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A Metric Suite for Predicting Software
Maintainability in Data Intensive
Applications

Ruchika Malhotra and Anuradha Chug

Abstract Software maintainability is the vital aspect of software quality and
defined as the ease with which modifications can be made once the software is
delivered. Tracking the maintenance behaviour of a software product is very
complex that is widely acknowledged by the researchers. Many research studies
have empirically validated that the prediction of object oriented software main-
tainability can be achieved before actual operation of the software using design
metrics proposed by Chidamber and Kemerer (C&K). However, the framework
and reference architecture in which the software systems are being currently
developed have changed dramatically in recent times due to the emergence of data
warehouse and data mining field. In the prevailing scenario, certain deficiencies
were discovered when C&K metric suite was evaluated for data intensive appli-
cations. In this study, we propose a new metric suite to overcome these defi-
ciencies and redefine the relationship between design metrics with maintainability.
The proposed metric suite is evaluated, analyzed and empirically validated using
five proprietary software systems. The results show that the proposed metric suite
is very effective for maintainability prediction of all software systems in general
and for data intensive software systems in particular. The proposed metric suite
may be significantly helpful to the developers in analyzing the maintainability of
data intensive software systems before deploying them.

Keywords Data intensive applications � Empirical validation �Machine learning �
Prediction models � Software design metric � Software maintainability

R. Malhotra
Department of Software Engineering, Delhi Technological University, Delhi, India
e-mail: ruchikamalhotra2004@yahoo.com

A. Chug (&)
University School of Information and Communication Technology, Guru Gobind Singh
Indraprastha University, Dwarka, New Delhi, India
e-mail: a_chug@yahoo.co.in

H. K. Kim et al. (eds.), Transactions on Engineering Technologies,
DOI: 10.1007/978-94-017-9115-1_13,
� Springer Science+Business Media Dordrecht 2014

161



1 Introduction

Producing software which does not need change is not only impractical but also
very uneconomical. The process of making changes in the software once it has
been delivered to the customer is called software maintenance [1] and the ease
with which it could be done is called as software maintainability [2]. The amount
of resource, effort and time spent on it is much more than what is being spent on
development. Thus, producing software that is easy to maintain may potentially
save large costs [3]. Practitioners have suggested many ways to control the
maintenance cost and one of them is to utilize the software design metrics and
predict maintainability in the early phases of project development [3, 4]. Main-
tenance cost can be kept under control by accurate prediction of software main-
tainability due to many reasons such as:

(a) Productivity cost among projects can be compared.
(b) More effective planning of valuable resources can be done in advance.
(c) Major decision regarding staff allocation can be timely made.
(d) The threshold values of various metrics can be checked.
(e) Determinants of software quality can be enhanced.
(f) Practitioners are able to achieve optimized maintenance costs.

Various metrics have been proposed in the literatures which have significant
impact on software maintainability. The main purpose of this study is 2-fold, firstly
to review the role of C&K metrics suite for the prediction of software maintain-
ability and secondly to propose a new suite of metrics with the induction of two
new metrics which have larger impact on maintainability in highly data intensive
applications. In order to achieve the goal, the data was collected from five pro-
prietary software systems developed in Microsoft Visual Studio using C# language
and based on object oriented (OO) methodologies with heavy use of databases for
processing of each query. To measure the features of OO paradigm, C&K metric
suite proposed by Chidamber and Kemerer [5] has been found to be a significant
indicator of maintainability predictions in large number of studies [6–15]. We rely
on the outcome of these studies and use C&K metric suite to capture the OO
characteristics. There were two deficiencies found in this metric suite. First
observation was the same as noted by Li et al. [16] that it does not take into
account the structural complexity of the software. To overcome this deficiency we
added two metrics i.e. Maintainability Index (MI) proposed by Oman et al. [17, 18]
and Cyclomatic Complexity (CC) proposed by McCabe [19]. The second and main
deficiency found in the metric suite is on account of the amount of database
handling. To overcome this deficiency, two new metrics were proposed and val-
idated for the applications which heavily use databases. The proposed metrics are
Number of Data Base Connections (NODBC) made each time for query pro-
cessing and the Schema Complexity to Comment Ratio (SCCR) to measure the
understandability of the databases. The metrics definition and collection is dis-
cussed in Sect. 3. Overall a set of ten metrics were considered as independent

162 R. Malhotra and A. Chug



variables in this study which included 06 from C&K metric suite and CC, MI,
NODBC and SCCR while the dependent variable was the number of the changes
made in the lines of source code. Two versions of each of the software systems
were taken and analyzed to count the changes made in the new version with
respect to the older version. Four different versions of Artificial Neural Network
(ANN) i.e. Back Propagation Network (BPN), Kohonen Network (KN), Feed
Forward Neural Network (FFNN) and General Regression Neural Networks
(GRNN) are used for making the prediction model. Data analysis was performed
using correlation coefficient to verify the findings. We found that the new proposed
metrics suite is significantly related with dependent variable. It is also observed
that maintainability predictions for the applications which heavily use databases
were more precise and accurate using new metric suite. Univariate as well as
multivariate analysis further confirmed the results and proved the significance of
proposed metrics suite. By using the new proposed metrics suite software prac-
titioners can considerably take decisions whether the developed application is
maintainable or not, which would save the time and money for the organizations
responsible for developing and deploying the customized software’s for the cus-
tomers to gain their better satisfaction in the industry. The rest of the chapter is
organized as follows: Sect. 2 presents the related work and Sect. 3 introduces
proposed metrics. Section 4 describes independent, dependent variables and data
analysis. Section 5 describes the machine learning methods used in the predictions
process. Section 6 presents results and analysis, Sect. 7 discusses threats to validity
and finally Sect. 8 concludes the paper with future directions.

2 Related Work

The problem of predicting the maintainability of the software is widely
acknowledged in the industry due to the subjectivity involved while trying to
quantify it. Jorgensen [20] suggested that we can measure maintainability by
measuring the change efforts during operations. Many empirical studies have been
conducted to predict the software maintainability using various tools and processes
at the time of designing an application [6–15]. Multiple Linear Regression (MLR)
Model was used by Li and Henry [6] to predict maintenance effort and to ear
marked those metrics which have strong impact on maintainability. Muthanna
et al. [21] also used polynomial regression to establish the relationship between
design level metrics using industrial software. The results using graph plots have
shown that predicted values were quite close to the actual values. Dagpinar and
Jahnke [9] also carried empirical study and recorded significant impact of direct
coupling metrics and size on maintainability. Fioravanti and Nesi [22] presented a
metric analysis to identify which metrics would be better ranked for its impact on
prediction of adaptive maintenance using MLR for OO systems. The validation
has identified that several metrics can be profitably employed for the prediction of
software maintainability. Misra [23] used linear regression in his study which was
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based on intuitive and experimental analyses using twenty design and code
measures to obtain their indications on software maintainability. In the last decade
some machine learning algorithms have also been proposed, evaluated and verified
that they can predict maintainability more accurately and precisely. Thwin and
Quah [10] used Artificial Neural Network (ANN), Koten and Gray [11] applied
Bayesian Belief Network (BBN), Elish and Elish [12] applied Tree Nets in
maintainability prediction modeling for OO systems. Kaur et al. [14] have verified
the use of soft computing approaches for maintainability prediction to achieve
more accuracy. Recently many nature inspired algorithm are successfully applied
such as evolutionary programming for open source software systems by Banker
et al. [24], ant colony optimization used by Sun and Wang [25] for optimizing
preventive maintenance and genetic algorithms by Vivanco et al. [26].

3 Proposed Metrics

It’s important to give equal attention to the database accesses with the enhance-
ment in data base usage now days. With the increase in the use of mobile and
mobile based applications, data that once might have been accessed a couple of
times a week now might be accessed multiple times per hour. As the software
systems heavily use data bases; hence we observed that C&K metric suite would
not be adequate as it does not capture the database handling aspects of the
applications. We proposed two more metrics namely SCCR and NODBC as
presented in Table 1, to remove these deficiencies and we claim that two proposed
metrics carries more impact on software maintainability in database intensive
applications.

NODBC is measured by counting the number of times database connections
were made using the function call ‘Open()’. To count the SCCR, ratio of the
numbers of field in the schema to the number of comment lines was considered.
Authors are of the strong opinion that understandability of the schema of database
is equally important in maintaining any application.

4 Research Background

Independent and dependent variable: To validate the effectiveness of proposed
metric suite, 10 independent variables have been considered as compiled in
Table 2. C&K metric suite is used to measure OO characteristics and MI as well as
CC were used to capture the structural complexity of the code. Inspired by the
results of Malhotra and Chug [27], NODBC and SCCR also added to measure the
data base handling aspect.

Empirical data collection: Five proprietary systems were considered as pre-
sented in Table 3. To calculate the values of all independent variables, following
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strategy is used. Five metrics namely MI, CC, DIT, CBO and NOC were retrieved
from the Visual Studio wherein the metrics mentioned were calculated from the
intermediate language code generated while compilation. Three metrics namely

Table 1 Proposed metrics

Metric name Description

Scheme complexity to
comment ratio (SCCR)

It calculates the ratio of number of comments lines to the
number of field in the schema of data base

Number of data base
connections (NODBC)

Number of data base connection is a measure to count number of
times database connections were made

Table 2 Set of independent variables

Metric name Description

Weighted methods per class
(WMC)

It is the sum of McCabes’s cyclomatic complexities of all local
methods in a class

Depth of inheritance tree
(DIT)

It measures the depth of a class in terms of the distance from root
class; the value of DIT for root class is zero

Number of children(NOC) It measures the number of child classes of a class as it counts
number of immediate sub classes

Coupling between object
(CBO)

It count the number of other classes to which the given class is
coupled

Response for a class (RFC) It counts the number of functions executed in response to the
received message

Lack of cohesion of methods
(LCOM)

It counts the number of disjoint sets of local methods

Scheme complexity to
comment ratio(SCCR)

It calculates the ratio of number of comments lines to number of
field in the schema of data base

Number of data base
connections (NODBC)

Number of data base connection is a measure to count number of
times database connections were made

Maintainability index (MI) Calculates an index value between 0 and 100 that represents the
relative ease of maintaining the code

Cyclomatic complexity (CC) Measures the structural complexity of the code

Table 3 Brief description of the proprietary software systems used in the empirical study

System name Data
points

Description

File letter monitoring (FLM system) 233 Customize software to handle the movement of
files and documents in an office

EASY system 292 Web portal for an educational institute to provide
study material and online evaluations

Student management system (SMS
system)

129 Maintains the record of students and teacher for
private educational institute

Inventory management system (IM
system)

96 Maintains inventory of the company at different
branch offices in different cities

Angel bill printing (ABP system) 114 Maintains fully editable items list by client itself
with generation of a common bill format
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WMC, LCOM and RFC were calculated with the help of CCCC tool [28].
Remaining two metrics as proposed in this study SCCR and NODBC were col-
lected through tool we created in the first phase of our research plan. We observed
the software over a period of 3 years since it has been delivered. Original as well
as modified versions were compared manually to count the CHANGE i.e.
dependent variable. Any line of source code added or deleted is counted as one
whereas modification counted as two changes. The value of change for each class
was compiled and combined with respective values of independent variables to
generate the data points. Same methodology was adopted in Zhou et al. [8] and
Malhotra et al. [29]. We found 233, 292, 129, 96 and 114 data points for FLM,
EASY, SMS, IMS and ABP System respectively.

Descriptive statistics such as Max, Min, Mean, and Median (Med) and Std
Dev(SD) were calculated for FLM and EASY systems and presented in Table 4,
SMS and IMS system presented in Table 5 whereas ABP system presented in
Table 6. From the table it can be observed that the Max value of LCOM for FLM,
EASY, SMS, IMS and ABP are 0, 0, 0, 3 and 6 respectively which represents that

Table 4 Descriptive statistics of FLM system and EASY system

Metric Max Min Mean Med SD Max Min Mean Med SD

WMC 16 1 6.276 5 4.97 23 1 10.5 9.5 8.57
DIT 7 1 4.379 5 1.32 5 1 3.6 4 2.50
NOC 7 0 3.1 3 1.67 8 0 4.23 3 2.91
CBO 50 3 26.14 30 13.85 54 0 33.5 38.5 21.58
RFC 67 12 25.16 18 7.89 78 21 37.73 27 4.89
LCOM 0 0 0 0 0 0 0 0 0 0
SCCR 5 2 3.276 3 2.97 7 3 4.57 5 5.57
NODBC 12 0 2.483 0 3.53 7 0 2.79 0.5 3.43
MI 91 40 61.14 56 18.04 94 43 64.1 56.5 17.91
CC 29 1 19.31 16 13.76 22 1 20.6 19 14.26
Change 95 5 41.98 67 45.67 87 9 52.52 63 43.23

Table 5 Descriptive statistics of SMS system and IMS system

Metric Max Min Mean Med SD Max Min Mean Med SD

WMC 29 2 16.63 17.5 9.17 12 0 3.147 3 2.57
DIT 6 1 3.25 4 2.12 5 4 4.029 4 0.17
NOC 11 0 4.85 4 2.67 7 0 2.81 3 1.91
CBO 59 3 45.38 52.5 18.66 30 2 13 13.5 8.09
RFC 83 19 37.09 31 5.87 43 18 21.09 27 5.07
LCOM 0 0 0 0 0 3 0 0.147 0 0.55
SCCR 6 2 4.625 16.5 9.17 12 0 3.147 3 2.57
NODBC 6 0 3.89 3 2.50 5 0 2.118 1 3.85
MI 81 49 55.25 52 10.56 100 48 71.79 67 17.84
CC 27 1 21.5 19.5 19.61 13 2 10.79 7 12.38
Change 79 13 67.89 47 32.43 213 18 79.87 103 67.93
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classes are quite cohesive in first three applications. Values of DIT for FLM,
EASY, SMS, IMS and ABP are 7, 5, 6, 5 and 6 which represents that inheritance is
properly exploited in all systems. SCCR is medium in FLM, EASY and SMS and
High in IMS and ABP which means IMS and ABP would be easier to understand
in maintenance phase. A value of NODBC is more than 8 in FLM and ABP
systems and less than 7 in EASY, SMS and IMS systems.

Correlation Analysis: Correlation Analysis provides important information
about the interdependence between two variables. We calculated the Pearson’s
correlation coefficient represented as ‘r’ to measures the linear relationship
between independent variables versus change and presented in Table 7. Value of
‘r’ represents the amount of correlation exists between the two variables and lies
between +1 to -1. Values in the range of ±0.5–1 represent high correlation;
±0.3–0.5 represents medium correlation whereas less than ±0.3 represents very
low correlation. In the Table 7, all entries above 50 % are marked as bold. It is
inferred that NODBC metric as well as SCCR metric is significantly related to
change metric for all the systems. The value of ‘r’ for new proposed metric is quite
competitive as compared to other metrics. For IMS and ABP systems, more than

Table 6 Descriptive statistics of ABP system

Metric Max Min Mean Med SD

WMC 11 1 2.483 2 1.84
DIT 6 3 4.017 4 0.13
NOC 9 0 5.25 5 1.09
CBO 29 4 14.93 17 8.56
RFC 49 21 26.83 31 9.89
LCOM 6 0 0.155 0 0.81
SCCR 11 1 2.483 2 1.84
NODBC 8 0 4.931 1 1.04
MI 100 40 69.5 61 21.03
CC 14 2 10.33 8.5 8.88
Change 189 19 91.23 78 45.63

Table 7 Pearson correlation coefficient at 0.01 level of significance (two tailed)

Metrics FLM change EASY change SMS change IMS change ABP change

WMC 0.73 0.66 0.54 0.61 0.59
DIT -0.38 -0.42 -0.36 -0.42 -0.44
NOC 0.29 0.48 0.33 0.41 0.45
CBO 0.46 0.61 0.49 0.58 0.51
RFC 0.64 0.49 0.50 0.51 0.47
LCOM 0.48 0.42 0.41 0.68 0.71
SCCR 0.56 0.55 0.66 0.69 0.73
NODBC 0.71 0.65 0.58 0.79 0.81
MI 0.61 0.49 0.36 0.47 0.58
CC 0.59 0.62 0.39 0.41 0.55
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75 % correlation was observed whereas for FLM, EASY and SMS systems it was
in the range of 58–75 % which is quite significant. SCCR is also found to be
significantly correlated with change metric for all systems. When compared with
other metrics it was found that although DIT is comparatively less correlated with
the change however MI and CC are reasonably well correlated. Among the C&K
metric suite, WMC is found to be most significantly related as for all systems,
value of ‘r’ is found to be more than 54 % for all systems. RFC is significantly
correlated with change for FLM, SMS and IMS systems. CBO found to be sig-
nificantly correlated with change in EASY and IMS systems.

5 Research Methodology

In this section, we explain the various Machine Leaning (ML) methods used for
making the prediction models as well as to ascertain the relationship of design
metrics with maintainability. Recent research activities carried by authors [7, 15,
27, 29] have revealed that ANN is very powerful in classifying and recognizing the
data patterns, so they are well suited for prediction problems as in such cases
although the required knowledge is difficult to specify but enough data for
observations are available to learn. They are originally developed to mimic basic
biological neural systems particularly the neurons present in the human brain. Four
different versions of ANN models have been selected in the current study as
mentioned below.

(a) Back Propagation Network (BPN): Although BPN is originally invented by
Hu [30] in 1964 however it came into use only in 1986 by Rumelhart et al.
[31] when it was used as supervised learning technique. Training data in BPN
consists of pair of vector (input vector and target vector). During the training
process, an input vector is presented to the network for the learning process.
Output vector is generated from these learning and compared with the actual
target vector. If there is any difference in the values, the weights of the
network are re-adjusted to reduce this error and the process is repeated until
the desired output is produced.

(b) Kohonen Network (KN): Proposed by Kohonen [32], KN is best known as
self organizing networks as they learn to create maps of the input space in a
self-organizing way. Although, KN is invented to provide a way of repre-
senting multidimensional data in much lower dimensional spaces, a network
is created that learn the information such that any topological relationships
within the training set are maintained without supervision.

(c) Feed Forward Neural Network (FFNN): In FFNN [33, 34], information
moves in only one direction i.e. forward from input nodes to output nodes
through hidden nodes and there are no loops in the network. The number of
hidden neuron selected as 10 for the sample data collected from these five
real life applications.
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(d) General Regression Neural Networks (GRNN): Proposed by Specht [35], it is
very powerful network as it needs only a fraction of the training samples
during learning process and finishes the learning process in single pass. Due
to the highly parallel structure, it performs well even in case of noisy and
sparse data and the over fitting problem does not arise as neither do they set
the training parameters during the commencement of learning process, nor
they define the momentum. Once the network finished the training process,
only smoothing factor is applied to determine how tightly the network mat-
ches its prediction [10].

6 Results and Discussion

Ten independent and one dependent variable were selected in this study. Total 864
classes were collected and combined with respective changes made in each class.
Univariate and Multivariate analysis was performed to find the significance of each
metric individually and cumulatively on change.

Univariate Analysis using linear regression was performed to find the indi-
vidual effect of NODBC and SCCR on change using SPSS and the results are
presented in Table 8. Four columns represent estimated coefficient, standard error,
the t-ratio and p-value. The value of Sig (p-value) represents amount of signifi-
cance of these metrics on change. As evident from the outcome, both variables
received the p-value as 0.000 which means they are significantly correlated with
change.

Multivariate Linear Regression (MLR) was also performed using stepwise
linear regression model in order to identify the most significant metrics for each
system. MLR is the most commonly used technique for fitting a linear equation on
observed data [8]. There are three methods used for identifying and picking the
subset of important metrics from the set of independent variables i.e. forward
selection, backward selection and stepwise selection. In this study, stepwise
selection method is used as it guarantees to provide optimum and most significant
subset of independent variables. At each step either the certain variables are added
or deleted to identify the final most optimized regression model. Unstandardized
Coefficient, Std Error, t-ratio and p-value (sig) to three decimal places are pre-
sented in Table 9.

Results show that two proposed metrics were found to be statistically significant
for all systems as almost all p-value are less than .050. Unstandardized Coefficients
represents the value when the dependent and independent (predictor) variables
were all transformed to standard scores before running the regression and used to
compare the relative strength of the various predictors. NODBC has the largest
coefficient and one standard deviation increase in NODBC leads to a 0.915
decrease in change for IMS system. SCCR is also found to be quite competitive as
one standard deviation increase in SCCR in turn leads to 0.858 standard deviation
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increase in change for SMS system. Apart from two reported metrics WMC and
MI were also found to be most significant predictor of change.

Maintainability Prediction: Two types of prediction models were constructed
for each system. Model-1 is constructed using metrics suite presented by C&K [5]
and Model-2 is constructed by adding four more metrics MI, CC, NODBC and
SCCR to the existing C&K metrics suite resulting in the set of 10 metrics in all.
MLR, BPNN, KN, FFNN and GRNN were employed for software maintainability
prediction by dividing the data into three parts i.e. 70 % for training and 30 %
for testing as it is the commonly accepted proportion used by many practitioners
[6–15]. Three prediction accuracy measures proposed by Kitchenham et al. [36] as
presented in Table 10 are used to compare the performance of Model-1 and Model-
2. Detailed method for their calculations are available in Malhotra et al. [15].

Results are presented in Table 11 where three rows for each software system
represent the values of accuracy measures when MLR as well as ML models were
applied with metric suite Model-1 (M-1) and metric suite Model-2 (M-2). For

Table 8 Results of univariate analysis

Metric Unstandardized coefficient Std. error t-ratio Sig (p-value)

NODBC 0.307 0.020 5.101 0.000
SCCR 0.245 0.046 2.826 0.000

Table 9 Results of multivariate analysis

Software
system

Most significant metrics
identified

Unstandardized
coefficient

Std.
error

t-ratio Sig
(p-value)

FLM system Intercept 3.779 1.054 3.586 0.000
WMC 0.009 0.004 2.532 0.012
MI 0.055 0.067 2.489 0.014
SCCR 0.485 0.015 2.203 0.000

EASY
system

Intercept 0.542 0.191 2.838 0.005
WMC 0.023 0.226 1.882 0.018
SCCR 0.378 0.773 2.563 0.000
NODBC 0.584 0.798 2.066 0.000

SMS system Intercept 0.697 0.854 1.806 0.000
NODBC 0.860 0.211 0.055 0.002
MI 0.707 2.876 0.013 0.004
SCCR 0.858 0.463 0.019 0.001

IMS system Intercept 0.912 0.687 0.258 0.000
SCCR 0.345 0.605 0.069 0.004
NODBC 0.915 2.463 0.150 0.002
RFC 0.301 4.501 0.663 0.000

ABP system Intercept 0.032 1.268 0.757 0.003
WMC 0.817 3.412 0.681 0.010
NODBC 0.476 3.406 0.146 0.004
MI 0.817 3.412 0.681 0.010

170 R. Malhotra and A. Chug



example first three rows belong to the results received using FLM system as MLR,
BPNN, KN, FFNN and GRNN models were applied for each prediction algorithms
with two different data sets i.e. Model-1 (M-1) and Model-2 (M-2).

From the results it is quite evident that overall improvement in the prediction
accuracy is observed with new proposed metric suite for all systems. To further
analyze the results we further sorted the systems in ascending order on the values
of NODBC and SCCR. We observed that more improvement in prediction accu-
racy was achieved for those systems which have high values of NODBC and
SCCR. ABP system has maximum SCCR and NODBC as compared to other
systems. For ABP system maximum improvement in prediction accuracy is
observed i.e. 23 % in the for MMRE whereas other systems such as FLM, EASY,
SMS and IMS observed 7, 14, 11 and 19 % improvement in MMRE respectively.
MaxMRE was improved by 39, 1, 21, 28 and 29 % for FLM, EASY, SMS, IMS
and ABP System respectively. Lowest improvement for Easy systems was noticed

Table 10 Prediction accuracy comparison proposed by Kitchenham et al. [36]

Name Formula Definition

MRE (Magnitude of relative error) jActual�Predicted Valuej
Actual Value

Normalized measure of the discrepancy
between actual and predicted value

MMRE (Mean magnitude of
relative error)

PN

i¼1
MREi

Average relative discrepancy

Pred(q) Pred qð Þ ¼ K
N

What proportion of the predicted values
have MRE less than or equal to
specified value

Table 11 Prediction accuracies of model-1(M-1) and model-2 (M-2) for all data sets

Software
system

Accuracy
measures

MLR
model

BPNN
model

KN model FFNN
model

GRNN
model

M-1 M-2 M-1 M-2 M-1 M-2 M-1 M-2 M-1 M-2

FLM system Max MRE 2.14 1.53 1.98 1.20 1.87 1.09 1.332 0.98 1.78 1.11
MMRE 0.51 0.48 0.49 0.47 0.45 0.42 0.41 0.39 0.48 0.41
Pred(0.25) 0.64 0.78 0.57 0.69 0.68 0.78 0.66 0.71 0.68 0.76

Easy system Max MRE 2.09 1.82 1.24 1.65 0.99 0.98 1.090 1.02 1.47 1.32
MMRE 0.66 0.57 0.51 0.46 0.46 0.36 0.43 0.37 0.49 0.42
Pred(0.25) 0.58 0.63 0.59 0.63 0.69 0.74 0.70 0.77 0.68 0.69

SMS system Max MRE 1.98 1.47 1.30 1.22 1.11 0.97 2.786 1.70 1.98 1.8
MMRE 0.68 0.56 0.44 0.40 0.43 0.41 0.46 0.38 0.42 0.39
Pred(0.25) 0.60 0.66 0.52 0.69 0.63 0.77 0.52 0.69 0.60 0.71

IMS system Max MRE 2.34 1.71 1.52 1.43 2.33 1.10 1.803 1.22 1.88 1.63
MMRE 0.71 0.59 0.40 0.35 0.43 0.32 0.39 0.30 0.38 0.29
Pred(0.25) 0.54 0.63 0.59 0.71 0.68 0.70 0.59 0.63 0.58 0.69

ABP system Max MRE 1.78 1.37 1.29 1.33 1.89 0.33 2.092 1.66 1.67 1.45
MMRE 0.49 0.41 0.37 0.29 0.43 0.32 0.48 0.37 0.58 0.40
Pred(0.25) 0.69 0.76 0.58 0.67 0.62 0.72 0.67 0.66 0.71 0.74
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which also has lowest SCCR as well as NODBC among all systems. Prediction
accuracies achieved by all models were also compared and observed that the
performance of ML models is better than MLR in general. When we compared the
MMRE values for Model-2, it is found to be 0.94, 0.82, 0.66, 0.79 and 0.86 for
MLR, BPNN, KN, FFNN and GRNN respectively. That means KN performance is
best among all ML models. Graphs were also plotted to observe improvement in
prediction accuracies from Model-1 to Model-2 w.r.t. MMRE and Pred(0.25) in
Figs. 1, 2 respectively. It is quite evident from Fig. 1 that MMRE was significantly
reduced from Model-1 to Model2 for all prediction techniques. Figure 2 represents
the comparison of prediction accuracies achieved at 25 %. It is quite visible from
the graph that pred(0.25) is improved from Model-1 to Model-2 for all techniques.

7 Threats to Validity

Whenever any empirical data is collected from proprietary software system, it has
got few specific characteristics and their generalization always carries few threats
to its validity. Also in this study, OO characteristics were measured using internal
quality metrics suite proposed by C&K. However, software maintainability also
depends upon external quality attributes such as competency of developers,
familiarity with the code etc. They were intentionally avoided due to the subjec-
tivity involved in their measurement. We also cannot assure if the proposed
metrics suite is universally applicable for different programming languages and
environment. In order to capture the cause-effect relationship between particular
metric and maintainability, we need to perform controlled experiment where one
metric is kept constant and others varied. This threat also exists in our study as
carrying such experiments is extremely difficult.

Fig. 1 MMRE for Model-1 and Model-2
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8 Conclusion and Future Work

The goal of our research was to empirically examine the effectiveness of new
proposed metric suite for predicting software maintainability for data intensive
applications as it’s important to give equal attention to the database accesses with
the increase in data as well as the number of times data get accessed. We employed
MLR, BPNN, FFNN, KN, and GRNN techniques for making software maintain-
ability prediction model. Observing five proprietary software over a period of 3
years, we analyzed the performance of proposed metric suite using prediction
accuracy measures such as MRE, MMRE and pred(0.25). Four more metrics were
added (MI and CC for measuring the structural complexity and NODBC and
SCCR for measuring the database aspect) to the traditional C&K metrics suite.
Main results of the current study are summarized as follows:

• The predicted results indicate that proposed metric suite is significant indicator
of software maintainability, as improvements in all five datasets were observed
when four more metrics added to the C&K metric suite.

• The results received from pearson’s correlation coefficient safely suggest that
proposed metrics were significantly correlated with change.

• The predicted results indicate that we can use KN in building maintainability
prediction models in data intensive applications.

• Multivariate analysis using stepwise linear regression identified NODBC and
SCCR as good indicator of software maintainability in data intensive
applications.

Result of this study helps practitioners in using new metric suite for developing
maintainability prediction models. The results help us in identification of those
classes which require big share of maintenance resources and the limited resources

Fig. 2 Pred(0.25) for Model-1 and Model-2
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can be planned accordingly. The results of our study are valid for medium systems
developed in C#. In future, we plan to replicate our studies on data sets having
different characteristics such as datasets with different programming languages and
environments.
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