is possible
that the large number of protein kinase ([500)
and phosphatase ([100) coding genes in higher
organisms may forever preclude a detailed
understanding of integrin function. But we
optimistic and believe that a stepwise well
defined approach can reveal the inner secrets of
cellular adhesion complexity.
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7Integrin aEb7: Molecular Features
and Functional Significance
in the Immune System

Gregg A. Hadley and Jonathan M. G. Higgins

Abstract

Alpha E beta 7 (aEb7) is an a-I domain-containing integrin that is highly
expressed by a variety of leukocyte populations at mucosal sites including
intraepithelial T cells, dendritic cells, mast cells, and T regulatory cells
(Treg). Expression depends largely or solely on transforming growth
factor beta (TGF-b) isoforms. The best characterized ligand for aEb7 is
E-cadherin on epithelial cells, though there is evidence of a second ligand
in the human system. An exposed acidic residue on the distal aspect of
E-cadherin domain 1 interacts with the MIDAS site in the aE a-I domain.
By binding to E-cadherin, aEb7 contributes to mucosal specific retention
of leukocytes within epithelia. Studies on aE knockout mice have
identified an additional important function for this integrin in allograft
rejection and have also indicated that it may have a role in immunoreg-
ulation. Recent studies point to a multifaceted role for aEb7 in regulating
both innate and acquired immune responses to foreign antigen.

Keywords

Integrins � Intraepithelial T cells � Regulatory T cells � Dendritic cells �
Mast cells � TGFb

7.1 Introduction

Integrin aEb7 is, in many respects, an unusual
integrin. The aE subunit (CD103) has unique
structural features (Fig. 7.1) and is the only a-I
domain-containing integrin chain that pairs with
b7. Beta 7, however, can pair with a4 as well as
aE. Both heterodimers are expressed exclusively
by leukocytes and have special significance for
the mucosal immune system. Alpha 4 beta 7 is
the principal mucosal homing receptor for
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leukocytes [11] whereas aEb7 appears to play a
role in retention of these cells within or near
epithelia. In this review we shall discuss the
tissue distribution and induction of aE and
present a molecular perspective on the interac-
tion between aEb7 and its principal ligand, E-
cadherin. The complex organization of the aE
gene locus will be described. Finally, we aim to
present current views of aEb7 function.

Recent studies indicate that aEb7 plays an
important role in determining the localization of
dendritic cell subsets, and therefore indirectly
impacts all immune responses, both innate and
adaptive. In fact, studies of the aE expressing
subset of dendritic cells now dominate the litera-
ture on this subject. Of 94 aE integrin references
published in 2013, 61 were about aEb7 expressing
dendritic cells. By contrast, in calendar year 2003,
there were only 25 references to aE integrin, and
none of these were about dendritic cells. The field
initially focused on the role of aEb7 in promoting
the functional activities of mucosal T cells, then
shifted to a focus to the functional relevance of aE
on Tregs then to the current focus on the relevance
of aE expression by dendritic cell subsets. The
emphasis on the aE expressing subset of dendritic
cells is warranted as it is now clear that dendritic
cells initiate essentially all immune responses—
both innate and adaptive—and thereby play a
critical role in defining the nature and character of
the immune response. Thus, aEb7 likely controls
these critical processes.

7.2 Tissue and Cellular
Distribution

Integrin aEb7 was originally discovered in the
rat, human and mouse by screening panels of
monoclonal antibodies for cell surface features
that were distinctive for intestinal intraepithelial
lymphocytes (IEL) [15, 16, 47]. The original
mAbs to aEb7, RGL-1, HML-1, and M290
(reactive in rat, man and mouse respectively)
were subsequently shown to identify a novel
integrin alpha chain now known as aE (CD103)
[14, 49, 50, 54, 70, 76, 78, 89, 92, 115]. A fourth
antibody, MRC-OX62, raised against rat lym-
phatic dendritic cells was later shown also to
recognize aEb7 [7, 8]. Thus, a distinguishing
feature of aEb7 is that it is expressed most
prominently and abundantly in the gut, particu-
larly on T cells in the epithelium [8, 15, 16, 25,
47, 49, 50]. At first, it seemed a foregone con-
clusion that aEb7 functioned to retain T cells at
mucosal sites, but recent studies reveal a more
complex situation. In other compartments of the
immune system and among other lymphoid/
myeloid cell lineages expression is found on
sub-populations which express aEb7 at lower
levels that are, nevertheless, functionally
important. In particular, while aEb7 is expressed
by diverse leukocyte subsets, it is now clear that
it defines a subset of dendritic cells, and thereby
can have a global impact on immune responses.

I II III IV VI VIIα-I domain V
XαE

β7 PSI β-I domain

T C1 C2

EGF
1

EGF
2

EGF
3

EGF
4H1 H2 TD

cell membrane

Fig. 7.1 Domain structure of integrin aEb7. The seven
blades of the b-propeller domain of aE are labeled I to
VII; the thigh domain, T; the calf-1 and –2 domains, C1
and C2. The extra X-domain, not found in any other
integrin chain and containing a post-translational

cleavage site, is marked X. In b7, the plexin/semapho-
rin/integrin domain is labeled PSI; the two components
of the hybrid domain, H1 and H2; and the b-tail domain,
TD. Note that this figure does not illustrate the relative
orientation of the different domains
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aEb7+ T cells are usually found in locations
where active TGF-b isoforms are abundant.
Expression of aEb7 on T cells is usually skewed
towards the CD8 subset [16, 25, 47], a phe-
nomenon that is readily seen in mixed T cell
cultures stimulated with mitogen in the presence
of TGF-bisoforms [9, 80, 87]. In the gut, almost
all IEL and about half the T lymphocyte popu-
lation in the lamina propria express aEb7 [16,
25, 47]. Similarly, the integrin is present on T
cells in or near other epithelial surfaces,
including those of the lung [80] and genital tract
[22, 77]. In lymphoid tissues, including Peyer’s
patches and mesenteric lymph nodes and in
peripheral blood the percentage of aEb7+ T cells
and their level of expression of aEb7 is gener-
ally low [2, 16, 50].

Although aEb7 was formerly considered to
be a mucosal T cell marker, the molecule is also
found on other cell lineages. Most studies on the
distribution of aEb7 have failed to detect the
molecule on tissue macrophages, but there is an
exception in which a proportion of macrophages
in lung, liver and lymph node sinuses is reported
to have stained positively with mAb HML-1
[100]. An interesting observation was also made
that mucosal-type mast cells generated in vitro
from bone marrow precursors by culturing in the
presence of stem cell factor, IL-3, IL-9 and
TGF-b expressed aEb7 strongly [92, 111]. The
presence of the integrin on mucosal mast cells
in vivo is strongly supported by circumstantial
evidence, but the functional significance and
in vivo relevance of such expression remains to
be demonstrated.

Significant subsets of dendritic antigen-pre-
senting cells (DC) in the gut mucosa, the mes-
enteric lymph nodes and the epithelium of the
airways of rats and mice are aEb7+ [7, 8, 46, 65,
73] but in lymph nodes which have no mucosal
involvement the proportion is considerably
smaller [46] and in the spleen aEb7 expression
is confined to the small subset of CD8+ DC [69].
In man, expression of aEb7 by mucosal den-
dritic cells has been less extensively documented
but aEb7+ DC are present in the dome epithe-
lium of Peyer’s patches and in the lamina

propria [25, 108]. In contrast, Langerhans-type
DC generated in vitro from hematopoietic stem
cells in the presence of TGF-b and other cyto-
kines do not express the integrin [79].

Detailed scrutiny of B cell subsets for
expression of aEb7 has revealed a complex pic-
ture. Early studies showed that the integrin was
expressed by few if any B cells in the gut mucosa
or elsewhere. However, Csencsits et al. [23]
identified a population of aEb7+ B220+ cells in
the intestinal mucosa following intranasal im-
munisation of mice with cholera toxin. That cells
of B lymphocyte lineage can, in certain circum-
stances, express aEb7 is supported by the detec-
tion of a small population CD19+ aE+ B cells in
peripheral blood [40] and also by much earlier
observations that aEb7 expression is a diagnostic
marker for hairy cell leukemias [70–72].

Studies of aEb7 expression during thymic
ontogeny in the mouse have shown that 3–5 % of
cells express the integrin and that it is represented
in both TCRab and cd lineages, particularly in the
late developmental stages [2, 59]. The integrin is
present on about half the population of thymic
precursors of dendritic epidermal T cells (DETC)
and on all mature cells of this subset [59]. In
humans, aEb7 was found to be expressed by a
major subpopulation of single positive CD8+

human thymocytes and a smaller proportion of
less mature double negative cells [56, 67]. Recent
studies implicate Runx 3 in controlling aEb7
expression during thymocyte development [33,
112], and indicate that CXCR3 and aEb7 both are
expressed by the CD8+ single positive thymocyte
subset [4], and that Treg likely derive from
Foxp3+ double positive (CD8+CD4+) cells that
lack aEb7 expression [75]. It has also been
reported that most, if not all, naïve CD8+ that
have recently emigrated from the thymus into the
circulation express aEb7 [67]. Thus, the fre-
quency of aEb7+ CD8 T cells in the blood with a
naïve phenotype appears to be a useful indicator
of thymopoiesis. Maintenance of aEb7 expres-
sion by this cell population, and also by splenic
and blood CD8+ T cells, has been reported to
depend on lymphotoxin alpha (LTa) [31]. How-
ever, the possibility was not excluded that LTa
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induces expression of the aE subunit by an
indirect effect on TGF-b processing. Single
positive thymocytes expressing aEb7 may
migrate to the small intestine via a sphingosine 1-
phosphate (S1P) dependent process [55].

The study of T regulatory (Treg) cells (for-
merly known as suppressor T cells) has under-
gone a renaissance and their importance in
immune homeostasis and in the prevention of
autoimmune diseases and allograft rejection is
clear. In vivo models of suppression of autoim-
munity involving adoptive cell transfer and
in vitro studies on suppression of lymphocyte
proliferation by spleen or lymph node T cell sub-
populations have shown that Treg cells reside
within a population that is CD4+ CD25+

CD45RBlow [17, 64]. Four studies have shown
that aEb7 is expressed by 20–30 % of this T cell
subset [32, 60, 68, 117]. Similarly, regulatory
CD8+ T cells generated by co-culture of intes-
tinal epithelial cells and peripheral T cells were
shown to express aEb7 [1].

7.3 Induction of aEb7

It is long been recognized that transcription of
the aE subunit is regulated by transforming
growth factor beta (TGF-b) [49, 50, 76, 85, 92].
Such induction is commonly attributed to the
TGF-b1 isoform but all isoforms of TGF-b (also
mouse TGF-b2, and -b3 for example) exhibit this
property (GAH unpublished data); it has not yet
been established which of the TGF-b isoforms
contribute to aEb7 induction in vivo. Recent
studies point to a key role for membrane bound
TGF-b in this process [113, 114], but a complete
understanding of this important interaction is
muddled by our poor understanding of how TGF-
b isoforms are processed to their active forms in
the particular cells used in these experiments. It
has been reported that ligation of b1 integrins can
act synergistically with TGF-b in aE induction
[80], and that activation of naïve human CD8+ T
cells with anti-CD3 in the presence of IL-4 can
also increase aEb7 expression [99], though it is

unclear if these apparent inducers operate
through the indirect action of TGF-b isoforms.

It is widely held that aEb7 expressed by T cells
located in the vicinity of epithelia is induced
locally by TGF-b isoforms produced mainly by
epithelial cells. This view is supported by the
observation that T cells stimulated in vitro by co-
culture with allogeneic kidney epithelial cells, or
T cells that migrate into epithelial monolayers,
are induced to express aEb7 and that expression
is blocked by anti-TGF-b antibody [34, 90]. The
results of a study of mucosal T cell memory by
Kim et al. [51] are also consistent with the idea
that aEb7 is upregulated locally. Ovalbumin-
specific transgenic CD8+ T cells were adoptively
transferred to recipients that were then infected
with recombinant vesicular stomatitis virus
expressing ovalbumin (VSV-OVA). Analysis of
donor-type memory cells in various lymphoid
compartments indicated that aEb7 was strongly
upregulated on IEL over the 5 week study period.

The notion that aEb7 expression is mainly, if
not solely, TGF-b-dependent is supported by a
study showing that in transgenic mice which
express the negative regulator of TGF-b isoform
signalling, Smad7, under an Lck promoter, 50 %
of intraepithelial T cells in the gut no longer
express aE [96]. Expression of the integrin by the
remaining cells probably reflects insufficient
expression of the transgene in this population but
leaves open the possibility that an alternative
signaling pathway could be responsible for aE
expression in these circumstances. Using a T cell
line, Robinson et al. showed that TGF-b induces
aE transcription de novo within 30 min [85]. The
speed of induction suggests that synthesis of
signaling intermediaries or new transcription
factors was probably not required. These authors
also looked for transcription control elements in
the promoter region of the human aE gene using
deletion analysis to examine 4 kb of genomic
sequence upstream of the transcription start site.
Although the promoter functioned well in
reporter assays, it bestowed neither cell lineage
specificity nor TGF-b responsiveness. Thus,
transcription control mechanisms for aE are
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likely to be considerably more complex than
those of most other integrin a-chain genes,
whereas lineage specificity is determined by the
proximal promoter in other integrins.

7.4 Gene Structure

Past studies established the complexityat the locus
of the integrin aE gene, Itgae. Schön et al. [88]
generated a partial map of murine Itgae, and sub-
sequently the human genome sequencing project
provided more complete information on human
Itgae [37]. Human Itgae contains 31 exons span-
ning approximately 85 kb (Fig. 7.2). Comparison
with the genes encoding the closely relatedaMand
aX integrin proteins [21, 27, 74] reveals a highly
conserved gene structure. All the introns are
located in similar positions and have the same
phase in the three genes, although Itgae contains
an extra exon (exon 6) that encodes the X domain
notpresent inother integrins (see Fig. 7.1).Thea-I
domain is encoded by exons 7–10. Human Itgae is
found at chromosome 17p13.3 rather than in the
aL/aM/aX/aD integrin cluster at chromosome
16p11 [21, 110], and is syntenic with that of
murine Itgae on chromosome 11 [88]. Robinson
et al. [85] analyzed the transcription start site of
human Itgae, and identified two start sites 51 and
44 bp upstream of the start codon, and a third
possible initiation site around position *90 bp.
Interestingly, another gene, Gsg2, that encodes the
mitotic protein kinase Haspin is found on the
opposite strand within an intron of Itgae Fig. 7.2.
The Haspin promoter appears also to drive
expression of a truncated and alternatively spliced
Itgae transcript that is widely expressed and could
function as a non-coding RNA [37].

The human b7 gene, Itgb7, comprises 14
exons spanning approximately 10 kb and maps to
chromosome 12q13.13 [5, 42], syntenic with
murine b7 on chromosome 15 [116]. The intron-
exon structure of Itgb7 is more similar to that of
the b1 and b2 genes than the b3, b5 and b6 genes,
consistent with a similar sub-grouping derived
from analyses of sequence homology [42].

7.5 Ligand Binding

Expression of aEb7 by T cells closely juxta-
posed to epithelial surfaces suggested that this
integrin might bind a counter-receptor on the
surface of epithelial cells. In 1993 three groups
reported that a ligand for aEb7 was present on
epithelial cell lines [12, 81, 82]. The epithelial
ligand was later identified as the homophilic
adhesion molecule E-cadherin [13, 39, 44], and
mutagenesis studies combined with crystal
structure determination and molecular modeling
led to a detailed model for aEb7 binding to E-
cadherin in which the MIDAS motif within the
a-I domain of aE makes direct contact with an
acidic residue at the tip of domain 1 in E-cad-
herin (Fig. 7.3) [38, 41, 45, 98]. These findings
strengthened the concept that aEb7 retains leu-
kocytes in epithelial tissues by binding to E-
cadherin on epithelial cells.

E-cadherin expression is found on most epi-
thelial cells, but is not limited to this population.
Recent studies suggest that E-cadherin can act at
the level of dendritic cells to impact immune
responses. For example, Siddequi et al. [91]
observed that monocyte-derived inflammatory
DCs express E-cadherin, and that these promote
intestinal inflammation. Similarly, Uchida et al.
[102] reported that E-cadherin and aEb7 on
DETC regulate their activation threshold
through binding to E-cadherin on keratinocytes.
Van den Bossch et al. [104, 105] detailed the
regulation and function of the E-cadherin/cate-
nin complex in cells of the monocyte-macro-
phage lineage and DCs, and found that E-
cadherin is expressed by alternatively activated
macrophages. Thus, aEb7 expressing cells
potentially interact with and regulate diverse
leukocyte populations, but the extent to which
this occurs in vivo has yet to be established.

E-cadherin is the only well-defined counter-
receptor of aEb7, but there is preliminary evi-
dence for at least one further ligand on kerati-
nocyte cell lines and intestinal lamina propria
endothelial cells that lack E-cadherin expression
[10, 41, 93].

7 Integrin aEb7: Molecular Features and Functional Significance 101



7.6 Function

7.6.1 Effector and Memory T Cells

It is now clear that aE controls the accumulation
of effector and memory T cells (resident mem-
ory T cells, Trm) in non-lymphoid tissues and
thereby may promote their capacity to eliminate
invading pathogens. Alpha-E expression marks
Trm cells in a variety of tissues [63, 107] (25),
and there is good evidence that such expression
promotes their local persistence, particularly for
intraepithelial CD8+ T cells in the intestinal and
vaginal mucosa, where binding to E-cadherin
may be critical [88, 107]. Moreover, it is not
clear that aEb7 expressing T cells present at all
sites are exclusively memory T cells, in that
many are present in naïve mice prior to specific
antigen exposure. The underlying mechanisms
regulating aEb7 expression by Trm remain
poorly defined but are likely similar to those
described above for other aEb7 expressing cells.

These include induction of aEb7 and downreg-
ulation of the chemokine receptor CCR7 with a
dominant role for local TGF-b activity in the
process. Suvas et al. have shown that systemic
and mucosal infection both are effective in
generating mucosal aEb7+ Trm responses [95].
Yu et al. [113] have also reported that human
CD1c+ DCs express cell surface TGF-b and
thereby drive the generation of aEb7 expressing
cytotoxic lymphocytes (CTL).

7.6.2 Allografts

A number of studies have examined whether
aEb7 on T cells could play a role in allograft
rejection. Hadley et al. [35, 36] reported that up
to 63 % of T cells infiltrating renal allografts
undergoing a late rejection crisis expressed
aEb7 and that the cells were localized mainly in
the tubular epithelium. Similar findings were
reported by Robertson et al. [83, 84] who
observed a correlation between the prevalence of
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Fig. 7.2 Outline structure of the aE genomic locus. The
top line shows the intron-exon structure of the integrin
aE (Itgae) and Haspin (Gsg2) genes. On the second line,
the 30 region of the aE gene containing the Haspin gene is
shown in more detail. Intronic regions are shown as
horizontal lines and exons as boxes. Bent arrows
represent transcription start sites, and the thick black

line indicates the location of a CpG island. The three
lower lines show the three transcribed products of this
genomic region, including the Alpha-E derived mRNA,
hAED. In each case, boxes represent exonic portions of
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protein coding regions, and AAAA indicates a poly(A)
tail
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aEb7+ cells in the tubular epithelium, the
severity of tubulitis and the levels of TGF-b in
the epithelium. Earlier studies established that
aEb7 was induced on CD8+ T cells co-cultured
with renal epithelial cells [34] and that aEb7
provided accessory function for cytotoxic lysis
of target epithelial cells [86]. This evidence
supports the view that aEb7 is induced on
infiltrating CD8+ cells by TGF-b produced
locally in the allograft and causes the cells to
accumulate in the graft epithelium by adhesion
to E-cadherin expressed by tubular epithelial

cells. The integrin/ligand interaction would then
provide accessory function for cytotoxic lysis or
cytokine production. This interaction may be
especially important in rejection when other
integrin/ligand interactions, principally aLb2
(LFA-1)/ICAM-1, are unavailable. This view is
strongly supported by the observation that aE
null/null mice are unable to reject pancreatic
islet allografts [26, 48]. Although CD8+ cells
accumulate around the graft they do not come
into intimate contact with islet cells, which are
known to express E-cadherin but not ICAM-1.
This view is further supported by the observa-
tion that T cells from aE null/null mice do not
elicit gut graft-versus-host disease (GVHD) on
transfer to wildtype allogenic recipients [24].
Zhou et al. [118] confirmed these findings in a
rat GVHD model, and further observed that the
skin epidermis in rats during GVHD is infiltrated
by an equal number of CD4+ T cells and CD8+ T
cells expressing aEb7. Collazo et al. [19]
reported that expression of SH2 domain–con-
taining inositol 5-phosphatase (SHIP) is required
for robust expansion of donor aEb7+ CD4+ T
cells during graft-versus-host and host-versus-
graft responses by CD4+ T cell and limits their
immunoregulatory capacity. These observations
on the role of aEb7 in allograft rejection and
GVHD identify a potential opportunity for
therapeutic intervention using inhibitors specific
for this integrin.

Separation of deleterious GVHD pathology
from beneficial graft-versus-leukemia (GVL)
responses following bone marrow transplanta-
tion (BMT) remains a major challenge in the
treatment of hematologic malignancies by allo-
geneic hematopoietic cell transplantation
(HCT). Liu et al. [62] used aE null/null mice to
show that aEb7 expression by CD8+ T cells is
required for the former but not the latter process,
identifying aEb7 blockade as an improved
strategy for GVHD prophylaxis. Li et al. [61]
showed that preconditioning of host mice with
anti-CD3 mAb also separates GVHD and GVL
effects, and does so by reducing the number of
aEb7 expressing dendritic cells in the mesen-
teric lymph nodes.

Fig. 7.3 A model of the aEb7 integrin a-I domain
docked onto E-cadherin domain 1. Residue E31 in the
BC-loop of E-cadherin is predicted to coordinate the
MIDAS magnesium ion in the a-I domain and F298 of aE
is predicted to project into a hydrophobic pocket between
the BC and FG loops of E-cadherin. For details see ref
[38]. Reproduced with permission from Agace WW,
Higgins JMG, Sadasivan B, Brenner MB, Parker CM.
Curr. Opin. Cell Biol. 2000; 12:563–568 (Copyright
2000, Elsevier Science)
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7.6.3 Tumor Immunology

Le Floc’h et al. [29, 57, 58] reported that aEb7
expression by CD8+ CTL clones in tumors can be
induced by TGF-b expression within the tumor.
These studies also showed that aEb7 can partic-
ipate in formation of the immunological synapse
between the CTL and the tumor target, and that
interaction with E-cadherin expressed by the
tumor target is required for polarization and
subsequent release of cytotoxic granules. Sub-
sequent studies showed that interaction of aEb7
with E-cadherin, but not aLb2 with ICAM-1, acts
at the level of the immunologic synapse formed
between tumor-infiltrating lymphocytes and
tumor cells to promote CCR5-dependent reten-
tion of CTL [30], that interaction of aEb7 with E-
cadherin promotes the phosphorylation of the
ERK1/2 kinases and Phospholipase C-c1 (PLC-
c1), which is sufficient to induce the polarization
of cytolytic granules [57], and that interaction
between CTL and epithelial tumor cells is regu-
lated by aE expression at the immune synapse
which can profoundly influence effector func-
tions of CD8 T cells [29]. Thus, aEb7 potentially
plays a role in tumor elimination through inter-
action with E-cadherin. These findings raise the
exciting possibility that the characteristic loss of
E-cadherin expression and gain in invasiveness
by metastatic epithelial tumors exhibited by
many neoplastic epithelial cells [97] might, in
part, reflect CTL selection. That said, the fre-
quency of tumor-reactive CTL clones that
express aEb7 remains a matter of speculation.
Nonetheless, together, these studies provide
novel insight onto the role of aEb7 in CTL
function. Also, of relevance to the field of tumor
immunotherapy, Trinite et al. [101] reported that
immature (CD4- aEb7+) rat dendritic cells can
induce rapid caspase-independent apoptosis-like
cell death and subsequent phagocytosis of tumor
targets. Both of these sets offindings have spurred
interest in the development of novel immuno-
therapeutic strategies to combat cancer.

7.6.4 T Regulatory Cells

The role of aEb7 in Treg function is contro-
versial and highly dependent on the model
employed. However, there is evidence that aEb7
plays an important role in promoting both the
function and localization of Treg cells, and even
that aEb7 marks Tregs with the most potent
immunosuppressive properties. McHugh et al.
[68] and Lehmann et al. [60] both reported that
that the aEb7+ population was more efficient at
suppressing anti-CD3 stimulated proliferation of
CD4+ CD25-cells than the aEb7-subset. TGF-b
plays a role in the development and function of
Treg cells, and the presence of aEb7 on the
surface of a major subpopulation of Treg cells
argues, at least, that these cells have recently
been exposed to TGF-b. However, such
expression may be misleading and it remains to
be determined if a direct role of aEb7 on Treg is
always relevant. As described below, aEb7
expressing dendritic cell subsets can also control
the suppressive function of Tregs.

More recently, Suffia et al. [94] have shown
that aEb7 plays an essential role in retention of
Treg and control of Leishmania major infection,
and that targeted disruption of the aE gene
renders mice susceptible to Leishmania infec-
tion, a result that could be reversed by transfer of
aEb7 expressing Tregs from wild type mice. In
contrast, the Powrie group has reported that
targeted disruption of aE has no effect on the
suppressive capacity of Tregs in a mouse model
of colitis [3]. Rather, expression of aEb7 by
dendritic cells was found to be necessary for
Treg function (see below). Van et al. [106]
showed that CD47 controls the in vivo prolif-
eration and homeostasis of the aEb7 expressing
subset of peripheral Tregs. There is also evi-
dence that aEb7 expressing CD8 T cells can be
suppressive. For example, Uss et al. provided
evidence that aEb7+ CD8 T cells can be potently
immunosuppressive in vitro [103], effectively
functioning as T regs.
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7.6.5 Dendritic Cells

While the precise function of each dendritic cell
(DC) subset remains to be clearly defined, it is
clear that expression of aEb7 allows DCs to con-
trol the balance of effector responses to foreign
antigens. Annaker et al. reported that aEb7
expression by DCs is required for the induction of
Tregs to suppress intestinal bowel disease [3]. In
this model, aEb7- DCs promoted mainly effector
cytokine IFN-c production by the responding T
cells whereas aEb7+ DCs enhanced immune
protection by inducing the gut homing receptor
CCR9 on responding T cells. These data indicated
that aEb7 can control the balance of effector vs
regulatory T cell activity in the intestine. Indeed,
Coombes et al. have shown that mucosal aEb7+

DC induce Foxp3+ Treg by a TGF-b and retinoic
acid-dependent pathway [20]. Subsequent studies
confirmed that retinoic acid is centrally involved
in regulating this pathway [53], and that human
aEb7+ DC share this ability to induce T reg [108].
Choi et al. [18] reported that DC are dominant in
normal aortic intima and, in contrast to macro-
phages which promote atherosclerosis, the aEb7+

DC subset was associated with protection from
atherosclerosis. Weiner et al. reviewed the exist-
ing literature on oral tolerance and also concluded
that aEb7+ DCs induce T regs [109].

There is also evidence that aEb7+ DC subsets
can indirectly promote immune responses. For
example, aEb7+ DC appear adept at generating
gut-tropic effector CD8 T cells [43]. Recent
studies provide further insight into the antigen-
presenting qualities of aEb7+ dendritic cells.
Bedoui et al. [6] reported that aEb7+ DCs in
non-lymphoid tissues are specialized in the
cross-presentation of cell-associated antigens
and are essential for inducing proliferation of
CD8 T cells, a finding that appears consistent
with recent work in human DC [108].

7.6.6 Innate Immune Responses

McCarty et al. [66] reported that circulating Vd2
T cells display enhanced gut-homing potential
upon microbial activation and populate the

human intestinal mucosa, generating function-
ally distinct aEb7+ and aEb7- subsets that
promoted inflammation by colonic ab T cells.
Further evidence that aEb7 functions in innate
immune responses is provided by the findings of
Kinnebrew et al. [52] who reported that aEb7+

CD11b (aMb2)+ DCs in the lamina propria, in
addition to promoting long-term tolerance to
ingested antigens, also rapidly produce IL-23 in
response to detection of flagellin in the lamina
propria. Flores-Langarica et al. [28] showed that
systemic flagellin immunization can induce
mucosal immune responses.

7.7 Conclusions

Integrin aEb7 has proved to be enigmatic and
tantalising. Considerable efforts to define its true
significance in vivo have met with mixed for-
tunes. Whilst this integrin undoubtedly contrib-
utes to mucosal specific retention of diverse
leukocyte subpopulations there are valid grounds
in the future to seek deeper significance in its
signaling capacity, especially in relation to cross-
talk with the epithelium. Studies of aE knockout
mice have clearly identified an important role for
this integrin in allograft rejection and also have
provided a glimpse of its possible significance in
immunoregulation. Resonance with the finding
that aEb7 is expressed by major leukocyte sub-
sets is striking and the functional relationships
between these observations provide fertile ground
for further investigation. It is evident, for exam-
ple, that while aEb7 expressing mouse dendritic
cells are important, the molecular function of
aEb7 in this context, and on Trm in the brain, is
less clear. The role of aEb7 on similar cells in
humans also invites further study. TGF-b sig-
naling to both the aEb7 expressing leukocyte and
its target (if any), and the significance of cell
surface-bound TGF-b, merit further attention. In
mice, the aE integrin gene locus is sandwiched
between the Th2 cytokine gene cluster (IL-4, IL-5
and IL-13) and a cluster of chemokine genes
(eotaxin, TCA-3, MCP-1, 3, 5, MIP-1a and 1b,
RANTES). In future studies to address the role of
aEb7 in immunoregulation it will be essential to

7 Integrin aEb7: Molecular Features and Functional Significance 105



utilize aE null/null and control mice that are
congenic at the Th2 and chemokine loci, and to
use conditional knockout mice with disruption of
the gene targeted to specific leukocyte subsets.
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8Structural Aspects of Integrins

Robert C. Liddington

Abstract

Structural studies on integrins have recently made great strides in recent
years. Crystal structures of the complete extracellular fragments of three
integrins in open and closed conformations, 6 a-I domains in complex
with ligands, and at least 20 intracellular proteins in complex with
cytosolic tails have been obtained; and several transmembrane and
cytosolic complexes have been determined by NMR. High resolution EM
studies complement these atomic resolution techniques by studying the
integrin in different activation states. Although we still have only a few
experimental examples among integrin family members, the high level of
sequence homology between integrins means that reliable models can be
built for the other members of the integrin family. These structures make
sense of a lot of preceding biochemical, biophysical and mutagenesis
studies, and generate many new testable hypotheses of integrin function.
This chapter emphasizes new structural insights applicable to all
integrins, with an emphasis on those integrins that contain an a-I
domain. The structural data reinforce the notion of the integrin as a
molecule in dynamic equilibrium at the cell surface, regulated by binding
both to extracellular and intracellular ligands.
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8.1 Overall Structure

Integrins are ab heterodimers, consisting of a head
domain from which emerge two legs, one from
each subunit, ending in a pair of single-pass
transmembrane helices and short cytoplasmic tails,
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except for a6b4 (Fig. 8.1). The integrin ‘‘head’’
comprises a seven-bladed propeller from the a-
subunit that makes an intimate contact with the b-I
domain. Nine a-subunits (a1, a2, al0, a11, aD, aE,
aL, aM and aX) contain an additional domain, the
a-I domain, that is inserted between two loops on
the upper surface of the propeller, where it plays a
central role in ligand binding [27, 41, 58]. The a-I
domain contains an invariant ligand binding site
called MIDAS, for Metal Ion-Dependent Adhe-
sion Site [34], in which a metal ion is coordinated
by three loops from the I domain, and a glutamic or
aspartic acid from the ligand completes an octa-
hedral coordination sphere around the metal. In
those integrins that lack an a-I domain, the b-I
domain and propeller form the major ligand rec-
ognition sites; in the a-I domain integrins, the b-I
domain plays a regulatory role.

In the absence of ligand, bonds between the
legs, tails and head are believed to hold the head
in an ‘‘inactive’’ or ‘‘resting’’ conformation that
has low affinity for ligand [20, 56, 61]. Recent
structural data suggest that integrins possess three

global conformations (see Fig. 8.1): a bent con-
formation in which the head adopts a ‘‘closed’’,
low affinity conformation and the cytoplasmic
tails form an inhibitory complex; an extended
conformation of the head that retains its low
ligand affinity; and a high affinity form in which
the legs and tails separate, and the ‘‘hybrid’’
domain, which is part of the head, swings away
from the b-I domain, propeller and a-I domain,
promoting conformational changes that create
high affinity binding sites on both the head and
tail [54]. During ‘‘outside-in’’ signaling, the head
binds to ECM proteins or counter-receptors on
other cells, triggering conformational changes
that propagate down the ‘‘legs’’ and through the
plasma membrane, leading to a reorganization of
the C-terminal tails that allows them to bind
intracellular proteins [46]. During ‘‘inside-out’’
signaling, cytosolic proteins bind and sequester
one or both of the cytoplasmic tails, triggering
conformational changes in the head that promote
a high affinity ‘‘active’’ integrin [19, 60], in which
the integrin ‘‘stands up’’.

Fig. 8.1 Cartoon of the aXb2 structure derived by
crystallography and EM studies. At left, the bent, low
affinity integrin stabilized by bonds between the head, legs
and cytoplasmic tails.At center, anunknowntriggercauses

the integrin to ‘‘stand up’’, while maintaining most of its
low affinity bonds. At right, binding of activated talin and/
or binding of an extracellular ligand, trigger an open, high
affinity form of the integrin, with TM helices separated
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8.2 The a-I Domain

The first crystal structure of an a-I domain
revealed a compact domain comprising a central
mostly parallel b-sheet surrounded on both sides
by amphipathic a-helices [34] (Fig. 8.2). Sub-
sequent crystal structures of recombinant aL, a1
and a2 I domains display the same three-
dimensional fold, as expected given their rea-
sonable sequence similarity [15, 43, 45]. The
MIDAS motif lies at the C-terminal end of the
central b-sheet, with three loops contributing

sidechains that coordinate the metal ion (Fig. 8.2
Lower panel). The metal-coordinating MIDAS
residues are invariant among a-I domains, and
mutagenesis of any of these residues abrogates
ligand binding. Surface-exposed sidechains sur-
rounding the MIDAS motif are more variable;
they provide additional ligand contact points and
hence ligand specificity [26, 41, 52].

The structures of 6 ligand-bound a-I domains
have now been determined. The first was the a2-
I domain bound to a collagen-like triple helix
[17]. More recently, the structures of the aL-I
domain in complex with homologous fragments

Fig. 8.2 Two
conformations of the a-I
domain. Upper panel
conformational changes in
the a2-I domain on binding
collagen. Lower panel
Conformational changes in
the a-MIDAS motif upon
binding ligand. At left, the
‘‘closed’’ conformation
observed in the absence of
ligand; at right, the ‘‘open’’
conformation seen when
ligand is bound. These
changes are mechanically
linked to the tertiary
changes in the domain. It is
very likely that all a-I
domains undergo the same
switch
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of ICAM-1 [51], ICAM-3 [53] and ICAM-5 [67]
have been determined. Recently, the first
authentic complex of an aM-I domain bound to
ligand (the C3d domain of complement C3) [2]
validates the earlier structure of the aM I domain
bound to a ‘‘ligand-mimetic’’ crystal contact [33,
34]. They all demonstrate that ligand binding
triggers a profound conformational switch in the
a-I domain that underlies affinity regulation and
signal transduction. The conformational switch
is essentially identical in all these examples,
strongly suggesting that all a-I domains will
undergo the same switch.

8.3 Structural Determinants
of Collagen Binding

Recombinant a2-I domain was crystallized as a
complex with a homotrimer of a 21-mer peptide
containing a critical GFOGER (where O is
hydroxyproline) motif [17, 30]. The peptide
closely resembles the structure of uncomplexed
collagen-like peptides [16], and has the proper-
ties of a folded protein domain (i.e., stable sec-
ondary and tertiary structure). Three loops on the
upper surface of the a2-I domain that comprise

Fig. 8.3 Collagen binding to the a2-I domain. a Surface
model of the a2-I domain colored by surface charge
(red = negative, blue = positive) with a triple helical
fragment of collagen bound. b Space-filling model of the
complex (rotated about a horizontal axis compared with

a), showing residues (in red) that are invariant in the
collagen-binding integrins, a1b1, a2b1 and a10b1. The
strong conservation of the binding surface suggests that
these integrins will engage collagen in the same fashion.
c Stereo close-up image of the a2-I:collagen complex
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the MIDAS motif also engage the collagen, with
a collagen glutamate completing the coordina-
tion sphere of the metal (Fig. 8.3). The critical
roles of both the MIDAS and surrounding resi-
dues have been confirmed by mutagenesis [52].

The buried surface area on complex formation
(*1,200 A2) is at the lower limit of known
protein-protein interfaces (the value is almost
identical for the aL-I:ICAM complex), especially
given the fact that some of the binding energy
must be expended in switching the conformation
of the I domain from closed to open. The quite
reasonable affinity of the interaction
(Kd = 35–90 nM) [24] reflects the unusually
strong bonds formed by the glutamate-metal-I
domain bridge, which has been estimated to
contribute *5 kcal/mol. This bridge is indeed
critical, since the conservative substitution of
collagen Glu to Asp in the GFOGER motif
eliminates binding [31], presumably because the
aspartic acid is too short to reach down from the
rigid collagen triple helix to bind to the partly
buried metal ion. However, in the case of the aM-
C3d interaction, Asp is the preferred residue,
perhaps because it lies on a flexible loop at the
end of a helical segment [2].

The MIDAS motif and much of the collagen-
binding surface are strictly invariant among the
collagen-binding I domain integrins (al, a2, a10
and a11), suggesting that these integrins will all
engage collagen in a similar fashion, with a strict
requirement for glutamate in the collagen motif.
The periphery of the binding surface is more
variable, however (Fig. 8.3b), which would
explain their collagen type preferences. The
recent structure of the a1-I domain bound to
collagen containing the closely related motif,
GLOGEN, confirms this [11]. In addition, a
gain-of-function point mutation in the a2-I
domain (i.e. one that favors the open confor-
mation) [10] displays relaxed specificity and
alternate binding modes to the GFOGER motif.
Given the special nature of collagen (see Chap. 3
by Zutter and Santoro), this observation may
point to profound consequences for collagen
recognition by activated cells.

8.4 The Integrin a-I Domain
and the von Willebrand Factor
(vWF) A Domain: A Caveat

The integrin a-I domain is generally categorized
as a member of the vWF-A domain superfamily,
based on sequence similarity and a highly con-
served overall 3-dimensional structure. How-
ever, since MIDAS- and non-MIDAS containing
vWFA-domains have distinct ligand-binding and
allosteric properties, this author believes that
much confusion could be avoided if the family
was reclassified into two sub-families: Two
examples illustrate my point. First, the epony-
mous vWF-A1 and vWF-A3 domains lack at
least one of the acidic residues of authentic
MIDAS motifs, and so do not bind metal;
moreover, they bind ligands via distinct sur-
faces, and conformational changes are not
induced [21]. In fact, vWF-A3, like integrin
a2b1, binds triple-helical collagen, but it utilizes
a different surface (one side of its b-sheet) [7].
Second, the ‘‘vWF-A domain’’ of Factor B does
contain a functional MIDAS motif, and binds an
acidic moiety in its ligand, complement iC3b, in
the canonical integrin fashion; in this case, the
metal ion engages the C-terminal carboxylate
iC3b, triggering integrin-like conformational
changes [18], suggesting that it should be clas-
sed as an I domain. Indeed, a genome-wide
collection of vWF-A domains has been com-
piled [62] and have been these subdivided into I-
like and A-like domains based on the conser-
vation of key MIDAS residues.

8.5 Conformational Changes
in the a-I Domain

Ligand binding alters the conformation of a-I
domains in the same way in the three cases
studied thus far (a2, aM and aL), as well as in a
subset of ‘‘vWF-A domain’’ (as noted above)
and the matrix receptor, TEM8 (in complex with
pathogen; see below). Binding of an acidic res-
idue to the a-MIDAS causes a switch in in Mg2+
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coordination in which a direct bond to a MIDAS
threonine is gained while a direct bond to an
aspartic acid is lost (Fig. 8.2b, c). These subtle
changes in metal coordination are linked to
extensive secondary and tertiary changes that
create a complementary surface for binding
ligand and generate a 10 Å downward move-
ment of the C-terminal helix, a7. The helix
movement links the change in the upper ligand-
binding surface to the lower surface of the
domain. The shift of the helix a7 is highly sig-
nificant in the context of the whole integrin,
since the helix is packed against the propeller
and b-I domain (see Sect. 8.8).

The close similarity between the structural
changes seen in the three a-I domains and a subset
of A domains suggests that there are just two
principal conformations for I domains, ‘‘open’’
and ‘‘closed’’ (Fig. 8.2). The ‘‘open’’ conforma-
tion is seen in the presence of ligand or ligand
mimetic, while the ‘‘closed’’ conformation is seen
in the absence of ligand. It therefore appears to be
the formation of a strong ligand-metal bond,
requiring a change in metal coordination, that
triggers the conformational switch. Springer’s
group has engineered disulfide-linked aL-I
domains with intermediate affinity and packing of
the C-terminal helix, and suggested the existence
of an intermediate state [51]. However, in these
structures the MIDAS motif exists in only two
conformations, and it remains to be seen whether
the intermediate conformation has biological
relevance or is an artifact of the engineered
disulfide. It should be noted that it is not neces-
sary to invoke an intermediate tertiary confor-
mation in order to explain an intermediate
affinity. In principle, a shift in the position of the
equilibrium between two states is sufficient [38].

Various studies have now been published in
support of the hypothesis that the open and
closed conformations of the a-I domain equate
with high and low affinity states. Thus, mutants
of the aM-I domain that are predicted to desta-
bilize the closed conformation and favor the
open conformation increase the affinity for the
ligand iC3b [41]. The epitope for an antibody
that binds only to the high affinity form of the
aMb2 integrin maps to a region that undergoes

extensive conformational changes between the
closed and open forms [35].

Disulfide engineering studies on recombinant
I domains and full-length integrins, which lock
the domain either into the open or closed state,
also support the hypothesis [39, 49, 50]. So does
the structure of the aL-I domain in complex with
the inhibitor lovastatin [25], which reveals
allosteric inhibition by binding between the b-
sheet and the C-terminal helix, preventing the
helical shift.

It should also be appreciated that pathogens
often utilize integrin a-I domains for cell entry,
and there is evidence that many bind across the
MIDAS motif. However, in general they bind
preferentially to the (default) closed conforma-
tion, sometimes involving direct bonds to the
MIDAS, but they do not induce conformational
changes [4]. One counter-example is anthrax
toxin, which utilizes a glutamate to engage the
bona fide MIDAS motif of the ‘‘vWF A domain’’
of the collagen receptor, TEM8, in its open
conformation [6]. There is also one clear
example of gene transfer, in which the Gram-
positive pathogen, Streptococcus pneumoniae,
has an a-I domain inserted into the tip of its
pilus, perhaps to act as a shear stress-activated
adhesin for attachment to host cells [23, 36].

8.6 The b-I Domain
and the Integrin Headpiece

The existence of a b-I domain was initially
predicted based on the conserved and critical
MIDAS-like sequence, DxSxS, and hydropathy
plot comparisons with the a-I domain [34]; and
later from more sophisticated sequence analysis
[59]. The structure of the b3-I domain, contained
within the aVb3 crystal structure [64], con-
firmed that the basic fold and topology are very
similar to the a-I domain, albeit with many large
insertion/loops between b-strands, which had
confounded conventional sequence alignment
algorithms.

In contrast to a-I, the b-I domain is not folded
independently, but packs rigidly against the a-
subunit propeller, with the major ligand
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recognition elements lying at the interface (see
Fig. 8.4) [42, 64]. The b-MIDAS is similar to
the a-MIDAS, except that the a-MIDAS threo-
nine is replaced by glutamate. This difference
likely explains the different cation specifici-
ties—in a-MIDAS, the smaller Mg2+ ion favors
ligands lacking a formal charge; while in b-
MIDAS, the larger Ca2+ ion favors multiple
acidic ligands. The structure of aVb3 in com-
plex with an RGD-style peptide shows that the
Asp sidechain completes the coordination sphere
of the MIDAS metal ion [65], as predicted.
There are also further metal-binding sites adja-
cent to the b-MIDAS (the ‘‘ADMIDAS’’ and
‘‘SyMBS’’) that play important structural and
possibly regulatory roles in ligand-binding
and regulation [68].

Although Xiong et al. initially proposed the
opposite, the conformation of the b-I domain in
their unliganded crystal structure [64] corre-
sponds to the closed conformation of the a-I
domain. Soaking of RGD ligand into preformed
crystals induced small changes within the b-I
domain, but these were not propagated to the

rest of the headpiece; i.e., they were frustrated
by the constraints of the closed quaternary
structure [37]. This situation is typical in crys-
tallography: either the ligand binds and induces
small changes constrained by the lattice, or it
induces large changes that destroy the lattice.

However, Springer’s group has recently dis-
covered a rare exception to this rule, and report a
crystal form of the aIIbb3 headpiece with large
solvent channels in which the lattice tolerates
(and/or adjusts to) a switch from the closed to
the open conformation, involving an outward
swing of the hybrid domain by *40�. Preformed
crystals were simply soaked with different con-
centrations/durations of an RGD ligand mimetic
and different Ca2+/Mg2+ ratios [69] (Fig. 8.4).
This remarkable observations settles many
questions with regard to head-opening, although
the crystal structure of the headpiece in complex
with a non-peptidic ligand is still lacking.

8.7 Quaternary Regulation
in Integrins Lacking an a-I
Domain

Takagi et al. [57] showed that the inactive (rest-
ing) form of the integrin aVb3, observed in
physiological concentrations of Ca2+ and Mg2+, is
largely bent, and closely resembles the crystal
structure, in which the C-termini of both chains
are closely apposed. Based on the one case
studied of an a-I domain integrin, the aXb2
ectodomain, it also adopts a similar (although
distinct) bent default conformation [63]. Other
integrins tested had a lower propensity to adopt
the bent conformation; however, the experiments
were performed with extracellular heterodimers
truncated near the plasma membrane, so that they
lacked the transmembrane helices and cytoplas-
mic tails that are known to contribute critically to
the stability of the inactive conformation. By
engineering a disulfide link between the a-subunit
propeller and the EGF4 domain of the b-subunit
(which are 4 Å apart in the bent (crystal) struc-
ture, but would be very far apart in the ‘‘standing-
up’’ conformation), Takagi et al. further showed
that integrin expressed on the cell surface was in a

Fig. 8.4 Tertiary and quaternary changes triggered by
ligand binding in integrins that lack an a-I domain.
Ligand binding to the b-MIDAS motif (M) causes a shift
of helix a1, which generates a rotation of a7 helix (black
arrow within region circled in black) and a loosening of
the contacts between the b-hybrid domain and the
propeller. The b-hybrid domain is then free to swing by
as much as 60� away from the a-propeller
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low affinity state and could only be activated
under reducing conditions.

The current model for integrins invokes a
minimum of three distinct states: (i) bent, low
affinity; (ii) standing-up, legs together, low
affinity; and (iii) standing-up, legs apart, high
affinity (see Fig. 8.1). The position of equilib-
rium depends on the concentrations and activa-
tion status of extracellular and intracellular
ligands, as well as divalent cations. At the heart
of the switch is an outward swing of the b-
hybrid domain with respect to the b-I domain,
by as much as 60� (Fig. 8.4). In aIIbb3, the
primary response to extracellular ligand binding
is a concerted reorganization of the N-terminal
helix (attached directly to the b-MIDAS) and the
adjacent C-terminal helix. Rather than translate
downward (as in the case of the a-I domain), the
principle motion of a7 is a rotation about an axis
close to the b-MIDAS, which is linked to the
rotation of the b-hybrid domain. Thus, although
some details may differ, the data support the
prediction that the trigger for the integrin switch
is similar in integrins that contain or lack and a-I
domain: i.e., a subtle change in metal coordi-
nation at the MIDAS motif is linked to a reor-
ganization of the I domain architecture that leads
to quaternary changes toward an open, high-
affinity state [33].

As noted above, these experiments were
performed with truncated integrins and small
peptide ligands. The nature of the trigger in the
integrin head seems secure, but it remains to be
seen how the quaternary changes are promul-
gated across the plasma membrane. Recent
studies have shown that full-length integrin can
be reconstituted into lipid nanodiscs and visu-
alized by high resolution Electron Microscopy
[12], so we should soon have an answer.

8.8 Quaternary Changes
in Integrins Containing an a-I
Domain

As noted above, in integrins that lack an a-I
domain, the b-I domain and a-subunit propeller
are the major recognition elements [42].

However, in integrins that contain an a-I domain,
the b-I and a-propeller do not play direct roles in
ligand recognition; instead they play important
regulatory roles. This concept initially caused
some confusion: thus, mutation of the b-MIDAS
motif led to loss of iC3b binding to aMb2 [3]
which was initially interpreted as evidence for a
direct role for the b-I domain in ligand; it now
seems clear, however, that the mutation works
allosterically, by preventing conformational
changes in the a-I domain.

How does the quaternary organization of the
integrin regulate the affinity of the a-I domain?
We know that regulation occurs allosterically
(rather than by steric masking of the binding
site), since the a-I domain is a major antibody
epitope. Hypotheses focused on the loss-of-
function effect of mutating a Glu residue within
a conserved UEGT motif (where U is any
hydrophobic residue) at the end of the a-I
domain C-terminal (a7) helix [1, 22, 66]; and it
was suggested that the Glu could act as an in-
tradimer ligand by completing the coordination
sphere of the b-MIDAS motif. The first crystal
structures of the aXb2 headpiece (from Xie et al.
[63]) were inconclusive: they showed the a-I
domain in the closed conformation, but rather
loosely attached to the rest of the headpiece.
However, a recent structure of the aXb2 ecto-
domain displays an activated a-I domain by
virtue of a fortuitous crystal contact [47].
Although the rest of the ab headpiece is in the
closed conformation, the predicted ‘‘internal
ligand’’, Glu318, is observed coordinating the b-
MIDAS motif with only minor compensatory
movements in the b-I domain (Fig. 8.5). By
contrast, the a-I domain adopts a fully ‘‘open’’
conformation, with the MIDAS threonine
directly coordinating the metal and (what
appears to be) a chloride ion completing the
coordination sphere. The first half of the a-I
domain a7 helix has shifted by *10 Å, as
expected, but the remainder is unwound, thereby
switching the orientation with respect to the
headpiece. Thus, the crystalline environment
seems to have created a hybrid molecule with a
fully active a-I domain in the context of an
inactive headpiece. It is possible that such a
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hybrid state could exist in vivo, providing long-
range, flexible and rapid (non-equilibrium)
responses to the presence of ligand and/or
mechanical stress; with a slow switch to the
overall open (equilibrium) conformation occur-
ring if the signal persisted.

8.9 Transmembrane (TM) and Tail
Interactions

There are abundant biochemical and genetic data
supporting the notion that interactions between
integrin a- and b-TM helices and cytosolic tails
help to hold the resting integrin in a low affinity
conformation. In a classic study by Ginsberg and
colleagues, a salt bridge between aIIb Arg995 and
b3 Asp723 was shown to be necessary and suffi-
cient to hold the integrin in its resting state [20]. A
definitive structure of the aIIbb3 tails in bicelles
[32] reveals a remarkably stable conformation, in
which the two helices pack closely together at the
extracellular end; at the intracellular end they

diverge, but the void is effectively filled by a
highly conserved aromatic triplet that breaks the
a-subunit helix and turns inward (Fig. 8.6). Iso-
lated a and b subunit helices studies in bicelles
show a remarkably well-conserved structure: the
a-subunit is always orthogonal to the membrane
while the b-subunit helix is always tilted.
Recently, Ginsberg has shown that Lys 716b,
whose Ca is buried in the membrane, can
‘‘snorkel’’ to the hydrophilic headgroups by
extension of the Lys sidechain, and moreover that
this residue is essential for maintaining the tilted
helix and TM signaling [28, 55]. Recent studies
on a-I domain integrins have yielded consistent
results for isolated TM regions, and structures of
ab complexes are in progress [13]. The switch to
the ‘‘open’’ conformation may entail a simple
separation of the tails, which maintain their
structural integrity and reassemble rapidly when
the integrin returns to the low affinity state.

The penultimate question is how cytosolic
proteins interact with the cytoplasmic tails of
integrins, and the number of structural examples
of protein domains bound to tail peptides (mostly
b, but some a) has grown rapidly in recent years
(see Table 8.1). It is clear that some proteins bind
strongly enough to the b-tail to promote integrin
activation. Talin was the first such molecule to be
thus characterized, and remains the central player
[8], although the number of additional contribu-
tors, such as kindlin and filamin [9], is growing
fast. A model of talin activation is presented in
Fig. 8.6. Talin sequesters the b-tail, breaking the
critical R995a-D723b bond. It is also clear that
phosphorylation of the b-tails provides a rapid
means of switching between binding partners,
and thus between cell migration and adhesion
[14, 40, 44].

The final question is how the cytosolic acti-
vators generate force across the membrane. In
the case of talin, recent work by Ginsberg’s
group suggests that dissociation of the tails,
which have flexible linkages to the extracellular
domains, is sufficient [29]. Key to this process is
talin’s ability to bind simultaneously to the
integrin b-tail and membrane (Fig. 8.6), the
latter providing a pivot point to force the two
helices apart.

Fig. 8.5 Close-up comparison of the a-I domain-con-
taining integrin head of aXb2. In the open conformation,
Glu318 acts as an internal ligand to the b-MIDAS that
generates a 10 Å shift in the first half of helix a7 of the aI
domain, while the second half of the helix unwinds,
leading to a 30–40� rotation of the a-I domain about the
propeller and b-I domain. She open a-I domain is
stabilized by a crystal contact, and the the b-I domain
remains principally in the closed conformation
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8.10 Perspectives

Structural and structure-function studies have
revealed many of the major paradigms of inte-
grin allostery underlying affinity regulation and
bi-directional signal transduction. Notably lack-
ing is the structure of an intact integrin bound to
a physiological ligand in a membrane environ-
ment that would reveal the true ‘‘active’’ con-
formation of the molecule. EM studies show the
greatest promise here, most likely using

nanodisks. We are beginning to understand the
structures of the TM helices and their cytosolic
extensions, but the biophysics of inside-out
signaling in particular requires further study.
The role of mechanical force, whether of intra-
cellular (actomyosin motors) or extracellular
(shear flow in the vasculature) origin has not
been discussed here, but its interplay with the
chemical forces that attract cognate molecules is
a fascinating field for current and future study
[48]. Finally, this chapter has addressed the
structural basis of affinity changes within

Fig. 8.6 Integrin-tail
interactions. Upper panel
Atomic interactions
between the allb and b3
tails as revealed by NMR,
melded to the complex of
Talin2 and b1D tail. Lower
panel Aligned sequences
of a and b TM segments.
Important residues in
aIIbb3 (and conserved in
a-I domain integrins) are
circled. See text for details
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Table 8.1 Reported structures of integrins, 1996–present

Year Protein PDB code Notes

Wild-type a-I domains

1996 aM-I, Mg2+ 1IDO

1996 aL-I, Mn2+ 1LFA

1996 aL-I, Mg2+ 1ZOO, 1ZOP

1996 aL-I metal-free 1ZON

1997 aM-I, Mn2+ 1JLM

1998 aM-I, soaks 1BHO, 1BHQ, 1IDN Mg2+, Mn2+, free

1998 a2-I 1AOX

2000 a1-I 1QC5

2000 a1-I 1CK4 Rat

2000 aL-I 1DGQ NMR structure

2003 aX-I 1N3Y

2003 aL-I 1MQ9 High affinity form

I-like domains

2004 A domain,
Factor B

1Q0P

2010 Haemophilus
pilus

2WW8

I domain-ligand complexes

2000 a2-Collagen 1DZI

2003 aL-ICAM1 1MQ8

2005 aL-ICAM3 1T0P

2008 aL-ICAM5 3BN3

2013 aM-C3d 4M76

2013 a1-Collagen 2M32 MLR/HADDOCK
model

Engineered I domains/complexes

2002 aM-I 1MIU, 1MQA Ile switch

2003 aL-I 1MJN Intermediate affinity

2003 aM-I 1MF7,1N9Z,1NA5 Modulatory mutants

2009 aL-I 3HI6 Disulfide-bonded
intermediate

2011 a1-I 4A0Q Activating mutation

2011 aL-ICAM-1 3TCX Mutant high affinity
I domain

2013 a2-Collagen 4BJ3 Mutant high affinity
I domain

I domain-small molecule/FAB complexes

2001 aL-
LOVASTATIN

1CQP

2004-
2014

aL modulators 1RD4,1XDD,1XDG,1XUO,2ICA, 2O7N 3BQM,
3BQN,3E2M,4IXD,3F74,3F78

2009/
2010

aL-
EFALIZUMAB

3EOA,3EOB,3M6F

(continued)
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Table 8.1 (continued)

Year Protein PDB code Notes

2011 aM-FAB 3Q3G,3QA3

Cytoplasmic Tail-protein complexes

2003 b3-Talin
(chimera)

1MIZ,1MK7,1LJ9

2005 b3-PIP-kinase 1Y19

2005 aIIb-Filamin 2BP3

2006 b7-Filamin 2BRQ

2007 b3-TalinF3 2H7E NMR

2007 b3-PIP-kinase 2H7D NMR

2008 b2-Filamin 2JF1

2008 b3-DOK1 2V76

2008 b2-P-14-3-3 2V7D P = Phosphorylation

2009 b1D-Talin2 3V9W

2010 b3-shc-P 2L1C

2012 aIIb-CIB1 2LM5

2012 b1-Acap1 3T9K

2012 b3-Src 4HXJ

2013 b4-14-3-3 4HKC

2013 b1-Acap1 4DX9

Transmembrane Domains

2008 b3 2RMZ,2RN0

2008 aIIb 2K1A

2009 aIIbb3 2K9J

2009 aIIbb3 2KNC

2011 b3 2KV9 S–S linked

2012 a2 2L8S Detergent micelles

2014 aLb2 2M3E

2014 b3 2L91

Cytoplasmic Domains

2000 aIIb mutant 1DPQ

2000 aIIb 1DPK

2002 aIIbb3 1M8O

2002 aIIbb3 1KUP,1KUZ

2004 aIIbb3 1S4W,1S4X Micelles

2008 aL 2K8O NMR

2011 P-b3 2LJF Aqueous

2011 aMb2 2LKE,2LKJ

2011 P-b3 2LJD,LJE

2012 aXb2 2LUV

a6b4 Intracellular domains/complexes

1999 b4-FibIII pair 1QG3

2008 b4-FibIII 2YRZ NMR
(continued)
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individual integrins. Lateral association (clus-
tering) of integrins in the plasma membrane at
sites of ECM contact also plays a major role in
integrin signaling, and we still know little about
its structural basis and regulation [5].
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9Integrin Recognition Motifs
in the Human Collagens

Samir Hamaia and Richard W. Farndale

Abstract

The best-known (fibrillar) collagens support cellular adhesion primarily
through a subset of collagen-binding integrins, a1b1, a2b1, a10b1 and
a11b1, which have been shown to recognise a series of similar
sequences. These contain Gxx0GEx00motifs (where x is a hydrophobic
residue, x0 is usually O (hydroxyproline) and x00 is often R). Here, we
review the variations within such sequences that support integrin
reactivity, and their distribution across the 28 human collagens. The
main basis for our understanding is the use of triple-helical, homotrimeric
collagen peptides, but this work is far from exhaustive, and there is good
evidence that heterotrimeric collagens where the sequence of interest
occurs in two or even just a single chain may still support integrin
binding. The fibrillar collagens I, II and III are rich in GxOGER motifs,
whereas GxOGEK is more widely distributed, and less frequent in these
three archetypal fibrillar collagens.

Keywords

Integrin � Collagen � Recognition motif � Peptide

9.1 Introduction

In this chapter, we review the interactions of the
collagen-binding integrins, a1b1, a2b1, a10b1
and a11b1, with the triple-helical domains of the
collagen. Much detailed data has been

accumulated from the use of the most abundant
fibrillar collagens, types I, II and III, and from
work in this and other laboratories where triple-
helical synthetic peptides have been used to
investigate the structure of complexes between
collagens and integrins. The use of such (gen-
erally) homotrimeric peptides has established
the rules that govern these interactions. An
underlying assumption is that the integrin-
binding motifs discovered in this way may be
relevant to all homotrimeric, and some hetero-
trimeric triple-helical collagen molecules where
the same sequence occurs. The general structure
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of the collagen family has been described clearly
by Ricard-Blum [52], who also tabulates colla-
gen-like proteins that contain triple-helical
domains, but go by other names.

9.2 Collagen Structure

The collagens are defined by their repeated Gxx0

sequences, which can support assembly as a
right-handed superhelix, the COL domain. Each
of the three constituent polypeptide chains
adopts a left-handed helical conformation, the
polyproline II helix, with three residues per turn.
Viewed axially, there is little space in the centre
of the superhelix. This constraint dictates that
glycine, lacking a bulky sidechain, should
occupy every third position in the primary
sequence, reviewed in [45]. Hence, both x and x0

sidechains are exposed on the superhelix surface
where they may be free to interact with other
molecules. The capacity to adopt the polyproline
helical conformation arises from the distortion
of the a chain backbone introduced by the cyclic
iminoacids proline (P) and hydroxyproline (O)
in the x and x0 positions respectively. Twenty
eight human collagens exist, assembled from
about 45 gene products, the family expressing
surprising structural diversity [27]. The presence
of a triple helix, as either a continuous COL
domain or with non-helical interruptions, is their
common defining feature. The collagens fall into
several groups, with the fibrillar collagens,
comprising types I, II, III, V, XI, XXIV and
XXVII, being the prime example and the most
abundant proteins within the vertebrate organ-
ism. Their fibrillar structure is achieved by the
packing of the cord-like trimeric tropocollagen
monomers in the typical quarter-staggered array,
stabilised by electrostatic interactions between
the sidechains of adjacent triple helices. The
structure of the different collagen types, both as
monomers and supramolecular assemblies, is
nicely portrayed and reviewed by Ricard-Blum
[52].

The fibrillar collagen genes encode precur-
sors, procollagens, from which N- and C-termi-
nal propeptides are trimmed by specific enzymes

as the translated triple helix is secreted from the
cell and assembles into the fibril. Processing
leaves short unstructured telopeptide extensions
at both the N- and C-terminal ends of the
(generally single) COL domain. In contrast, the
non-fibrillar collagens often contain several
different classes of non-collagenous domains,
notably VWF A, fibronectin III and thrombo-
spondin domains, each with the capacity to
support complex two- or three-dimensional
network assembly. We have not attempted a
detailed review of integrin binding to the non-
helical domains of the non-fibrillar collagens,
but there are many reports of such activity, such
as within the C-terminal propeptide of collagen I
which binds both a1b1 and a2b1 [14, 72], which
have yet to be elucidated. Similarly endostatin,
the C-terminal domain of collagen XVIII,
interacts with a5b1 by an unknown mechanism
[51, 73].

Collagens as a group necessarily undergo
post-translational modification, especially the
hydroxylation of x0 proline and a proportion of
x0 lysine residues. Subsequent crosslinking
between triple helices occurs by condensation of
hydroxylysine and lysine sidechains, adding to
the stability of the fibril, whilst hydroxyproline
supports hydrogen bonding through water mol-
ecules within the hydration shell surrounding
the collagen monomer, sufficient to stabilise the
initial assembly of both the helix itself and the
fibril [49].

The collagen triple helices may be interrupted
by stretches of non-helical sequence, separating
the triple helix into multiple serial COL
domains, conventionally numbered from the C-
terminus. In the pro-form of the fibrillar colla-
gens, such COL2 domains are found in collagens
I, III and a2(V), whilst the remaining members
of the sub-group also contain a smaller COL3
domain. In general, these are lost during pro-
collagen cleavage, leaving just the COL1
domain and its telopeptide extensions, but this
process is incomplete in collagen III, so that
some unprocessed molecules occur on the sur-
face of fibres where the COL2 domain may
impede further fibre growth. Collagen IV and the
fibril-associated collagens with interrupted

128 S. Hamaia and R. W. Farndale



triple-helices (FACIT) are more extreme forms
of such structures. Interruptions may take the
form of extended insertions, which might be
expected to contain secondary structure, or of
small non-canonical insertions (interruptions or
imperfections) into the COL domain of maybe
three or four residues lacking glycine, or a
deletion with just two intervening residues
between conventional Gxx0 triplets.

The triple helix assembles with a one-residue
offset between strands. As a consequence, three
possible isoforms occur in heterotrimeric colla-
gens, with, in principle, the single a2(I) chain of
collagen I able to occupy the leading, middle or
trailing position, and so that the trimer can
present three different surfaces to protein bind-
ing partners such as integrins, as will be dis-
cussed further below. Firm knowledge of the
order of strands in the heterotrimeric collagens is
scarce. Whether the order is maintained through
longer helical interruptions is not known, and in
principle, needs to be defined case-by-case.
From NMR experiments on a Gly/Ser substi-
tuted peptide [35], it seems likely that the order
persists through short insertions or deletions
with only slight perturbation resulting from the
interruption. In the case of a1(VIII), for exam-
ple, the COL1 domain contains eight occur-
rences of a single-residue deletion (resulting in a
‘‘two-residue triplet’’), and the corresponding
a2(VIII) contains eight equivalent compensating
deletions usually four residues towards the C-
terminus, that will allow the maintenance of an
essentially linear COL domain with only minor
deviation. In contrast, the FACIT collagen IX
has unequal longer insertions in its a-chains that
will introduce a flexible kink between the COL2
and COL3 domains.

9.3 Integrin I-Domain Structure

The vertebrate integrins are a family of 24
heterodimeric trans-membrane cellular adhesion
molecules, with carefully regulated expression
and affinity, reviewed in [4]. Integrins mediate
either cell–cell interactions, binding counter-
receptors such as ICAM and VCAM, or cell–

matrix interactions [24]. The two matrix mole-
cules best-known in the latter context are fibro-
nectin and collagen. Fibronectin is a ligand for
both b1 and b3 integrins, with a5b1 and avb3 as
its most widespread receptors, whereas collagen
is considered to interact directly only with that
subset of four b1 integrins, a1b1, a2b1, a10b1
and a11b1, which is distinguished by the pres-
ence within the a-subunit of an inserted, or I,
domain [4]. These integrins are discussed in
detail in Chaps. 2, 3, 4 and 5 of this volume. The
a-I domain adopts the dinucleotide-binding, or
Rossman, fold [17], and its evolution is dis-
cussed in Chap. 1. This structure, the prototype
for which is the von Willebrand factor A
domain, is found in intracellular signalling spe-
cies such as G protein a-subunits and in extra-
cellular adhesive proteins including the terminal
extensions of the non-fibrillar collagens [13].
Under physiological conditions, the integrin a-I
domains, though not necessarily all other
A-domains [6], constitutively co-ordinate a
divalent cation, Mg2+, in their metal ion depen-
dent adhesion site (MIDAS) which is the focus
of their interaction with collagens [18]. Of the
four collagen-binding integrins, a1b1 and a2b1
have been studied for almost three decades
whilst the properties of both a10b1, which was
purified more recently using its capacity to bind
collagen II [5, 7, 8] and a11b1 (reviewed in
Chap. 5) are still not fully investigated.
Although a1b1 and a2b1 share most sequence
identity, the binding properties of a1b1 and
a10b1 appear most similar, but distinct from
those of a2b1 and a11b1, which also appear to
share some functional redundancy [4]. Integrin
a1b1 is considered a selective ligand for colla-
gen IV, and a2b1 for collagen I [67, 68]. This
indicates differential ability to interact with
specific collagen types, and by inference there-
fore, with different motifs within the collagens.
Crucially, the tissue distribution and temporal
expression of the integrins may differ signifi-
cantly, with a10b1 being most abundant in car-
tilage, for example. Transcripts of all four are
increasingly being detected in diverse settings,
where functional significance is as yet unknown.
In this volume, Chap. 10, Heino summarises the

9 Integrin Recognition Motifs in the Human Collagens 129

http://dx.doi.org/10.1007/978-94-017-9153-3_2
http://dx.doi.org/10.1007/978-94-017-9153-3_3
http://dx.doi.org/10.1007/978-94-017-9153-3_4
http://dx.doi.org/10.1007/978-94-017-9153-3_5
http://dx.doi.org/10.1007/978-94-017-9153-3_1
http://dx.doi.org/10.1007/978-94-017-9153-3_5
http://dx.doi.org/10.1007/978-94-017-9153-3_10


integrin-reactivity of the different collagen
types.

The possibility that leukocyte integrins (also
with I domain-containing a subunits) can bind
collagen arises from time to time. Collagen is
featured in ‘‘Integrins at a glance’’ as a ligand
for axb2 [24], and recently Lahti et al. showed
binding of leukocytes and recombinant I
domains to collagens and to a GFOGER-con-
taining collagenous peptide [33]. In our hands,
these I domains do indeed bind to such peptides,
but weakly, and non-specifically: where cation
dependence occurs in our data, similar binding
occurs to the control peptide, GPP-10, which
lacks any integrin motif (Fig. 9.1). To our
minds, therefore, this may represent a different
mode of binding than that regarded as the
canonical mechanism [18].

9.4 Regions of Collagen That Bind
Integrins

In this chapter, we will focus upon the binding
of motifs within the COL domains to integrins,
where triple-helical structure is a pre-requisite
for binding activity.

Michael Barnes [20, 21, 30, 37, 39, 66] and
Sam Santoro [15, 55–57, 62] were the most
prominent workers in the field during the last
15 years of the twentieth century. Both laid the
foundations for the present understanding, and
used the human platelet collagen receptors as an
established and accessible cellular model for
collagen receptors in general, together with a
human fibrosarcoma cell line, HT1080, that is
still considered to express integrin a2b1 as its
major functional collagen-binding integrin. The
three other family members may occur at low
copy number in both cell types, but the cellular
adhesion to collagen is virtually abolished by a2
subunit-specific blocking antibodies.

Separately, Barnes [38] and Santoro [63]
each mapped a2b1 onto the cyanogen bromide
peptide, a1(I) CB3, identifying a2b1 as a key
receptor that supported strong adhesion of
platelets to collagen, but which was not

sufficient to activate the platelet. Santoro found
integrin-binding activity to be restricted to CB3
[63], whilst Barnes was able to show sites within
several other CB peptides, although CB3 con-
tained the highest affinity ligand for a2b1.
Santoro used chemical derivatisation to show
that specific reactivities within the intact colla-
gens were responsible for binding to a2b1 and to
an activatory platelet receptor, and subsequently
to propose a linear tetrapeptide, DGEA, as an
a2b1 recognition motif [61]. In turn, Barnes
extended his reductive use of CB peptides,
which yielded low-resolution maps of integrin
binding sites in collagens I and III, to the
development of a small library of overlapping,
triple-helical synthetic peptides which encom-
passed the whole of a1(I)CB3 [30, 31]. By this
method Barnes identified the sequence GFO-
GER as what remains the highest-affinity triple-
helical ligand for a2b1 discovered to date.

These two contrasting reactivities remain in
the literature: DGEA, reported to be active in
linear form [61], and GFOGER, active as a tri-
ple-helix but not as a shorter, linear peptide [31].
In our hands, neither linear nor triple-helical
DGEA bound the resting platelet, a point to be
discussed further below. Nonetheless, using
either DGEA or GFOGER as a title keyword to
search PubMed returns *50 papers for each
attesting to their integrin-reactivity, but to date
no complex of an integrin I domain with DGEA
has been deposited in the Protein Data Bank,
although three complexes between integrin I
domains and GFOGER or a similar ligand are
present (1DZI, 4BJ3 and 2M32).

9.5 Collagen Sequences That Bind
Integrins

9.5.1 GxOGER and Related Ligands
in the Fibrillar Collagens

Both Barnes and Emsley promptly recognised
GFOGER as just one of a series of integrin-
binding motifs occurring in the fibrillar colla-
gens [18, 31], as did Hook’s group, who reported
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a weakly-binding GASGER in collagen I and
subsequently GROGER in collagen III [29, 74].
These motifs generally have a hydrophobic
residue at position x in the GxOGER generic
sequence. Siljander summarised their occurrence
at specific loci within the D-periods of a wide
range of fibrillar collagens, (D1: GLOGER; D2:
GAOGER; D3: GFOGER in collagens I and II,
GAOGER in III; GMOGER in collagens I, II
and III) [59]. Beyond D3, conservation is less
good, with weakly-binding motifs such as GA-
OGER present in some collagens and GQRGER
or GLSGER in others. The activity of several of
these sequences has been tested using synthetic
peptides, and subsequently, Raynal extended
this approach by synthesising the 27-residue

peptide library, Collagen Toolkit III, and was
able to confirm the activity of GROGER and to
discover GLOGEN as an integrin-binding motif,
later shown to be a preferred ligand for a1b1
[50].

GROGER, quite a good ligand for a2b1,
unexpectedly contains the positively-charged
arginine in place of the bulky hydrophobic res-
idue that was thought to be essential. It seems
quite likely that the three-carbon stem of its
sidechain might fulfil the same function, sup-
porting hydrophobic contact with the I domain
surface, but this requires confirmation through
structural study.

GLOGER was identified as a good ligand for
a1b1, as good as GFOGER, whilst GLOGEA

Fig. 9.1 a The ability of the recombinant I domains of
leukocyte integrins to bind to collagen II and III
monomers in ELISA-like assays is shown. With the
exception of aM and aX applied to collagen II, there was
no diminution of binding in the presence of EDTA.
b Explores the capacity of triple-helical peptide motifs,
in GPC–[GPP]5–Gxx0GEx0 0–[GPP]5–GPC format, to

support leukocyte integrin I domain binding. Note that
these values are low, and the Control peptide, GPP10,
displays almost as much activity as the authentic motifs,
and is also EDTA-sensitive. Compare amplitudes with
the data in Fig. 9.2, where a2 I domain is used under the
same conditions
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seems similarly effective. It is therefore not
surprising that GLOGEN proved to be a higher-
affinity selective ligand for a1b1, recently
identified in this context, along with GVOGEA,
a weaker but specific a1b1 ligand [23]. Subse-
quently, a low-resolution SAXS structure of a
complex between a1 I domain and a GLOGEN-
containing peptide has been reported, with the
interesting demonstration of a 2-to-1 I domain-
to-peptide complex [12]. To achieve this out-
come, an activated form of a1 I, E317A, was
used, similar to the equivalent active form of a2
I domain, E318W [2], also shown previously to
form a 2-to-1 a2 I-to-GFOGER crystal complex
[9]. Both I domains supported 2-to-1 complexes
in solution, suggesting that this is not merely a
crystallisation artefact. Whether such complexes
can occur in nature is debatable, but might rep-
resent a means of cell–cell adhesion, using a
single strand of collagen as an intermediate
bridging ligand. Such single triple helices might
be found in non-fibrillar collagens such as col-
lagen IV, or after dispersion of collagen fibres
during tissue resorption or remodeling during
wound repair. Whatever the significance of these
2-to-1 structures, they reveal a lower affinity
mode of binding that may become operative
when an integrin is activated, discussed further
below.

Inspection of sequence, based on knowledge
accrued since the first reports in 2000, has
proved valuable in identifying potential integrin-
binding sites in the collagen family at large,
sometimes supported by synthesis of corre-
sponding triple-helical peptides. The fibrillar
collagens, I, II and III have attracted most
attention, not least because the development of
the peptide Toolkits renders their study
straightforward. No such reagents exist at pres-
ent for other collagens. The sequences of the
fibrillar collagens, V, XI, XXIV and XXVII, are
much less rich in GXOGER motifs than the
more familiar I, II and III (see Table 9.1),
reflecting their different evolutionary paths after
the emergence of the ancestral collagen I, and
the restricted expression of collagen XXVII to
embryogenesis [47].

9.5.2 GxOGEK

Conservative substitution of K for R within tri-
ple-helical integrin ligand peptides revealed a
similar motif, GFOGEK, as a useful ligand for
a1b1, a2b1 and a11b1 [23, 75], suggesting that
it might prove to be representative of a series of
GxOGEK homologues. Such sequences, like
GxOGER, are widespread within the collagens
as a whole.

GxOGEK motifs are rare in collagens I, II
and III, with single occurrences in a2(I) and at a
discrete conserved locus in a1(II) and a1(III),
seven triplets before the collagenase cleavage
site. Collagen V lacks established GxOGER
motifs, except for GMOGER in a2(V), at loci
conserved with integrin sites in D1 and D3 of
collagens I, II and III. At the nearby locus in D3
where GFOGER occurs in collagens I and II,
collagen V contains GNOGER, that deserves
investigation. Collagen V also contains several
GLOGEx00 motifs that might offer a site to a1b1,
including GLOGEK at a locus conserved in its
a1 and a3 chains. Few other of the OGEK motifs
that are relatively abundant appear to be prom-
ising integrin sites, lacking hydrophobic side-
chains at the x position. GLOGEK in a2(V) and
GIOGEK in a3(V) are the exceptions. Collagen
V has a role in pericellular collagen fibrillo-
genesis in various tissues [60, 64, 71], and can
support a11b1-mediated cell migration [48].

Collagen XI, a co-constituent of cartilage
fibres along with collagen II, is more promising,
with a GFOGER site aligned in its a1 and a2
chains at a central D3 locus conserved with that
in collagens I and II. GLOGEA in a1(XI), that
may bind a1b1, aligns with GLOGES in a2(XI),
located in D1 near the GLOGEN and GLOGER
sites in collagens I, II and III. This will most
likely reconstitute an integrin site similar to the
GFOGER/GPOGES site in a1(I) and a2(I). In
Chap. 4, Lundgren–Åkerland describes binding
of a10b1-expressing cells to collagens II and XI,
as well as to GFOGER and GLOGER-contain-
ing peptides.

The remaining fibrillar collagens, XXIV and
XXVII, lack established integrin-binding motifs
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Table 9.1 Integrin recognition motifs in all human collagens

Chain GER GEK GLOGE RGD Known and prospective integrin motifs (listed
from N-terminus)

Fibrillar Ia1 11 1 1 2 GROGER, GLOGER, aGFOGER, GMOGER,
GQRGER, GASGER

Ia2 8 3 2 2 GROGER, GLOGER, GLOGER

II 11 4 1 3 GLOGER, GVOGEA, aGFOGER, GMOGER,
GQRGER

III 14 4 1 1 GROGER, GLOGEN, aGAOGER, GMOGER,
GLSGER

Va1 7 14 3 2 GLOGEK, GLOGEO, GLOGEG

Va2 10 3 1 7 GMOGER, aGNOGER, GMOGER, GQRGER

Va3 7 14 0 3

XIa1 6 14 1 0 GLOGEA, aGFOGER

XIa2 8 14 2 3 aGFOGER

XXIV 5 7 4 0 GNOGER, aGLOGEO

XXVII 3 4 2 3 aGLOGEO, GLOGEA

Network IVa1 6 21 3 3 GFOGER, GDQ, GLOGEK, GLOGEK,
GLOGEK

IVa2 6 6 3 9 GLOGEM, GRA, GLOGEV, GAOGER,
GLOGEK

IVa3 4 9 1 6 GLOGES, GFOGER

IVa4 5 11 1 8 GLOGEA, GFOGER, GFOGER

IVa5 6 14 2 0 GLOGEK, GFOGER, GLOGEO

IVa6 3 10 1 3 GLOGEK, GLOGEL

VIIIa1 0 1 0 0

VIIIa2 1 0 0 2 GVOGER

X 5 1 0 0 GKOGER, GFOGEK, GROGER

FACIT IXa1 3 3 1 0 GLOGEL

IXa2 2 4 2 0 GLOGEI, GLOGEK

IXa3 4 3 0 2 GMOGER

XII 1 1 0 2 GLOGEK

XIV 3 2 0 1

XXVI 7 17 0 1

XIX 6 7 1 1 GLOGEH, GIOGEK

XX 2 2 0 0

XXI 1 4 0 0

XXII 8 14 4 2 GLOGEV, GLOGEI, GNOGER, GLOGEN

TM XIII 4 10 0 0

XVII 1 3 0 0

XXIII 0 1 0 2

XXV 3 10 0 0

Multiplexins XV 1 9 0 0

XVIII 3 4 1 1 GLOGEO

(continued)
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such as GxOGER, except the untested
GNOGER in a1(XXIV). Plausible GLOGEx00

a1b1-selective motifs are also found in
a1(XXIV), with Q, V, O and D as x00. Similarly,
collagen XXVII contains single occurrences of
GLOGEO and GLOGEA, prospective a1b1
ligands.

9.6 Sites in the Non-fibrillar
Collagens

9.6.1 Network-Forming Collagens, IV,
VIII and X

The non-fibrillar collagens are much less rich in
defined GxOGER integrin-binding sites, and
where such sites have been proposed, their exact
location within the triple-helical domains is
more often by inference than experiment. Parkin
et al. have prepared a collagen IV interactome
[44], and mapped putative integrin sites within
the three different heterotrimers of collagen IV
(a1a1a2, a3a4a5 and a5a5a6), using the loca-
tion of GxOGEx00 motifs as a guide. A point of
interest is that few motifs are aligned in all three
constituent chains. One exception, in a region
described as an endothelial cell binding domain
in the most abundant form of basal lamina col-
lagen IV, a1a1a2, contains a GFOGER/GFO-
GER/GLOGEM locus near to the disperse a1b1
site identified by Kuhn’s group, discussed

further below. Other potential sites, GLOGEx00

being a prime example that is represented in all
six a chains, often occur unsupported in the
other chains of the heterotrimer, but nonetheless
form credible sites for both a1b1 and a2b1;
critical interactions are thought to involve just
one GxOGEx00 glutamate within a triple helix,
with crucial ancillary stabilisation from hydro-
phobic x or positively-charged x00 residues. In
a3a4a5, both GLOGEx00 and GFOGER occur
unsupported in different loci in each a chain, but
the adjacent chains contain x hydrophobic resi-
dues that may contribute to binding. OGEK
triplets are sparse, with GLOGEK and GIOGEK
in a5(IV) the most promising, although GEK
occurs many times. These, along with GFOGER,
form promising loci in the a5a5a6 form of col-
lagen IV, but the a6 chain contributes just one
each of GLOGEK, GFOGEK and GLOGEx00 as
putative integrin sites.

Kuhn’s group reported and have researched
extensively a disperse site for a1b1, comprising
GPOGDQ triplets in a1(IV) and the aligned
GAKGRA triplet in a2(IV). The nature of this
site remains enigmatic: one of the a1 chain
aspartate residues co-ordinates the metal ion in
the a1 I domain MIDAS, yet a competent
recombinant a1 I domain is unable to bind a
model homotrimeric peptide containing the
sequence GFOGDR [23]. The critical but
ancillary role of the hydrophobic F residue,
important in defining the affinity of peptides for

Table 9.1 (continued)

Chain GER GEK GLOGE RGD Known and prospective integrin motifs (listed
from N-terminus)

Other VIa1 4 6 1 3 GLOGEK, GAOGER

VIa2 1 4 0 5

VIa3 4 3 0 5 GFOGEK, GAOGER

VIa5 0 3 0 1

VIa6 2 3 1 1 GLOGEM

VII 22 17 2 3 GAOGER, GLOGER, GFOGER, GROGER,
GLOGER, GAOGER

XXVI 1 2 1 0 GLOGEM

XXVIII 6 2 1 1
a Indicates conserved high-affinity locus in D-period 3 of the fibrillar collagens. Alignment of other sites is
approximate. Bold indicates the composite site in a1(IV) and a2(IV). Italics indicates prospective sites, not tested to
date. In the fibrillar collagens, some known low-affinity sites (GAOGER) are omitted to conserve space
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a2b1, seems insufficient to support the GDR
triplet in binding a1b1, despite GFOGER being
a moderately good ligand for a1b1. In the native
a2(IV) collagen chain, the lysine of the GAK
triplet preceding GRA has been proposed to
have a critical role, by forming a salt bridge with
the I domain surface [53].

Chin models a slightly different peptide-I
domain relationship [12], using low resolution
SAXS- and NMR-derived structures to direct the
docking programme HADDOCK, and suggest
that the peptide, triple-helical GLOGEN, sits
more centrally within the binding trench in a1
than in a2, where the corresponding GFOGER is
described as binding to the edge of the equiva-
lent trench in the a2 I domain. Part of the
rationale for this may be a steric clash of the
bulkier sidechain of the x00 arginine in GER-
containing motifs, explaining why GEN may be
a preferred ligand for a1b1. In line with these
ideas, Seo modelled and expressed an unnatural
sequence, GFPGEN, that they found to be
selective for a1b1 [58]. Emsley described the a1
I domain as having a flatter, more open MIDAS,
more readily able to receive a short co-ordinat-
ing aspartate than a2 I domain [18]. Further
work to extend these concepts to include a10b1
is called for.

Both the a1 and a2 chains of collagen VIII
are devoid of defined integrin motifs, although
GVOGER in its a2 chain, by analogy with
GVOGEA in collagen II, presents a possible
binding motif. Turner showed that endothelial
cell attachment to collagen a2(VIII) homotri-
mers was partially mediated by a2b1, using anti-
a2 blocking antibodies [69]. Anti-b1 completely
inhibited adhesion, implying the presence of
other collagen-binding integrins. Of general
note, a cyclic RGD peptide had no effect on cell
adhesion to this collagen preparation despite the
presence of two RGD motifs within the COL
domain. Here, as in other collagens, triple-heli-
cal RGD was not recognised by the relevant
integrins although the latter were present and
competent to bind fibronectin. Adiguzel note the
upregulation of collagen VIII in atherosclerotic
tissue [1], where it may support vascular smooth

muscle cell migration, and identify b1 integrin-
mediated signalling to the small GTPase, RhoA.

Collagen X contains one known and one
possible GxOGER motif, GRO and GKOGER,
along with the proven GFOGEK.

9.6.2 FACIT Collagens, IX, XII, XIV, XVI,
XIX, XX, XXI and XXII

The heterotrimeric collagen IX, a FACIT colla-
gen associated with collagen II fibres, was
reported to express strong integrin-binding
activity, tested on all four collagen binding I
domains, compared to other collagens [28] and
showing similar high affinity for a1, a2 and a11,
but rather weaker for a10. (See also Chap. 4 in
this volume.) This might be attributed to its
aligned GLOGEL and GLOGEI motifs which
occur in the (N-terminal) COL3 domain of the
a1(IX) and a2(IX) chains. Collagen IX is not
rich in established motifs; the COL2 domain
contains GLOGEK in a2(IX) and GMOGER in
a3(IX). It may be that these GLOGEx00 motifs
are selective for a1b1. Whilst the patency of
GFOGER in collagen I (and by inference, in
collagen II) has been questioned by Orgel’s
group, GFOGER being proposed to be system-
atically buried within the complex twisted
structure of the fibre [46], the presence of
strongly integrin-binding FACIT collagens may
compensate for this effect, if it does indeed
occur.

Collagen XII presents only the untested
GLOGEK. Although it is proposed that integrin-
mediated tension may stimulate collagen XII
expression, its capacity to bind integrins directly
is unknown [65]. It is worth noting that the non-
collagenous domain 3 (NC3) of collagen XII
contains several VWF A domain structures with
intact DxSxS MIDAS motifs. This raises the
interesting possibility that the affinity of the
FACIT collagen XII for the surface of a collagen
fibre may include a cation–dependent interaction
between the its VWF A domains and integrin-
binding motifs in the fibrillar collagen. A similar
VWF A domain-mediated mechanism of
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collagen–collagen interaction (dimerisation) has
been described for collagen VI [3] in this case
utilising the COL domain sequence GSOGER as
a counter-ligand. The ability of collagen XII to
regulate the biomechanical properties of asso-
ciated fibres has been attributed to its NC3
domain [40].

Collagen XIV contains no defined integrin
motif, although GMOGEK and GTOGER rep-
resent untested possibilities. Collagen XVI,
although rich in GEK and GER triplets, lacks
any OGEK or OGER motifs, but Eble et al. [16],
propose GLQGER and GIKGER, but not
GGKGER and GKAGER, as integrin-binding in
collagen XVI. Two of its interrupting sequences
contain RGD motifs, raising the possibility of
a5b1- or avb3-mediated adhesion to these less-
structured NC domains. However, Eble con-
cluded that these motifs, along with one RGD
triplet that lies firmly within a COL domain, do
not contribute to cell-binding activity, reinforc-
ing the conclusion that RGD is cryptic in col-
lagens when located in their COL domains.

Collagen XIX presents two possible motifs,
GLOGEH and GIOGEK, again untested.

Collagens XX and XXI, both designated
FACITs, contain four or five of either GER or
GEK motifs, none preceded by O, and therefore
lack obvious integrin-reactivity. In contrast,
collagen XXII, with a much longer interrupted
triple-helix, contain 14 GEK motifs, possible
integrin-binders, including GROGEK, and eight
GERs, including GEOGER and GNOGER..
Most telling, four GLOGEx00 motifs occur,
including GLOGEN, now shown to be an a1b1-
selective motif [23]. Koch applied HACAT
keratinocytes (a2b1-expressing) and WI-26
fibroblasts (which express both a1b1 and a2b1)
to collagen XXII, the latter binding more effi-
ciently [32]. It is tempting to conclude that the
sequence, GLOGEN was central to this outcome.

9.6.3 ‘‘Other’’ Collagens

Amongst the collagens VI, VII, XXVI and
XXVIII (undesignated by Ricard-Blum), only

collagen VII is as rich as the archetypal fibrillar
collagens in GxOGER motifs, where x is A and
L (twice each), F or R. This suggests a marked
propensity to bind integrins. Saelman et al.
report a2b1-dependent adhesion of platelets to
collagens including VI and VII [54]. However,
Chen et al. reported a2b1-mediated attachment
to the NC1 domain of VII that was RGD-inde-
pendent and survived denaturation [11], and
Liebert et al. [36] observe co-localisation of
collagen VII with a6b4, not known as a collagen
receptor. This interaction may regulate laminin-
332 organisation during wound healing [43].
Whether the collagen VII COL domain,
although an attractive candidate, expresses the
anticipated strong integrin reactivity remains to
be established.

Of the others, the short (*100 triplet) a1(VI)
and a3(VI) COL domains each contain only
GAOGER and either GLOGEK or GFOGEK,
whilst XXVI contains a single GLOGEM motif
and XXVIII contains a single GVOGER motif,
mentioned elsewhere above.

9.6.4 Multiplexins, Collagens XV
and XVIII

Collagen XV lacks obvious motifs, although
contains several GEK triplets, whilst collagen
XVIII contains a single GLOGEO motif. Con-
sistent with this, collagen XV has been found not
to support cell adhesion [26], but instead to bind
other matrix proteins (FN, LN and VN) that will
offer RGD-dependent cell-binding activity.
Halfter et al. report little cell binding activity of
collagen XVIII [22].

9.6.5 Transmembrane Collagens, XIII,
XVII, XXIII and XXV

The transmembrane collagens are intriguing,
since they offer novel and barely-explored
opportunities for cell–cell interaction. Collagen
XIII lacks obvious integrin sites, with four GER
and several GEK triplets, but none preceded by
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O. Nonetheless, a1b1, though not a2b1, binding
is reported [42]. Integrin reactivity has also been
identified for collagen XVII [41], which when
transfected into suitable cell lines, also binds the
non-integrin immune collagen receptor, LAIR1
[34, 42]. Again, obvious integrin-binding motifs
are absent.

Collagen XXIII contains the low-affinity
motif, GASGER, but no other obvious integrin-
binding activity amongst the sundry GEK trip-
lets, suggesting weak or absent integrin reac-
tivity. Veit et al., using bacterially expressed
foldon-peptide collagenous materials, suggest
that the integrin reactivity they observed in
collagen XXIII does not reside in GTSGER or
GEKGER [70].

Collagen XXV, similar in most respects,
lacks even low affinity GER motifs.

9.7 Recognition of Integrins
by Multiple Collagen a-Chains

The first collagen peptide-I domain complex
[18] showed that two strands of a homotri-
meric GFOGER peptide, the leading and the
middle strand, were involved in integrin bind-
ing. The middle strand was crucial, containing
the glutamate responsible for much of the
binding energy. As described, however, the
contribution of the hydrophobic phenylalanine
was also critical, and the identity of x in
GxOGER-containing peptides defines an affin-
ity series at the level of binding assays [23, 50,
59], and in determining the ability of a cell to
migrate across a peptide coated surface [19].
The positively charged arginine residue also
forms an important salt bridge with corre-
sponding negative charges on the I domain
surface, in a2 I domain at least. The leading
strand, however, makes several significant
contributions, including further hydrophobic
bonding and a less intimate charge–charge
interaction with its F and R residues respec-
tively. These interactions have been detailed by
Emsley and others and need little reiteration
here. From this body of work it seems unlikely
that a heterotrimer containing a GxOGER

motif in just a single strand would support
high-affinity interaction. This remains to be
explored experimentally.

9.8 Effect of Cellular Activation
and Integrin Binding

The recent publication of a new 2-to-1 I domain-
to-peptide structure [9, 12] shows that a second
binding mode is possible. In this receptor–ligand
complex of a2 I with GFOGER, one copy of an
activated form of a2 I (E318W) adopts a rela-
tionship to two strands of the peptide that is
essentially identical to that described by Emsley,
although in this iteration, the trailing strand
takes the primary role by housing the crucial
glutamate. Other equivalent supporting interac-
tions are provided by the middle strand. The
second copy of the I domain, however, binds
mainly to just one strand, the leading strand,
with its glutamate conventionally co-ordinating
the MIDAS. There is no arginine available in an
adjacent strand to meet the requirement for salt-
bridging, and, by the same token, no phenylal-
anine to offer additional hydrophobic bond
support. Proline in the peptide flanking sequence
fulfils this function. The 2-to-1 complex was
sufficiently robust to survive gel filtration, but
not when a lower-affinity peptide, GMOGER,
was used. Crucially, an active mutant of a2 I,
E318W, was used to prepare the complex; wild
type would not support stable complex forma-
tion in solution with either peptide. A similar
complex was published subsequently between
the preferred ligand for a1b1, GLOGEN, and the
corresponding E317A form of a1 domain,
where, presumably, similar considerations apply
[12].

This work suggests that, upon activation,
interactions of integrins with lower affinity
sequences can become useful. For a2b1, the
affinity series, x = F [ L C R [ M [ A in
GxOGER-containing motifs appears to hold well
in different cell adhesion studies, e.g. using
platelets and HT1080 cells [19, 59]. With the
latter, although resting cell adhesion was virtu-
ally negligible in relatively stringent static
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adhesion assays (with multiple wash steps) the
capacity of cells to migrate upon GAOGER
surfaces was much greater than on GFOGER.
Thus, a tight-binding surface may not be what is
needed if cells are to invade, repopulate and
repair a wound quickly and successfully.

The use of activated I domains provides other
useful insights; lower-affinity peptides, with
corresponding lower-affinity motifs, appear
positive on Toolkit maps, (see Fig. 9.2) but
binding curves (Fig. 9.3) indicate that the affin-
ity of such motifs may be one or two orders of
magnitude lower than the best motif, GFOGER
[9]. Nonetheless, these weak interactions may
become more important in the context of an
activated cell. It is important to note that whilst

the selectivity of the activated form of the I
domain is decreased (more Toolkit peptides
become positive), binding affinity for the estab-
lished peptides increases. This indicates that the
activated I domain surface is able to make a
greater number of contacts with the peptides
than the resting integrin, suggesting greater
plasticity of its binding surface. (As an aside,
DGEA, which occurs in Toolkit peptide II-03,
does not bind either wild type or E318W I
domain.)

Taken together, these data support the idea
that weaker motifs, or motifs present in only a
single strand of a heterotrimeric collagen, may
be valuable in the context of cellular behaviour
that requires weaker interactions, and where

Fig. 9.2 a The ability of wild type a2 I domains to bind
to Toolkit II is shown. Wild-type binds well to just three
peptides, II-7, II-8 and II-28. GLOGER occurs in the
overlap between II-7 and II-8; GFOGER in II-28.
b Shows the equivalent experiment using the more
active I domain, E318W, which, in addition, binds well
to established motifs, GMOGER in II-31, GQRGER in

II-44, and less well to GAOGER in II-18. Other binding
activity remains undefined, but it may be significant that
II-23 and II-24 share GKAGEK in their overlapping
sequence. All other weakly-binding peptides include
GEx0 0 motifs. (Reproduced from Carafoli et al. [9] under
the creative commons license. See http://creativecommons.
org/licenses/by/3.0/)
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cells may be activated, perhaps by local cytokine
levels in an inflammatory lesion.

9.9 Engineered Collagens
as Integrin-Binding Proteins

Finally, we mention the potential for the use of
integrin-binding motifs in tissue engineering
applications. This concept arose in part from the
location of an integrin-binding site in the Strep-
tococcus pyogenes adhesin, SCL1, within its 213
residue COL domain [25], subsequently identified
as the non-hydroxylated analogue of mammalian
binding motifs, GLPGER [10]. Such motifs are

rare in bacterial collagens, perhaps unique,
although a number of bacteria express collagen-
like proteins. Höök’s group subsequently designed
a sequence, GFPGEN, that was suitable for bac-
terial expression and that displayed a1b1-selec-
tivity [58]. Bacterial expression of accurately
folded collagens becomes a real possibility. The
combination of exploration of integrin selectivity
with re-engineering into bacterial expression sys-
tems makes the production of collagen-like bio-
materials by fermentation an exciting prospect.

Acknowledgments Work described here from the
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Fig. 9.3 a The ability of wild type and E318W a2 I
domain to bind to shorter triple-helical peptides. Peptides
were presented as in Fig. 9.1, and show that the
activating mutation leads to improved binding to the
moderate affinity motif, GMOGER, and to some low
affinity peptides. b Quantitates this effect, and shows that
the activating mutation shifts the binding curve threefold

or so to the left for GFOGER and GMOGER. For the low
affinity GAOGER, binding becomes measurable for
E318W compared with wild type a2 I domain. (Repro-
duced from Carafoli et al. [9] under the creative
commons license. See http://creativecommons.org/
licenses/by/3.0/)
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10Cellular Signaling by Collagen-Binding
Integrins

Jyrki Heino

Abstract

The four collagen-binding aI domain integrins form their own subgroup
among cell adhesion receptors. The signaling functions of a1b1 and a2b1
integrins have been analyzed in many experimental models, whereas less
studies are available about the more recently found a10b1 and a11b1
heterodimers. Interestingly, collagen binding by a1b1 and a2b1 often
generates opposite cellular responses. For example a1b1 has often been
reported to promote cell proliferation and to suppress collagen synthesis,
whereas a2b1 can in many model systems inhibit growth and promote
collagen synthesis. There are obviously cell type dependent factors
modifying the signaling. Additionally the structure and the organization
of collagenous matrix play a critic role. Many recent studies have also
stressed the importance of the crosstalk between the integrins and other
cell surface receptors.
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10.1 Introduction

The members of the collagen receptor subgroup
of the integrins recognize their ligands using an
inserted domain in their a subunit (aI domain,
often called as aA domain). Four heterodimers
belong to this category, namely a1b1, a2b1,

a10b1 and a11b1 [8, 11, 77, 102]. While a1b1
and a2b1 are very abundantly expressed on
distinct cell types, the tissue distribution of
a10b1 is mainly limited to cartilage. Integrin
a11b1 is found on mesenchymal cells, e.g.
fibroblasts. The four receptors have differences
in their ability to recognize extracellular matrix
(ECM) and other ligands. Table 10.1 collects the
published information about recognition of dis-
tinct collagen subtypes by integrins. Further-
more, the fact that the cytoplasmic domains of
the a subunits are different [8, 11, 77, 102]
suggests that they also generate unique intra-
cellular signals. Numerous cell type and tissue
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specific factors, e.g. interplay with other cellular
receptors, also modify the signaling by the col-
lagen receptors [42].

This chapter is focused on the four members
of the collagen receptor subgroup of the inte-
grins. However, also other integrins have been
reported to function as collagen receptors. Inte-
grin a3b1, generally known as a laminin recep-
tor, may also act as an assisting collagen IV
receptor [23]. Similarly, the leukocyte aI domain
integrins can bind to various collagen subtypes
and they can be considered as low-avidity or
assisting collagen receptors [54]. Furthermore,
denatured collagen (e.g. collagen I) can be rec-
ognized by the fibronectin receptor integrins
based on the cryptic RGD motifs in collagen a
chains [34].

10.2 Collagens and Other ECM
Ligands

Collagens are structural proteins of extracellular
matrix that typically have triple helical domains
of variable length [76]. Collagens form, for
example, large fibrils in connective tissues and
networks in basement membranes, while some
collagens are transmembrane proteins. Metazo-
ans from sea sponges [2] to mammals express
collagens and in man, 28 structurally and func-
tionally different collagen subtypes have been
published [76]. The collagen subtypes are named
from I to XXVIII based on the order in which they
have been found. The collagen family is com-
posed of several subgroups. The fibril-forming

Table 10.1 The recognition of distinct collagen subtypes

Fibril-forming collagens (I, II, III, V, XI, XXIV, XXVIII)

Collagens I, II: a1b1/a1I domain, a2b1/a2I domain, a10b1/a10I domain, a11b1/a11I domain

Collagens III, V: a1b1/a1I domain, a2b1/a2I domain, a10b1/a10I domain

Collagen XI: a2I domain [77]

The approximated avidity of a1b1 binding to fibril-forming collagens is lower than that of a2b1. References for
a10b1/a10I and a11b1/a11I [110, 76]

Network forming collagens (IV, VIII, X)

Collagen IV: Integrin a1b1/a1I domain, a2b1/a2I domain, a10I domain. Integrin a1b1 seems to prefer type IV over
fibril-forming collagens, opposite to a2b1 integrin [47, 76]

Collagen VIII: Platelet binding is mediated by a2b1 [77]

Collagen X: a2b1 [59]

Beaded-filaments forming collagen (VI)

Collagen VI: a1b1/a1I, a10I domain. Binding by a2b1/a2I domain is much weaker [96]

Anchoring fibrils forming collagen (VII)

Collagen VII: NC1 domain in is recognized by a2b1 on human fibroblasts [15]. Platelet binding is mediated by a2b1
[77]

FACIT collagens (IX, XII, XIV, XVI, XIX, XX, XXI, XXII)

Collagen IX: a1b1/a1I domain, a2b1/a2I domain, a10b1/a10 I domain, a11I domain [46]

Collagen XIV: CD44, unlike a1b1 or a2b1 [26, 48]

Collagen XVI: a1b1/a1I domain, a2b1/a2I domain. Binging by a1b1 is stronger [25]

Transmembrane collagens (XIII, XVII, XXIII, XXV)

Collagen XIII: a1b1 integrin/a1I domain. Binding by a2b1/a2I domain much weaker [69]

Collagen XVII: The largest collagenous domain (COL 15) cannot be recognized by the collagen receptors. However,
when denatured the multiple KGD motifs can be used by a5b1 and aV-integrins [70]

Collagen XXIII: a2b1 [76]

Multiplexins (XV, XVIII)

Collagen XVIII: a1b1 [24]. Endostatin, the C-terminal cleavage product is recognized by a5b1 and aV-integrins [76]

(Note that here collagens XXVI and XXVIII have not been listed to any of the subgroups)
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collagens have a long, continuous triple helix that
gives to the molecule a rigid, rod-like structure.
These collagens form large fibrils, which is
essential for the structural integrity and the tensile
strength of the tissues. The network-forming
collagens have interruptions in the triple helix.
Basement membrane collagen IV belongs to this
subfamily. Two collagen subtypes have unique
functions and they are the only members of the
corresponding subgroups: beaded-filaments are
built from collagen VI and anchoring fibrils from
collagen VII. Fibril-associated collagens with
interruptions in triple-helices (FACIT) form a
large subgroup. Collagens IX and XII are typical
FACITs. All FACIT collagens may not, however,
be able to bind to fibrils. Collagens XIII and XVII
were the first subtypes shown to be transmem-
brane proteins. Collagen XVII is a structural
component of hemidesmosomes, whereas colla-
gen XIII is found, for example, in muscle, bone
and skin. Multiplexins are collagens that are
associated to basement membranes. Collagens
XV and XVIII belong to this subfamily. Their
C-terminal cleavage products have become
known as angiogenesis-blocking endostatins [71].

Specific collagenous motifs are recognized by
integrin aI domains. Best known is the GFO-
GER (O = hydroxyproline) sequence in triple-
helical conformation [52], which is a binding
site for all four collagen receptor integrins.
GLOGER, GASGER, GROGER, and GLOGEN
represent other similar motifs [58]. However,
many collagen subtypes are not homotrimers,
but the triple helix is formed by two or three
different a chains. In these cases the integrin
binding mechanism may be different. For
example in collagen IV a1b1 integrin may rec-
ognize one arginine and two aspartic acid resi-
dues all coming from a different a chain [76].
Many reports have named the fibril-forming
collagens as high-avidity ligands of a2b1 and
a11b1 integrins, whereas a1b1 seems to the best
receptor for collagens IV and XIII [35, Table 1].
Receptor for collagen XIV is CD44 and it may
not be an optimal ligand for the integrins [48].
Recognition of distinct collagen subtypes may
also be dependent on the activation stage of the
integrin [77, 12]. The aI domain has at least two

activation stages. In nonactivated integrins the
aI domain is in the closed conformation, that is
able to recognize the ligands, but the interaction
is weaker than with the activated, open aI
domain. Activation may also diminish selectiv-
ity between high and low avidity binding motifs
[12] and ligand proteins [77] and between hetero
and homotrimeric collagen subtypes [12].

The collagen receptors also have non-col-
lagenous ligands. Integrin a1b1 is a receptor for
laminins, collagen IV derived antiangiogenic
degradation product called arresten [77] and
semaphorin protein, Sema7A [72].

Integrin a2b1 has numerous ligands, includ-
ing ECM proteins tenascin C [76] and chond-
roadherin [10] as well as different laminins. This
receptor can also bind to proteoglycans, such as
decorin [32] and endorepellin (C-terminal
domain of perlecan; [6]), and collectin family
members, namely C1q complement protein,
mannose-binding lectin (MBL) and surfactant
protein A (SP-A) [77].

10.3 Regulation of Cellular
Signaling Pathways
by the Collagen Receptor
Integrins

During the canonical integrin outside-in signal-
ing, the ligand binding induces rapid increase in
the levels of phosphatidylinositol-4,5-bidphos-
phate and phosphatidylinositol-3,4,5-triphos-
phate and promotes the tyrosine phosphorylation
of proteins such as focal adhesion kinase (FAK),
p130Cas and Src [57]. Soon after that small
GTPases belonging to the Rho-family are acti-
vated [57]. Finally, the integrins regulate many
pathways controlling cell survival, proliferation,
differentiation, migration and metabolism. There
is no reason to believe that the collagen receptors
would act in a different manner. Indeed, there are
numerous papers using different experimental
models and demonstrating the regulation of
FAK, Src, p130Cas, mitogen activated protein
kinases (MAPKs), including extracellular signal
regulated kinase (ERK), c-Jun N-terminal kinase
(JNK) and p38, as well as phosphoinositide
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3-kinase (PI3K) and Akt (Protein kinase B) by
a1b1 and a2b1 integrins. Activation of Rac-1
GTPase has been connected to a1b1 mediated
cell migration in vitro [76] and invasion in vivo
[77]. Integrin a2b1 has been reported to activate
RhoA and slow down cell locomotion [77].
Integrin a2b1 may also regulate Rac-1 by
orchestrating the membrane anchorage of
Rac [9].

The functions of a2b1 have been investigated
in detail in platelets. These studies have revealed
that Rac and/or p21-activated kinase (PAK)
activation, but not Rho, participate in integrin
a2b1 mediated platelet spreading on collagen
and that Src family kinases and PI3K are also
involved [76]. Another study indicates that Pyk2
(a FAK-family protein tyrosine kinase) regulates
PI3K and Akt downstream of integrin a2b1 [20].
In platelets a2b1 has also been connected to the
regulation of Spleen tyrosine kinase (Syk), SH2
domain-containing leukocyte phosphoprotein
(SLP-76), and phospholipase Cc2 (LPCc2) as
well as plasma membrane calcium ATPase and
FAK [33, 39]. Many reports indicate that both
a1b1 [17, 18] and a2b1 [38] can regulate the
formation reactive oxygen species (ROS), which
partially explains their effects on cellular func-
tions, e.g. p38 MAPK phosphorylation and
cyclin expression [38].

The general signaling events are often medi-
ated by the b subunit and therefore they are not
specific to any individual b1 containing hetero-
dimer. Still, the collagen receptors may have
different, even opposite, effects on gene expres-
sion. For example, a1b1 is a negative regulator of
collagen I synthesis [55, 77], whereas a2b1
increases the expression [40, 77]. Some regula-
tory functions of the collagen receptors seem to
be dependent on the cytoplasmic tails of the a
subunits. For example the effect of a1b1 on
Rac-1 activation and consequently on cell
migration is dependent on the a1 cytoplasmic
domain [76]. The mechanism of signaling
through a2b1 integrin has also been studied by
deletions, mutations and swaps of the a2 subunit
cytoplasmic domain [13, 40, 45, 49, 51]. Dele-
tion of the entire tail targets the integrin to the

focal adhesion sites, even in the absence of col-
lagen [45]. The essential role of the a2 cyto-
plasmic tail in other functions of a2b1 integrin,
such as contraction of collagen gels, has also
been well characterized [13]. Replacement of the
a2 cytoplasmic tail with one from the a1 integrin
renders the integrin unable to signal normally
[40, 49, 51]. This also supports the idea that
different collagen receptors have distinct signal-
ing functions. Furthermore, these observations
suggest that the cytoplasmic domains of the
collagen receptor a subunits may be directly
connected to cellular signaling proteins, or that
they modify the molecular interactions of the b1
cytoplasmic domain. Still very little is known
about a subunit binding proteins or the mecha-
nisms of a specific signaling. The cytoplasmic
tail of a1 integrin selectively interacts with a
ubiquitously expressed protein tyrosine phos-
phatase TCPTP (T-cell protein tyrosine phos-
phatase) and activates it after cell adhesion to
collagen [61]. Other a subunit binding proteins
include Rab21 and SHARPIN, but they are not
selective for any single a subunit. Rab21 regu-
lates integrin trafficking [73] and SHARPIN is an
inhibitor of integrin ligand binding function [76].

Many integrins may also act as cellular
receptors for viruses. Human pathogen, echovi-
rus-1 (EV-1) binds to the a2I domain in a2b1
integrin and is rapidly internalized into the host
cell. Interestingly, EV-1 seems to recognize the
closed conformation of a2I domain and keep the
integrin in the nonactivated stage [43]. Still
the virus is able to activate protein kinase C-a
(PKC-a) and Rac-1, which is also requited for
the macropinocytosis-like entry of the virus-
integrin complex [44, 77]. In this case the
clustering of integrins seems to be the activating
factor rather than the conformational change in
the receptors. The nonactivated stage of a2b1
may also have other biological functions, e.g.
during platelet collagen binding under shear
stress [67]. Actually, activated a2b1 integrins
are very rapidly internalized in a ligand depen-
dent manner, which leads to remarkable
decrease in the number of collagen receptors on
platelets [76].

146 J. Heino



10.4 Interplay of the Collagen
Receptors with Growth Factor
Receptors

Recent studies have indicated that integrins have
numerous mechanisms to interact with growth
factor receptors [42]. Cell adhesion is often
required for the establishment of molecular
platforms that enable the signaling by growth
factor receptors. Integrins may even activate the
growth factor receptors in the absence of the
growth factor. Integrins can also orchestrate the
trafficking of other receptors and in that way
regulate the copy number of growth factor
receptors on cell surface [42].

The interplay between collagen receptors and
epidermal growth factor receptor (EGFR) has
been studied in different cellular model systems.
Integrin a1b1 is reported to negatively regulate
EGFR. This may be related to the ability of a1b1
to increase caveolin-1 levels and to activate
protein tyrosine phosphatase TCPTP [18, 61].
Integrin a2b1 is known to modify EGFR sig-
naling, too. EGFR may also reduce the levels of
a2b1 on cell surface by increasing its internali-
zation [66]. Published findings have also sug-
gested that crosstalk between hepatocyte growth
factor receptor (HGFR/c-met) and a2b1 integrin
is requited for mast-cell activation [62].

In addition to ECM proteins many integrin
can also directly bind to growth factors [42].
Accordingly, integrin a1b1 is not only a receptor
for collagens, but it has also been reported to
recognize a semaphorin protein, Sema7A, that
enhances axon growth [72]. Sema7A binding to
a1b1 integrin can activate several signaling
proteins, including FAK, ERK MAPKs [72],
Abelson (Abl), and Abl-related gene (Arg)
tyrosine kinases [64].

10.5 Crosstalk Between Integrins
and Discoidin Domain Type
Collagen Receptors

The collagen receptor integrins are not the only
cellular receptors that can recognize collagenous
triple-helical motifs [58]. Platelet glycoprotein

VI (GPVI) on platelets is critical for response to
collagen. Discoidin domain receptors 1 and 2
(DDR1 and DDR2) are tyrosine kinases that
bind to collagens and regulate e.g. cell prolif-
eration. Leukocyte associated immunoglobulin-
like receptor 1 (LAIR-1) is an inhibitory recep-
tor on leukocytes. The triple helical motifs
formed by peptides harboring GVMGFO
sequences have been described as binding sites
for DDR1 and DDR2. The minimum functional
binding site for GPVI contains two GPO triplets
in collagenous triple helix. Similarly, LAIR-1
binds to peptides containing multiple GPOs [58].
Thus, these receptors do not compete with the
integrins in collagen binding.

Activation and autophosphorylation of DDRs
are independent of the integrins [76]. However,
several studies indicate that the signaling func-
tions of DDRs and collagen receptor integrins are
linked together. DDRs can for example regulate
integrin activity [1, 77]. The interplay between
the two receptor systems is also obvious in
studies focused on collagen I induced epithelial-
mesenchymal-transition in pancreatic cancer
cells. During the process N-cadherin is upregu-
lated by JNK-dependent mechanism. Both
receptors are needed for p130Cas-dependent
activation of Rap1, but they act in a different
manner. DDR1 regulates Pyk2, while a2b1
integrin activates FAK [76].

In another study DDR1 was shown to inhibit
collagen-induced tyrosine phosphorylation of
Stat 1/3 and cell migration triggered by a2b1
integrin via SHP-2. SHP-2 is a phosphotyrosol
phosphatase (PTP) that via SH2 domain binds
to phosphorylated tyrosine residues in DDR1
[77].

10.6 Regulation of Cell Proliferation
and Survival by the Collagen
Receptors

Analysis of a1 integrin deficient knock-out mice
has supported the idea that a1 might promote
cell proliferation, since the dermis of the animals
seems to be hypocellular [50] and their bone
marrow derived mesenchymal stem cells are less

10 Cellular Signaling by Collagen-Binding Integrins 147



proliferative than those of the control animals
[27]. Integrin a1b1 is among the integrins that
can activate Shc (a SH2 domain containing
adaptor protein) in a process requiring caveolin-
1 and Fyn (a protein tyrosine kinase) [50, 76].
Shc activation subsequently leads to activation
of Ras and the growth promoting MAPKs.
However, the fact that a1b1 negatively regulates
EGFR [61] and caveolin-1 phosphorylation [7]
also connects this integrin to growth inhibiting
mechanisms. The idea that a1b1 can generate
different or even opposite signals is also sup-
ported by the observation that the binding of this
receptor to two different domains in laminin has
distinct effects [22].

Integrin a2 null mice are viable, fertile and
without defects that could suggest general dys-
regulation of cell growth [14, 37]. However, in
cell culture assays a2b1 is capable of generating
negative growth signals. Its interaction with
laminin, a low affinity ligand, results in growth
arrest in endothelial cells [63]. It also increases
cell commitment toward quiesence by a mech-
anism involving changes in the anchorage of Ras
to membranes and a tetraspanin CD9 [9]. The
role of a2b1 as a negative growth regulator is
also in agreement with the observation that the
expression level of a2 is often very low in breast
cancer cells [77]. The effect of collagen—a2b1
interaction on cell proliferation seems to be
dependent on the organization of the collage-
nous matrix. In mesenchymal cells, including
smooth muscle cells and fibroblasts, fibrillar
collagen prevents proliferation [28, 53]. Similar
results have been reported with melanoma cells
[36]. In fibroblasts growth arrest may require
that the cells are inside floating and contracting
collagen gels [28]. In smooth muscle and mel-
anoma cells as well as in fibroblasts, growth
arrest has been connected to a2b1 function and
the accumulation of cyclin/cyclin-dependent
kinase inhibitor, p27kip [28, 36, 53]. Recent
studies have also indicated that the crosslinking
and therefore the stiffness of collagenous matrix
is an important regulator of cell behavior [56].

On a contrary in murine mammary gland-
derived epithelial cells, a2b1 has been reported
to increase proliferation, when tested in

monolayer cultures on non-fibrillar collagen
[76]. In these cells the intracellular tail of a2
subunit has been analyzed by targeted muta-
tions, and two distinct sites have been identified
which regulate p38 and ERK pathways [49, 51],
connected to cell migration and proliferation,
respectively. Similarly, in human adenocarci-
noma cells (Caco-2) interaction of a2b1 with
collagen IV promotes G1/S transition [38].

The conclusion is that the organization of the
collagenous matrix is critical for the action of
a2b1. It has been speculated that the clustering
of a2b1 by antibodies or non-fibrillar collagen
may actually promote proliferation, while
fibrillar collagen prevents a2b1 clustering and
therefore inhibits proliferation [36]. Similarly,
physical forces, such as the stiffness of the tissue
[56] or the shear stress in blood stream [67], may
be important modulators of integrin action and
signal transduction.

A recent study indicates that integrins a2b1
and a11b1 promote the survival of mesenchymal
stem cells [74]. Integrin a2b1 is also known to
be a marker protein of prostate epithelial stem
cells [19]. Anti-apoptotic effect of a2b1 has been
reported with human mammary epithelial cells
[4], Jurkat T cells [3], A431 cells [77] and
Madin-Darby canine kidney cells [76]. In an
acute liver injury model in mice a1b1 has been
shown to mediate survival promoting signals
after contact to collagen XVIII [24].

In certain experimental models the collagen
receptors also promote apoptosis. Release of
mechanical tension in a three-dimensional col-
lagen gel model triggers apoptosis in fibroblasts
[31, 65]. In these conditions a2b1 mediates cell
adhesion to collagen and is essential for con-
traction. Function blocking antibodies against
a2b1 and a1b1 integrin can reduce the number
of apoptotic cells, and a2-negative rhabdomyo-
sarcoma cells undergo apoptosis only if they are
cDNA-transfected to express the a2 subunit
[65].

Apoptosis may be partially regulated by the
same signaling pathways as proliferation. In
addition to the ERK pathway, Akt seems to be
involved. In fibroblasts and osteosarcoma cells,
protein phosphatase 2A (PP2A) is activated in
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a process that requires the presence of a2
cytoplasmic domain and Cdc42 activity [41].
Activation of PP2A leads consequently to
dephosphorylation of Akt, a well-known pro-
moter of cell survival. PP2A can also inhibit the
cell cycle in several different ways, and a2b1
dependent activation of PP2A may be one
mechanism leading to growth arrest. Dephos-
phorylation of Akt inside collagen gel can be
prevented by a2 integrin antibodies [41].
Another study indicates that apoptosis of fibro-
blasts inside contracting collagen gels can be
prevented by b1 integrin antibodies which also
prevent Akt dephosphorylation [76].

Integrin a1b1 is a receptor for arresten, a
26 kDa non-collagenous domain of a1-chain in
collagen IV. Arresten promotes apoptosis of
endothelial by decreasing the amount of anti-
apoptotic molecules of the Bcl-family, namely
Bcl-2 and Bcl-xL [68].

10.7 Regulation of Matrix Gene
Expression by the Collagen
Receptors

Several lines of evidence support the idea that
a1b1 integrin is a negative regulator of collagen
synthesis, especially in cells that are surrounded
by three-dimensional collagenous matrix. Early
observations using osteosarcoma cells with a
low expression level of a1b1 showed that these
cells do not down-regulate collagen synthesis
inside collagen [77]. This was later confirmed by
experiments performed with cells derived from
a1 integrin deficient mice [29]. Furthermore,
experiments utilizing functional integrin anti-
bodies or mutant a1 integrins have led to the
same conclusion [55, 77]. Similar regulatory
mechanisms may also function in tissues since
a1 knock-out mice have increased collagen
synthesis rate in their dermis while a concomi-
tant increase in matrix metalloproteinase (MMP)
expression prevents the accumulation of colla-
gen [29]. Integrin a1 null mice are also more
sensitive to glomerulosclerosis than their wild
type littermates [16].

Overexpression of a2b1 integrin in cells
increases collagen synthesis, suggesting that
a2b1 is a positive regulator of collagen gene
expression [40, 77]. Increased collagen synthesis
can be prevented using selective inhibitors of the
a isoform of p38 MAPK. p38 is activated by
a2b1 after contact with collagen [40]. Activation
of the p38 pathway has been frequently observed
after a2b1—collagen interaction in several dif-
ferent cell lines and experiment models [40, 49,
51, 77, 76]. The mechanism of collagen gene
suppression by a1b1 is not clear but the receptor
can activate ERK [50] that is known to be a
negative regulator of collagen synthesis [77]. It
is also possible to speculate that the opposite
effects of a1b1 and a2b1 on many cellular
functions may partially be due to the alterations
in the balance between p38 and ERK pathways.

Cell contact to three-dimensional collagen
activates the expression of collagenase-1 (matrix
metalloproteinase-1, MMP-1) [30]. This phe-
nomenon has been linked to signaling through
the a2b1 integrin [77]. Other MMPs regulated
by either a1b1 or a2b1 include stromalysin-1
(MMP-3) [60] and collagenase-3 (MMP-13)
[77]. In skin fibroblasts inside collagen colla-
genase-1 (MMP-1) expression seems to be
activated by a pathway involving PKC-f and
nuclear factor jB (NF-jB) [76, 77]. However,
the above described p38 pathway may also
participate in the process [76]. Interestingly,
a2b1 can also regulate its own expression by a
positive signaling loop involving PKC-f/NF-jB
[77]. The p38 pathway seems to mediate the
upregulation of MMP-13 by a2b1 integrin [77].

Signaling by a11b1 integrin has recently been
shown to induce MMP-13 expression [5]. Integrin
a1b1 has been reported to regulate MMP-2,
MMP-9 and MMP-14 in a p38-dependent manner
in mesengial cells [21] and MMP-2 and MMP-9
expression in colon cancer cells via p130Cas and
JNK [77]. In general, there is a strong link between
the collagen receptor integrins and the expression
of MMPs. This connection may play an important
role in the maintenance of tissue homeostasis, in
the regulation of wound healing and tissue repair
processes and during cell invasion.
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10.8 Perspectives

Cellular signaling after adhesion to collagen is
influenced by numerous factors (Fig. 10.1).
Different collagen subtypes are recognized by
different receptors and also the organization of
the ECM is critical. Recent observations have
also stressed the important role of ECM stiff-
ness. Activation stage of integrins regulates the
avidity and specificity of ligand binding. Inte-
grin signaling is also influenced by other adhe-
sion receptors, e.g. DDR-type collagen
receptors, and growth factor receptors. Finally,
cell type specific differences, e.g. in the
expression of integrin cytoplasmic domain
binding proteins, may modify the activation of
distinct cellular pathways.
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11The Therapeutic Potential of I-Domain
Integrins

Marian Brennan and Dermot Cox

Abstract

Due to their role in processes central to cancer and autoimmune disease
I-domain integrins are an attractive drug target. Both antibodies and
small molecule antagonists have been discovered and tested in the clinic.
Much of the effort has focused on aLb2 antagonists. Maybe the most
successful was the monoclonal antibody efalizumab, which was approved
for the treatment of psoriasis but subsequently withdrawn from the
market due to the occurrence of a serious adverse effect (progressive
multifocal leukoencephalopathy). Other monoclonal antibodies were
tested for the treatment of reperfusion injury, post-myocardial infarction,
but failed to progress due to lack of efficacy. New potent small molecule
inhibitors of av integrins are promising reagents for treating fibrotic
disease. Small molecule inhibitors targeting collagen-binding integrins
have been discovered and future work will focus on identifying
molecules selectively targeting each of the collagen receptors and
identifying appropriate target diseases for future clinical studies.

Keywords

I-domain integrins � Therapeutics � Integrin antagonists � Integrin
structure

11.1 Introduction

The discovery of the first integrin [129] and the
realization that this was only a member of a
large family of cell adhesion molecules [108]
opened up possibilities for novel therapeutics for
diseases such as cancer, inflammation and
thrombosis. Prior to this, drug discovery was
very much chemistry-led where novel chemicals
were screened for potential biological activities.
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The discovery of the integrin provided an
opportunity for target-led drug discovery where
chemicals could be screened for their ability to
bind to specific receptors. The potential for this
new paradigm was confirmed with the approval
of the aIIbb3 antagonist abciximab in 1993.
However, since then, aside from two other
aIIbb3 antagonists the only other integrins with
approved antagonists are the a4 integrins.

Why the poor success in developing anti-
integrin agents? It is certainly not due to the lack
of a clinical potential for integrin antagonists as
integrins are clearly involved in many of the big
diseases such as cardiovascular disease, auto-
immune disease and cancer. It is not due to a
difficulty in discovering potent antagonists as
many antibody and small molecule antagonists
have been discovered. Most of the difficulties
have arisen due to the complexity of integrins
and a poor understanding of the pharmacology
of these agents. Despite the poor record of
developing anti-integrin agents there is still great
potential for the development of this class of
drugs. This chapter focuses on the history of
integrin antagonists with a specific focus on the
development of I-domain antagonists.

11.2 Integrin Families

Integrins are cell adhesion molecules that are
found on virtually every cell in the body where
they mediate cell–cell and cell-substrate inter-
actions, which are essential for regulating cell
growth and cell function. However, they do not
simply act as ‘‘glue-like’’ molecules as they are
true receptors, generating intracellular signals.
Their importance is reflected in the diverse range
of diseases in which integrins play key roles
including cancer, thrombosis, autoimmune dis-
eases and infection.

Integrins are heterodimers formed from the
combination of an a and a b subunit. As there
are only eight distinct b subunits and eighteen a
subunits combining to form twenty-four unique
receptors many b subunits must complex with
more than one a subunit (see Preface). Since
there are more a subunits than b subunits

the integrins were originally described as a
superfamily composed of families defined by
their b subunit. Table 1 in the Preface chapter
lists the integrin families as defined by their b
subunits and their associated ligands.

Initially defining integrin families based on their
b subunit made sense, as it appeared that the a
subunits only associated with a specific b subunit.
However, it soon became clear that this is not so as
aV can associate with many different b subunits
and the a subunit appears to be important in
defining the ligand binding properties of an inte-
grin. Thus, among the twelve b1 integrins there is a
wide range of ligands with little in common
between them other than their shared b subunit. On
the other hand, all five aV integrins have similar
ligand-binding properties and all bind vitronectin.
The b2 integrins are unique in that they do not share
their a subunits with any other b subunit and their
ligand-binding properties are very similar. Integrins
can also be categorized according to their amino
acid recognition sequences. The most common
recognition sequence is Arg-Gly-Asp (RGD),
which is recognized by many integrins. However,
this is complicated by the fact that some integrins
can bind some proteins in an RGD-dependent
manner and others in an RGD-independent man-
ner. For instance aIIbb3 can bind to fibrinogen via
the 2-RGD sequences and via the c-chain dodeca-
peptide [123]. As a result defining integrin families
requires a more flexible system. Integrins can also
be classified by structure. In particular 9 integrin
a-subunits contain an I-domain, which is important
for ligand binding (see Fig. 11.1). Thus, integrins
can be defined as I-domain and non-I-domain-
containing integrins. This review will focus on the
I-domain-containing integrins and their properties
are described below after being loosely grouped
into families based on their ligand-binding
properties and a and b-subunits.

11.2.1 b2 Integrins

The b2 integrins are a well-defined and distinct
group of integrins and their a subunits exclu-
sively associate with the b2 subunit. They are
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primarily found on leucocytes and are important
in normal immune function. The b2 subunit was
originally identified as CD18 and the a subunit
as CD11. There are four a subunits: aL (LFA-1),
aM (Mac-1), aX and aD. All four receptors bind
at least one member of the ICAM family, two
are complement receptors (aMb2 (CR3) and
aXb2 (CR4)) and two are fibrinogen receptors
(aXb2 and aDb2).

11.2.2 Collagen-Binding Integrins

There are 5 integrins that bind collagen and all
are b1 integrins (a1, a2, a3, a10 and a11) with
differing collagen selectivity [154] (see Preface
chapter).All except a3b1 are I-domain contain-
ing integrins. a3b1 is a high-affinity receptor for
laminin but it also binds collagen type IV and VI
through the collagen NC1 domain [2, 11, 16],
which is distinct to the binding of the other
collagen receptors. a1b1 is found on many cell
types including endothelial cells, fibroblasts,
astrocytes, T-cells, natural killer cells and mac-
rophages not B-cells. Expression levels usually
increase with cytokine stimulation. a2b1 is
expressed on platelets, epithelial cells, and many
mesenchymal cell types. a10b1 is expressed on
chondrocytes [19] while a11b1 is expressed on
fibroblasts [100].

11.2.3 aEb7

The b7 integrins are found on lymphocytes.
aEb7 is the E-Cadherin receptor primarily found
on intraepithelial T-lymphocytes while a4b7 is
found on lymphocytes in gut-associated lym-
phoid tissue. aEb7 facilitates lymphocyte hom-
ing to the lamina propria resulting in increased
expression of aEb7, which facilitates lympho-
cyte extravasation [41]. It is found on T-lym-
phocytes especially in the gut and in high
potency regulatory T-cells [73].

11.3 Integrin Ligands

Integrins bind to a diverse collection of ligands
that are large molecules. They are either sub-
endothelial matrix proteins such as fibronectin,
vitronectin and collagens or plasma proteins
such as complement factors, C-reactive protein
[14] and fibrinogen. There is also a group of
secreted proteins known as small integrin-bind-
ing ligand N-linked glycoproteins (SIBLINGs),
which include osteopontin and bone sialoprotein
[8]. An interesting ligand for a number of inte-
grins is latent TGFb1 (LAP-TGF-b). This is an
inactive complex of TGF that requires activation
by binding to integrins before it becomes bio-
logically active [91].

Fig. 11.1 Schematic of
the domain structure of
I-domain integrins
[25, 119, 148]. a The
I-domain is inserted
between the 2nd and 3rd
beta propeller subunit on
the alpha chain. b Outline
of the domain structure of
an activated I-domain
containing integrin

11 The Therapeutic Potential of I-Domain Integrins 159



Many integrins recognize the amino acid
sequence Arg-Gly-Asp (RGD) in their ligands.
However, RGD is a relatively common motif in
proteins many of which are not known to be
integrin ligands. Also many RGD-containing
proteins can be shown to bind to an integrin that
they are unlikely to encounter in vivo or they
may require unnatural conformations to expose
the RGD motif and thus are not genuine ligands.
NGR is also another integrin-recognition motif
used by some integrins [68].

11.4 Integrin Physiology

Cell–cell and cell-substrate interactions are crit-
ical for every cell of the body, even those in the
circulation. Contact with other cells and extra-
cellular matrix components regulates the activity
of all cells and since integrins are an important
family of receptors that mediate these interac-
tions, they play essential roles in the function of
most cells in the body. Areas where integrins are
especially important are those that involve growth
of tissue or where cell attachment is necessary for
function. Thus, embryonic development and the
growth of new blood vessels (angiogenesis) [121]
are critically dependent on integrins as is the
immune system [122] where immune cell
attachment is necessary for normal function.

11.5 Integrin Pathology

While integrins have many different physiolog-
ical roles, identifying a role for integrins in
pathology, especially with respect to identifying
drug targets, is difficult. This is because many
diseases are multi-factorial and while integrins
may play a role in the disease process they are
only one of many receptors involved. Many cells
have multiple integrins with similar binding
properties, which can compensate for the
inhibited integrin and as a result targeting spe-
cific integrins often does not provide therapeutic
benefit despite a role for that integrin in the
disease process.

11.5.1 Thrombosis

The first disease to be clearly identified with
integrins was thrombosis and this was the first
therapeutic target for anti-integrin therapy.
Thrombosis occurs when platelets adhere to
damaged blood vessels and become activated.
These activated platelets recruit other platelets
resulting in the formation of a haemostatic plug.
This is the essential mechanism for preventing
blood loss but inappropriate thrombus formation
can lead to a stroke or myocardial infarction.

One of the earliest events in haemostasis is
the interaction between platelets and exposed
collagen in the damaged endothelium. While
there are 5 collagen-binding integrins only one
(a2b1) is expressed on the platelet. The a2b1
interaction with exposed collagen in conjunction
with a second, non-integrin collagen receptor
(GPVI) leads to platelet activation [23]. The
platelet-platelet interaction that mediates
thrombus formation is facilitated by fibrinogen
binding to the integrin aIIbb3, which becomes
activated as a result of platelet activation. Cur-
rently the only approved anti-integrin inhibitors
for thrombosis are the aIIbb3 antagonists
although there are also inhibitors of a2b1 under
development [84].

11.5.2 Cancer

During carcinogenesis the growth of the tumour
and its subsequent metastasis is highly depen-
dent on the cell being able to regulate its
attachment to the extracellular matrix and adja-
cent cells. As integrins play an important role in
cell attachment the ability to up-regulate and
down-regulate these receptors is critical in car-
cinogenesis [90]. Integrins play important roles
in cell attachment, survival, migration and
invasion [59]. Integrins are also essential in the
process of angiogenesis, which is also critical for
cell growth [6, 121]. As a result there has been a
focus on inhibiting integrins to disrupt tumour
growth, cancer-associated fibroblasts and
metastasis [30].
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Arresten is an angiogenesis inhibitor that is
derived from collagen. It binds to a1b1 and
inhibits invasion of a squamous cell carcinoma
in vitro and in vivo [3]. Endorepellin is a anti-
angiogenic fragment of perlecan [87] and binds
to both a2b1 and VEGF receptor triggering their
down regulation [50]. a1b1 is implicated in
peritoneal dissemination of gastric cancer cells
[44]. a2b1 acts to inhibit metastasis in mouse
models of cancer [103].

11.5.3 Immunology

Both b1 and b2 integrins are important in immune
function where they play an essential role in
localizing the immune response to the site of
inflammation. Engagement of the T-cell receptor
and subsequent inside-out signalling leads to
activation of T-cell integrins [122]. While inhi-
bition of these integrins can modulate the immune
response the specific integrin to target or immune
disorder to treat have yet to be determined.

Much of the work has focused on the role of
a4, which is implicated in multiple sclerosis [9,
47, 106, 126] and Crohn’s disease [131]. Both
a4b1 and aLb2 mediate leucocyte adhesion in
an animal model of epilepsy and anti-a4 anti-
bodies reduced seizure activity [39]. aLb2
antagonists have shown potential benefit in
lupus [135], renal transplant [138], psoriasis [34,
75] and experimental autoimmune encephalo-
myelitis [139]. a2b1 is important co-stimulatory
molecule on Th17 cells [10].

11.5.4 Infection

A number of infectious agents have developed
the ability to interact with integrins and subse-
quently become internalized allowing access to
the intracellular milieu. There are three general
mechanisms used to achieve this: binding of
integrin ligands that mediate the interaction, a
direct interaction with the integrin or binding of
a secreted product. The aMb2 and a4b1 ligand
mindin [58] also acts as a pattern recognition
molecule for microbes and thus plays a role in

both adaptive and innate immunity [76]. aMb2
and aXb2 are complement receptors [83, 111].

Streptococcus agalactiae and Staphylococcus
aureus have both been shown to bind osteo-
pontin, which triggers phagocytosis by binding
to monocyte aXb2 in an RGD-independent
manner [113]. Shigella flexneri interacts directly
with integrin-linked kinase to enhance adhesion
to cells [66].

LFA-1 binds RTX (repeat in toxin) family of
cytotoxins from a number of different species
[28, 31, 89]. Helicobacter pylori Vac A toxin
binds to b2 integrins enabling it to enter
T-lymphocytes [115]. Peptides derived from b2
integrin bind LPS and were found to reduce
mortality in a mouse model of sepsis [145].
Viruses have also been shown to bind to inte-
grins, which can facilitate cell entry. Rotavirus
binds to a2b1 and a4b1 [43, 51, 52]. The
interactions of viruses with integrins has been
reviewed by Stewart and Nemerow [127].

11.5.5 Osteoporosis and Kidney
Disease

Osteoporosis occurs when the balance between
bone formation and degradation is disturbed.
Integrins play an important role in the function
of osteoclasts, which are responsible for degra-
dation of bone. Osteoclast a1b1 is responsible
for adhesion of osteoclasts to collagen and
polymorphisms in this receptor are related to
bone mineral density and fractures [71]. Integrin
a1 expression is increased in mesangial cells in
Alport disease [125]. a1b1 is involved in dia-
betic neuropathy [152]. a1b1 binding to collagen
IV down-regulates collagen IV synthesis high-
lighting the importance of this integrin for
basement membrane dynamics [116].

11.6 Structural Analysis of I-Domain
Integrins

I-domain integrins are a subgroup of integrins
containing an inserted I-domain between the b
propeller domains 2 and 3 on the a subunit
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(Fig. 11.1). I-domain containing integrins bind to
their ligands through the metal ion-dependent
adhesion site (MIDAS) on their I-domain. Col-
lagen is represented bound to a2 as an example of
this mechanism of action in Fig. 11.2. Ligand
binding leads to integrin activation through
movements of the a1 and a7 helices in the
I-domain, which translate to allosteric move-
ments in the integrin and subsequent signaling
events. The design of integrin antagonists has
presented some difficulties as competitive
antagonists often lead to allosteric changes and
therefore act as partial agonists. I-domain con-
taining integrins also have a second I-like domain
on their b chains. With activation, an interaction
occurs between the two I-domains leading to
signaling events. This has led to the development
of inhibitors to the linker site (Fig. 11.3) [118].

11.6.1 Inhibitors

Inhibitors for I-domain containing integrins fall
into two categories, competitive antagonists, and
allosteric or non-competitive antagonists. Com-
petitive antagonists bind in the region of the
MIDAS domain on the a-chain. Only a few
competitive inhibitors of I-domains have been
identified. One such example is the AQC2
antibody which binds to the a1b1 I-domain [22,
61], competitively inhibiting collagen binding
while maintaining the closed conformation of
the I-domain. The snake venom of Echis multi-
squamatus (EMS16) binds competitively to the
ligand-binding site of the a2 I-domain also
maintaining the closed conformation of the
MIDAS domain. Although it is a competitive
antagonist, it does not interact directly with the
MIDAS domain itself, however stearically
blocks ligand binding [55]. The antibody AL-57
binds specifically to the activated/open aL
MIDAS [117]. These inhibitors demonstrate that
it is possible to develop competitive activation
specific inhibitors for the I-domain integrins.

A group of small molecule aL ligand mimetics
were designed based on the stucture of ICAM-1

as competitive antagonists to the MIDAS site
[45, 62]. There is however some evidence to
suggest that they bind to the ligand-binding site
between the I-like domain MIDAS and the
b-propeller (Fig. 11.3), also known as the linker
site, or the a/b I-domain allosteric site [109, 119,
144, 151].

11.6.2 Allosteric Inhibition

The interaction of aLb2 with ICAM provides a
model for true allosteric inhibition of I-domain
integrins. The carboxyl group of Glu34 on ICAM-
1 co-ordinates directly with the Mg2+ in the
MIDAS domain of aL [119]. Displacement of
helices a1 and a7 occurs with ligand binding and
provides the possibility of allosteric inhibition at
the linker site. The I-domain of the aL subunit
has been co-crystalized with a number of small
molecule inhibitors [27, 32, 60, 77, 101, 140,
143] identifying a major site for allosteric inhi-
bition of the I-domain (Fig. 11.4). Small mole-
cules bind to a pocket in contact with the a7 helix
on the opposite side of the molecule from the
MIDAS domain [27, 32, 60, 101, 140, 143]. This
region has been shown to be important for ligand
binding and receptor function [20, 82]. Binding
of small molecules do not cause any significant
changes to the I-domain, suggesting that they do
not activate the receptor. Kallen et al. suggest

Fig. 11.2 Model of ligand binding and activation for I-
domain integrins. The crystal structure of a2 in its
unbound form is represented in pink, PDB 1AOX [36].
This is overlaid onto the bound form of a2 which is
represented in cyan PDB 1DZI [37]. Movements of the
helices are highlighted with the arrows
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that they may inhibit signalling by locking the
molecule in an inactive, low-affinity state by
stabilizing the C-terminal a7 helix. Lovastatin
and isoflurane have been co-crystallized in this
position [60, 155]. Recently propofol has also
been demonstrated to bind to this site [153].
These small molecules are proof of concept for
the development of allosteric inhibitors for
I-domain integrins that have no agonist activity.

Efalizumab binds to another region of aL
which is also distal from the MIDAS [77]. It is
largely in contact with the a1 helix, however its

binding site is close enough to the MIDAS to
cause stearic hindrence of ICAM-1 binding.
Therefore it is possible that it acts as an
allosteric inhibitor, however it is also possible
that it is acting by sterically inhibiting ICAM-1
binding. The structure of efalizumab-bound aL
adopts the unliganded, resting conformation.
Efalizumab interacts with the a1 and a3 helices,
and is thus thought to also act by stabilizing the
closed, low affinity conformation. Therefore,
there is structural evidence that competitive and
non-competitive allosteric inhibitors can be
developed for I-domain integrins.

11.7 Therapeutically Targeting
I-Domain Integrins

The original anti-integrin drug discovery strat-
egy was to develop monoclonal antibodies to the
receptors and this has been commercially suc-
cessful. A second strategy was to develop pep-
tide antagonists usually based on the peptide
sequence from the natural ligand (e.g., RGD) or
snake venom peptides. Finally small molecule
non-peptide antagonists have also been devel-
oped. As our understanding of the nature of the
drug-integrin interaction has grown it has cre-
ated the opportunity for developing different
types of integrin antagonists.

Fig. 11.3 I-domain integrin activation states and inhib-
itor sites. Figures a to c represent integrin activation
states based on the model proposed for the complement
receptor 4 [149]. The closed MIDAS site is represented
as a blue circle. The open high affinity MIDAS site is
represented as a cyan triangle.The a-I domain is thought
to have a great deal of freedom in the closed state (a).
Activation of the b-I domain MIDAS site and interaction

between the MIDAS and the acidic residue (at the ‘linker
site’) locks the a-I domain at an angle (b). The a7 helix
moves downwards due to the activation of the a-I
MIDAS site and reduces the angle of the a-I domain to
the b-I domain (c). The sites that have been used to
develop inhibitors are presented as black crosses in figure
(d). This figure is modified from Cox et al. [25]

MIDAS

Lovastatin

Fig. 11.4 Allosteric binding site on aL. Lovastatin is
depicted in space fill in contact with the a7 helix. The
binding site is on the opposite side of the molecule to the
MIDAS, PDB 1CQP [60]
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11.7.1 Monoclonal Antibodies

Monoclonal antibodies provide an effective
source of anti-integrins and were the initial
strategy used. There are two types of antibody
possible: complex-specific antibodies and sub-
unit-specific antibodies. The advantage of com-
plex-specific antibodies is that they are very
specific and this can reduce the level of adverse
effects. The specificity of subunit-specific anti-
bodies depends on the target subunit. While the
less specific antibodies may have increased
adverse effects they may also be more effective
as they target a complete family of receptors.
The first anti-integrin antibody to be commer-
cialized was the anti-b3 abciximab (ReoPro�). It
is a potent inhibitor of platelet aggregation and
has been extensively tested in clinical studies
resulting in approval for use during percutane-
ous coronary intervention (PCI) [132, 133].
Natalizumab (Tysabri�) is an anti-a4b1/a4b7
antibody approved for multiple sclerosis [54, 99,
107] and has been shown to be beneficial in the
treatment of Crohn’s disease [131]. Efalizumab
(Raptiva�) is an anti-aLb2 antibody approved
for the treatment of plaque psoriasis [48, 70, 95]
and proved to be effective and safe for long-term
use [74] although it has recently been withdrawn
from the market.

11.7.2 Peptide-Based Inhibitors

Peptide-based antagonists of integrins have been
very attractive for a number of reasons primarily
because short peptide sequences that mediate
integrin binding were identified from integrin-
binding proteins, e.g. RGD, and the effective-
ness of phage display libraries at identifying
novel integrin-binding sequences. In most cases
cyclic peptides are used due to their enhanced
stability and potency. Snake venoms are a rich
source of bioactive molecules. Snake C-type
lectins (snaclecs) have been found to modulate
haemostasis. Rhinocetin is a snaclec isolated
from the venom of Bitis gabonica rhinoceros
and is an a2b1 antagonist. It blocks collagen-
induced platelet activation [137]. Rhodocetin

from Calloselasma rhodostoma [13, 35], EMS16
from Echis multisquamatus [80] and VP12 from
Vipera palestina [124] are all snaclecs that
inhibit a2b1. Del-1 is a 52 kDa natural inhibitor
of aLb2 and administration of it has anti-
inflammatory effects in diseases such as peri-
odontitis [38].

11.7.3 Non-peptide Small Molecule
Antagonists

The ideal drug is an orally active non-peptide
small molecule and this has been the goal in
anti-integrin therapy. While there are many
small molecule inhibitors in pre-clinical devel-
opment tirofiban (Aggrastat�) is still the only
approved non-peptide inhibitor. It is an aIIbb3
antagonist although it has no oral activity and
like eptifibatide [57] its development was based
on a viper venom peptide (echistatin). It was
approved for use in PCI and acute coronary
syndromes [134]. aLb2 has attracted a lot of
interest with the discovery of non-peptide
inhibitors with nM IC50 values [32, 45, 46, 63,
78, 101, 102, 140, 141, 147]. BMS-587101 a
small molecule aLb2 antagonist reduces symp-
toms in a mouse model of RA [128]. A few of
the compounds showed efficacy in mouse mod-
els of inflammation but it is still unclear what
their target disease is likely to be. SAR 1118
[45] blocks aLb2 and is undergoing clinical
trials in diabetic macular oedema [97] and dry
eye [114]. aMb2 small molecule agonists
enhance cell adhesion and thus reduce chemo-
taxis [79]. See Fig. 11.5 for sample structures.

11.7.4 Collagen and Cadherin Receptor
Antagonists

a1b1 is a collagen and laminin receptor and has
been implicated in angiogenesis and fibrosis and
diabetic neuropathy. Jerdostatin [112], viperist-
atin [67], lebestatin [94] and obtustatin [88] are
snake venom disintegrins, which have low
micromolar potency and high selectivity against
a1b1. Their selectivity is due to the presence of
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Fig. 11.5 Some structures
of small molecule aLb2
antagonists. Sample
structures of small
molecule aLb2 antagonists
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Fig. 11.5 continued
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the KTS sequence and the flanking residues
further enhance their potency. Thus, viperistatin,
which contains KTSR, is more potent than ob-
tustatin, which contains KTSL [15, 67]. Jer-
diostatin contains the sequence RTS rather than
KTS [112]. These have been shown to be
effective in models of angiogenesis [81] and
melanoma metastasis [18, 124]. However, there
is no evidence of small molecule a1b1 antago-
nists in development probably due to a lack of a
clear target disease for an antagonist.

a2b1 is also a collagen and laminin receptor
but its presence on platelets where it is an
important collagen receptor mediating thrombus
formation has made it an attractive target for
drug discovery. As with many integrins there are
snake venom C-type lectin related proteins that
specifically target it. These include rhinocetin
[137] rhodocetin [37], vixapatin (VP12) [124],
EMS16 [80], flavocetin [4] and VP-I [5]. Potent
small molecule inhibitors have also been dis-
covered with sub-micromolar IC50 values [84,
92, 93] (see Fig. 11.6) for sample structures.
These compounds have been tested in a number
of different disease models. Vixapatin was
shown to be effective in a model of angiogenesis
[86, 110], melanoma metastasis [124] and
thrombosis [93]

a10b1 and a11b1 are collagen receptors and
aE is an E-cadherin receptor. However, these are
newly discovered receptors and there is no evi-
dence of any antagonists under development.

11.7.5 b2 Antagonists

aLb2 is an ICAM receptor and is an active target
for drug discovery. One of the first aLb2
antagonists was the humanized monoclonal
antibody efalizumab [29, 49]. This was investi-
gated for use in psoriasis [48, 75] and was ulti-
mately approved for this indication. It was also
investigated for use in renal transplant [138].
While it was shown to be effective in plaque
psoriasis [74] it was ultimately withdrawn from
the market due to an increase in the incidence of
progressive multifocal leukoencephalopathy
(PML) [69]. PML is a serious disease due to

reactivation of a JC virus infection in the brain.
The original infection is usually asymptomatic
but re-activation of the infection leads to
demyelination and is associated with a high level
of mortality. Once primarily associated with
HIV it has more recently been associated with
biological immunosuppressive therapy espe-
cially natalizumab, efalizumab and rituximab
[130]. While the response of Élan/Biogen Idec
to the occurrence of PML with natalizumab was
to develop a Risk Evaluation and Mitigation
Strategy (REMS) in conjunction with the FDA
along with a black-box warning, Genentech
opted to withdraw efalizumab from the market.

Other antibodies to b2 integrins have been
described. Hu23F2G [42] and rhuMAb CD18 [7]
are anti-b2 antibodies that failed to reduce
infarct size after angioplasty or thrombolysis
respectively. There were also small phase II
studies with rhuMAb CD18 in haemorrhagic
stroke [105] and Hu23F2G in multiple sclerosis
[12]. AL-57 is a monoclonal antibody that spe-
cifically recognizes activated aLb2 [117]. UK-
279,276 is a recombinant glycoprotein also
known as Neutrophil Inhibitory Factor [136] that
selectively binds to aMb2 [72] and investigated
for use in stroke although its clinical develop-
ment appears to be ended. Phage display has
been used to identify a peptide-based inhibitor of
aMb2 [56].

BMS-587101 is a small molecule aLb2
antagonist that entered clinical trials for trans-
plant rejection [101]. It also showed benefit in an
animal model of rheumatoid arthritis [128]. BMS-
688521 is a more potent follow-on compound
[141]. BOL-303225-A is a coumarin derivative
that has inhibitory activity against both aLb2 and
aMb2 [17]. ICAM1988 is the active metabolite of
the small molecule prodrug ICAM2660 that
inhibits aLb2 [65]. Virtual screening has also
identified potential small molecule aLb2 antag-
onists [120]. A number of other groups have also
discovered small molecule aLb2 antagonists [45,
62, 63, 96, 98, 147] (see Fig. 11.5).

Lifitegrast (SAR 1118) is an aLb2 antagonist
[156] that is undergoing clinical development in
the area of ocular inflammation. It has undergone
both phase I [97] and phase II [114] trials. It is
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being investigated for dry eye [114] and diabetic
macular oedema [97]. Currently this is likely to be
the first I-domain antagonist to be commercia-
lised. aLb2 antagonists have also shown potential
benefit in lupus [135], renal transplant [138],
psoriasis [34, 75] and experimental autoimmune
encephalomyelitis [139]. However, there has
been a very high failure rate in the clinical
development programmes for b2 integrin antag-
onists [33, 53], although it is worth noting that the

failed trials tended to focus on cardiovascular
indications such as reperfusion injury, myocardial
infarction, and stroke and thus may only reflect
these indications. The b2 integrin chain binds LPS
and the region between amino acids 266–318 in
the A domain has been identified as the LPS
binding site [146]. This peptide has been shown to
be effective in a mouse model of sepsis [145].

The aIIbb3 discovery programme was
severely impacted by the nature of the interaction

Fig. 11.6 Some structures of small molecule a2b1 antagonists. Sample structures of small molecule a2b1 antagonists
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between the drugs and the receptor [24, 25].
Rather than being pure antagonists many of the
inhibitors had agonist activity [26]. This is also
true of aLb2 as compounds that were previously
identified as allosteric inhibitors have been shown
to be aLb2 agonists [150] and a number of com-
pounds have been found to have some agonist like
properties similar to that seen with aIIbb3
antagonists [119]. Pure agonists have also been
discovered [79] and are known as leukadherins
[40]. The explanation for this lies in the concept of
permissive antagonism [64]. The conventional
view of integrin function is that the agonist binds
to the receptor, induces conformational changes
leading to receptor clustering and finally to out-
side-in signalling and that this happens in a linear
fashion. Leukadherins appear to bind to the
receptor at an allosteric site that facilitates ligand
binding. However, the leukadherins also block
receptor clustering and outside-in signalling and
thus are antagonists. So leukadherins are best
described as permissive antagonists.

11.7.6 Problems with Integrin
Antagonists

As many integrin antagonists are designed around
the natural ligand for the receptors such as RGD it
is not surprising that the resulting antagonists
often display agonist-like activity [142]. RGD-
based aVb3 and aVb5 inhibitors were found to
stimulate angiogenesis at low doses [104]. This
has also been seen with oral aIIbb3 antagonists
where low doses were shown to induce platelet
aggregation while higher doses were inhibitory
[26]. In both cases the problems appear to arise
during trough periods. In the case of aIIbb3
antagonists this is not a problem with the intra-
venous agents, as these are maintained at high
plasma concentrations using an infusion.
However, it was a bigger problem for the oral
compounds. A similar situation exists with the
I-domain integrin antagonists where compounds
have significant agonist-like activity [40, 79, 150].
It is not yet clear whether this will prove to be
a problem for the development programme.
Another problem identified with I-domain

integrin antagonists is PML, which led to the
withdrawal of efalizumab from the market [69]. It
is not clear whether this is unique to efalizumab or
is only associated with the use of biological
agents or could happen with any antagonist of
aLb2. Clearly this will be an issue that will have
to be addressed in the development programme
for any aLb2 antagonist and if it is an issue
companies will need to decide whether they will
stop the development cycle or implement a
REMS.

11.7.7 Modulation of Integrin
Expression

In many cases integrin expression on the cell
surface is dynamic and is regulated to modulate
cell function. This is important in processes such
as tumour metastasis where tumour cells must
loose their adhesive properties to metastasise
and must gain new adhesive properties to colo-
nise the target organ. The expression of some
integrins especially the b2-integrins is controlled
by micro RNAs and this creates the potential for
using specific micro RNA to influence the
expression of individual integrins [21]. The
tumour suppressor genes tuberous sclerosis
complex (TSC) regulates a1b1 expression and
thus cell migration [85].

11.8 Conclusions

Integrins were discovered almost 30-years ago at a
time when the pharmaceutical industry was
undergoing a paradigm-shift from chemistry-led
drug discovery to target-led drug discovery. Prior
to this, drug discovery projects typically involved
screening a library of compounds for activity in a
disease model. The discovery of integrins and their
recognition sequence RGD allowed for a different
approach to drug discovery where pharmacolo-
gists screen chemical libraries for activity on a
specific receptor. The big advantage of a chemis-
try-led approach is that it produces a drug with
desirable activity even if its mechanism of action is
unknown. On the other hand a target-led approach
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makes high-throughput screening a possibility and
allows for the discovery of drugs with a known
mechanism of action. However, the success of a
target-led approach is dependent on the biology of
the target being well understood, i.e., a validated
target, integrins have proven to be a difficult drug
target to commercialize, despite their importance
in thrombosis, autoimmune disease and cancer
only 4 agents are on the market and three of these
are in the field of thrombosis.

There are a few key factors necessary for a
successful drug discovery programme. These
include a validated target for a specific disease,
highly potent and specific ligands, a good ADME
(Absorption, Distribution, Metabolism, Excre-
tion) profile and low toxicity. As integrins are
large receptors binding to equally large ligands
the possibility of developing small molecule
antagonists would be expected to be the major
challenge; however small molecule antagonists
have been developed for many of the integrins.
This was facilitated by the identification of short
binding motifs such as RGD. Another obvious
problem is the development of specific inhibitors,
which is a challenge as many of the integrins bind
the same motifs such as RGD. Yet highly specific
small molecule inhibitors were developed for
many of the integrins.

A poor ADME profile is one of the major
reasons for a drug failing in the development
pipeline. The use of monoclonal antibodies
overcomes many of the ADME problems with the
exception of absorption. However, they are often
dosed on a monthly basis, which mitigates the
lack of oral activity. Monoclonal antibodies were
approved for all of the successfully targeted
integrins (aIIbb3, a4b1 and aLb2). Small mole-
cule antagonists were also approved for aIIbb3
although they were not orally active. Orally
active antagonists were also investigated but
these all failed in part due to poor ADME profile.

Toxicity is another major reason for failure of
drugs in development. This has been a problem
for many integrin antagonists. All of the orally
active aIIbb3 antagonists failed due to increased
cardiovascular mortality. This was in part due to
a poor ADME profile but it was also due to the
presence of significant agonist-like activity with

the drugs. Both natalizumab (anti-a4 antibody)
and efalizumab (anti-aLb2 antibody) were
associated with PML, a very serious adverse
effect that ultimately led to the withdrawal of
efalizumab from the market. However, this is
due to their immune suppressive effects, which
is a function of the targets themselves.

The lack of validated targets appears to be the
major hurdle in developing anti-integrin antag-
onists. It is not surprising that the most suc-
cessful integrin target was aIIbb3 as it is specific
for platelets and was found to play a unique and
critical role in platelet function. It was also clear
that those patients who lacked aIIbb3 (Glanz-
mann’s thrombasthenia) had a complete lack of
platelet function. Yet despite the presence of a
platelet-specific, validated target aIIbb3 antag-
onists did not live up to the expectation that they
would be the next generation ‘‘super-aspirin’’
and instead are restricted to high-risk patients. It
was the P2Y12 ADP receptor antagonists such as
clopidogrel and prasugrel, which were to
become the anti-platelet agent of choice and
ultimately become one of the biggest selling
drugs today. While a4 integrins were known to
play a role in lymphocyte function they were
only one of many integrins found on lympho-
cytes so it was by no means certain that the anti-
a4 antibody natalizumab would be successful in
multiple sclerosis and Crohn’s disease.

There is a lack of validated targets for I-
domain integrins. The most obvious target dis-
ease for the collagen receptors is thrombosis
where collagen-induced platelet activation is
important and Biotie have been developing
small molecule a2b1 antagonists for thrombosis.
However, the success of aIIbb3 antagonists and
P2Y12 receptor antagonists such as clopidogrel
and prasugrel suggest that there is no market for
a platelet collagen receptor antagonist even if it
was effective or at least it will be difficult to
convince a pharmaceutical company to enter this
field. Currently the a2b1 project is not listed as
an active project with Biotie. Collagen receptors,
like many other integrins, also suffer from the
problem of redundancy as many cell types
(including platelets) contain multiple collagen
receptors suggesting that blocking any one
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specific receptor may not produce a strong
pharmacological effect. Furthermore the wide-
spread distribution of collagen receptors also
suggests a potential for adverse effects. There is
interest in a10b1 as a chondrocyte biomarker
and important in cartilage production although it
is not clear if there is a role for drugs that target
a10b1. Fibrosis is an important therapeutic area
where collagen-binding integrins are very
important [57]. However, there are also other
integrins involved such as aV integrins and thus
the integrins that should be specifically targeted
has yet to be elucidated.

aLb2 is probably the most investigated I-
domain integrin however; the lack of a validated
target has proven a problem. Initial targets
focused on reperfusion injury post-MI but this
did not produce significant clinical results.
Typical of the strategy used by pharmaceutical
companies they all pursued the same target with
the same result. Ultimately the problem was not
a lack of potent inhibitors but a lack of under-
standing of reperfusion injury. However, when a
drug fails in a clinical study history has shown
that a company is more likely to drop the drug
and target entirely rather than investigating other
potential uses of the drug.

So what is the future for integrin antagonists
and more specifically I-domain antagonists? b2
integrins are important in the immune response
but a4 integrin antagonists are the first to market
in this space. It will be important to identify a
disease in which b2 integrins are more significant
than a4 integrins. Certainly efalizumab was
effective in psoriasis as it was clinically approved
and also showed benefit in renal transplant.
Ocular inflammation appears to be the most
advanced therapeutic area for aLb2 inhibitors.
Ultimately the problem of toxicity, especially
PML will need to be addressed. Was this unique
to efalizumab or will it be a problem for all b2
antagonists? At least in ocular inflammation this
is unlikely to be an issue as there is low systemic
exposure to the drug. Cancer is another important
area for anti-integrins and there has been a lot
of interest in this for decades however, an

anti-integrin has yet to be approved in this area.
Currently the major focus is on aVb3 inhibitors
but I-domain collagen-binding integrins appear
to play a significant role in angiogenesis, which
may make them potential targets in cancer.
Infection is another potential target disease as a
number of I-domain integrins are involved in
infection of cells by bacteria and viruses. This is
the new area of targeting host factors such as
adhesion receptors to supplement anti-microbial
therapy.

Ultimately the future of anti-integrin pharma-
cology lies in further work on the role of integrins
in disease. Advances in our understanding of
integrin structure means that we can now develop
better antagonists that are activation-specific and
that are not partial agonists. This needs to be
supplemented by a better understanding of the
role of integrins in health and disease if successful
therapeutics are to be developed.

11.9 Perspectives

Potent antibodies and small molecule inhibitors
for I-domain integrins have been discovered and
a number of the antibodies have entered into
clinical development programmes. However,
none have proven to be successful either due to
lack of efficacy or adverse effects. Since I-
domain integrins are known to be important in
cancer, autoimmune disease and fibrosis, all
areas where there are significant unmet needs,
there will remain interest in these receptors as
potential drug targets. A key issue to be
addressed with I-domain integrins is identifica-
tion of validated targets. As multiple integrins
are often involved in these target diseases further
research on specific integrins and their roles in
the disease process will be required to ensure
that the appropriate integrin is being targeted in
each disease. This in conjunction with recent
studies that elucidated the molecular interaction
between antagonists and their target integrins
will allow new generations of potent and specific
antagonists to be tested in theses diseases.
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