
Chapter 3
Super Resolution

Hyo-Moon Cho

Abstract We introduced, in this chapter, what the definition of a super resolution
is and what the key approaching methods for major super resolution algorithms
are. Numerous super resolution algorithms have based on the observation model
and they have followed the warp-blur sequence. But, some cases which have large
movements and warp factors such as video by taking in a vehicle are worse than
normal interpolation methods. We introduce the smart and robust registration
algorithm with rotation and shift estimation. To reduce the registration error, this
algorithm decides the optimal reference image even other super resolution algo-
rithms discard this registration error. This algorithm follows the warp-blur
observation model because the blurring parameter is much bigger than warp
parameter for camera rotation and/or vibration.

3.1 Introduction

In most imaging applications, a high resolution image is desired and widely
required. Where, ‘‘high resolution image’’ means that an image has not only
increasing the number of pixel but also increasing the resolving power. Therefore
the resolution is related to the ability to distinguish details in the image.

The International Organization for Standardization (ISO) has described a pre-
cise method to measure the resolution of a digital camera [1]. The resolution can
be measured as the highest frequency pattern of black and white lines where the
individual black and white lines can still be visually distinguished in the image. It
is expressed in line widths per picture height.
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The standard also describes a method to compute the spatial frequency response
(SFR) of a digital camera. The spatial frequency response is the digital imaging
equivalent of the modulation transfer function (MTF) used in analogue imaging
systems. It describes the variation between the maximum and minimum values that
is visible as a function of the spatial frequency that is the number of black and
white lines per millimeter. It can be measured using an image of a slanted black
and white edge, and is expressed in relative spatial frequencies which is relative to
the sampling frequency, line widths per picture height, or cycles per millimeter on
the image sensor. The resolution chart that is used in the International Organi-
zation for Standardization (ISO) standard is shown in Fig. 3.1.

Image resolution is one of the important factors in digital camera design, since
the cameras have been widely used to capture images for numerous imaging
applications. Digital cameras have long fast evolved towards a steadily increasing
number of pixels. From about 0.3 Mega-pixels in 1993, the number of pixels on
the charge-coupled device (CCD) or the complementary metal oxide semicon-
ductor (CMOS) sensor in a digital camera has increased to about 5 Giga-pixels in
some of the latest professional models. This pixel count has become the major
selling argument for the camera manufacturers. Although the number of pixels of
camera is increased, the current resolution grade of digital cameras and their price
do not satisfy consumer demands and may not satisfy the future demand also.
Thus, finding a way to increase the current resolution level is needed.

The most direct solution to increase spatial resolution of image is to reduce the
pixel sizes of image sensor. It needs the high level sensor manufacturing tech-
nology, and the cost to do this is very high. The most critical problem of it is the
shot noise that degrades the image quality severely, because the amount of light
available is also decreased as decreasing the pixel size. Therefore the method
reducing the pixel size has the limitation of the pixel size reduction and the current
technical status of this is almost saturated.

The other approach is to increase the chip size, it uses the reverse concept of
above method and it leads to an increase in capacitance [2]. This second approach
is difficult to speed up a charge transfer rate by large capacitance. Thus, this
approach is also not a considered effective.

Therefore, a novel approach to overcome above limitations of sensors and optic
manufacturing technologies is required. One promising approach is to use the
digital image signal processing techniques to obtain a high resolution image or
video sequence from observed multiple low resolution images. Recently, such a
resolution enhancement approach has been one of the most active research areas,
and it is called super resolution or simply resolution enhancement in the literature
[2–62]. The major advantage of super resolution algorithms is that it may costless,
and the existing low resolution images can be still utilized. In here, the meaning of
using the existing low resolution images is that the obtained high resolution image
by a super resolution algorithm consists of real data from several low resolution
images not artificial data by computing data from just one image.

The basic condition of super resolution techniques is that the multiple low
resolution images captured from the same scene and these are sub-sampled and

42 H.-M. Cho



aliased, as well as shifted with sub-pixel displacement. If the low resolution
images have different sub-pixel displacement from each other and if aliasing is
present, then a high resolution image can be obtained, since the new information in
each low resolution image can be exploited to generate a high resolution image as
shown in Fig. 3.2a. Whereas, the low resolution images are shifted by integer pixel
units, then it is difficult to generate a high resolution image because each image
contains the same information for each other as shown in Fig. 3.2b. That is, there
is no new information that can be used to reconstruct a high resolution image.

Generally, the super resolution algorithm covers image restoration techniques
[63, 64] that produce high quality images from noisy, blurred images although the
main concern of it is to reconstruct high resolution image from under-sampled low
resolution images. Therefore, the goal of super resolution techniques is to restore a
high resolution image from several degraded and aliased low resolution images as
illustrated in Fig. 3.3.

Big difference between restoration and super resolution is that the restoration
does not change the size of image. In fact, restoration and super resolution
reconstruction are closely related theoretically, and super resolution reconstruction
can be considered as a second-generation problem of image restoration.

Another problem related to super resolution reconstruction is image interpo-
lation that has been used to increase the size of a single image. Although this field
has been extensively studied [65–67], the quality of an image magnified from an
aliased low resolution image is inherently limited even though the ideal ‘‘sinc’’
basis function is employed. That is, single image interpolation cannot recover the
high-frequency components lost or degraded during the low resolution sampling
process. For this reason, image interpolation methods are not considered as super
resolution techniques.

To achieve further improvements in this field, the next step requires the utili-
zation of multiple data sets in which additional data constraints from several
observations of the same scene can be used. The fusion of information from
various observations of the same scene allows us super resolution reconstruction of
the scene.

Fig. 3.1 ISO resolution chart
used to compute the SFR of a
digital camera
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3.2 Observation Model

To comprehensively analyse the super resolution algorithm, the definition of the
relation between a high resolution image and several low resolution images is
necessary. One of famous and widely used the image formulation model is the
observation model. The basic concept of observation model is if we can know how
several low resolution images are generated from a high resolution image, then we
can reconstruct a high resolution image from several low resolution images by
using reverse process of observation model.

In this chapter, we employed the observation model for video sequence since
the goal of this chapter is to obtain super resolution image on general video
recording system. Let us denote by f (x, y, t) the continuous in time and space
dynamic scene which is being captured. If the scene is sampled according to the
Nyquist criterion in time and space, it is represented by the high resolution
sequence fl (m, n), where l ¼ 1; . . .; L, m ¼ 0; . . .;PM � 1, and n ¼ 0; . . .;PN � 1,
the discrete temporal and spatial coordinates, respectively.

For reasons that will become clear right away, the parameter P is referred to as
the magnification factor. Note that although different magnification factors Pr and
Pc can be used for rows and columns, respectively, for simplicity and without lack
of generality, we used the same factor P for both directions. It is, however,
important to low resolution images that depending on the available images we may

Fig. 3.2 Basic condition for Super resolution. a Sub-pixel displacement. b Integer-pixel
displacement
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not be able to improve the spatial image resolution in both directions at the same
degree.

Before we proceed, a matrix-vector representation of images and image
sequences is introduced to use in addition with the point-wise representation.
Using matrix-vector notation, each PM 9 PN image can be transformed into a
(PM 9 PN) 9 1 column vector, obtained by lexicographic image ordering.

The (PM 9 PN) 9 1 vector that represents the l-th image in the high resolution
sequence is denoted by fl, with l ¼ 1; . . .; L. Additionally, if all frames fl,

Fig. 3.3 Process sequence of Super resolution technique
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l ¼ 1; . . .; L, are lexicographically ordered, the vector f of dimensions
(L 9 PM 9 PN) 9 1 is obtained.

The high resolution sequence f is input to the imaging system which generates
the low resolution images denoted by g as illustrated in Fig. 3.4. The goal of super
resolution is to obtain a high resolution frame, fk, from the available low resolution
images. All of the described techniques, however, may be applied to the super
resolution of video by using, for example, a sliding window approach, as illus-
trated in Fig. 3.5. Alternatively, temporally recursive techniques can be developed
in estimating a super resolution sequence of images. To obtain fk, the imaging
system and the temporal relationship between high resolution and low resolution
sequences need to be modeled.

fk: the lexicographically ordered image of the k-th high resolution frame, vector f
gk: the lexicographically ordered image of the k-th low resolution frame, vector g

For the majority of the published work, sought after high resolution images
f1; . . .; fL, are assumed to satisfy

fl m; nð Þ ¼ fk mþ dx
l;k m; nð Þ; nþ dy

l;k m; nð Þ
� �

ð3:1Þ

where dx
l;k m; nð Þ and dy

l;k m; nð Þ denote respectively the horizontal and vertical
components of the displacement, that is,

dl;k m; nð Þ ¼ dx
l;k m; nð Þ; dy

l;k m; nð Þ
� �

ð3:2Þ

The model of Eq. (3.1) is a reasonable one under the assumption of constant
illumination conditions in the same scene. It leads to the estimation of the optical
flow in the scene, not necessarily, to the estimation of the true motion. Note that
the above model applies to both local and global motion. Also note that there may
exist pixels in one image for which no motion vector exists (occlusion problem),
and pixels for which the displacement vectors are not unique. Finally, note that we
are not including noise in the above model, since we will incorporate it later when
describing the process to obtain the low resolution observations.

Equation (3.1) can be rewritten using matrix-vector notation as

f l ¼ C dl;k

� �
fk ð3:3Þ

where C(dl,k) is the (PM 9 PN) 9 (PM 9 PN) matrix that maps frame fl to frame
fk, and dl,k is the (PM 9 PN) 9 2 matrix defined by lexicographically ordering the
vertical and horizontal components of the displacements between the two frames.
We will be using the scalar and matrix-vector notation interchangeably through
this manuscript.

The motion estimation problem, as encountered in many video processing
applications, consists of the estimation of dl,k or C(dl,k) given fl and fk. What
makes the problem even more challenging in super resolution is the fact that
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although the high resolution motion vector field is required, to get the high res-
olution images are not available, and therefore this field must be estimated uti-
lizing the low resolution images. The accuracy of the dl,k is of the outmost
important in determining the quality of the sought after high resolution images.

Fig. 3.4 Low resolution video acquisition model

Fig. 3.5 Obtaining sequence of high resolution images from a set of low resolution images (The
sliding window approach)
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3.2.1 The Warp-Blur Model

As the name implies, with this model the warping of an image is applied before it
is blurred. This case is shown as Fig. 3.6.

The low resolution discrete sequence is denoted by gl (i, j), with
i ¼ 0; . . .;M � 1, j ¼ 0; . . .;N � 1. Using matrix-vector notation, each low reso-
lution image is denoted by the (M 9 N) 9 1 vector gl. The low resolution image gl

is related to the high resolution image fl by

gl ¼ AlHlf l þ gl ð3:4Þ

where the matrix Hl of size (PM 9 PN) 9 (PM 9 PN) describes the filtering of
the high resolution image, Al is the down sampling matrix of size
MN 9 (PM 9 PN), and gl denotes the observation noise. The matrices Al and Hl

are generally assumed to be known.
Equation (3.4) expresses the relationship between the low resolution and high

resolution frames gl and fl, while Eq. (3.3) expresses the relationship between
frames l and k in the high resolution sequence. Combining these two equations we
obtain the following equation which describes the acquisition of a low resolution
image gl from the unknown high resolution image fk,

gl ¼ AlHlC dl;k

� �
fk þ gl þ ll;k ¼ AlHlC dl;k

� �
fk þ el;k ð3:5Þ

where ll,k represents the registration noise and el,k represents the combined
acquisition and registration noise. It is clear from Eq. (3.5) that C(dl,k)—the
warp—is applied first on fk, followed by the application of the blur Hl. This
process is pictorially illustrated in Fig. 3.7.

Note that the above equation shows the dependency of gl on both unknowns, the
high resolution image fk and the motion vectors dl,k. This observation model was
first formulated in [34], without matrix notation, and later written in matrix form
by [34]. Wang and Qi [68] attributes this model to [31]. The acquisition model
utilized in [11] for deriving frequency domain super resolution methods can also
be written using this model If we assume that the noise el,k in Eq. (3.5) is Gaussian
with zero mean and variance r2, denoted by N 0; r2Ið Þ, the above equation pro-
duces the following conditional probability density functions to be used within the
Bayesian framework,

PG gljfk; dl;k

� �
/ exp � 1

2r2
gl � AlHlC dl;k

� �
fk

�� ��2
� �

ð3:6Þ

such as a noise model has been used widely.
A uniform noise model is proposed by [25–28]. The noise model used by these

authors is oriented toward the use of the projection onto convex sets (POCS)
method in super resolution problems. The associated conditional probability
density functions has the form
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PG gljfk; dl;k

� �
/ const if gl � AlHlC dl;k

� �
fk

	 

ið Þ

�� ��� c;8i
0 elsewhere

�
ð3:7Þ

where the interpretation of the index i is that it represents the i-th element of the
vector inside the brackets.

The zero value of c can be thought of as the limit of PG (gl |fk, dl,k) in Eq. (3.6)
when r = 0. Farsiu et al. [69, 70] have recently proposed the use of a generalized
Gaussian Markov random field (GGMRF) [71] to model the noise in the image
formation process for super resolution problems. Thus, Eq. (3.7) can be written as

PGG gljfk; dl;k

� �
/ exp � 1

2rp
gl � AlHlC dl;k

� �
fk

�� ��p

p

� �
ð3:8Þ

Fig. 3.6 Warp–blur model relating low resolution images to high resolution images

Fig. 3.7 Graphical depiction of the relationship between the observed low resolution images and
the high resolution images
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3.2.2 The Blur-Warp Model

Another acquisition model which has been used in the literature [29, 71, 72] first
considers the blurring of the high resolution image, followed by warping and
down-sampling, as shown in Fig. 3.8. In this case, the observation model becomes

gl ¼ AlHlM ml;k

� �
fk þ gl þ ll;k ¼ AlM ml;k

� �
Blfk þ wl;k ð3:9Þ

where wl,k denotes the acquisition and registration noise, Bl the blurring matrix for
the l-th high resolution image, M(ml,k) the motion compensation operator for the
blurred high resolution images through the use of motion vector ml,k, and Al again
the down-sampling matrix.

Different notation has been used in Eqs. (3.5) and (3.9) for the blur and warping
operators in order to distinguish between these two models for the rest of the text.
The three-conditional probability density functions in Eqs. (3.6)–(3.8) can be
rewritten now for the blur-warp model, by substituting Al,Hl,C(dl,k) by
Al,M(ml,k)Bl (for brevity we do not reproduce them here). The question as to which
of the two models (blur–warp or warp–blur) should be used is addressed in [68].
The authors claim that when the motion has to be estimated from the low resolution
images, using the warp–blur model may cause systematic errors and, in this case, it
is more appropriate to use the blur–warp model. They showed that when the
imaging blur is spatiotemporally shift invariant and the motion has only a global
translational component the two models coincide. Note that in this case, the blur
and motion matrices correspond to convolution matrices and thus they commute.

Before concluding this section on image formation for uncompressed obser-
vations, we mention here that for both the warp–blur and the blur–warp models we
have defined conditional probability density functions for each low resolution
observation gl given fk and dl,k. Our goal, however, is to define the conditional
probability density functions P(g|fk, d), that is, the distribution when all the
observations g and all the motion vectors d for compensating the corresponding
high resolution frames to the k-th frame are taken into account. The approximation
used in the literature for this joint-conditional probability density functions is

P g fkj ; dð Þ ¼
YL

l¼1

P gl fkj ; dl;k

� �
ð3:10Þ

which implies that the low resolution observations are independent given the
unknown high resolution image fk and motion vectors d.

3.3 Survey of the Super Resolution Algorithms

The idea of super resolution was first introduced in 1984 by Tsai and Huang [11]
for multi-frame image restoration of band-limited signals. A good overview of
existing algorithms is given by [3] and [73]. Most super resolution methods are
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composed of two main steps: first all the images are aligned in the same coordinate
system in the registration step, and then a high-resolution image is reconstructed
from the irregular set of samples. In this second step, the camera point spread
function is often taken into account. The scheme of super resolution is illustrated
in Fig. 3.9.

Precise sub-pixel image registration is a basic requirement for a good recon-
struction. If the images are inaccurately registered, the high-resolution image is
reconstructed from incorrect data and is not a good representation of the original
signal. Zitova and Flusser [74] presents an overview of image registration meth-
ods. Registration can be done either in spatial or in frequency domain. By the
nature of the Fourier transform, frequency domain methods are limited to global
motion models. In general, they also consider only planar shifts and possibly

Fig. 3.8 Blur-warp model relating low resolution images to high resolution images

Fig. 3.9 Scheme for super resolution
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planar rotation and scale, which can be easily expressed in Fourier domain.
However, aliasing is much easier to describe and to handle in frequency domain
than in spatial domain.

3.3.1 Registration

3.3.1.1 Frequency Approach

Tsai and Huang [11] describes an algorithm to register multiple frames simulta-
neously using nonlinear minimization in frequency domain. Their method for
registering multiple aliased images is based on the fact that the original, high
resolution signal is band-limited. They derived a system equation that describes
the relationship between low resolution images and a desired high resolution
image by using the relative motion between low resolution images. The frequency
domain approach is based on the following three principles: (i) the shifting
property of the Fourier transform, (ii) the aliasing relationship between the con-
tinuous Fourier transform (CFT) of an original high resolution image and the
discrete Fourier transform (DFT) of observed low resolution images, (iii) and the
assumption that an original high resolution image is band-limited.

These properties make it possible to formulate the system equation relating the
aliased discrete Fourier transform (DFT) coefficients of the observed low resolu-
tion images to a sample of the continuous Fourier transform (CFT) of an unknown
image. For example, let us assume that there are two one-dimension low resolution
signals sampled below the Nyquist sampling rate. From the above three principles,
the aliased low resolution signals can be decomposed into the un-aliased high
resolution signal as shown in Fig. 3.9.

Let fl (m, n) denote a continuous high resolution image and Fl(wm, wn) be its
continuous Fourier transform (CFT). The global translations, which are the only
motion considered in the frequency domain approach, yield the k-th shifted image
of Eq. (3.1). By the shifting property of the continuous Fourier transform (CFT), the
continuous Fourier transform of the shifted image, Fk(wm, wn), can be written as

Fk Wm;Wnð Þ ¼ exp j2p dx
l;k m; nð ÞWm; nþ dy

l;k m; nð ÞWn

� �h i
Fl Wm;Wnð Þ ð3:11Þ

The shifted image fk (m, n) is sampled with the sampling period Tm and Tn to
generate the observed low resolution image gk (m, n). From the aliasing rela-
tionship and the assumption of band-limitedness of Fl(wm, wn)

Fk Wm;Wnð Þj j ¼ 0 for Wmj j � Lmp=Tmð Þ; Wnj j � Lnp=Tnð Þ ð3:12Þ

The relationship between the continuous Fourier transform (CFT) of the high
resolution image and the discrete Fourier transform (DFT) of the k-th observed low
resolution image can be written as [75]
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ck Xm;Xn½ � ¼ 1
TmTn

XLm�1

ml¼0

XLn�1

nl¼0

Fk �
2p
Tm

Xm

M
þ m

 �
;
2p
Tn

Xn

M
þ n

 � �� �
ð3:13Þ

By using lexicographic ordering for the indices m, n on the right-hand side and
k on the left-hand side, a matrix vector form is obtained as:

Y ¼ UX ð3:14Þ

where Y is a p 9 1 column vector with the k-th element of the discrete Fourier
transform (DFT) coefficients of yk[m, n], F is a LmLn 9 1 column vector with the
samples of the unknown continuous Fourier transform of fl (m, n), and U is a
p 9 LmLn matrix which relates the discrete Fourier transform of the observed low
resolution images to samples of the continuous high resolution image.

Therefore, the reconstruction of a desired high resolution image requires us to
determine U and solve this inverse problem. It is not clear, however, if such a
solution is unique and if such an algorithm will not converge to a local minimum.
Most of the frequency domain registration methods are based on the fact that two
shifted images differ in frequency domain by a phase shift only, which can be found
from their correlation. Using a log-polar transform of the magnitude of the frequency
spectra, image rotation and scale can be converted into horizontal and vertical shifts.
These can therefore also be estimated using a phase correlation method.

3.3.1.2 Phase Shift and Correlation

Reddy and Chatterji [76 and 77] describe such planar motion estimation algo-
rithms. Authors apply a high-pass emphasis filter to strengthen high frequencies in
the estimation. Kim and Su [78, 79 and 80] also apply a phase correlation tech-
nique to estimate planar shifts. To minimize errors due to aliasing, their methods
rely on a part of the frequency spectrum that is almost free of aliasing. Typically
this is the low-frequency part of the images. [81] showed that the signal power in
the phase correlation corresponds to a poly phase transform of a filtered unit
impulse. [82] developed a rotation estimation algorithm based on the property that
the magnitude of the Fourier transform of an image and the mirrored version of the
magnitude of the Fourier transform of a rotated image has a pair of orthogonal
zero-crossing lines. The angle that these lines make with the axes is equal to half
the rotation angle between the two images. The horizontal and vertical shifts are
estimated afterwards using a standard phase correlation method.

3.3.1.3 Regularization

An extension of this approach for a blurred and noisy image was provided by [12],
resulting in a weighted least squares formulation. In their approach, it is assumed
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that all low resolution images have the same blur and the same noise character-
istics. This method was further refined by [13] to consider different blurs for each
low resolution image. Here, the Tikhonov regularization method is adopted to
overcome the ill-posed problem resulting from blur operator. Bose et al. [14]
proposed the recursive total least squares method for super resolution recon-
struction to reduce effects of registration errors (errors in U). A discrete cosine
transform (DCT) based method was proposed by [15]. They reduce memory
requirements and computational costs by using discrete cosine transform (DCT)
instead of discrete Fourier transform (DFT). They also apply multichannel adap-
tive regularization parameters to overcome ill-posed such as underdetermined
cases or insufficient motion information cases.

Theoretical simplicity is a major advantage of the frequency domain approach.
That is, the relationship between low resolution images and the high resolution
image is clearly demonstrated in the frequency domain. The frequency method is
also convenient for parallel implementation capable of reducing hardware com-
plexity. However, the observation model is restricted to only global translational
motion and LSI blur. Due to the lack of data correlation in the frequency domain, it
is also difficult to apply the spatial domain a priori knowledge for regularization.

Generally, the super resolution image reconstruction approach is an ill-posed
problem because of an insufficient number of low resolution images and ill-con-
ditioned blur operators. Procedures adopted to stabilize the inversion of ill-posed
problem are called regularization. In this section, we present deterministic and
stochastic regularization approaches for super resolution image reconstruction.
Typically, constrained least squares (CLS) and maximum a posteriori (MAP) super
resolution image reconstruction methods are introduced.

3.3.1.4 Spatial Approach

Spatial domain methods generally allow for more general motion models, such as
homographies. They can be based on the whole image or on a set of selected
corresponding feature vectors, as discussed by [83] and by RANSAC algorithm
[84]. Keren et al. [85] developed an iterative planar motion estimation algorithm
based on Taylor expansions. A pyramidal scheme is used to increase the precision
for large motion parameters. A hierarchical framework to estimate motion in a
multi resolution data structure is described in [86]. Different motion models, such
as affine flow or rigid body motion, can be used in combination with this approach.
Irani et al. [87] presented a method to compute multiple, possibly transparent or
occluding motions in an image sequence. Motion is estimated using an iterative
multi resolution approach based on planar motion. Different objects are tracked
using segmentation and temporal integration. Gluckman [88] described a method
that first computes planar rotation from the gradient field distribution of the images
to be registered. Planar shifts are then estimated after cancellation of the rotation
using a phase correlation method.
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3.3.2 Reconstruction

3.3.2.1 Interpolation-Based and Frequency Domain

In the subsequent image reconstruction phase, a high resolution image is recon-
structed from the irregular set of samples that is obtained from the different low-
resolution images. This can be achieved using an interpolation-based method as
the one used by [85]. Tsai and Huang [11] describes a frequency domain method,
writing the Fourier coefficients of the high-resolution image as a function of the
Fourier coefficients of the registered low-resolution images. The solution is then
computed from a set of linear equations. This algorithm uses the same principle as
the formulation in time domain given by [89].

3.3.2.2 POCS

A high-resolution image can also be reconstructed using a projection onto convex
sets (POCS) algorithm [27], where the estimated reconstruction is successively
projected on different convex sets. Each set represents constraints to the recon-
structed image that are based on the given measurements and assumptions about
the signal. Capel and Zisserman [83] and [90] use a maximum a posteriori (MAP)
statistical method to build the high-resolution image.

Other methods iteratively create a set of low-resolution images from the estimated
image using the imaging model. The estimate is then updated according to the difference
between the real and the simulated low-resolution images [32, 85]. This method is
known as iterative back-projection. Zomet et al. [91] improved the results obtained with
typical iterative back-projection algorithms by taking the median of the errors in the
different back-projected images. This proved to be more robust in the presence of
outliers. Farsiu et al. [70] proposed a new and robust super resolution algorithm.

Instead of the more common L2 minimization, they use the L1 norm, which
produces sharper high-resolution images. They also showed that this approach
performs very well in combination with the algorithm by [91]. Elad and Feuer [31]
present a super resolution framework that combines a maximum-likelihood/MAP
approach with a projection onto convex sets (POCS) approach to define a new
convex optimization problem. Next, they show the connections between their
method and different classes of other existing methods.

3.4 Novel Super Resolution Registration Algorithm Based
on Frequency

In this chapter, we show that the flowchart of the proposed algorithm and each
implementation sources. And we describe the detail methodologies and show their
experiment results such as the obtained high resolution images, their image quality
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and the computational complexity comparing with the results of other super res-
olution algorithms. First, we show our main flow chart as in Fig. 3.10.

Secondly, we obtained the low resolution video sequence by applying the
down-sampling factor of two into the original video sequence, as shown in
Fig. 3.11, and their resolution size is 320 9 240.

3.4.1 Pre-processing

In the second step, we designed the automatic low resolution input image selection
algorithm to reduce the registration error. In the whole video sequence, there are
unsuitable images according to the reference image. Therefore, it is very important
to choose this.

The video sequence has some linearity since it is made with 30 frames per
second (fps) or 25 frames per second (fps). However, the accuracy of this is not
high. According to the numerous literatures for the motion estimation and the
motion compensation, the probability of inner 1/4-pixel distance motion vector is
over 90 % for the practical video sequences, and the motion compensation error
has maximum value at 1/2-pixel distance [92–100] as shown in Fig. 3.12.

Fig. 3.10 Main flowchart of
the proposed algorithm
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We designate the center image to the reference input image in the specified
video sequence window, and analysis the registration error for each reference
image and its comparing input low resolution images, at this time, we restrict the
maximum number of input low resolution image is limited as five frames. The
reason of this, it has very high computational complexity than others if we used
many input low resolution images. The registration error is computed by the sum
of difference (SAD) computing method since it can easily and simply calculate the
motion compensation. Where, we assume that the block size computing the sum of
difference (SAD) is as 8 9 8 to low computational complexity. Thus, the sum of
difference (SAD) calculation allows us to take the motion compensation error
(MCE). If the sum of difference (SAD) of one input low resolution image (ILRI)
has 0 B SAD B maximum motion compensation error (MMCE, it is same with
maximum SAD), then we can select it as an input low resolution image candidate
(ILRIC). It is illustrated in Fig. 3.13.

Fig. 3.11 Input low resolution video sequence generating scheme

Fig. 3.12 Distribution of the
registration error depending
on the sub-pixel shift
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In the next step, it compares the number of the input low resolution image
candidates of each reference image. One reference image which has the largest the
input low resolution image candidates is chosen as the optimal reference image.
And also we propose an advanced architecture to choose the reference image to
reduce computational complexity as shown in Fig. 3.14. This method can remove
the duplication of the sum of absolute difference (SAD) calculation based on the
partial distortion elimination (PDE) method at each frame. The basic concept of it
is that if the difference between current and candidate block has small value then
this candidate has higher probability to the optimal reference. Therefore, it is more
efficient whenever as an input image which has larger initial accumulated sum of
absolute difference (SAD) value is selected.

3.4.2 Planar Motion Estimation

Fourier based image registration methods only allow global motion in a plane
parallel to the image plane. In such a case, the motion between two images can be
described as a function of three parameters that are all continuous variables:
horizontal and vertical shifts x1,h and x1,v and a planar rotation angle h1.

A frequency domain approach allows us to estimate the horizontal and vertical
shift and the (planar) rotation separately. Assume we have a continuous two-
dimensional reference signal f0(x) and its shifted and rotated version f1(x):

Fig. 3.13 The flowchart of input low resolution image candidate selection

58 H.-M. Cho



f1 xð Þ ¼ f0 R xþ x1ð Þð Þ ð3:15Þ

with x ¼ xh

xv

 �
; x1 ¼

x1;h

x1;v

 �
;R ¼ cos h1 � sin h1

sin h1 cos h1

 �

This can be expressed in Fourier domain as

F1 uð Þ ¼
ZZ

x
f1 xð Þe�j2puT xdx

¼
ZZ

x
f0 R xþ x1ð Þð Þe�j2puT xdx

¼ e�j2puT x1

ZZ

x
f0 Rx0ð Þe�j2puT x0dx0

ð3:16Þ

With F1(u) the two-dimensional Fourier transform of f1(x) and the coordinate
transformation x0 = x + x1. After another transformation x00 = R x0, the relation
between the amplitudes of the Fourier transforms can be computed as

Fig. 3.14 The flowchart of an advanced choosing the reference image based on the partial
distortion elimination (PDE)
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F1 uð Þj j ¼ e�j2puT x1

ZZ
x
f0 Rx0ð Þe�j2puT x0dx0

����
����

¼
ZZ

x0
f0 Rx0ð Þe�j2puT x0dx0

����
����

¼
ZZ

x00
f0 x00ð Þe�j2puT RT x0ð Þdx00

����
����

¼
ZZ

x00
f0 x00ð Þe�j2puT Ruð ÞT x0dx00

����
����

¼ F0 Ruð Þj j

ð3:17Þ

We can see that |F1(u)| is a rotated version of |F0(u)| over the same angle h1 as
the spatial domain rotation in Fig. 3.15. |F0(u)| and |F1(u)| do not depend on the
shift values x1, because the spatial domain shifts only affect the phase values of the
Fourier transforms. Therefore we can first estimate the rotation angle h1 from the
amplitudes of the Fourier transforms |F0(u)| and |F1(u)|. After compensation for the
rotation, the shift x1 can be computed from the phase difference between |F0(u)|
and |F1(u)|.

Fig. 3.15 The rotation estimation (h1 = 25�) and their Fourier transform. a Original image and
its Fourier transformed amplitude. b Rotated image and its Fourier transformed amplitude
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3.4.3 Rotation Estimation

The rotation angle between |F0(u)| and |F1(u)| can be computed as the angle h1 for
which the Fourier transform of the reference image |F0(u)| and the rotated Fourier
transform of the image to be registered |F1(Ru)| have maximum correlation. This
implies the computation of a rotation of |F1(u)| for every evaluation of the cor-
relation, which is computationally heavy and thus practically difficult.

If |F0(u)| and |F1(u)| are transformed in polar coordinates, the rotation over the
angle h1 is reduced to a (circular) shift over h1. We can compute the Fourier
transform of the polar spectra |F0(u)| and |F1(u)|, and compute h1 as the phase shift
between the two [76, 77]. This requires a transformation of the spectrum to polar
coordinates. The data from the uniform uh, uv, -grid need to be interpolated to
obtain a uniform uh, uv,-grid. Mainly for the low frequencies, which generally
contain most of the energy, the interpolations are based on very few function
values and thus introduce large approximation errors. An implementation of this
method is also computationally intensive.

Our approach is computationally much more efficient than the two methods
described above. First of all, we compute the frequency content A as a function of
the angle h by integrating over radial lines:

A hð Þ ¼
ZhþDh=2

h�Dh=2

Z1

0

F ur; uhð Þj jdurduh ð3:18Þ

In practice, |F0(ur, uh)| is a discrete signal. Different methods exist to relate
discrete directions to continuous directions, like for example digital lines [101].
Here, we compute the discrete function A(h) as the average of the values on the
rectangular grid that have an angle h - Dh/2 \ uh \ h + Dh/2. As we want to
compute the rotation angle with a precision of 0.1 degrees, A(h) is computed every
0.1 degrees. To get a similar number of signal values |F0(ur, uh)| at every angle, the
average is only evaluated on a circular disc of values for which ur \ q (where q is
the image radius, or half the image size). Finally, as the values for low frequencies
are very large compared to the other values and are very coarsely sampled as a
function of the angle, we discard the values for which ur \ eq, with e = 0.1. Thus,
A(h) is computed as the average of the frequency values on a discrete grid with
h - Dh/2 \ uh \ h + Dh/2 and eq \ ur \ q.

This results in a function A(h) for both |F0(u)| and |F1(u)| as shown in Fig. 3.16.
The exact rotation angle can then be computed as the value for which their cor-
relation reaches a maximum. Note that only a one-dimensional correlation has to
be computed, as opposed to the two-dimensional correlation approaches in [76]
and [77].

Of course, the use of such a radial projection also reduces the available
information, and might introduce ambiguities in the estimation. The simulation
result of our rotation estimation algorithms is shown in Fig. 3.17.
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Fig. 3.16 Rotation estimation. a Average Fourier domain amplitude as a function of the angle
A(h) for the two image from Fig. 3.11. b Correlation between A0(h) and A1(h), with a maximum
at the rotation angle h1 = 25�

Fig. 3.17 The simulation result of the rotation estimation. a Reference image. b Object image.
c Inverse rotation estimated image of (b)
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3.4.4 Shift Estimation

A shift of the image parallel to the image plane can be expressed in Fourier domain
as a linear phase shift:

F1 uð Þ ¼
ZZ

x
f1 xð Þe�j2puT x dx ¼

ZZ

x
f0 xþ x1ð Þ e�j2puT xdx

¼ ej2puT x1

ZZ

x0
f0 x

0
� �

e�j2puT x
0

dx
0 ¼ ej2puT x1 F0 uð Þ

ð3:19Þ

It is well known that the shift parameters x1 can thus be computed as the slope
of the phase difference \(F1(u)/F0(u)) [76–79, 81, 82, 102]. To make the solution
less sensitive to noise, a least squares method is widely used.

Here, the shift parameters x1 can be computed as the slope of the phase dif-
ference \(F1(u)/F0(u)). To make the solution less sensitive to noise, a least squares
method is widely used. When we apply the inverse shift estimation into the object
image after the rotation estimation for the reference image, the result image is
exactly same with the reference image (see Fig. 3.18); therefore this shift esti-
mation process is used in initial registration operation.

Fig. 3.18 The simulation result of the shift estimation. a Reference image. b Object image.
c Inverse shift estimated image with after the rotation estimation of (b)
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We decide three candidates for a reference image. To do this, we use the Hilbert
space method. That is, we execute the initial registration process as Fig. 3.19.

In Fig. 3.19, LR1 denotes as a reference image and from LR2 to LR4 are chosen
candidates low resolution images. These candidate images are located at each high
resolution grid by using the inverse shift estimation. For example, four sample
images of 320 9 240 resolution to generate a high resolution image are shown in
Fig. 3.20.

Fig. 3.19 The initial registration process

Fig. 3.20 Four sample images to generate a high resolution image
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3.4.5 Reconstruction

And then, we can obtain a high resolution image, but its resolving power is not
good. Because, obtained high resolution image has multichannel sampling fre-
quencies and has unknown the offsets. To reduce the offsets and the number of
multichannel sampling frequency, we apply the mean value filtering. That is, all of
each pixel value is regenerated by using neighbor 5 pixels with cross-shape. Its
graphical diagram and results image for four sample images are shown in
Fig. 3.21.

Secondly obtained high resolution image, it looks not clear. Therefore, we
apply the de-blurring operation to more reduce multichannel sampling frequencies,
and then we apply sharpening process as shown in Fig. 3.23.

We apply mean value filtering, bi-cubic interpolation, de-blurring and sharp-
ening process again like a kind iterative back-projection (IBP) method. And then
we can obtain as Fig. 3.24.

These processes can be expressed as below equations. The initial registered
image by the rotation and shift estimation has non-uniformed sampling frequency
with unknown offsets. It can be expressed as

Ym ¼
X
i1;i2

ej2p i1N1tm;1þi2N2tm;2ð ÞD0

tm
ai1;i2 ð3:20Þ

Fig. 3.21 Graphical diagram
and results image for four
sample images

Fig. 3.22 Secondly obtained
high resolution image by
using the mean value filtering
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3.5 Conclusion

We have described super resolution methods, and especially we have focused to
super resolution imaging with multichannel sampling with unknown offsets. In
such algorithms, an accurate registration can decide the algorithm performance.
We propose an advanced registration algorithms with smart rotation and shift
estimation. The sequence for these two processes in our algorithm followed the
warp-blur observation model. Generally, the cases that the blurring parameters are
depend on the camera rotations and vibrations are much more than vice versa.

Firstly, our algorithm decides the optimal reference image to reduce the reg-
istration error, on the other hand another numerous super resolution algorithms
discard considering this registration error or assume as uniform value. In this
frame work, the registration error is calculated by using the sum of absolute

Fig. 3.23 Result image after
applying the de-blurring and
sharpening to Fig. 3.22

Fig. 3.24 Result image after
applying IBP to Fig. 3.22
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difference (SAD) based on the partial distortion elimination (PDE). This process
has been obtained the noticeable result comparing conventional algorithms.

Secondly, the proposed algorithm estimates the rotation and the shift in order
successively, because our algorithm is based on the warp-blur observation model.
The blurring effects are by the point spread function (PSF) of camera, and it is
subject to changes according to the rotation parameter of the image.

Finally, we have reconstructed a high resolution image by using the planar
motion estimation. This results in a set of nonlinear equations in the unknown
signal coefficients and the offsets. Using this formulation, we have shown that the
solution is generally unique if the total number of sample values is larger than or
equal to the total number of unknowns (signal parameters and offsets).

We present the one reference image and their three candidate images for 10
sample images to reconstruct a high resolution image by using our proposed
registration algorithm. These candidate images are obtained from first step. And
also we represent all images for each sample and show a bi-cubic interpolated
image and a super resolution image by proposed algorithm. The image quality of

Table 3.1 Comparison of the different methods presented in this chapter
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proposed algorithm is much higher than the bi-cubic interpolation method. We
take the average PSNR of proposed algorithm is about 38 dB and another’s are
lower than our method. It is as shown in Table 3.1.
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