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Abstract  Epigenetics is “the branch of biology which studies the causal interactions 
between genes and their products which bring the phenotype into being” as defined 
by Conrad Waddington in 1942 in a discussion of the mechanisms of cell differentia-
tion. More than seven decades later we know that these mechanisms include histone 
tail post-translational modifications, DNA methylation, ATP-dependent chromatin 
remodeling, and non-coding RNA pathways. Epigenetic modifications are powerful 
drugs targets, and combined targeting of multiple pathways is expected to signifi-
cantly advance cancer therapy.

Abbreviations

SAH	� S-adenosylhomocysteine
SAHA	� Suberoylanilidehydroxamic acid
KMT/PRMT	� Lysine/arginine methyltransferase
KDM/PRDM	� Lysine/arginine demethylase
ES	� Embryonic stem
HDAC	� Histone deacetylase
CpG	� Phosphodiester-bonded cytosine–guanine dinucleotide
MECP	� Methyl-CpG-binding domain proteins
DNMT	� DNA methyltransferase
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RAR	� Retinoic acid receptor
RA	� retinoic acid
Hox	� Homeobox
ChIP	� Chromatin immunoprecipitation
RXR	� Retinoid X receptor
RARE	� Retinoic acid responsive DNA element
PRC	� Polycomb repressive complex
5hmC	� 5-hydroxymethylcytosine
5-Aza	� 5-Aza-2′-deoxycytidine
DZNep	� 3-Deazaneplanocin A
HSCs	� Hematopoietic stem cells
TRAIL	� TNF-related apoptosis-inducing ligand
TDG	� thymine DNA glycosylase
PP	� proximal promoter

Standardized Gene Names/Nomenclature

KDM1	� LSD1/2
KDM4A	� JMJD2A
KDM5A	� Jarid1A/B/C/D
KDM6	� JMJD3/UTX/(UTY)
KAT3A/B	� CBP/p300
KAT6A	� MOZ
KAT6B	� MORF
MT2A	� MLL1
KMT2B/C	� MLL2/3

Introduction

What determines whether a given piece of DNA along the chromosome is functioning, 
since it’s covered with the histones? You can inherit something beyond the DNA 
sequence. That’s where the real excitement of genetics is now.
—James Watson, 2003

The term “epigenetics” was coined by Conrad Waddington in 1942 in a discussion 
of the mechanisms of cell differentiation. Waddington defined epigenetics as “the 
branch of biology which studies the causal interactions between genes and their 
products which bring the phenotype into being” [97]. The specific epigenetic 
mechanisms that regulate genetic programming were not discovered until dec-
ades after Waddington first coined the term [30, 73]. These mechanisms are now 
known to include histone tail post-translational modifications, DNA methylation, 
ATP-dependent chromatin remodeling, and non-coding RNA pathways [88]. With 
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these discoveries, Waddington’s original definition of “epigenetics“ has changed 
and evolved to the currently accepted view that “epigenetics (epi—being a Greek 
prefix for “on top of”) refers to “the study of heritable changes in genes that are 
not the result of changes in the DNA sequence” [74].

Dr. James Watson won the Nobel Prize for his seminal role in discovering the structure 
of the DNA double helix structure in 1953, but 50 years later he acknowledged that DNA 
is not the sole regulator of gene inheritance and expression. Instead, epigenetic changes 
that occur “above” the DNA may be just as or more important than genetics in terms of 
their effects on development and disease state. Retinoic acid (RA), a vitamin A derivative 
that functions as the active metabolite in cellular signaling, induces cell differentiation in 
stem cells and some cancer cells. Along with the more well known effects of RA signal-
ing on cell lineage specification through transcriptional activation of retinoic acid recep-
tor (RAR)-regulated genes, recent studies are demonstrating that RA also mediates cell 
differentiation via rapid, profound effects on the epigenome. This observation is opening 
up a new area of fundamental research into transcriptional regulation as well as pointing 
the way to new clinical applications of RA. The use of RA in combination with drugs that 
modify the epigenome is showing promise in the treatment and/or prevention of several 
types of cancer. This type of combination therapy is increasingly relevant, as many types 
of cancer exhibit aberrant levels of or mutations in epigenetic regulatory proteins.

History: Epigenetic Regulation Is Achieved by a Number 
of Different Mechanisms

Waddington nicely illustrated the idea of genotype-to-phenotype changes along cell 
development pathways by his drawing of an “epigenetic landscape” [96]. In this model 
specific epigenetic modifications are acquired as progenitor cells, depicted as marbles, 
differentiate and commit to a specific cell fate, conceptualized as marbles rolling down 
into one of several valleys. This idea has been substantiated by experimental findings 
where it has been demonstrated that commitment of cells into specific differentiation 
pathways is associated with progressive epigenetic modifications [34].

Histone Protein Tail Modifications and Transcriptional 
Regulation

Cellular chromatin is composed of DNA-wrapped nucleosomes packed into regions 
of either compacted or loose nucleosomal structure, referred to as hetero- and eu-
chromatin, respectively. In general, genes residing in heterochromatic regions are 
silenced, whereas genes located in euchromatic regions are actively transcribed.

The nucleosome is a histone octamer composed of two of each of the core histones 
H2A, H2B, H3, and H4, and one auxiliary H1 linker histone [22]. The histone pro-
teins are each composed of a globular domain with an extended, positively charged 
N-terminal tail that interacts with the phosphodiester backbone of the DNA. Histone 
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proteins were discovered in 1884, but it was not until 1963 that histone tails were shown 
to be post-transcriptionally modified [66]. Subsequently, the effects of these histone 
modifications on gene regulation began to be elucidated [2]. Importantly, the histones, 
in particular the lysine/arginine rich tails, were shown to be targets for extensive post-
transcriptional modifications. Recently, Yuan et al. [101] have shown that RA-mediated 
transcriptional activation of the Cytochrome P450 26a1 gene is associated with a loos-
ening of the chromatin structure, which is required for transcriptional activation.

Histone protein tail regulation is highly complex, and numerous post-
translational modifications can regulate different aspects of gene transcription; 
these include phosphorylation, sumoylation, ubiquitination, ribosylation, neddyla-
tion, ADP-ribosylation, citrullination, and others [82, 100]. The enzymes that reg-
ulate these modifications can be divided into three groups of epigenetic regulators: 
“writers”, “readers”, and “erasers”.

Histone modifications are generated by “writer” enzymes, which include fami-
lies of lysine/arginine methyltransferases (KMTs/PRMTs), histone lysine acetyl-
transferases (KATs), and serine/threonine kinases. Methylation of histone tails, 
including trimethylation of histone 3 lysine 9 (H3K9me3) and 27 (H3K27me3), is 
generally associated with gene repression, whereas the acetylation of the same res-
idues (H3K9 and H3K27) correlates strongly with gene activation [31, 93]. There 
are also instances in which methylation of certain residues is associated with gene 
activation, such as methylation of H3K4 and H3K36 [79, 94]. Acetylation by KAT 
proteins, such as KAT3A (p300), KAT3B (CBP), PCAF, or KAT13B (pCIP), pro-
motes the activation of gene expression by neutralizing the positive charges of 
histone tails [93], leading to loosening of the negatively charged chromatin and 
subsequent binding of DNA binding factors that promote gene transcription.

The actions of “writer” enzymes are countered by a group of enzymes known 
as “erasers”. “Erasers” are responsible for the removal of specific histone modifi-
cations. This group includes lysine/arginine demethylases (KDMs/PRDMs), his-
tone deacetylases (HDACs), and serine/threonine phosphatases (summarized in 
Table 7.1). Typically, these “erasers” counteract the actions of “writer” enzymes, 
having direct effects on gene transcription. For example, “writer” enzymes of the 
KAT family mediate the deposition of acetylation marks onto lysine residues of 
histone tails, thereby neutralizing the attraction of positively charged histones with 
negatively charged DNA. This allows for the unraveling of DNA, thereby allow-
ing general transcriptional machinery and other proteins to bind that mediate gene 
activation. Conversely, “eraser” proteins of the HDAC family remove the acety-
lation mark. This allows the DNA to again wrap around histones, preventing the 
binding of general transcription machinery, thereby leading to gene repression.

“Reader” proteins specifically bind to post-translationally modified chroma-
tin, and recognize these specific histone modifications to alter chromatin structure 
and dynamics. Often, “reader” proteins are part of larger protein complexes that 
contain “reader” and/or “eraser” proteins. Without “reader” proteins, posttransla-
tional modifications would not be recognized, and the protein complex or specific 
“writers” or “erasers” would not be recruited. Alternatively, “writer” or “eraser” 
proteins themselves can also serve as “readers” proteins. For example, KAT 
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proteins possess a bromodomain that recognizes and binds acetylated lysine resi-
dues on histone tails. This allows for KAT proteins to further mediate acetylation 
at these specific DNA regions. Because of this, these “reader” proteins also medi-
ate changes in transcription or DNA replication [14].

The distinction between “writers”, “readers”, and “erasers” is complicated by the 
fact that protein complexes that add marks (“writer” complexes) are frequently com-
posed of several subunits with different enzymatic properties. For example, the poly-
comb repressive complex 2 (PRC2) is comprised of at least four subunits which include 
the Suz12 (zinc finger), Eed, Ezh2 (SET domain with histone methyltransferase activ-
ity) and RbAp48 (histone binding domain) proteins. Importantly, the Ezh2 protein has 
enzymatic activity and can add methyl groups specifically to the H3K27 resulting in tri-
methylation of this histone residue. This posttranslational modification is deposited onto 
histone tails at lysine 27 by the PRC2 complex—a “writer”, but is recognized by the 
polycomb repressive complex 1 (PRC1)—a “reader” (Min et al. [59]. However, PRC1 
mediates the deposition of ubiquitin, another histone modification, onto histone 2A 
lysine 119. PRC1 can in other words “read” the H3K27me3 and “write” the H2A.
K119Ub, and can thus be considered both a “reader” and a “writer” enzyme [80]. 
Additional modifications of the histone tail (e.g. H3S28ph) proximal to the site of 
the initial modification (H3K27me3) add another layer complexity. In this example the 
recognition of H3K27me3 by the INHAT “reader” protein is prevented by phosphoryla-
tion of Serine 28 (H3S28ph) [44]. This illustrates how modification of nearby residues 
can interfere with the recognition of specific histone marks by “reader” proteins. The 
effect of combinatorial histone modifications is commonly referred to as the histone 
code, a term coined by Charles D. Allis in 2001 [38]. As exemplified above by the con-
text dependent recognition of H3K27me3, the emerging view is that the recognition by 
“reader” proteins is not dictated only by specific histone modifications, but rather by an 
interplay between different histone modifications.

Table 7.1   Groups of Epigenetic Modifiers and their functions

“Writers” are a group of enzymes that mediate the addition of epigenetic modifications 
(marks). “Erasers” are proteins with enzymatic activity that mediate the removal of these 
marks. “Readers” are proteins, generally with no enzymatic activity, that recognize and bind to 
posttranslational modifications to mediate downstream effects
Key Lysine methyltransferase (KMT); protein arginine methyltransferase (PRMT); lysine acetyl-
transferase (KAT); serine/threonine kinases (S/T kinase); lysine demethylase (KDM); histone 
deacetylase (HDAC); DNA methyltransferase (DNMT); methyl-CpG-binding domain proteins 
(MeCP); chromobox homolog (CBX)

– Writer Eraser Reader

Histone marks
Lysine methylation KMT KDM CBX proteins
Arginine methylation PRMT 14-3-3-proteins
Lysine acetylation KAT HDAC
Serine/threonine phosphorylation S/T Kinase Phosphatase
DNA methylation
CpG (5meC) DNMT DNA demethylase MeCP

MBD1-4
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DNA Methylation and Gene Silencing

In contrast to histone modifications, which are relatively transient in nature, DNA 
methylation provides a more persistent, long-term gene silencing. DNA methyla-
tion occurs when a methyl group is deposited on the cytosine of a phosphodies-
ter-bonded cytosine-guanine dinucleotide (CpG) sequence. DNA methylation, 
e.g. the formation of 5-methylcytosine (5mC), was first proposed as a mechanism 
for changing gene expression in 1975 [35, 73]. CpG sequences are typically con-
centrated in large clusters called CpG islands, predominantly located at or near 
gene promoters, but CpG islands are also found in intergenic regions. Members 
of a family of DNA methyltransferase (DNMT) enzymes transfer methyl groups 
to DNA and this engenders stable, long term gene silencing [18]. DNA methyl-
ation is introduced by the recruitment of DNMT3a and 3b by sequence specific 
repressors that silence gene transcription [25]. Newly replicated DNA is tran-
siently hemi-methylated until DNMT1 uses the methylated parent strand to direct 
deposition of corresponding methylation on the daughter strand, thus maintaining 
the overall pattern of DNA methylation [48]. In the context of DNA methylation, 
the DNMTs function as “writers”, whereas methyl-CpG-binding domain proteins 
(MECP), which recognize methylated CpGs, function as “readers” [76]. Recently, 
researchers have determined that DNA methylation is reversible [47, 81], which 
suggests that DNA methylation is a dynamic process rather than a one-way mech-
anism of gene silencing, as was previously thought to be the case.

Selected groups of epigenetic regulators are listed in Table 7.1, where families 
of “writers”, “erasers”, and “readers” are listed for each type of epigenetic modi-
fication (individual rows). In Table 7.2 are listed a number of commonly investi-
gated epigenetic modifications (individual rows), and their effects on transcription.

Other Epigenetic Regulators of Gene Expression

ATP-dependent remodeling of chromatin structure and long intergenic non-coding 
RNAs (lincs) are other major epigenetic regulators of gene expression, but to date, 
little is known about their roles, if any, in RA regulated gene transcription. Here, 
we will focus on what is known about RA involvement in histone modifications 
and DNA methylation.

Development of the Field: Retinoids and RARs Mediate 
Histone Modifications

RA functions as the ligand for retinoic acid receptors (RARs), and can regulate 
several developmentally important genes, including the Hox (homeobox) gene 
clusters [41, 42, 50]. At these gene clusters as well as at other RA regulated genes, 
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heterodimers of RARγ and retinoid X receptor α (RXRα) recognize and bind to 
RA responsive DNA elements (RAREs), then inducing epigenetic changes and 
transcriptional induction in response to RA (Fig. 7.1) [27, 28]. The transcriptional 
induction by RA is associated with increased levels of the co-activator proteins 
KAT3A (p300), KAT13B (pCIP), and of RNA polymerase II at target RAREs. 
Conversely, co-repressor proteins such as SUZ12, a key protein component of 
PRC2, are associated with specific RAREs, but dissociate in response to RA 

Table 7.2   Selected histone modifications and their enzymatic regulators

Specific histone marks involved in transcriptional regulation, and the enzymes that modify 
these marks. Activating marks are modifications that generally favor transcription (Activation), 
whereas repressive marks are modifications that favor transcriptional silencing (Repression). 
Examples are given of specific histone modifications (Histone marks), and of the specific 
enzymes depositing (“writers”) and removing (“erasers”) these marks. This is a not a comprehen-
sive list, but rather a list of the most well understood regulators of epigenetic changes
Key enhancer of zeste homolog 2  (EZH2); nuclear SET domain-containing protein  (NSD3); 
lysine (K)-specific demethylase (KDM); SET domain, bifurcated (SETDB); methyltransferase 
variant (SUV39H12); SET domain (SETD); mixed-lineage leukemia  (MLL); positive regula-
tory domain (PRDM); p300/CBP associated factor (PCAF); histone deacetylase (HDAC); lysine 
acetyltransferase (KAT); MAP-kinase-kinase-kinase; mitogen- and stress-activated protein kinase 
(MSK); aurora kinase (STK)

– Histone mark Writer Eraser

Repression H3K27me3 EZH2, NSD3 KDM6A/B (JMJD3)
H3K9me3 SETDB1/2 Lysine specific demethylase 

4A/B/C/DSUV39H1/2
Activation H3K4me1 SETD7 KDM1A

KDM5B
H3K4me2 NSD3 KDM5A/D

KDM1A
KDM5B

H3K4me3 MLL Lysine specific demethylase 
4A/B/C/DMLL3/4

PRDM9 KDM5B
SETD1A/B
SET AND MYND  

domain-containing protein 3
H3K36me3 SETD2 Lysine specific demethylase 4A

NSD2 Lysine specific demethylase 
NO66

H3K14Ac PCAF HDAC3
MYST3

H3K9Ac PCAF SIRT1
KAT13B (pCIP) SIRT6
KAT6A (Moz)

H3K27Ac KAT3A/B (P300/CBP) –
H3S28Ph MAPKKK-MLT –

MSK1/2
STK5
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(Figs. 7.1 and 7.2) [41, 51]. Furthermore, the re-association of SUZ12 with RAREs 
upon RA removal [27, 28] exemplifies the highly reversible nature of cofactor 
association. Extensive changes in histone marks can be observed in response to 
RA, as illustrated by a heat-map showing RA-associated changes in H3K27me3, 
H3K4me3, and H3 acetylation (acH3) levels at the Hoxa cluster (Fig.  7.1). 
Importantly, for the Hoxa cluster the levels of activating marks (H3K4me3 and 
acH3) increase, whereas the levels of repressive marks (H3K27me3) decrease in 
response to RA (Fig.  7.1) [41]. This is not the case for all RA inducible genes; 
for CoupTF1 (Nr2F1) the levels of both activating (H3K4me3) and repres-
sive (H3K27me3) marks show an initial increase in response to RA (Fig.  7.2). 
However, the H3K27me3 levels then start to decline, thereby increasing the extent 
of the induction [51]. The simultaneous presence of active H3K4me3 marks and 

Fig. 7.1   Epigenetic changes induced along the Hoxa cluster in response to RA. The epigenetic 
changes of the RA responsive Hoxa gene cluster are shown, with the locations of the Hoxa1 
proximal promoter (PP) and RA responsive element (RARE) indicated by arrows. The lev-
els of acH3, H3K4me3, and H3K27me3 determined by ChIP-chip are presented as heat maps, 
with rows representing individual timepoints for each genotype, and columns indicating specific 
genomic regions. The genotypes of the stem cell lines are as follows: Wild type (WT), RARE 
knockout (E-), and RARγ knockout (γ-). The cells were cultured in RA for 1, 8, and 24 h, as 
indicated. The color scale representing log2-transformed ChIP enrichment is indicated at the 
top of the figure. Note the reduced levels of acH3 and H3K4me3 at Hoxa1 PP and RARE in 
the RARγ–knockout cell line. Models for RA mediated transcription of RA target genes Hoxa1 
and Nr2F1. In the absence of RA, RARγ–RXRα heterodimers associated with Hoxa1 RAREs 
presumably associate with co-repressors, thereby generating a SUZ12-rich environment which 
represses transcription. Binding of the RA ligand causes a conformational change in the RARγ–
RXRα heterodimer bound to the Hoxa1 RARE. This results in the recruitment of pCIP/p300, 
which generates an euchromatic environment, presumably by acetylating the histone tails. This 
allows pol II to initiate transcription of Hoxa1. The Nr2F1 promoter region (PP) is bound by 
SUZ12 in the absence of RA. Upon exposure to RA the increase in activating marks is initially 
counteracted by a concomitant increase in SUZ12, which attenuates the transcription of Nr2F1. 
Eventually, the SUZ12 levels decline, allowing the increased transcriptional activation of Nr2F1 
(modified from Kashyap et al. [41] and Gillespie and Gudas [28])
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repressive H3K27me3 marks is referred to as a bivalent domain, and this chro-
matin structure can often be found at promoters of RA inducible genes [41, 51, 
56, 63]. The bivalent chromatin structure signifies that these genes are in a poised 
state in which changes in the H3K4me3/H3K27me3 ratio are associated with tran-
scriptional induction (presence of RA; H3K4me3  ↑, H3K27me3 ↓) or silencing 
(absence or removal of RA; H3K27me3 ↑, H3K4me3 ↓), as illustrated in Fig. 7.2 
[7, 41, 42, 50, 51].

Now the question is; what regulates the levels of histone marks? Since histone 
marks are actually covalent modifications of histones, the levels need to be regu-
lated by enzymes located in proximity to the histone. This brings us back to the 
“writers”, “readers”, and “erasers” mentioned in the beginning of the chapter. The 
levels of the active H3K4me3 mark are regulated by lysine methyl transferases 
(KMT) “writers” and lysine demethylases (KDM) “erasers”. Specifically, MLL 
proteins, which are KMT “writers” of the trithorax family, trimethylate H3K4 
[64], and KDM5 proteins, which are H3K4me3-specific “erasers,” can subse-
quently convert the H3K4me3 mark into H3K4me2 [37, 46, 64]. Once H3K4me3 

Fig. 7.2   Epigenetic Signatures Associated with RA and RAR regulated transcription. Hoxa1 rep-
resents a group of direct target genes induced by RA (upper panel). The induction is characterized 
by dissociation of PRCs (ovals) and depletion of the H3K27me3 repressive mark (hexagons), and 
by increased levels of transcriptionally permissive marks, H3K4me3 (circle), H3K9ac (triangle), 
and H3K14ac (diamond). CoupTF1 represents a group of target genes with delayed transcrip-
tional induction by RA (middle panel). The induction is characterized by an initial increase of 
PRCs (ovals) and of the H3K27me3 repressive mark (hexagons), concurrent with increased lev-
els of transcriptionally permissive marks; H3K4me3, H3K9ac, and H3K14ac. The imprinted gene 
Mest is transcribed in the presence of RARα, but is silenced by DNA methylation upon knock-
out of RARα (lower panel). The transcriptional silencing of Mest is associated with increased 
DNA methylation, increased levels of the H3K9me3 repressive mark, and with decreased levels 
of transcriptionally permissive marks; H3K4me3, H3K9ac, and H3K14ac. Note that for Hoxa1 
and CoupTF1 (Nr2F1) the transcriptionally active state is shown to the right, whereas for Mest 
the transcriptionally active state is shown to the left (modified from Laursen et al. [51])
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has been converted to H3K4me2, the KDM1A/B “eraser” proteins can remove 
the remaining methyl marks, thus returning H3K4 to the unmethylated state [12]. 
Pharmacological inhibition of KDM1A (LSD1) reactivates the RA differentiation 
pathway in leukemia cells [78], indicating that enzymatic conversion of H3K4 to 
the unmethylated state by KDM1A plays a key role in antagonizing RA signal-
ing. Curiously, H3K4me3 and H3K27me3 can be found on the same nucleosome, 
composed of eight histones, but not on the same histone tail [94]. Thus, each of 
the two histone 3 components of the nucleosome can be differentially modified. 
This specification of a histone as simultaneously activating and repressive is the 
core of the bivalent domains.

Conversely, the levels of the repressive H3K27me3 mark are regulated by 
Polycomb group proteins, which are H3K27me1/2 specific KMT “writers” 
[10,  49], and the H3K27me2/3-specific KDM “erasers” KDM6A/B [1, 53]. The 
antagonistic effects of H3K4me3 and H3K27me3 are supported by the observation 
that RA-induced transcription leads to a concomitant decrease in H3K27me3 levels 
as well as an increase in H3K4me3 levels along the Hoxa cluster (Fig. 7.2). In this 
respect, it is interesting that the MLL2 complex contains KDM6A, an H3K27 dem-
ethylase [1]. Consequently, the MLL complex combines methyltransferase activity 
targeting H3K4 with demethylase activity targeting the opposing H3K27me3 mark. 
A similar “push-pull” effect is observed with the PRC2 complex which contains 
EZH2, an H3K27 methyltransferase, and KDM5B, an H3K4 demethylase [104]. 
The depletion of H3K27me3 through knockdown of the EZH2 methyltransferase 
failed to induce Hoxa1 expression [53]. This suggests that without increased H3K4 
methylation the loss of H3K27 methylation is insufficient to induce transcription 
of Hoxa1. Consequently, the combined actions of H3K4 methyltransferases and 
H3K27 demethylases may be required for gene transcriptional activation of at least 
some genes. Also, the transcriptional activation of Hoxa1 precedes the removal of 
the H3K27me3 mark by many hours, showing that the removal of the H3K27me3 
mark is not required for Hoxa1 transcriptional activation by RA [41].

A different scenario of the “push-pull” effect is observed when RA induces 
the CoupTF1 (Nr2F1) gene. In this case, activating H3K4me3 and repressive 
H3K27me3 marks are simultaneously recruited to the CoupTF1 promoter 
(Fig.  7.2), initiating a repressed or dampened induction characteristic of several 
late RA target genes [51]. While the functional depletion of PRC2 did not enhance 
RA induction of Hoxa5 and Hoxa1 (early genes), the depletion potently enhanced 
RA mediated induction of CoupTF1 and CoupTF2 (late genes) [51]. This finding 
is important since it provides a mechanistic rationale for distinguishing between 
early and late targets of RA induction. It has been shown that PRC2 can sense 
chromatin density, and thereby distinguish active chromatin (marked by H3K4me3 
and H3K36me2/3) from inactive chromatin, on which PRC2 will target H3K27 for 
methylation. This helps to explain how PRC2 maintains target genes in an inac-
tive, compacted chromatin state for long periods [101]. Taken together, these data 
further point to the presence of a combined “push-pull” effect, wherein the effects 
of specific KMTs are supported by the effects of specific KDMs, which together 
place and remove specific lysine methylation marks in a coordinated manner.
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RA induced transcription of the Hox genes increases not only histone H3K4 
methylation, but also histone acetylation [41] (Figs.  7.1 and 7.2). H3K27 for 
example can be modified by either acetylation or methylation, with oppo-
site effects on the chromatin environment, and thus on the transcriptional activ-
ity. Acetylation [20, 70] and methylation of H3K27 are mutually exclusive 
marks positioned by KAT3A/B (CBP/p300) and PRC2 (EZH2), respectively 
[65, 87]. H3K27 thus provides an example in which the enzymatic activities of 
KATs/KMTs and HDACs/KDMs converge in regulating gene activity. However, 
H3K27 is not the only target of acetylation; H3K9 and H3K14 are acetylated 
concurrently with RA induced transcriptional activation (Figs.  7.1 and 7.2) [41, 
42]. The RA-dependent recruitment of the acetyltransferases KAT3B (p300) 
and KAT13B (NCoA3, Actr, pCIP, Src3) to the RAREs of Hoxa1 (Fig. 7.1) and 
Cyp26a1 in F9 teratocarcinoma stem cells and embryonic stem (ES) cells sug-
gests that these KATs also play key roles in RA-induced transcription [27, 28, 
40]. Finally, KAT6A (Moz) is involved in H3K9 acetylation of the Hox gene loci, 
yet RA can activate the Hox loci independently of KAT6A [95]. The plethora 
of coregulators involved in RA induced transcription allows for fine-tuning of a 
highly gene specific response (Fig. 7.1).

Current State of the Field: DNA Demethylation Is Involved 
in the RA Transcriptional Response

Passive DNA demethylation takes place when maintenance methylation is 
inhibited during DNA replication, while active DNA demethylation requires spe-
cific enzymes and can occur without DNA replication [105]. Activation induced 
cytidine deaminase (AICDA, AID) is an active, reprogramming DNA demethylase 
expressed in ES cells and other cell types [61]. A second, more recently discov-
ered DNA demethylase family, Tet 1, 2 and 3, removes DNA methylation through 
oxidative demethylation, a mechanism also employed by JmjC proteins to dem-
ethylate histones [36, 81, 91]. Tet1 mediated hydroxylation of 5mC to 5-hydrox-
ylmethylcytosine (5hmC) is enhanced by AICDA, which generates 5hmC as a 
step towards the demethylation of 5mC. This requires thymine DNA glycosylase 
(TDG), a base excision repair enzyme, which excises the 5hmC [32]. Through 
the active prevention of DNA methylation, TDG maintains bivalent chromatin 
domains in ES cells [16]. Considering that several RA primary target genes reside 
in bivalent domains, it is worth noting that Um et al. [92] identified interactions 
between TDG and the RARs/RXRs which may link RA to active demethylation 
of DNA. TDG forms a complex with AICDA and GADD45a, and is required for 
the recruitment of the coactivator protein KAT3B (p300) to the promoters of RA-
inducible genes [17]. Thus, a loss of TDG activity could result in a decrease in 
RAR/RA-associated gene transcription and a resultant block in cell differentia-
tion, which would be consistent with the observed increase in DNA methylation 
of the Mest promoter region in response to knockout of RARα [52]. This indicates 
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that RARα (and possibly other RARs) plays a direct role in maintaining gene 
expression by keeping specific promoters in a hypomethylated state, and con-
versely, underscores the fact that reduced expression of RARα can have adverse 
consequences, such as leukemogenesis [29]. A reduction in RARα signaling also 
impairs the survival of tumor reactive CD8(+) T-cells within the tumor microenvi-
ronment [33]. Whether this is related to RARα’s ability to control the methylation 
state of certain genes has not yet been elucidated.

During gametogenesis, maternal or paternal genomes can be modified so that 
one parental allele is expressed, whereas the other is transcriptionally silenced. 
This genomic imprinting typically occurs through DNA methylation of CpG 
islands [68]. An exciting, recent, finding suggests that RARα, independently of 
RA, maintains the DNA methylation status of specific imprinted genes [52]. This 
was highlighted by the identification of several aberrantly expressed, imprinted, 
genes in RARα knockout F9 stem cells [52]. Under normal conditions RARα 
associates with the promoter region of the paternally expressed gene, Mest; upon 
RARα knockout, resulting in the absence of RARα, the levels of H3K9me3 and 
the DNA methylation of the Mest promoter region significantly increase [52] 
(Fig.  7.2). Several of the changes in gene expression associated with the RARα 
knockout are similar to those observed during the differentiation of stem-like pro-
genitors to hypertrophic chondrocytes in the developing growth plate [15]. This 
similarity between the in vivo and in vitro data supports the idea that in vivo 
imprinting may be regulated by RARα, and highlights the important roles of spe-
cific RARs in regulating epigenetic changes during development. Further explora-
tion of this topic is expected to deepen our understanding of genomic imprinting 
and to expand the realm of RAR regulated transcription beyond the well-known 
ligand-induced regulation of gene activity.

Relevance: RA Regulated Epigenetic Changes  
in Carcinogenesis

Retinoid signaling is often disrupted during carcinogenesis, suggesting that 
restoration of retinoid signaling may be a viable option for cancer prevention and/
or treatment [60, 85]. Synthetic retinoids modify the levels of the various RARs dur-
ing breast carcinogenesis [8], and RA inhibits the growth of human osteosarcoma 
by promoting cell differentiation [99]. In a glioma animal model, RA also promoted 
the differentiation of cancer stem cells [9]. As a result, retinoids are currently being 
tested and/or used for treatment of many different cancers, including breast, ovarian, 
renal, head and neck, melanoma, leukemias, and prostate cancers. However, epige-
netic changes, such as histone modifications and DNA methylation, and subsequent 
changes in gene expression are also thought to play major roles in cancer initiation 
and progression. Therefore, in line with the aforementioned “push-pull” model, 
combination cancer therapies that include retinoids together with epigenetic thera-
peutic agents are believed to be more effective in treating different cancers.
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Histone deacetylase inhibitors, such as suberoylanilidehydroxamic acid 
(SAHA) have been extensively studied as potential cancer therapies, and are cur-
rently being used to treat multiple cancers, including cutaneous T-cell lymphoma 
and non-small cell lung cancer [3]. Chemoproteomics profiling of HDAC inhibi-
tors  revealed selective targeting of  histone deacetylase (HDAC)  complexes as 
promising cancer therapies [3].

It is believed that treatment with HDAC inhibitors together with retinoid thera-
pies may be an even more effective treatment regimen for certain cancers. When 
combined with HDAC inhibitors such as Trichostatin A and valproic acid, RA can 
re-induce RARβ expression in kidney [89] or breast [60] cancers, and inhibit cell pro-
liferation in many types of cancers [13, 23, 43, 67, 69, 77, 86, 90, 98]. Furthermore, 
RA synergizes with valproic acid to promote the degradation of the PML-RARα 
oncoprotein, destroying the leukemia initiating cells in vivo [54]. Recently a phase I 
trial using valproic acid and liposomal RA for patients with solid tumors yielded pos-
itive results, suggesting that this therapy may be used for various solid tumors [21].

Another promising treatment approach is the co-administration of retinoids 
with DNA methyltransferase inhibitors. Mice treated with a combination of RA 
and the DNA methyltransferase inhibitor 5-Aza-2′-deoxycytidine (5-Aza) exhibit 
a decreased incidence of oral cancer after carcinogen treatment [84], and valproic 
acid, 5-Aza, and RA promoted growth arrest and cell differentiation of cultured 
human head and neck squamous cell carcinoma cells [26]. Additionally, a phase II 
clinical trial for patients with acute myeloid leukemia combining 5-Aza with RA 
was just completed with promising results [55].

Finally, other studies have examined the potential efficacy of treatments with 
RA, HDAC inhibitors, and DNA methyltransferases together. RA treatment in the 
presence of both valproic acid and 5-Aza promotes the re-expression of RARβ and 
inhibits cell growth in breast cancer cell lines [60]. Additionally, promyelocytic 
leukemia cells exhibit cell growth inhibition and increased granulocyte differen-
tiation after treatment with all three drugs [77]. Overall, these studies indicate that 
combinations of retinoids and epigenetic modulating drugs are promising treatment 
options for multiple types of cancer, in part because of their actions in promot-
ing cell differentiation and the inhibition of cell proliferation. Various epigenetic 
machinery inhibitors are being intensely studied as possible cancer treatments [75], 
and these could potentially be even more effective in combination with RA.

The Future: RA Action and Epigenetics, Cell Differentiation 
and Cancer

Further studies are needed to determine the roles and specificities of various KATs 
and KDMs with respect to RA transcriptional activation and to develop a better 
understanding of how RARα (and possibly other RARs) plays a direct role in main-
taining gene expression by keeping specific promoters in a hypomethylated state. 
Many different epigenetic changes must take place for stem cells to differentiate 



142 A. Urvalek et al.

properly, and when these changes do not proceed normally, increased tumorigenesis 
can result. Aberrant expression of the polycomb protein EZH2, a core component 
of PRC2, has been found in human breast, prostate, bladder, and colon cancers, and 
this overexpression is correlated with a poor prognosis [58, 72]. Overexpression of 
EZH2 in hematopoietic stem cells (HSCs) eliminates the exhaustion of the long-
term repopulation potential of these stem cells during multiple, sequential transplan-
tations [39]. EZH2 also enhances leukemogenesis by enhancing the differentiation 
block in acute myeloid leukemia [62, 83]. Thus, these epigenetic modifications by 
EZH2 have profound consequences in terms of reducing the ability of HSCs to dif-
ferentiate and enhancing tumorigenesis. Likewise, in prostate cancer EZH2 can 
block differentiation by affecting transcriptional regulation by the androgen receptor 
[19]. The recent development of EZH2 inhibitors for treatment of lymphomas shows 
the power of manipulating epigenetic modifications for cancer treatment [4].

DZNep, an S-adenosylhomocysteine (SAH) hydrolase inhibitor, can eradicate 
tumor initiating cells in hepatocellular carcinoma cells and induce apoptosis in 
acute myeloid leukemia [11, 24, 103]. DZNep can also inhibit tumorigenicity and 
progression in prostate cancer [19]. The inhibition of SAH hydrolase causes an 
increase in SAH, resulting in inhibition of S-adenosyl-L-methionine dependent 

Fig. 7.3   Representation of RA and DZNep effects on apoptosis regulation in human colon cancer 
cells. Retinoic acid treatment promotes TRAIL-related apoptosis in RARβ / RARγ-positive HT29 
cells, but not in SW480 cells which express only low levels of RARβ / RARγ. The functional 
depletion of PRC2 by either inhibition with DZNep or by knockdown of SUZ12 increases TRAIL-
mediated apoptosis in both HT29 and SW480 cell lines. In this scenario the PRC2-mediated 
repression is alleviated, thereby activating TNFRSF10 even in the absence of RARβ /RARγ



1437  The Roles of Retinoic Acid and Retinoic Acid Receptors

methyltransferases such as EZH2. We recently showed that human colon cancer 
cells, when exposed to RA, DZNep, or to a genetic knockdown of the PRC2 core 
protein SUZ12, exhibited enhanced PTEN mediated apoptosis, whereas the survival 
of ES cells was unaffected [6]. The apoptotic effects of RA, DZNep, or SUZ12 
depletion were further enhanced by combination with the TNF-related apoptosis-
inducing ligand (TRAIL) death receptor [5]. The synergy between TRAIL and RA 
was confirmed by another report in which the authors demonstrate that treatment 
with retinyl acetate (another vitamin A metabolite) in combination with TRAIL not 
only induced apoptosis specifically in intestinal polyps, but also inhibited tumor 
growth and prolonged survival in a murine model of human colon cancer [102]. 
These results suggest that one mechanism by which RA enhances TRAIL associated 
apoptosis is via removing PRC2 complexes from various genes involved in differen-
tiation and/or apoptosis (Fig. 7.3).

Research in this field will be enhanced by the recent development of more 
specific EZH2 inhibitors [45, 57], and by the evaluation of new drug combinations 
that more efficiently target specific epigenetic regulators. The fact that so many 
different types of cancer exhibit altered epigenetic profiles and/or mutations in 
proteins that modify the epigenome indicates that this will be a fruitful area of 
research that will provide major benefits to cancer patients in terms of new combi-
nation therapies.
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