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Abstract The discovery of retinoic acid receptors arose from research into how 
 vitamins are essential for life. Early studies indicated that Vitamin A was metabolized 
into an active factor, retinoic acid (RA), which regulates RNA and protein expression 
in cells.  Each step forward in our understanding of retinoic acid in human health was 
accomplished by the development and application of new technologies. Development 
cDNA cloning techniques and discovery of nuclear receptors for steroid hormones pro-
vided the basis for identification of two classes of retinoic acid receptors, RARs and 
RXRs, each of which has three isoforms, α, β and ɣ.  DNA manipulation and crystal-
lographic studies revealed that the receptors contain discrete functional domains respon-
sible for binding to DNA, ligands and cofactors.  Ligand binding was shown to induce 
conformational changes in the receptors that cause release of corepressors and recruit-
ment of coactivators to create functional complexes that are bound to consensus pro-
moter DNA sequences called retinoic acid response elements (RAREs) and that cause 
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opening of chromatin and transcription of adjacent genes. Homologous recombination 
technology allowed the development of mice lacking expression of retinoic acid recep-
tors, individually or in various combinations, which demonstrated that the receptors 
exhibit vital, but redundant, functions in fetal development and in vision, reproduction, 
and other functions required for maintenance of adult life.  More recent advancements 
in sequencing and proteomic technologies reveal the complexity of retinoic acid recep-
tor involvement in cellular function through regulation of gene expression and kinase 
activity.  Future directions will require systems biology approaches to decipher how 
these integrated networks affect human stem cells, health, and disease.

Abbreviations

ChIP  Chromatin immunoprecipitation
ChIP-seq  Chromatin immunoprecipitation coupled with deep sequencing
cDNA  Complementary DNA
CRABP  Cellular retinoic acid binding protein
CRBP  Cellular retinol binding protein
DNA  Deoxyribonucleic acid
DBD  DNA binding domain
LBD  Ligand binding domain
NMR  Nuclear magnetic resonance
RA  Retinoic acid
RAR  Retinoic acid receptor
RARE  Retinoic acid response element
RNA  Ribonucleic acid
RNA-seq  High throughput RNA sequencing
RXR  Retinoic X receptor
VAD  Vitamin A deficiency

Introduction: In Quest of  
a Mechanism of Action for Vitamin A

The idea that essential factors other than proteins, fat, starch, sugar, or min-
erals are present in food was a novel concept before the late 1880s. Ultimately 
this notion was verified by a series of human dietary supplementation studies 
and controlled experiments in animal models conducted between 1880 and 1920, 
which demonstrated that removal of these factors from the diet caused debilitat-
ing illnesses and death. The first discoveries in the field were made by Christiaan 
Eijkman and Frederick Gowland Hopkins who found that rice polishings con-
tain substances preventing beriberi. These investigators received the Nobel prize 
for their work in 1929 [17]. In 1912, Casimer Funk identified the active fraction, 
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which was named water-soluble factor b, later described as thiamine [16]. Since 
this substance, which was vital for life belonged to a class of organic compounds 
called amines, he named it “vitamine” (vital amines) [98].

During this time, two groups, one led by Elmer McCollum and the other by 
Thomas Osborne and Lafayette Mendel, independently provided evidence for 
another essential substance that was named fat-soluble factor a [113]. By 1920, 
several other low abundance dietary factors were also being described, and Jack 
Drummond argued to the American Chemical Society that since there was no evi-
dence for the presence of an amine in all of these “vitamines”, it would be easiest 
for classification purposes to drop the -e on Funk’s general reference to vital fac-
tors and refer to them as Vitamin A, Vitamin B, Vitamin C, etc. [29].

The structure of vitamin A, also known as retinol, was first reported by Paul 
Karrer and his collaborators in 1931 [55, 111], confirmed by the group of Heilbron 
the following year [44], and crystallized in 1937 [47]. The molecule is composed 
of 20 carbon atoms arranged as a beta-ionone ring with a conjugated isoprene tail 
that terminates with an alcohol functional group (Fig. 1.1).

Ongoing studies revealed that vitamin A serves as a precursor for active deriva-
tives that impart two very different physiologic effects: (1) an aldehyde derivative 
(11-cis retinal), which is the active chromophore of vision [2, 7, 48, 128], and (2): 
an acid derivative (all-trans retinoic acid), which has the ability to reverse develop-
mental defects in vitamin A deficient (VAD) animals [4, 5, 123] (Fig. 1.1). Further 
experiments by Arens and van Dorp suggested that retinoic acid (RA) could not 
be converted into vitamin A in vivo and thus, they concluded that RA was itself a 
hormone involved in cell growth and in development. Since that time, several other 
active vitamin A metabolites have been identified, and active compounds have been 
synthesized. In 1976, all of them were grouped as retinoids [117].

Clues as to how retinol and retinoic acid work inside cells came from studies per-
formed with other fat soluble (lipophilic) hormones such as estrogens and glucocor-
ticoids. In the 1960s, advancements in methods to synthesize radiolabelled hormones 
with sufficient specific activity for in vivo use and in techniques to count tritium in 
animal tissues [51] allowed the identification of binding proteins for these hormones 
[52], and also suggested that there was a link between their physiological action and 
transcription in the nucleus. This was the first indication that lipophilic hormones reg-
ulate gene transcription through nuclear receptors functioning as transcription factors.

More support for this concept came from Pierre Chambon’s finding that admin-
istration of estradiol to immature chickens elicited an increase in liver aggregate 
polymerase that preceded an induction of protein synthesis [19, 130]. Subsequent 
studies found that estradiol induces translocation of an estrogen binding protein 
from the cytoplasm to the nucleus [53] and that steroid hormones induce transcrip-
tion of specific subsets of genes [82, 96]. The generality of this phenomena in the 
animal kingdom was shown by studies in flies demonstrating that insect ecdys-
teroids induce alterations in chromatin dynamics, observed as puffing of chro-
mosomes [6]. The final pieces of the puzzle came together in the 1980s with the 
discovery that glucocorticoid receptor proteins could be proteolytically cleaved 
into independently-functional, ligand-binding (LBD) and DNA-binding (DBD) 
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domains [132], and that the DBD could bind to specific DNA sequence elements 
conferring glucocorticoid regulation of adjacent genes [20, 109].

At the same time, experimental evidence was accumulating that vitamin A and its 
derivatives also influence RNA and protein synthesis [24, 54, 134] and can bind intra-
cellular proteins [8, 90]. In 1978, the group of Frank Chytil purified and characterized 
cytosolic proteins that bound retinol (CRBPI and CRBPII) or retinoic acid (CRABPI 
and CRABPII) [23, 91, 92]. However, subsequent studies performed by the same group 
revealed that CRBPs and CRABPs are present essentially in the cytosol and that these 
proteins merely serve as vehicles or shuttles transferring the ligand into the nucleus 
to specific binding sites on the chromatin [70, 71, 120, 121]. Also at that time, there 
appeared to be clear evidence that other retinoid receptors were present in the nucleus 
that could modulate the transcription of specific genes [43].

Fig. 1.1  Retinol and its main metabolites
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History: Cloning of the Nuclear Retinoic Acid Receptors

In the 1970s, progress in genetic technologies increased rapidly with promising 
possibilities for gene mapping. New procedures for DNA hybridization [27] and 
gene transfer [131] made possible gene localization to specific regions of chromo-
somes and gene cloning into DNA plasmids. A huge advance in molecular genetic 
studies was also provided by the purification and characterization of a microbial 
reverse transcriptase enzyme that could be engineered to generate DNA comple-
mentary (cDNA) to RNA in animals [116, 122]. This ability to generate DNA 
sequences representing processed RNA circumvented the problems of non-coding 
introns and exon splicing, and allowed mRNA isolated from cells to be copied into 
cDNA sequences that could then be individually cloned into plasmids [112] or 
bacteriophages to create libraries of all the DNA translation products expressed in 
a particular cell type.

In 1985, these technologies were used by the group of Pierre Chambon to clone 
the human estrogen [129] and glucocorticoid receptors [41] (Fig. 1.2). Phage 

Fig. 1.2  Gene cloning using phage cDNA libraries
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libraries were infected into bacteria growing on a petri dish at densities that allowed 
individual phage to be separately identified by the clear areas they produced in the 
bacterial lawn, called plaques. The cDNA in the plaques was transferred to a nitro-
cellulose membrane, which was then screened with a radioactively labeled query 
probe (for example, a nucleotide sequence with homology to putative hormone 
receptors). When exposed to X-RAY film, plaques hybridizing with the radioac-
tive probe produced a spot that allowed their identification and isolation. Then, the 
isolated cDNA’s could be used to produce large quantities of protein and could be 
genetically manipulated to mutate or excise coding regions for specific parts of the 
proteins, which allowed precise identification of functional areas.

Cloning of RARs

The first retinoic acid receptor, RARα, was independently identified in 1987 by 
the laboratories of Pierre Chambon and Ronald Evans. Chambon’s group cloned 
RARα by using a consensus oligonucleotide probe corresponding to a highly con-
served sequence in the DBD of several members of the nuclear receptor family 
(human and chicken estrogen receptor, human and rat glucocorticoid receptor, 
human progesterone receptor and viral oncogene erbA) [97]. This probe was radi-
olabeled and hybridized with a phage cDNA library created from the human breast 
cancer cell lines MCF-7 and T47D. Several phage plaques giving positive signals 
were obtained and rescreened with probes corresponding to the DBD of the human 
estrogen, progesterone and glucocorticoids receptors in order to eliminate clones 
of these receptors. The cDNA inserts of the remaining positive clones were sub-
cloned into a plasmid vector and sequenced. One of the cDNA inserts contained an 
open reading frame encoding a 432 amino-acid protein with a predicted molecular 
mass of 47,682 Da. This sequence was referred to as hRAR.

Analysis of the cDNA-deduced hRAR protein sequence revealed that the 
regions corresponding to the DBD and the LBD possess a high degree of similar-
ity with that of all other nuclear receptors. Several experiments were designed to 
define whether the cloned hRAR protein binds RA and whether, by analogy with 
the other members of the nuclear receptor family, it could act as a ligand-inducible 
transcription factor. A cDNA fragment encoding the LBD was subcloned into an 
expression vector and introduced in HeLa cells. Incubation of the extracts with 
radiolabelled ligands confirmed that the hRAR protein binds RA selectively and 
with high affinity. A chimeric receptor in which the DBD of hRAR is replaced 
by the DBD of the estrogen receptor was constructed and cotransfected into HeLa 
cells with a vit-tk-CAT reporter gene under the control of an estrogen response 
element. Addition of RA resulted in an increase in CAT reporter activity indicat-
ing that hRAR is a ligand-inducible trans-activator of transcription. Thus the first 
human nuclear retinoic acid receptor was cloned and is now named RARα.

A few month later, Evans’ group published that they had independently cloned the 
same receptor using a different probe corresponding to a novel sequence with striking 
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similarity to the DBD of the steroid hormone receptors that they fortuitously identi-
fied in a human hepatocellular carcinoma [36]. Close on the heels of these ground-
breaking publications, two independent groups led by Magnus Phfahl and Chambon 
used the same probe [9, 13, 25] and cloned a second human nuclear retinoic acid 
receptor, which depicted high homology with RARα. Both groups created chimeric 
proteins by swapping the DBD for that of the estrogen receptor and verified that RA 
could activate the chimeric protein to transactivate a reporter gene under the control of 
an estrogen responsive DNA sequence element. One group called the new receptor, 
RARε, based on its high expression in epithelial tissues [9], but the name proposed 
by the other group, RARβ, became the commonly known name for this second RAR 
[13]. Finally, efforts to clone the murine counterparts of the human RARα and RARβ 
receptors revealed the existence of a third RA receptor, RARγ [137]. DNA sequences 
of the mouse RARγ gene were then used to clone the human RARγ gene [58].

Subsequent research indicated that the three RARs are encoded by three distinct 
genes located in different chromosomes [50, 81]. Several isoforms of each RAR 
subtype were identified that differ in the N-terminal region as a result of alterna-
tive splicing or of the use of different promoters upstream of the gene. Two major 
isoforms were identified for RARα (RARα1 and RARα2) [67], four isoforms for 
RARβ (RARβ1, RARβ2, RARβ3, and RARβ4) [89, 138], and two isoforms for 
RARγ (RARγ1 and RARγ2) [37, 57]. Official classification of the nuclear receptors 
identified RARα as NR1B1, RARβ as NR1B2 and RARγ as NR1B3 [35].

Cloning of a Second Family of Nuclear Retinoid Receptors: 
The RXRs

In the late 1980s a novel strategy was used to isolate cDNA clones encoding DNA 
binding domains. The technique involves absorbing the proteins produced by a 
phage cDNA library onto nitrocellulose filters and probing the filters with radioac-
tive, double-stranded DNA [114, 125]. In 1989, the Keiko Ozato group used this 
technique to isolate from mouse liver a cDNA clone encoding a protein capable of 
binding the conserved MHC class I regulatory element (CRE). Interestingly, this 
protein, H-2RIIBP (H-2 region II binding protein), had modular domains character-
istic of the nuclear hormone receptors and could also bind estrogen response ele-
ments [42]. More research needed to be done however, to determine whether the 
H-2RIIBP protein was a nuclear hormone receptor. Then Mangelsdorf et al. per-
formed a low stringency screen of human liver and kidney cDNA libraries using a 
probe corresponding to the DBD of RARα and isolated a novel nuclear receptor, 
which was substantially different from RARα and was referred to as hRXRα [79].  
A few month later, the Michael Rosenfeld group screened a cDNA phage library 
from a thyroid tumor using a RAR response element and isolated an additional 
nuclear receptor, which exhibited remarkable homology to RXRα and which differed 
by only 2 amino acids from the H-2RIIBP protein. This protein was finally named 
RXRβ [133]. Subsequently, three murine RXRs (RXRα, RXRβ and RXRγ) encoded 
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by different genes were isolated [78]. Several studies attempted to clone the human 
RXRγ gene, but without results. Nevertheless, a human genomic locus encoding 
RXRγ has been mapped in chromosome 1 using florescence in situ hybridization 
(FISH) [3]. According to the official classification of nuclear receptors, RXRs are 
now identified as NR2B1 (RXRα), NR2B2 (RXRβ), and NR2B3 (RXRγ) [35].

The interesting feature of the RXR proteins is that they can activate transcrip-
tion in response to RA, but are unable to bind all-trans RA due to the fact that 
they do not share significant homology with the LBD of RARs. Instead, 9-cis 
retinoic acid was identified as a high affinity ligand for RXRs [45, 68]. However, 
today it is clear that 9-cis RA cannot be detected in most tissues, and the exist-
ence of a physiological RXR ligand is still being investigated [34]. Nevertheless, 
several synthetic compounds that bind RXRs and not RARs, rexinoids, have been 
designed and have provided useful tools [94].

Establishment of the Basis of RARs and RXRs Mechanism  
of Action (1990–1995)

Once they were cloned, the sequences of the different RAR and RXR cDNAs 
were analyzed, aligned and compared to that of the other nuclear receptors [61]. 
This analysis revealed that all nuclear hormone receptors including RARs and 
RXRs exhibit a modular structure composed of 6 conserved regions designated 
A–F (Fig. 1.3a) with different degrees of conservation [65]. Region C, which cor-
responds to the DBD is the most conserved region with 94–97 % identity between 
RARs and with 60 % identity between RARs and RXRs. Region E encompasses 
the LBD and is also well conserved between RARs (84–90 % identity), but dif-
fers considerably between RARs and RXRs (27 % identity). Finally the A and F 
regions differ markedly among the 3 RARs, and the F region is lacking in RXRs.

During the same time, the promoter regions of endogenous genes that are con-
trolled by RA were characterized, leading to the identification of specific cis-
acting DNA elements that bind RARs (Fig. 1.3c). The first natural RA response 
element (RARE) identified was that in the RARβ2 promoter [26, 46, 119]. It con-
sists of a direct repetition of 2 motifs (G/AGTTCA) separated by 5 base pairs and 
was called a DR5. During ensuing years, other RAREs that have different spacings 
between the direct repeats (DR1 and DR2) were discovered in the promoters of 
several other RA-responsive genes [31, 115].

RARs from crude cell extracts were able to bind RAREs, however several 
groups observed that high affinity binding required interactions with other nuclear 
factors [38, 66]. Chambon’s group purified the nuclear accessory factor that 
enhanced the binding of RARs to RAREs in vitro and discovered that this pro-
tein was RXRβ  [66]. This group also showed that RXRs form heterodimers with 
RARs and that interaction regions overlap with the LBDs and the DBDs of both 
partners [66]. Concomitantly, Rosenfeld’s group also identified RXRβ as the factor 
that stimulates the binding of RARs to RAREs [133].
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In 1994–1995, knowledge of the mechanism(s) of action of RAR/RXR heter-
odimers and most nuclear receptors increased tremendously due to the discovery 
of co-activators that bind specific sequences of the LBD in response to RA [30, 62, 
126, 127] and characterization of the three-dimensional structures of the DBD [64] 
(Fig. 1.3b) and the LBD [12, 100] (Fig. 1.3d). Most notably, the description of the 
crystallographic structures of the LBD in the absence and presence of RA revealed 
that the on switch for gene transcription by liganded RARs relies on structural 
rearrangements that create binding surfaces for co-regulators [18, 87] (Fig. 1.3d).

During this same time, peptides corresponding to amino acid sequences spe-
cific for each RAR and RXR subtypes were synthesized, allowing generation of 
antibodies recognizing not only the RAR and RXR proteins produced in vitro 
(recombinant proteins), but also endogenous RARs and RXRs [32, 105]. In addi-
tion to their utility in localizing endogenous receptor expression in tissues, the 
antibodies had an additional interesting benefit of revealing that endogenous 
RARs and RXRs migrated to different positions on polyacrylamide gels when 
compared with their recombinant counterparts. This later finding suggested the 

Fig. 1.3  Structure of RARs and of their DNA binding sites. a Schematic representation of 
the modular organization of RARs and RXRs with the functional domains. The conservation 
between RARα and RXRα is shown. b High resolution structure of the RXRα DNA binding 
domain NMR (mmdbId: 8588). c Description of the classical retinoic acid response elements 
(RAREs). d Structural changes induced upon RA binding. The crystal structures of the unli-
ganded RXRα and liganded RARγ LBDs are shown with the binding domain for corepressors. 
Helices are represented as ribbons and labeled from H1 to H12. Adapted from Protein Data Bank 
1lbd and 2lbd
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native proteins had a higher relative molecular weight, possibly due to post trans-
lational modifications, such as phosphorylation, in vivo [33, 104, 106].

Genetic Evidence that RARs Transduce  
the Retinoid Signals in Vivo

Until the 1990s, the physiological functions of vitamin A and retinoids in vivo 
were mainly inferred from studies on vitamin A-deficient (VAD) animals. These 
studies demonstrated that vitamin A is required during pre- and post-natal devel-
opment as well as in adult life. The VAD syndrome is associated with several con-
genital malformations during embryonic development and with defects in growth, 
vision, reproduction and maintenance of several tissues after birth. The cloning of 
RARs and RXRs raised the question of whether these nuclear receptors mediate 
the physiological effects of vitamin A and retinoids in vivo.

The development of the homologous recombination technology for targeted dis-
ruption of specific genes allowed the generation of mice lacking CRABPs, RARs or 
RXRs. Single or double knock out of CRABP I and II did not generate overt phe-
notypic abnormalities corroborating that these retinoic acid binding proteins are not 
required for the effects of RA during development [40, 60]. In contrast, knock out 
of RARα or RARγ exhibited congenital malformations and displayed some of the 
defects of the postnatal VAD syndrome with reduced postnatal viability [72, 74, 75]. 
Double mutants were also generated that recapitulated all of the fetal VAD syndrome 
malformations and that exhibited a dramatically reduced viability [73, 83]. All these 
results confirmed that the effects of vitamin A in development are indeed mediated 
by RARs. Subsequently, RXR knock out mice were also engineered, but the inter-
pretation of the phenotypes was more complicated since RXR heterodimerize not 
only with RARs, but also with multiple other types of nuclear hormone receptors 
[56, 118]. Nevertheless, compound mutants in both RXR and RAR greatly exacer-
bated the VAD phenotypes [56] suggesting that the RAR/RXR heterodimers are the 
functional units that mediate vitamin A signaling in vivo.

Development of the Field: A Huge Explosion Has Occurred 
in the Field of RARs During the Last Two Decades

Between 1987 and 1995, RARs and RXRs were cloned and the basis for their mech-
anism of action was established (Fig. 1.4). During the next twenty years, up to now, 
knowledge in the field of RARs and RXRs has increased tremendously due to the 
development of novel genetic, biophysical and high throughput molecular technolo-
gies. Integration of these approaches has provided an in-depth view of the mechanism 
of action of RARs and of all nuclear receptors. These findings have been the subject 
of several recent comprehensive reviews, some of which are recapitulated in this book 
volume. In addition, several databases have been developed and are now publically 
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available including [NURSA (http://www.nursa.org), Transcriptomine (http://www.nur
sa.org/transcriptomine) and IUPHAR (http://www.iuphar-db.org)].

Briefly, the novel findings discovered during the two last decades can be sum-
marized as follows:

A large number of coactivator and corepressors have been identified and found to 
be components of multisubunit coregulator complexes exhibiting an ever-expanding 
diversity of enzymatic and epigenetic activities, exemplified by ATP-dependent nucleo-
some remodeling complexes, histone acetyl/deacetyl transferases (HATs and HDACs), 

Fig. 1.4  Chronology of the main events in the field of vitamin A and RARs. *Petkovich et al. 
1987; Giguere et al. 1987
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histone methyl transferases (HMTs) and histone demethylases [39]. The development 
of the chromatin immunoprecipitation (ChIP) technique revealed that transcription of 
RAR-target genes is a dynamic process and that RA binding switches RARs from an 
inactive state to an active state by promoting the exchange of corepressor complexes for 
coactivators [95, 102]. The consummate effects of these coregulators are the modifica-
tion, remodeling and decompaction of chromatin to pave the way for the recruitment of 
the transcription machinery [28]. Today new proteins and complexes are still continu-
ously being discovered increasing our knowledge of the complexity of RAR-mediated 
transcription. Moreover, the combination of different biophysical methods [X-ray crys-
tallography, small angle X-ray (SAXs), fluorescence resonance energy transfer (FRET), 
nuclear magnetic resonance (NMR)] and the use of several synthetic agonists or antago-
nists for RARs and RXRs is providing a view of the dynamic structure of RAR-RXR 
heterodimers associated with coactivators on different response elements [101].

Subsequent to the sequencing of the human genome, the development of 
genome-wide profiling technologies such as RNA-seq (high throughput qPCR 
sequencing) and ChIP-seq (chromatin immunoprecipitation coupled with deep 
sequencing) has allowed the identification of novel RA response elements with 
different spacings [88] and novel RA-target genes [59, 77]. The genome-wide 
integrative analysis of RAR/RXR binding and transcriptional regulation has 
also provided a dynamic view of RA signaling [84]. Recently, RARs have been 
found to target the expression of microRNAs, introducing yet another level of 
complexity in the regulation of RAR-regulated gene transcription [93, 135, 
136]. These recent approaches and findings are identifying novel mechanisms of 
action for RARs and are opening up promising new avenues for research and 
development.

During the last two decades, the concept arose that posttranslational modifications 
such as phosphorylation and ubiquitination are crucial for RARs activity [2]. Early stud-
ies using phosphopeptide analysis performed with radioactivity and large amounts of 
recombinant receptors resulted in the identification of a number of phosphorylation sites 
on RARs and RXRs [1, 63, 103, 107]. Subsequently, the emergence of new methods for 
enrichment of phosphopeptide samples and development of phosphospecific antibod-
ies provided the ability to analyze phosphorylation of endogenous RARs in response 
to their cognate ligand or signaling pathways [14]. Now it is clear that RARs, as well 
as several other proteins, are rapidly phosphorylated in response to RA, subsequent 
to  RA-induced activation of kinase cascades via a pool of RARs that are present in 
membrane lipid rafts [80, 99]. A concept that is gaining support is that phosphoryla-
tions induce subtle changes in the conformation of the receptors that modulate the asso-
ciation/dissociation of new coregulators [21, 108]. Another developing concept is that 
phosphorylation is a signal for the degradation of RARs by the ubiquitin proteasome 
system, a process that signals the end of transcription [11].

In situ analysis of endogenous RAR protein expression profiles became possible 
with the generation of purified highly-specific antibodies [15, 124]. Moreover, the 
development of novel conditional gene targeting strategies based on the use of the 
Cre recombinase allowed the generation of somatic mutations in individual genes in 
a specific cell type and at a given time in the life of a transgenic mouse [85, 86]. This 
novel strategy has yielded remarkable advances in understanding the roles played 
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by RARs and RXRs because it circumvents the limitations of previous transgenic 
approaches that led to early lethality and that were compromised by redundancies in 
receptor isoform expression in tissues under investigation [49, 69].

Future Directions

Today, 25 years after the cloning of RARs (Fig. 1.4), knowledge continues to evolve 
in the field of retinoid biology. The structures of RAR/RXR heterodimers bound 
to DNA have been solved, but they are still lacking the N-terminal domain which 
exhibits a quasi absence of defined secondary structures but confers considerable 
flexibility to RARs. The integration of data from several sources and from high-res-
olution biophysical approaches should provide the structure of the RAR/RXR heter-
odimers as full-length proteins bound to DNA with their coregulators intact.

A driving goal for future studies will be the discovery of the rules for cell fate speci-
fication integrated into a systems biology view of RAR/RXR actions and RA signaling. 
Application of computational models and programs to reconstruct differentiation-
related gene networks obtained from different cell types should allow the prediction of 
RA-regulated gene network intricacies and the identification of key factors that direct 
cells towards a particular differentiation phenotype. Stem cells, which are pluripotent 
cells capable of generating all the differentiated cell types present in the body and which 
are responsive to RA, are currently, a most promising tool for such cell fate studies. 
Extrapolation of data generated from stem cell differentiation models should have appli-
cability to a deeper understanding RAR-dysfunctional diseases that interfere with nor-
mal cell homeostasis and redirect normal cells to a more primitive, mitosis-driven state.

Recent findings are stretching the boundaries of our understanding of vitamin A 
action. These newer studies are indicating that the effects of vitamin A retinol and RA 
are not mediated only by RAR/RXR heterodimers and transcriptional processes, and 
this is opening up new avenues in the field. As an example, it has been found that RA 
can activate other nuclear receptors such as the peroxisome proliferator-activated recep-
tor β/δ [110], providing a rationale for the long-noted, but poorly understood function 
of vitamin A in regulating energy balance. Moreover, recent findings are hinting that 
RA, as well as vitamin A itself, can have extranuclear, non-transcriptional effects and 
can activate kinase-signaling pathways [2, 10]. Consequently, one can speculate that, 
in addition to affecting the transcriptome, RA and retinol could also affect the phos-
pho-proteome. Next generation, dual linear ion trap mass spectrometers coupled with 
Orbitrap technology should allow the identification of new panels of proteins that are 
phosphorylated in response to retinol or RA. The future objectives should be to integrate 
the RA-induced variations in the phospho-proteome with the transcriptome. Such an 
integrative study should pave the way to breakthroughs in disease-related research. The 
recent observation that RARs are present in the cytosol of specific cell types [22, 76]  
continues to open new areas in the mechanisms of action of vitamin A and RA.

Great progress has been made in deciphering how specific molecules and signal-
ing pathways interact to mediate vitamin A/RA action. But much is left to be done 
to fully understand the complexities of their action at the cellular and sub-cellular 
levels and of their regulation in time and space throughout the life of an organism.
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