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Understanding is superior to mere practice
Union with the subject matter supersedes that
Dispassion towards all results is better still
And manifests peace immediately

Bhagavat Gita (12:12)
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Foreword

There is no design template more versatile than DNA. Nor are any designs more
consequential than those whose blueprints DNA encodes. This exquisite substance
has been shaped over billions of years by the creative combination of mutation and
selection. Yet in the very long history of this template, it is only during our times
that complex living organisms are beginning to understand and manipulate the
very template whose sequences define them. But how should we go about this
understanding? And how can we use this understanding to more effectively and
responsibly alter the DNA template?

The complexity and diversity of living organisms are daunting. Systems biology
aims at reverse engineering biological complexity for the purpose of understanding
their design principles. By measuring and characterizing interactions of key bio-
logical molecules in response to stimuli and perturbations, systems biology aims to
construct models that capture the complexity of endogenous biological networks.
Through the systematic understanding of such models, it is hoped that one will
achieve a holistic understanding of biological networks and the way they achieve
biological function.

At the same time, the versatility of DNA and the dramatic decrease in the cost
of DNA synthesis is making it possible to economically design and test new
complex genetic circuits. This has given impetus to a new field: Synthetic biology.
In our quest to understand biological complexity, we have examined endogenous
biological subsystems and ascribed functions and design principles to their com-
ponents. But a true understanding of these biological design principles is dem-
onstrated only when one can build such systems de novo and demonstrate their
function. When these circuits do not exhibit behavior consistent with our models,
further investigations will lead to a deeper understanding of the underlying biol-
ogy. Synthetic biology, therefore, serves as an important testbed for our under-
standing of biological principles. But the promise of synthetic biology extends
beyond scientific understanding. Whether it be the detection and interference with
the course of disease through the introduction of designer circuits, the cost-
effective synthesis of new bio-substances, or the development of improved food
products, synthetic biology provides a tremendous opportunity to alleviate suf-
fering and improve the quality of our lives.
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In both systems and synthetic biology, challenges abound. Quantitative mod-
eling, analysis, and design of biological networks must contend with difficulties
arising from the inescapable fact that at its most basic level, biology involves
complex dynamic interactions among nonlinear stochastic components, taking
place at multiple temporal and spatial timescales. The complexity of network
interconnections of such components and the crosstalk between them adds another
level of difficulty.

System theory has emerged as a field to deal with the challenges and com-
plexities emerging from the interconnection of engineered systems, many of which
are shared with biological systems. Notions from system theory such as nonlin-
earity, stochasticity, feedback, loading, modularity, robustness, identifiability, etc.,
are needed for a deeper understanding of biological complexity and for a more
reliable design of biological circuits. These concepts are now being utilized to help
us expand our understanding of endogenous biological circuits and to design novel
ones. The articles in this book make significant strides in this direction.

While system theory will undoubtedly aid our understanding and design of
biological systems, there is no doubt that the study of biological designs that have
evolved over billions of years will also shape the future of system theory. For
example, evolution and development are two central themes in biology that have
little analogy with engineered man-made systems. Through the study of these and
other biological themes, new systems notions and insights will undoubtedly
emerge, enriching system theory in the process. One need only look at the history
of feedback, a predominant concept in system theory, to imagine what is possible.
While its human discovery can be traced back a little over one millennium, it is
likely that feedback was invented by nature more than three billion years earlier.
Since then, it has been wildly successful as a biological design principle, as
evidenced by its prevalence at every level of biological organization. One wonders
if an early systematic understanding of this concept in its biological context could
have sped up the course of our own technological development.

As the physical sciences helped us understand the physical world around us
over the last few centuries, so will quantitative biological science help us under-
stand who we are, how we function, and how we can effectively and responsibly
synthesize this most consequential of substances, the DNA. I believe that system
theory will be central to this understanding.

Zürich, September 2013 Mustafa Khammash
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Preface

Underlying every living cell are billions of molecules interacting in a beautifully
concerted network of pathways such as metabolic, signalling, and regulatory
pathways. The complexity of such biological systems has intrigued scientists from
many disciplines and has given birth to the highly influential field of systems
biology wherein a wide array of mathematical techniques, such as flux balance
analysis, and technology platforms, such as next generation sequencing, is used to
understand, elucidate, and predict the functions of complex biological systems.
This field traces its roots to the general systems theory of Ludwig von Bertalanffy
and effectively started in 1952 with a mathematical model of the neuronal action
potential for which Alan Hodgkin and Andrew Huxley received the Nobel Prize in
1963. More recently, the field of synthetic biology, i.e., de novo engineering of
biological systems, has emerged. Here, the phrase ‘biological system’ can assume
a vast spectrum of meanings: DNA, protein, genome, cell, cell population, tissue,
organ, ecosystem, and so on. Scientists from various fields are focusing on how to
render this de novo engineering process more predictable, reliable, scalable,
affordable, and easy. Systems biology and synthetic biology are essentially two
facets of the same entity. As was the case with electronics research in the 1950s, a
large part of synthetic biology research, such as the BioFab project, has focused on
reusable macromolecular ‘‘parts’’ and their standardization so that composability
can be guaranteed. Recent breakthroughs in DNA synthesis and sequencing
combined with newly acquired means to synthesize plasmids and genomes have
enabled major advances in science and engineering and marked the true beginning
of the era of synthetic biology. Significant industrial investments are already
underway. For example, in 2009, Exxon Mobil set up a collaboration worth $600
million with Synthetic Genomics to develop next generation biofuels.

Recent advances in systems and synthetic biology clearly demonstrate the
benefits of a rigorous and systematic approach rooted in the principles of systems
and control theory—not only does it lead to exciting insights and discoveries but it
also reduces the inordinately lengthy trial-and-error process of wet-lab experi-
mentation, thereby facilitating significant savings in human and financial resour-
ces. So far, state-of-the-art systems and control-theory-inspired results in systems
and synthetic biology have been scattered across various books and journals from
various disciplines. Hence, we felt the need for an edited book that provides a
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panoramic view and illustrates the potential of such systematic and rigorous
mathematical methods in systems and synthetic biology.

Systems and control theory is a branch of engineering and applied sciences that
rigorously deals with the complexities and uncertainties of interconnected systems
with the objective of characterising fundamental systemic properties such as sta-
bility, robustness, communication capacity, and other performance metrics. Sys-
tems and control theory also strives to offer concepts and methods that facilitate
the design of systems with rigorous guarantees on these fundamental properties.
For more than 100 years, the insights and techniques provided by systems and
control theory have enabled outstanding technological contributions in diverse
fields such as aerospace, telecommunication, storage, automotive, power systems,
and others. Notable examples include Lyapunov’s theorems, Bellman’s theory of
dynamic programming, Kalman’s filter, H? control theory, Nyquist-Shannon
sampling theorem, Pontryagin’s minimum principle, and Bode’s sensitivity inte-
gral. Can systems and control theory have, or evolve to have, a similar impact in
biology? The chapters in this book demonstrate that, indeed, systems and control
theoretic concepts and techniques can be useful in our quest to understand how
biological systems function and/or how they can be (re-)designed from the bottom
up to yield new biological systems that have rigorously characterized robustness
and performance properties.

Several barriers must be overcome to contribute significantly in this exciting
journey. One of these is the language barrier, e.g., what a systems theorist means
by the word sensitivity is different from what a biologist means by it. Another one
is the knowledge barrier as, traditionally, systems and control theorists and biol-
ogists are not well versed with each other’s knowledge base (although that sce-
nario is now fast changing for the better with the introduction of bioengineering
courses in systems and control theory at the undergraduate and graduate levels).
A third barrier is due to the sheer volume of big data: the European Bioinformatics
Institute in Hixton, UK, which is one of the world’s largest biological data
repositories, currently stores 20 petabytes of data and backups about genes, pro-
teins and small molecules, and this number is more than doubling every year.
Finally, a fourth barrier comes from the effort required to produce timely contri-
butions based on currently available models. As an example of this last barrier, the
systems and control theory community could have played a greater role than it did
in two of the most significant technological advances of the last 50 years: VLSI
and Internet. In retrospect, besides the fact that the systems and control theorists
caught on the Internet too late, by which time infrastructures based on TCP/IP
were already in place, the main difficulty posed by the Internet for the systems and
control theory community was a lack of good models of the underlying networked
system. This lack-of-good-models barrier is even more daunting in biology since
some of the currently available big data are not guaranteed to be reproducible. As
Prof. M. Vidyasagar illustrates and observes in the September 2012 issue of IEEE
Lifesciences, one of the major challenges to the application of systems and control

xii Preface



theory concepts in biology comes from ‘‘the fact that many biological experiments
are not fully repeatable, and thus the resulting datasets are not readily amenable to
the application of methods that people like us [i.e., systems and control theorists]
take for granted.’’

The chapters in this book serve to propose ways to overcome such barriers and
to illustrate that biologists as well as systems and control theorists can make deep
and timely contributions in life sciences by collaborating with each other to solve
important questions such as how to devise experiments to obtain models of bio-
logical systems, how to obtain predictive models using information extracted from
experimental data, how to choose components for (re-)engineering biological
networks, how to adequately interconnect biological systems, and so on. Fur-
thermore, and as Prof. Mustafa Khammash observes in his foreword, this research
will fundamentally enrich systems and control theory as well by forcing it to
investigate currently open questions that are specific to living biological systems,
e.g., Why do biological systems naturally evolve the way they do? Can the
evolvability of biological systems be consciously exploited for (re-)design and
optimization purposes?

This book is intended for (1) systems and control theorists interested in
molecular and cellular biology, and (2) biologists interested in rigorous modelling,
analysis, and control of biological systems. We believe that research at the
intersection of these disciplines will foster exciting discoveries and will stimulate
mutually beneficial developments in systems and control theory and systems and
synthetic biology.

The book consists of 12 chapters contributed by leading researchers from the
fields of systems and control theory, systems biology, synthetic biology, and
computer science. Chapters 1–6 highlight some state-of-the-art methods used to
address currently open questions in systems biology. Chapters 7–12 discuss
frameworks and methods required to enable a bottom-up design of synthetic
biology systems of increasing complexity. These chapters are organized into two
main parts as follows.

• Part I—Systems Biology: Chapters 1–6 focus on specific problems in model-
ling biological systems. Examples of such problems include: characterization
and synthesis of memory, understanding how homoeostasis is maintained in the
face of shocks and relatively gradual perturbations, understanding the func-
tioning and robustness of biological clocks such as those at the core of circadian
rhythms, and understanding how the cell cycles can be regulated, among others.
A brief summary of each chapter is as follows.

– Chapter 1: Today, several approaches used to identify biomarkers for a
specific disease rely on genome-wide gene expression profiles without an
explicit regard for how the genes are correlated. Wang and Chen present a
network biomarker construction scheme that integrates microarray gene
expression profiles and protein–protein interaction information so as to enable
molecular investigation and diagnosis of lung cancer.
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– Chapter 2: In this overview chapter, Lal and Seshashayee discuss next-gen-
eration sequencing techniques and illustrate how these have been used, at the
scale of the whole bacterial genome, to investigate a variety of problems,
from the analysis of gene expression and protein–DNA interactions to that of
bacterial community function and evolution.

– Chapter 3: Given a biological network of oscillators, such as circadian rhythm
networks for instance, how do biological parameter variations affect the
oscillation characteristics? Sacré and Sepulchre present a novel and scalable
approach to characterize the parameter sensitivity of models of oscillators,
and illustrate its use on a circadian rhythm network model.

– Chapter 4: Osmosis facilitates the basic mechanism by which water is
transported into and out of cells. Montefusco et al. demonstrate how a control
theoretic analysis of the osmosis regulation system of Saccharomyces cere-
visiae can be used to explain how cells maintain homoeostasis in the face of
osmotic perturbations.

– Chapter 5: State synchronization is a recurring theme in neuronal networks
and coupled networks of genetic clocks, among others. Hamadeh et al.
explain how incremental dissipativity theory can be used to systematically
analyse and/or synthesize feedback interconnections that ensure state syn-
chronization in networks of identical oscillators and illustrate its use in the
context of realising synchronization in a genetic repressilator network.

– Chapter 6: Multistability is a key property of biological systems that char-
acterizes salient phenotypes such as memory. Salerno et al. present a sys-
tematic approach to characterize bistability and explain its utility in
characterizing the memory of the galactose regulatory system of Saccharo-
myces cerevisiae.

• Part II—Synthetic Biology: Chapters 7–12 focus on how biomacromolecules,
platforms, and scalable architectures should be chosen and synthesized in order
to build programmable de novo biological systems. For example, a standardi-
zation of the components used is a necessary step in the modular design of large
scale systems and presents an opportunity to develop in silico design tools that
optimize these systems with respect to a set of formal specifications. What are
the types of constrained optimization problems encountered in this process and
how can these be solved efficiently? Should DNA be used as the basic macro-
molecule in synthesising artificial biological networks or should it be used with
other macromolecules to enable certain applications? This set of chapters aims
at answering such questions. A brief summary of each chapter is as follows.

– Chapter 7: Modern nucleic acid biochemistry extensively uses protein
enzymes to manipulate nucleic acids. However, predictive modification of the
behavior of protein enzymes remains a very difficult problem. Chandran et al.
show how meta-biochemical systems offer the possible advantage of being far
easier in terms of re-engineering and programming. They show how a bio-
chemical system can be synthesized based entirely on strands of DNA as the
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only component molecule. These meta-DNAs have the same pairing mecha-
nism as DNA but have a much larger alphabet of bases, thereby providing an
increased power of base addressing.

– Chapter 8: An open challenge today is to specify synthetic biological systems
using high level languages. Chen and Cai choose a rule-based modelling
framework that was originally developed for systems biology and extend it to
synthetic biology. They introduce a new model-specification language that
facilitates the swift generation of mathematical models that encode the
phenotypic behaviors of biological systems.

– Chapter 9: Krishnan and Liu address how bistable and monostable switches
give rise to irreversible transitions and decision making in cell cycles. They
propose a modular framework to address such questions for binary signalling
mechanisms, outlining some of the design principles of signalling networks,
which can be exploited in synthetic biology.

– Chapter 10: In standardising the components for a scalable design, an
important constrained optimization problem concerns the selection of kinetic
parameters and protein abundances. Koeppl et al. explain how this inverse
problem can be solved more elegantly, by linearising the forward operator
that maps parameter sets to specifications, and then inverting it locally, rather
than relying on a brute force random sampling approach.

– Chapter 11: Marchisio and Stelling demonstrate how concepts and algorithms
from electrical engineering can be exploited to set up a framework for the
computation-based automated design of genetic Boolean gates and devices.
They also explain how the Karnaugh algorithm used in the design of electrical
circuits can be modified when it comes to the design of genetic circuits.

– Chapter 12: Kim and Franco focus on how to synthesize and couple tran-
scriptional circuits by exploiting the modular architecture of nucleic acid
templates as well as the catalytic power of natural enzymes. They illustrate
the programmability of dynamic behaviors for elementary circuits such as
adapters, bistable switches, and oscillators. They also present insulating and
amplifying devices as a solution for the scaling-up of biomolecular networks.

The burgeoning fields of systems biology and synthetic biology have thrown up
a very large number of interesting research problems. As the pre-eminent com-
puter scientist Donald Knuth put it, ‘‘biology easily has 500 years of exciting
problems to work on.’’ The chapters in this book address but a small fraction of
these interesting challenges. Nevertheless, we believe this book can serve as a
good introduction on some of the currently open problems and on some of the
state-of-the-art concepts and techniques available to propose solutions to such
problems.

We are very grateful to all authors for their invaluable time and contributions
and to Prof. Mustafa Khammash (ETH Zürich) for his stimulating foreword. We
are also grateful to our institutions: University of Minnesota (Minneapolis, USA),
Imperial College (London, UK), and Indian Institute of Technology Madras
(Chennai, India) for their support and for providing a stimulating work
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environment. Finally, we thank and acknowledge the financial support of our
respective funding agencies: the National Science Foundation, the UK Engineering
and Physical Sciences Research Council, and the Ministry of Human Resource and
Development of the Government of India.
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Chapter 1
Network Biomarker Construction
for Molecular Investigation and Diagnosis
of Lung Cancer via Microarray Data

Yu-Chao Wang and Bor-Sen Chen

Abstract Lung cancer is the leading cause of cancer deaths worldwide. Many studies
have investigated the carcinogenic process and identified the biomarkers for sig-
nature classification. However, those biomarkers are mainly identified based only
on analysis of genome-wide expression profiles, that is, the identification method
cannot elucidate how the different genes in the biomarker gene set are related to
each other. Therefore, from the systems perspective, we developed a network bio-
marker construction scheme, which integrated microarray gene expression profiles
and protein-protein interaction information, for molecular investigation and diagno-
sis of lung cancer. The network biomarker consisted of two protein association net-
works constructed for cancer samples and non-cancer samples. Based on the network
biomarker, a total of 40 significant proteins were identified with carcinogenesis rel-
evance values (CRVs) to gain insights into the lung carcinogenesis mechanism. In
addition, the network biomarker was also acted as the diagnostic tool, demonstrated
to be effective to diagnose the smokers with lung cancer. Taken together, the network
biomarker not only successfully sheds light on the mechanisms in lung carcinogenic
process but also provides potential therapeutic targets to combat against cancer.

Keywords Network biomarker · Lung cancer · Protein association network ·
Microarray data ·Analysis of variance (ANOVA) ·Protein–protein interaction (PPI) ·
Akaike’s information criterion
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4 Y.-C. Wang and B.-S. Chen

1.1 Introduction

Cancer, the complex disease of uncontrolled cell growth, is the leading cause of
human death worldwide and the deaths from cancer are projected to continue rising
[19, 49]. Among all types of cancer, the mostly diagnosed and the most common
cause of cancer deaths are lung cancer and the mortality rate within 5 years is as high
as 80–85 % [49, 59]. Lung cancer can be divided into two main types, small cell lung
carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC). NSCLCs are further
divided into three main subtypes: squamous cell carcinoma, adenocarcinoma, and
large cell carcinoma [6]. Previous study has shown that all these major histological
types of lung cancer are associated with cigarette smoking [33]. Therefore, many
researchers devoted themselves to investigate the molecular alterations resulted from
cigarette smoking and the mechanism that links cigarette smoking and lung cancer.
Spira et al. used DNA microarray to compare the gene expressions of large-airway
epithelial cells from nonsmokers and smokers and to define how cigarette smoking
alters the transcriptome [58]. Hecht indicated that many tobacco smoke carcinogens
such as polycyclic aromatic hydrocarbons and nicotine-derived nitrosamine ketone
are likely to play major roles in lung cancer induction [23]. Recently, Takahashi et
al. showed that induction of IKKβ- and JNK1-dependent inflammation is likely to
be an important contributor to the tumor-promoting activity of tobacco smoke [61].

In addition to the investigation of carcinogenesis, many studies identified the
cancer biomarkers through analysis of genome-wide expression profiles [2, 21]. The
biomarkers are used as diagnostic evaluation to determine the patient with or without
the cancer or used as prognostic indicator to evaluate the patient’s prognosis. In lung
cancer, Spira et al. used gene expression profile from patient samples to identify
an 80-gene biomarker that distinguishes smokers with and without lung cancer [59].
The 80-gene biomarker could be beneficial for the decrease of the high mortality rate
since the poor prognosis of lung cancer is closely related to the fact that there is no
effective screening tool to diagnose the disease at an early stage [26, 59]. However,
the biomarker identification method based only on gene expression profiles cannot
elucidate how the different genes in the biomarker gene set are related to each other,
i.e., the biomarkers are not identified from the systems perspective. Further, the gene
lists obtained for the same clinical types of patients by different groups differ widely
and have only very few genes in common [17].

Due to these kinds of limitation and the widely accepted opinion that cancer
is a disease of pathways [22, 68], protein-protein interaction (PPI) and pathway
information are integrated for biomarker identification. Chuang et al. developed a
protein-network-based approach that identifies biomarkers not as individual genes
but as subnetworks extracted from protein interaction databases. They showed that
the subnetwork classification could achieve higher accuracy in the signature discrim-
ination and are informative of the network structure [11]. Many other network-based
approaches were also developed for prioritizing disease genes and protein interaction
subnetworks that are discriminative of disease signature [9, 45, 46, 65]. In addition,
the dynamic structure of the human protein interaction network was examined to
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predict breast cancer prognosis, suggesting that the network modularity might be a
defining feature of tumor phenotype [62].

Network analysis has shown that under different cellular states or in response
to diverse stimuli, transcription factors alter their interactions to regulate different
genes, thereby rewiring the network [41]. The same situation happens for protein
interaction networks [62, 76]. Motivated by the dynamic structure of human pro-
tein interaction network and the observation that interacting proteins tend to result
in similar disease phenotypes when dysregulated [47], we develop a computational
framework to construct the network biomarker for molecular investigation and diag-
nosis of lung cancer via microarray data. The network biomarker consists of two
protein association networks for cancer and non-cancer smokers. Based on the con-
cept of network comparison [72], 40 significant proteins that may play important
roles in lung carcinogenesis are identified. With the help of the network biomarker,
the smokers suspect with cancer can be classified into smokers with cancer or with-
out cancer, making the network biomarker a useful tool for molecular diagnosis.
Hopefully, the proposed method can help understand the lung carcinogenesis and
provide potential drug targets for humans to combat against lung cancer.

1.2 Methods

1.2.1 Overview of the Network Biomarker Approach for Lung
Cancer Investigation

The overall flowchart of the proposed network biomarker approach is shown in
Fig. 1.1. Our goal is to investigate the lung cancer by the construction of network
biomarker which is composed of protein association networks for smokers with and
without cancer. Microarray gene expression profiles of patient samples and protein-
protein interaction information were integrated for protein selection and network
construction. Two protein association networks with quantitative protein association
abilities for cancer and non-cancer smokers were constructed respectively. Based on
the comparison of two protein association networks within the network biomarker,
a score named carcinogenesis relevance value (CRV) was computed to correlate
proteins with significance of lung carcinogenesis. A higher score suggests that the
particular protein plays a more critical role in lung carcinogenesis. According to
the CRV for each protein and the statistical assessment, a set of significant proteins
was selected. Furthermore, given the microarray data for the smokers suspect with
cancer, mapping errors can be computed for diagnostic evaluation that the smokers
with or without cancer.

1.2.2 Data Selection and Preprocessing

Here, two kinds of data, microarray gene expression profile and protein-protein
interaction information, were integrated. The microarray data was
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� Fig 1.1 The flowchart of constructing the network biomarker for lung cancer investigation and
diagnosis The figure indicates the flowchart of the proposed method. The red rounded rectangles
represent the data needed. The blue rectangles denote the processing steps of the approach. The
green parallelograms are the processed results for each step and the orange rounded rectangles
are the overall results for the whole method. In summary, two kinds of data, microarray data
and PPI information, are needed for the proposed method. These data are used for protein pool
selection. Then the selected proteins and the input data are used for protein association network
construction, resulting in cancer protein association network (CPAN) and non-cancer protein
association network (NPAN). The two constructed protein association networks constitute the
network biomarker, which can be used for either determination of significant proteins or diagnostic
evaluation. With the help of the network biomarker, carcinogenesis relevance value (CRV) is
computed for each protein and significant proteins in lung carcinogenesis are determined based
on the CRVs. These significant proteins provide targets for further characterization. On the other
hand, given the microarray data for smokers suspect with cancer, mapping errors for CPAN and
NPAN can be computed, respectively, which help diagnose the smokers with cancer or without
cancer

downloaded from GEO database http://www.ncbi.nlm.nih.gov/geo/ (accession num-
ber GSE4115). Spira et al. performed gene expression profiling in histologically nor-
mal large-airway epithelial cells obtained at bronchoscopy from current and former
smokers. Each individual was followed after bronchoscopy until a final diagnosis of
lung cancer or not lung cancer was made [59]. Data was collected from a total of 187
subjects and was divided into primary and prospective data sets (79 smokers with
lung cancer and 73 smokers without lung cancer in the primary data set; 18 smokers
with lung cancer and 17 smokers without lung cancer in the prospective data set).
The primary data set was used for network biomarker construction and the prospec-
tive data set was used for diagnostic evaluation. Protein-protein interaction (PPI) data
was extracted from BioGRID http://thebiogrid.org/ and HPRD http://www.hprd.org/
databases. The Biological General Repository for Interaction Datasets (BioGRID)
database was developed to house and distribute collections of protein and genetic
interactions from major model organism species. BioGRID currently contains over
340,000 interactions as derived from both high-throughput studies and conventional
focused studies [60]. The Human Protein Reference Database (HPRD) is a data-
base that integrates a wealth of information relevant to human proteome, including
protein-protein interactions, post-translational modifications, disease associations,
and tissue expression [50]. Prior to further processing, the gene expression value
gij is normalized to z-transformed scores zij so that for each gene i the normalized
expression value has mean μi = 0 and standard deviation σi = 1 over sample j .

1.2.3 Selection of Protein Pool and Construction
of Network Biomarker

To integrate the gene expression and PPI information data and construct the net-
work biomarker consisting of protein association networks, the expression value of
each gene was first overlaid on its corresponding protein. The gene expression for

http://www.ncbi.nlm.nih.gov/geo/
http://thebiogrid.org/
http://www.hprd.org/databases
http://www.hprd.org/databases
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each protein was then used to select differentially expressed protein using one-way
analysis of variance (ANOVA) where the null hypothesis is that the average expres-
sion levels for the protein are the same for smokers with and without cancer [48].
The proteins with Bonferroni adjusted p-values less than 0.05 were selected in
the protein pool. Since we aimed at investigating the lung cancer using the net-
work biomarker, the differentially expressed proteins without interaction information
were excluded from the protein pool. In addition to the proteins that differentially
expressed, the proteins which are highly connected with the proteins in the protein
pool based on the PPI information were also included into the pool. In other words,
the protein pool consists of both differentially expressed proteins and the proteins
that are highly connected with them. On the basis of the protein pool and the PPI
information, the rough PPI network can be easily constructed by linking the proteins
that have interactions among them. One thing should be noted is that since the data
for cancer and non-cancer samples are limited, the number of proteins selected for
rough PPI network construction is also restricted. That is, in order to avoid overfitting
in network construction, the maximum degree of the proteins in the rough PPI net-
work should be less than the cancer/non-cancer sample number, thereby restricting
the size of the rough PPI network.

From the process above, we have selected a protein pool and constructed a rough
PPI network among them. The rough PPI network comprises all possible protein
interactions under all kinds of experimental conditions. Consequently, the network
should be further pruned using microarray data to indicate the effective protein asso-
ciations for samples with and without lung cancer. Here, a simple linear regression
model was applied to prune the rough PPI network to obtain the protein associa-
tion networks independently for samples with and without cancer, according to their
respective data sets. For a target protein i in the rough PPI network, the protein was
described by the following protein association model [73].

yi [n] =
Ni∑

k=1

αik yik[n] + εi [n] (1.1)

where yi [n] represents the gene expression level of the target protein i for the sample
n, αik denotes the association ability between the target protein i and its kth interactive
protein, which quantifies the expression relation between the interactive proteins and
can be identified using the data we have, yik[n] indicates the gene expression level
of the kth protein that interacts with the target protein i for the sample n, Ni is the
number of proteins interacting with the target protein i and can be obtained from the
rough PPI network, εi [n] denotes the stochastic noises due to other factors or model
uncertainty. The biological meaning of Eq. (1.1) is that the expression level of the
target protein i is associated with the expression levels of the proteins interacted with
it. For each protein in the protein pool, a protein association model was constructed.

After the protein association model of the rough PPI network was constructed,
the association parameters in Eq. (1.1) were identified using maximum likelihood
estimation method [8, 32] by microarray data (see Appendix 1 for details). Since
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there are two data sets of microarray data (smokers with and without cancer), the
association parameters were separately identified for cancer data set and non-cancer
data set, resulting in αik,C and αik,N. In this case, for each protein in each phenotype,
i.e., with cancer and without cancer, a mathematical description was constructed to
characterize the expression association, respectively. Once the association parame-
ters for all proteins in the rough PPI network were identified, the significant pro-
tein associations were determined based on the estimated association abilities αik

′s.
Akaike Information Criterion (AIC) [1, 32] and student’s t-test [48] were employed
for both model order selection and significance determination of protein associations
(see Appendix 2 for details). In this way, the rough PPI network was pruned and the
protein association networks for smokers with and without cancer were constructed,
respectively.

On the basis of the identified protein association abilities, two matrices were
established to represent the cancer protein association network (CPAN) and the
non-cancer protein association network (NPAN).

C =

⎡

⎢⎢⎢⎣

α11,C α12,C · · · α1K ,C
α21,C α22,C · · · α2K ,C

...
...

. . .
...

αK 1,C αK 2,C · · · αK K ,C

⎤

⎥⎥⎥⎦

N =

⎡

⎢⎢⎢⎣

α11,N α12,N · · · α1K ,N
α21,N α22,N · · · α2K ,N

...
...

. . .
...

αK 1,N αK 2,N · · · αK K ,N

⎤

⎥⎥⎥⎦

(1.2)

where αij,C and αij,N indicate the quantitative protein association ability between
protein i and protein j for CPAN and NPAN, respectively, and K is the number
of proteins in the protein association network. For any protein i and protein j in
the protein association network, the association ability αij quantifies the expression
relation between the interactive proteins. If the estimated protein association ability
αij equals to zero, it means that there is no association between protein i and protein
j. In addition, we said that protein i is associated with protein j means that the
expression level changes of protein i account for the expression level changes of
protein j and vice versa. As a consequence, when the estimated protein association
ability αij does not equal to αji, the one which has larger absolute value would be
selected as the association ability between protein i and protein j, i.e., αij = αji. The
resulting cancer and non-cancer protein association networks (CPAN and NPAN)
constituted the network biomarker, which was used for determining the significant
proteins playing important roles in lung carcinogenesis and for diagnostic evaluation.
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1.2.4 Determination of Significant Proteins in Lung
Carcinogenesis via the Network Biomarker

According to equations (1.1) and (1.2), the protein association models for CPAN and
NPAN can be represented as the following equations.

YC = CYC + EC
YN = NYN + EN

(1.3)

where YC = ⎛
y1,C[n] y2,C[n] . . . yK ,C[n] ⎝T , YN = ⎛

y1,N[n] y2,N[n] . . . yK ,N[n] ⎝T

denotes the vectors of expression levels; EC and EN indicate the noise vectors in
cancer case and non-cancer case, respectively. A matrix indicating the difference
between two protein association networks is defined as C − N [73].

D =

⎡

⎢⎢⎢⎣

d11 d12 · · · d1K

d21 d22 · · · d2K
...

...
. . .

...

dK 1 dK 2 · · · dK K

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

α11,C − α11,N α12,C − α12,N · · · α1K ,C − α1K ,N
α21,C − α21,N α22,C − α22,N · · · α2K ,C − α2K ,N

...
...

. . .
...

αK 1,C − αK 1,N αK 2,C − αK 2,N · · · αK K ,C − αK K ,N

⎤

⎥⎥⎥⎦ (1.4)

where dij denotes the protein association ability difference between CPAN and NPAN
among protein i and protein j. Using the matrix D to show the difference of network
structure between CPAN and NPAN, a score named carcinogenesis relevance value
(CRV) was then presented to quantify the correlation of each protein with signifi-
cance of lung carcinogenesis. To identify the significant proteins for lung carcino-
genesis, two important issues were taken into consideration. First, the magnitude
of the association abilities αij′s denotes the significance of one protein to the other
one. A higher absolute value of αij implies that the two proteins are more tightly
associated. Second, if a protein plays more crucial roles in lung carcinogenesis, the
difference of association numbers linked to the protein for CPAN and NPAN would
be larger. For instance, if one protein associates with a lot of proteins in CPAN but
associates with no protein in NPAN, it would be more likely involved in lung car-
cinogenesis. As a result, the CRV was determined based on the difference of protein
association abilities as the following equation.

CRVi =
K∑

j=1

⎞⎞dij
⎞⎞ (1.5)
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Fig. 1.2 Distribution of carcinogenesis relevance values (CRVs) of random networks. The null
distribution of CRVs is generated by 100,000 randomly permuted network structures

For the i th protein in the network biomarker, the implication of Eq. (1.5) is that
the CRV quantifies the extent of protein associations that differentiate CPAN from
NPAN in the network biomarker.

For each protein, in addition to the CRV assigned, an empirical p-value was also
computed to determine the significance of the CRV. To determine the p-value for an
observed CRV, a null distribution of CRVs (Fig. 1.2) was generated by repeatedly
permuting the network structure of the rough PPI network and computing the CRV
for each random network structure. The permutation of the network structure was per-
formed by keeping the network size, i.e., the proteins with which a particular protein
interacted were permuted without changing the total number of protein interactions.
The process was repeated 100,000 times and the p-value of the corresponding CRV
was estimated as the fraction of random network structures whose CRV is at least as
large as the CRV of the real network structure. The CRVs with p-value ≤0.05 were
determined as significant CRVs and the corresponding proteins were identified as
significant proteins in lung carcinogenesis.

1.2.5 Diagnostic Evaluation by the Network Biomarker

An important feature of the proposed network biomarker approach is that it can not
only be used for investigation of significant proteins for lung cancer, but also for
diagnosis of smokers suspect with lung cancer. Given the new microarray expres-
sion data for the smoker, we can classify the sample into smoker with or without
cancer based on CPAN and NPAN within the network biomarker. The idea comes
from the similarity comparison of new sample data between CPAN and NPAN.
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Specifically, if a sample data is more similar to the network structure of CPAN than
of NPAN, it would be regarded as the smoker with lung cancer, and vice versa. Since
only one sample cannot be used for network construction, the new sample data was
mapped to the CPAN and NPAN identified above and the mapping error would be
employed as the criteria of classification. Suppose that we had a new sample data
Z = ⎛

z1 z2 . . . zK
⎝T from a smoker, based on Eqs. (1.1) and (1.3), the mapping

errors for CPAN and NPAN are respectively defined as

MEC = ∞Z − C · Z∞2
MEN = ∞Z − N · Z∞2

(1.6)

where ∞P∞2 =
⎠

K∑
i=1

p2
i

)1/2

when P = ⎛
p1 p2 . . . pK

⎝T . The mapping errors can

be considered as the similarity measurement of the new sample Z to the systems
CPAN and NPAN. The smaller the mapping error is, the more matching the sample
data is to the protein association network. Consequently, if MEC < MEN, the new
sample Z is more similar to the cancer system and is classified into the smokers with
cancer category, and vice versa. The criteria of mapping errors have simultaneously
taken account of the protein association network structures with quantitative associ-
ation abilities and the expression levels of the proteins. Further, since the modeling
error is regarded as the criterion of classification, it is a classification more dependent
on network structure than data only and therefore could be also suitable for classi-
fication with independent data. We believe that the kind of classification approach
can provide new perspective for diagnostic evaluation.

1.3 Results

1.3.1 Construction of Network Biomarker and Determination
of Significant Proteins in Lung Carcinogenesis

We applied the proposed network biomarker approach for molecular investigation
and diagnosis of lung cancer. The primary data set (79 smokers with lung cancer
and 73 smokers without lung cancer) of GSE4115 downloaded from GEO database
http://www.ncbi.nlm.nih.gov/geo/ was used for construction of network biomarker.
Based on the classical statistical method ANOVA, 199 proteins which have PPI infor-
mation were identified as the differentially expressed proteins and were selected in
the protein pool. In addition, the proteins that linked to three differentially expressed
proteins in the protein pool according to PPI information were also included in the
pool. In this case, the protein pool consisted of 339 proteins. Then, the proteins
that have PPI information among them were linked together, resulting in the rough
PPI network. The expression profiles for smokers with and without cancer and the

http://www.ncbi.nlm.nih.gov/geo/
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(a)

(b)

Fig. 1.3 The constructed network biomarker. a Cancer protein association network (CPAN). b
Non-cancer protein association network (NPAN). The node size is proportional to the CRV for each
protein and the edge width represents the magnitude of the association ability among two proteins.
The figures are created using cytoscape [56]
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Fig. 1.4 The difference between CPAN and NPAN. The node size is proportional to the CRV
for each protein and the edge width represents the magnitude of the association ability among
two proteins. Red and blue edges indicate the positive and negative values of dij’s in Eq. (1.4),
respectively. The figure is created using cytoscape [56]

protein association model Eq. (1.1) were further employed to prune the rough PPI
network. The CPAN and NPAN, which consisted of 399 and 393 protein associa-
tions respectively, would constitute the network biomarker of lung cancer (Fig. 1.3).
The difference between CPAN and NPAN was further shown in Fig. 1.4. According
to the CPAN and NPAN with quantitative association abilities, the CRVs for each
protein were computed and the significance of these CRVs was determined. Conse-
quently, 40 proteins were identified to play significant roles in lung carcinogenesis
and were shown in Table 1.1.
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Table 1.1 The identified significant proteins in lung carcinogenesis

Protein symbola CRV p-value Functional annotationb Literature evidencec

Cell growth Cell survival Cell migration

MAPK1 8.3418 <1e-5 + + + [29, 67]
SMAD2 7.7901 <1e-5 + + + [5]
CREBBP 5.7870 0.00002 + [34]
EGFR 4.3635 0.00086 + + + [16, 25, 38]
AR 4.0966 0.00159 + + + [64]
UBC 4.0331 0.00180
SRC 3.9446 0.00218 + + + [7, 44]
FGFR1 3.9227 0.00237 + + [4]
BRCA1 3.9049 0.00243 + + [74]
ESR1 3.8409 0.00295 + + + [24]
INSR 3.7946 0.00329 + + [13]
PTK2 3.6758 0.00432 + + + [43, 44]
HSP90AA1 3.6732 0.00436 + + + [20]
CALM1 3.6363 0.00482 +
POLR2A 3.5701 0.00547
CSNK2A1 3.4128 0.00761 + + [69]
PRKACA 3.3688 0.00856 +
CTNNB1 3.2935 0.00994 + + + [3]
SP1 3.2397 0.01133 + + [15]
SMAD4 3.1947 0.01266 + + + [5]
E2F1 3.1382 0.01407 + + [30]
YWHAZ 3.1212 0.01467 + [39]
MEPCE 3.0968 0.01545
AKT1 3.0193 0.01857 + + + [75]
PLCG1 2.9654 0.02069 + [54]
MYC 2.8987 0.02385 + + [77]
MAPK3 2.8545 0.02654 + + + [29, 67]
NCOA6 2.8132 0.02892 + +
FYN 2.7833 0.03089 + + [10]
MAPK8IP3 2.7746 0.03141 +
YWHAQ 2.7582 0.03242 + [70]
TRAF6 2.7150 0.03535 + [31]
SMAD1 2.6940 0.03697 + + + [37]
SMAD3 2.6815 0.03815 + + + [5]
MAPK14 2.6727 0.03894 + + + [66]
TP53 2.6522 0.04056 + + + [16, 25, 28]
XRCC6 2.6270 0.04263 +
EZR 2.6213 0.04314 + [14]
TSC2 2.6116 0.04401 + + + [40]
HGS 2.5730 0.04744 +
aThe full names of these proteins according to UniProt database http://www.uniprot.org/ are listed
in Appendix 3
bThe functional annotations are from the Gene Ontology database http://www.geneontology.org/
and literatures
cThe literature evidences indicate that overexpression/dysregulation of the specific protein or muta-
tion of the corresponding gene would result in carcinogenesis

http://www.uniprot.org/
http://www.geneontology.org/
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(a)

(b) (c)

Fig. 1.5 The functional subnetworks of significant proteins identified according to the network
biomarker. a Cell growth functional subnetwork. b Cell survival functional subnetwork. c Cell
migration functional subnetwork. All the functional subnetworks are extracted from Fig. 1.4

1.3.2 Mechanism Investigation of the Significant Proteins
in Lung Carcinogenesis

A total of 40 proteins were determined as significant proteins in lung carcinogenesis
using the network biomarker. These 40 significant proteins identified can be divided
into three categories according to the functional annotations (Table 1.1) and the three
functional subnetworks were shown in Fig. 1.5. The mechanisms for carcinogenesis
of the significant proteins were further investigated.

(1) Cell growth: Cancer is the complex disease of uncontrolled cell growth. There-
fore, the proteins responsible for cell growth are likely to play critical roles
in lung carcinogenesis. Among the 40 significant proteins identified based on
the network biomarker, 30 proteins are annotated with cell growth, reinforc-
ing its significance (Table 1.1). The mitogen-activated protein kinase (MAPK)
cascade is a highly conserved module that is relevant to many cancers. Three
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MAPK-related proteins annotated with cell growth, MAPK1 (ERK2), MAPK3
(ERK1) and MAPK14 (p38α), were identified as significant proteins in lung
carcinogenesis. Elevated expression of activated MAPK1/3 have been observed
in NSCLC [67] and may play a role in lung metastasis [29]. MAPK14 (p38α)

is well known for its important roles in response to inflammation and environ-
mental stress [36] and its protein expression is more than three times lower
in human lung tumors compared with normal human lung tissue, suggesting
that MAPK14 may function as a negative regulator of lung carcinogenesis [66].
Four proteins from the SMAD protein family (SMAD1, SMAD2, SMAD3 and
SMAD4) were also identified as significant proteins in lung carcinogenesis. The
SMAD proteins, which consist of three functional classes, are signal transducers
and transcriptional modulators [57]. Mutations and altered expression for these
four proteins were observed in human cancer [5, 37], indicating the significance
of the SMAD protein family in carcinogenesis although the roles they play may
be different.
EGFR, FGFR1, and INSR are receptor tyrosine kinases (RTKs) and are bound
by epidermal growth factor, fibroblast growth factor, and insulin, respectively.
Receptor tyrosine kinases have been shown not only to be key regulators of
normal cellular processes but also to critically involve in the development and
progression of human cancers [79]. EGFR is one of the most extensively stud-
ied proteins in carcinogenesis. It is overexpressed in NSCLC as well as in other
common tumors and its increased expression is associated with aggressive tumor
growth and therapy resistance [38]. EGFR was also found to be significantly
mutated in lung adenocarcinoma [16, 25]. Because of its significance, EGFR
becomes a popular therapeutic target for carcinogenesis. Gefitinib (Iressa) and
erlotinib (Tarceva) are two targeted therapies that specifically inhibit EGFR
tyrosine kinase [25, 38]. FGFR1 and INSR are both shown to be involved in
carcinogenesis and thus novel attractive targets for cancer therapeutic strategies
like EGFR [4, 13].
Many proteins acted as transcriptional regulators were also identified. CREBBP
is a transcriptional co-activator downstream of the TGFβ pathway and the
mutations and deletions of the CREBBP gene are associated with lung cancer
[34]. CTNNB1 (β-catenin) is one of the core components in the Wnt pathway.
Mutation of β-catenin, which results in aberrant activation of the Wnt pathway,
is a frequent cause in human cancers [3]. E2F1 is one of the significant proteins
involved in the cell cycle. Its overexpression has been demonstrated in both
NSCLC and SCLC and is induced by its upstream RB protein [30]. MYC is a
nuclear phosphoprotein and functions as a transcription factor. It controls cell
cycle progression by simulating G1/S transition and may result in loss of cell
cycle arrest and uncontrolled tumor growth when dysfunction [77]. Other iden-
tified significant proteins such as AR, ESR1, SRC, FYN, YWHAQ, YWHAZ,
and HSP90AA1 were also shown to involve in carcinogenesis [7, 10, 20, 24,
39, 64, 70].

(2) Cell survival: The ability of tumor cell populations to expand in number is
determined not only by the rate of cell proliferation but also by the rate of
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cell death [22]. In addition, the acquired resistance of programmed cell death,
apoptosis, is a hallmark of cancer. Consequently, proteins annotated with cell
survival might be important in carcinogenesis. Twenty-seven significant proteins
identified by the network biomarker were annotated with cell survival. TP53
(p53) is a well-studied tumor suppressor protein and plays important roles in
anti-cancer mechanisms. Its activation is induced by a number of stress signals
such as DNA damage, oxidative stress and activated oncogenes. Activated p53
induces cell cycle arrest, apoptosis and inhibition of angiogenesis and metastasis.
Once damaged, tumor suppression is severely reduced, resulting in uncontrolled
proliferation of the cell. Due to the importance in carcinogenesis, it is not surprise
that p53 was found to be significantly mutated in lung adenocarcinoma as well
as in squamous cell carcinoma and SCLC [16, 25, 28].
TRAF6 functions as a signal transducer in the NFκB pathway that activates
IKK, in response to proinflammatory cytokines. The identification of TRAF6
by the proposed network biomarker approach reinforces the linking between
inflammation and cancer [12, 31]. BRCA1 is a nuclear phosphoprotein that
plays a role in genomic stability. The mutant phenotype of BRCA1 predisposes to
breast and to ovarian cancer [74]. SP1 is a transcription factor downstream of the
TGFβ pathway and its overexpression contributes to malignant transformation
[15]. Other protein kinases, AKT and CSNK2A1 (CK2), were also indicated to
participate in the carcinogenic process [52, 69, 75].

(3) Cell migration: With the progression of cancer, the malignant tumor cells acquire
the ability to migrate and metastasize to distant sites. As a result, the proteins
that are relevant to the cell migration capability are crucial for the carcinogenic
process. Twenty-three out of 40 significant proteins were annotated with cell
migration. PTK2 (FAK), a protein tyrosine kinase in the RTK pathway is an
important mediator of cell proliferation, cell survival and cell migration process.
Substantial evidence has shown that activated PTK2 leads to tumor growth and
metastasis [44], and levels of expression correlates with the invasive potential of
tumors [43]. High levels of TSC2 were correlated with increased metastasis and
reduced survival in breast cancer patients, revealing a protumorigenic role for
TSC2 [40]. The other two significant proteins, PLCG1 and EZR (ezrin), were
demonstrated to play critical roles in the metastatic potential of cancer cells but
not in the primary tumor growth [14, 54].

For nine out of 40 significant proteins identified, nothing is known in the literature
with respect to their roles in lung cancer (see Table 1.1). UBC is a polyubiquitin pre-
cursor. Protein ubiquitination is a fundamental regulatory post-translational modifi-
cation controlling intracellular signaling events. It has been associated with protein
degradation, DNA repair, cell cycle regulation, endocytosis, and kinase modifica-
tion [35]. Dysregulation of ubiquitin-mediated signaling is increasingly implicated
in some human diseases. Therefore, UBC may be an important target for further
characterization of lung carcinogenesis. CALM1 is calmodulin, which mediates the
control of a large number of enzymes and other proteins by Ca2+. It is an essential
regulator of cell cycle progression and cell survival. Further studies are needed to
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examine its relation with carcinogenesis. PRKACA is a cAMP-dependent protein
kinase. The identification of PRKACA as a significant protein implies that cAMP
signaling might also involve in lung carcinogenesis. MAPK8IP3 function as a scaf-
fold protein in the RTK pathway; NCOA6, HGS, and XRCC6 are annotated with
cell growth and/or cell survival. However, no literature evidence indicates their rele-
vance with carcinogenesis until now, which makes them potential targets for further
understanding of lung carcinogenesis.

1.3.3 Diagnostic Evaluation of Smokers Suspect
with Lung Cancer Using the Network Biomarker

The network biomarker was constructed based on the primary data set of GSE4115.
An independent data set (the prospective data set of GSE4115, 18 smokers with
lung cancer and 17 smokers without lung cancer) was then used to evaluate the
diagnostic performance of the proposed network biomarker. Among the 35 samples,
26 were accurately classified, resulting in the accuracy of 74.29 %. The sensitivity
and specificity of the proposed approach were also evaluated. The network biomarker
can identify the smokers with and without cancer with a high sensitivity of 83.33 %
and a moderate specificity of 64.71 %, enabling the proposed network biomarker
to be effective to diagnose the smokers with lung cancer. Thus, it can be used as
one kind of screening test, which, with the help of other clinical diagnostic tools,
accelerates the whole diagnostic process and improves the diagnostic sensitivity.

The cause of the moderate specificity was further investigated. The reason why
the specificity is not as high as the sensitivity is that there are some smokers without
cancer misclassified in the cancer category. The misclassification may be due to sim-
ilar molecular patterns, i.e., the gene expression profiles of smokers with cancer are
highly similar to those of smokers without cancer. In order to validate the hypothesis,
Pearson correlation coefficients [48] of gene expression profiles for both smokers
with and without cancer were calculated. The mean correlation coefficient among
smokers with cancer is 0.9616 whereas the mean correlation coefficient among smok-
ers without cancer is 0.9441. In addition, the mean correlation coefficient among
smokers with and without cancer is as high as 0.9437, suggesting that the molecular
patterns of smokers with and without cancer are indeed highly similar. Because of
the highly similar molecular patterns and the fact that cigarette smoking is the main
contributor of lung cancer, we may further predict that the smokers without cancer
initially would be likely to have lung cancer one day.

In order to validate the predictive performance of the proposed network biomarker,
several comparisons were made. First, we tested the predictive performance without
the information of protein-protein interactions. The 199 differentially expressed pro-
teins selected by ANOVA using the primary data set were used for classification of
the prospective data set. A simple hierarchical clustering was performed, indicating
that using the gene expression only cannot accurately classify the prospective data set
(65.71 % accuracy). The comparison shows that the integration of gene expression
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profiles and protein interaction information can improve lung cancer diagnosis.
Second, we compared the predictive performance of the proposed method with
randomly selected networks. The average accuracy for 100,000 randomly selected
networks of 339 proteins is 48.44 %, demonstrating the significance of the proposed
network biomarker. Third, in addition to evaluating the predictive performance using
an independent data set, a 5-fold cross-validation was applied on the primary data
set plus the prospective data set. The accuracy of the cross-validation is similar to
74.29 % computed using independent data set, showing the robustness and repro-
ducibility of the proposed network biomarker approach.

1.4 Discussion

Cancer is a complex disease and carcinogenesis in humans is a multistep process that
transforms normal cells into malignant derivatives. Many researchers are investigat-
ing the underlying mechanisms which prompt the uncontrolled cell proliferation and
metastasis. They successfully identify some key components of different steps in car-
cinogenesis and some therapeutic interventions have been developed to at least slow
down the carcinogenic process. However, because of the complexity, the therapy that
targets some specific molecules is only partially effective and tumor-specific. There-
fore, investigation of the carcinogenesis from the systems perspective is inevitable.
On the other hand, biomarker identification for cancer diagnosis has been the research
focus in the biomedical field since the biomarkers could provide early detection for
cancer. As a result, in this chapter, a network biomarker approach is proposed for
molecular investigation and diagnosis simultaneously. The proposed approach was
applied on the sample data obtained from smokers with and without lung cancer and
40 significant proteins were identified in lung carcinogenesis. The network biomarker
considers not only differentially expressed proteins but also the protein association
network structure. This allows the identification of proteins with low discriminative
potential if they are associated with many other significant proteins [11]. This prop-
erty is important for the discovery of significant protein in lung carcinogenesis and
provides mechanistic insights into the process. From the mechanism investigation
for the 40 significant proteins identified using the network biomarker, we find that the
significant proteins identified are involved in the pathways that are responsible for the
cellular processes including proliferation, differentiation, apoptosis, and metastasis.
In normal cells, these cellular processes are precisely regulated to achieve the appro-
priate responses. However, in carcinogenesis, mutations damage the key components
and therefore dysregulate the cellular processes, resulting in aberrant expression of
the significant proteins and the transformed malignancy. More importantly, from the
result presented, we find that the dysregulated signals exist for multiple pathways.
Two possibilities are inferred: the genetic mutations are accumulated for components
of different pathways or the aberrant signals affect different pathways through the
crosstalk mechanisms. Further investigations are needed for the elucidation of these
two hypotheses. In addition to the investigation of significant proteins, the network
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biomarker can be used as one kind of screening test with high sensitivity. Using
the same data (the prospective data set of GSE4115), conventional bronchoscopy
was shown to be 44 % sensitive for cancer detection [59], which is only half of
the proposed network biomarker. As a result, the clinical usefulness of the network
biomarker is reinforced.

Although our proposed method is shown to be useful, some limitations or
improvements still need to be taken into consideration. In the proposed network
biomarker approach, gene expression profiles were overlaid to the corresponding
proteins for further analysis. However, levels of mRNA do not always correlate with
protein levels and do not provide information on post-translational modification such
as phosphorylation that may be critical for regulating protein activity [25]. Conse-
quently, emerging high-throughput proteomic techniques like protein microarrays
would be more helpful for our method to significantly improve the detection perfor-
mance than mRNA microarray data. In addition, if the genome-wide gene expression
levels and protein expression levels can be obtained simultaneously, we are able to
construct the integrated cellular networks of transcription regulations and protein
interactions which provide a more integrated network biomarker to gain insight into
the carcinogenic process [71]. The protein-protein interaction data from public data-
bases also plays important roles in the proposed method. Nevertheless, there is a large
variation in the coverage of protein interaction data across the interaction databases
[42]. Therefore, HPRD and BioGRID databases were integrated for the PPI informa-
tion here. We believe that the increased quality and coverage of protein interaction
data would enhance the proposed network biomarker approach for characterization
of lung carcinogenesis. Another limitation of the proposed method is that the size
of the protein association network is restricted by the sample size available because
of avoiding overfitting in network construction. It results in the exclusion of some
well-studied proteins which have relevance to the lung carcinogenesis in the net-
work biomarker, including KRAS, MET, PI3KCA. To overcome the problem, more
samples are needed. It is our belief that the diagnostic evaluation using the network
biomarker would be improved once the constructed protein association networks can
be expanded. Many other groups identified the discriminative subnetworks using dif-
ferent methods, especially graph theory-based methods [53, 63]. For example, Tian
et al. proposed a hypergrah-based iterative learning algorithm, which minimizes a
cost function under a unified regularization framework, for subnetwork identification
[63]. These graph-based methods can also be incorporated to improve the significant
protein selection in the proposed method. Further, for the data used, the samples for
gene expression profiling are simply divided into two groups, smokers with cancer
and without cancer. If more sample data, especially cancer stage-specific samples,
are available, we can then determine how the network evolves and changes during
cancer progression using the proposed method.

Our network biomarker gives systematic insights into the lung carcinogenic
process and provides a good identification method for significant proteins rele-
vant to it. The significant proteins consist of the ones that are shown to be lung
cancer-related and many others that have not been previously reported. These pro-
teins not only provide new targets for further studies to understand the mechanisms
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in lung carcinogenesis but also are potential targets for therapeutic interventions.
The main challenge of cancer research is to find an effective therapeutic approach
that specifically kills malignant cells. Conventional chemotherapy acts by killing
all rapidly dividing cells, resulting in toxic effects and damage of normal tissues
[51]. With the advances in understanding the mechanisms involved in carcinogenic
process, the so-called targeted therapy, which is more effective and less harmful to
normal cells, is developed to inhibit the specific molecules that play crucial roles in
tumor growth. The significant proteins identified by the proposed network biomarker
provide suitable molecules to be targeted. For example, gefitinib (Iressa) and erlotinib
(Tarceva) are two tyrosine kinase inhibitors that specifically target EGFR. Although
the efficacy can be shown, there are still patients not responded well to these drugs
[3]. One explanation for the circumstance is that the single-target agents likely result
in network compensation and drug resistance [18]. As a result, multi-target therapeu-
tic interventions that impact multiple targets simultaneously might be required for
humans to combat against cancer. Multi-target therapeutics can be more efficacious
and less vulnerable to adaptive resistance because the biological system is less able
to compensate for the action of two or more drugs simultaneously [78]. Hopefully,
with the help of significant proteins identified by the proposed network biomarker
approach and the pathway information, the multi-target therapeutic interventions that
act on different critical pathways in lung carcinogenesis can be developed.

1.5 Conclusions

Lung cancer is the leading cause of cancer deaths worldwide. Understanding the
causes and the underlying mechanisms can help fight the disease. In this chapter, a
network biomarker approach, which integrated gene expression profiles and protein
interaction information, was developed for molecular investigation and diagnosis for
lung cancer. The network biomarker constructed shed light on the lung carcinogenic
process from the systems perspective and are used for significant protein identifi-
cation and diagnostic evaluation. The diagnostic results indicate that the network
biomarker is sensitive to the diagnosis of smokers with lung cancer and can be used
as one kind of screening test. Most importantly, the significant proteins identified by
the network biomarker give mechanistic insights into the carcinogenic process and
provide potential therapeutic targets to combat against cancer.

Appendix

Appendix 1: Identification of Association Parameters

After the protein association model of the rough PPI network was constructed, the
association parameters in Eq. (1.1) were identified using maximum likelihood esti-
mation method [32]. Equation (1.1) can be written in the following regression form.
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yi [n] = ⎛
yi1[n] . . . yi Ni [n]⎝

⎡

⎢⎣
αi1
...

αi Ni

⎤

⎥⎦+ εi [n] (A1)

= φi [n] · θi + εi [n]

where φi [n] denotes the regression vector which can be obtained from the processing
above, θi is the parameter vector to be estimated. Suppose that there are M samples
for us to estimate the association parameters,

{
yi [n] φi [n] } for n ∈ {1, 2, · · · , M}

can be easily acquired via the same procedure. In this case, Eq. (A1) for different
samples can be represented as the following form.

⎡

⎢⎣
yi [1]

...

yi [M]

⎤

⎥⎦ =
⎡

⎢⎣
φi [1]

...

φi [M]

⎤

⎥⎦ · θi +
⎡

⎢⎣
εi [1]

...

εi [M]

⎤

⎥⎦ (A2)

For simplicity, the notations Yi ,Θi , and ei were defined to express Eq. (A2) as follows

Yi = Θi · θi + ei (A3)

In Eq. (A2), we assumed noises εi [n] for different samples as independent random
variables of normal distribution with zero mean and unknown variance σ 2

i , i.e., the
variance of ei is ψi = E

{
ei eT

i

} = σ 2
i I , where I is the identity matrix. The probability

density function of ei is given as

p(ei ) =
(
(2π)M det ψi

⎜−1/2
exp

{
−1

2
eT

i ψ−1
i ei

}
(A4)

Considering Eqs. (A3) and (A4), the likelihood function can be expressed as

L(θi , σ
2
i ) = p(θi , σ

2
i ) =

(
2πσ 2

i

⎜−M/2
exp

⎟
− 1

2σ 2
i

(Yi − Θiθi )
T (Yi − Θiθi )

}

(A5)

Maximum likelihood estimation method aims at finding θi and σ 2
i to maximize the

likelihood function in Eq. (A5). For the simplicity of computation, it is practical
to take the logarithm of the likelihood function, and we have the following log-
likelihood function

log L(θi , σ
2
i ) = − M

2
log

(
2πσ 2

i

⎜
− 1

2σ 2
i

M∑

n=1

[yi [n] − φi [n] · θi ]
2 (A6)

where yi [n] and φi [n] are the n-th element of Yi and Θi , respectively. Here, the
log-likelihood function is expected to have the maximum at θi = θ̂i and σ 2

i = σ̂ 2
i .
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The necessary conditions for determining the maximum likelihood estimates θ̂i and
σ̂ 2

i must conform to the following two equations.

∂ log L(θi ,σ
2
i )

∂θi

⎞⎞⎞⎞
θi =θ̂i

= 0

∂ log L(θi ,σ
2
i )

∂σ 2
i

⎞⎞⎞⎞
σ 2

i =σ̂ 2
i

= 0
(A7)

After some computational deduction, the estimated parameters θ̂i and σ̂ 2
i are

θ̂i =
(
ΘT

i Θi

⎜−1
ΘT

i Yi (A8)

σ̂ 2
i = 1

M

M∑

n=1

[
yi [n] − φi [n] · θ̂i

]2 = 1

M
(Yi − Θi θ̂i )

T (Yi − Θi θ̂i ) (A9)

Appendix 2: Determination of Significant Protein Associations

When the association parameters were identified, Akaike Information Criterion
(AIC) [1, 32] and student’s t-test [48], which is used to calculate the p-values of
the association abilities, were employed for both model order selection and determi-
nation of significant protein associations. The AIC, which attempts to include both
the estimated residual variance and model complexity in one statistics, decreases as
the residual variance decreases and increases as the number of parameters increases.
As the expected residual variance decreases with increasing parameter numbers for
nonadequate model complexities, there should be a minimum around the correct para-
meter number [1, 32]. Therefore, AIC can be used to select model structure based
on the association abilities (αik′s) identified above. Due to computation efficiency, it
is impractical to compute the AIC statistics for all possible regression models. Step-
wise methods such as forward selection method and backward elimination method
are developed to avoid the complexity of exhausted search [27, 48, 55]. However,
in the case of backward selection method, a variable once eliminated can never be
reintroduced into the model, and in the case of forward selection, once included can
never be removed [48, 55]. Thus, the stepwise regression method which combines
forward selection method and backward elimination method was applied to compute
the AIC statistics. Once the estimated regulatory parameters were examined using
the AIC model selection criteria, the student’s t-test was employed to calculate the p-
values for the association abilities (αik′s) under the null hypothesis H0 : αik = 0 [48]
to determine the significant protein associations. The p-values computed were then
adjusted by Bonferroni correction to avoid a lot of spurious positives [48]. The asso-
ciations which adjusted p-value ≤ 0.05 were determined as significant associations
and be preserved in the protein association network.
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Appendix 3: The full Names of the Significant Proteins Identified

MAPK1 Mitogen-activated protein kinase 1
SMAD2 Mothers against decapentaplegic homolog 2
CREBBP CREB-binding protein
EGFR Epidermal growth factor receptor
AR Androgen receptor
UBC Polyubiquitin-C
SRC Proto-oncogene tyrosine-protein kinase Src
FGFR1 Basic fibroblast growth factor receptor 1
BRCA1 Breast cancer type 1 susceptibility protein
ESR1 Estrogen receptor
INSR Insulin receptor
PTK2 Focal adhesion kinase 1
HSP90AA1 Heat shock protein HSP 90-alpha
CALM1 Calmodulin
POLR2A DNA-directed RNA polymerase II subunit RPB1
CSNK2A1 Casein kinase II subunit alpha
PRKACA cAMP-dependent protein kinase catalytic subunit alpha
CTNNB1 Catenin beta-1
SP1 Transcription factor Sp1
SMAD4 Mothers against decapentaplegic homolog 4
E2F1 Transcription factor E2F1
YWHAZ 14-3-3 protein zeta/delta
MEPCE 7SK snRNA methylphosphate capping enzyme
AKT1 RAC-alpha serine/threonine-protein kinase
PLCG1 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-1
MYC Myc proto-oncogene protein
MAPK3 Mitogen-activated protein kinase 3
NCOA6 Nuclear receptor coactivator 6
FYN Tyrosine-protein kinase Fyn
MAPK8IP3 C-Jun-amino-terminal kinase-interacting protein 3
YWHAQ 14-3-3 protein theta
TRAF6 TNF receptor-associated factor 6
SMAD1 Mothers against decapentaplegic homolog 1
SMAD3 Mothers against decapentaplegic homolog 3
MAPK14 Mitogen-activated protein kinase 14
TP53 Cellular tumor antigen p53
XRCC6 X-ray repair cross-complementing protein 6
EZR Ezrin
TSC2 Tuberin
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Chapter 2
The Impact of Next-Generation Sequencing
Technology on Bacterial Genomics

Avantika Lal and Aswin Sai Narain Seshasayee

Abstract For many decades, genomic studies were based on Sanger sequencing or
the dideoxy chain termination method of sequencing DNA, along with microar-
ray and hybridization-based techniques to understand genome function. Sanger
sequencing was used to sequence the genomes of many organisms, from bacteria to
humans. However, in recent years ‘Next-generation’ sequencing technologies have
been developed that are cheaper and far more rapid. They produce great sequenc-
ing depth, making them applicable to quantitative studies such as gene expression
measurements as well. As a result, these technologies have been used extensively to
study the sequence, structure, function and evolution of both eukaryotic and bacterial
genomes. Here we discuss next-generation sequencing and how it has been used to
study a variety of areas from gene expression and protein-DNA interactions to bac-
terial community function and evolution, at the scale of whole bacterial genomes.
We expect that further advances in DNA sequencing technology and methods for
managing and analyzing the large volumes of data produced by these approaches
will help to answer many more questions in this field.
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2.1 Introduction

DNA sequencing is the determination of the order of the four nucleotide bases,
adenine, guanine, cytosine, and thymine, in a molecule of DNA. Some of the earliest
efforts to sequence DNA used laborious methods based on two-dimensional gel
chromatography. However, in 1977, Sanger and Coulson described a much easier and
more reliable method of DNA sequencing based on chain termination [90], which
soon became widespread. In time, their original method was improved by automation
and advances in technology and for the next 30 years, ‘Sanger sequencing’ held a
monopoly over DNA sequence determination.

The ability to sequence DNA proved to be a turning point in biological sciences.
It enabled scientists to understand the genetic basis of many diseases and to trace
evolution at the molecular level, among other applications. The genomes, or total
cellular DNA contents, of several organisms were sequenced using this method [10,
27, 32]. Over 1990–2004, the International Human Genome Project used Sanger
sequencing methods, coupled with the whole genome shotgun technique, to sequence
the approximately three billion nucleotides of the human genome [43]. Today DNA
sequencing has become a vital tool not only in basic biological research but also in
applied fields such as diagnostics and forensics.

As genome sequencing projects matured, it became apparent that further large-
scale experimental tools were required to understand the meaning of genome
sequences. Several tools were developed to study genomes at the functional level:
from gene expression, which is the first stage in the conversion of DNA sequence to
a functional readout, to protein-nucleic acid interactions, which enable gene expres-
sion. The DNA microarray, developed in the early 1990s, allowed scientists to mea-
sure the expression levels of large numbers of genes simultaneously or to genotype
multiple regions of a genome. Later developments in DNA microarrays, in the form
of genome-tiling arrays, permitted experimental annotation of genomes leading to
various descriptions of pervasive transcription in eukaryotic genomes [7, 20], and
large numbers of intra-operonic transcriptional initiation events in the simple bacte-
rial genome of Escherichia coli [16]. These techniques further allowed large-scale
mapping of regulatory networks by interrogating regions of the genome bound by a
protein of interest, leading to the emergence of large-scale network biology (See [36,
38, 55, 100] for experiments in yeast; see [3, 4] for reviews); these findings unrav-
eled unanticipated complexity in the binding properties of transcriptional regulators
even in model bacterial genomes [34].

However, both Sanger sequencing and DNA microarrays have several drawbacks.
The major drawback of Sanger sequencing is that it is too slow and expensive for
many applications. The human genome project took over thirteen years and more
than two billion dollars to complete. Given these limitations, the ultimate goal of
genome sequencing, which for many is the sequencing of personal genomes leading
to personalized medicine, is unlikely to be met using Sanger sequencing.

As a result, there has been a large effort in science and industry to bring the
cost of high-quality human genome sequencing down to a level that is affordable to
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individuals. In 2006, the X PRIZE Foundation announced a $10 million incentive
for the group whose technology would enable a human genome to be sequenced for
$1,000 or less. This has spurred the rise of a number of ‘next-generation’ sequenc-
ing (NGS) technologies in the last decade [91]. These produce large quantities of
sequence data in a short period of time, and at a reduced cost. This has encouraged
ambitious projects such as the 1,000 human genome project [84] and the 10,000 verte-
brate genome project [69]. It has also become routine for large sequencing centers to
publish a single piece of work describing over 100 bacterial genomes, thus enabling
fine-scale genomic studies of bacterial epidemiology and evolution [19, 72].

The second cornerstone of genomic studies in the early 2000s, DNA microarray
technology, has the limitation that it can interrogate the properties of only those
regions of the genome whose sequence is known. For example, the first generation
gene expression microarrays probed only known gene sequences, and were unable
to detect transcription from intergenic regions. Further, microarrays cannot be used
effectively to investigate the functional properties of non-model organisms whose
genomes are not known. Though sequences of related genomes have been used to
design microarray probes for the study of non-model organisms, the limitations of
such an approach become apparent in the light of the fact that non-conserved portions
of a genome have a large effect on an organism’s biology. Moreover, even small
variations between the two genomes in the regions probed by the microarrays could
lead to unreliable findings. Further, saturation in the measurement of fluorescence
limits the dynamic range of microarrays.

The great depth of sequencing afforded by NGS techniques allow us to quantify
nucleic acids, thus making them applicable to various applications for which DNA
microarrays had been used, while circumventing many of the problems associated
with the latter.

In this chapter, we discuss the features and challenges of next-generation sequenc-
ing technologies, as well as various types of experimental studies that have been
enabled by them. We focus particularly on how these sequencing methods have been
used to study bacterial genomics.

2.2 Next-Generation Sequencing Technologies

The term ‘Next-generation sequencing’ applies to several commercially available
platforms. The most commonly used NGS platforms are 454 pyrosequencing
(Roche/454 Life Sciences), Illumina (erstwhile Solexa sequencing) and SOLiD
(Applied Biosystems).

Although these platforms differ from each other in the procedure employed as well
as the chemistry of sequencing, their basic strategy is similar. The DNA molecule
to be sequenced is fragmented at random positions, and short adaptor sequences are
ligated to the ends of each DNA fragment. The resultant set of molecules is called the
sequencing library. Each molecule in this library is amplified to generate a cluster of
amplicons. Each cluster of identical DNA molecules is spatially separated from the
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Fig. 2.1 The process of Illumina Sequencing. 1 The DNA to be sequenced is fragmented and short
adaptor sequences are ligated to the ends of the fragments. 2 The DNA fragments are attached to a
substrate coated with primers. 3 Bridge PCR amplifies each fragment to produce spatially separated
clusters of fragments. 4 Fluorescently labeled nucleotides, polymerase and primers are added to
synthesize complementary strands of DNA. After each step of nucleotide addition, the fluorescent
signal from each cluster is read to generate the base sequence

others by tethering them to separate locations on a substrate. Primers complementary
to the adaptor sequences at the end of each DNA fragment are added. The DNA
molecules are then sequenced by extending these primers to produce DNA strands
complementary to the template. Sequence data is acquired by imaging of the full
array at the end of each cycle of nucleotide addition. These technologies have been
described elsewhere [64, 107]. Figure 2.1 shows the process of DNA sequencing
using Illumina technology.

The process of Sanger sequencing also begins with breaking the DNA molecule
into smaller fragments. However, Sanger sequencing then requires each DNA frag-
ment to be cloned into a vector and amplified in host cells (usually E. coli). This is
time-consuming and expensive, and also, many cloned sequences are not stably main-
tained in the host [62]. In NGS, the sequencing library is constructed and amplified
entirely in vitro, saving the trouble of cloning and colony picking.

Further, as the effective size of next-generation sequencing features can be in
microns, millions of sequencing reads can be obtained in parallel by imaging of a
small surface area. This makes the NGS strategy both faster and cheaper than Sanger
sequencing. Also, because sequencing features are immobilized to a planar surface,
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they can be enzymatically manipulated by a single reagent volume. This results in a
much lower effective reagent volume per feature, and therefore lowers cost [93].

Perhaps the greatest drawback of NGS technologies is their lower read length
(35–400 bp, depending on the platform) compared to Sanger sequencing (650–800
bp). The raw accuracy of sequencing is also currently lower for NGS than Sanger
sequencing. However, it is expected that these problems will reduce with further
improvements in technology.

2.3 NGS in the Study of Bacterial Communities,
Evolution and Epidemiology

Bacteria are the most predominant form of free-living life on earth. Many bacteria
are disease causing and understanding their evolution and function might help in
developing intervention procedures. From a basic science standpoint, they are excel-
lent systems for studying adaptation, both at the level of genome content and at the
level of controlling gene expression and protein activity in response to changing
conditions. In the following sections, we explore how recent literature has explored
these aspects of bacterial biology using NGS technologies.

2.3.1 Genome Sequencing and Re-sequencing

Despite the increased speed and lower cost of sequencing, de novo sequencing of a
genome using NGS is challenging due to the low read length of these instruments.
This makes it difficult to assemble the sequenced fragments into a complete genome.
The low read-length of the sequencing data is offset by great depth; a single lane
of sequencing on an Illumina HiSeq 1000 sequencer, with a 12x multiplexing of
samples, will provide 3Gb of sequence data per sample, thus giving a 1,000-fold
coverage of an ‘average’ bacterial genome. Our experience working with genomes
of Staphylococcus aureus shows that extremely stringent filtering of sequencing
reads could easily give >200-fold coverage [81]. Compare this with the ˜10-fold
coverage that was typically achieved with Sanger sequencing projects, after laborious
experimental work!

These unique characteristics of NGS data, namely an extremely large number
of short reads with unique error characteristics, have led to the development of
dedicated software, such as Velvet [119], SOAPdenovo [57], and ALLPATHS [11],
for genome assembly. These methods have developed to such an extent that with
sufficient coverage, short-read sequencing data can be used to produce first-pass
mammalian genome assemblies that are comparable to those obtained with traditional
Sanger sequencing [31].
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Smith et al. [97] first used pyrosequencing to sequence the ˜4Mb genome of the
human pathogen Acinetobacter baumannii, the causative agent of several infections
including pneumonia and meningitis. To overcome the limitation of short DNA reads
(˜100 nt on average), they obtained more than 21-fold coverage of the genome. More
recently, Bos et al. [8] used Illumina to sequence DNA samples from victims of the
‘Black Death’ pandemic that spread through Europe in the fourteenth century, and
reconstructed the ancient genome of the bacterium Yersinia pestis that was respon-
sible for the pandemic.

A more common application of NGS is genome resequencing, i.e. sequencing the
genome of a member of a species for which a reference genome is already available
(Figure 2.2a). This is often done to catalog variations such as single nucleotide
polymorphisms (SNPs), insertions and deletions relative to a reference genome, for
example to identify those that might lead to interesting phenotypes. Before the advent
of NGS, such studies were pursued using DNA microarrays, designed on the basis
of one or more fully-sequenced reference genomes, following a technique dubbed
comparative genome hybridization (CGH).

CGH is a tool to detect variations in DNA copy number between a test and
reference genome. In this method, samples of genomic DNA from the test and refer-
ence cells are hybridized to microarrays. If, for instance, a gene from the reference
genome is absent in the test organism, then the fluorescence intensity from its cor-
responding probe will be considerably less in the test than in the reference. For
example, Willenbrock et al. [115] designed a microarray with probes covering the
total content of 32 E. coli genomes to characterize novel E. coli strains based on
their genomic content. McCarthy et al. [67] developed a 62-strain S. aureus microar-
ray and used it to compare the genomes of different isolates of S. aureus from pigs
and humans. They found that while the core genomes of these isolates did not vary
much, the distribution of mobile genetic elements was variable and several mobile
elements were host-specific. McCarthy et al. [68] used the same method to compare
mobile genetic elements between 40 isolates of methicillin-resistant S. aureus from
a hospital and found a diverse range of MGEs, virulence and resistance genes in the
population.

The CGH technique, however, suffers from the drawback of interrogating only
genomic regions present in the reference genome(s). Further, it is hard to distinguish
between regions that are absent in the test genome and those that are merely divergent
in the probed loci. Though these can be partially overcome by the adoption of a
larger number of reference genomes in the design of the microarray, the process
becomes quickly complicated, in particular for genomes with what is called an open
pan-genome [101]. However, the advent of NGS has circumvented these problems,
leading to several studies on the genetic variation and evolution of pathogens.

He et al. [42] used 454 and Sanger sequencing to sequence the genomes of thirty
isolates of Clostridium difficile, which causes diarrheal disease. A phylogenetic
analysis of these genomes suggested that both horizontal gene transfer and large-
scale recombination played a significant role in the evolution of this species, and
that virulence evolved independently in multiple lineages. In another such study,
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Fig. 2.2 a Identifying genome variations by resequencing. b Metagenomics

Mutreja et al. [72] studied the evolution of Vibrio cholerae, which causes millions
of cases of cholera every year, and has caused seven recorded pandemics. They
sequenced the genomes of 136 isolates of V. cholerae and identified SNPs to con-
struct a phylogeny of this species. Their analysis suggested that the seventh cholera
pandemic spread from the Bay of Bengal in at least three independent but overlapping
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waves with a common ancestor in the 1950s, and identified several transcontinental
transmission events. Similar genome-scale epidemiological studies have been carried
out for S. aureus [39, 51, 66], and Casali et al. [12] sequenced 34 isolates of Mycobac-
terium tuberculosis to study the evolution of drug resistance in this pathogen. Such
studies have given us valuable insights into the evolution and spread of human dis-
eases, and may help us understand how to control epidemics in the future.

The ability to sequence large numbers of genomes also enabled studies in which
the genomes of bacteria were sequenced over the course of long-term evolution
experiments to identify regions that underwent evolutionary change. For example,
Wielgoss et al. [114] sequenced 19 E. coli genomes from a 40,000-generation evo-
lution experiment and estimated the point-mutation rate in the E. coli genome based
on the accumulation of synonymous substitutions to be 8.9 × 10−11 per base pair
per generation.

Other studies have examined the evolution of pathogens in their hosts. Yang et al.
[118] studied the evolutionary dynamics of Pseudomonas aeruginosa as it adapted
to its human hosts over 200,000 generations. These authors found that the population
underwent limited genotypic diversification—most of which occurred early in the
form of a few pleiotropic mutations followed by a landscape dominated by negative
selection—despite the complex host environment. This was reported to be in contrast
to in vitro studies, which documented continuous positive selection. Lieberman et al.
[59] sequenced the genomes of 112 isolates of Burkholderia dolosa collected from
human hosts over 16 years. They identified a set of genes that acquired nonsynony-
mous mutations in several individuals, suggesting that they experienced strong selec-
tion pressure during pathogenesis. These genes were involved in processes important
for pathogenicity, such as antibiotic resistance and membrane biosynthesis, and might
represent possible targets for therapy.

The acquisition of antibiotic resistance by bacterial pathogens is a growing
problem, and NGS has been used to investigate this phenomenon. Zhang et al. [120]
grew E. coli in the presence of the antibiotic ciprofloxacin and sequenced the genomes
of the bacteria that survived, to identify mutations that gave rise to resistance. Whole-
genome sequencing revealed that four single-nucleotide polymorphisms, including
one in the gyrA gene encoding gyrase, were fixed in the resistant population. Sim-
ilarly, Toprak et al. [102] grew E. coli with several different drugs and studied the
evolution of resistance over 20 days. Sequencing the genomes of the resistant popu-
lations revealed mutations that conferred resistance to specific drugs and to multiple
drugs.

2.3.2 Metagenomics

Metagenomics, or community genomics, is an approach to analyze the total genomic
content of a microbial community. The total DNA from a population is isolated,
sequenced and compared with previously known sequences. Metagenomic studies
allow researchers to discover new species, and also to identify the types of biological
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processes that occur in a specific environment. (Figure 2.2b) These methods permit
bird’s eye-level genetic characterization of unculturable bacteria, which represent
most of the bacterial populations on the planet.

Early metagenomic explorations were based on painstaking Sanger sequencing
experiments [30, 106, 111]. However, the main difficulty was presented by the sheer
number of microbes in an environmental sample—it is estimated that there are˜106

bacterial species per gram of soil. The DNA of bacteria in the human gut, which has
been a subject of keen interest among biologists and medics alike, can be expected
to harbor much more diversity than the genome of its host. This represents a vast
amount of DNA to sequence. Further, sampling rarer constituents of the microbial
population requires great depth of sequencing, which is difficult to achieve with
traditional sequencers. The high-throughput capability, relatively low cost and depth
of next-generation sequencing makes such an approach much easier. Next-generation
sequencers have been used to sequence the metagenome of diverse environments such
as soil, oceanic communities, and the human gut.

Edwards et al. [26] used pyrosequencing to sequence genomes from two adjacent
but chemically and geologically different sites in an iron mine in Minnesota. The
microbial communities at the two sites were found to be functionally and metaboli-
cally different from each other, in pathways such as carbon utilization, iron acquisi-
tion, nitrogen assimilation, and respiration. Dinsdale et al. [22] used pyrosequencing
to compare microbial and viral DNA sequences from nine biomes including marine,
freshwater, subterranean, and host-associated, and found strongly discriminatory
metabolic profiles across different environments.

It is estimated that up to 100 trillion microbial cells reside in an average human
body [5]. Most of these microbes are present in the gut, where they are thought
to influence human physiology, nutrition, and health [17, 87]. To understand and
exploit the functioning of the gut microbial community it is necessary to understand
its content and diversity. Qin et al. [83] used Illumina to sequence the total genomic
DNA from faecal samples of 124 European individuals. They assembled and charac-
terized 3.3 million microbial genes from 576.7 Gb of sequence, and found that each
individual harbored at least 160 bacterial species, which were largely common across
individuals. Further, they compared samples from healthy individuals and inflamma-
tory bowel disease patients, and showed that the gut microbiomes of the two groups
differed in terms of overall bacterial diversity as well as the relative abundances of
various species.

‘Metatranscriptomic’ studies aim to sequence the total RNA expressed by microbes
in an environmental sample, instead of DNA. This is particularly interesting as bac-
teria have several untranslated small RNAs that regulate environmentally important
processes, including amino acid biosynthesis, starvation responses, and quorum sens-
ing [99]. Because studies on sRNAs have focused on a few model microorganisms,
the diversity and ecological function of sRNAs in natural communities is little under-
stood. Compared to protein-coding sequences, these are also difficult to identify from
DNA sequences. Shi et al. [94] analyzed metatranscriptomic data sets from ocean
water and found that a large fraction of cDNA sequences detected comprised small
RNAs. They also identified several new classes of putative sRNAs.
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Metagenomics has given scientists access to unculturable microbial communities
and their activities in a wide variety of systems. Though this approach can tell us
about the species and functions present in a microbial community, it is very difficult
to assemble individual genomes in the community from such data. However, Iverson
et al. [45] were able to reconstruct a nearly complete genome of the uncultured marine
group II Eurarchaeota entirely de novo from the metagenome of seawater samples.

2.3.3 Single-Cell Genomics

The various limitations of metagenomics, particularly difficulties in accessing rare
components of the microbiota and ability to map genes to individual species or
organisms can be overcome by single-cell genome sequencing. Methods have now
been developed to isolate single cells and amplify DNA for sequencing. The higher
throughput of NGS makes it possible to finish several single-cell genomes in a reason-
able time, and single-cell sequencing has now been applied to many environmental
microbes.

Marcy et al. [63] developed a microfluidic device for isolating single cells and
amplifying their genomes, and used it to isolate bacteria of a little-understood phylum
from the human oral microbiota. They were able to assemble the sequences of over
1,000 genes by pyrosequencing, providing insight into the physiology of members
of this phylum. Woyke et al. [116] isolated DNA from individual cells of two marine
flavobacteria from the Gulf of Maine that were phylogenetically distant from existing
cultured strains. With a combination of pyrosequencing and Sanger sequencing they
recovered 91 % and 78 % of the two genome sequences, and analyzed the genome
content, metabolic adaptations, and biogeography of these taxa.

2.4 Studying Genome Function

2.4.1 Gene Expression Control in Bacteria

Bacteria do not express all the genes present on their genome all of the time. Instead,
they produce those gene products that are important for them to survive in the envi-
ronment they face. Bacteria may accomplish this by modulating any step of a gene’s
expression and protein activity, from transcription to translation to post-translational
modification of a protein, though they most commonly control gene expression by
regulating the level of transcription.

Transcription is regulated at multiple levels, including: (a) variations in the
sequence of the promoter to which RNA polymerase, the enzyme responsible for
transcription, binds, thus ensuring that different genes have different inherent ability
to be transcribed; (b) three-dimensional topology of the DNA where DNA supercoil-
ing controls many DNA transactions including transcription, by controlling the extent
to which the DNA is unwound; (c) sigma factors, which tightly associate with the
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Fig. 2.3 NGS—based techniques are used to understand bacterial genomics at multiple levels

RNA polymerase and recognize promoter sequences; (d) transcription factors, which
are proteins that alter the affinity of a promoter to the RNA polymerase by binding
close to the promoter and either enabling or blocking access of the promoter to the
RNA polymerase; (e) various small molecule and RNA-based ligands that bind to
components of the RNA polymerase thus altering its availability to transcribe genes;
(f) DNA modifications such as methylation.

Details of these regulatory mechanisms have been reviewed elsewhere [9, 44, 73].
Here we review research that has investigated the above aspects of gene regulation
in bacteria using techniques based on NGS (See Figure 2.3). Where applicable, we
point to relevant research based on microarrays indicating that similar work can be
pursued using sequencing as well.

2.4.2 Describing Transcriptomes

The transcriptome of a cell is the total content of RNA transcripts expressed in the
cell at a given time. Studying the transcriptome of a bacterium helps us to understand
how it responds to different environmental conditions. For example, Nicolas et al.
[74] investigated the transcriptomes of Bacillus subtilis grown under 104 conditions
(nutrients, aerobic and anaerobic growth, stresses, etc.) that the bacterium might
encounter in nature.

Before the development of NGS, most methods to study gene expression required
hybridization of specific oligonucleotides to the loci of interest—either primers
binding to complementary cDNA in quantitative reverse transcription polymerase
chain reactions (qRT-PCR), or labeled probes binding to RNA in Northern blot-
ting, or hybridization of cDNA to probes on microarray chips. Of these, only DNA
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microarrays had a high throughput. However, sequencing of RNA by next-generation
sequencing (RNA-seq) is different, in that fragments of DNA are matched to genes
by sequence alignment instead of physical hybridization. (See [29] for a review of
bacterial transcriptomics). These avoid problems typical of microarrays, such as (a)
a limitation to interrogate only regions of the chromosome that have been used as
probes; (b) saturation of fluorescence signals that limit the dynamic range; (c) back-
ground noise in fluorescence; (d) artifacts due to probe characteristics such as base
composition.

Global transcriptional analyses using RNA-Seq have been carried out for many
bacteria. Güell et al. [35] analyzed the transcriptome of one of the smallest self-
replicating organisms, Mycoplasma pneumoniae, using a combination of microarrays
and sequencing. They found that even this simple bacterium has several antisense
transcripts, alternative transcripts, and multiple regulators per gene. This suggests a
dynamic and regulated transcriptome, more similar to that of eukaryotes than was
previously thought.

However, it is not possible to directly locate the transcription start sites of genes
using RNA-Seq, as it is not possible to distinguish between primary transcripts and
processed transcripts. Sharma et al. [92] used a differential or dRNA-seq approach
to discriminate these two. Primary transcripts have a 5′ triphosphate group, whereas
processed transcripts such as ribosomal and transfer RNAs have a 5′ monophosphate.
They carried out 454 pyrosequencing of two cDNA libraries—one prepared from
untreated total bacterial RNA, and the other enriched for primary transcripts by
treatment with an exonuclease that degrades 5′ monophosphate but not 5′ triphosphate
RNA. They were able to map˜217 million bases of cDNA to the H. pylori genome,
and construct a genome-wide map of H. pylori transcriptional start sites and operons.
They discovered hundreds of transcriptional start sites within operons, and opposite
to annotated genes, indicating that antisense transcription takes place throughout the
genome. They also discovered˜60 small RNAs of different classes.

RNA-Seq involves reverse transcribing single-stranded RNA into double stranded
cDNA, which is then sequenced. The result is the sequences of both DNA strands
of the gene that encodes the RNA. Hence RNA-Seq does not tell us which strand
of the DNA is transcribed into RNA, which is important to resolve overlapping
genetic features and detect antisense transcription. However, there are methods to
identify the directionality of transcription. These generally involve modifying the
RNA molecules before reverse transcription, or modifying the first cDNA strand
before the synthesis of its complementary strand. Croucher et al. [18] developed
strand-specific cDNA sequencing, in which they reverse transcribed the RNA into
only one strand of cDNA and directly sequenced the library of single-stranded cDNA
molecules. Perkins et al. [79] used this to analyze the transcriptome of Salmonella
enterica serovar Typhi in a strand-specific manner. This allowed them to identify
many transcribed regions within prophages, pseudogenes, and UTRs of other genes.

As no pre-existing knowledge of the RNA sequence to be detected is necessary,
RNA-Seq has been especially useful for discovering new species of RNA. Sit-
tka et al. [96] carried out a transcriptome analysis in Salmonella enterica serovar
Typhimurium, and also sequenced the small RNAs associated with the regulatory
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protein Hfq. They discovered several novel small RNAs, and found that Hfq reg-
ulates the expression of nearly one-fifth of all Salmonella genes, including several
pathogenicity islands.

Mraheil et al. [71] sequenced cDNAs from RNA less than 500 nucleotides long,
in the intracellular pathogen Listeria monocytogenes, during intracellular and extra-
cellular growth. They discovered 150 putative regulatory RNAs, including 29 that
were expressed only during intracellular growth. Some of these were found to be
required for efficient intracellular growth and infection by this pathogen. Lasa et al.
[54] sequenced long and short (<50 nt) RNAs from S. aureus. They found short
RNAs that were produced by RNAse III digestion of double stranded RNAs formed
by overlapping sense and antisense transcripts throughout the genome. This sug-
gested that antisense transcription is used to suppress expression of some genes by
producing double-stranded RNA that is degraded.

2.4.3 Promoter Sequences and Their Affinity to RNA Polymerase

Cho et al. [16] performed a ChIP-chip experiment—in which fragments of DNA
bound to a protein of interest are isolated using an antibody and the resulting DNA
fragment hybridized to a microarray—for RNA polymerase in the presence of the
antibiotic rifampicin which blocks transcription elongation. This was shown to pro-
vide a static picture of RNA polymerase occupancy at promoters. Though this was
used primarily to define promoters and transcription start sites, one can envisage
these data being used as a measure of the inherent affinity of a promoter to the RNA
polymerase.

2.4.4 Structure of the DNA and Its Effect on Transcription

The three-dimensional structure of the bacterial genome both reflects and regulates
the functional state of the cell. However, until recently it had not been possible to
study the three-dimensional conformation of the chromosome on a genomic-scale
with high resolution. Recent techniques under the general category of “chromosome
conformation capture” (3C [21], 4C [95], 5C [25] and Hi-C [60]), build interaction
maps in which spatially proximal regions of the chromosome are linked together. This
network is subsequently used to build a three-dimensional model of the chromosome.

Umbarger et al. [105] used 5C to construct a 3D model of the Caulobacter cres-
centus genome in wild and genetically modified strains. They found the chromosome
to be ellipsoidal with periodically arranged arms, and identified a short region of the
genome that affected the orientation of the entire chromosome.

An important topological property of the chromosome that affects transcription
is supercoiling. Though it has not been possible to define local supercoiling at high
resolution on a genomic scale yet, Peter et al. [80] used DNA microarrays to identify
genes that respond to perturbations to the global supercoiling levels. They found that



44 A. Lal and A. S. N. Seshasayee

negative supercoiling activates expression of ˜200 genes in the E. coli chromosome,
while repressing that of ˜100. Genes that were activated by negative supercoiling
tended to have higher G/C content than average, whereas the opposite was true of
those that were repressed. This has potential implications for transcription during
stationary phase.

2.4.5 Sigma Factors and Transcription

Bacterial RNA polymerase is a multisubunit enzyme. The core RNA polymerase,
composed of five subunits, is capable of transcribing DNA. However, this core poly-
merase is not capable of binding tightly and specifically to promoter sequences. This
ability is conferred by the sigma subunit [9].

The number of sigma subunits varies between bacterial species. E. coli has seven,
of which RpoD is the ‘housekeeping’ sigma factor that transcribes most of the cel-
lular genes in growing cells. The other sigma subunits are activated under different
environmental conditions and direct the transcription of genes needed to survive in
those conditions. For example, RpoH is activated under heat stress and transcribes
chaperones and other genes involved in the heat stress response. Nicolas et al. [74]
examined the transcriptome of B. subtilis, and concluded that approximately 66 %
of the variance in gene expression between different environmental conditions can
be explained by variation in the expression of different sigma factors.

Wade et al. [109] used ChIP-chip to identify the genomic binding sites of RpoH
in E. coli. Interestingly, a quarter of the RpoH targets were found within coding
regions. Also, most of the targets overlapped with those of RpoD, suggesting exten-
sive overlap between the functions of different sigma factors. However this result
remains controversial [110]. Patten et al. [78] and Weber et al. [113] used microarrays
to compare gene expression of wild-type E. coli with a strain lacking a functional
RpoS sigma factor. This sigma factor controls the expression of many stationary-
phase genes. They identified hundreds of genes that are regulated by RpoS during
the transition into stationary phase.

NGS can be a powerful tool to study the functions of sigma factors in detail.
Recently, Dong and Mekalanos [24] used ChIP-Seq and RNA-Seq to define the
regulon of the alternative sigma factor RpoN in Vibrio cholerae. They identified a
consensus sequence for RpoN binding and showed that RpoN regulates the expres-
sion of flagellar genes and secreted proteins.

2.4.6 Global Transcription Factors

Many crucial processes in the cell, including chromosome organization, replication,
and regulation of gene expression are orchestrated through the interaction of proteins
with their binding sites on the bacterial genome. Understanding these processes on a
global scale requires mapping of protein-DNA interactions across the entire genome.
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Vora et al. [108] profiled the binding sites of all proteins on the entire E. coli
genome using a technique they named in vivo protein occupancy display (IPOD).
They isolated protein-DNA complexes and used DNA microarrays to identify
protein-bound domains on the E. coli chromosome. They found extensive (longer
than 1 kb) protein occupancy domains (EPODs), many of which were located in
highly curved and transcriptionally silent regions of the genome. They suggested
that these EPODs bind nucleoid-associated proteins and act as organizing centers
that isolate the domains of the chromosome. However, this technique does not allow
identification of the protein bound at each site, which has been addressed with ChIP
(described earlier).

As with transcriptomes, ChIP studies were first carried out on a genomic scale
using DNA microarrays. However, in a manner similar to RNA-Seq, ChIP followed
by NGS (ChIP-Seq) can produce significantly better data than microarrays, including
single base-pair resolution when appropriately modified (ChIP-exo), lower noise, a
larger dynamic range, and of course it is not limited by fixed probe sequences.
Although the short reads (˜35 bp) of NGS platforms are disadvantageous for appli-
cations like de novo genome assembly, they are acceptable for ChIP-Seq.

ChIP-Seq has been used to study the DNA binding of many proteins that are
involved in global gene regulation, including RNA polymerase, nucleosomes and
transcription factors, in eukaryotes [6, 13] and to a much lesser extent in prokaryotes.

Bacterial transcription factors can be broadly classified into local and global tran-
scription factors. Local transcription factors regulate the expression of a small num-
ber of genes, generally directed toward a single cellular function. On the other hand,
global transcription factors regulate a large number of genes which belong to multiple
functional categories, act under several different environmental conditions, and bind
extensively to chromosomal DNA. For example, there are 187 known transcription
factors in E. coli, but nine of these regulate 63 % of the target genes and are respon-
sible for 52 % of the regulatory interactions [89]. Seven of these are considered to
be global transcription factors: CRP, FNR, ArcA, LRP, FIS, IHF and H-NS [65].

Genome-wide approaches are necessary to understand the function of global tran-
scription factors, as these proteins influence transcription across the entire genome.
Grainger et al. [34] used ChIP-chip and microarrays to study the binding pattern of
the global transcription factor CRP across the E. coli genome and identify its reg-
ulated genes. They found that while CRP does not have many strong binding sites
(around 70), it binds to several weaker sites throughout the genome. Cho et al. [14]
carried out ChIP-chip to identify binding sites of the E. coli transcription factor Lrp
and RNA polymerase along with a comparison of gene expression in wild-type and
an Lrp knockout. They showed that Lrp regulates a large number of genes involved
in diverse functions and has three modes of regulation at different promoters.

More recently, NGS techniques have been used to study transcription factor func-
tion. Kahramanoglou et al. [50] used ChIP-Seq to map the binding sites of the
nucleoid-associated proteins H-NS and Fis throughout the E. coli chromosome.
These proteins were previously studied using ChIP-chip [15, 33, 76]. Fis affects
the expression of over 20 % of all genes, mostly by increasing transcription. How-
ever, there was little correlation between Fis binding regions and regions where the
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protein affected transcription. But, regions where such a correlation existed were
characterized by multiple Fis binding sites in operon-upstream regions. This in turn
was correlated with high A/T content of the binding region and possible DNA bend-
ing. H-NS binds to longer stretches of DNA, and shows mild or strong repression of
its target genes depending on the length of the binding site. Prieto et al. [82] identified
the binding sites of HU and IHF in E. coli on a genome-wide scale using ChIP-seq,
along with microarray analysis of gene expression in single- and double-deletion
mutants of each protein. They found that the binding of IHF was sequence specific
and included ˜30 % of all operons in the genome, demonstrating its role as a global
regulator. HU was seen to bind non-specifically to the chromosome, though with a
preference for A/T-rich DNA.

2.4.7 DNA Modifications and Transcription

Methylation of the nucleotides of DNA is another important means of regulation in a
cell. In bacteria, the Dam methylase adds a methyl group to the adenine residue in the
sequence 5’-GATC-3’. Dam methylation regulates DNA replication, mismatch repair
and transcription in bacteria, by modulating protein-DNA binding. A microarray
study by Robbins-Manke et al. [85] found an upregulation of over 200 genes in the
absence of Dam in E. coli. They suggested that this might be due to Dam changing
the binding sites of transcription factors and RNA polymerase and hence modulating
the binding of these proteins.

A second DNA methylase in E. coli is DNA Cytosine Methylase or Dcm, which
methylates the internal cytosine in CCWGG sequences. Kahramanoglou et al. [49]
carried out bisulfite sequencing of E. coli genomic DNA using Illumina to identify
sites of cytosine methylation. They also compared gene expression of wild-type
E. coli with a Dcm knockout strain and identified over 500 differentially expressed
genes. Methylation by Dcm progressively increases from exponential to stationary
phase, and Dcm may also regulate the stationary phase sigma subunit RpoS. Another
study [70] had previously shown that Dcm regulates the expression of ribosomal
proteins in stationary phase.

2.5 Computational Challenges of Next-Generation Sequencing

Because of the higher parallelism and lower cost of sequencing, the widespread use
of NGS in biology has made massive amounts of sequence data available. Also,
as single-cell genomics becomes more widely used, it is likely that even greater
amounts of genomic data will become available. The large datasets produced by
NGS experiments require large amounts of storage space. Apart from the sequence
data itself, an NGS experiment initially produces terabytes of raw image files. Once
base calling is done to convert these images of fluorescent light into DNA sequences,
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these images are discarded due to lack of storage space. It would be an interesting
challenge to store and use these images, possibly to improve base calling algorithms.
Several tools and algorithms have been designed to analyze data generated by Next-
Generation Sequencing experiments (See Table 2.1).

2.5.1 Reference Mapping

For genome resequencing as well as techniques like ChIP-Seq and RNA-Seq, the
short sequence reads obtained from NGS have to be mapped back to their position on
a reference genome. This remains a challenge for large and complex genomes like
that of humans. Commonly used alignment algorithms like BLAST have drawbacks
for this application. Primarily, NGS data may contain many millions of short reads,
which BLAST would be very slow to align [62]. Therefore there was a need for
methods that were designed to work with short sequences and save time by operating
on compressed data.

The Burrows-Wheeler Transform is an algorithm used to permute the order of
characters in a sequence, which allows sequence data to be greatly compressed. This
technique also allows searching for subsequences in the original sequence while
operating on the compressed file, making this technique suitable for mapping NGS
data to reference genomes. BWA [58] and BOWTIE [53] are successful short-read
aligners which are based on this technique.

2.5.2 Genome Assembly

De novo genome assembly is done by piecing together sequence fragments to join
them into contigs or contiguous sequences. Many algorithms designed for whole-
genome sequence assembly from Sanger sequencing data use an approach of repre-
senting each read as a node and each overlap between sequences as an arc between the
two nodes. However, NGS data contains a much larger number of very short reads.
The number of reads would make such an overlap graph very large and difficult to
compute [119].

A different approach is based on de Bruijn graphs, which are not based on reads,
but on k-mers (words that are k nucleotides long). Reads are mapped as paths through
the graph, going from one word to the next word in a determined order. Velvet is
a short read assembler based on de Bruijn graphs that has been used to assemble
bacterial genomes [119].

2.5.3 Analysis of ChIP-Seq Data

When ChIP-Seq is carried out for global transcription factors, sequences over the
entire genome are sampled. These sequences are mapped back to their position on a
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Table 2.1 Computational tools to analyze NGS data

Category Program Type Reference

de novo Genome
assembly

1. Velvet 1–3. De Bruijn assemblers 1. Zerbino and Birney
(2008) [119]

2. ALLPATHS 4–6. Greedy extension
assemblers

2. Butler et al. (2008)
[11]

3. SOAPdenovo 3. Li et al. (2010) [61]
4. SSAKE 7. Overlap-layout-consensus

assembler
4. Warren et al. (2007)

[112]
5. SHARCGS 5. Dohm et al. (2007)

[23]
6. VCAKE 6. Jeck et al. (2007) [46]
7. Edena 7. Hernandez et al.

(2008) [41]
Reference
mapping

1. MAQ 1–4. Burrows-Wheeler
transform based

1. Li et al. (2008) [56]

2. BWA 2. Li and Durbin (2009)
[58]

3. Bowtie 5. Hash table based 3. Langmead et al.
(2009) [53]

4. SOAP 4. Li et al. (2008) [57]
5. SSAHA 5. Ning et al. (2001) [75]

RNA-Seq 1. Scripture 1. Transcriptome
reconstruction.

1. Guttman et al. (2010)
[37]

2. Cufflinks 2. Transcript assembly,
estimation, differential
expression testing

2. Trapnell et al. (2010)
[104]

3. TopHat 3. Trapnell et al. (2009)
[103]

4. SpliceMap 3, 4. Splice junction discovery 4. Au et al. (2010) [2]
ChIP-Seq 1. SISSRS 1–4. Peak identification 1. Jothi et al. (2008) [48]

2. MACS 2. Zhang et al. (2008)
[121]

3. BayesPeak 5, 6. Visualization, peak
detection, gene-peak
association

3. Spyrou et al. (2009)
[98]

4. PeakSeq 4. Rozowsky et al.
(2009) [88]

5. CisGenome 5. Ji et al. (2008) [47]
6. CASSys 6. Alawi et al. (2011) [1]

Conformation
capture

1. my5C A web tool for design,
visualization and analysis
of 5C studies

1. Lajoie et al. (2009)
[52]
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reference genome. After reference mapping, the next step in ChIP-Seq data analysis
is peak calling, i.e. identifying the genomic regions that produced a relatively high
number of sequence reads, indicating that they are the binding sites of the protein of
interest. However, ChIP-Seq data often contains a high amount of noise, and a major
challenge in analysis is how to distinguish peaks from background noise.

One way to reduce this problem is to perform a ‘mock IP’ or control experiment in
which the procedure is carried out without using specific antibodies [77]. If a peak in
the experimental data co-localizes with a peak in the control data, it would lower the
likelihood of having detected a binding site. Several algorithms have been developed
to carry out peak calling for Chip-Seq data, including BayesPeak [98] and MACS
[121].

2.5.4 Analysis of RNA-Seq Data

In an RNA-Seq experiment, the abundance of a gene in the sample is measured
by the number of reads that map to that gene. The number of reads for a gene in
the raw sequence data is generally normalized by the length of a gene and by the
total number of reads. However, the number of reads of a given gene depends not
only on its abundance, but also on the abundance of other genes. For example, if
an RNA sample includes a very highly expressed gene, most of the reads may be
taken up by its transcripts, leaving very little sequencing space for less abundant
transcripts. The number of reads for a transcript in such conditions may not reflect
its actual abundance, and this can be a difficulty in comparing transcriptomes of
different samples. Robinson and Oshlack [86] proposed a normalization method
using a weighted trimmed mean of the log expression ratio to estimate the ratio of
RNA production.

2.5.5 Chromosome Conformation

Yaffe et al. [117] studied several sources of experimental bias in Hi-C experiments.
These were: (1) Ligation occurs between nonspecific cleavage sites as well as restric-
tion fragment ends. (2) The efficiency of ligation of restriction fragments may depend
on their length. (3) The GC content near the ends of the ligated fragments may influ-
ence the processing and sequencing of the DNA. (4) The mappability or genomic
uniqueness of the fragment ends affects the estimated probability of contact between
sequences.

There is a need to minimize these experimental biases and incorporate them into
algorithms to analyze chromosome conformation capture data.
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2.6 The Future of Sequencing Technologies

Just as NGS technologies did in the last decade, a number of emerging DNA
sequencing technologies promise to influence the study of genomes in the com-
ing years. A major advance in this field is single-molecule sequencing, which allows
the sequence of a single molecule of DNA to be read without the need for any
amplification step at all.

One example of a single-molecule sequencing technology is Single molecule real
time sequencing (SMRT). In this, a single DNA polymerase enzyme is presented with
a template DNA molecule and substrate nucleotides. Each of the four DNA bases
is attached to a different fluorescent dye. The fluorescent signal of the incorporated
nucleotides is read to generate the sequence. SMRT data was first published by
Harris et al. [40], who used this method to resequence the M13 phage genome. This
method can also be used to detect DNA methylation, and, in theory, other DNA
modifications [28].

Another promising recent method is nanopore sequencing. A nanopore is a hole
with diameter of the order of 1 nm. When a nanopore is immersed in a conducting
fluid and a potential is applied across it, an electric current passes through it. The
DNA to be sequenced is forced through the pore one base at a time. As it does so,
each nucleotide of the DNA obstructs the nanopore. The degree of obstruction, and
hence the amount of current through the nanopore, varies depending on whether the
nucleotide blocking the nanopore is an A, C, G or T. The change in current through
the nanopore as the DNA passes through it can therefore be used to directly read the
DNA sequence.

At present, Oxford Nanopore Technologies is developing a commercial nanopore
sequencing system. They have recently announced that they have used this technol-
ogy to sequence the 5.4 kb genome of the Phi X phage in one continuous read.

2.7 Lessons Learnt

1. Next-Generation technologies to sequence DNA are significantly faster and
cheaper than Sanger sequencing. However, they have lower read length and accu-
racy of sequencing.

2. NGS technologies have made a great difference to the field of bacterial genomics
by allowing whole genomes and large sets of DNA to be sequenced at a reasonable
speed and cost. This has allowed sequencing of many bacterial genomes and
metagenomic sequencing of DNA from whole bacterial communities. Ecological
and evolutionary studies based on NGS have given us valuable insights.

3. Bacteria respond to changing environmental conditions by regulating the expres-
sion of their genes at many levels. Methods of gene regulation used by bacteria
include DNA topology, promoter sequences, sigma subunits, transcription factors,
RNA polymerase ligands and small RNAs.
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4. NGS has enabled studies of gene regulation on a global scale in bacteria, for
example by mapping the topology of the bacterial chromosome, studying the
transcriptome of bacteria under different conditions, and by mapping sites at
which transcription factors bind to the DNA.

5. NGS leads to the generation of vast amounts of sequence data. The storage and
analysis of this data is difficult. Several algorithms have been developed specifi-
cally for analyzing NGS data.

6. Several new and more advanced techniques for DNA sequencing are being devel-
oped, which may lead to further and more interesting developments in the field
of genomics.
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Chapter 3
Sensitivity Analysis of Circadian Entrainment
in the Space of Phase Response Curves

Pierre Sacré and Rodolphe Sepulchre

Abstract Sensitivity analysis is a classical and fundamental tool to evaluate the role
of a given parameter in a given system characteristic. Because the phase response
curve is a fundamental input–output characteristic of oscillators, we developed a
sensitivity analysis for oscillator models in the space of phase response curves. The
proposed tool can be applied to high-dimensional oscillator models without facing
the curse of dimensionality obstacle associated with numerical exploration of the
parameter space. Application of this tool to a state-of-the-art model of circadian
rhythms suggests that it can be useful and instrumental to biological investigations.

Keywords Circadian entrainment · Sensitivity analysis · Input–output · Phase re-
sponse curve (PRC)

3.1 Introduction

Circadian entrainment is a biological process at the core of most living organisms
which need to adapt their physiological activity to the 24 h environmental cycle
associated with earth’s rotation (e.g. variations in light or temperature condition).
This process relies on the robust interaction between an autonomous molecular os-
cillator and its environment (Fig. 3.1a). Experimental observations have shown that
the system is capable to exhibit oscillations with a period close to 24 h in constant
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(a)

input observation

(c)(b) autonomous oscillation entrainment

Fig. 3.1 a Circadian oscillators are viewed as open dynamical systems with input u and output y.
b The unforced system exhibits autonomous rhythms that occur with a period close to 24 h. c The
periodically forced system adapts the organism rhythms through entrainment (1:1 phase-locking)
with the 24-h stimulus associated with earth’s rotation

environmental condition (unforced system, Fig. 3.1b) and to lock its oscillations (in
frequency and phase) to an environmental cue with a period equal to 24 h (periodi-
cally forced system, Fig. 3.1c). This locking phenomenon is often called (circadian)
entrainment [23]. Moreover, this biological process is known to be very robust, that
is, it maintains its performance (its period and its locking) despite internal or external
perturbations (e.g. genetic mutations, molecular noise, variability of the environmen-
tal condition, etc.).

With recent experimental advances in biology, the molecular bases of circadian
rhythms has been increasingly unfolded in various organisms. In most eukaryotic
organisms (e.g. fungus, fly, or mouse), the core mechanism relies on analogous
interacting positive and negative feedback loops with several minor alterations [10].
However, even though the architecture of those biological clocks is better known,
the specific design and robustness mechanisms implemented in those architectures
remain unknown [21, 28].

Starting with the pioneering work of Winfree [32, 33], the Phase Response Curve
(PRC) has emerged as a fundamental input–output characteristic of oscillators. Anal-
ogously to the static gain of a transfer function, the PRC measures a steady-state
(asymptotic) property of the system response induced by an impulsive input. For
the static gain, the measured property is the integral of the response; for the PRC,
the measured property is the phase shift between the unperturbed and perturbed re-
sponses. Because of the periodic nature of the steady-state, this phase shift depends
on the phase at which the system receives the impulsive input. The PRC is thus a
curve rather than a scalar. In many situations, the PRC can be determined experimen-
tally and provides unique data for the model identification of the oscillator. Likewise,
numerical methods exist to compute the PRC from a state-space model of the oscil-
lator. Finally, the PRC contains the fundamental mathematical information required
to reduce a n-dimensional state-space model to the one-dimensional (phase) center
manifold of a hyperbolic limit cycle.

In this chapter, we review (local) sensitivity tools that provide numerical and
mathematical grounds to the robustness analysis of oscillator state-space models in
connection with experimentally available observations like the PRC or the period.
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We then illustrate how these tools can be used to make physiologically relevant pre-
dictions from mathematical models of circadian rhythms. We apply our sensitivity
analysis to a state-of-the-art model [16] of 16 states and 52 parameters and exploit
the results to extract the parameters and circuits that determine the robustness of
entrainment.

The local proposed approach is systematic and computationally tractable.
It provides a rapid screening of all parameters, even in high-dimensional models
with a large number of parameters. It complements nonlocal analyses often used to
assess the robustness of parameters, such as bifurcation analysis [17] or parameter
space exploration [8, 28].

The chapter is organized as follows. Section 3.2 reviews the notion of PRCs
characterizing the input–output behavior of an oscillator model in the neighborhood
of a stable limit cycle. Section 3.3 develops the sensitivity analysis for oscillators
in terms of the sensitivity of its periodic orbit, its PRC, and its entrainment (phase-
locking). Section 3.4 provides scalar robustness measures based on this sensitivity
analysis. Section 3.5 illustrates how those tools permit to address system-theoretic
questions meaningful for the robustness analysis of circadian entrainment.

3.2 Open Oscillator Models: From State-Space to Phase Models

In this section, we provide a short introduction to oscillators viewed as open
dynamical systems, that is, as dynamical systems that interact with their environment
[26]. We first recall basic definitions about stable periodic orbits in n-dimensional
state-space models (see [5, 13] for details). We then introduce (finite and infinitesi-
mal) phase response curves as fundamental input–output mathematical information
required for the model reduction. We finally summarize the standard phase reduc-
tion procedure which concentrates the phase behavior information of n-dimensional
state-space models into one-dimensional phase models characterized by its angular
frequency, its PRC, and a measurement map (see [11, 15] for details).

3.2.1 State-Space Models: Periodic Orbits and Phase Maps

We consider open dynamical systems described by nonlinear (single-input and single-
output1) time-invariant state-space models

ẋ = f (x) + g(x)u, x ∈ R
n, u ∈ R, (3.1a)

y = h(x), y ∈ R, (3.1b)

1 For presentation convenience, we consider single-input and single-output systems. All develop-
ments are easily generalizable to multiple-input and multiple-output systems.
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Fig. 3.2 The asymptotic phase map β : B(σ ) ≤ S
1 associates with each point xq in the basinB(σ )

a scalar phase β(xq ) = α on the unit circle S1 such that limt≤+∞
∥∥ε(t, xq , 0) − ε(t, x p, 0)

∥∥
2 = 0

with x p = xσ (α/κ)

where the vector fields f and g, and the measurement map h support all the usual
smoothness conditions that are necessary for existence and uniqueness of solutions.
We denote by ε(·, x0, u) the solution to the initial value problem (3.1a) from the
initial condition x0 ∈ R

n at time 0, that is, ε(0, x0, u) = x0.
An oscillator is an open dynamical system whose zero-input steady-state be-

havior is periodic rather than constant. Formally, we assume that the zero-input
system ẋ = f (x) admits a locally hyperbolic stable periodic orbit σ ∈ R

n with
period T (and corresponding angular frequency κ = 2φ/T ). Picking an initial
condition xσ

0 on the periodic orbit σ , this latter is described by the (nonconstant)
T -periodic trajectory ε(·, xσ

0 , 0) =: xσ (·), such that xσ (·) = xσ (· + T ). The basin
of attraction of σ is the maximal open set from which the periodic orbit σ attracts.
(Main notations are illustrated on Fig. 3.2.)

Since the periodic orbit σ is a one-dimensional manifold inRn , it is homeomorphic
to the unit circle S1. It is thus naturally parametrized in terms of a single scalar phase.
The smooth bijective phase map β : σ ≤ S

1 associates with each point x p on the
periodic orbit σ its phase β(x p) =: θp on the unit circle S

1, such that,

x p − xσ (θp/κ) = 0. (3.2)

This mapping is constructed such that the image of the reference point xσ
0 is equal

to 0 (i.e. β(xσ
0 ) = 0) and the progression along the periodic orbit (in absence of

perturbation) produces a constant increase in θ . The phase variable θ : R≥0 ≤ S
1

is defined along each zero-input trajectory ε(·, x0, 0) starting from a point x0 on the
periodic orbit σ , as θ(t) := β(ε(t, x0, 0)) for all times t ≥ 0. The phase dynamics
are thus given by θ̇ = κ.

For hyperbolic stable periodic orbit, the notion of phase can be extended to any
point xq in the basin B(σ ) by defining the concept of asymptotic phase. The asymp-
totic phase map Θ : B(σ ) ≤ S

1 associates with each point xq in the basin B(σ ) its
asymptotic phase Θ(xq) =: αq on the unit circle S

1, such that,

lim
t≤+∞

∥∥ε(t, xq , 0) − ε(t, xσ (αq/κ), 0)
∥∥

2 = 0. (3.3)
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Again, this mapping is constructed such that the image of xσ
0 is equal to 0 and such

that the progression along any orbit in B(σ ) (in absence of perturbation) produces
a constant increase in α . The asymptotic phase variable α : R≥0 ≤ S

1 is defined
along each zero-input trajectory ε(·, x0, 0) starting from a point x0 in the basin of
attraction of σ , as α(t) := Θ(ε(t, x0, 0)) for all times t ≥ 0. The asymptotic phase
dynamics are thus given by α̇ = κ.

The notion of asymptotic phase variable can be extended to a nonzero-input tra-
jectory ε(·, x0, u) provided that its stays in the basin of attraction of σ . In this case,
the asymptotic phase variable is defined as α(t) := Θ(ε(t, x0, u)) for all times t ≥ 0.
Thus the variable α(t∗) at an instant t∗ ≥ 0 evaluates the asymptotic phase of the
point ε(t∗, x0, u) such that

lim
t≤+∞

∥∥ε(t, ε(t∗, x0, u), 0) − ε(t, xσ (α(t∗)/κ), 0)
∥∥ = 0. (3.4)

The asymptotic phase dynamics in the case of a nonzero input is often hard to derive.
For presentation convenience, we introduce the map x̃σ : S1 ≤ σ which asso-

ciates to each phase α a point ε(α/κ, xσ
0 , 0) = x̃σ (α) on the periodic orbit. This

map corresponds to a reparametrization of the periodic solution xσ (·).
The 2φ -periodic steady-state solution x̃σ (·) and the angular frequency κ can be

calculated by solving the boundary value problem [1, 27]

(x̃σ )◦(α) − 1

κ
f (x̃σ (α)) = 0 (3.5a)

x̃σ (2φ) − x̃σ (0) = 0 (3.5b)

ψ(x̃σ (0), κ) = 0 (3.5c)

(where the prime ·◦ denotes the derivative with respect to α ). The boundary conditions
are given by the periodicity condition (3.5b) which ensures the periodicity of the
map x̃σ (·) and the phase condition (3.5c) which anchors a reference position x̃σ (0)

along the periodic orbit. The phase condition ψ : Rn × R>0 ≤ R is chosen such
that it defines an isolated point on the periodic orbit (see [27] for details). Numerical
algorithms to solve this boundary value problem are reviewed in [25, Appendix].

3.2.2 Phase Response Curves: Local Information About
the Phase Map

For many oscillators, the structure of the asymptotic phase map is very complex.
This often makes its analytical computation impossible and even its numerical com-
putation intractable (or at least very expensive, in particular for high-dimensional
oscillator models). However, in many situations, the global knowledge of the asymp-
totic phase map is not required to study oscillator dynamics. Instead, it is sufficient
to consider a local phase information also known as the phase response curve.
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Starting with the pioneering work of Winfree [32, 33], the phase response curve
of an oscillator has proven a useful input–output tool to study oscillator dynamics.
It indicates how the timing of inputs affects the timing (steady-state phase shift) of
oscillators. Phase response curves are directly related to asymptotic phase maps but
capture only partial (local) information about them.

Definition 1 The Phase Response Curve (PRC) corresponding to an impulsive input
of finite amplitude π (i.e. u(·) := π∂(·) where ∂(·) is the Dirac delta function) is the
map qπ : S1 ≤ (−φ, φ ] defined as

qπ(α) := ΔΘ(x̃σ (α)) = lim
t≤0+ Θ(ε(t, x̃σ (α), π∂(·)))︸ ︷︷ ︸

post-stimulus phase

−Θ(ε(t, x̃σ (α), 0))︸ ︷︷ ︸
pre-stimulus phase

. (3.6)

It associates with each point on the periodic orbit (parametrized by its phase α ) the
phase shift induced by the input.

In many situations, the PRC can be determined experientially (in particular for
circadian rhythms). Moreover, it can be computed numerically by simulating the
nonlinear state-space model and comparing the asymptotic phase shift between per-
turbed and unperturbed trajectories.

A mathematically more abstract—yet very useful—tool is the infinitesimal phase
response curve. It records essentially the same information as the finite phase re-
sponse curve but for infinitesimally small Dirac delta input (π ⊇ 1).

Definition 2 The (input) infinitesimal Phase Response Curve (iPRC) is the map
q : S1 ≤ R defined as the directional derivative

q(α) := DΘ(x̃σ (α))[g(x̃σ (α))] (3.7)

where

DΘ(x)[η] := lim
π≤0

Θ(x + πη) − Θ(x)

π
. (3.8)

The directional derivative can be computed as the inner product

DΘ(x)[g(x)] = ∃∇xΘ(x), g(x)⇔ (3.9)

where ∇xΘ(x) is the gradient of Θ at x . The map qx : S
1 ≤ R

n : α ∪≤
∇xΘ(x̃σ (α)) =: qx (α) is known as the state infinitesimal phase response curve.

The (state) iPRC qx (·) can be calculated by solving the boundary value problem
[4, 15, 18–20]

q ◦
x (α) + 1

κ
fx (x̃σ (α))T qx (α) = 0 (3.10a)

qx (2φ) − qx (0) = 0 (3.10b)

∃qx (α), f (x̃σ (α))⇔ − κ = 0 (3.10c)
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Fig. 3.3 Entrainment is studied by applying weakly connected oscillator theory to the feedforward
interconnection between an artificial oscillator generating the input and the actual oscillator

(where the notation AT stands for the transpose of the matrix A). The boundary
condition (3.10b) imposes the periodicity of qx (·) and the normalization condi-
tion (3.10c) ensures a linear increase at rate κ of the phase variable α along zero-input
trajectories. Numerical methods to solve this boundary value problem as a by-product
of the periodic orbit computation are presented in [25, Appendix].

Remark 1 For small values of π (i.e. π ⊇ 1), the PRC for impulsive input of finite
amplitude is well approximated by the iPRC, that is, qπ(·) = πq(·) + O(π2).

3.2.3 Phase Models: Entrainment

In the weak perturbation limit, that is, for small inputs

u(t) = πū(t), π ⊇ 1, |ū(t)| ≤ 1 for all t, (3.11)

any solution ε(t, x0, u) of the oscillator model which starts in the neighborhood of
the hyperbolic stable periodic orbit σ stays in its neighborhood. The n-dimensional
state-space model can thus be approximated by a one-dimensional (continuous-time)
phase model [4, 15, 18–20]

α̇ = κ + πq(α)ū(t) α ∈ S, ū ∈ R, (3.12a)

y = h̃(α) y ∈ R. (3.12b)

The phase model is fully characterized by its angular frequency κ > 0, its infinites-
imal phase response map q : S1 ≤ R, and its measurement map h̃ : S1 ≤ R.

To study entrainment through weak coupling, we can apply weakly connected
oscillator theory [11, Chap. 9] by considering the input u(t) as generated by an
artificial oscillator described by the trivial phase model α̇u = κu, yu = h̃u(αu),
where we denote by κu the input angular frequency and we choose the artificial
oscillator output map h̃u such that yu(t) = ū(t) for all times t ≥ 0. Moreover,
the network interconnection in this case is a feedforward interconnection from the
artificial oscillator generating the input to the studied oscillator (see Fig. 3.3).
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The interconnected phase dynamics are thus given by

α̇u = κu (3.13a)

α̇ = κ + πq(α)h̃u(αu). (3.13b)

Following the weakly connected oscillator theory, we decompose the angular
frequencies as κ = Ω + Δ and κu = Ωu + Δu with Ω − Ωu = 0, and the
phase variables as α = Ωt + ϕ and αu = Ωut + ϕu where ϕ and ϕu are slow phase
deviations from the fast oscillations Ωt and Ωut . The phase deviation dynamics are
given by

ϕ̇u = Δu (3.14a)

ϕ̇ = Δ + πq(Ωt + ϕ)h̃u(Ωut + ϕu). (3.14b)

Assuming that Δ,Δu, π ⊇ 1, standard averaging techniques yield

ϕ̇u = Δu (3.15a)

ϕ̇ = Δ + πΓ (ϕ − ϕu) (3.15b)

where the coupling function is given by

Γ (ϕ − ϕu) = lim
T̃ ≤+∞

1

T̃

∫ T̃

0
q(Ωt + ϕ − ϕu)h̃u(Ωut)dt. (3.16)

Introducing the phase difference χ = ϕ − ϕu , we have

χ̇ = Δ − Δu + Γ (χ) =: V (χ). (3.17)

A stable equilibrium χ∗ of (3.17), that is,

χ∗ ∈ S
1 : V (χ∗) = 0 and V ◦(χ∗) < 0 (3.18)

correspond to a stable 1:1 phase-locking behavior (or entrainment) for (3.13), that is,

α(t) − αu(t) = χ∗ for all times t . (3.19)

In this section, we saw that a state-space oscillator model may be reduced to a
phase model characterized by its angular frequency (or period) and its (infinitesimal)
phase response curve. In addition, phase models are very useful to study entrainment.
It is then very natural to study the sensitivity of oscillators with an emphasis on those
characteristics.
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3.3 Sensitivity Analysis for Oscillators

Sensitivity analysis for oscillators has been widely studied in terms of sensitivity
analysis of periodic orbits [12, 14, 24, 31]. Because the phase response curve is
an important oscillator characteristic, we recently proposed a sensitivity analysis of
oscillator models in the space of phase response curves [25]. Moreover, the sensi-
tivity analysis in the space of PRC can be exploited to predict the sensitivity of the
entrainment.

We summarize those developments for nonlinear time-invariant state-space mod-
els with one parameter2

ẋ = f (x, λ) + g(x, λ)u (3.20a)

y = h(x, λ) (3.20b)

where the constant parameter λ belongs to R.

3.3.1 Sensitivity Analysis of a Periodic Orbit

The periodic orbit σ of an oscillator model is characterized by its angular frequency κ

which measures the ‘speed’ of a solution along the orbit and by the 2φ -periodic
steady-state solution x̃σ (·) which describes the locus of this orbit in the state space.
The sensitivity of both characteristics is important.

Given a nominal parameter value λ0, the sensitivity of the angular frequency is
the scalar Sκ ∈ R defined as

Sκ := dκ

dλ

∣∣∣∣
λ0

= lim
h≤0

κ|λ0+h − κ|λ0

h
(3.21)

where the notation �|λ emphasizes the parameter value λ at which the model
characteristic � is evaluated. Likewise, the sensitivity of the 2φ -periodic steady-state
solution is the 2φ -periodic function Zx̃ : S1 ≤ R

n defined as

Zx̃ (·) := dx̃σ

dλ
(·)

∣∣∣∣
λ0

= lim
h≤0

x̃σ (·)|λ0+h − x̃σ (·)|λ0

h
(3.22)

where the explicit dependence of the 2φ -periodic steady-state solution in λ is given by

x̃σ (·)|λ = ε(·/κ|λ, xσ
0 |λ, 0)

∣∣
λ
. (3.23)

2 For presentation convenience, we consider systems with a one-dimensional parameter space. All
developments are easily generalizable to systems with a q-dimensional parameter space.
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From (3.5), we have, taking derivatives with respect to λ,

Z ◦
x̃ (α) − 1

κ
A(α)Zx̃ (α) + 1

κ2 ṽ(α)Sκ − 1

κ
b(α) = 0 (3.24a)

Zx̃ (2φ) − Zx̃ (0) = 0 (3.24b)

ψx Zx̃ (0) + ψκSκ + ψλ = 0 (3.24c)

where we use the following short notations

A(·) := ∂ f

∂x
(x̃σ (·), λ0), ψx := ∂ψ

∂x
(xσ

0 , κ, λ0), (3.25)

b(·) := ∂ f

∂λ
(x̃σ (·), λ0), ψκ := ∂ψ

∂κ
(xσ

0 , κ, λ0), (3.26)

ṽ(·) := f (x̃σ (·), λ0), ψλ := ∂ψ

∂λ
(xσ

0 , κ, λ0). (3.27)

Remark 2 In the literature, the sensitivity of the period is often used instead of the
sensitivity of the angular frequency. It is the scalar ST ∈ R defined as

ST := dT

dλ

∣∣∣∣
λ0

= lim
h≤0

T |λ0+h − T |λ0

h
. (3.28)

Both sensitivity measures are equivalent up to a change of sign and a scaling factor.
The following relationship holds

ST /T = −Sκ/κ. (3.29)

3.3.2 Sensitivity Analysis of a Phase Response Curve

Given a nominal parameter value λ0, the sensitivity of the (input) infinitesimal phase
response curve is the 2φ -periodic function Zq : S1 ≤ R defined as

Zq(·) := dq

dλ
(·)

∣∣∣∣
λ0

= lim
h≤0

q(·)|λ0+h − q(·)|λ0

h
. (3.30)

From (3.7), we have, taking derivatives with respect to λ,

Zq(·) = 〈
Zqx (·), g(x̃σ (·), λ0)

〉 +
〈
qx (·), ∂g

∂x
(x̃σ (·), λ0)Zx̃ (·) + ∂g

∂λ
(x̃σ (·), λ0)

〉

(3.31)
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where the 2φ -periodic function Zqx : S
1 ≤ R

n is the sensitivity of the (state)
infinitesimal phase response curve defined as

Zqx (·) := dqx

dλ
(·)

∣∣∣∣
λ0

= lim
h≤0

qx (·)|λ0+h − qx (·)|λ0

h
. (3.32)

From (3.10), we have, taking derivatives with respect to λ,

Z ◦
qx

(α) + 1

κ
A(α)T Zqx (α) + 1

κ
C(α)T qx (α) = 0 (3.33a)

Zqx (2φ) − Zqx (0) = 0 (3.33b)
〈
Zqx (α), ṽ(α)

〉 + ∃qx (α), Zṽ(α)⇔ − Sκ = 0 (3.33c)

where elements of the matrix C(·) are given by

Ci j (·) :=
n∑

k=1

∂2 fi

∂x j∂xk
(x̃σ (·), λ0)(Zx )k(·)

+ ∂2 fi

∂x j∂λ
(x̃σ (·), λ0) − 1

κ

∂ fi

∂x j
(x̃σ (·), λ0)Sκ, (3.34)

and where the 2φ -periodic function Zṽ : S1 ≤ R
n is the sensitivity of the vector

field evaluated along the periodic orbit defined as

Zṽ(·) := dṽ

dλ
(·)

∣∣∣∣
λ0

= lim
h≤0

ṽ(·)|λ0+h − ṽ(·)|λ0

h
. (3.35)

Given the explicit dependence of the 2φ -periodic vector field in λ

ṽ(·) = f ( x̃σ (·)∣∣
λ
, λ), (3.36)

we have, taking derivatives with respect to λ,

Zṽ(·) = ∂ f

∂x
(x̃σ (·), λ0)Zx̃ (·) + ∂ f

∂λ
(x̃σ (·), λ0). (3.37)

3.3.3 Sensitivity Analysis of the 1:1 Phase-Locking

Given a nominal parameter value λ0, the sensitivity of the phase difference χ∗ is the
scalar Sχ∗ ∈ R defined as
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Sχ∗ := lim
h≤0

χ∗|λ0+h − χ∗|λ0

h
. (3.38)

From V (χ∗) = 0, we have, taking derivatives of with respect to λ and using (3.17),

Sχ∗ = −
[

V ◦ (χ∗∣∣
λ0

)∣∣∣
λ0

]−1

×
[

SV

(
χ∗∣∣

λ0

)]
(3.39)

= −
[
Γ ◦ (χ∗∣∣

λ0

)∣∣∣
λ0

]−1

×
[

SΔ + SΓ

(
χ∗∣∣

λ0

)]
(3.40)

where SΔ := limh≤0[Δ|λ0+h − Δ|λ0 ]/h and SΓ (·) := limh≤0[Γ (·)|λ0+h −
Γ (·)|λ0 ]/h. Considering that κ|λ = Ω +Δ|λ is the sum of a parameter independent
term Ω and a parameter dependent term Δ, we have that Sκ = SΔ. In addition,
from (3.16), we have, taking derivatives with respect to λ,

SΓ (·) = lim
T̃ ≤+∞

1

T̃

∫ T̃

0
Sq(Ωt + ·)h̃u(Ωut)dt. (3.41)

The sensitivity of the phase difference has thus two distinct contributions:

Sχ∗ = Sχ∗|κ + Sχ∗|Γ (3.42)

where Sχ∗|κ := −[Γ ◦(χ∗|λ0)|λ0 ]−1 × Sκ denotes the contribution of the angular
frequency sensitivity and Sχ∗|Γ := −[Γ ◦(χ∗|λ0)|λ0 ]−1 × SΓ (χ∗|λ0) denotes the
contribution of the coupling function sensitivity at χ∗, the latter being closely related
to the iPRC.

3.3.4 Numerics of Sensitivity Analysis

Numerical algorithms to solve boundary value problems (3.24) and (3.33) are
reviewed in [25, Appendix]. We stress that existing algorithms that compute periodic
orbits and iPRCs are easily adapted to compute their sensitivity curves, essentially
at the same numerical cost. All numerical tests in Sect. 3.5 have been obtained with
a MATLAB numerical code available from the authors.

The proposed approach is systematic and computationally tractable but it only
provides a local sensitivity analysis in the parameter space, around a nominal set
of parameter values. It complements more global—but less tractable—tools such as
bifurcation analysis or parameter space exploration. Studying the bifurcation dia-
gram associated with a given parameter [17] or using sampling methods in the full
parameter space [8, 28] are classical ways to assess the robustness of an oscillator:
the parameter range over which the oscillation exists is a (nonlocal) indicator of the
sensitivity of the oscillator to the parameters. The limitation of those approaches
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is that they are univariate (only one direction of the parameter space is explored
in a particular bifurcation diagram) and that the exploration of the parameter space
rapidly becomes formidable as the number of parameters grows.

3.4 Scalar Robustness Measures for Oscillators

Testing the robustness of a model against parameter variations is a basic
system-theoretic question. In a number of situations, the very purpose of modeling is
to identify those parameters that influence a given system property. In the literature,
robustness analysis of circadian rhythms mostly studies the zero-input steady-state
behavior such as the period or the amplitude of oscillations [6, 28, 29] and (empir-
ical) phase-based performance measures [2, 7, 9, 22]. In this section, we propose
scalar robustness measures to quantify the sensitivity of the angular frequency, the
infinitesimal phase response curve, and the 1:1 phase-locking to parameters.

3.4.1 Robustness Measure of the Angular Frequency

The angular frequency κ is a positive scalar number. The sensitivity of κ with respect
to the parameter λ is thus also a scalar number Sκ, leading to a scalar robustness
measure Rκ defined as

Rκ := |Sκ| (3.43)

where | · | denotes the real absolute value function.

3.4.2 Robustness Measure of the Infinitesimal Phase
Response Curve

In contrast, the iPRC q : S
1 ≤ R belongs to an infinite-dimensional space Q.

The sensitivity of q with respect to the parameter λ is thus a vector Sq which belongs
to the tangent space TqQ at q. A scalar robustness measure Rq is defined as

Rq := ∥∥Sq
∥∥

q =
√

gq
(
Sq , Sq

)
(3.44)

where ‖·‖q denotes the norm induced by a Riemannian metric gq (·, ·) at q. In this
chapter, we use the simplest metric for signals in L2(S

1,R), that is the standard inner
product,

gq(ξq , ζq) := 〈
ξq , ζq

〉 =
∫

S1
ξq(α)ζq(α)dα. (3.45)
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In our previous work [25], we proposed further metrics which capture equivalence
properties in the space of phase response curves. This is motivated by the fact that, in
many applications, it is not meaningful to distinguish among PRCs that are related
by a scaling factor and/or a phase shift.

3.4.3 Robustness Measure of the 1:1 Phase-Locking

The stable phase difference χ∗ is a scalar phase on the unit circle S1. The sensitivity
of χ∗ with respect to the parameter λ is a scalar number Sχ∗ , leading to a scalar
robustness measure Rχ∗ defined as

Rχ∗ := ∣∣Sχ∗
∣∣ . (3.46)

3.4.4 Normalized Robustness Measures

When analyzing a model with several parameters (λ ∈ Λ ∈ R
q ), all robustness mea-

sures R� (where � stands for any characteristic of the oscillator) are q-dimensional
vectors. Each element of those vectors represents to the scalar robustness measure
corresponding to each parameter. The normalized robustness measure

R� = R�

‖R�‖∞
(3.47)

has all its components in the unit interval [0, 1]. This normalized measure allows to
rank model parameters according to their relative ability to influence the character-
istic �.

Remark 3 Note that RT = Rκ.

3.5 Application to a Model of Circadian Rhythms

We illustrate our sensitivity analysis on the genetic oscillator model of [16]
(see Fig. 3.4). This model accounts for several regulatory processes identified in cir-
cadian rhythms of mammals. A negative autoregulatory feedback loop established
by the per (period) and cry (cryptochrome) genes is at the heart of the circadian
oscillator. The PER and CRY proteins form a complex PER–CRY that indirectly re-
presses the activation of the Per and Cry genes. The PER–CRY complexes exert their
repressive effect by binding to a complex of two proteins CLOCK–BMAL1. This
latter, formed by the products of Clock and Bmal1 genes, activates Per and Cry
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Fig. 3.4 The Leloup-Goldbeter model accounts for several regulatory processes identified in cir-
cadian rhythms of mammals (Figure is modified, with permission, from [16]. © (2003) National
Academy of Sciences, USA)

transcription. In addition to this negative autoregulation, an (indirect) positive
regulatory feedback loop is also involved. Indeed, the Bmal1 expression is sub-
jected to negative autoregulation by CLOCK–BMAL1, through the product of the
Rev-Erbα gene. The complex PER–CRY enhances Bmal1 expression in an indirect
manner by binding to CLOCK–BMAL1, and thereby reducing the transcription of
the Rev-Erbα gene. Finally, environmental periodic cycles associated with earth’s
rotation are mediated through light–dark cycles. Light acts on the system by inducing
the expression of the Per gene.

The detailed computational model of [16] possesses 16 state variables and 52
parameters. State-space model equations and nominal parameter values are available
in [16, Supporting Text]. The effect of light is incorporated through periodic square-
wave variations in the maximal rate of Per expression (i.e. the value of the parameter
vsP goes from a constant low value during dark phase to a constant high value during
light phase). Parameters values remain to be determined experimentally and have
been chosen semiarbitrarily in physiological ranges in order to satisfy experimental
observations.

Each parameter of the model describes a single regulatory mechanism such as
transcription and translation control of mRNAs, degradation of mRNAs or proteins,
transport reaction, and phosphorylation/dephosphorylation of proteins. The analysis
of single-parameter sensitivities reveals thus the importance of individual regulatory
processes on the function of the oscillator.
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However, in order to enlighten the potential role of circuits rather than
single-parameter properties, we grouped model parameters according to the mRNA
loop to which they belong. Each group of parameters is associated with a different
color: Per-loop in blue, Cry-loop in red, and Bmal1-loop in green. In addition, we
gathered parameters associated with interlocked loops in a last group represented
in gray.

In the following, we consider sensitivities to relative variations of parameters. We
write without distinction about period sensitivities and angular frequency sensitivi-
ties due to their direct proportional relationship (see remarks 2 and 3).

3.5.1 Sensitivity Analysis of the Period and the Phase
Response Curve

The period and the PRC are two intrinsic characteristics of the circadian oscillator
with physiological significance. We use the sensitivity analysis of the period and
the PRC to measure the influence of regulatory processes on tuning the period and
shaping the PRC.

A two-dimensional (Rκ, Rq) scatter plot in which each point corresponds to a
parameter of the model reveals the shape and strength of the relationship between
both normalized robustness measures Rκ (angular frequency or, equivalently, pe-
riod) and Rq (PRC). It enables to identify which characteristic is primarily affected
by perturbations in individual parameters: parameters corresponding to points situ-
ated below the dashed bisector influence mostly the period; those above the dashed
bisector influence mostly the PRC (see Fig. 3.5).

At a coarse level of analysis, the scatter plot reveals that the period and the PRC
exhibit a low sensitivity to most parameters (most points are close to the origin); the
period and the PRC display a medium or high sensitivity to only few parameters,
respectively.

At a finer level of analysis, the scatter plot reveals that the parameters associated
with each of the three mRNA loops have distinct sensitivities:

• the Bmal1-loop parameters have a strong influence on the period and a medium
influence of the PRC (regression line below the bisector);

• the Per-loop parameters have a medium influence on the period and a high influence
on the PRC (regression line above the bisector);

• the Cry-loop parameters have a low influence on the period and a high influence
on the PRC (regression line above the bisector, close to the vertical axis).

In each feedback loop, the three more influential parameters represent the three same
biological functions: the maximum rates of mRNA synthesis (vsB, vsP, and vsC), the
maximum rate of mRNA degradation (vmB, vmP, and vmC), and the inhibition (I) or
activation (A) constants for the repression or enhancement of mRNA expression by
BMAL1 (KIB, KAP, and KAC).
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Cry  loop

Bmal1 loop

Per  loop

Fig. 3.5 Normalized robustness measures Rκ (angular frequency) and Rq (iPRC) reveal the distinct
sensitivity of three distinct genetic circuits (Cry, Per, and Bmal1). Each point is associated to a
particular parameter. The three lines are regression over the parameters of the three gene loops. The
dashed bisector indicates the positions at which both measures of robustness are identical. Only
parameters associated with the Cry-loop exhibit low angular frequency and high iPRC sensitivities.
The color code corresponds to different subsets of parameters associated to different loops (see the
text for details)

The small number of highly influential parameters is in agreement with the robust
nature of the circadian clock and the concentration of fragilities in some specific
locations of the architecture [28]. Our analysis suggests that the transcriptional and
translational control of mRNA (i.e. the control of both biological steps required to
synthesize a protein) has to be regulated by specific mechanisms (not included in the
model) in order to avoid failures in the clock function. While the topology of Per-
and Cry-loops are identical, the asymmetry introduced by the choice of parameter
values leads to different sensitivity for those loops. Both loops have a similar high
sensitivity of the PRC (while the light acts only on the maximum rate of Per mRNA
synthesis) but a different sensitivity of the period, the Per-loop being more influential
than the Cry-loop. The high sensitivity of the period for parameters associated with
the Bmal1-loop has also being identified in [17]. However, this last prediction of
the model (high sensitivity of the period to Bmal1-loop) is not in agreement with
experimental observations in [3, 30]. This observation may encourage the biologist
and the modeler to design of new experiments to enlighten biological mechanisms
responsible for this discrepancy between the experiment and the model.
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Entrainment Angular frequency Coupling function

Fig. 3.6 Normalized sensitivity measures Sχ∗/
∥∥Sχ∗

∥∥∞ (entrainment) are due to two contribu-
tions: Sχ∗|κ/

∥∥Sχ∗
∥∥∞ (angular frequency) and Sχ∗|Γ /

∥∥Sχ∗
∥∥∞ (coupling function). Each (thick)

horizontal bar corresponds to a sensitivity measure with respect to a particular parameter. The
(thin) horizontal lines indicate (in absolute value) the maximal sensitivity (among all parameters)
and may be useful to compare the sensitivity of a parameter to the maximal sensitivity. The color
code corresponds to different subsets of parameters associated to different loops (see the text for
details)

3.5.2 Sensitivity Analysis of the Entrainment

Entrainment is an important characteristic of the circadian model. In Section 3.3.3,
we have seen that the entrainment sensitivity Sχ∗ is mathematically given by the
summation of two terms: a term Sχ∗|κ proportional to the period sensitivity and
a term Sχ∗|Γ proportional to the coupling function sensitivity at χ∗. Those two
terms correspond to two biologically distinct mechanisms by which the entrainment
properties of the circadian clock can be regulated: a modification of the period or a
modification of the coupling function (resulting from the modification of the iPRC
or the input signal).

Bar plots of Sχ∗/
∥∥Sχ∗

∥∥∞, Sχ∗|κ/
∥∥Sχ∗

∥∥∞, and Sχ∗|Γ /
∥∥Sχ∗

∥∥∞ in which each
bar corresponds to a parameter allows to identify the most influential parameters
for entrainment and to quantify3 the respective contribution of both mechanisms in
the entrainment sensitivity (see Fig. 3.6). For each bar plot, we sorted parameters

3 The entrainment sensitivity and the contributing terms are normalized by
∥∥Sχ∗

∥∥∞ (the same
maximal value of the entrainment sensitivity) such that the summation of normalized terms is equal
to the normalized entrainment sensitivity.
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Coupling function

Entrainment

Fig. 3.7 Normalized sensitivity measures Sχ∗/
∥∥Sχ∗

∥∥∞ (entrainment), Sχ∗|κ/
∥∥Sχ∗

∥∥∞ (angu-
lar frequency), and Sχ∗|Γ /

∥∥Sχ∗
∥∥∞ (coupling function) exhibit particular correlation shapes.

The top graph represents the (Sχ∗|κ/
∥∥Sχ∗

∥∥∞ , Sχ∗|Γ /
∥∥Sχ∗

∥∥∞)-plan; the bottom–left graph rep-
resents the (Sχ∗|κ/

∥∥Sχ∗
∥∥∞ , Sχ∗/

∥∥Sχ∗
∥∥∞)-plan; and the bottom–right graph represents the

(Sχ∗|Γ /
∥∥Sχ∗

∥∥∞ , Sχ∗/
∥∥Sχ∗

∥∥∞)-plan. Each point is associated to a particular parameter. The color
code corresponds to different subsets of parameters associated to different loops (see the text for
details). Those correlations support the competitive nature of both mechanisms (modification of the
period or the coupling function) leading to the entrainment sensitivity

by absolute magnitude and restricted the plot to the 14 parameters with the highest
sensitivity measure (the number 14 results from our choice to keep the parameters
with an entrainment sensitivity greater than 0.1). Those plots allow to identify the
parameters which play an important role in the entrainment sensitivity. We note
that the parameter orders for Sχ∗/

∥∥Sχ∗
∥∥∞ and Sχ∗|κ/

∥∥Sχ∗
∥∥∞ are almost identical,

except for parameters associated with the Cry-loop. Those parameters appear in the
highest ones for Sχ∗|Γ /

∥∥Sχ∗
∥∥∞.

Figure 3.7 (top) reveals the competitive and complementary nature of both
contributions to entrainment sensitivity. For most parameters, both contributions
have opposite signs, that is, points are located in the second and fourth quadrants.
In addition, both mechanisms are well decoupled such that, when one mechanism
is active, the other is almost inactive (points are located close to the horizontal and
vertical axes). Parameters associated with Cry-loop seem to influence the entrain-
ment sensitivity through a modification of the coupling function (points close to the
vertical axis); others parameters associated with Per-loop and Bmal1-loop seem to
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influence the entrainment sensitivity through a modification of the period (points
close to the horizontal axis).

The different mechanisms leading to entrainment sensitivity are also observed in
both other scatter plots (see Fig. 3.7 bottom-left and -right). In those plots, parameters
associated with points close to the bisector of the first and third quadrants influence
the entrainment sensitivity through a modification of the period (bottom-left) or the
coupling function (bottom-right), respectively. Again, only parameters associated
with the Cry-loop seem to affect the entrainment through a variation of the PRC.

Two of the parameters belonging to the Cry-loop (with high coupling function and
low period sensitivities) have been identified by numerical simulations as important
for entrainment properties of the model without affecting the period: KAC in [16]
and vmC in [17]. Our approach supports the importance of those two parameters and
identifies the potential importance of a third one (vsC).

We stress that the sensitivity analysis in [16, 17] is a global approach that relies
on exploring the parameter space through numerical simulations of the model to
determine the system behavior under constant and periodic environmental conditions
while varying one parameter at a time. In contrast, the proposed analysis is local but
systematic and computationally tractable. In the particular model studied here and
in [17], the predictions of the (local) sensitivity analysis match the predictions of the
(nonlocal) analysis.

To evaluate the nonlocal nature of our local predictions, we plot in Fig. 3.8 the
time behavior of solutions for different finite (nonlocal) parameter changes. The
left plots illustrate the autonomous oscillation of the isolated oscillator whereas the
right plots illustrate the steady-state solution entrained by a periodic light input.
Parameter perturbations are randomly taken in a range of ±10 % around the nominal
parameter value. Each panel corresponds to the perturbation of a different group of
parameters (the black time-plot corresponds to the nominal system behaviors for
nominal parameter values).

A. Perturbations of three most influential parameters of Cry-loop (vsC, vmC, and
KAC) lead to small variations (mostly shortening) of the autonomous period
and (not structured) large variations of the phase-locking. This observation is
consistent with the low sensitivity of the period and the high sensitivity of the
PRC.

B. Perturbations of three most influential parameters of Bmal1-loop (vsB, vmB, and
KIB) lead to medium variations of the autonomous period and medium varia-
tions of the phase-locking. The variations of the phase-locking exhibit the same
structure as variations of the period, suggesting that the change in period is re-
sponsible for the change of phase-locking for those parameters. This observation
is consistent with the high sensitivity of the period and the medium sensitivity
of the PRC.

C. Perturbations of three most influential parameters of Per-loop (vsP, vmP, and
KAP) exhibit an intermediate behavior between the situations A and B.
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Fig. 3.8 Steady-state behaviors for the nominal model and different finite (nonlocal) parameter
perturbations are illustrated by time-plots of the state variable MP under constant environmen-
tal conditions (autonomous oscillation, left) and periodic environmental conditions (entrainment,
right). Each panel (or row) corresponds to the perturbation of a different group of parameters, the
black time-plot corresponding to system behaviors for nominal parameter values. Perturbations are
randomly taken in a range of ±10 % around the nominal parameter value (for one parameter at a
time). a Perturbations of three most influential parameters of Cry-loop (vsC, vmC, and KAC) lead to
small variations of the autonomous period and (not structured) large variations of the phase-locking.
b Perturbations of three most influential parameters of Bmal1-loop (vsB, vmB, and KIB) lead to larger
variations of the autonomous period and medium variations of the phase-locking. c Perturbations of
three most influential parameters of Per-loop (vsP, vmP, and KAP) exhibit an intermediate behavior
between the situations A and B. d Perturbations of parameters of interlocked loops lead to small
variations of the autonomous period and the phase-locking

D. Perturbations of parameters of interlocked loops lead to small variations of the
autonomous period and the phase-locking, which is consistent with their low
sensitivity.

Those (nonlocal) observations are thus well predicted by the classification of para-
meters suggested by the (local) sensitivity analysis (see Fig. 3.5).
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3.6 Conclusion

This chapter proposes (local) sensitivity tools to analyze oscillator models as open
dynamical systems. We showed that, under the weak perturbation assumption, state-
space models can be reduced to phase models characterized by their angular fre-
quency and their phase response curve. Those phase models are then useful to
study the entrainment (or phase-locking) to a periodic input. We then introduced
the sensitivity analysis for oscillators and their phase-locking behavior.

The application of this approach to a detailed computational model of circadian
rhythms provides physiologically relevant predictions. It enlightens the distinct role
of different circuits in the robustness of entrainment and it selects 3 out of 52 parame-
ters as parameters that strongly affect the phase response curve while barely affecting
the period. The importance of two of these parameters was previously identified in
the literature through simulations of the model.

3.7 Lessons Learnt

Sensitivity analysis is a classical and fundamental tool to evaluate the role of a given
parameter in a given system characteristic. Because the phase response curve is a
fundamental input–output characteristic of oscillators, we developed a sensitivity
analysis for oscillator models in the space of phase response curves. The proposed
tool can be applied to high-dimensional oscillator models without facing the curse
of dimensionality obstacle associated with numerical exploration of the parameter
space. Application of this tool to a state-of-the-art model of circadian rhythms sug-
gests that it can be useful and instrumental to biological investigations.
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Chapter 4
Modelling and Analysis of Feedback Control
Mechanisms Underlying Osmoregulation
in Yeast

Francesco Montefusco, Ozgur E. Akman, Orkun S. Soyer
and Declan G. Bates

Abstract Biological systems display complex dynamics emerging from intricate
networks of interacting molecular components: cells use signalling pathways and
regulatory control mechanisms to coordinate multiple processes, allowing them to
respond and adapt to an ever-changing environment. Many structural and dynamical
features of biological control systems can also be found in engineered control systems
and, hence, feedback control theory can provide a useful approach for the analysis and
design of complex biological systems. In this chapter we provide a control theoretic
analysis of the osmoregulation system in Saccharomyces cerevisiae (see [8, 24, 26,
40]), where a complex biochemical signalling and regulatory network allows cells
to maintain homeostasis in the face of osmotic shock.
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4.1 Introduction

Osmosis is the diffusion of water through a semipermeable membrane (permeable to
the solvent, but not the solute), from the compartment containing a low concentra-
tion (hypotonic) solution to the one at high concentration (hypertonic). The chemical
potential of water is central in this process and can be considered as a measure of
the effective water concentration in a given area. The water potential is influenced
by two factors, [17]: the osmotic potential and the pressure potential. The first is
approximately proportional to the concentration of dissolved molecules of solutes:
when the concentration of solute molecules increases, the water potential decreases.
The second takes into account the hydrostatic pressure, the pressure exerted by a fluid
at equilibrium due to the force of gravity. For two regions of water with different
potentials and separated from each other by a semipermeable membrane, there is a
water flow to the region of lower potential by osmosis: the movement of the fluid
from the hypotonic to the hypertonic solution, while decreasing the concentration
difference, increases the pressure of the hypertonic solution with respect to the hypo-
tonic, thus producing a force that counteracts the osmosis. When these two effects
balance each other, the osmotic equilibrium is reached: there is no net movement of
solvent and the pressure required to maintain an equilibrium is defined as the osmotic
pressure.

Osmosis is particularly important for cells, since many biological membranes
are permeable to small molecules like water, but impermeable to larger molecules
and ions. Osmosis provides the primary means by which water is transported into
and out of cells. Typically, a cell has a higher intra cellular osmotic pressure (Pi )
than extra cellular osmotic pressure (Pe). The main reason for this difference is
that highly charged macromolecules and metabolites attract many small inorganic
ions to the cell interior (the Donnan effect, see [1]). Due to this difference, water
will flow into the cell, leading to swelling and potentially to cell rupture. The yeast
Saccharomyces cerevisiae prevents the fundamental problem of water inflow and cell
swelling by its cell wall, which is less elastic than the plasma membrane. The cell wall
resists the expansion of the cell and creates an inward pressure on the cell contents,
Gervais and Beney [9]. This pressure is called the turgor pressure Pt , defined as the
difference in the hydrostatic pressure between the inside and the outside of the cell.
At equilibrium (equil.), the water potential is equal inside and outside of the cell and
the turgor pressure balances the difference in osmotic pressures, as in [33],

Pi = Pe + Pt (equil.). (4.1)

Osmotic shocks arise due to a sudden rise (for example the addition of salt to the
cell medium) or fall in the concentration of a solute in the cell’s environment, resulting
in rapid movements of water through the cell’s membrane. These movements can
produce dramatic consequences for the cell, since loss of water inhibits the transport
of substrates and cofactors into the cell, while the uptake of large quantities of water
can lead to swelling, rupture of the cell membrane or apoptosis. Due to their more
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direct contact with their environment, single-celled organisms are generally more
vulnerable to osmotic shock. However, cells in large animals such as mammals also
suffer similar stresses under certain conditions, Ho [12].

Osmoadaptation is the mechanism by which cells sense and respond to various
changes in their environmental conditions to avoid the aforementioned dramatic con-
sequences. Organisms have evolved a variety of mechanisms to respond to osmotic
shock. Typically, cells recognise changes in the osmolarity of their surroundings
by using surface sensors which generate signals by activating signal transduction
networks. These pathway are found in all eukaryotic organisms and are important
in coordinating the response from the cell membrane into the cell, Rep et al. [30].
Recent experimental research indicates that most eukaryotic cells use the mitogen
activated protein (MAP) kinase pathways for this purpose, Kltz and Burg [16].

4.2 Osmoregulation Process in Yeast

In recent years, the osmoregulatory response in yeast has emerged as an important
model system for studying adaptive, homeostatic responses to environmental distur-
bances (see [8, 15]). The underlying molecular control system is well characterized
in Saccharomyces cerevisiae (see [26, 40]), where it comprises three separate mech-
anisms that act to adjust the glycerol production in order to keep the cell’s turgor
pressure and volume constant in the face of environmental changes: (1) the regu-
lation of the membrane protein Fps1 determining the glycerol export rate; (2) the
transcription of several genes, whose proteins are involved in glycerol production,
by the activation of the high osmolarity glycerol (HOG) mitogen-activated protein
kinase (MAPK) signaling pathway and (3) the HOG kinase dependent regulation of
the glycerol via non-transcriptional mechanisms. Despite its biochemical complex-
ity (see Fig. 4.1), the osmoregulation system in yeast can be naturally abstracted
as a feedback control system comprised of distinct branches as described above.
This approach was taken in recent studies, which aimed to use standard engineering
control models to capture the experimentally observed responses of yeast to osmotic
shock and to further predict its structural and dynamic features (see [8, 24, 26]). Gen-
nemark et al. [8] combined proportional controllers to model the above-described
biochemical branches. Mettetal et al. [24] developed a concise model by using linear
systems theory, and then revised this model arguing for the necessity of at least one
branch of the system to implement integral control to achieve the experimentally
observed adaptive responses in the system, Muzzey et al. [26]. The role of integral
feedback in perfectly adaptive systems is by now well-studied in the Systems Biology
literature (see [26, 27]), and it is highly likely that the osmoregulation system in yeast
does indeed include a biochemical implementation of integral feedback, as seen in
other systems (see [6, 27, 39]). It is still unclear, however, exactly how biological
control systems such as osmoregulation might have evolved to use integral feedback
control, and whether other alternative mechanisms might produce similar (or better)
performance properties.



86 F. Montefusco et al.

Fig. 4.1 Overview of the response of yeast to osmotic schlock, the figure has been taken from [15]
and reproduced with permission of Nature Publishing Group

As a first step towards answering this question, we recently extended the propor-
tional controller model devised in [8] with the implementation of an ultrasensitive
controller, Montefusco et al. [25]. Ultrasensitivity describes a particular form of
sensitivity in biological systems, where the system does not respond to incoming
signals outside of a certain regime, but responds in a highly sensitive manner within
this regime. Such an input-output relationship (i.e. ultrasensitivity) can be described
by a specific nonlinear function, is shown to be a ubiquitous feature in several biologi-
cal systems, and can be biochemically implemented through a variety of mechanisms
such as phosphorylation cycles and cooperative binding (see [4, 11]). The MAPK
systems, which are also found in osmoregulation, are theoretically shown to be capa-
ble of embedding ultrasensitivity (see [3, 13]), and bistability [21]. Starting from the
proportional control model developed by [8], we explore the consequences of such
potential ultrasensitivity and show that it significantly increases system performance
in achieving homeostasis to osmotic perturbations.

In the following sections we present the model devised in [8], then we focus
our attention on the results presented in [24, 26]. Finally, we provide an updated
description of the recent results first presented in [25].

4.3 A Proportional Control Based Model
of the Osmoregulation in Yeast

In this section we describe the model presented in [8], where the authors devised a
simple ordinary differential equation (ODE) model of the adaptive response to an
osmotic shock in S. cerevisiae. They abstracted several elements to yield a reduced
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Fig. 4.2 Mathematical model of the osmoregulation process. This figure has been adapted from [8]

representation of the system, starting from the detailed model developed in [15] (see
the diagram in Fig. 4.2). The model, in particular, consists of two main components.
First, a biophysical model describing how the cell volume and the turgor pressure are
affected by varying extra–cellular osmolarity. Second, the two parallel mechanisms
for controlling the biophysical system in order to keep turgor pressure and volume
constant: one by controlling the production of glycerol via the HOG pathway and
the other by controlling the outflow of glycerol via the Fps1 channel. The complete
model consists of 4 ODE’s, 3 algebraic equations and 10 parameters, that have been
estimated using experimental data on glycerol. The authors have validated the model
by predicting the behaviour of modified strains and input functions.

4.3.1 The Mathematical Model

The mathematical model presented in [8] is described in the following paragraphs.

4.3.1.1 The Biophysical Module

The biophysical system is modelled by considering the dependencies between cell
volume V , the turgor pressure Pt , the intra–cellular osmotic pressure Pi and the
extra–cellular osmotic pressure Pe. At any given time t , Pi (t), Pe(t) and Pt (t) are
determining the flow of water across the cell membrane, which is proportional to
(Pi (t)− Pe(t)− Pt (t)). Assuming that the cell volume is only affected by the inflow
and outflow of water, then the change in volume can be expressed as

dV

dt
= kp1(Pi (t) − Pe(t) − Pt (t)), (4.2)
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with kp1 denoting a hydraulic water permeability constant. At equilibrium (equil.),
i.e. constant volume and no net flow of water over the membrane, the Eq. (4.2)
reduces to (4.1).

The only osmolyte considered explicitly in the model is glycerol (Gly) and,
hence, ions and other small molecules, changing upon osmotic shock, Sunder et al.
[35], are not considered. This assumption is motivated by experimental results from
[29], where the authors found that glycerol counter-balances approximately 80 % of
applied NaCl in S. cerevisiae. Therefore, the intra-cellular osmotic pressure, accord-
ing to van’t Hoff’s law, is expressed as

Pi (t) = s + Gly(t)

V (t) − Vb
, (4.3)

with s being the concentration of the sum of osmolytes (assumed constant) other than
glycerol present in the cell, and Vb being the non-osmotic volume of the cell, sub-
suming non-polar cellular components, such as membranes. According to Eq. (4.3),
the intra–cellular osmotic pressure increases with the glycerol, which can be used
to control the turgor pressure of the cell. The extra-cellular osmotic pressure is only
modified by the input signal, for example applied salt stress, and is then independent
of changes in other variables. The turgor pressure is linearly dependent on the volume
according to [17], in the following manner:

Pt (t) = ε

(
V (t)

V (0)
− 1

⎡
+ Pt (0), (4.4)

where V (0) is the initial volume, Pt (0) is the initial turgor pressure, and ε is the
volumetric elastic modulus. By expressing the volume at which Pt = 0 with the
notation V Pt =0, (4.4) can be rewritten as

Pt (t) =
⎢

Pt (0)
V (t)−V Pt =0

V (0)−V Pt =0 , V (t) > V Pt =0

0, otherwise.

4.3.1.2 The Controller Modules

There are two branches of control in the model: the first represents the closure of
Fps1 glycerol transporter channels as a reaction to osmotic shock, and the second
the activation of the HOG pathway, leading to glycerol production after a time delay.
The input signal e arriving at the controllers is expressed as

e(t) = Pt (0) − Pt (t), (4.5)

which is the difference in turgor pressure. The output of the Fps1 branch, which
corresponds to the response of the transporter channels, is given by
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uFps1(t) =
⎢

kp2
Pt (0)−e(t)

Pt (0)
, e(t) > 0

kp2, otherwise.
(4.6)

The function uFps1 returns real values in the interval [0, kp2], where 0 corresponds
to completely closed and where kp2 is the glycerol permeability coefficient in a
completely open Fps1 channel.

The output of the HOG branch, which corresponds to the HOG pathway dependent
glycerol production, is expressed as

u H OG(t) =
⎢

kH OG · e(t), e(t) > 0

0, otherwise,
(4.7)

where kH OG is the gain of this branch.
The time delay accounting for transcription and translation in the HOG pathway

is approximated by

dvH OG

dt
= 1

Td
(u H OG(t) − vH OG(t)),

with vH OG(t) being the time delayed variable and Td being the amount of time delay
considered. As reported in [8], very simple proportional controllers have been used
in order to reduce the complexity of the model, even though it is known that, for
example, MAPK signalling pathways often exhibit a switch–like behaviour, Huang
and Ferrell [13]. In the last section of this chapter we compare the dynamics of this
model with those obtained by using a HOG controller implementing ultrasensitivity,
Montefusco et al. [25] (see Sect. 4.6).

4.3.1.3 The Glycerol Module

The exchange of internal and external glycerol, u Di f f over the Fps1 channel is
modelled by using Fick’s first law of diffusion as

u Di f f (t) = uFps1(t)

(
Gly(t)

V (t) − Vb
− Glye(t)

Ve

⎡
,

with Ve being the extra-cellular volume and Glye being the glycerol concentration in
the extra-cellular compartment. Intra-cellular glycerol Gly production is expressed,
combining the output of the two controllers described above, as

dGly

dt
= vH OG(t) − u Di f f (t)
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Table 4.1 Proportional control based model parameters: all volumes are scaled such that the initial
volume of the cell is 1

Parameters Bounds

kp1 Water perm. coeff. [0.0052, 160] Osm−1

kp2 Fps1 control const. [0, ∞]
Td Time delay [5, 30] min
kH OG HOG control const. [0, ∞] Osm−1

Gly(0) Initial Gly [1.1 5] × 10−4

Pi (0) Initial Pi [0.6 0.7] Osm
Pe(0) Initial Pe [0.24 0.25] Osm
Vb Non osmotic volume [0.31 0.46]
V Pt =0 V when Pt = 0 [0.5 0.99]
Ve External volume [0.5 5] × 103

Dependent parameters Value
V (0) Initial V - 1

relative volume
Glye(0) Initial Glye

Ve Gly(0)
(V (0)−Vb)

Pt (0) Initial Pt Pi (0) − Pe(0)

s No. of osmolytes Pi (0)(V (0) − Vb)

other than Gly -Gly(0)

Both Gly and Glye represent number of molecules (mol scaled by V (0))

and extra-cellular glycerol, depending only on the diffusion over the Fps1 channel,
is described by

dGlye

dt
= u Di f f (t).

4.3.2 Parameter Estimation and Results

The model contains 14 parameters, 4 of which are dependent, as given in Table 4.1.
In [8], the other parameters are estimated by simulating the model and minimising
the error defined as the sum of the squares of the difference between simulated, X (t),
and experimental time series data, X̂(ti ), for intra–cellular and total glycerol. The
error for one time series is calculated as

error =
⎣

i

(X (ti ) − X̂(ti ))
2. (4.8)

The best parameters found are given in Table 4.2. To find a possible global mini-
mum point of the error function, the authors in [8] evaluated several randomly chosen
starting points in the feasible region of the parameter space. The research was contin-
ued for the sets of parameter with sufficient low error by using the function fmincon
from the MATLAB Optimization Toolbox, MATLAB [22]. Figures 4.3 and 4.4 show
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Table 4.2 Optimized parameters by using the relation (4.8): the values of Pe and kp1 were fixed
while the remaining 8 parameters were estimated from time series data

Parameters Value

kp1 Water perm. coeff. 1 Osm−1

kp2 Fps1 control const. 0.316
Td Time delay 8.61 min
kH OG HOG control const. 0.416 Osm−1

Gly(0) Initial Gly 2 × 10−4

Pi (0) Initial Pi 0.636 Osm
Pe(0) Initial Pe 0.240 Osm
Vb Non osmotic volume 0.368
V Pt =0 V when Pt = 0 0.99
Ve External volume 4.79 × 103

Gly represents number of molecules (mol scaled by V (0))
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Fig. 4.3 Simulation of a step signal of 1M NaCl at t = 0. Upper plot external osmotic signal.
Second plot the turgor pressure. Third plot the volume response. Lower plot the total glycerol
concentration for the simulated (sim.) and experimental (exp.) data taken from [8]

the simulated data using the simple model devised in [8] and the parameter set given
in Table 4.2 and a comparison with the time-series experimental data. Figure 4.3
shows the simulation of the model by applying an osmotic stress of 1M NaCl at time
t = 0, corresponding to an increase in the extra–cellular osmotic pressure by 1.86
Osm, while Fig. 4.4 shows the response to a double stress of 0.5M NaCl at t = 0 and
t = 30. The simulated data show how the turgor pressure and volume drop immedi-
ately upon the osmotic stress. While the volume returns to approximately the same
value as before the stress, the turgor pressure, the controlled variable, doesn’t reach
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Fig. 4.4 Simulation of a double stress of 0.5M NaCl at t = 0 and t = 30. Upper plot external
osmotic signal. Second plot the turgor pressure. Third plot the volume response. Lower plot the
total glycerol concentration for the simulated (sim.) and experimental (exp.) data taken from [8]

its previous value. The main reason for incomplete recovery is that the model para-
meters are estimated by using the measured glycerol data, which are not sufficient
for complete recovery of both volume and turgor pressure. The reason why volume
and not turgor pressure is recovered is due to the high value of the estimated V Pt =0,
indicating a low elasticity of the cell wall. Therefore, turgor pressure is not recovered
until the volume is almost completely recovered. For a lower value of V Pt =0, the
turgor pressure would be recovered faster and the volume slower. Figure 4.4 shows
that the model can reproduce the regulatory behaviour of the system to a series of
osmotic shocks. Moreover, it is able to predict the behaviour of modified strains. For
example, Fig. 4.5 shows the simulation to an osmotic shock in a modified strain with
constitutively open Fps1 (i.e. only one control mechanism via the HOG pathway).
This test was experimentally demonstrated in [15]. To simulate this experiment we
set uFps1 = kp2 (see Eq. (4.6)) and adjust the value of Glyc(0) to obtain a realistic
initial value of total glycerol. Figure 4.5 shows that the model correctly predicts
the levels of total glycerol. Note, in particular, an over-production of the glycerol as
experimentally measured (double production compared to wild type experiment) and
a prolonged activation time of the HOG pathway (see Fig. 4d in [15]), that can not
be explicitly observed using this model, since Hog1 is not a variable of the model,
but implicitly deduced from the delay of volume recovery.

This model can therefore give us significant insight into the functioning of the sys-
tem, and the results indicate that even such a simple model can predict the behaviour
of different strains and the response to different input functions. It is also easier to
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Fig. 4.5 Simulation of one osmotic stress of 0.5M NaCl at t = 0 in modified system (open Fps1).
Upper plot external osmotic signal. Second plot the turgor pressure. Third plot the volume response.
Lower plot the total glycerol concentration for the simulated (sim.) and experimental (exp.) data
taken from [8]

understand and analyse than the detailed model developed in [15] (compare Fig. 4.1
with Fig. 4.2). However, detailed models are often important to completely under-
stand a particular phenomena. For instance, in [15] the authors extracted novel infor-
mation on the features of the system: the switch-like behaviour of the phosphorelay
module consisting of three protein (Sln1, Ypd1 and Ssk1) that become more pro-
nounced for higher number of components (see Fig. 2a in [15], where a comparison
of the steady-state characteristics is performed for phosphorelay systems consisting
of one, two and three proteins); and the main role of the phosphatases, that is to
constantly counteract HOG pathway activation to set thresholds and reduce noise
instead of providing a direct downregulation of the pathway.

4.4 Systems-Engineering Approaches

In this section we introduce some methods based on systems-engineering tools to
better understand the dynamics of the osmo–adaptation response. In this area, impor-
tant contributions have been produced by the group of van Oudenaarden. In a first
work (see [24]), the authors analysed the dynamics of the system in the frequency
domain, a feasible approach which allows the derivation of a concise model of the
basic mechanisms of the osmoregulation, that emerge from an intricate network
of interactions acting at very different time–scales, e.g. ligand binding or unbind-
ing, phosphorylation, diffusion between compartments and transcription of genes.
In [26], the authors later found that Hog1–dependent glycerol accumulation is cru-
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cial for the perfect adaptation of yeast to simple step increases of osmotic change,
suggesting that Hog1 may implement integral–feedback via an as yet–unknown role
for protein-protein interactions that increase the internal osmolyte concentration.

4.4.1 A LTI System Identification

In this section we apply frequency domain analysis to derive a concise model of the
HOG MAPK cascade in the budding yeast S. cerevisiae. Our treatment is mainly
based on the results presented in [24]. After a hyper osmotic shock, membrane
proteins trigger a signal transduction cascade that culminates in the activation of
the MAPK Hog1. This activated protein, which is primarily cytoplasmic before the
shock, is then imported into the nucleus, where it activates several transcription
responses to osmotic stress. When the osmotic balance is restored, Hog1 is deacti-
vated through dephosphorylation, thus allowing its export back in the cytoplasm. In
order to identify the model, the input and the output of the system to be predicted have
to be defined: in this case the input is the extra–cellular osmolyte concentration and the
output is the concentration of active Hog1 protein. In [24] the input is manipulated by
varying the salt concentration of the medium surrounding the cells, whereas the out-
put is measured by estimating the localisation of Hog1 in the nucleus, R(t), through
fluorescence image analysis: the cellular localisation of Hog1-YFP, a yellow fluores-
cent protein fused to Hog1, and Nrd1-RFP, a red fluorescent protein fused to a strictly
nuclear protein, are simultaneously monitored and R(t) is measured as the nuclear
to total Hog1 ratio in the cell (R(t) = (< Y F P >nucleus / < Y F P >cell)population ,
averaged over the 50–300 cells observed in the microscope’s field of view).

The experiments are performed by applying pulse wave signals to the cells with
different values of the period T0, ranging from 2 to 128 min and they show that
the steady-state response is approximately sinusoidal, with period T0 (see Fig. 4.6).
Using Fourier analysis, both the input and the output can be approximated as sine
waves oscillating with a period T0 = 2π/ω0. In particular, the experimental input,
using a first harmonic approximation (see [5] pp. 26–30), can be written as

u(t) ≤ 0.2

(
1

2
+ 2

π
sin(ω0t)

⎡
(4.9)

and the steady-state response R∞(t) as

R∞(t) = R0 + A(ω0) sin(ω0t + φ(ω0), (4.10)

where R0 is the offset term and A and φ are two parameters that characterise the
oscillations. A and φ are represented through the absolute value and phase of the
complex number R̃(ω0), respectively. This complex number is calculated from the
Fourier coefficient of the experimental data, R∞(t), taken for stimuli with period T0
using the following relation:
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Fig. 4.6 Upper plot Pulse signal of 0.2 M NaCl with T0 = 8 min and its approximation using the
first harmonic. Lower plot the function R∞(t) (sim.) defined by (4.11) and fitted to the experimental
(exp.) measurements of nuclear Hog1 enrichment taken from [24]

R̃(ω0) = 2

(n+m)T0⎤

nT0

exp−iω0t R∞(t)

mT0
dt, (4.11)

The amplitude of the signal, defined as A(ω0) = |R̃(ω0)|, represents half the distance
from the peak to the trough of the output sine wave. The phase parameter, φ(ω0), can

be written implicitly as R̃(ω0)

|(R̃(ω0)| expi(φ(ω0)−π/2). The parameter n is chosen so that the

system is allowed to approach steady state before computing R̃(ω0). The parameter
m, which represents the number of periods over which the Fourier transform is
computed, is set to be at least two for periods less than 64 min. For periods greater
than or equal to 64 min, it is found that the first period is a good representation of the
steady state oscillations and thus R̃(ω0) is computed over this period alone. However,
the values A(ω0) and φ(ω0) can be computed for different values of ω0 by fitting
the parameters of the Eq. (4.11) to the experimental time response as shown in the
lower plot of Fig. 4.6 for ω0 = 2π/8 rad/min. The resulting frequency response is
shown on the Bode plots in Fig. 4.7.

A predictive model can be identified from the available experimental data by using
linear systems theory: a linear input–output relationship in Fourier space is defined
by

Ỹ (ω) = A0

⎥n
i=1(zn + iω)⎥n
i=1(pn + iω)

Ũ (ω), (4.12)
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Table 4.3 Best-fitting
parameters for the Eq. (4.13)

p1 [min−1] p2 [min−1] A0 [min−1]
Wild type −0.1434 + 0.239i −0.1434 − 0.239i 0.3292
Low Psb2 −0.0466 −0.9755 0.3169

where Ỹ (ω) and Ũ (ω) are the output and input Fourier spectra, respectively, zn are
the n roots of the numerator of Eq. (4.12), also called zeros, and pn are the n roots
of the denominator, also called poles. The simplest such model from this class, that
describes the experimental points in Fig. 4.7, exhibits a zero at the origin (z1 = 0)
and a pair of poles p1 and p2 yielding

(p1 + iω)(p2 + iω)Ỹ (ω) = (iω)A0Ũ (ω) . (4.13)

The best-fit parameters for the wild type and for the mutant (Pbs2 underexpression)
strains are shown in Table 4.3. Applying the inverse Fourier transform (note a mul-
tiplication by iω in Fourier domain corresponds to the derivative operator in time
domain) the following relationship in the time–domain is given:

ÿ(t) + (p1 + p2)ẏ(t) + (p1 p2)y(t) = A0u̇(t) . (4.14)

The identified second-order linear time-invariant (LTI) models, defined by the
Eq. (4.13), are used to predict the response of the two strains to a step input of 0.2 M
NaCl. Figure 4.8 shows the predicted responses of the two models and a comparison
with the experimental measurements: the responses of the linear systems are offset
by a constant value (1.23), which is the experimentally measured basal activity level
of Hog1. The two models show a good qualitative match to the different sets of data
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Fig. 4.8 Time domain response of the system to a step increase of 0.2 M NaCl: comparison of the
responses predicted by the two linear models developed in the frequency domain vs the experimental
measurements taken from [24]

for the two yeast strains (the match is not perfect, since these are linear models of a
process that will clearly also involve some nonlinear dynamics). Note that the wild
type model exhibits a pair of complex conjugated poles and therefore the response
is oscillatory, with a larger overshoot and a faster response than the low Pbs2 model,
as expected from the experimental data. Indeed, the latter has two real poles, and
thus exhibits a limited initial overshoot, a fast initial rise (due to the pole with small
time constant) and a slow decay (caused by the large time constant associated with
the other real pole). The identified LTI model can be written as a pair of differential
equations, that is more readily interpreted in terms of biological process:

(
ż(t)
ẏ(t)

⎡
=
(

a b
c d

⎡(
z(t)
y(t)

⎡
+
(

e
f

⎡
u(t) (4.15)

with rate constants a, b, c, d, e and f . The variable y(t) is assumed to represent the
observable output of the system (the level of Hog1 activity), whereas the variable
z(t) represents the hidden state and u(t) the osmotic stimulus. When these equations
are simplified to remove the hidden variable z(t), a single second order differential
equation in y(t) is obtained:

ÿ(t) = (a + d)ẏ(t) + (bc − ad)y(t) + (ec − a f )u(t) + f u̇(t) (4.16)

This equation is equivalent to the one in (4.14), if f = A0, ce = a A0 and c ∞= 0.
Substituting these relations in (4.15), we obtain the following system:
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Fig. 4.9 Block diagram representation of the system (4.18): two negative feedback loops (Hog1-
independent and Hog1-dependent mechanisms) act to reduce the difference between the stimulus,
A0u(t), and the internal-state variable, x(t), representing the internal pressure

(
ż(t)
ẏ(t)

⎡
=
( ce

A0
b

c d

⎡(
z(t)
y(t)

⎡
+
(

e
A0

⎡
u(t) =

( e
A0

b
1 d

⎡(
A0u(t) + cz(t)

y(t)

⎡
. (4.17)

Defining x(t) = −cz(t), α = − ec
A0

, β = −bc and γ = −d the system (4.17) is
written as

(
ẋ(t)
ẏ(t)

⎡
=
(

α β

1 −γ

⎡(
A0u(t) − x(t)

y(t)

⎡
=
(

α(A0u(t) − x(t)) + βy
A0u(t) − x(t) − γ y

⎡
. (4.18)

Comparing this relation with the LTI model, we can equate coefficients to obtain the
relations:

α + γ = p1 + p2, p1 = 1

2
((α + γ ) +

⎦
(α − γ )2 − 4β,

and

αγ + β = p1 p2, p2 = 1

2
((α + γ ) −

⎦
(α − γ )2 − 4β.

The identified model, described by the relation (4.18), contains two negative
feedback loops, which act to reduce the difference, (A0u(t) − x(t)), between the
stimulus, A0u(t), and the internal-state variable x(t) (see Fig. 4.9). This enables us
to assign a physical meaning also to the variable, x(t): since the input is the exter-
nal pressure, x represents the internal pressure. Moreover the model tells us that
one feedback mechanism is mediated by the Hog1 MAPK pathway (βy changes x
through the activity of the observable output y), whereas a second one is mediated
by a pathway which is independent of Hog1. Since Hog1 is activated by Pbs2, we
can derive useful insight by comparing the responses of the wild type strain with
the mutant strain, in which Pbs2 is underexpressed (see Fig. 4.8). This compari-
son suggests that the feedback action provided by the Hog1 pathway is stronger,
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producing a faster response. As discussed in Sect. 4.3, the hyperosmotic-shock
response in yeast is regulated by two parallel mechanisms: 1) the Hog1-independent
pathway activating the membrane protein Fps1 that quickly (<2 min) responds by
decreasing the glycerol-export rate (see [19, 36]); 2) the Hog1-dependent pathway
increasing the expression of Gpd1 and Gpd2 which accelerate the production of the
glycerol over a longer time scale (>30min—see [2]). Although the topology of the
model identified corresponds closely to that of the known biological system (see
Fig. 4.9) the dynamic differences suggest that the MAPK Hog1 plays a role not only
in the transcriptional regulation of glycerol producing proteins, but also in the control
of the rapid accumulation of glycerol, consistent with previous studies (see [19, 36,
37]): from Fig. 4.8 the peak times of the responses of both wild type and mutant
strains are less than 10 min and in both cases the response is much faster than the
characteristic dynamics of gene expression. From this analysis the authors, in [24],
have hypothesized that gene expression may be more important as a longer–time
scale feedback in the hyperosmotic-shock response. To test this hypothesis, they
stimulated cells with periodic pulses of NaCl (see Fig. S5 in [24]). The cells were
shocked either in the absence or presence of cycloheximide, a small molecule that
inhibits protein synthesis. They showed that cells respond very similarly to an initial
pulse of osmolyte both in the absence or presence of cycloheximide. On the other
hand, to adapt to subsequent pulses, cells need less time in the absence of cyclo-
heximide and more in its presence. These results suggest that non transcriptional
feedback mediates short–time scale osmolyte accumulation (see [8, 15, 28, 37]),
whereas gene expression plays a role in osmolyte production only over longer time
scales and for more intense shocks.

4.5 Perfect Adaptation in Yeast Osmoregulation

As shown in the last section the concise model developed by [24] is able to predict
the Hog1 response by using only two differential equations. However, a detailed
comparison of the LTI model’s predictions with the experimental data sets shows
that this model (only containing two negative feedback loops that control the rapid
accumulation of glycerol) is too simple to fully reproduce the quantitative dynamics
of the Hog1 nuclear enrichment when the cell are stimulated multiple times with
periodic pulses of NaCl (see Figs. S8 and S9 in [40]). In particular, the experimental
data sets and the model presented in [40] suggest that yeast can remember the first
pulse of high osmolarity and needs less time to adapt to subsequent pulses of sim-
ulation. The LTI model developed by [24] fails to capture this dynamical property
and, in [26], the same group proposed a revised concise LTI model by implementing
an integral feedback mechanism which requires Hog1 kinase activity. They started
with a minimalist model represented by the network diagram of Fig. 4.10, which
aims to predicts the dynamics of the osmoregulation system with only a few key
parameters, starting from input-output data, and, using biological measurements and
engineering principles, to better understand the relation of its dynamics with the
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Fig. 4.10 Network diagram of the omsoregulation system presented in [26]

network topology. The authors represent in a subsystem all relevant reactions that
determine the activation of the MAPK signalling pathway and the nuclear import
of the activated protein Hog1 (MAPK signaling & nuclear import) and in another
subsystem all the Hog1-dependent mechanisms that promote the glycerol production
(Hog1-dependent mechanisms—such as the transcriptional activation of genes that
encode enzymes involved in the glycerol production and potential protein-protein
interaction initiated by Hog1 in the cytoplasm or nucleus that lead to glycerol accu-
mulation). In contrast in the model of Fig. 4.2, developed by [8], the HOG pathway
controller represents both the HOG signalling pathway, transcription/translation and
the synthesis of enzymes involved in glycerol production.

4.5.1 Experimental Measurements for the Perfect Adaptation

In [26] the authors observed perfect adaptation of Hog1 nuclear enrichment in
response to step increases of the extracellular osmolyte concentration (see Fig. 4.11
where step inputs of NaCl with different amplitude are applied and Fig. S3 in [26]
where K Cl and sorbitol are also used as osmolytes—in these and in the following
figures of this section, Hog1 nuclear enrichment is defined as the relative change from
the pre-shock level): this adaptation occurs with very low cell-to-cell variability and
is robust to the signalling fidelity of the MAPK cascade. In particular, for different
cells, the dynamics of Hog1 nuclear enrichment and cell volume are very similar
in response to a step osmotic stress, with trends that closely follow the population
average (see Fig. 2A, B in [26]). In fact, the cell-to-cell variability in unstressed cells
is comparable to the one in osmo-stressed cells as shown in Fig. S2 in [26], further
indicating that the intrinsic noise of signal propagation is low and suggesting that the
experimental setup itself may be the predominant source of noise in the experimental
data. Moreover, to demonstrate the robustness of this perfect adaptation, measure-
ments of the Hog1 response have been performed in cells with compromised MAPK
signalling, by controlling the expression of PBS2, which encodes the kinase of Hog1
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Fig. 4.11 Time measurements of Hog1 nuclear enrichment and volume to hyperosmotic shocks
with indicated concentrations of salt. Data taken from [26]
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Fig. 4.12 Time measurements of Hog1 nuclear enrichment after changing the signaling fidelity of
the MAPK cascade by controlling the expression of PBS2. Data taken from [26]

(see Fig. 4.12). Also in this case Hog1 nuclear enrichment still perfectly adapts and
therefore we can say that the perfect adaptation is a robust property of the system
and not a consequence of ad hoc parameter tuning. From these results, together
with extensive theoretical analysis of adaptive systems in engineering, Muzzey et
al hypothesised that this system implements integral feedback control in order to
achieve robust perfect adaptation that does not require a precise tuning of system
parameters such as protein levels or rate constant (see [14, 34, 39]).
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Fig. 4.13 Block diagram of the omsoregulation system presented in [26]. H represents all relevant
reactions that link an osmotic disturbance at the membrane with Hog1 nuclear enrichment. D
and I represent the Hog1-dependent and independent mechanisms for the glycerol accumulation,
respectively. G represents the metabolic reactions involved in the glycerol synthesis

4.5.2 The Integral Feedback

The osmoregulation system is described by using the network diagram of Fig. 4.10,
where the error indicates the deviation from the initial turgor pressure before apply-
ing the hyperosmotic stress. Figure 4.13 shows the corresponding block diagram of
the osmosensing network of 4 subsystems denoted with G, D, H and I . H takes
into account reactions that determine the activation of the MAPK signalling pathway
and the nuclear import of the activated protein Hog1. D and I represent the Hog1-
dependent and independent mechanisms that contribute to glycerol accumulation,
respectively. Finally, G represents the metabolic reactions involved in the glycerol
synthesis and any other reactions that promote glycerol accumulation. Approxi-
mating the network as being LTI, each subsystem can be described by a Laplace
transform, or transfer function. In general a Laplace transform F(s) of a function
f (t) is given by

F(s) =
∞⎤

0

f (t) exp−st dt, (4.19)

where s is a complex variable. The transfer function S(s) of a LTI system is defined
as S(s) = Y (s)/U (s), where U (s) and Y (s) are the Laplace transform of the system
input, u(t), and output y(t), respectively (see [5] pp. 30–33). The Laplace transform
has the useful property that many relationships and operations in the time domain that
require calculus can instead be performed using linear algebra in the s-domain (the
differential equations in the time domain can be transformed into algebraic equations
in the s-domain using the Laplace transform—these are then much easier to solve).
By applying the final-value theorem (see [32] p. 43), the steady-state input and output
are related via yss = S(0)uss , so perfect adaptation of the system output (yss = 0)
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taken from [26]

for an LTI system is equivalent to S(0) = 0, since the input is constant and nonzero.
The input-error transfer function of the osmosensing system of Fig. 4.13 is given by

Sue(s) = E(s)

U (s)
= 1

1 + G(s)(D(s)H(s) + I (s))
, (4.20)

where G(s), D(s), H(s) and I (s) are the transfer functions of the four subsystems
in the network (see [5] pp. 42–46). We need that Sue(0) = 0 to achieve perfect
adaptation of the error to a step input. Therefore at least one of the four subsystems
implements an integrator (its transfer function is given by 1/s—see [5] p. 31—
thereby allowing Sue to be zero at s = 0). In general, a system contains at least one
feedback loop with at least n + 1 integrators connected in series in order to achieve
perfect adaptation to an input corresponding to the n-th integral of a step function,
where n is a positive integer. Perfect adaptation to a step input, where n = 0, requires
at least one integrator, perfect adaptation to a ramp input, where n = 1 since the ramp
is the integral of a step, requires at least two integrators in series, and so on. In [26]
the authors showed that neither cell volume nor Hog1 perfectly adapt in response
to a ramp input, confirming that there is exactly one integrator in the osmosensing
network (see Fig. 4.14). Therefore, the perfect adaptation of the error to a step input
requires that only one of the four subsystems contains one integrator. Similarly, the
input-output transfer function is given by

Sus1(s) = S1(s)

U (s)
= H(s)

1 + G(s)(D(s)H(s) + I (s))
. (4.21)
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Fig. 4.15 Time domain response of the system (4.26) to a step increase of 0.4 M NaCl: comparison
of the responses (sim.) predicted by the two models (wild type and PP1) vs the experimental (exp.)
measurements taken from Fig. 5A in [26]

If H(s) were the only subsystem performing integration, then Hog1 would not per-
fectly adapt (Sus1(0) ∞= 0). Therefore one or more of the other subsystems must
contain an integrator to achieve perfect adaptation of Hog1 but the system only con-
tains one integrator. In [26] it is shown that the cells lose perfect adaptation with PP1,
a treatment to completely eliminate the Hog1 kinase activity, as the steady-state Hog1
accumulation (s1ss in Fig. 4.13) does not go back to the pre-stimulus level. Since the
presence of PP1 disconnects the D subsystem from Hog1, the input-output transfer
function of the system is modified as

Sus1(s) = H(s)

1 + G(s)I (s)
. (4.22)

In this case Hog1 does not perfectly adapt, then the product G(s)I (s) does not go to
infinity at s = 0 (Sus1(0) ∞= 0), which implies that either the G and I subsystems both
lack integrators, or one subsystem has an integrator but the other perfectly cancels
the integrator (it is a differentiator with a transfer function equal to s—see [5] p. 31).
If I contained the integrator, then the turgor pressure would perfectly adapt in the
presence of PP1, and Hog1 likely would as well, but both properties are not observed
in the data. If G were to act as an integrator, then cell volume and turgor pressure
would continue to perfectly adapt for a nonzero input to the G subsystem. But, in
the presence of PP1, the only input to subsystem G is the output from subsystem I ,
as subsystem D is disconnected. Thus, no volume recovery observed in PP1-treated
cells would only occur if the output of subsystem I prematurely goes to zero (i.e. if
it were a differentiator). As explained in [26], this observation would require that all
Hog1-independent mechanisms completely desensitize within approximately 20 min
(i.e. the time needed for Hog1 nuclear enrichment to reach steady state in PP1 cells—
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see the lower plot of Fig. 4.15) despite persistence in their stimulus (i.e. the acute
loss of turgor pressure). On the basis of this argument, it is extremely improbable
that subsystem G acts an integrator. Therefore, the combination of all findings points
to D as the subsystem with the only integrator in the feedback loop. Moreover, in
PP1 cells, levels of total glycerol and extracellular glycerol are measured over time
in the presence and absence of osmotic shock (see [26]): in the absence of salt
shock, glycerol synthesis is increased as well as glycerol leakage; in the presence of
osmotic shock, glycerol leakage is rapidly and transiently diminished, as in wild type
cells, whereas the absence of Hog1 kinase activity prevents an increase in glycerol
synthesis, unlike in wild type cells. These data suggest that Hog1 kinase activity
plays a critical role in rapidly regulating glycerol synthesis but not its leakage as
in [38].

Note from Fig. 4.12 (see also Fig. 3D in [26]) that the time-integral of the Hog1
scales linearly with the shock strength. If the system were composed only of reactions
modelled with linear dynamics, then the result that D subsystem is an integrator
would be trivial. However, this result is valid also when the other subsystems are
nonlinear stable systems without integrators (see Fig. 4.12 where the fact that the peak
Hog1 amplitude saturates as a function of salt is an evidence of nonlinear dynamics
in the H subsystem). If it is assumed that the error perfectly adapts and the the steady-
state output of the I subsystem is zero when its steady-state input is zero, then 1)
the net change induced by the system in the steady-state input of the G subsystem
simply equals the time-integral of Hog1, 2) the net change in the output of G must
equal the net change in the system input in order for the error to go to zero. If the G
subsystem were perfectly linear, then its output would be directly proportional to its
input at steady state and so the time-integral of Hog1 would be directly proportional
to the magnitude of the osmostress (despite potential nonlinearities in the H and I
subsystems). This relationship is almost exactly what Fig. 3D in [26] shows, except
that the line relating the integral of Hog1 nuclear enrichment to the magnitude of the
osmostresses does not cross the origin. This difference may be due to nonlinearities
in the input-output steady-state function of subsystem G that become evident for
osmostresses of small magnitude (<0.2 M NaCl).

Finally, in order to validate these results, a LTI system can be used to implement
the concise model represented by the block diagram of Fig. 4.13. The subsystems
of the osmosensing network can be represented as follows: H and G as first-order
systems where the corresponding transfer functions H(s) = kh

s+γh
, with gain kh and

time constant γ −1
h , and G(s) = 1

s+γg
with time constant γ −1

g , I as a scalar αi (i.e.

I (s) = αi ) and D as an integrator with gain αd (i.e. D(s) = αd
s ). Therefore the

Laplace transform of the output, S1(s), of the H subsystem is defined as:

S1(s) = kh

s + γh
E(s) = kh

s + γh
(U (s) − S3(s)), (4.23)

where the Laplace function error E(s) = U (s) − S3(s), with U (s) and S3(s) the
Laplace functions of the input u(t) of the system and the output s3(t) of subsystem
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Table 4.4 Best-fitting parameters for the system (4.26)

kh [min−1] γh [min−1] γg [min−1] αd [min−1] αi [min−1]
Wild type 0.496 0.369 0.119 0.0106 0.0806
PP1 0.147 0.369 0.119 0 0.0806

G, respectively. We can obtain the rate equation for the output s1 (corresponding to
measured Hog1 nuclear enrichment) in the time domain applying the inverse Laplace
transform of the following relation, by rewriting the Eq. (4.23):

sS1(s) = −γh S1(s) − kh S3(s) + khU (s) . (4.24)

By applying the property that the derivative operator with respect to time correspond
to a multiplication by s in the s-domain (see [5] p. 31), the inverse Laplace transform
of (4.24) follows as:

ṡ1(t) = −γhs1(t) − khs3(t) + khu(t) (4.25)

In the same way, we can obtain the rate equations for the outputs s2 and s3 of
the corresponding subsystems D and G. Then the following system of differential
equations is obtained:

⎛

⎝
ṡ1(t)
ṡ2(t)
ṡ3(t)

⎞

⎠ =
⎛

⎝
−γh 0 −kh

αd 0 0
0 1 −(αi + γg)

⎞

⎠

⎛

⎝
s1(t)
s2(t)
s3(t)

⎞

⎠+
⎛

⎝
kh

0
αi

⎞

⎠ u(t) . (4.26)

Figure 4.15 shows the response of two strains (wild type and PP1 cells) to a
step input of 0.4 M NaCl. Table 4.4 reports the best set of parameters that fit the
experimental data. For the PP1 experiment we set αd = 0 to break the connection
between Hog1 and the D subsystem. The simulations show how the devised model
is able to capture the dynamics of the system and produces an excellent match to the
experimental data.

4.6 The Role of Ultrasensitivity

As shown above, systems and control theory provides a highly useful approach to
abstract complex biological systems that seem to operate with similar goals as engi-
neered control systems, and the osmoregulation system in yeast is a prime example
of this. The models here presented, by combing proportional and integral feedback
controllers capture the key dynamics of a homeostatic system like osmoregulation in
yeast, but they do not shed light on how the evolution of such a biological control sys-
tem can proceed to result in integral feedback control. In the following we explore
the possible role of ultrasensitivity in osmoregulation. Indeed, it has been well-
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documented that the upstream signalling pathways involved in this system imple-
ment high levels of ultrasensitivity, however, the role of such high gain in producing
the observed perfect adaptation is not clear. Therefore, we extend the proportional
controller model presented in [8] for this system with the implementation of ultra-
senstivity, Montefusco [25].

4.6.1 Ultrasensitive Model and Parameters

The mathematical model used for our analysis is the same as that presented in
Sect. 4.3, apart from allowing the Hog controller to be non-linear (see Fig. 4.2).
Indeed, in this case, the output of the HOG branch, which corresponds to the HOG
pathway dependent glycerol production, is expressed as

u H OG(t) =
⎢

kH OG · f (e, t), e(t) > 0

0, otherwise,
(4.27)

where the control function is given by

f (e, t) = e(t)n

βe(t)n + K n
, (4.28)

with β = 1 and K and n being the nonlinear Hill function variables. We have thus
modifed the control law for the HOG pathway, compared to the model in [8], to
allow for a non-linear controller response. This is inspired by the fact that MAPK
systems, of which the HOG pathway is an example, often show Hill type responses,
Huang and Ferrell [13]. The performance of the nonlinear controller is contrasted
with the proportional controller given in [8], where β = 0 and K = n = 1. Our
model contains 16 parameters as reported in Table 4.5. However, four of these are
dependent parameters which do not need to be constrained. The other parameters are
estimated by simulating the model with different osmotic shocks and minimising the
error, defined by Eq. (4.5), and time adaptation corresponding to the time required
by the cell to approximately return to its volume before the stress (see the definition
in the next subection). For the optimization, we use a hybrid Genetic Algorithm
(GA) (see [18]), that combines the most well-known type of evolutionary algorithm
with local gradient-based algorithms (see [7, 10]). We use the function ga from
the MATLAB Global Optimization Toolbox, MATLAB [23], and fmincon from the
MATLAB Optimization Toolbox, MATLAB [22], as the local algorithm. By the
optimisation procedure some parameters do not significantly change their values,
therefore, they are fixed equal to the values estimated in [8], except for V Pt =0, which
is set to 0.8, the value of the volume at zero Pt according to a recent study presented
in [31].

The cost function used for the parameter estimation is given by



108 F. Montefusco et al.

Table 4.5 Ultrasensitive model parameters: all volumes are scaled such that the initial volume of
the cell is 1

Parameters Bounds

kp1 Water perm. coeff. [0.0052 160] Osm−1

kp2 Fps1 control const. [0 10]
Td Time delay [5 30] min
kH OG HOG control const. [0 2] Osm−1

K Hill const. [0 0.01 2]
n Hill exponent [0 4]
Fixed parameters Value
Gly(0) Initial Gly 2 × 10−4

Pi (0) Initial Pi 0.636 Osm
Pe(0) Initial Pe 0.24 Osm
Vb Non osmotic volume 0.368
V Pt =0 V when Pt = 0 0.8
Ve External volume 4.79 × 103

Dependent parameters Value
V (0) Initial V - 1

relative volume
Glye(0) Initial Glye

Ve Gly(0)
(V (0)−Vb)

Pt (0) Initial Pt Pi (0) − Pe(0)

s No. of osmolytes Pi (0)(V (0) − Vb)

other than Gly -Gly(0)

Both Gly and Glye represent number of molecules (mol scaled by V (0))

min
x

J, (4.29)

where

J = Jp + Jv + Jt (4.30)

is a sum of three scalar functions: Jp is the turgor pressure error, Jv is the difference
between the desired and the effective volume and Jt is the response time of the system
after the perturbation.

4.6.2 Results: Ultrasensitive Versus Proportional Controller

In our adaptation of the model developed by [8], we particularly consider the observed
ultrasensitivity in the HOG branch of the system. This branch was originally mod-
eled as a proportional control in [8], which we have replaced here by a Hill-type
function to model ultrasensitivity (see Eqs. (4.27) and (4.28)). We then compare the
performance of this new model against the original model. In particular, we evaluate
the two different controllers—proportional (Pr) and ultrasensitive (Us)—by simulat-
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Fig. 4.16 Different osmotic
stresses. Upper plot a constant
step of 1M NaCl at t = 5
min corresponding to an
increase of Pe equal to 1.96
Osm. Middle plot single pulse
signal at t =5 min with duration
of 40 min of 1M NaCl. Lower
plot double pulse signal at
t1 = 5 and t2 = 85 min, both
with duration of 40 min and
amplitude of 1M NaCl
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ing their dynamics with different stress inputs (see Fig. 4.16) and optimizing their
parameters for optimum response (i.e. minimal deviation of cell volume and turgor
pressure in presence of an osmo-schock, see Sect. 4.6.1 for details). We repeat this
procedure for different levels of overall sensitivity (i.e. gain) of the HOG branch and
different types of osmo-shock sequences and evaluate the tests by using two differ-
ent performance indices: adaptation precision and adaptation time. The adaptation
precision is defined as

Xa =
∏

i

Xs,i , (4.31)

where Xs,i is the steady state value of the variable X (volume V or turgor pressure
Pt ) after the i-th perturbation. Since the initial volume is set to unity, this measure
gives 1 for perfect adaptation. Deviations from 1 indicate inability of the system to
perfectly adapt volume to pre-perturbation levels. The time adaptation, Ta , defined as

Ta =
⎣

i

ta,i , (4.32)

where ta,i is the time required by the system to reach 85 % of the volume V after the
i-th osmotic stress. Figure 4.17 shows the results of the two controllers by applying
three different osmotic stresses: constant step, single pulse and double pulse. For
all different inputs the ultrasensitive controller achieves better and faster adaptation
irrespective of the level of overall gain. The better performance is particularly signif-
icant when overall gain is limited to lower values, where the ultrasensitive controller
achieves almost 2-fold faster responses. Indeed, using a a Hill function within the
HOG branch allows us to effectively achieve a steeper response from this branch
compared to a linear function for any given error (see Eqs. (4.27) and (4.28)). Thus,
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Fig. 4.17 Performance comparison between the proportional (Pr) and ultrasensitive (Us) controllers
by applying different shocks: first column, a step of 1M of NaCl; second column, 1 pulse of 1M;
third column, 2 pulses of 0.5M. Va close to 1 indicates the capability of the system to adapt. Ta
indicates the time adaptation

Table 4.6 Optimized parameters for a given kH OG with a double pulse signal of 1M of NaCl

kH OG Optimized parameters—Pr/Us Us
kp1 Td kp2 K n
Pr Us Pr Us Pr Us

0.65 93 155 5 5 0.43 0.96 0.17 3.53
1.1 159 124 5 5 0.69 1.17 0.23 3.78
1.55 0.36 134 5 5 0.9 1.61 0.23 3.8
2 155 159 5 5 1 1.54 0.25 3

the controller acts faster and more strongly, allowing quicker and fuller recovery of
the system. This insight is in line with the optimized parameters for both controllers
as reported in Table 4.6: in most cases, the optimal parameters for the ultrasensitive
controller result in a very steep Hill function that produces maximal outputs for even
small error values. Of the other free parameters of the model, we note that certain
parameters are optimized differently for the two controllers. For example, the per-
meability coefficient kp1, which controls water flow in the model (see Eq. (4.2)) is
usually optimized to higher values in the ultrasensitive controller compared to the
proportional controller. This parameter affects the sensitivity of the system, as faster
water movement can allow both a high volume reduction for a given osmo-shock and
also fast recovery. Given its fast dynamics, the ultrasensitive controller can “afford”
this parameter to become higher compared to the proportional controller.
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Fig. 4.18 Sensitivity analysis using the box-and-whisker representation (median–middle line, the
25th and 75th percentile—lower and upper lines of the box, and the outliers (crosses)) by fixing
kH OG and Hill function parameters (K = 0.05, n = 3.5) and applying one pulse signal of 1M of
NaCl. The first column of each boxplot reports the results for the proportional (Pr) controller, the
second column the results for the ultrasensitive (Us) controller. The system robustly adapts if Va
and Pa are close to 1. Ta indicates the time adaptation. Similar results are obtained with different
Hill function parameters (K = 0.2, n = 2)—see Fig. 7 in [25]

Such differences between the optimal model parameters for the two controllers
suggest that implementation of ultrasensitivity might allow more freedom in the other
parameters of the model or allow them to be in a more favorable regime. To test the
former possibility, we perform a simple sensitivity analysis for the two controllers.
Given a certain gain, and Hill function parameters, we evaluate the adaptation preci-
sion and time of the two controllers for a set of 100 randomly generated parameters.
Figure 4.18 shows that the ultrasensitive controller achieves much more robust adap-
tation performance than the proportional controller according to these two criteria.

As discussed above, the performance increase of the ultrasensitive controller over
the proportional one stems from its high sensitivity to the error due to the Hill function.
The incorporation of the Hill function, however, can also allow development of
thresholds in the system. In particular, the ultrasensitive controller can be tuned as a
filter allowing responses only to signals of certain magnitude or duration. To test this
hypothesis, we devise an alternative cost function for the optimization procedure and
optimize the system towards functioning as a filter. The new cost function is given by
Jn = J − Jglyc, where J is defined by the Eq. (4.30) and Jglyc represents the glycerol
production upon the signal of limited duration. Figure 4.19 shows the performance for
a signal with a first short and then long duration pulse. The ultrasensitive controller
ignores the first pulse and responds to the second by tuning the Hill parameters,
whereas the proportional controller model is not able to respond to the second signal
(the permeability coefficient kp1, that affects the sensitivity of the system, is equal
to the lower bound).
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Fig. 4.19 Response to a signal with a short and long pulse duration, assuming kH OG = 0.25. Upper
plot external osmotic signal. Second plot the volume response for the proportional (Pr) controller
and the ultrasensitive (Us) controller model. Lower plot the glycerol concentration for both the
models

In conclusion, we show, using a previously developed proportional control model
of the osmoergulation incorporating two main and distinct branches (HOG and chan-
nel branches), that ultrasensitivity in the HOG branch allows better overall perfor-
mance. We find that the primary effect of ultrasensitivity in the HOG branch is
an increase in the response speed of the system and consequently in its adapta-
tion precision. In addition to this, however, we find that ultrasensitivity provides
also a non-trivial flexibility to the system parameters. By increasing the speed of
overall system responses, ultrasensitivity in the HOG branch allows sensitivity to
be increased in the other branch of the system. In the absence of ultrasensitivity,
fast (i.e. highly sensitive) regulation of the glycerol exchange branch limits the cell’s
adaptability through the HOG branch (i.e. glycerol production). With ultrasensitivity
in glycerol production, the other system parameters can be increased or varied more
freely, without compromising performance. Moreover, by increasing the gain of the
HOG branch, the system with a proportional HOG controller is able to improve the
performance in terms of adaptation, but there is a presence of overshoot in the system
response, whereas ultrasensitivity in the HOG branch allows to avoid this phenomena
(we do not consider the overshoot to compute the performance). Note that for large
values of the error (e > 1), a proportional branch may have a higher gain than an
ultrasensitive one and, if K > 1, the gain of the proportional controller will always
be higher, but this is not the case here because the error never goes above 1, given the
system parameters (the absolute maximum value of the error is Pt (0)). The ultrasen-
sitive response in the HOG branch also allows tuning of the overall system response
towards certain signal regimes. In other words, the control system can be tuned to
filter out signals below a threshold and respond only when volume decreases cross



4 Modelling and Analysis of Feedback Control Mechanisms 113

this threshold. Considering that glycerol production is potentially highly costly for
the cell, this ability of the system could give an evolutionary advantage by allowing
cells to ignore short lived or low doses of osmo-shock.

4.7 Conclusions

The results illustrated in this chapter demonstrate the power of applying engineer-
ing principles to the analysis of the osmoregulation system in yeast. Gennemark
et al. [8] proposed a simple model that describes the essential physics and biology of
osmoregulation. This model has been abstracted from another more detailed model,
developed by [15], by focusing on fewer components which allow the reproduction
of the main dynamics of the system: the cell controls the biophysical system (in
particular in terms of volume and turgor pressure) by using two proportional con-
trollers, which act in parallel and regulate the glycerol production and the glycerol
outflow (see Fig. 4.2). This simple model captures the main dynamical features of
the osmoadaptive response by predicting the behaviour of different strains (wild type
and modified) with different inputs and confirming the existence of two mechanisms
of control (see Sect. 4.3). Note, however, that in general the volume adapts while
the turgor pressure does not, because the model parameters are estimated using only
glycerol concentration measurements which are not sufficient for complete recov-
ery of both volume and turgor pressure. Therefore the model does not show robust
adaptation, since the adaptation requires a careful tuning of the system parameters.

The group of van Oudenaarden, using frequency domain analysis, identified a
minimal model represented by a LTI system with only two dynamics variables (see
Sect. 4.4). Then, they estimated the biological quantities corresponding to the two
relevant variables of the LTI model and, using these results, deduced the network
diagram of Fig. 4.10. Using biological measurements and engineering principles,
they showed that the robust perfect adaptation of Hog1 nuclear enrichment and cell
volume (as turgor pressure) results from one integrating mechanism that requires
Hog1 kinase activity and regulates the glycerol synthesis (see Sect. 4.5).

The models of Figs. 4.2 and 4.10 seem similar at a “formal” level but they are quite
different from the system theoretical point of view. The model of the group of Van
Oudenaarden is inferred by employing the measurements (the output of the model)
and contains one branch of control modelled with exactly one integrator. Instead, in
Gennemark’s model, the Hog protein cannot be observed (it is not a variable of the
model and the Hog controller does not have a direct biological correspondence) and
the two branches of control are modelled using simple proportional controllers. The
model could be modified by adding measurable variables, for example Hog1, but
this would obviously increase the complexity of the model.

Interesting additional results were recently presented in [20], where the authors
investigated which network topologies in a generic signalling network are capable
of robust adaptation. In particular, they used a network of three nodes as a minimal
framework, where there is a first node that receives the input, a second that transmits
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the output and a third that can play diverse regulatory roles. They found that all
the networks containing one of the following two motifs achieve adaptation: neg-
ative feedback loop with a buffering node and incoherent feedforward loop with a
“proportioner” node.

Despite the many striking insights that have been produced into the yeast osmoreg-
ulation system by the above analyses, it is still not clear how the evolution of biologi-
cal control systems of this type can result in integral feedback, and in our recent work
we investigated a heretofore largely unexplored alternative control system which also
appears to be able to achieve perfect adaptation. In particular, we extended the pro-
portional control model developed by [8] with the implementation of ultrasensitivity
and found that a proportional controller implementing ultrasensitivity allows more
precise and faster adaptation of cell volume following an osmo-shock. Further, the
ultrasensitive controller can be tuned as a filter, where the proportional controller
could not, and thereby allows responses to signals only above a certain threshold
(see Sect. 4.6). These results provide new insights on the potential role of gain in
biological systems and should be of interest to synthetic biologists attempting to
design robust biomolecular control systems.
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Chapter 5
Analysis of Synchronizing Biochemical
Networks via Incremental Dissipativity

Abdullah Hamadeh, Jorge Gonçalves and Guy-Bart Stan

Keywords Dissipativity · Incremental dissipativity ·Passive ·Passivity · Incremen-
tal signal · Zero-state detectability · Storage function · Supply rate · Incremental
supply rate · Incrementally passive · Incrementally output feedback passive (iOFP)

5.1 Introduction

Synchronization, defined in a broad sense, is the phenomenon in which
communicating agents coordinate outputs. The abundance of examples of this process
in nature and engineering has led to its becoming an active sub-area of research in
networks theory, as evidenced by the multitude of publications on the subject [4].

The aim of this chapter is to re-visit, generalize and extend earlier work in [11, 12,
23], on the synchronization of interconnected control systems, in which a dissipativity
approach is employed to arrive at the coupling conditions necessary to ensure the
convergence of nodal outputs to a common value. The motivation for the development
of these tools comes from a systems biology example, namely the modeling and
analysis of synchrony in the neuronal networks that control circadian rhythms in the
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mammalian hypothalamus [10]. In this context, the ‘network’ is composed of a set of
cells (the network nodes). Each cell communicates with its neighbors by sending a
biochemical output signal that reflects its internal state, and by taking, as an external
input, a measure of outputs of its neighboring cells.

An assumption we make is that the internal dynamics of each cell can be modular-
ized into a set of interconnected compartments. In [11, 12, 23] these compartments
were connected in a ring that is structurally similar to the Goodwin oscillator. Such
a structure represents a simple yet common genetic circuit whereby DNA is tran-
scribed to mRNA, which is then translated into a protein, which feeds back to inhibit
transcription. As shown in [19], in many cases the dynamics of such modules can be
characterized, from an input-output perspective, as being passive passive in the sense
of [25]. A biochemical circuit that is formed by the interconnection of such modules
thus lends itself to stability analysis by the dissipativity theory tools developed in [2,
20, 24]. A particular advantage of this approach with regards to biological systems
is that the internal dynamics of each module need not be known precisely.

To analyze synchronization in networks of such interconnected cells, references
[12, 23] regard synchronization as the stability of signals that represent the differ-
ences in output between two nodes. In parallel with the use of passivity theory [2] to
analyze the stability of circuits composed of the interconnection of passive passive
subsystems, the work in [12, 23] employs the concept of incremental passivity, first
introduced in [21, 22], to study the synchronization of cells composed of incremen-
tally passive passive subsystems. Given two identical copies of a system that has an
input-state-output description, the system is said to be incrementally passive passive
if it is passive passive with respect to the difference between its inputs, states and out-
puts (termed the incremental signals of the system). The class of network agents we
will study in this chapter is such that the compartments of each individual node are
subsystems that are individually incrementally output feedback passive passive [18].
We will use measures of their incremental passivity in order to quantify the degree of
shortage of incremental passivity of each node with respect to its coupling inputs and
outputs. Then, in analogy with the use of strong negative feedback for purposes of
stabilizing output feedback passive passive systems, we will show that linear static
coupling that is strongly connected can similarly be used to incrementally stabilize
the network nodes, thus leading to asymptotic output synchrony and asymptotic state
synchrony under a zero-state detectability assumption on the differences between the
corresponding states and outputs of network nodes. Following [23], an alternative
input–output approach was developed in [17] to analyze the synchrony of network
agents that have structures more general than the cyclic nodes studied in [23]. An
aim of this chapter is to show that the incrementally passifying role of coupling,
which is analogous to the stabilizing role of feedback, can be used for the analysis
of synchrony in networks of nodes such as those studied in [17].

With respect to other synchrony analysis tools in the literature such as contrac-
tion theory [6, 13, 15] or incremental input-to-state stability [1], the methodology
we present here takes an input–output, modular approach. This results in a natural
framework with which to analyze synchrony of agents composed of the intercon-
nection of subsystems, and little knowledge of the subsystem dynamics is required.
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To illustrate our results, we apply them towards the analysis of synchrony in networks
of the repressilator genetic (synthetic) circuit [8, 9]. Genetic circuits can generally
be posed in a modular form similar to that of the repressilator. For this reason we
envision that the tools we present here will prove to be especially useful for the
analysis of networks of such systems.

5.2 Synchronization and Incremental Dissipativity

As networked systems are generally connected through their inputs and outputs,
it is natural to characterize them through their input–output properties to identify
sufficient synchronization conditions. This chapter considers an incremental dissi-
pativity characterization of the network nodes that will be termed incremental output-
feedback passivity (iOFP). The following section will give a brief introduction to the
concepts of incremental dissipativity, first introduced in [21, 22].

5.2.1 Incremental Dissipativity

Consider a system β represented by a state-space model of the form

β

{
ẋ = f (x, e), x ∈ R

r , e ∈ R

y = g(x), y ∈ R
(5.1)

where e(t), y(t), and x(t) denote its input, output and state respectively and the
functions f (x, e) : Rr × R ≤ R

r and, g(x) : Rr ≤ R are Lipschitz continuous.
Let xa(t) and xb(t) be two solutions of β , with the corresponding input–output
pairs (ea(t), ya(t)), and (eb(t), yb(t)). Denote by σx = xa − xb, σe = ea − eb, and
σy = ya −yb the corresponding incremental variables. System (5.1) is incrementally
dissipative if there exists a radially unbounded incremental storage function

Sσ : Rr ≤ R, Sσ (σx) > 0 : ∞σx ∈= 0, Sσ(0) = 0, Sσ ∈ C1 (5.2)

and an incremental supply rate w (σe,σy) such that, if Sσ(σx) is at least once
differentiable (i.e. Sσ ∈ C1)

Ṡσ(σx) ≥ W (σe,σy) (5.3)

is satisfied for all time t and along any pair of trajectories (xa(t), xb(t)) (see [25] for
a definition of dissipativity).

Definition 1 [21, 22] System β in (5.1) is said to be

• incrementally passive passive when it is incrementally dissipative with incremental
supply rate W (σe,σy) = σyσe.
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• incrementally output feedback passive (iOFP
⎡

1
γ

⎢
) when it is incrementally dissi-

pative with the incremental supply rate W (σe,σy) = − 1
γ (σy)2 + σyσe with

γ ∈ (−∗,∗).
• incrementally output strictly passive (iOSP) when it is incrementally dissipative

with the incremental supply rate W (σe,σy) = − 1
γ (σy)2 + σyσe and γ > 0.

When γ > 0 the system possesses an excess of incremental passivity of 1
γ . On the

other hand, when γ < 0 the system possesses a shortage of incremental passivity
and − 1

γ quantifies the minimum gain of proportional negative incremental output
feedback required to make the system incrementally passive.

Definition 2 (Incremental secant gain) Following the concept of the ‘secant gain’
in [2, 19], the smallest γ > 0 such that the iOSP dissipation inequality in Definition
1 is satisfied will be termed the incremental secant gain of the system.

Remark 1 [21, 22] Passivity implies incremental passivity for linear systems, that is,
if the quadratic storage function S(x) = 1

2 x◦ Px ⊇ 0 satisfies the dissipation inequal-
ity Ṡ ≥ yu then the incremental storage function Sσ (σx) = 1

2 (σx)◦ Pσx ⊇ 0
satisfies the incremental dissipation inequality Ṡσ ≥ σyσe. Passivity also implies
incremental passivity for a monotone increasing, static nonlinearity: if φ(·) is
monotone increasing, then (ea − eb) (φ (ea) − φ (eb)) = σeσφ(e) ⊇ 0, ∞σe =
ea − eb,σφ(e) = φ(ea)−φ(eb). Similarly, it is easy to show that for linear systems,
output strict passivity implies incremental output strict passivity with the incremental
secant gain equal to the secant gain.

5.2.2 Incremental Output-Feedback Passivity and Synchronization

Thus far we have seen that a system is incrementally dissipative if, given any two
sets of initial conditions, input trajectories and corresponding outputs, the inequality
(5.3) is satisfied. For this reason, the incremental dissipativity property, which is
a property of each individual node, can be used as an analysis tool for an entire
network composed of interconnected copies of such a node. The main result that
will link incremental output feedback passivity of nodes of a network to (output)
synchronization states that if each subsystem is iOFP and the coupling strength
between nodes is large enough then all the nodes will asymptotically synchronize.

5.3 Notation

In the following sections, we consider networks composed of N coupled identical
nodes, each composed of n interconnected SISO subsystems. As a general convention
j = 1, . . . , N will denote the index associated to a particular node of the network
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Node 2

Node j

Node N

Node 1
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system 1

yijwij

uij eij

wij

yij

Internal node structure

Nodal network

Sub-
system 2

Sub-
system i

Sub-
system n

Fig. 5.1 Network of nodes and illustration of internal nodal structure. The subsystem interconnec-
tion structure can be arbitrary

whilst i = 1, . . . , n will denote the index associated to a particular subsystem in a
given node. The signals to be introduced in Assumption 1 below carry the following
notations and are illustrated in Fig. 5.1.

• The subsystem i of node j has a state vector xi j ∈ R
s , an input ei j = ui j +wi j and

output yi j , with ei j , ui j , wi j , yi j ∈ R. The internal input ui j is a function of the
outputs of different subsystems from the same node j . The external input wi j is a
function of the outputs of corresponding subsystems i from the different nodes.

• The vectors of the states, inputs, internal inputs, external inputs and outputs of the
jth node are respectively denoted by x j , e j , u j , w j , y j , where x j = [ x◦

1 j
· · · x◦

n j ]◦
and e j , u j , w j , y j are similarly defined.

• The vectors of the ith states, inputs, external inputs and outputs of each node are
respectively denoted by Xi , Ei , Ui , Wi , Yi , where Xi = ⎣

x◦
i1

· · · x◦
iN

⎤◦ ∈ R
N and

Ei , Ui , Wi , Yi are similarly defined.
• The vectors of all the states, inputs, internal inputs, external inputs and outputs

are respectively denoted by X , E , U , W , Y , where X = [ X◦
1 · · · X◦

n ]◦, and the
vectors E , U , W , Y are similarly defined.

• The incremental states, inputs, internal inputs, external inputs and outputs are
respectively denoted by σxi j,m , σei j,m , σui j,m , σwi j,m , σyi j,m , where σxi j,m �
xi j − xim , and the signals σei j,m , σui j,m , σwi j,m , σyi j,m are similarly defined.

• The vectors of incremental states, inputs, internal inputs, external inputs and out-
puts for two nodes j, m are respectively denoted by σx j,m , σe j,m , σu j,m , σw j,m ,
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σy j,m , where σx j,m � x j − xm , and the signals σe j,m , σu j,m , σw j,m , σy j,m

are similarly defined.
• The vector in R

N Nns of all incremental state vectors σxi j,m is denoted by Xσ.

5.4 Characterization of Network Nodes and Their Dissipativity
Properties

The following assumption gives a formal description of the networks and nodes that
we shall consider in this chapter.

Assumption 1 Consider a network of N identical nodes. It is assumed that:

• Each node j is composed of n interconnected SISO subsystems of the form (5.1),
and each such subsystem i has state vector, input and output xi j , ei j , yi j respec-
tively.

• Each subsystem i is iOFP
⎡

1
γi

⎢
and therefore, for any two nodes j, m there is

associated with each subsystem i a function Si j,m (σxi j,m ) that satisfies (5.2) and
an incremental dissipation inequality of the form (5.3), with

Ṡi j,m ≥ Wi (σei j,m ,σyi j,m ) = − 1

γi
(σyi j,m )2 + σei j,m σyi j,m , γi ∈ R (5.4)

• The input to subsystem i of node j is given by ei j = ui j +wi j where ui j are inputs
from within the same node j and ui j = ⎥n

α=1
α ∈=i

αi,αyα j , αi,α ∈ R and where wi j is

an exogenous input.

Under Assumption 1, and by linearity we have

σei j,m = σwi j,m +
n⎦

α=1
α ∈=i

αi,ασyα j,m (5.5)

Combining this relation with the incremental dissipation inequality of the ith
subsystem yields

Ṡi j,m ≥ − 1

γi
(σyi j,m )2 + σwi j,m σyi j,m + σyi j,m

n⎦

α=1
α ∈=i

αi,ασyα j,m (5.6)

Definition 3 (Interconnection matrix) For the vector of elements {γ} � [γ1 · · · γn]◦,
define the interconnection matrix A(γ) as
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A(γ) �

⎛

⎝⎝⎝⎝⎝⎝⎝⎞

− 1
γ1

α1,2 · · · α1,n−1 α1,n

α2,1 − 1
γ2

α2,3 · · · α2,n

α3,1 α3,2 − 1
γ3

. . .
...

...
. . .

. . .
. . . α4,n

αn,1 · · · αn,2 αn,n−1 − 1
γn

⎠



which is such that

n⎦

i=1

⎛

⎝⎝⎞− 1

γi
(σyi j,m )2 + σyi j,m

n⎦

α=1
α ∈=i

αi,ασyα j,m

⎠

 = 1

2
(σy j,m)◦(A(γ)◦ + A(γ))σy j,m

Lemma 1 For an interconnection matrix A(γ) as defined in Definition 3, there exist
diagonal matrices D > 0, D ∈ R

n×n, D = diag{d1, . . . , dn} and K ⊇ 0, K ∈ R
n×n,

K = diag{k1, . . . , kn} so that for all diagonal matrices K ∃ = diag{k∃
1, . . . , k∃

n} ∈
R

n×n which satisfy K ∃ ⊇ K , there exists εD,K > 0 which is such that

1

2

(
A(γ̃)◦ D + D A(γ̃)

) ≥ −εD,K In, γ̃ = {γ̃i }, γ̃i � γi

1 + k∃
iγi

(5.7)

Proof Since γ̃i = γi
1+k∃

i γi
and γ̃ = {γ̃i }, it follows that A(γ̃) = A(γ)− K ∃. To prove

the existence of a pair of matrices D > 0, K ⊇ 0, that satisfy (5.7), note that if D = In

then there always exists a set of elements k∃
i which are individually sufficiently large

in magnitude to make the diagonal elements of A(γ̃) negative and also sufficiently
large in magnitude to ensure that A(γ̃)◦ D + D A(γ̃) = A(γ̃)◦ + A(γ̃) < 0 by
diagonal dominance.1 Taking any such pair D, K which are such that

1

2

(
(A(γ) − K )◦D + D(A(γ) − K )

) ≥ −εD,K In

is satisfied with εD,K > 0, then since D(K ∃ − K ) ⊇ 0, it necessarily follows that
for any K ∃ ⊇ K

1

2

(
A(γ̃)◦ D + D A(γ̃)

) ≥ −εD,K In

This completes the proof.

Lemma 1 proves that the diagonal stability of interconnection matrices can always
be achieved by making their diagonal elements large in magnitude and negative in
size. The following theorem makes use of this result to quantify the shortage of

1 Note that the choice of matrix D = In is not unique and in most cases a matrix D can be constructed
to reduce the sizes of elements ki required to achieve negative definiteness of A(γ̃)◦ D + D A(γ̃).
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passivity of the network nodes from the degree of passivity of the individual nodal
subsystems.

Theorem 1 For a network of identical nodes that satisfy Assumption 1, there exist
diagonal matrices D > 0, D ∈ R

n×n, D = diag{d1, . . . , dn} and K ⊇ 0, K ∈ R
n×n,

K = diag{k1, . . . , kn} so that for the storage function S j,m = ⎥n
1=i di Si j,m each

network node is iOFP(−K ) and satisfies the incremental dissipation inequality

Ṡ j,m ≥ −εD,K (σy j,m)◦(σy j,m) + (σy j,m)◦D(Kσy j,m + σw j,m) (5.8)

where εD,K > 0 is such that

1

2

(
A(γ̃)◦ D + D A(γ̃)

) ≥ −εD,K In, γ̃ = {γ̃i }, γ̃i � γi

1 + kiγi
(5.9)

and where A(·) is as defined in Definition 3.

Proof The first step of the proof is to add and subtract to each dissipation inequality
(5.6) the term ki

(
σyi j,m

)2, with ki ⊇ 0, to obtain

Ṡi j,m ≥ − 1

γ̃i
(σyi j,m )2 + ki (σyi j,m )2 + σyi j,m

n⎦

α=1
α ∈=i

αi,ασyα j,m + σwi j,m σyi j,m

(5.10)
where

γ̃i = γi

1 + kiγi

Now, defining the incremental storage function S j,m(σx j,m) as the linear sum
S j,m = ⎥n

i=1 di Si j,m , its time derivative becomes

Ṡ j,m ≥
n⎦

i=1

di



⎜⎜− 1

γ̃i
(σyi j,m )2 + σyi j,m

n⎦

α=1
α ∈=i

αi,ασyα j,m + σwi j,m σyi j,m + ki

⎡
σyi j,m

⎢2



⎟⎟

= 1

2
(σy j,m)◦(A(γ̃)◦D + D A(γ̃))(σy j,m) +

n⎦

i=1

di

(
σwi j,m σyi j,m + ki

⎡
σyi j,m

⎢2
)

= 1

2
(σy j,m)◦(A(γ̃)◦D + D A(γ̃))(σy j,m) + (σy j,m)◦D(Kσy j,m + σw j,m)

where di > 0, ∞i , D = diag(d1, . . . , dn), and A(γ̃) is as defined in Definition 3 but
with the vector of elements γ̃ = {γ̃i }. The key step at this point is that, following
the definition of γ̃i , increasing ki sufficiently can make the quantity γ̃i positive if γi

is negative. In this way the subsystem i , which satisfies the incremental dissipation
inequality (5.10) becomes iOFP(−ki ).
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Moreover, if each ki is made sufficiently large, the values of γ̃i can be made small
enough so that a diagonal matrix D can be constructed which makes

1

2

(
A(γ̃)◦ D + D A(γ̃)

) ≥ −εD,K In (5.11)

for some εD,K > 0, as shown in Lemma 1. Therefore if quantities ki and di are
chosen so that (5.11) is satisfied then

Ṡ j,m ≥ −εD,K (σy j,m)◦(σy j,m) + (σy j,m)◦ D(Kσy j,m + σw j,m)

and the node is therefore iOFP(−K ) since a negative feedback of σw j,m =
−Kσy j,m would render the node iOSP. This completes the proof.

5.4.1 Network Coupling Topology

Now consider a network composed of N identical nodes, where each node is iOFP
(−K ) as shown in Theorem 1. Assume that the nodes are connected using their ith
subsystems through a weighted directed graph Gi (the graph can be different for
each i) and assume that the coupling structure is restricted to a linear, static input–
output interconnection, so that the ith subsystem on the jth node is coupled to the
i th subsystem on other nodes in the network through its inputs wi j and outputs yi j

using the Laplacian coupling matrix εi ∈ R
N×N , so that Wi = −εi Yi . The graph

Gi = {Ai ,Di } has the following definitions.

Definition 4 (Weighted Adjacency Matrix) A weighted adjacency matrix Ai ={
ρi j,l

}
, j, l = 1, . . . , N , Ai ∈ R

N×N , is a positive matrix where ρi j,l represents
the weight of the edge from node l to node j . It is assumed that the graph is simple,
i.e. ρi j,l ⊇ 0, ∞ j ∈= l and ρi j, j = 0, ∞ j, l.

Definition 5 (Degree Matrix) The degree matrix Di associated with the adjacency
matrix Ai is a diagonal matrix Di = diag{δi

j }, j = 1, . . . , N , Di ∈ R
N×N with

δi
j = ⎥N

l=1
l ∈= j

ρi j,l .

Definition 6 (Laplacian Matrix) The weighted Laplacian matrix εi ∈ R
N×N asso-

ciated with the adjacency matrix Ai is defined as εi = Di − Ai = {
εi j,l

}
for

j, l = 1, . . . , N and εi j, j = δi
j , ∞ j = 1, . . . , N and εi j,l = −ρi j,l , ∞ j ∈= l. The

matrix ε̃ is defined as
ε̃ � diag{ε1, . . . , εn}

The interconnection rule Wi = −εi Yi then corresponds to the linear consensus
protocol wi j = −⎥N

l=1 ρi j,l

(
yi j − yil

)
(see [14]). The following assumptions are

made on εi :
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• (A1) rank(εi ) = N − 1
• (A2) εi + ε T

i ⊇ 0
• (A3) εi 1N = ε T

i 1N = 0N

The conditions (A1)–(A3) characterize the coupling structure we consider here as
diffusive coupling [16]. Assumption (A1) holds provided that the graph is strongly
connected (see [14]). Assumption (A3) holds if the graph is balanced, i.e. if Ai 1N =
Ai◦1N (see [5]). Furthermore, this latter property implies (A2) (see [5], which uses
Gershgorin’s disk theorem to prove this fact). Note that these assumptions do not
imply that εi is symmetric which would be equivalent to assuming an undirected
graph. We denote by λki the kth eigenvalue of the symmetric part of the Laplacian
εi , which is given by 1

2 (εi + ε ◦
i ).

The eigenvalues λki are such that λ1i < λ2i ≥ · · · ≥ λNi . From (A2) it follows
that λki ⊇ 0 whilst from (A1) λ1i = 0. From (A3) λ1i = 0 corresponds to the
eigenvector 1N . The quantity λ2i has a special significance in graph theory and is
known as the algebraic connectivity. As will be shown in Theorem 2 this quantity is
a measure of the coupling strength of the network Laplacian εi .

To compare each nodal output with its average over all the N nodes outputs, the
projector matrix κ ∈ R

N×N , which is first defined in [21, 22]

κ � IN − 1

N
1N 1◦

N (5.12)

is employed. This projector measures the instantaneous difference between a signal
and its average over all nodes in the network, e.g. the j th element of κY1(t) mea-
sures the difference between output y1 j (t), j = 1, . . . , N and the average output
1
N

⎥N
j=1 y1 j (t). Note that the projector has the following properties from [21, 22]

• κ◦κ = κ

• κ = κ◦
• κ1N = 0N

We also define the matrix
κ̃r � Ir ∇ κ (5.13)

which will be used to measure consensus in the concatenated signal vectors
(for example the concatenated output vector Y ).

5.4.2 Main Result on Network Synchronization

Because the nodes are identical, the incremental storage function S j,m is such that,
given any two sets of initial conditions, inputs, states and outputs for any two nodes
j, m ∈ {1, . . . , N }, their corresponding trajectories satisfy an incremental dissipation
inequality of the form (5.8). Due to Assumption 1, the incremental storage function
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S j,m has the properties S j,m
(
σx j,m

)
> 0 ∞σx j,m ∈= 0n , S j,m(0n) = 0. As we have

seen in Theorem 1, Eq. (5.8) can be arrived at by a suitable choice of matrices D, K .
In Theorem 2 below, the following property will be used to deduce state synchro-

nization from output synchronization.

Definition 7 (Incremental zero-state detectability) A system of the form (5.1) is
incrementally zero-state detectable if, σu(t) = 0 and σy(t) = 0, ∞t , implies
limt≤∗ σx = 0r .

In the following theorem, the result on global asymptotic state synchronization
of network nodes is given.

Theorem 2 (Asymptotic State Synchronization) Consider a network of N identical
nodes satisfying Assumption 1, linearly coupled through the interconnection matri-
ces εi so that Wi = −εi Yi where matrices εi satisfy the assumptions (A1), (A2),
and (A3). Assume that each node is incrementally zero-state detectable as in Defi-
nition 7 and is iOFP(−K ) as shown in Theorem 1, so that for every pair of nodes
j, m ∈ {1, . . . , N } there exists a radially unbounded incremental storage function
S j,m satisfying (5.8). Assume also that the network satisfies the strong coupling
assumption L ⊇ K where L = diag{λ21, . . . ,λ2n }. Then, each bounded network
solution that exists for all t ⊇ 0 is such that ∞i = 1, . . . , n,∞ j, l = 1, . . . , N:
limt≤+∗

(
xi j (t) − xil (t)

) = 0 (global asymptotic synchronization). In addition to
global asymptotic synchronization, any bounded network solution is such that the
state solution of each node converges to the omega-limit set of the isolated node.

Proof Summing the storage functions S j,m given in (5.8) for all node pairs j, m and
then scaling by 1

2N gives the incremental storage function S(Xσ) = 1
2N

⎥N
j=1

⎥N
m=1

S j,m for the network. From (5.8), S obeys the dissipation inequality

Ṡ ≥ −εD,K (κ̃nY )◦(κ̃nY ) + (κ̃nY )◦(D ∇ IN )◦((K ∇ IN )κ̃nY + κ̃nW ) (5.14)

Using (A3) and the relation Wi = −εi Yi , we have κWi = −κεi Yi = −εiκYi

and therefore κ̃nW = −ε̃ κ̃nY , where ε̃ = diag{ε1, . . . , εn}. From this, (5.14)
becomes

Ṡ ≥ −εD,K (κ̃nY )◦(κ̃nY ) + (κ̃nY )◦(D ∇ IN )◦((K ∇ IN )κ̃nY − ε̃ κ̃nY ) (5.15)

From (A1)–(A3), κYi = Yi − ( 1
N 1◦

N Yi
)

1N = 0 iff Yi ∈ ker(εi ). Since ker(εi )

is of dimension one, it follows that

(κYi )
◦ εiκYi ⊇ λ2i (κYi )

◦ κYi (5.16)

Letting L = diag{λ21, . . . ,λ2n } and substituting (5.16) in (5.15) yields

Ṡ ≥ −εD,K (κ̃nY )◦(κ̃nY ) + (κ̃nY )◦(D(K − L) ∇ IN )◦κ̃nY
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Noting that the diagonal matrix D > 0, then if, ∞i λ2i

(
εis

)
> ki (strong coupling)

then K − L < 0. This gives the Lyapunov inequality

Ṡ ≥ −εD,K (κ̃nY )◦(κ̃nY ) (5.17)

If this inequality holds, then letting S0 = S(Xσ(0)), the initial value of the
incremental storage function for the whole network, we note that, since S ⊇ 0 and
Ṡ ≥ 0, the set M = {Xσ|S(Xσ) ≥ S0} is an invariant set with respect to the signal
Xσ. Note that M also contains the incremental origin Xσ = 0N Nns which is a strict
minimum of S(Xσ) since S(Xσ) > 0 for Xσ ∈= 0N Nns and S(0N Nns) = 0.

From (5.17), and using the LaSalle invariance principle, the incremental signal
Xσ will converge to the largest invariant subset of {Xσ ∈ R

N Nns |Ṡ(Xσ) = 0} as
t ≤ ∗. Due to (5.17), Ṡ(Xσ) = 0 only if κ̃nY = 0Nn . This implies asymptotic
output synchronization since ∞i and for any pair j, m ∈ {1, . . . , N }, limt≤∗(yi j (t)−
yim (t)) = 0. Furthermore, from the incremental zero-state detectability assumption,
the condition κ̃nY = 0Nn and the fact that there is no external input to the network
means that limt≤∗ Xσ = 0N Nns . This proves that each network solution that exists
for all t ⊇ 0 is, regardless of initial conditions, such that ∞i = 1, . . . , n,∞ j, m =
1, . . . , N : limt≤+∗

(
xi j (t) − xim (t)

) = 0.
Since ε 1N = 0, the effect of the coupling disappears when output synchrony

is reached and each node in the network is then effectively isolated. Therefore,
in addition to global asymptotic state synchronization, for any bounded network
solution, the solution of each node converges to the omega-limit set of an isolated
node. This completes the proof.

The preceding discussion has presented two main ideas, formalized in Theorems
1 and 2. In the Theorem 1 it was shown that any node of the form specified in
(1) (that is, any node composed of an interconnection of subsystems that obey an
iOFP property) is iOFP(−K ), where K ⊇ 0 is a diagonal matrix. In Theorem 2, it
is then shown that an iOFP(−K ) node can be made to synchronize by sufficiently
strong coupling, where the coupling strength is quantified by the eigenvalues of the
diagonal matrix L (which are the algebraic connectivities of Laplacians εi ). In effect,
the coupling acts as an incrementally stabilizing negative feedback that compensates
for any shortage of incremental passivity by the nodes.

Lemma 1 and Theorem 1 show that the network nodes are iOFP(−K ), K =
diag{k1, . . . , kn}, by demonstrating that, associated with any given K is another
matrix D > 0 such that A(γ̃)◦D + D A(γ̃) < 0 where

γ̃ = {γ̃i }, γ̃i = γi

1 + kiγi
(5.18)

If D = In the diagonal elements of A(γ̃)◦ + A(γ̃) equal − 2
γ̃i

. By sufficiently
increasing each ki , the diagonal elements of A(γ̃)◦ + A(γ̃) can therefore be made
negative and large enough for A(γ̃)◦ + A(γ̃) to become diagonally dominant and
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hence negative definite. However, the size of the eigenvalues of K required to achieve
diagonal dominance is usually conservatively high.

Moreover, it is important to note that, for a given interconnection matrix A(γ)

the diagonal matrices D and K that make each node iOFP (−K ) are not unique, and
there are, in fact, some choices that are ‘better’ than others in that some matrices D
can be used to make A◦(γ̃)D+ D A(γ̃) = (A(γ)−K )◦D+ D(A(γ)−K ) < 0 using
matrices K which are more sparse than others (by the sparsity of K we mean the
number of zeros on its diagonals). The sparser the matrix K , the fewer the coupling
connections that need to be made between the nodes since for every positive ki , λ2i

needs to also be positive to meet the synchronization condition of Theorem 2. If K is
a positive definite diagonal matrix then all subsystems need to be coupled in order to
meet the synchronization condition. This results in a conservative coupling structure.

For certain nodal structures it is possible to find conditions on the values of
the elements γ̃i such that A(γ̃)◦D + D A(γ̃) < 0 using matrices K that are only
positive semi-definite. For example the work in [12, 23] uses the results of [2] to
show that for nodes with a cyclic feedback structure there exists D > 0 such that
A(γ̃)◦D + D A(γ̃) < 0 if and only if the secant condition

γ̃1 · · · γ̃n < secn
⎡π

n

⎢

is satisfied. The value of each γ̃i can be made arbitrarily small (and positive) by
increasing ki . Therefore to construct a matrix D > 0 such that A(γ̃)◦ D+D A(γ̃) < 0,
it is sufficient to increase the values of the elements ki to the point where the secant
condition is met. In fact, as shown in [12, 23], if all elements γi are positive, the secant
condition can be met by making only a single element ki positive and sufficiently
large in magnitude.

5.4.3 Network of Repressilator Circuits

As an example demonstrating the methods presented in this chapter, we consider
the synchronization of a network of repressilator circuits, [8]. The repressilator is a
synthetic oscillating genetic circuit that was developed in Escherichia coli (E. coli),
and is composed of a cyclic network of three genes and their protein products, wherein
each protein inhibits the transcription of the next gene in the cycle. The circuit is
illustrated schematically in Fig. 5.2 and works in the following cyclic manner:

• The E. coli gene lacI expresses the protein LacI which inhibits transcription of the
gene tetR.

• The gene tetR expresses the protein TetR which inhibits transcription of the gene
cI.

• The gene cI expresses the protein CI which inhibits transcription of the gene lacI.
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cI lacI

tetR

CI LacI

TetR

Fig. 5.2 The repressilator genetic network

A dimensionless dynamical model of the repressilator is given in (5.19)–(5.24),
where states x1 j , x3 j , x5 j respectively represent concentrations of the mRNA tran-
scribed from lacI, tetR and cI and states x2 j , x4 j , x6 j respectively represent concen-
trations of the proteins LacI, TetR and CI (here, the subscript j is an index denoting
the particular repressilator circuit for the network analysis which is to follow).

ẋ1 j = − x1 j + g(x6 j ) (5.19)

ẋ2 j = − x2 j + x1 j (5.20)

ẋ3 j = − x3 j + g(x2 j ) (5.21)

ẋ4 j = − x4 j + x3 j (5.22)

ẋ5 j = − x5 j + g(x4 j ) (5.23)

ẋ6 j = − x6 j + x5 j (5.24)

where g(xi j ) =
{ 5

1+x2
i j

xi ⊇ 0

5 xi j ≥ 0
In [9] a modification to the repressilator circuit is proposed that enables the

coupling of the multiple such circuits for the purpose of building a synchronized
genetic clock. The authors propose the inclusion in the repressilator of an inter-
cellular communication mechanism found in the bacterium Vibrio fischeri. In this
mechanism, the protein LuxI is used to synthesize an autoinducer (AI) molecule
which diffuses through the cell membrane. The AI forms a complex with the protein
LuxR, which in turn activates the transcription of certain genes. The authors suggest
that this coupling mechanism be added to the repressilator circuit in E. coli in addi-
tion to an extra copy of the lacI gene so that the coupling functions as a feedback
loop in the following way
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cI lacI

tetR

CI LacI

TetR

lacI

LacI

luxI

LuxI

AI

LuxR

AI

Fig. 5.3 The repressilator genetic network modified with the coupling mechanism suggested in
[9]. The dashed box represents the cell membrane

• The LacI protein inhibits the transcription of gene luxI as it does tetR.
• The LuxR-AI complex induces the expression of the additional lacI gene.

The AI molecule forms the inter-cellular coupling signal for this network.
The authors of [9] decompose the concentration of AI into that inside and outside the
cell membrane. The authors further assume that the diffusion of AI into and out of the
cell is a relatively fast process, and therefore under a quasi-steady-state assumption
(as in [7]) and the additional assumption that AI does not degrade outside the cell,
it is possible to make the approximation that intra- and extra-cellular AI are of the
same concentration, which we denote by x9 j . The dimensionless dynamical model
of the coupled repressilator proposed in [9] therefore modifies (5.19) to

ẋ1 j = − x1 j + g(x6 j ) + f (x9 j ) f (x9 j ) =
{ x9 j

1+x9 j
x9 j ⊇ 0

0 x9 j < 0
(5.25)

and, for a network of N repressilators, [9] models the time evolution of x9 j by
(Fig. 5.3)

ẋ9 j = −x9 j + x4 j − 1

N
ρ9

N⎦

k=1

(x9 j − x9k ) (5.26)

For the purposes of this example, we shall slightly modify the model. In [9] it is
assumed that LuxI and TetR behave identically, which is why LuxI is represented
in (5.26) by x4 j . We relax this assumption and assume TetR and LuxI behave inde-
pendently, as do the concentrations of mRNA transcribed by tetR and luxI. The
concentration of mRNA transcribed by luxI and the concentration of LuxI protein
are denoted by x7 j and x8 j respectively. The revised coupled oscillator model that
we shall consider is then given by the following set of ODEs
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ẋ1 j = − x1 j + g(x6 j ) + f (x9 j ) (5.27)

ẋ2 j = − x2 j + x1 j (5.28)

ẋ3 j = − x3 j + g(x2 j ) (5.29)

ẋ4 j = − x4 j + x3 j (5.30)

ẋ5 j = − x5 j + g(x4 j ) (5.31)

ẋ6 j = − x6 j + x5 j (5.32)

ẋ7 j = − x7 j + g(x2 j ) (5.33)

ẋ8 j = − x8 j + x7 j (5.34)

ẋ9 j = − x9 j + x8 j − 1

N
ρ9

N⎦

k=1

(x9 j − x9k ) (5.35)

Here, ρ9 is a measure of coupling strength. The uncoupled (ρ9 = 0) model (5.27)–
(5.35) is illustrated in Fig. 5.4, where each block represents an incrementally passive
subsystem. For i = 1, . . . , 9 each subsystem Hi represents the dynamic block

ẋi j = −xi j + ei j , ei j = ui j + wi j

yi j = xi j

Each Hs
i represents the monotonically increasing static map

ys
i j

=
{−g(us

i j
), i = 2, 4, 6

f (us
i j
), i = 9

Inputs ui j to each dynamic block Hi are such that

ui j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yi−1 j , i = 2, 4, 6, 8
−ys

6 j
+ ys

9 j
, i = 1

−ys
i−1 j

, i = 3, 5

−ys
2 j

, i = 7

y8 j , i = 9

Inputs us
i j

to each static block Hs
i are such that

us
i j

=
{

yi−1 j , i = 2, 4, 6
−y9 j , i = 9

For blocks Hi the incremental storage function Si = 1
2σx2

i j,m
satisfies the incremental

dissipation inequality
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H1 H2 Hs
2

H3 H4 Hs
4 H5 H6 Hs

6

H7 H8 H9 Hs
9

Fig. 5.4 Block diagram representation of the uncoupled repressilator genetic circuit of the model
(5.27)–(5.35). Dashed lines represent inhibitory reactions

Ṡi = − 1

γi
(σyi j,m )2 + σyi j,m σei j,m

where γi = 1 for i = 1, . . . , 9. For blocks Hs
i the incremental storage function

Ss
i = 0 satisfies the incremental dissipation inequality

Ṡs
i ≥ − 1

γs
i
(σyi j,m )s2 + σys

i j,m
σyi j,m

where

γs
i =

{
supxi j ∈R −g∃(xi j ) i = 2, 4, 6

supxi j ∈R f ∃(xi j ) i = 9

Note that from the definitions of outputs yi j for this example, each node is incre-
mentally zero-state observable since for all i and any j, m |yi j − yim | = 0 ⇔
|xi j − xim | = 0. This implies the iZSD property required in Theorem 2 to deduce
asymptotic state synchronization from asymptotic output synchronization.

With the above definitions of the input–output relations between the different
blocks of Fig. 5.4, it is now possible to construct an incremental storage function
S(Xσ) for the incremental state vector Xσ. For the two sets I = {1, . . . , 9} and
Is = {2, 4, 6, 9} let

S(Xσ) = 1

2N

N⎦

j=1

N⎦

j=1

(
⎦

i∈I
di Si j,m +

⎦

i∈Is

ds
i Ss

i j,m

)

where di , ds
i > 0. Defining

Y = ⎣
Y ◦

1 Y ◦
2 Y s◦

2 Y ◦
3 Y ◦

4 Y s◦
4 Y ◦

5 Y ◦
6 Y s◦

6 Y ◦
7 Y ◦

8 Y ◦
9 Y s◦

9

⎤◦

where Y s
i = ⎣

ys
i1

· · · ys
iN

⎤◦
and defining

K = diag{k1, k2, ks
2, k3, k4, ks

4, k5, k6, ks
6, k7, k8, k9, ks

9}
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where {
ki = 0 i = 1, . . . , 8
ki > 0 i = 9

and ks
i = 0, i ∈ Is (5.36)

we then have the incremental dissipation inequality

Ṡ ≥ Y ◦κ̃◦
n ((A(γ)◦D + D A(γ)) ∇ IN )κ̃nY + W ◦

9 κ◦κY9

≥ Y ◦κ̃◦
n ((A(γ̃)◦D + D A(γ̃)) ∇ IN )κ̃nY + k9Y ◦

9 κ◦κY9 + W ◦
9 κ◦κY9

(5.37)

with D = diag{d1, d2, ds
2, d3, d4, ds

4, d5, d6, ds
6, d7, d8, d9, ds

9} and the interconnec-
tion matrix

A(γ̃) =

⎛

⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎞

− 1
γ̃1

0 0 0 0 0 0 0 −1 0 0 0 1

1 − 1
γ̃2

0 0 0 0 0 0 0 0 0 0 0

0 1 − 1
γ̃s

2
0 0 0 0 0 0 0 0 0 0

0 0 −1 − 1
γ̃3

0 0 0 0 0 0 0 0 0

0 0 0 1 − 1
γ̃4

0 0 0 0 0 0 0 0

0 0 0 0 1 − 1
γ̃s

4
0 0 0 0 0 0 0

0 0 0 0 0 −1 − 1
γ̃5

0 0 0 0 0 0

0 0 0 0 0 0 1 − 1
γ̃6

0 0 0 0 0

0 0 0 0 0 0 0 1 − 1
γ̃s

6
0 0 0 0

0 0 −1 0 0 0 0 0 0 − 1
γ̃7

0 0 0

0 0 0 0 0 0 0 0 0 1 − 1
γ̃8

0 0

0 0 0 0 0 0 0 0 0 0 1 − 1
γ̃9

0

0 0 0 0 0 0 0 0 0 0 0 1 − 1
γ̃s

9

⎠



(5.38)

where

γ̃i = γi

1 + kiγi
and γ̃i

s = γs
i

1 + ks
i γ

s
i

and where the interconnection matrix A(γ) is of the same structure as A(γ̃) but with
γ̃i , γ̃

s
i replaced with γi , γ

s
i .

Theorem 1 shows that there always exists a matrix K ⊇ 0 such that (5.37) is
iOSP(−K ). However in the case of this network the only state directly coupled to
others in the network is the state x9 j , and therefore the coupling can only compensate
for a shortage of incremental passivity as in Theorem 2 if K is limited to the form
(5.36) since the matrix L in Theorem 2 is constrained by the coupling to the structure

{
λ2i = 0 i = 1, . . . , 8
λ2i > 0 i = 9

and λs
2i

= 0, i ∈ Is
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In other words, with this incremental output passification method, it will only be
possible to prove asymptotic global state synchronization under strong coupling if
decreasing γ̃9 by increasing k9 is sufficient to guarantee that there exists D > 0 such
that A(γ̃)◦D + D A(γ̃i ) < −εD,K In for some εD,K > 0.

To see if this is possible, first note the branched structure of the block diagram
shown in Fig. 5.4. A similar branched structure was analyzed in [20], which derived
a necessary and sufficient condition on the quantities γ̃i and γ̃s

i for the diagonal
stability of the interconnection matrix associated with the branched structure in that
reference. The nodal structure in Fig. 5.4 is different to that in [20]. However, similar
arguments to those in [20] can be used to derive at least a necessary condition for the
diagonal stability of A(γ̃) in (5.38). The main idea in [20] concerning such structures
is that a necessary condition for the diagonal stability of A(γ̃) is that all its principal
submatrices are also diagonally stable [3]. For A(γ̃), consider the principal submatrix
obtained by deleting the 10th–13th rows and columns and the principal submatrix
obtained by deleting the 4th–9th rows and columns. These are

A(γ̃)(10−13) =

⎛

⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎞

− 1
γ̃1

0 0 0 0 0 0 0 −1

1 − 1
γ̃2

0 0 0 0 0 0 0

0 1 − 1
γ̃s

2
0 0 0 0 0 0

0 0 −1 − 1
γ̃3

0 0 0 0 0

0 0 0 1 − 1
γ̃4

0 0 0 0

0 0 0 0 1 − 1
γ̃s

4
0 0 0

0 0 0 0 0 −1 − 1
γ̃5

0 0

0 0 0 0 0 0 1 − 1
γ̃6

0

0 0 0 0 0 0 0 1 − 1
γ̃s

6

⎠



and

A(γ̃)(4−9) =

⎛

⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎞

− 1
γ̃1

0 0 0 0 0 1

1 − 1
γ̃2

0 0 0 0 0

0 1 − 1
γ̃s

2
0 0 0 0

0 0 −1 − 1
γ̃7

0 0 0

0 0 0 1 − 1
γ̃8

0 0

0 0 0 0 1 − 1
γ̃9

0

0 0 0 0 0 1 − 1
γ̃s

9

⎠



These two principal submatrices exhibit a cyclic feedback structure (with negative
feedback). As discussed above, the stability of systems with this structure was studied
in [2], where it was shown that the matrix such as A(γ̃)(10−13) is diagonally stable
if and only if

γ̃1γ̃2γ̃
s
2γ̃3γ̃4γ̃

s
4γ̃5γ̃6γ̃

s
6 < sec9

⎡π

9

⎢
(5.39)
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whilst A(γ̃)(4−9) is diagonally stable if and only if

γ̃1γ̃2γ̃
s
2γ̃7γ̃8γ̃9γ̃

s
9 < sec7

⎡π

7

⎢
(5.40)

Since γ̃9 appears in (5.40) only, these two necessary conditions can only be met by
strengthening the coupling if (5.39) is satisfied a priori.

If it were possible to modify the repressilator circuit so that the coupling state
is x1 j or x2 j it could then be possible to diagonally stabilize A(γ̃) by reducing the
incremental secant gains γ̃1, γ̃2 or γ̃s

2 by increasing k1, k2, ks
2 and then compensat-

ing for the shortage of incremental passivity with strong coupling. This is because
the quantities γ̃1, γ̃2, γ̃s

2 appear in both (5.39) and (5.40), and these two necessary
conditions can therefore be satisfied under such a change. To see this, we propose
a modification to the repressilator model wherein lacI is replaced with a different
gene, the protein product of which behaves as LacI in inhibiting the transcription of
luxI and tetR, but with the difference that the new protein product is also a coupling
signal in the same manner as AI. Equation (5.28) is then modified to

ẋ2 j = −x2 j + x1 j − 1

N
ρ2

N⎦

k=1

(x2 j − x2k ) (5.41)

For this example, we consider a network of N = 4 nodes of the form (5.27)–(5.35) but
with (5.28) replaced with (5.41). The incremental secant gains γi can be calculated
from the model to be as follows:

γi = 1, for i = 1, . . . , 9 γs
i = 3.25, for i = 2, 4, 6 γs

9 = 1

Since the coupling is only through the states x2 j and x9 j , strong coupling can incre-
mentally passify the network nodes only if K = diag{0, k2, 0, . . . , 0, k9} as L would
have the same structure as K .

We set k2 = 12 and k9 = 0, which makes γ̃2 = 0.04 and γ̃9 = γ9 = 1. Otherwise,
ki = ks

i = 0, which leaves γ̃i = γi ,∞i ∈= 2 and γ̃s
i = γs

i for i = 2, 4, 6, 9. Without
a sufficient condition on the gains γ̃i that guarantees the diagonal stability of A(γ̃),
it is nevertheless possible to use an LMI solver to find a matrix D > 0 such that
A(γ̃)◦D + D A(γ̃) < 0. One possible matrix D is given by

D = diag{1, 17, 208, 53, 57, 19, 7, 7, 3, 17, 18, 19, 26} (5.42)

which is such that A(γ̃)◦ D + D A(γ̃) < −0.0014In and therefore S(Xσ) satisfies
the incremental dissipation inequality

Ṡ ≥ (κ̃nY )◦((A(γ̃)◦ D + D A(γ̃)) ∇ IN )κ̃nY + k2Y ◦
2 κ◦κY2 + W ◦

2 κ◦κY2

≥ −0.0072(κ̃nY )◦κ̃nY + k2Y ◦
2 κ◦κY2 + W ◦

2 κ◦κY2 (5.43)
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Fig. 5.5 Synchronization of four repressilator circuits. Left Synchronization of output y2 j . Right
Synchronization error of output y2 j

The coupling is given by the relation W2 = −ε2Y2 where, from (5.41), ε2 has
the all-to-all structure

ε2 = ρ2

(
IN − 1

N
1N×N

)

and λ22 = ρ2. From Theorem 2, we require λ22 ⊇ k2 to guarantee synchronization.
This condition therefore requires ρ2 > 12. The simulation in Fig. 5.5 shows the

synchronization of the output y2 j across the network nodes as well as the asymptotic
stability of the synchronization error in the output y2 j under this coupling. Note that
this figure also demonstrates the synchronization of state x2 j since y2 j = x2 j .

5.5 Discussion

This chapter has presented a constructive approach to finding sufficient conditions for
global asymptotic state synchronization in networks of identical nodes. The principal
assumptions are that each node is composed of iOFP subsystems, and that these
subsystems are directly coupled to their corresponding subsystems on other nodes
in the network using linear static coupling.

By taking advantage of the iOFP property, it was possible to quantify the degree
of the shortage of incremental passivity of each node (Theorem 1). In Theorem 2 it
was shown that the nodal coupling can act as a passifying feedback and the degree of
shortage of passivity was used to determine a lower bound on the minimum coupling
strength required to render each node iOSP and hence guarantee asymptotic output
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synchronization. With an additional iZSD assumption, this also implied asymptotic
state synchronization. These two theorems demonstrated that for arbitrary nodal
structures satisfying Assumption 1, it is always possible to characterize the shortage
of passivity and it is always possible to find a strong enough coupling topology that
can eliminate this shortage and thus achieve asymptotic state synchronization.

Inequalities such as (5.4) is an incremental dissipation inequality that can be

used to represent general (iOFP
⎡

1
γi

⎢
) subsystems. Therefore if a given network

satisfies our sufficient conditions for synchrony and if we were to replace the i th
subsystem of each node in the network with another subsystem that has a shortage of
passivity that is equal to or less than that of the original subsystem, the network with
the new subsystem would also synchronize. This ability to modify the parameters,
and indeed the structure, of the network subsystems and yet maintain synchrony
lends a significant degree of robustness to the results we have presented. In the
applied setting of synchronizing biochemical reaction networks such as [10], where
biological parameters typically vary significantly, placing a biologically plausible
upper bound on the quantity γi would allow us to analyze synchrony in such a system
in a way that is robust to such parametric variations. Furthermore, the proposed
methodology can also have implications for the design of synthetic circuits that
synchronize upon interconnection because it can yield insight into the what system
outputs could serve as network coupling signals that lead to incremental stability.
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Chapter 6
Robustness Model Validation of Bistability
in Biomolecular Systems

Luca Salerno, Carlo Cosentino, Alessio Merola, Declan G. Bates
and Francesco Amato

Abstract Bistability is a key system-level dynamical property to understand the
basic mechanisms underpinning some cellular functions, like persistent memory,
switch-like biochemical responses and irreversible cell differentiation. These
processes are guaranteed by evolved molecular modules, involving genes, proteins
and metabolites, which implement transitions between distinct operative conditions
in response to exogenous and endogenous signals. In many cases, such a coordi-
nated control action leads to a change in the dynamic behaviour of the cell, which
persists even after the activating signal (e.g., the concentration of a certain molecular
species) has returned to the initial concentration. A propaedeutical step to the con-
struction of biomodels for this class of systems, is the analysis of the structure of the
underlying biochemical reaction network; in particular, a necessary requirement is
that the topology of this network is compatible with the assumed bistable behaviour.
Subsequently, one can face the question of whether the same performance is guaran-
teed even in the presence of endogenous and exogenous perturbations, i.e., whether
the model is robustly bistable in the face of, e.g., parametric uncertainty (deriving
from interindividual variability) or fluctuating environmental conditions (due to the
intrinsic stochastic nature of cellular processes). The present chapter focusses on the
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presentation of methodological approaches for the characterization of bistability in
biological systems; such methods are important as tools to assess the plausibility
of mathematical models of biosystems that exhibit bimodal experimental behaviour,
without recurring to large-scale computational simulations.

Keywords Bistability ·Robustness analysis ·Domain of attraction ·Local sensitivity ·
Bifurcation ·Global sensitivity ·Multistable dynamics ·Pathway ·Regulatory network ·
Molecular switches · Escherichia coli (E. coli)

6.1 Introduction

Many biological systems have been experimentally verified to be robust with respect
to significant variations of the environmental conditions. Accordingly, one would
expect such robustness to be exhibited by the corresponding mathematical mod-
els in order for the latter to be considered plausible. Model robustness entails that
the qualitative behaviour of the system is insensitive, to a certain extent, to para-
metric variations. In the biological context, robustness is essential to guarantee that
the specific signaling, metabolic and regulatory tasks are accomplished, despite the
significant inter-individual variability of kinetic parameters and molecular species
concentrations. In this chapter, we outline a procedure, based on control theoretical
results and convex optimization tools, to characterize bistable biomolecular circuits
in terms of robustness and domains of attraction (DA) of the equilibrium points.
The proposed procedure can then be applied to test the plausibility of biological
models in terms of their capability to robustly reproduce bistable dynamics. There-
fore, this approach provides a suitable and effective tool for tackling the problem of
validation/invalidation of models of biomolecular regulatory networks.

6.2 Bistable Dynamics in Biological Systems

The mechanisms through which cells commit to a certain fate, alternate between
different physiological modes or implement persistent cellular memory are, essen-
tially, guaranteed by simple key modules of interactions, which form the core of
multistability and are widely present in genetic, metabolic and signaling networks,
both in prokaryotic, [5, 25, 51, 60, 68] and eukaryotic organisms [6, 7, 12, 57, 72].

The term bistability appears as early as 1948, when Delbrück proposed the idea of
bistability as a general principle to explain how discontinuous transitions between two
stable states occur in biochemical reaction systems [23]. A few years later, Wadding-
ton developed the idea of epigenetic landscape as a metaphor to illustrate how gene
regulatory mechanisms modulate cellular development [69]. During the same period,
Novick and Weiner showed the occurrence of all-or-none transitions between dif-
ferent cellular states in Escherichia coli, depending on the lactose metabolism, and
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that such states can be preserved across different generations even after removal of
the chemical inducer and genomic mutation [56]. In 1961, Monod and Jacob pro-
posed a bistable gene regulatory circuit in order to explain cell differentiation [53],
originating the idea that control of intracellular enzyme levels occurs through
transcriptional feedback. Another key contribution to the topic of bistability in
biology is provided by Thomas [64]: he showed that a necessary condition for the
existence of multistable dynamics and, consequently, a switch-like behavior is the
presence of a positive feedback loop. Notwithstanding these early contributions on
the topic, only recently the concept of bistability as a key property of mathematical
biomodels is receiving a significant attention in the field of molecular developmental
biology.

In what follows, we review some biological examples of molecular switches and
report the necessary conditions that must be satisfied by a regulatory network to be
compatible with bistability.These conditions provide a simple and effective method
for testing the structural bistability of a biological network, based on the analysis of
its topology.

6.2.1 Cellular Switches

In all living organisms, the key components of life, i.e. genes, proteins and
metabolites, are highly interconnected in evolved coordinated molecular modules.
These control modules govern the changes in the dynamical behaviour of the cell, like
irreversible differentiation or reversible phenotypic alteration. When the outcome of
these changes persists even after the activation signal has returned to pre-stimulus
levels, the system implements a molecular switch. The control mechanisms imple-
menting molecular switching are inherently non-linear, indeed a key feature of this
class of systems is the presence of multiple equilibrium points.

Some examples of regulatory molecular switches concern prokaryotic and
eukaryotic organisms. In prokaryotic cells, genes involved in a specific biological
process are expressed in a coordinated manner from a single promoter in a natural
logic module, called operon. The lac operon in E. coli, a well-investigated prokary-
otic system [41, 52], consists of three genes (lacZ, lacY, and lacA) involved in the
metabolism and absorption of the disaccharide lactose. In particular, in the absence
of lactose, a repressor protein binds to the operator, inhibiting the transcription of
the lac operon genes (in this case the operon is in “off” state). When the inducer,
lactose, is added, it binds to the repressor and changes the structure of the repressor,
unbinding to the operator. While the operator remains free of the repressor, RNA
polymerase recognizes the promoter and promotes the transcription of the operon
structural genes into mRNA, (the operon is “on”). This makes the lac operon a classic
example of a genetic switch relying on autocatalytic feedback [61].

In eukaryotic organisms, cellular switches characterize the mechanisms by which
a cell determines own cell fate [31, 32, 48, 73]. A typical cellular switch is involved
in Xenopus, where fully grown oocytes may persist in an immature state, or, in
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response to the steroid hormone progesterone, can be induced to differentiate into
fertilizable oocytes, (this process is called oocyte maturation). The oocyte mat-
uration is triggered by a protein kinase cascade (defined the Mos-Mek-MAPK
cascade), which is activated just by the hormone progesterone. This biological system
provides an interesting example of how signaling cascades leading the cell into the
cell cycle, depending on the environmental changes, showing a bistable behavior.
More precisely, for low concentrations of the hormone progesterone, the oocytes did
not maturate, whereas for high concentrations, the majority of oocytes can maturate
[31]. It is interesting to note also that, after the removal of progesterone, mature
oocytes did not de-mature, demonstrating the irreversible nature of this process [73].
In Saccharomyces cerevisiæ, one of the most extensively studied genetic switch is
that implemented by the regulatory network of the galactose metabolic pathway:
S. cerevisiæ normally uses glucose as the carbon and energy source. However, in
the absence of glucose, it can metabolize galactose as an alternative source, through
Leloir metabolic pathway [14]. Such pathway is regulated by a set of enzymes,
commonly referred to as the GAL system, whose molecular interactions have been
thoroughly dissected in the last years through the classical reductionist molecular
biology experimental approach.

6.2.2 Modeling of Bistability

The identification of the components for a regulatory network, as transcription factors
and other molecular regulators, plays a very important role in the analysis and under-
standing of the mechanisms controlling biological state transitions. While many of
the biological regulatory mechanisms have already been investigated, many other
systems remain still to be identified. To analyze theoretically the transitions from
one cellular state to another, it needs to have a specific mathematical framework
that describes, in a formal way, the structural relationships between the components
involved in the control mechanism [9, 55], and that allows us to quantify the dynam-
ical behavior of the system, given a certain structure of the network [3, 34, 39]. In
this context, the theory of dynamical systems and non-linear dynamics [63] offers
a powerful tool for the description and analysis of the phenomenon of switching in
biological processes. Mathematically, the basic idea of this method is to represent
each different cellular state as an attractor of dynamical systems. The existence of
these attractors, and accordingly, the possibility that cells can toggle between an
attractor (a specified functional state of the cell, e.g. undifferentiated cell) and the
other (e.g., differentiated cell) and, potentially, proceed backwards (in this case may
occur hysteresis phenomenon, often associated with the exhibition of the bistabil-
ity) depends on the network structure. More precisely, the existence of attractors
depends on several factors, such as the structure of the network (as the form of the
interactions between the connected elements), the dynamical characterization of the
network (such as the parameter related to these interactions), the particular state at
which the cell is located (e.g., the actual expression profile of their genes, or the con-
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centrations of proteins and metabolites) and, finally, any disturbances on the system
(such as perturbations in the cellular environment).

The ability to ensure the efficient operative conditions of the biological
mechanisms, even in the face of continued internal or external uncertainty (e.g.,
molecular noise, fluctuations, changes in the cellular environment), leads to the
hypothesis that in biological systems there is a considerable presence of feedback
mechanisms that govern regulatory and decision-making processes, [21]. Indeed,
in the last decade, the literature has decisively pointed to highlight the ubiquity of
feedback control in biomolecular systems, [13, 24, 33].

Thus, the switching phenomena can arise, in principle, in the presence of a positive
feedback in the cascade of signals that involve. The positive feedback loop can be
implemented in a double positive form with two components mutually activation. A
positive feedback may also be implemented in the form of a double negative feedback
with two mutually inhibitory components, which acts as a switch, fostering a cell
to alternate between two alternative states [10, 32, 34]. The positive feedback loop
is one common module in establishing bistable motifs, focusing on the behavior
of the component parts (genes or proteins). Over the past decade, the study on the
transcriptional regulatory networks of the bacterium E. coli [59] and the simple
organism S. cerevisiæ [49] revealed a core of recurring regulatory modules, each with
a characteristic structure and the ability to perform specific functions of biological
processing [3, 12, 65].

To characterize the dynamics of these structures, a parameter evaluation must
be performed, to check bistability-exhibiting parameter space more thoroughly.
This leads to one of the main problems in modeling the biological systems, namely,
determining the parameter set for which a given structure, in its interaction collec-
tivity, produces a specific physiological function or a particular phenotype. Theoret-
ically, one would to measure each parameter individually, but this task becomes very
difficult in the analysis of complex networks whose dynamics, subjected often to
different operating conditions, are performed by many parameters. Supporting this
issue, there are no general methods, but different mathematical approaches have been
proposed that allow the determination of the occurrence of bistability in a network
of biochemical reactions.

6.2.2.1 The Chemical Reaction Network Theory

Given a certain reaction network, the capability of the system to admits two or
more attractors is tied by the mathematical form of the related reaction rate system
and by the values of the kinetic parameters. In general, it is very hard to infer any
conclusion without restricting the scope of the analysis to a more specific class
of system. The characterization of steady state attractors of mass-action systems
can be dealt with a powerful analysis tool, Chemical Reaction Network Theory
(CRNT) [28, 29]. CRNT joins the structure of a biochemical network, endowed by
applying the principle of mass-action, to the capability of the network to engender
multiple positive steady-states. The huge potential of this method is that it provides



146 L. Salerno et al.

an immediate way to analyze the type of dynamical behavior that one can expect
from an arbitrarily complex reaction network, just by inspection of the topology
of the associated graph. More specifically, this theory allows us to establish the
conditions for the existence, multiplicity and stability of attractors for the associated
ordinary differential equations (ODE) system, without the need to know a priori
the reaction rate equations nor to choose precise values for the kinetic parameters. A
given network is associated with a non-negative integer called deficiency [27, 38], that
is not dependent on the values assigned to the parameters, but only on the underlying
network of reactions. The development of the theory, in its completeness, is based on
the assumption that behind the nonlinearity of systems endowed with mass-action
kinetics, there exists considerable degree of hidden linearity. This feature allows
to bring the dynamical properties in more simple qualitative behaviors, making the
CRNT specifically suitable in the multistability analysis of the biomolecular systems,
whose parameters are often unknown or subject to significant variability among
different individuals.

However, for more accurate treatment of the CRNT, the interested reader is
referred to the original articles [28, 29], or to [21] for an introductory overview
of the main results. Despite the complexity of its theoretical foundations, the algo-
rithm is coded in the CRNT Toolbox.1 The CRNT toolbox indicates either that the
associated dynamical system admits multiple positive steady states for some values
of the kinetic parameters, or else that no such combination of the parameter values
exists. In the affirmative case, the algorithm will also provide a set of values of the
kinetic parameters for which the system is multistable.

6.3 Robustness Analysis of Bistable Biomolecular Systems

The idea of robustness refers to a characteristic of complex biological systems that
evolve in an environment constantly changing and unpredictable. This characteristic
is a property of the system, which cannot be understood looking at the level of
individual components, and is ubiquitous in living organisms. It should be pointed
out that robustness does not coincide with the stability or homeostasis concepts;
robustness is associated with the preservation of a certain function of the system,
rather than the state of the system. More precisely, the robustness, intended as the
capability of a system to maintain its functionality through flexible changes at the
structural level or in their operating conditions, despite environmental or internal
perturbations (tolerance to stochastic fluctuations, noise, mutations), is one of the
fundamental aspects in the analysis of cellular systems [62]. Following the occurrence
of a perturbation, the system can return in the current steady state (attractor), this
case is defined robust adaptation, or move to a new steady state which maintains the
same functionality [44]. In the analysis of biological bistable systems, the property

1 The CRNT algorithm is implemented in the CRNT toolbox, available at http://www.che.eng.ohio-
state.edu/~feinberg/crnt/.

http://www.che.eng.ohio-state.edu/~feinberg/crnt/
http://www.che.eng.ohio-state.edu/~feinberg/crnt/
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that must be preserved corresponds to the bistable qualitative dynamics, which, in
this case, can be defined also robust if both the number and the type of attractors and
both the connectivity and the shape of the trajectories remain the same, even in the
presence of internal/external perturbations.

The robustness in biological systems is often ensured by the high degree of com-
plexity that involves control mechanisms (feedback), modularity, and fail-safe mech-
anisms (redundancy and diversity). The control mechanisms, by means of feedback
loops promote the adaptation of the system by modulating the intensity of the stim-
ulus; the modularity is the mechanism to contain the perturbations and damages to
a local level, globally minimizing their effects by means of a hierarchical organi-
zation; finally, the fail-safe (or “backup”) mechanisms provide an increase of the
robustness due to the presence of different mechanisms coupled to control systems
to perform the same function. In particular, the redundant mechanisms correspond to
numerous identical or similar elements (modules) that are replaced each other when
one fails, while the diversity ensures that the same function is achieved in different
ways, through a set of heterogeneous elements (e.g., phenotypic plasticity), [44].

It is possible to specify the robustness measure in different types, depending on
variations related to the state variables, or to the parameter space. These perturba-
tions cause consequences that have implications both by a mathematical that biolog-
ical point of view. To get an estimation of the robustness associated with the state
variables, one considers the robustness closely related to the initial condition from
which a trajectory starts in the state space. Moreover, even further state constraints,
for example related to the species conservation, can occur. Namely, an enzyme does
not undergo net changes in its concentration in any reaction that catalyses it. If it
is not synthesized or degraded, then its total concentration remains constant over
time. Similarly, if a substrate is bound in different complexes or modifications, for
example, multi-site phosphorylation, and it is not further synthesized or degraded,
its total concentration remains constant. In the case k linear independent state con-
straints are present (note that, with respect to the states, these constraints can be also
nonlinear), the dynamics is limited in a subspace of dimension n′ = n − k, where n
is the size of the state space. Then, the state space is partitioned in different slices of
dimension n′, corresponding to a given set of constraint conditions, Fig. 6.1. Within
each section, the dynamics keeps certain properties, with attractors, DA and stability
in function of a state space of dimension n′ (not n). However, its characteristic can
be qualitatively modified if different constraints are considered. Therefore, also the
space of these constraints is divided into regions, within each of which the dynamics
of the slices corresponding remain qualitatively similar. Mathematically, the para-
meters and constraints with respect to the initial conditions have different behaviour.
The parameters, that identify the dynamics, can be chosen independently from the
initial conditions, while the state constraints, that limit the dynamics of the system,
no. In summary, the robustness with respect to variations in the constrained states can
take two forms. If the variations concern only the initial conditions and the constraint
conditions are considered fixed, then it can confirm the stability of the attractor and
the size and shape of its DA in the state space (with respect to the state space of actual
dimension d) provide a measure of it. Instead, if the constraint conditions are varied,
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Fig. 6.1 Abstract space representation of biological system suspected for bistability. The dynamical
behavior of the system is characterized by a preassigned set of values in the parameter space, for
which the system admits two stable attractors in the state space. For ODE models, these space can
be opportunely represented in high-dimensional Euclidean space but, often, biological models are
also defined by infinite dimensional or nonlinear space structure. Moreover, the presence of state
constraints divides the state space in different slices, each of which, is related to a particular choice
of these constraints. Given a particular point in the parametric space, starting from a given initial
condition, within a slice in the state space, the system trajectories remain in the same slice during the
evolution. For a bistable systems, this slice is characterized by the presence of two stable attractors,
to one of which the trajectory can converge. The figure is readapted from [36]

then the robustness goes beyond the concept of stability and the size and shape of
the appropriate region in constraint space become very relevant, [36].

Looking at the the robustness with respect to parametric variations, the biological
interpretation of the changes in the parameter values depends both on the model and
the nature of its parameters. The real parameters may be different from those used
in the model (nominal parameters) due to slight variations over time, difficulties in
the identification of the real values, changes in operating conditions (also defined as
structured uncertainty), or dynamics (typically too fast) can often have been neglected
in the derivation of the model, which are not considered (also referred to as unstruc-
tured uncertainty). To clarify the meaning of the parametric uncertainty in terms
of robustness, consider an ODE model derived from the description of a network of
biochemical reactions by means of the mass-action principle. In this case, the parame-
ters correspond to rate constants of various nature: association and dissociation rates,
constant degradation, and so on. However, the biological process can be described



6 Robustness Model Validation of Bistability in Biomolecular Systems 149

according to different kinetics. The processing of information through cellular sig-
nalling cascades may occur over a wide range of time scales (e.g., fast ligand-receptor
dynamics versus the much slower response of gene expression changes), thus, the
separation of time scales is often very convenient to reduce the complexity. Similarly,
models of allosteric enzymes [54] or the rate functions of gene expression in terms of
association constants of the transcription factor [2] are based on Hill-functions. On a
physiological time scale, the concentration is derived from equilibrium between syn-
thesis and degradation and could easily vary from cell to cell within a single organism,
tissue, or through clonal population of differences related to cell volume, of intrinsic
noise transcription/translation, and stochastic subdivisions of molecules during cell
division. These factors may also play a remarkable role during the evolution. Differ-
ent methodologies to measure the robustness related to parametric variations have
been proposed, such as single parameter robustness for dynamical attractors [50],
robustness with respect to random multiparametric variations [15, 50], and robustness
measures based on Monte-Carlo techniques, to estimate the robustness of bistability
in the process of apoptosis [26]. However, the problem to consider high-dimensional
systems makes very difficult to establish a theory for the measure of robustness
in biological systems [45]. In this section we propose an overview of the existing
methods for the analysis of the robustness in the systems biology field, compared to
uncertainties of various nature, related to the states and parameters, which allow us
to sketch a suitable framework for the robustness analysis of bistable systems.

6.3.1 Robustness Measure to Initial Conditions

In order to characterize the behavior of a bistable system (either in the engineering or
biological field), it is possible to study the robustness of this property by estimating
the DA of the two asymptotically stable equilibrium points. In general, the DA can
be defined as the set of points, including the equilibrium point, such that every state
trajectory starting in this set converges to that equilibrium point [43]. An accurate esti-
mation of the DA extent and shape provides valuable information in terms of robust-
ness about the ability of a bistable system to adapt to exogenous perturbations without
switching to the different operative condition (i.e., a different biological state).

A Simple Bistable Switch. A useful example to show what information can
be inferred by estimating the DA in a bistable biomolecular system is the gene
autoregulation motif. A mathematical representation of gene expression with
autoregulation [42] is described by the following
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Fig. 6.2 a Points of intersection of the x1- and x2-nullclines (pink and orange line, respectively)
represent the steady states of the system (6.1a, 6.1b). b The system trajectories on the (x1; x2)

phase plane converge to two attractors; the filled circles are the stable attractors, the empty one
is the unstable equilibrium point. Arrows and blue lines show convergence of trajectories towards
the stable steady states and away from the unstable steady state. The green dashed line, crossing
the unstable steady state, represents locus of the unstable points, dividing the phase plane into the
domains of attraction of the two stable equilibrium points

ẋ1 = k0 + k1
x2

n

kd1
n + x2

n
− μ1x1 (6.1a)

ẋ2 = k4x1 − μ2x2 (6.1b)

where, ẋ1 and ẋ2 are the rate functions for the concentration of mRNA and
protein, respectively, μ1 and μ2 are the decay rate of the mRNA and protein,
k0, the basal transcription rate constant, k1 and k4, the synthesis rate of mRNA
and protein, respectively, kd1, the effective affinity constant for protein x2, and
n, the Hill coefficient for gene activation. In this bistable system there are two
stable and an unstable attractor; each trajectory starting from different initial
conditions may converge to one of the two stable equilibria, each of which is
characterized by its DA. Thus, the state space is divided into these particular
regions (see Fig. 6.2).
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6.3.1.1 Estimation of the DA for Nonlinear Quadratic Systems

The exact estimation of dimensions and shape of the DA for a generic nonlinear sys-
tem is usually a very hard problem to solve, especially for systems of medium/high
order. The problem of determining the DA of the equilibrium points for uncertain
polynomial systems has now been studied for a long time and several methods,
based on Lyapunov functions, have been proposed, [35, 67]. More recently, Chesi
has directed his attention to a novel convex optimization method, through poly-
nomial relaxations based on Sum of Squares (SOS programming). In [17, 18], the
author deals with the problem by means of Lyapunov and convex optimization meth-
ods: polynomial Lyapunov functions whose sublevel sets approximate the DA are
numerically computed via Semi-Definite Programming (SDP).

Another method has been proposed by our group to compute invariant polytopic
subsets of DA. The solution to this problem is greatly simplified when dealing with
the class of nonlinear quadratic systems; indeed, by applying the method proposed
in [4], it can be cast as a Linear Matrix Inequalities (LMI) feasibility problem [16].
The main result of Amato et al. is shown below. Since the proposed method yields a
polytopic estimate of the DA, let us first recall the following definition:

Definition 1 A polytope (or box) P ≤ R
n can be defined as follows:

P = conv{x(1), x(2), ..., x(p)}
= {x ∞ R

n : ak
T x ∈ 1, k = 1, 2, ..., q} (6.2)

Considering a generic dynamical system written in the following matrix form as

ẋ(t) = Ax(t) + B(x) + Nu(t), (6.3)

where x ∞ R
n is the system state and

Bx =



⎡⎡⎡⎢

xT B1

xT B2
...

xT Bn

⎣

⎤⎤⎤⎥ x, (6.4)

with Bi ∞ R
n×n , the following problem can be solved by the proposed method.

Note that for the sake of brevity, the statement of the problem refers to the equilibrium
point in the origin. In this case, it is easy to generalize the definition and the entire
procedure to equilibrium points different than zero, by adopting a change of the state
variables, as shown in the origin article [4].

Problem 1 Assume that every eigenvalue of A in (6.3) has strictly negative real
part; then, given a polytope P , with the origin of the state space lying in the interior
of P , establish wheter P belongs to the DA of system (6.3).
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At this point, we can recall the following sufficient conditions, under which Problem 1
admits a solution.

Theorem 1 The polytope P defined in (6.2) belongs to the DA of system (6.3) if
there exixst scalars β , c and a symmetric matrix P such that

0 <β < 1, (6.5a)

c > 0, (6.5b)

P > 0, (6.5c)
⎦

1 β ak
T

β ak P/c

⎛
≥ 0, k = 1, 2, ..., 2n (6.5d)

x(i)
T (P/c)x(i) ∈ 1, i = 1, 2, ..., 2n, (6.5e)

β (AT P + P A) +



⎡⎡⎡⎢

x(i)
T B1

x(i)
T B2
...

x(i)
T Bn

⎣

⎤⎤⎤⎥ P (6.5f)

+ ⎝ B1
T xi B2

T xi . . . Bn
T xi

⎞
P < 0, i = 1, 2, ..., 2n

The inequality conditions given in Theorem 1 can be easily solved through
off-the-shelf efficient numerical algorithms (e.g., the LMILAB provided in the MAT-
LAB Robust Control Toolbox [8]. In the Sect. 6.4, an application of this method will
be provided.

6.3.2 Local Methods in Parametric Sensitivity Analysis

The sensitivity analysis provides a quantitative measure of the dependence of the
behavior of the system, at some fixed points in the state space, with respect to the
parameters. In general, the quantification of the individual contribution of the model
parameters is the purpose to which is aimed a parametric sensitivity analysis, in order
to understand the way how the nominal behavior of the biochemical reaction network
changes with respect to parameter variations. Robustness and sensitivity are closely
related; a relatively small sensitivity with respect to a particular property reflects
on the robustness of the same property, so there must be a compromise between
robustness and sensitivity. Some mechanisms invoking this compromise has been
revealed, e.g., the robustness analysis in the system of heat shock response [46] and
the steady-state analysis of polarized cells in yeast [20].

In addition to some measures of robustness, sensitivity analysis has been widely
used to quantify the robustness with respect to perturbations of various parameters.
In a complex system, such as a biological system, to describe which is required a high
number of parameters, the behavior of the system can be robust to variations of some
parameters, but sensitive to changes in others. Each parameter can affect differently
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the dynamics of the system, with an intensity that can be measured by means of
suitable techniques. Several method are aimed at the definition and implementation
of numerical local methods for the sensitivity determination of the parameters in
various mathematical models, including those with stochastic characteristics and not
constant parameters.

Let consider the system in Eq. (6.4) expressed in the following general ODE form

ẋ(t) = f (x(t); p), ∗t ≥ 0 (6.6)

where x ∞ R
n is the system state, p ∞ R

m represents the parameter space, and f
consists of the rate functions. If the system (6.6) admits a solution, the sensitivity of
the system, defined by the matrix S(t), which measures, locally to a point in the para-
meter space, pnom , the influence of parameter variations on the system trajectories,
can be defined as follows

S(t) = σxi

σp j

⎠⎠⎠⎠
x=x(t;pnom),p=pnom

= si, j (6.7)

where si, j are the sensitivity coefficients of each state xi with respects to the parameter
p j , [40]. These sensitivity coefficients describe the change of the system output (state
trajectory) at time t with respect to (an infinitesimal) perturbation of the parameter
values. The sensitivity matrix S(t), for each parameter p j can be determined by
means of finite differences

S(t) = σxi (t)

σp j

⎠⎠⎠⎠
x=x(t;pnom)

◦ x(t; p j + αp j ) − x(t; p j )

αp j
(6.8)

Since the state and parameter values can be subjected to variations in very large
range of magnitude, in order to perform an appropriate comparison among states
and parameters and to generate parameter ranking, normalized sensitivity value,
S(t), is often used, which is calculated as follows:

S(t) = p j

xi (t)

σxi (t)

σp j

⎠⎠⎠⎠
x=x(t;pnom)

(6.9)

Nevertheless, a parametric sensitivity analysis performed with traditional local meth-
ods are only valid with respect to a particular point in the parameter space, that is, in a
neighborhoods of a certain parameter set. Thus, these coefficients only provide infor-
mation on the robustness of a particular choice in the parameter space. Moreover,
another significant limitation is due to the possibility to compute only the sensitivity
with respect to the variations in a single parameter at a time; a model could display
low sensitivity to such variations while being extremely sensitive to simultaneous
variations in multiple parameters.
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6.3.3 Bifurcation Analysis

Also by characterizing as rigorously as mathematical models for biological systems, it
is not possible neither express nor measure the parameters model with exact precision.
Nonlinear systems can exhibit multiple equilibria, each of which may be stable (either
simply or asymptotically) or unstable, and the position of the equilibrium points, their
stability properties and regions of attraction, can vary depending on the variations in
the parametric space.

Definition 2 Given the system in (6.6), a bifurcation is represented as the
interruption of its dynamical state determined by a structural modification, inter-
pretable as a variation (as infinitesimal) of the parameter p j , (bifurcation parameter),
[47, 71].

Generally, two types of bifurcations can distinguished: local, which occur in the
neighborhood of a single fixed point or limit cycle, and global, which change the
whole structure of the phase space.

When the model has been defined, the behavior of the system is showed in respect
to the parameter variations, identifying particular partitions of the parameter space
in which dynamical discontinuities are found (for example the sets of all the limit
points). The study of the parametric continuation deals with the continuation of
the solution curves of a given dynamical system with respect to variations in one
system parameter. The relative variations in the map of equilibrium points can be
effectively visualized by using a ‘bifurcation diagram’, in which the equilibrium
values of some state variable are plotted as a function of the bifurcation parameter.
Consider the system (6.6), varying the parameter p j in a particular range of interest
and calculating the equilibrium points by solving the f (x(t); p) = 0, the diagram
is constructed by evaluating the first solution for p j , therefore continuing with the
subsequently assignment of a parameter variation in the form p j+1 = p j + αp j ,
with αp j properly settled. To see this, consider the bifurcation diagram for the
nonlinear system in (6.1a, 6.1b) showed in Fig. 6.3. As aforementioned, this systems
can alternates between two stable steady states, note that the location and the number
of equilibrium points changes for different values of the parameters. The diagram
shows the two bifurcation or limit points, LP, where the number of equilibrium points
changes from one to three and then back to one, with respect to variations in kd1.
The solid lines represent the asymptotically stable equilibrium values, whereas the
dashed line represents the unstable one. For intermediate values of kd1, comprised
between the two LP’s, the system preserves the bistability property, and it can reach
the upper or lower branch of the diagram. Many bifurcation tools have been developed
to perform various interesting dynamics such as switching and oscillatory dynamics
in biomolecular networks, e.g., Xppaut,2 and the MATLAB package Matcont.3

The bifurcation diagrams are powerful tools to investigate the qualitative changes
in the behavior of nonlinear biomolecular systems due to parametric uncertainty.

2 Available at http://www.math.pitt.edu/~bard/xpp/xpp.html.
3 Available at http://www.matcont.ugent.be/matcont.html.

http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.matcont.ugent.be/matcont.html
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Fig. 6.3 Bifurcation diagram for the bistable system in (6.1a, 6.1b). The solid lines represent the
asymptotically stable equilibrium values, whereas the dashed line represents the unstable one. For
intermediate value of the bifurcation parameter kd1 the system is bistable and it can evolve to the
upper or lower branch of the diagram, depending on whether the initial condition is above or below
the dashed branch, respectively

However, it is necessary to take into account that (i) analytical solutions for bifurca-
tions are only available for low-dimensional models, and that (ii) bifurcation diagrams
are applicable only to study the effect of one or two parameters variation at a time.

6.3.4 Global Sensitivity Analysis

The previous approaches can be employed to obtain information on the robustness
with respect to a particular region of the parameter space, and particular care must
be taken in drawing any conclusions about global properties of the system under
investigation. Therefore, it is more appropriate to investigate, the effects of simulta-
neous parameter variations of arbitrary magnitudes considering a global sensitivity
analysis. Global parametric sensitivity analysis methods, as differential analysis,
sampling-based methods using Monte-Carlo analysis, and variance decomposition
methods, only recently, have been combined to biochemical network models [11, 19].
These methods must perform variations of all possible combinations of parameters
for a preassigned range of possible parameter values, to analyze how the equilibrium
points it can be affected. The global sensitivity analysis can also provides a guide
not only in the design of synthetic biomolecular networks with specified functions
highly robust, but also in the experimental realization of desired system behavior.
For example, in [30] is shown an optimization technique of genetic networks based
on the global analysis of sensitivity.
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In [70], global sensitivity analysis for biochemical networks is approached via
SDP to obtain reliable estimates of the boundaries of the regions for the given equilib-
ria under parametric uncertainties. Given the admissible parameters variation range,
the approach proposed by Waldherr et al. allows one to compute an outer approxi-
mation, S̃ , of the region of the state space that contains all the equilibrium points for
the system, denoted by Xe. The problem can be formalized by means of infeasibility
certificates as follows.

Problem 2 Given system (6.6) and a box Bp in the parameter space, compute a
box S̃ such that S̃ ⊇ Xe, where

Xe = {x ∞ R
n | ∃p ∞ Bp : f (x(t); p) = 0}. (6.10)

The analytical calculation of Xe for nontrivial system is practically impossible.
Moreover, computational approaches are applicable only to very low-order systems.
Monte-Carlo techniques can be applied in the other cases, although they may require
a large computational effort and guarantee only probabilistic results. The method
proposed by Waldherr et al. allows to effectively solve Problem 2 recasting it in the
form of the following feasibility problem






find x ∞ R
n, p ∞ R

m

s.t. f (xi (t); p j ) = 0

p j,min ∈ p j ∈ x j,max, j = 1, ...m

xi,min ∈ xi ∈ xi,max, i = 1, ...n.

(6.11)

The previous feasibility problem (6.11) requires a remarkable computational burden.
However, it can be dealt with solving its dual version, thus by computing regions of
the state space that are guaranteed not to contain any steady state for any parameter
value in Bp. Thus, it can be relaxed to a SDP problem [66], and solved by means of
computationally efficient convex optimization tools. For a detailed description of this
procedure, the reader is referred to [37, 70], in which the computation of a solution
to Problem 2 constitutes the main goal of an iterative procedure, implemented by
the bioSDP algorithm4: starting from an initial large region of the state space, the
algorithm tries to compute one or more partitions containing Xe. However, this
procedure is very effective for low-order systems (n ∈ 3), for which a bisection
algorithm can be used. For systems of higher order, a box shrinkage procedure is
employed, which can only return one partition S̃ and, therefore, is not useful in
the analysis of the bistability persistence. In order to solve this problem, we have
proposed an alternative strategy, which combines the results of the DAs analysis with
the bioSDP algorithm.

Based on the bioSDP algorithm, our approach provides to separately compute
distinct robust steady state subsets (instead of computing one set containing all the
equilibrium points), S̃1 and S̃2, which define the boundaries for the variation of the

4 Implemented in bioSDP toolbox available at http://biosdp.sourceforge.net/.

http://biosdp.sourceforge.net/
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two attractors in the bistable system, xe1 and xe2 , respectively. Thus, setting S̃ 0
i as

the initial search space for the bioSDP algorithm, the analysis is focused on those
equilibrium points that belong to a neighborhood of xei , instead of searching for all
the equilibrium points. Thus, we need two initial outer approximation subsets, let us
denote them by S̃ 0

1 and S̃ 0
2 , respectively. In general, for high-dimensional system,

an appropriate estimation of two initial outer approximations is a daunting task.
However, we surmise that, for small-enough variations of the parameter values, the
DA represent good initial guesses. More precisely, considering S̃ 0

i = ε Di , with
i = 1, 2, where ε > 0 is a scaling factor, the initial guesses are enlarged versions of
the measured DA. Performing this analysis separately on the two attractors, enables
us to ascertain whether the bistability is preserved against parametric perturbations:
the answer is affirmative if we are able to compute two disjoint robust steady state
subsets, i.e., S̃1

⎜
S̃2. If this problem is feasible for an assigned parameter box Bp,

then it is possible to suppose that the bistability is preserved for all the values of p j

belonging to Bp.
In the following Sect. 6.4, we present a detailed analysis of the dynamical proper-

ties of the bistability in the GAL regulatory network in yeast, in order to validate it as
a plausible quantitative characterization of the preservation of the bistable dynamics
in biomolecular system.

6.4 A Procedure for Robustness Analysis of Bistability
in the GAL Network

An interesting bistable mechanism has been identified in the GAL regulatory net-
work in yeast S. Cerevisiæ, that allows to regulate the metabolism of another sugar,
galactose, when the organism perceives the presence of glucose in its environment.
The bistable dynamics of the regulatory network of the galactose metabolic path-
way, in the model organism S. cerevisiæ, has been experimentally characterized [1].
History-dependent experiments on the galactose regulatory network, revealed the
capability of this system to exhibit persistent memory of previous exposure to differ-
ent carbon sources: under the same experimental conditions, cells previously grown
with different nutrients (i.e., glucose or galactose) generate different responses and
stabilize into two distinct steady states. From a system-theoretical point of view, this
property can be explained by the switching between two stable steady states, based
on galactose concentration.
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The GAL regulatory system. The network of galactose metabolism in S. Cere-
visiæ, Fig. 6.4, is regulated by the following factors: a transcriptional activa-
tor protein Gal4p, a signal transducer protein Gal3p and an inhibitor protein
Gal80p. In the presence of galactose, Gal4p activates transcription of genes
GAL1, GAL2, GAL3, and GAL80. The protein encoded by gene GAL2 acts
as a carrier of external galactose into the yeast cell. In the absence of exter-
nal galactose, Gal80p binds to the activation domain of Gal4p, thus inhibiting
the expression of the GAL genes. In the presence of galactose, however, the
inducer Gal3p is binds to Gal80p, promoting the shuttling of Gal80p from the
nucleus to the cytoplasm. This decreases the fraction of Gal80p-bound Gal4p
in the nucleus. Thus, galactose relieves the inactivation of Gal4p and promotes
transcription of the GAL genes [14].

6.4.1 Evidence of Bistability in the GAL System

The mathematical model of this regulatory network considered here is based on mass
action kinetics and represents an extended version of the model proposed in [22].

Ġ3 = k8G4 − k2G3Gi + kr2G3a − μ13G3 (6.12a)

Ġi = k1Gex G2 − k2G3Gi + kr2G3a − μ16Gi (6.12b)

Ġ3a = k2G3Gi − kr2G3a − k4G4,80G3a + kr4G80,3aG4 − μ3G3a

− kr19G80G3a + k19G80,3a (6.12c)

Ġ4 = k5 − k11G4G80 + kr11G4,80 + k4G4,80G3a − kr4G80,3aG4 −μ6G4 (6.12d)

Ġ80 = −k11G4G80 + kr11G4,80 + k7G4 − kr19G80G3a + k19G80,3a − μ14G80
(6.12e)

Ġ4,80 = k11G4G80 −kr11G4,80 −k4G4,80G3a +kr4G80,3aG4 −μ12G4,80 (6.12f)

Ġ80,3a = k4G4,80G3a − kr4G80,3aG4 − μ15G80,3a − k19G80,3a + kr19G80G3a

(6.12g)
Ġ2 = k9G4 − μ17G2 (6.12h)

Ġ1 = k10G4 − μ18G1. (6.12i)
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Fig. 6.4 Schematic diagram of the GAL regulatory network in S. Cerevisiæ. In absence of glucose,
a molecule of galactose is imported from the external environment in the cytoplasm by Gal2p;
the internalized galactose, in turn, activates Gal3p and, subsequently, sequesters Gal80p in the
cytoplasm, shuttling Gal80p from the nucleus. The transcriptional activator Gal4p, which is con-
stitutively bound to promoters of the GAL genes in the nucleus, is then released from the inhibitory
action of Gal80p and activates expression of the GAL1, GAL2, GAL3 and GAL80 genes

See Table 6.1, for a detailed declaration of the state variables. The model (6.12a–
6.12i) is able to reproduce bistability if there exists a particular set of parameters,
p ∞ R

23+ , for which the system admits two finite distinct equilibrium points xe1, xe2 ∞
R

9. By applying the CRNT algorithm (see 6.2.2.1), a possible choice of the parameter
vector p and the associated equilibrium points xe1 , and xe2 can be computed. This
analysis confirms that system (6.12a–6.12i) admits two asymptotically steady states,
(reported in Table 6.1), when the kinetic parameters assume the values reported in
Table 6.2. Note that, all the values have been opportunely scaled to achieve a good
agreement with realistic dimensions [1, 58].
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Table 6.1 Steady states of the mass-action model (6.12a–6.12i), with the parameters values given
in Table 6.2

xe1 Species Description xe2

172.8212 G3 Gal3p protein 2711.1839
172.8208 Gi Internalized galactose 2711.2003
1.0 G3a Active Gal3p protein 318.5443
1.0 G4 Gal4p protein 19.9479
1.0 G80 Gal80p protein 0.3061
21.0604 G4,80 Gal4p:Gal80p complex 2.1126
7.5945 G80,3a Gal80p:Gal3p active complex 589.1342
1.0 G2 Gal2p protein 19.9479
1.0 G1 Gal1p protein 19.9479
1000.0 Gex External galactose 1000.0

Values are given as (μM)

Table 6.2 A set of parameters values for which the system (6.12a–6.12i) is bistable

Parameter Value Parameter Value

k1 0.1814 (μM·h) k11 85.8185 (1/h)
k2 8.4586E-4 (1/μM·h) kr11 4.7482E-2 (1/μM·h)
kr2 16.6691 (1/h) μ12 1.0 (1/h)
μ3 1.0 (1/h) μ13 1.0 (1/h)
k4 3.0749 (1/μM·h) μ14 1.0 (1/h)
kr4 0.1317 (1/h) μ15 1.0 (1/h)
k5 22.0604 (μM/h) μ16 1.0 (1/h)
μ6 1.0 (1/h) μ17 1.0 (1/h)
k7 29.6549 (1/h) μ18 1.0 (1/h)
k8 181.4157 (1/h) k19 36.6342 (1/μM·h)
k9 1.0 (1/h) kr19 222.0536 (1/h)
k10 1.0 (1/h)

6.4.2 Characterization of the DA

In general, a complete characterization of the dynamical properties of an attractor
requires an estimation of its DA, to get valuable information about the ability of the
system to adapt to exogenous perturbations without switching to a different operative
condition (i.e., a different biological state). Applying the method proposed in [4] to
find the best possible estimates of the DA, we have adopted an iterative approach,
which starts from a small polytopic region, surrounding the equilibrium point; thus,
this set is enlarged along one dimension at each iteration, stopping when the feasibility
condition is no longer verified. The process is repeated many times, modifying at
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Fig. 6.5 a Hyperbox estimates for the DA of the system (6.12a–6.12i) plotted in normalized parallel
coordinates. The green (red) hyperbox represents the DA for the high (low) equilibrium point, xe2

(xe1 ). b Free evolutions, for different initial conditions, of the concentrations of Gal1p protein with
the set of parameter given by application of CRNT toolbox. The curves funnel into low (red) or
high (green), depending on initial conditions, confirming the bistable nature of the system

each run the sequential order of the dimensions employed in the enlargement steps.
Two sets of admissible variations for the DA of xs1 , xs2 ,D1 andD2, respectively, have
been found. The validity of estimated DA can be confirmed by numerical simulations,
as reported in Fig. 6.5.

6.4.3 Local and Global Analysis Confirms the Robustness
of Bistability

Parametric sensitivity analysis enables us to evaluate the influence of each parameter
on the system. The relative local sensitivity of each species has been calculated with
respect to the system parameters. Employing the method presented in [40], the differ-
ential equations describing the dynamics of our system are coupled to the differential
equations of the sensitivity coefficients. The normalized sensitivity coefficients for
model (6.12a–6.12i) are reported in Fig. 6.6: larger values are exhibited by the para-
meters involved in the feedback terms, k7, k8, k9, the basal expression of Gal4p, k5,
those involved in the internalization of external galactose and in the activation of
Gal3p protein, k1, k2, and the parameters that describe the consumption of Gal3p,
internalized galactose and Gal2p proteins, μ13, μ16 and μ17, respectively. Note that
the indications of robustness provided by the sensitivity coefficients is only valid
locally, i.e., in the neighborhood of the nominal values reported in Table 6.2.

The parameters with high sensitivities are usually those leading to major qualita-
tive changes in the dynamical behavior of the system. To investigate this point, we
have performed a bifurcation analysis with respect to each of the above identified
parameters. In the parameter space, the region of bistability for system (6.12a–6.12i)
is delimited by a pair of limit points forming the classical S-shaped bifurcation curve,
as shown in Fig. 6.7a: here one can readily identify the admissible range of variation
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Fig. 6.7 a Continuation in one parameter. A branch of equilibria in the (k5, G1)-plane displaying
bistability. LP Limit Point. b Continuation in two parameters. Bifurcation curves in the (k7, k5)-
plane with codimension 2 points. At (k7, k5) = (4.363, 3.835) and (k7, k5) = (166.2, 3797.0) two
cusp points are detected

of k5 such that bistability is preserved. The bifurcation analysis can also be performed
considering two-parameters variations: in this case, the bifurcation boundaries, cor-
responding to the limit point bifurcations, are curves in the parameters plane. For
example, in Fig. 6.7b two bifurcation cusp points (CP) are shown. Any set of para-
meter values of the pair (k7, k5) included in the shadowed region guarantees bistable
behavior.

Bifurcation analysis is an efficient tool to locally evaluate the changes in steady
state concentrations with respect to one or two simultaneous parameters variations.
In order to evaluate the preservation of bistability with respect to simultaneous vari-
ation of multiple parameters, we have applied the method proposed in [70]. By
partitioning the state space into two subsets, each containing one of the nominal
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Fig. 6.8 a Initial approximated partitions, computed by scaling the D1 and D2 and reported in
parallel coordinates normalized to the high-equilibrium, xe2 . b–d Steady state uncertainty sets for
GAL system plotted in parallel coordinates, in Pi ≤ R

9 regions. Each line represents sampled
steady states, under the parametric uncertainty for the lower (in red) and higher (in green) steady
state, respectively

equilibrium points, xs1 , xs2 , such method allows to compute certificates for regions
in the state space non containing any steady state, for some assigned ranges of varia-
tion of the parameters. The initial approximated partitions S̃1,2 have been computed
by scaling the D1 and D2 as reported in normalized parallel coordinates in Fig. 6.8a.
To reduce the computational burden required by the application of this method,
the multi-parametric sensitivity analysis has been limited to the parameters subset
κp := {k1, k2, k5, k7, k8, k9, μ13, μ16, μ17}, which, according to the local sensi-
tivity analysis, are those exerting the greatest influence on the system dynamics,
see Fig. 6.6. The global parametric robustness has been evaluated for increasingly
larger ranges of parametric uncertainty, with respect to the nominal values given in
Table 6.2. Figure 6.8b–d displays the computed robust steady state boxes for different
cases. For parametric variations up to ±20 % with respect to the nominal parameters
value, the bistable behavior of the GAL regulatory network is guaranteed. For such
uncertainty values, indeed, the computed subsets S̃1 and S̃2 are still disjoint, since
the intervals of G3a and G80,3a are not overlapping. For larger parametric variations
the intersection of the two subsets is no longer empty (see Fig. 6.8d); hence, in the
latter case it is no longer possible to guarantee that the system preserves bistability
for all admissible values of the uncertain parameters.



164 L. Salerno et al.

The proposed procedure provides a powerful approach to the analysis and valida-
tion of any biochemical network model that is required to robustly reproduce bistable
dynamics, underlying persistent memory, molecular switches and cell differentiation
phenomena, without recourse to large-scale computational simulation.
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Chapter 7
Meta-DNA: A DNA-Based Approach
to Synthetic Biology

Harish Chandran, Nikhil Gopalkrishnan,
Bernard Yurke and John Reif

Abstract The goal of synthetic biology is to design and assemble synthetic systems
that mimic biological systems. One of the most fundamental challenges in syn-
thetic biology is to synthesize artificial biochemical systems, which we will call
meta-biochemical systems, that provide the same functionality as biological nucleic
acids-enzyme systems, but that use a very limited number of types of molecules.
The motivation for developing such synthetic biology systems is to enable a bet-
ter understanding of the basic processes of natural biology, and also to enable
re-engineering and programmability of synthetic versions of biological systems.
One of the key aspects of modern nucleic acid biochemistry is its extensive use
of protein enzymes that were originally evolved in cells to manipulate nucleic acids,
and then later adapted by man for laboratory use. This practice provided powerful
tools for manipulating nucleic acids, but also limited the extent of the program-
mability of the available chemistry for manipulating nucleic acids, since it is very
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difficult to predictively modify the behavior of protein enzymes. Meta-biochemical
systems offer the possible advantage of being far easier to re-engineer and program
for desired functionality. The approach taken here is to develop a biochemical system
which we call meta-DNA (abbreviated as mDNA), based entirely on strands of DNA
as the only component molecules. Our work leverages prior work on the develop-
ment of self-assembled DNA nanostructures (see [1, 2, 5, 9, 11, 18, 26] for excellent
reviews of the field). Each base of a mDNA is a DNA nanostructure. Our mDNA
bases are paired similar to DNA bases, but have a much larger alphabet of bases,
thereby providing increased power of base addressability. Our mDNA bases can be
assembled to form flexible linear assemblies (single stranded mDNA) analogous to
single stranded DNA, and can be hybridized to form stiff helical structures (duplex
mDNA) analogous to double stranded DNA, and also can be denatured back to single
stranded mDNA. Our work also leverages the abstract activatable tile model devel-
oped by Majumder et al. [12] and prior work on the development of enzyme-free
isothermal protocols based on DNA hybridization and sophisticated strand displace-
ment hybridization reactions (see [6, 15, 16, 19, 21, 27, 28]). We describe various
isothermal hybridization reactions that manipulate our mDNA in powerful ways anal-
ogous to DNA–DNA reactions and the action of various enzymes on DNA. These
operations on mDNA include (i) hybridization of single strand mDNA (ssmDNA)
into a double strand mDNA (dsmDNA) and heat denaturation of a dsmDNA into
its component ssmDNA (analogous to DNA hybridization and denaturation), (ii)
strand displacement of one ssmDNA by another (similar to strand displacement in
DNA), (iii) restriction cuts on the backbones of ssmDNA and dsmDNA (similar to
the action of restriction enzymes on DNA), (iv) polymerization chain reactions that
extend ssmDNA on a template to form a complete dsmDNA (similar to the action
of polymerase enzyme on DNA), (v) isothermal denaturation of a dsmDNA into
its component ssmDNA (like the activity of helicase enzyme on DNA) and (vi) an
isothermal replicator reaction which exponentially amplifies ssmDNA strands (sim-
ilar to the isothermal PCR reaction). We provide a formal model to describe the
required properties and operations of our mDNA, and show that our proposed DNA
nanostructures and hybridization reactions provide these properties and functionality.

Keywords Enzyme · DNA · Meta-DNA (mDNA) · Isothermal · Hybridization ·
Strand displacement · Single strand meta-DNA (ssmDNA) · Double strand meta-
DNA (dsmDNA)

7.1 Introduction

7.1.1 Synthetic Biology

A major goal of synthetic biology is to produce synthetic biochemical systems which
have functions similar to the biochemical functions of living organisms. Considerable
related work has been done in the fields of artificial and synthetic life, see [3, 10, 13]
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for an overview of these fields. Two predominant approaches by researchers in this
area have been to design protein-based or RNA-based biochemical systems. How-
ever, both proteins and RNA are very difficult to predictively design for given func-
tions, and behavior of the resulting protein-based or RNA-based biochemical systems
can be very complex, making their engineering highly challenging. An alternative
approach we propose here is to produce synthetic biochemical systems based on a
very well understood, relatively non-reactive molecule, such as DNA (DNA strands
and DNA nanostructures). DNA–DNA interactions like hybridization and strand dis-
placement are reasonably well understood and a vast literature exists that studies,
models, predicts and even controls such interactions (see [8, 29]). This literature
enables us to program simple DNA systems by controlling experimental conditions
like pH, salt concentrations, temperature and DNA concentration.

7.1.2 Overview of Our Work on Meta-DNA

In this work, we engineer synthetic biochemical systems, called meta-DNA, con-
sisting only of DNA that capture the properties and structure of DNA in biological
systems. Our work is reductive: we use simple DNA chemistry to emulate more com-
plex enzyme based DNA chemistry through ingenious use of DNA hybridization,
strand displacement and hairpin systems. From a computer science perspective, our
work can be thought of as using a lower level programming language to simulate
programs encoded in a higher level programming language. This kind of simulation
often leads to a better abstract understanding of the phenomena being simulated.
From a synthetic biology perspective, we are building novel biochemical systems to
emulate useful, well known natural biological systems and providing alternatives to
protein enzymes. From an engineering perspective, our work is a minimalist approach
to designing biochemical systems from simple, predictable yet powerful modules.
Our systems are largely isothermal and autonomous which suggest that they may
have applications for in vitro biochemical systems like transport devices, molecular
motors, detection, signalling and computing systems.

7.1.3 Prior Work on Synthetic Replicators

Driven by the important role that replication plays in Biology, many self-replicating
systems have been proposed, starting with Von Neumann. Early self-replicating sys-
tems were designed by von Kiedrowski [24], Tjivikua et al. [22]. For a review of
various artificial replicators see [4, 23, 25]. A DNA-based artificial replicator was
proposed by Zhang and Yurke [30]. Schulman and Winfree [17] study growth and
evolution of simple crystals using DNA. Smith et al. [20] have independently devel-
oped abstractions for self-replication systems that can be thought of as tile-based and
also rely on the idea of activation.
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The major departure from this prior work on self-replicating systems and our
meta-DNA approach, is that meta-DNA allows for a wide variety of key operations
far beyond merely the operation of replication, enabling a much more extensive and
complex set of synthetic biochemical systems.

7.1.4 Organization of this Chapter

In Sect. 7.2 we review the key properties of DNA, including its structure and enzy-
matic reactions. In Sect. 7.3 we list the desirable properties of meta-DNA and give
a design for a meta-nucleotide, single and double stranded meta-DNA, along with
its secondary structure. Section 7.4 states the assumptions we make while designing
protocols for meta-DNA manipulation. In Sect. 7.5 we discuss various meta-DNA
reactions such as meta-hybridization, meta-denaturation, meta-strand displacement,
meta-polymerization, meta-restriction, meta-helicase denaturation and exponential
amplification using a meta-DNA replicator. Section 7.6 discusses open problems and
future work.

7.2 Review of DNA Structure and Reactions

DNA is considered to be an ideal material to construct nanoscale structures and
devices and has been used as scaffolding material for complex shapes, fuel for mole-
cular motors and aptamers for various organic and inorganic molecules. The key
properties of DNA that enable these functionalities are programmability, predictable
chemical interaction and secondary structure and simple laboratory protocols for its
manipulation. Synthetic DNA is also cheaply and readily available from a variety
of commercial sources. At the most abstract level, fabricating structures and devices
with DNA is akin to working with smart bricks that fit together in a specific pre-
defined way and then putting them in a bag, shaking it and waiting for the bricks
to self-assemble. However, the process is probabilistic and correcting errors is a
fundamental challenge for the field.

Most readers will be familiar with the basic structure and reactions of DNA. The
following discussion will be useful to even these readers as it frames DNA and its
reactions in the context of our work and also specifies the granularity at which we
consider DNA, with particular focus on the biochemical properties that we wish to
simulate using our synthetic mDNA systems.
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7.2.1 Key Properties of DNA

Here we review the key properties of natural DNA that we wish to mimic in
mDNA. Single stranded DNA is a linear polymer made from repeating units called
nucleotides. The nucleotide repeats contain both a segment of the backbone of the
molecule, which holds the chain together, and a base. Each nucleotide has direction-
ality and hence a DNA strand is asymmetric. The asymmetric ends of DNA strands
are called the 5′ (five prime) and 3′ (three prime) ends. Single stranded DNA is flex-
ible and has a small persistence length and is generally modeled as a freely-jointed
chain. In living organisms, DNA does not usually exist as a single molecule, but
instead as a pair of molecules entwined like vines, in the shape of a double helix.
In a double helix the direction of the nucleotides in one strand is opposite to their
direction in the other strand: the strands are antiparallel. Double stranded DNA has
much greater persistence length than single stranded DNA and is generally mod-
eled as a worm-like chain. The DNA double helix is stabilized by hydrogen bonds
between the bases attached to the two strands. The four bases are classified into
two types, purines (A and G) and pyrimidines (T and C). Each type of base on one
strand overwhelmingly prefers a bond with just one type of base on the other strand.
This is called complementary base pairing. Here, purines form hydrogen bonds to
pyrimidines, with A bonding preferentially to T, and C bonding preferentially to
G. This arrangement of two nucleotides binding together across the double helix
is called a base pair. As hydrogen bonds are not covalent, they can be broken and
rejoined relatively easily. The two strands of DNA in a double helix can therefore
be pulled apart like a zipper, either by a mechanical force or kinetic energy due
to high temperature. Given a pH value and salt (Mg++, Na+) concentrations, the
melting temperature is defined as the temperature at which half the DNA strands are
in a double helical conformation while the rest are denatured. Melting temperature
depends on the length of the DNA strand as well as its sequence, with longer strands
having a higher melting temperature.

7.2.2 Key Reactions Involving DNA

We view DNA reactions as biochemical programs and attempt to emulate them.
Hence, it is important to understand and abstract out these DNA reaction properties.
With this goal in mind, we review a few key DNA reactions.

7.2.2.1 DNA–DNA Reactions

• Hybridization is the attachment of a pair of single strands of DNA via hydrogen
bonds along their complementary regions to form a double helix. Note that the two
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strands only attach in an anti-parallel manner and hence are reverse complements
of each other.

• The reverse process, separation of a double helix into its constituent single strands
by the breaking of hydrogen bonds is DNA denaturation. This can be achieved via
mechanical shear forces, high temperature or presence of denaturing agents like
urea or formamide.

• DNA strand displacement is the displacement of a single strand of DNA from a
double helix by an incoming strand with a longer complementary region to the
template strand. The incoming strand has a toehold, an empty single stranded
region on the template strand complementary to a subsequence of the incoming
strand, to which it binds initially. It eventually displaces the outgoing strand via a
kinetic process modeled as a one dimensional random walk.

7.2.2.2 Enzymatic Reactions on DNA

• DNA restriction is the cleaving of the backbone at a sequence specific recognition
site by a restriction enzyme.

• DNA polymerases are a class of enzymes that catalyze the polymerization of
nucleotides into a DNA strand. The polymerase “reads” an intact DNA strand as a
template and uses it to synthesize the new strand. The newly polymerized molecule
is complementary to the template strand. DNA polymerases lack the ability to do
de novo polymerization and can only extend a DNA strand already attached to the
template strand, called a primer.

• Isothermal denaturation can be achieved by helicases which are motor proteins
that move directionally along a DNA backbone, denaturing the double helix.

• DNA ligation is the rejoining of nicked double stranded DNA by repairing the
backbone break. Enzymes belonging to this class are known as ligases.

7.3 Desired Properties of Meta-DNA

We wish to abstract the structure and reactions of DNA described in Sect. 7.2.2
and emulate them using only DNA–DNA interactions. In doing so, we would have
circumvented DNA-enzyme chemistry with a synthetic biochemical system that
uses only DNA hybridization. First we state the desirable properties of meta-DNA
(mDNA).

7.3.1 List of Desirable Properties for mDNA

• We desire a set of 2k meta-nucleotides (where k is an integer ≤2). Each meta-
nucleotide must be directional and have a 3′ and 5′ end. There must be two
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types of meta-nucleotides: meta-purines and meta-pyrimidines, each k in number.
There must exist a pairing between meta-purines and meta-pyrimidines where each
edge indicates an overwhelming complementary preference of meta-base linking
between the meta-purine and meta-pyrimidine it connects.

• The active 5′ end of any meta-nucleotide should be able to bind to the active 3′
end of any other meta-nucleotide and vice versa via a meta-backbone link.

• The meta-backbone link must be a strong bond (implemented as a long sequence
of hybridized DNA) while the meta-base link must be a weak bond (implemented
as a short sequence of hybridized DNA).

• ssmDNA should be a linear directional polymer chain of meta-nucleotides bound
by meta-backbone linkages and has 3′ and 5′ ends.

• Two ssmDNA that are reverse complementary to each other must have the ability
to meta-hybridize to form a dsmDNA. The strands of any dsmDNA must be anti-
parallel.

• When an ensemble of identical dsmDNA is heated to a temperature known
as its melting temperature, half of the ensemble must denature into its con-
stituent ssmDNA. The melting temperature must depend on the sequence of meta-
nucleotides of the mDNA and also on its length, with longer strands having a
higher melting temperature.

• To support strand displacement protocols, the weak meta-base bonds must be
continuously broken and remade in a kinetic process called breathing. The rate of
breathing should be positively correlated with temperature.

• ssmDNA must be flexible and have a small persistence length when compared
to dsmDNA of comparable length. ssmDNA must be like a freely-jointed chain
while dsmDNA must be like a worm-like chain.

• Meta-nucleotides should not spontaneously form meta-backbone bonds in the
absence of catalyst.

7.3.2 Abstract Description of mDNA

We model a meta-nucleotide as an activatable tile [12] having three activatable pads:
a 5′ pad, a 3′ pad and a base pad and represent it by a square tile as illustrated in
Fig. 7.1. The tile has directionality as indicated by an arrow from 5′ to 3′ which is
imposed by the sequence in which the pads are activated, with 5′ always activated
before 3′. Tiles bind to each other via symmetric pad interactions called binding or
linking. Each binding has a strength associated with it (1, 2 or 3) that depends only on
the type of pads involved in the binding. The strength of a binding models the energy
required to break the bond. Base pads can only interact with other base pads through
strength 1 bindings, and are called meta-base bindings. 5′ pads can only interact with
3′ pads through strength 3 bindings and these are called meta-backbone bindings. The
pads exist in one of four states: inactive, active unbound, bound and capped. Inactive
pads do not bind with other pads. Any active unbound 5′ pad of a meta-nucleotide can
bind to any active unbound 3′ pad of another meta-nucleotide via a bond of strength
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Fig. 7.1 Abstraction of the nucelotide

(a) (b) (c)

Fig. 7.2 Single and double stranded mDNA: a single stranded mDNA, b double stranded mDNA,
c double stranded mDNA has a longer persistence length

3 after which these pads go to the bound state. There are 2k different base pads, each
corresponding to a meta-nucleotide type. These are split into two complementary
perfectly matched sets. Let P = {β1,β2, . . . ,βk, β̄1, β̄2, . . . , β̄k} be the set of pads.
For all i , pads βi and β̄i bind with each other. The face label on any tile indicates the
base type of the meta-nucleotide. Any active unbound base pad of a meta-nucleotide
can bind in an antiparallel manner to an active unbound complementary base pad of
another meta-nucleotide by a strength 1 bond after which these pads go to the bound
state.

A linear chain of these tiles held together by 5′–3′ pad bindings forms a directional
polymer of meta-nucleotides and hence is ssmDNA. The 3′ base pad of the tile at
the 3′ end of the ssmDNA and the 5′ base pad of the tile at the 5′ end are always in
the capped state. A double stranded mDNA (dsmDNA) is a dimer of two ssmDNA
held together by base pad bindings. ssmDNA is flexible with a low persistence length
while dsmDNA is stiff and has a higher persistence length. These properties arise out
of the geometric constraints imposed by the tile base structure of mDNA as illustrated
in Fig. 7.2.

7.3.3 Strand Design for mDNA

Figure 7.3 shows an implementation of a meta-nucleotide tile as a DNA nanostruc-
ture. In Fig. 7.3a we have the tile with no protection and in Fig. 7.3b we have the
tile with protection strands. The purpose of the protecting strands is to prevent spon-
taneous aggregation of tiles into mDNA. The protection mechanism is designed to
impose the requirement that the 5′ pad is activated before the 3′ pad (this property
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(a) (b)

Fig. 7.3 Design of the meta-nucelotide

(a)

(b)

Fig. 7.4 Internals of mDNA: a internals of a single stranded mDNA, b internals of a double stranded
mDNA

is used in the polymerization and replicator protocols). Each letter denotes a DNA
sequence and a bar atop a letter indicates reverse complement of the sequence that
the letter denotes. The red strand ( f gdcba) contains the 5′ pad f g and also the base
pad ba and the light green strand (ḡ f̄ ē) contains the 3′ pad ḡ f̄ . The blue strand
(c̄q̄ d̄) and the dark green strand (qe) are bridging strands that hold the nanostructure
together and give it the required geometry. We will have a detailed discussion of the
secondary structure of the meta-nucleotide tile and mDNA in Sect. 7.3.4 (Fig. 7.4).
The sequence of reactions that occur when a tile is deprotected are as follows. The
pink strand b̄x f̄ protects (renders inactive) the 5′ pad. When ba binds to its comple-
ment on another tile, b̄x f̄ is ripped away from the 5′ pad by the invasion of the strand
f x̄b thus activating the 5′ pad. The strand f yḡ protects (renders inactive) the 3′ pad.
When the 5′ pad binds to its complement on another tile, f yḡ is ripped away from
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the 3′ pad by the invasion of the strand g ȳ f̄ thus activating the 3′ pad. Figure 7.5
illustrates all possible states a meta-nucleotide can exist in. We model weak base
bonds and strong backbone bonds by making the sequences corresponding to the 5′
and 3′ pads much longer than the sequences corresponding to the base pads. The
internal structure of both single and double stranded mDNA are shown in Fig. 7.4a
and b. Note the black protection strands on the tiles at the ends of the mDNA to
implement capping.

7.3.4 Secondary Structure of mDNA

Apart from simulating the reaction properties of DNA, we also wish to simulate its
secondary structure, in particular:

• The flexible nature of ssDNA characterized by shorter persistence length
• The rigid nature of dsDNA characterized by a longer persistence length
• The double helical structure of dsmDNA.

Recently, Hamada and Murata [7] reported a novel self-assembled rigid T-shaped
interconnected junction where each arm is a DNA double helix (Fig. 7.6a). They
synthesized tile based structures like 1D linear ladders, 1D ringed structures and 2D
lattices using the T-junction geometry. This suggests that their T-junction motif is a
useful widget for designing stable, rigid, well behaved self-assembled objects. We
use the T-junction as the key motif in achieving the required structural properties for
mDNA. Each meta-nucleotide is a T-junction (Fig. 7.3a). ssmDNA (Fig. 7.4a) is a
linear polymer of these T-junctions with consecutive base pad sections (the double
helical structure c ∞ c̄) not in the same plane, but slightly rotated so that they stick out
of the plane of the paper. This rotation is controlled by carefully choosing the number
of bases that make up the horizontal double helical section between consecutive
vertical helical sections (Fig. 7.4a). This secondary structure for ssmDNA induces a
helical twist for ds (imagined in Fig. 7.6b). We can think of the secondary structure of
dsmDNA as a twisted 1D ladder. The 1D ladder design in [7] can be easily modified
by adding or deleting a single base pair from the side rungs to induce a twist to get
a double helix structure with approximately 10.5 meta-bases per turn of the double
helix, mimicking the twist of dsmDNA. In particular, we choose the length of the
repeating DNA double helical unit e f gdq ∞ q̄ d̄ ḡ f̄ ē to be either 41 (one less than the
number of bases in four full turns of a DNA double helix) or 43 (one greater than the
number of bases in four full turns of a DNA double helix). The following choice of
lengths for the subsequences would potentially give us the required geometries and
at the same time preserve the thermodynamic and kinetic properties that would allow
our subsequent mDNA protocols to succeed (|x | is the length of the DNA sequence
represented by x): |ai | = |bi | = |āi | = |b̄i | = 4, |c| = |c̄| = |d| = |d̄| = |q| =
|q̄| = 6, | f | = | f̄ | = |g| = |ḡ| = 12 and |e| = |ē| = 5 or 7.
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Fig. 7.5 States of the nucleotide
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Fig. 7.6 a Design of rigid T-junction self-assembled from DNA. Figure from [7]. b(i) Secondary
structure of dsmDNA forming a double helix (ratio of bases per axial rotation is programmable
via strand design). Not to scale. b(ii) Axial view of dsmDNA. Only the rungs of the twisted ladder
structure are shown

7.4 Assumptions for mDNA Reactions

Before describing our protocols involving mDNA we give here our assumptions
under which these reactions proceed. We also describe some simple rules of DNA
chemistry which are repeatedly used like subroutines in our mDNA protocols.

• Our systems are maintained at only three different temperatures characterized by
a parameter τ . At room temperature or τ = 1, both the meta-backbone bonds and
the meta-base bonds are stable but breathing still occurs. Recall that breathing
is the phenomenon of meta-base bonds spontaneously breaking and forming. At
the melting temperature, τ = 2, the meta-backbone bonds are stable but the base
bonds are broken. At freezing temperature or τ = 0, breathing does not occur.

• The pH, salt concentrations and other factors that affect hybridization are set
to levels such that spontaneous hybridization between a DNA sequence and its
complement can occur.

• Strand displacement, as defined earlier, always occurs and proceeds to completion.
The strand that gets displaced out remains in the solution.

• We assume that each subsequence, denoted by a letter in the figures, only interacts
with its perfect and full reverse complements and no other spurious interactions
occur.

7.5 Reactions in mDNA

We set out protocols for mDNA that mimic DNA–DNA and DNA-enzyme interac-
tions. We have two kinds of figures in the discussions that follow. The abstraction
diagrams illustrate the protocols in the abstract activatable tile model while the inter-
nal structure diagrams illustrate the protocols in greater detail.
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(a) (b)

Fig. 7.7 Meta-hybridization and meta-denaturation by heating: a meta-hybridization reaction,
b meta-denaturation at τ = 2

7.5.1 Meta-hybridization and Meta-denaturation in mDNA

The simplest mDNA reactions are meta-hybridization and meta-denaturation, which
are reverse reactions of each other. In meta-hybridization, at temperature τ = 1 two
complementary ssmDNA strands bind via complementary base pad bindings to give
dsmDNA (Fig. 7.7a). Heating dsmDNA to temperature τ = 2 meta-denatures the
structure into its two component ssmDNA (Fig. 7.7b).

7.5.2 Meta-strand Displacement Process in mDNA

Meta-strand displacement for mDNA is defined as displacement of a ssmDNA from
a meta-double helix by an incoming ssmDNA with a longer complementary region
to the template strand. This reaction occurs at temperature τ = 1. Figure 7.8 gives
a high level view of meta-strand displacement using the activatable tile model. Two
meta-strands compete to hybridize with a single ssmDNA. The shorter of the two
is completely meta-hybridized to the template while the longer one comes in by
gaining a toehold. Now, breathing of the meta-bases of the short strand gives an
opportunity to the meta-bases of the competing incoming strand to meta-hybridize
with the template. Note that the intermediate steps are reversible. However, once the
incoming meta-strand completely displaces the outgoing meta-strand, the reaction
stops as the outgoing meta-strand is extremely unlikely to come back in as it lacks a
toehold.

Note that this reaction is made possible because the weak meta-base bonds can
breathe at τ = 1. Breathing in mDNA is expected to occur at a slower rate than in
DNA because we require multiple bases to spontaneously denature for a single meta-
base to denature. Also, contiguous bases in DNA are more immediately local than
contiguous meta-bases in mDNA and hence the rate at which a meta-base occupies an
empty spot on a complementary meta-base is also expected to be slower than for the
corresponding process in DNA. Due to these reasons, we would expect meta-strand
displacement in mDNA to proceed slower than strand displacement in DNA.
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Fig. 7.8 Meta-strand displacement due to breathing at τ = 1
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7.5.3 Meta-polymerization in mDNA

Meta-polymerization in mDNA occurs by the extension of a ssmDNA, called a
primer, by additions of free meta-nucleotides in the solution to the 3′ end via meta-
backbone bonds. The extension cannot occur de novo, it requires a primer meta-
hybridized to a template ssmDNA. Neither can meta-nucleotides spontaneously
aggregate, because of the protection strands (see Fig. 7.1). The meta-nucleotides
added have base pads complementary to the corresponding base pads of the template
strand.

Figure 7.9 gives an activatable tile model view of a single step in mDNA meta-
polymerization. Each base pad of the template strand that is not bound to its comple-
ment is in the active unbound state. The 3′ pad of the tile at the 3′ end of the primer is
in the capped state (step 1). It transitions to the active unbound state when its black
capping strand is displaced by an initiator strand. The incoming meta-nucleotide
(step 2) has its 5′ and 3′ pads in the inactive state, while its base pad is in the active
unbound state. The complementary base pads bind (step 3), activating the 5′ pad of
the incoming nucleotide (step 4). The 5′ pad then binds to the 3′ pad of the previous
meta-nucleotide (step 5) causing the 3′ pad of the incoming nucleotide to transition
to the active unbound state (step 6). This process occurs repeatedly till either no fur-
ther free meta-nucleotides are available or the end of the template strand is reached.
There is an alternate mechanism to stop the polymerization, which involves adding
to the solution a black capper strand to transition the 3′ pad of growing 3′ end to a
capped state, thus stopping further additions. Note that in a solution with an ensem-
ble of these nanostructures, in general the stopping point of meta-polymerization
cannot be carefully controlled and such an attempt would probably lead to various
length subsequences of the fully complementary ssmDNA. However, we can exclude
certain meta-base types from the meta-nucleotide mix in the solution ensuring that
the polymerization halts when the complementary meta-base is encountered on the
template strand. Since we have access to a larger alphabet of bases in our mDNA
systems we can set aside a set of bases for such purposes, analogous to stop codons
in translation.

We will now examine this protocol in greater detail by looking at the internal
strand structure (Figs. 7.10 and 7.11). The 3′ pad of the tile at the 3′ end of the primer
is capped by f gt3′ (step 1). The initiator strand ¯t3′ ḡ f̄ binds to the capper strand and
activates the 3′ pad ḡ f̄ (step 2). Now, the protected meta-nucleotide comes in (step
3) and binds to the complementary base sequence ā2b̄2, displacing the strand b̄2x f̄
(step 4). The toehold b̄2 is exposed on b̄2x f̄ allowing f x̄b2 to bind (step 5). This
strand displaces b̄2x f̄ exposing f on the 5′ end of the incoming meta-nucleotide
(step 6). Now, the 5′ end of the incoming meta-nucleotide binds to the 3′ end of the
previous nucleotide, displacing f yḡ (step 7). The strand f yḡ is stripped away by
its complement through the toehold ḡ, activating the 3′ end (ḡ f̄ ) of the incoming
meta-nucleotide (step 8). This brings the 3′ end of the growing ssmDNA back to the
same state as in step 2 and thus the reaction can repeat till the end of the template
strand is reached (step 9). At this point, we introduce the 3′ capper sequence f gt3′
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Fig. 7.9 Meta-polymerization reaction
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Fig. 7.10 Internals of meta-polymerization reaction-I
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Fig. 7.11 Internals of meta-polymerization reaction-II
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which binds to the 3′ pad of the last meta-nucleotide added. This terminates the
polymerization reaction. Note that in a solution with an ensemble of these nanos-
tructures, we must wait for each copy of the reaction to proceed to step 9 before
introducing the capper sequence or we must program a stopper sequence, analogous
to stop codons in translation. DNA polymerases like β29 possess exceptional strand
displacing capability which aids in isothermal amplification of DNA. However, our
meta-polymerization protocol lacks this ability. Thus, if in the course of extending
the primer an already bound ssmDNA is encountered then the meta-polymerization
process halts. In Sect. 7.5.6, we show how to achieve isothermal amplification of
mDNA.

7.5.4 Meta-restriction Cuts in mDNA

We can achieve site specific meta-restriction in both ssmDNA and dsmDNA by
slightly modifying the internal structure of a nucleotide. This modification does not
significantly affect the secondary structure of the mDNA and is compatible with all
the other mDNA protocols described in this chapter. We prefix a sequence hi to the
5′ pad of the meta-nucleotide with base pad βi . This is the sequence that will be
recognized by cleaving strands that break the meta-backbone bonds. We illustrate
restriction for dsmDNA. The protocol for ssmDNA is very similar and can be thought
of as a special case of the meta-restriction of dsmDNA.

The abstract activatable tile model of meta-restriction is illustrated in Fig. 7.12.
The 5′ end of the meta-nucleotide β1 is recognized, cut and sent to the capped state. In
Fig. 7.13 the site h2 associated with the meta-base b2a2 is recognized by the cleaver
strand ḡ f̄ h̄2r2. There is a single recognition site h2 on each of the strands of the
dsmDNA (step 1). The cleaver strands bind to the toehold h2 on each strand (step 2)
and break the meta-backbone bond by strand displacing the 3′ pad ḡ f̄ (step 3). We
now introduce the 3′ capper sequence f gt3′ to cap the exposed 3′ pads (step 4). We
prevent interaction between the cleaver strand ḡ f̄ h̄2r2 and the 3′ capper sequence
f gt3′ by executing step 4 only after we are reasonably certain that step 3 is complete.
This means that meta-restriction is not autonomous. The strand r̄2h2 f g is introduced
to strip away the cleaver strand ḡ f̄ h̄2r2 from the 5′ pad by exploiting the toehold r2
(step 5). This exposes the 5′ pads (step 6) which are then capped by introducing the
5′ capper sequence ḡ f̄ t5′ (step 7), completing the process of meta-restriction. Again,
we prevent interaction between the strand r̄2h2 f g and the 5′ capper sequence ḡ f̄ t5′
by executing step 7 only after we are reasonably certain that step 6 is complete. We do
not require that these extraneous strands do not interact at all. Rather, it is sufficient
that even after interacting among themselves there are a sufficient concentration of
them to perform the tasks described in Figs. 7.13 and 7.14.
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Fig. 7.12 Abstract description of meta-restriction at site β1

7.5.5 Meta-helicase Denaturation Reaction in mDNA

We have previously described meta-denaturation for mDNA using temperature. The
same result can be achieved isothermally, which we call meta-helicase denaturation.
Consider the abstract view of meta-helicase denaturation given in Fig. 7.15. Denat-
uration is the breaking of meta-base bonds of a dsmDNA. When all the meta-base
bonds are broken, the meta-strands float apart. Initially all the meta-base pads are
in the bound state (step 1). Meta-helicase activity breaks the bonds and sends the
base pads to the inactive state. This meta-helicase reaction doesn’t necessarily act
contiguously. Some meta-base bonds are broken before others (steps 2 and 3). When
all the meta-base pads are broken the meta-strands float apart (step 4). We can reac-
tivate the meta-base pads by transitioning them to the active unbound state (step 5)
at which point the ssmDNA can recombine to form a dsmDNA.

Meta-helicase activity in mDNA is performed by a host of strands (colored pink
in Fig. 7.16), two for each type of meta-base bond that must be broken. In Fig. 7.16
there are two types of meta-base bonds and hence we have four strands to perform
helicase activity (step 1). We introduce a slight modification in the internal strand
structure by appending a sequence p to the base pad of each meta-nucleotide. This
modification does not significantly affect the secondary structure of mDNA and
neither does it interfere with any other mDNA protocol described in this chapter.
This sequence (p) will act as a toehold for the strands involved in the meta-helicase
process. A pair of strands invade the meta-base pad bond and break them (step 2).
Note that half of the meta-base bond is broken by one of these strands and half
by the other, ensuring symmetry. Once each meta-base bond is broken the meta-
strands drift apart (step 3) and meta-helicase activity is complete. We can strip off
the protecting strand, for example m̄ p̄b1, by adding in its complement, say b̄1 pm
(step 4). The ssmDNA can now recombine into dsmDNA. It is possible to repeat this
process of meta-denaturation and meta-renaturation, however the protocol would not
be autonomous.
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Fig. 7.13 Internals of meta-restriction at h2 associated with meta-base b2a2-I

7.5.6 Exponential Amplification in mDNA Using a Replicator

Our protocol for meta-polymerization in mDNA lacked meta-strand displacement
capabilities and hence could not be used for isothermal PCR-like amplification. In
this section we describe a method to get isothermal exponential amplification using
a replicator mechanism. The protocol is similar to meta-polymerization, it involves
linear contiguous extension of a primer by addition of meta-nucleotides, with the
newly polymerized ssmDNA having the complementary sequence to that of the
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Fig. 7.14 Internals of meta-restriction at h2 associated with meta-base b2a2-II

template. The key difference in the two protocols is a mechanism to isothermally
dissociate the newly synthesized ssmDNA from the template. We achieve this using a
new idea, not present in any previous protocol described in this work, of active DNA
sequences sequestered in hairpins that are released by strand displacement reactions.
The release of the “hidden” DNA sequence inside the hairpin structure can be thought
of as an activation step, setting off another strand displacement reaction. This idea of
sequestering sequences within hairpins has been demonstrated previously by Zhang
et al. [28] and Dirks and Pierce [6].

For the purposes of this protocol, we define a new state of the base pad in the
activatable model of mDNA, which we call semi active unbound (shaded purple in
Fig. 7.17c). If two base pads are in the semi active unbound state, they cannot bind to



7 Meta-DNA: A DNA-Based Approach to Synthetic Biology 193

Fig. 7.15 Abstract description of meta-denaturation by helicase action

each other. However, a semi active unbound base pad can bind with an active unbound
base pad, provided their sequences are complementary. There are also modifications
(Figs. 7.17a, b) to how the other pad states are implemented, however the properties
of the state do not change. Note the introduction of the hairpin structure g2 p̄ālḡ2 at
the 3′ end of a meta-nucleotide (Fig. 7.17a) which will be used to cleave the growing
strand from the template (Fig. 7.17c), sending the base pad to the semi active unbound
state.

Figure 7.18 illustrates the replicator in the abstract activatable tile model of
mDNA. The top strand is the template and the bottom strand grows from a primer.
For initiating and terminating replication, we require the use of a pair of special tiles
with complementary base pads, labeled β3′ and β̄3′ in Fig. 7.18. These are capped at
one end and occur at the terminal ends of the template and hence in each replicated
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Fig. 7.16 Internal strand structure of denaturation by helicase action

(a) (b) (c)

Fig. 7.17 Replicator: new states
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Fig. 7.18 Replicator abstraction
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mDNA. β̄3′ acts as the primer, initiating the replication. Consider the replication
process after a few meta-nucleotides have been added (step 1). The growing strand
is attached via a single base pad (at the 3′ terminal meta-nucleotide) to the template.
The base pads of the rest of the meta-nucleotides are in the semi active unbound state
and hence cannot bind with each other. A new meta-nucleotide comes in (step 1)
with its base pad in the active unbound state and binds to the template (step 2). This
activates its 5′ end (step 3) and allows the 3′ end of the growing strand to bind (step 4).
This activates the 3′ end of the meta-nucleotide added and also cleaves the meta-base
pad binding between the template and the previously attached meta-nucleotide of the
growing strand, sending the cleaved meta-base pads to the semi active unbound state
(step 5). The process (step 1–5) repeats till the last meta-nucleotide β3′ attaches.
At this point, we want the two strands to separate. We achieve this by making the
meta-base pad bond between β3′ and β̄3′ relatively weak, allowing the strands to
separate spontaneously due to breathing of the base pad bond. This is implemented
by choosing a very short length sequence for the base pads of β3′ and β̄3′ . Both the
template and the newly synthesized ssmDNA can now act as templates for further
replication and hence we can achieve exponential amplification. Note that we can
easily introduce mutations in the replicator mechanism by designing DNA sequences
for certain base pads that do not have any exact complementary base pads but rather
several partial complements. This allows us to probabilistically evolve a diverse
sequence population of ssmDNA.

Let us examine the replicator protocol in greater detail, paying attention to the
strand diagram (Figs. 7.19 and 7.20). We have a four meta-base mDNA sequence,
with the first and last bases being the special terminator bases (step 1). Note that the
sequence g = g1g2 and ḡ = ḡ2ḡ1. A meta-nucleotide with an active unbound base
pad (step 1) comes in and binds to the template via the sequence b2a2 (step 2), strand
displacing out the sequences p̄b2 (part of the light green strand) and b̄2 (part of the
pink strand). The strand f x̄b2 now strips away b̄2x f̄ , activating the 5′ pad of the
incoming meta-nucleotide (step 3). This allows the 5′ pad f g1g2 to bind with the 3′
pad ḡ2ḡ1 f̄ , displacing ḡ2ḡ1 and opening up the hairpin structure p̄ā1l (step 4). This
allows the strand f yḡ2ḡ1 to be stripped away through the toehold ḡ2ḡ1, activating the
3′ end (step 5). The released hairpin from step 4 can now cleave a1 from ā1 using the
toehold p, which is half of the base pad binding, while the other half b̄1 of the base pad
binding is cleaved from b1 via the toehold p by the sequence p̄b1 (step 6). Note that
cleaving the bond between b1 and b̄1 is actually a reversible process, and could have
occurred after step 1 itself. Only when it is combined with the cleaving of the bond
between a1 and ā1 does it get biased towards the configuration depicted in step 6.
This completes the addition of a single meta-nucleotide accompanied by cleaving the
previous meta-nucleotide. The process repeats till the last meta-nucleotide is added
at which point the short base sequence of ā3′ b̄3′ allows the ssmDNA to separate due
to breathing. We note that both the separate ssmDNA are in a configuration that
allows them to act as template strands for further replication, allowing exponential
amplification of mDNA.
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Fig. 7.19 Internals of exponential amplification by replication-I

7.6 Lessons Learnt

In this work we have outlined a synthetic biochemical system made purely from
DNA strands that simulates the behavior of various protein enzymes acting on DNA.
We believe mDNA systems are a powerful programming paradigm for designing
complex biochemical systems. In Sect. 7.5.6 we provided a protocol for exponential
self-replication of a meta-DNA sequence and pointed out how to introduce mutations
during replication and thus achieving sequence diversity. Incorporating environmen-
tal selection pressure in mDNA to evolve functional biosystems is a major open
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Fig. 7.20 Internals of exponential amplification by replication-II

challenge. The next step in our investigations of mDNA systems is development of
a strand level kinetic simulation of mDNA protocols. We hope to use data from such
simulations to enhance and fine tune our protocols and also perform in vitro experi-
ments to validate them. A major facilitating factor in the field of DNA nanotechnol-
ogy has been technology to efficiently synthesize synthetic DNA strands of defined
sequence de novo from individual nucleotides. Analogously, we require methods
to efficiently (high throughput with low error rates) synthesize mDNA strands of
defined sequence from synthetic DNA. The current protection-deprotection DNA
synthesis protocols can be adapted for the use of synthesizing mDNA from pre-
formed meta-nucleotides. Note that meta-nucleotides can be synthesized using stan-
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dard hierarchical assembly techniques from DNA self-assembly developed by Park
et al. [14]. Other important protocols for mDNA systems are meta-polymerization
with meta-strand displacing capability and meta-ligation of mDNA strands.
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Chapter 8
Towards Modeling Automation
for Synthetic Biology

Chen Liao and Yizhi Cai

Abstract Rule-based modeling was first introduced to address the ‘combinatorial
complexity’ problem in cellular signaling. A number of software tools and methods
have been developed in recent years to make accurate predictions about the func-
tional role of proteins in signaling transduction systems. Many of these approaches
are based on formal languages, such as Kappa and BioNetGen (BNGL). Modeling
also plays an integrant role in synthetic biology, a new interdisciplinary subject aim-
ing to design novel biological systems. The specification of synthetic biology systems
using high level languages is still a challenge. In this article, we proposed to extend
the rule-based modeling from systems biology to synthetic biology and introduced
a new model-specification language, which allows quickly generating mathematical
models encoding the phenotypical behaviors of biological systems. Our approach
(termed AutoModel) also takes into account the context dependencies of biological
interactions, which makes it a desirable method for synthetic biology research.
A software implementation of our approach is available at https://github.com/
cliao15/Rulebase2011.
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8.1 Context-Dependency in Automatic Modeling

Recent progress has been made to develop rule-based approaches for modeling gene
expression and regulation (GenoCAD [1, 2], GEC [22], etc.). However, the exist-
ing methods are limited to model the impact of nonlocal contextual information on
biochemical processes. GEC associates a single property rate(R) to each ribosome
binding site (RBS) so a translational process can be represented as m → {R}m + p,
where m is for mRNA and p is for protein. This simplification assumes that the rate
of mRNA translation is solely dependent on RBS (local information) while nonlocal
information is ignored. However, this assumption does not work well all the time as
the secondary structure of mRNA also plays an important role in determining the
translation efficiency [5, 6, 15]. One possibility is that downstream genes may form
secondary structure with RBS and then completely or partially block the translation
initiation. For this respect, GenoCAD computes the translation rate at the cistron level
by associating the rate with information of both RBS and its downstream gene [2].
Considering mRNA translation can be controlled by a number of mechanisms var-
ied on different levels of complexity [9], merely pairing RBS with genes cannot
meet the requirement of accurate modeling until more contextual genetic elements
participating in the translational process are explicitly accounted for.

8.2 AutoModel

In this chapter, we will introduce a new tool AutoModel, which utilises the power
of rule-based modeling to automatically generate and simulate the genetic network
encoded by the designer sequences. Our approach partially overlaps with Kappa [4]
and BNGL [7] by sharing the same idea that reactions can be identified between
species possesing specific traits in molecular structures. Despite of similar modeling
framework, our method is more suited for modeling genetic networks composed of
DNA and RNA sequences, proteins as well as chemical molecules while theirs work
better for modeling signaling transduction systems. The flow chart of our approach
is shown in Fig. 8.1.

Section 8.2.1 defines reaction rules and describes every component of a reaction
rule in a detailed manner. Section 8.2.2 gives a short summary of diverse biological
interactions that can be described by our language through examples. Section 8.2.3
presents a step-by-step guide to writing an input file, in which we use genetic toggle
switch as an example. Finally, Sect. 8.2.4 remarks our achievements and gives some
new perspectives.
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Fig. 8.1 Flow chart for the translation of a rule-based program to a network of reactions. Users
construct genetic networks using our language in .model files. A .model file is then parsed to extract
a network of seed species. The compiling process iteratively applies reaction rules to the seed
network and generates a reaction network in both a native format and the SBML [12] format, which
can be read by prevailing simulators. New species and reactions identified during transformation
are added to a species list and a reaction list, respectively. Compilation is terminated either when
all possible species and reactions have been identified or by enforcing some kinds of criteria, such
as the number of species exceeds a maximum number limit

8.2.1 The Basics of Reaction Rules

Different from biochemical reactions, reaction rules only specify components
necessary for a transformation of reactants to take place. This idea is best illustrated
by functional group reactions in organic chemistry. For example, fatty acids con-
taining a carboxyl group (X–COOH) can react with alcohols containing a hydroxyl
group (Y–OH) to form esters (X–COO–Y). COOH and OH are reaction centers
which undergo changes while X and Y are reaction contexts which are free from
change. Because this chemical transformation can be ideally triggered independent
of what fatty acids and alcohols are involved, a number of chemical reactions can be
derived from such a single rule if we choose different X and Y groups. Therefore,
a reaction rule defines a class of reactions whose reactants meet the conditions of
triggering this rule.

Each reaction rule has four components: the left-hand side (LHS), the right-
hand side (RHS), the rule directionality and the kinetic law. The LHS of a reaction
rule specifies the conditioning of triggering this rule and the RHS specifies what
changes may occur on the LHS. Patterns are used to identify species in both sides:
reactant patterns define how reactant species are selected when reaction rules are
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applied and product patterns specify the transformation of those selected species.
Rule directionality can be either reversible (‘≤’) or irreversible (‘→’). If a reaction
rule is reversible and applied in the reverse direction, its product patterns are used
to select reactant species and the results of transformation implied by this rule are
reflected in the reactant patterns. The kinetic law of a reaction rule specifies at which
rate all biochemical reactions derived from this rule proceed and how the reaction
rate is related to the concentrations of reactant species. Both forward kinetic law and
reverse kinetic law are required for reversible reaction rules.

8.2.1.1 Species

Proteins are structured objects in rule-based modeling. Each protein has a number of
sites, which could bind other sites in protein-protein interactions and hold internal
states for post-translational modifications. For example (see Listing 1 of [7]), EGFR
has three sites: a binding site ‘L’ for its ligand EGF, a ligand-induced dimerization
site ‘CR1’ and an autophosphorylation site ‘Y1068’, and would be represented as
EGFR(L,CR1,Y1068∞U), where Y1068∞ U indicates the Y1068 site is unphospho-
rylated. Similarly, EGF has only one receptor binding site ‘R’ and would be repre-
sented as EGF(R). The ligand-receptor interaction between EGF and EGFR leads
to a binding complex EGFR(L!1,CR1,Y1068∞U).EGF(R!1), where the comma sep-
arates different components of a species and ‘!’ specifies a physical bond. The same
number following ‘!’ shared by two sites indicates a bond formation between them.
Note that a bond has exactly two terminal ends.

Another example is lac repressor (LacR), which is a homotetramer in structure.
The tetramer has two subunits, each of which is composed of two monomers and
binds to a DNA operator sequence. Each monomer has three domains that mediate
its interactions with other species [18]:

• a DNA-binding domain, which binds to the lac promoter in a dimeric form;
• a regulatory domain, which binds allolactose and allolactose analogues, such as

isopropyl-β-D-thiogalactopyranoside (IPTG);
• a tetramerisation domain, through which four monomers are joint.

A DNA loop is formed through the binding of two monomers of LacR to one
operator sequence and the other two monomers to a second operator sequence far
away from the former [21]. Each monomer of a lac dimer has a DNA-binding domain
‘dna’, an IPTG-binding domain ‘iptg’ and a dimerisation domain ‘dim’, and the lac
dimer would be represented as LacI(dna,iptg,dim!1).LacI(dna,iptg,dim!1). Addition-
ally, a binding complex of IPTG and lac monomer would be similarly represented
as LacI(dna,iptg!1,dim).IPTG(laci!1), where a bond forms between the ‘laci’ site of
the IPTG molecule and the ‘iptg’ site of the lac monomer.

DNA sequences can be viewed as compositions of individual functional parts.
For example, a transcriptional unit may consist of four parts sequentially placed in
order: a promoter, a ribosomal binding site (RBS), a coding sequence (CDS) and a
terminator. AutoModel employs the hyphen character (‘-’) to connect one part with



8 Towards Modeling Automation for Synthetic Biology 205

its adjacent parts. Since CDS should also have their RNA and protein representations,
we associate each representation with a specific character to indicate if it is a DNA,
RNA, or protein. Four possible characters are ‘d’ for DNA, ‘r’ for RNA, ‘p’ for protein
and ‘nb’ for molecules like IPTG (not a biological component). The representations
of mRNA transciript (with RBS) and protein form of tetR gene after translation are
r:rbs()-tetr(dna,atc,dim) and p:tetr(dna,atc,dim), respectively.

Site-specific DNA inversion has been discovered in many organisms [14, 16, 17]
and utilised in synthetic biology projects [10]. In the language of AutoModel, an
asterisk is used to indicate a part has been inverted, such as tetr∈(dna,atc,dim).

8.2.1.2 Patterns and Wildcards

Patterns are similar to species in definitions but have ambiguous and incomplete
specifications. The main difference between patterns and species is that patterns
specify only information necessary for triggering reaction rules and can thus be
taken as species selectors. For instance, p:LacI(iptg) is a pattern that describes any
lacI monomer which has a free IPTG binding domain, while p:LacI(dna,iptg,dim)
refers to a specific LacI monomer that contains a DNA binding domain, an IPTG
binding domain and also a dimerization domain. In other words, p:LacI(dna,iptg,dim)
is one instance of the pattern p:LacI(iptg) and besides lac monomer, the pattern
p:LacI(iptg) selects any species containing lac monomer as a component as long as
its IPTG binding site is free.

Using wildcards enables diverse patterns to be defined in various circumstances.
The wildcard ‘+’ indicates that a match may occur at an occupied site but the identifi-
cation of its binding partner is ignored. Another wildcard ‘?’, defined on the other way,
indicates that a match may occur at a site regardless whether there is a bond present
or not. For example, pattern p:LacI(iptg!?) selects both p:LacI(dna,iptg,dim) and
p:LacI(dna,iptg!1,dim).nb:IPTG(laci!1) while p:LacI(iptg!+) only selects the latter.
One advantage of using wildcards is that the writing of patterns can be simplified.
Both patterns, nb:IPTG(laci!+) and nb:IPTG(laci!1).p:LacI(iptg!1), are the same if
LacI is the only binding partner of IPTG.

X parts are newly introduced to match any DNA sequences (d:X), RNA sequences
(r:X) or protein (p:X). Besides used alone, each X part can be combined with other X
parts or non-X parts (parts with defined sequences and functions) to form more com-
plex patterns. The behavior of X parts can be modified by qualifiers, which is similar
to the use of ‘+’ as a qualifier of ‘.’ to modify its replacement to one or more characters
in regular expressions. Five qualifiers of X parts are given in Table 8.1, together with
their meanings and examples of usage. The first three qualifiers are self-explanatory.
Qualifier ‘>’ (‘<’) of an X part means, among all sequences that match this part,
those that include its nearest part should be excluded. For example, the subsequence
that matches the X part in d:plac(laci1,laci2)-rbs()-X-term() with regards to species
d:plac(laci1,laci2)-rbs()-tetr(dna,atc,dim)-term()-rbs()-laci(dna,iptg,dim)-term() is
underlined. However, if we replace ‘X’ with ‘X!>’ in the pattern, the underlined
subsequence is not yet approved in pattern matching since it contains the part term().



206 C. Liao and Y. Cai

Table 8.1 Qualifiers of X parts

Qualifier Meaning Example

? match zero or one part r:rbs()-X!?
+ match one or more parts r:rbs()-X!+
{n} match exactly n part(s) r:rbs()-X1!1-X2
> exclude downstream part d:term∈()-X∈!<-rbs∈()-plac∈(laci1,laci2)
< exclude upstream part d:plac(laci1,laci2)-rbs()-X!>-term()

8.2.1.3 Kinetic Law

The kinetic law of a reaction rule defines the rate of a reaction. In the context of
biological modeling, three most frequently-used kinetic models are the law of mass
action, Hill kinetics and Michaelis-Menten kinetics. The law of mass action is con-
cerned with the rate equations of elementary reactions. The reaction rate of equation
‘aA + bB → cC + dD’ is assumed to have a mathematic form α[A]a[B]b, where α is a
constant and the values for species enclosed by square brackets (i.e. A and B) are their
concentrations. Hill kinetics describes the saturation of a receptor as a function of its
ligand concentration. The mathematic form of this saturation is Vm Ln/(K n

1/2 + Ln),
where Vm , K1/2, L , and n are the maximal saturation, the ligand concentration to
achieve half maximal saturation, the ligand concentration and the Hill coefficient,
respectively. Hill function is expected to increase slowly when L < K1/2 and rapidly
when L > K1/2. If the Hill coefficient is very large, this function behaves like a step
function. The third kinetic model is Michaelis-Menten equation, which is a special
form of Hill kinetics when the hill coefficient is one. It models the enzymatic mecha-
nism of a single substrate: E + S � E S → E + P , in which E, S and P are enzyme,
substrate and product, respectively. The mathematic form of a Michaelis-Menten
type of reaction rate is kcat Et S/(K1/2 + S), where the maximal rate is proportional
to the total enzyme concentration Et and the scale factor is kcat .

Six candidate kinetic laws that are mostly encountered in biochemical reactions are
utilised in our approach to define reaction rules (see Table 8.2). Calculating reaction
rates from a formula requires that each parameter is assigned with a constant value
and each variable is tied to the concentration of a particular reactant. A reaction rule
having mass_action_1(1,#1) as its kinetic law implies the rates of selected reactions
has a mathematical form ‘k ∈ x’, where k is equal to one and x is the concentration
of the first reactant. Similarly, ‘#2’ means the second reactant and ‘#3’ means the
third reactant, etc. Parameter units in kinetic laws should be specified in a consistent
manner, although they are not explicitly required.
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Table 8.2 Kinetic laws used for reaction rule definitions

Kinetic law Formula Usage

basal rate k basal_rate(k)
MassAction-one k ∈ x mass_action_1(k,x)
MassAction-two k ∈ x ∈ y mass_action_2(k,x,y)
Hill-Kinetics V m ∈ Sn/(K p + Sn) hill_kinetics(Vm,n,Kp,S)
Henri-Michaelis-Menten kcat ∈ E0 ∈ S/(K m + S) henri_michaelis_menten(kcat,E0,Km,S)
Ordered-Bi-Bi kcat ∈ E0/(K s/A/B+ ordered_bi_bi(kcat,E0,Ks,Kma,Kmb,A,B)

K ma/A + K mb/B + 1)

8.2.2 A Short Summary: The Applications

8.2.2.1 Binding/Unbinding Interactions

Protein-DNA interactions can be very complex if multiple protein subunits bind to
DNA sequences at different loci and function cooperatively. One simple situation is
a homodimer specifically binds to the promoter region. For example, the binding of
the lac dimer to the lac promoter in IPTG-free context would be represented as

d:X1-plac(laci1,laci2)-X2 + p:LacI(dna,iptg,dim!1).p:LacI(dna,iptg,dim!1) <->
d:X1-plac(laci1!2,laci2!3)-X2.p:LacI(dna!2,iptg,dim!1).p:LacI(dna!3,iptg,dim!1)
mass_action_2(1e8,#1,#2) mass_action_1(1e-2,#1)

where parameters in both forward kinetic law and reverse kinetic law are arbitrarily
chosen but within a reasonable range (the same below). Besides, we can explore
the possibility of other regulatory mechanisms. One such mechanism is that the lac
monomer is able to bind to one of the two sites of the lac promoter to form reaction
intermediates. Since the lac promoter has two distinct protein binding sites, two other
reaction rules,

d:X1-plac(laci1)-X2 + p:LacI(dna,iptg,dim) <-> d:X1-plac(laci1!1)-X2.p:LacI
(dna!1,iptg,dim) mass_action_2(1e6,#1,#2) mass_action_1 (1e-2,#1)

and

d:X1-plac(laci2)-X2 + p:LacI(dna,iptg,dim) <-> d:X1-plac(laci2!1)-X2.p:LacI
(dna!1,iptg,dim) mass_action_2(1e6,#1,#2) mass_action_1 (1e-2,#1)

should be added. The use of small rate constants implies that the lac dimer is favored
over the lac monomer for binding to the lac promoter. Reaction rules for heterodimers
and other protein complexes binding to the promoter regions can be written in similar
fashions.

8.2.2.2 Catalysis

Enzyme catalysis is a highly efficient mechanism that is instrumental for cellular
activities. As we have discussed in Sect. 8.2.1.3, this type of interaction is usually
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modeled by a two-step cascade reaction E + S � E S → E + P . However, it can
be reduced to a one-step reaction E → E + P if the amount of the substrate is very
large. This is because the reaction rate is approximated to kcat Et if S ≥ K1/2. The
synthesis of 3OC6HSL by LuxI protein would be represented as

@p:LuxI() -> nb:3OC6HSL(luxr) mass_action_1(0.45,#1)

where we use ‘@’ to label catalysts. Not only protein, but mRNA is able to cat-
alyze biochemical processes. The Isaacs’ riboregulator trans-activating key taR12
and cis-repressed lock crR12 are used together to regulate the mRNA-level genetic
expression [13]. The RBS of crR12, which is initially blocked by a stem-loop struc-
ture, becomes exposed at the presence of taR12. The state change of the crR12’s
RBS can be described by the reaction rule

@r:taR12() + r:X1-crR12(rib˜off)-X2 -> r:X1-crR12(rib˜on)-X2
henri_michaelis_menten(7.6,#1,9e-4,#2)

which is a simplified version of the cascade of two reaction rules (in which kinetic
laws are omitted)

r:taR12(crr12) + r:X1-crR12(tar12,rib˜off)-X2 <-> r:X1-crR12(tar12!1,rib˜off)
-X2.r:taR12(crr12!1)-> r:taR12(crr12) + r:X1-crR12(tar12,rib˜on)-X2

8.2.2.3 Transcription and Translation

Transcriptional and translational rules have to be defined with the aid of X parts. A
class of transcriptional reactions driven by the lac promoter can be defined by the
reaction rule

@d:X1-plac(laci1,laci2)-X2!>-term()-X3 -> r:X2 mass_action_1(0.8,#1)

in which we assume transcription ends at the first terminator completely so the
use of the qualifier ‘>’ excludes the case of producing wrong transcripts when
this rule is applied to DNA sequences containing more than one terminators. For
example, the only mRNA transcript of the DNA sequence d:plac(laci1,laci2)-rbs()-
tetr(dna,atc,dim)-term()-rbs()-laci(dna,iptg,dim)-term() is r:rbs()-tetr(dna,atc,dim).

However, most terminators do not terminate transcriptions with 100 % effi-
ciency [20]. If the termination efficiency of the terminator term() is less than one,
the DNA sequence may be transcribed to produce another mRNA transcript r:rbs()-
tetr(dna,atc,dim)-term()-rbs()-laci(dna,iptg,dim) in which case RNA polymerase
reads through the terminator. To take into account the incomplete transcriptional
termination, we may add a similar reaction rule by removing the qualifier ‘>’ of the
part X2:

@d:X1-plac(laci1,laci2)-X2-term()-X3 -> r:X2 mass_action_1(0.1,#1)

If we apply both rules to the DNA sequence, the concentration ratio of the shorter
transcript to the longer transcript is 9:1 and the termination efficiency of the terminator
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is thus 90 %. Different termination efficiencies can be obtained by balancing the
reaction rates of the two rules.

On the other hand, translational rules are defined by replacing the open reading
frame (ORF) with an X part which only selects one mRNA part:

@r:X1-rbs()-X2!1-X3 -> r:X2 mass_action_1(0.1,#1)

However, a translation of fused proteins may require developing new parts like start
codon and stop codon, through which the length of an ORF can be determined.

8.2.2.4 Protein/mRNA Degradation

Protein and mRNA degradation are key for organisms to stabilize gene expression
level. Each protein has a specific degradation rate and thus a specific reaction rule
for its degradation. For example, the reaction rule for lac monomer degradation is

p:LacI(dna,iptg,dim) -> (nothing) basal_rate(5e-3)

Moreover, we know proteins can be partially degraded within protein-protein com-
plexes or protein-DNA complexes. One approach of specifying partial protein degra-
dations is replacing individual proteins with protein complex patterns in the reaction
rule shown above. Each of the three reaction rules

p:LacI(dna!+,iptg,dim) -> (nothing) basal_rate(5e-3)
p:LacI(dna,iptg!+,dim) -> (nothing) basal_rate(5e-3)
p:LacI(dna,iptg,dim!+) -> (nothing) basal_rate(5e-3)

defines a class of protein degradation reactions. They are partial degradations of a lac
mononer within its binding complexes containing a lac promoter, an IPTG molecule
and another lac monomer, respectively.

Different from protein degradation, degradation rates are generally unknown for
most polycistronic mRNAs. Although we could relate a mRNA pattern with a specific
degradation rate, a more practical way is assuming mRNA degradation has a global
rate and all mRNAs degrade at the same rate. The reaction rule for mRNA degradation
under this assumption can be simply written as:

r:X -> (nothing) basal_rate(0.1)

8.2.2.5 Site-Specific DNA Recombination

Site-specific DNA recombination is a natural mechanism for rearrangements of DNA
segments in living cells. Typical recombination systems have only one recombinase
enzyme and a pair of recombination sites. One famous example is the Cre-lox sys-
tem [23, 24]. The outcome of a Cre-lox recombination depends on the configuration
of the flanking loxP sites. If the two loxP core sequences are oppositely oriented on
the same DNA segment, Cre recombinase mediates the inversion of the flanked DNA
segment:
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@p:Cre() + d:X1-loxP()-X2-loxP*()-X3 -> d:X1-loxP()-X2*-loxP*()-X3
henri_michaelis_menten(7.6,#1,9e-4,#2)

Besides, if the two loxP sites are located on different DNA segments, a Cre-mediated
DNA segment translocation may occur:

@p:Cre() + d:X1-loxP()-X2 + d:X3-loxP()-X4 -> d:X1-loxP()-X4 + d:X3-loxP()
-X2ordered_bi_bi(7.6,#1,9e-4,3e-2,3e-2,#2,#3)

where we assume this process is controlled by a two-substrate enzyme kinetic model.
Finally, if the two loxP sites are oriented in the same direction on the same DNA
segment, the flanked gene is deleted by Cre recombinase and a circularised DNA
composed of this deleted gene and a loxP site is then formed.

8.2.3 Model Specification: Genetic Toggle Switch

A genetic toggle switch consists of two repressors and two promoters, each of which
is inhibited by the repressor transcribed by the other promoter [8]. We choose LacR,
TetR as the two repressors and lac promoter, tet promoter as the two promoters,
correspondingly. The network diagram is drawn in Fig. 8.2 using TinkerCell [3].
Since LacR has a much higher binding affinity to lac promoter than that between
TetR and tet promoter, a strong binding of LacR to the lac promoter would repress
the transcription of the tetR gene and thus the amount of TetR will decrease, which
in turn relieves its repression to the tet promoter and increases the amount of LacR.
As a result, LacR is at a high expression level while TetR is at a low expression
level. A certain amount of IPTG binding to LacR would relieve the repression of
the lac promoter. Similarly, the toggle switch transits to another state at which LacR
is at a low expression level while TetR is at a high expression level. To model this
transition, we write a rule-based program by specifying four blocks: parameters,
compartments, seedspecies and events, each of which describes one particular aspect
of the toggle switch. Reaction rules for the lac and tet systems are specified in
databases. By submitting the program to our software, a reaction network of the
toggle switch, which is encoded in the SBML format, is generated within one second.
The network generated automatically by AutoModel has 15 species and 33 reactions.
We then simulate the network using COPASI [11] and the time course simulation of
the network shows expected dynamics (see Fig. 8.3). We will show below how to
construct a toggle switch model in our approach step by step.

8.2.3.1 Step 1: Specify Parameters

This block defines global parameters that can be used in other blocks. The syntax of
parameter definition is <name value>. The name element gives each parameter a
unique name and the value of each parameter is given by the value element, which
can be either a number or a formula involving several other parameters. The order
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Fig. 8.2 Network diagram of the genetic toggle switch system. The CDS part BBa_C0040 (tetR
gene) codes for TetR protein and the promoter part BBa_R0040 (tet promoter) is negatively reg-
ulated by this protein. Similarly, the CDS part BBa_C0012 (lacI gene) codes for LacR protein
and the promoter part BBa_R0010 (lac promoter) is negatively regulated by this protein. The part
BBa_B0034 is an RBS and the part BBa_B0014 is a terminator. All the parts shown here are from
the MIT registry

Fig. 8.3 Time course simulation of the genetic toggle switch model. At the beginning of the
simulation, LacR is highly expressed while TetR is strongly repressed. A phase transition is observed
about 1.4 h after IPTG is added. Then, the expression of TetR goes up to a high level while the
expression of LacR goes down to a low level. Here LacR and TetR are referred to the protein
products of the lacI gene and the tetR gene, respectively

parameters are defined is not restricted and parameter units should be specified con-
sistently. Here is the parameters block for the toggle switch model (comments start
with a hash sign (‘#’)):

<parameters>
NA 6.02e23 # Avogadro
f 1
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Ve f*0.4 # L
V f*7e-16 # L
N 100
iptg_init 0.0
dna1_init 1/NA/V # M
dna2_init 1/NA/V # M
pulse1_start 10000 # sec
pulse1_conc 1e-3 # M
</parameters>

8.2.3.2 Step 2: Specify Compartments

A compartment is a three-dimensional enclosed space where species locate in and
usually takes a correspondence to some type of cells. The syntax of compartment
definition is <name outside table [volume] [population]>. Its name and space vol-
ume are given by name and volume, respectively. Our approach does not take into
account the cell growth and division but instead uses a fixed cell number, whose
value is given by the population element. Both volume and population are optional
(delimited by square bracket []) and the default value for both is one.

Topological relationships between compartments can be simply defined by speci-
fying the outside element of each compartment, which should be the name of another
compartment surrounding it. The hierarchically organized compartments have a tree
structure, where each node, except the root, is allowed to have only one parent (out-
side compartment) and any number of children (inside compartments). The outside
element of a root compartment is ‘ROOT’.

A compartment is essentially a virtual boundary that confines the movement of
species within it. The space enclosed by the boundary significantly reduces the pos-
sibility that molecules from different compartments collide and it is thus likely to
isolate inside biochemical reactions from the outside. For this reason, we associate
each compartment with a distinct set of reaction rules which are stored in a table
whose name is given by the table element. The reaction rules for a particular com-
partment specify how the species in that compartment transform and the compartment
develops its own seed network in parallel with other compartments.

Below is an example for Escherichia coli (E. coli) cells ‘Ecoli’ in the medium
being an outside compartment ‘Medium’. A set of reaction rules for ‘Ecoli’ can be
found in the table named ‘toggle_switch’ in the database (see Sect. 8.2.3.5). The
table ‘medium’ is empty because no reactions are expected to occur outside E. coli
cells. Note volumes of both compartments and the number of E. coli cells have been
defined in the parameters block.

<compartments>
Medium ROOT medium Ve
Ecoli Medium toggle_switch V N
</compartments>
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8.2.3.3 Step 3: Specify Seedspecies

All species defined in this block constitute a seed network. The syntax of seed
species definition is<compartment name structure [init_conc] [is_const]>. For each
species, we need to specify compartment for its location, name for its name, structure
for its molecular structure (see Sect. 8.2.1.1), init_conc for its initial concentration
and is_const for if its concentration is kept constant. The is_const element can be
either ‘True’ or ‘False’. If not specified, the is_const element has a default value
‘False’ and the init_conc element has a default value 0.0.

We assume single copy of each expression cassette shown in Fig. 8.2. A single-
copy plasmid has an initial concentration 1/N A/V , in which NA is the Avogadro’s
number and V is the volume of the compartment ‘Ecoli’. The initial concentrations
of both expression cassettes, ‘dna1_init’ and ‘dna2_init’, have been defined in the
parameters block. The seedspecies block of the toggle switch model is given as
follows:

<seedspecies>
Medium iptg nb:i0001(laci) iptg_init
Ecoli dna1 d:r0040(tetr1,tetr2)-b0034()-c0012(dna,iptg,dim)-b0014() dna1_init
Ecoli dna2 d:r0010(laci1,laci2)-b0034()-c0040(dna,atc,dim) -b0014() dna2_init
</seedspecies>

8.2.3.4 Step 4: Specify Events

An event in AutoModel is defined to change variables, which can be compartment
volumes, seed species concentrations, and parameter values, instantly at a certain
time point. The syntax of event definition is <name trig_cond event_assignment_1
event_assignment_2 ...>. The trig_cond element specifies the conditioning of an
event to take place and the event is executed every time trig_cond turns from false to
true during simulation. The effect of an event is specified in a list of event assignment
elements, event_assignment_1, event_assignment_2, etc. Each event assignment has
a syntax <variable=expression>, in which the expression can be a formula involving
other defined variables. The only event for the toggle switch system is adding IPTG
of amount ‘pulse1_conc’ to the medium at the time ‘pulse1_start’. The keyword
‘time’ used here is to track the simulation time.

<events>
pulse1 time>pulse1_start iptg=pulse1_conc
</events>

8.2.3.5 Step 5: Specify Reaction Rules

Two assumptions are made for the writing of reaction rules: (1) only dimers (both the
lac dimer and the tet dimer) can bind to the promoter regions while the monomers
cannot; (2) IPTG can bind to the lac monomer in whatever complexes as long as
the DNA-binding site of the monomer is not occupied. Since we have given an
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in-depth look at how to represent typical biological interactions using reaction rules
in Sect. 8.2.2, we are not going to repeat it again but only list the reaction rules for
the toggle switch system below.

#dimerisation of the tet monomer
p:c0040(dim,dna) + p:c0040(dim,dna) <-> p:c0040(dim!1,dna).p:c0040(dim!1,dna)
mass_action_2(1.79e7,#1,#2) mass_action_1(10,#1)

#tet dimer binds to the tet promoter
p:c0040(dna,atc,dim!1).p:c0040(dna,atc,dim!1) + d:X1-r0040(tetr1,tetr2)-X2 <->
p:c0040(dna!1,atc,dim!3).p:c0040(dna!2,atc,dim!3).d:X1-r0040(tetr1!1,tetr2!2)
-X2 mass_action_2(1e8,#1,#2) mass_action_1(1e-2,#1)

#IPTG binds to the lac monomer
p:c0012(iptg,dna) + nb:i0001(laci) <-> p:c0012(iptg!1,dna).nb:i0001(laci!1)
mass_action_2(1e6,#1,#2) mass_action_1(0.2,#1)

#dimerisation of the lac monomer
p:c0012(dim,dna) + p:c0012(dim,dna) <-> p:c0012(dim!1,dna).p:c0012(dim!1,dna)
mass_action_2(1.25e7,#1,#2) mass_action_1(10,#1)

#lac dimer binds to the lac promoter
p:c0012(dna,iptg,dim!1).p:c0012(dna,iptg,dim!1) + d:X1-r0010(laci1,laci2)-X2
<-> p:c0012(dna!1,iptg,dim!3).p:c0012(dna!2,iptg,dim!3).d:X1-r0010(laci1!1,
laci2!2)-X2 mass_action_2(2e10,#1,#2) mass_action_1(0.04,#1)

#transcription by the lac promoter
@d:X1-r0010(laci1,laci2)-X2!>-b0014()-X3 r:X2 mass_action_1(0.5,#1)

#leaky transcription by the lac promoter
@d:X1-r0010(laci1!+,laci2!+)-X2!>-b0014()-X3 -> r:X2 mass_action_1(0.0005,#1)

#transcription by the tet promoter
@d:X1-r0040(tetr1,tetr2)-X2!>-b0014()-X3 -> r:X2 mass_action_1(0.5,#1)

#leaky transcription by the tet promoter
@d:X1-r0040(tetr1!+,tetr2!+)-X2!>-b0014()-X3 -> r:X2 mass_action_1(0.0005,#1)

#translation
@r:X1-b0034()-X2!1-X3 -> p:X2 mass_action_1(0.01155,#1)

#mRNA degradation
r:X -> (nothing) mass_action_1(0.005783,#1)

#(partial) degradation of the lac monomer
p:c0012(dim) -> (nothing) mass_action_1(2.31e-3,#1)

#(partial) degradation of the tet monomer
p:c0040(dim) -> (nothing) mass_action_1(2.31e-3,#1)

Additionally, IPTG molecules can diffuse through the boundary of compartments
(see Fig. 8.4). Transport reactions of IPTG are modelled by two coupled ordinary
differential equations (ODEs) [19]:

d[IPTG_in]
dt

= kin[IPTG_out] − kout [IPTG_in]
d[IPTG_out]

dt
= Ncell(kout [IPTG_in] − kin[IPTG_out])
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Fig. 8.4 Transport of IPTG
molecules through cell
membrane

where [IPTG_in] and [IPTG_out] are the IPTG concentrations in the compartment
‘Ecoli’ and ‘Medium’, respectively. Ncell is the number of E. coli cells and both kin

and kout are 0.1.

8.2.4 Remarks

We have developed a new rule-based approach for modeling synthetic biological
systems termed AutoModel. Reaction rules are introduced to represent various types
of biological interactions. We have made a small step forward towards two goals:
(1) high-level specification of contextual information for biological interactions and
(2) high degree of automation in the modeling process. The first goal is achieved
by explicitly modeling the behavior of functional components of a species rather
than the behavior of the species as a whole. The functional components include
but not limited to DNA-binding domains, protein-binding domains, phosphorylation
domains, operator sequences within promoters, RBS, CDS and terminators. The
second goal is achieved by separating the specification of reaction rules from the
rest part of the model specification. A database of reaction rules for the frequently
utilised mechanisms in constructing genetic devices, such as the lac system, the tet
system, the lux system and the arabinose system, may be created for the public use.
This makes biological models accessible to non-specialists, who are then able to
obtain insights into some basic biological systems.

However, there is much room for our approach to improve. First of all, the selec-
tion capabilities of X parts can be further extended. For example, we may want to
specify a DNA sequence which includes tetR gene but not lacI gene. We anticipate
a logic expressoin like X(lacI AND (NOT tetR)) can be developed to provide these
capabilities in the future. Additionally, our language is not formal yet so analysis
like model checking cannot be performed on the models in the frameworks of both
formal language theory and automata theory. Other focuses may include graphi-
cal user interface (GUI), web service and interactions with other CAD tools. By
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developing a powerful and practical software tool, we can increase the ability for
precise quantification of biological systems, which is the ultimate goal of the whole
biology community.
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Chapter 9
An Investigation of Signal Transduction
and Irreversible Decision Making Through
Monostable and Bistable Switches

J. Krishnan and C. Liu

Abstract Highly nonlinear signal transduction is ubiquitous in cell signalling
pathways with switch-like behaviour encountered repeatedly. Monostable and
bistable switches represent distinct basic switches which are encountered. A number
of contexts in cellular signalling (e.g. apopotosis and cell cycle) involve essentially
irreversible transitions and decision making. In this article we examine signal trans-
duction through prototypical monostable and bistable switches with a view towards
understanding how irreversible signal transduction may occur through them and also
examine the similarities and differences in signal transduction and decision making
to classes of experimentally employed inputs. The study provides insights into how
irreversible transitions may be orchestrated through different switches in cell sig-
nalling, the underlying design characteristics, capabilities and constraints involved,
and the extent to which these switches can be distinguished based on irreversible
decision making to experimentally available classes of inputs.

Keywords Signal transduction · Monostable · Bistable · Cellular signaling

9.1 Introduction

Cells respond to their environment and also regulate different aspects of their
internal organization by highly complex signal transduction and gene regulatory
networks. Such networks allow for cells to respond to multiple cues in their environ-
ment in an appropriate fashion. Examples of cellular responses include cell move-
ment, programmed cell death (apoptosis), mitigating the effects of stresses and
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communicating with surrounding cells. Other aspects of the internal organization
of cells such as the cell cycle and cell division, to name just two examples, are also
robustly orchestrated through complex signalling and gene regulatory networks.

In order for signal transduction networks to perform their tasks and maintain
cellular function and allow for robust decision making, highly non-linear signal
transduction is necessary. Switch-like behaviour is a frequently observed signalling
characteristic in signal transduction networks. This allows for strong responses to be
elicited only when the stimulus strength is sufficiently high, whereupon a substantial
difference in response is oberved. Switching behaviour may be obtained in cellu-
lar signalling pathways through a multitude of mechanisms, including co-operative
effects, zeroth-order ultrasensitivity [5], combined effects in a cascade [7], seques-
tration [13], multiphosphorylation [9, 14] and positive feedback [4]. Broadly, how-
ever, there are two classes of switching behaviour which are observed: monostable
switches wherein the system possesses a single stable steady state for a fixed value
of input and bistable (or more generally multistable) switches where the system pos-
sesses more than one stable steady state for a fixed value of input, which forms the
basis for the switching behavior. Multiple combinations of factors can give rise to
both kinds of switching behaviour, sometimes in the same pathways. Both kinds
of switches have been investigated in considerable detail through modelling and
experiments, both in specific contexts and also more generally.

A specific feature of signal transduction in cellular networks is that in specific
instances it can be essentially irreversible. Examples include apoptosis leading to an
irreversible decision of killing, or in the cell cycle, wherein essentially irreversible
transitions occur for the cell to progress through different phases of the cell cycle.
Others include decisions made by stem cells to proliferate or differentiate. All these
processes are robustly orchestrated by networks to make these essentially irreversible
changes. Irreversible changes can also occur in signalling where individual mole-
cular species are targetted for degradation. It is thus important to understand how
networks and pathways are organized and primed for realizing such irreversible
changes appropriately and robustly.

Irreversible input-output behaviour is observed in dynamical systems with
multiple steady states (or multiple attractors generally), and this has been the basis
of a large body of modelling wherein irreversible signal processing and decision
making in networks are modelled by bistable or multistable networks. Examples of
this include modelling the apoptosis pathway as a bistable network, based on evi-
dence of positive feedback in the pathways [3, 17], and modelling irrversible decision
making in other processes similarly [10, 11, 16]. However in cellular systems, an
irreversibility may result in a pathway from a new irreversible transition occurring
when a particular threshold is crossed. Thus in this case cells may make use of nat-
ural machinery available to them to induce an essentially irreversible transition, such
as cutting of the DNA. In some cases, the presence of multistationarity in vivo has
been demonstrated, while in other cases it is unclear if it is actually present. Never-
theless it has been invoked to particularly capture the irreversible feature of signal
transduction.
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We thus see that there are qualitatively distinct ways in which irreversible
transitions may be orchestrated, and it is of importance to understand the simi-
larities and differences between them. Since there are substantial differences in the
underlying signalling even qualitatively, it is important to identify the characteristics
of each type of switch so that the modelling of such behaviour in concrete contexts
is performed on a qualitatively correct basis. A particular challenge is the fact that
experimentally only limited classes of inputs are used to elucidate signalling in many
systems.

Motivated by such considerations, we investigate switch-like and irreversible
decision making by examining simple, essentially minimal, models relevant to the
issue at hand. We consider a series of four models which involve a switch-like
process connected to a decision-module. Two possibilities for the switch are exam-
ined: a monostable and a bistable switch. Two possibilities for the decision-module
are also considered, a reversible module and an irreversible module. A decision is
taken when a key threshold is crossed in the decision-module. In this manner we
obtain 4 modules, each of which has essential qualitative differences. It is worth
pointing out that every one of these configurations has been invoked either explicitly
or implicitly in specific contexts.

We examine these modules with respect to the conditions under which particular
decisions are taken. Thus, we will focus on an essentially binary aspect of the sig-
nalling through the network: whether the particular decision is taken or not. Further,
we examine these modules through classes of inputs (or extensions thereof) which
are experimentally observed. The inputs we consider are step inputs, single pulse
inputs of different intensity and duration, double pulse inputs and pulse trains of
different strength, duration and spacing. We examine the response of these modules
to understand where the similarities and diffferences lie.

The chapter is organized as follows. In Sect. 9.2 we discuss the models which are
employed. The following section presents the results, and the final section sum-
marizes and synthesizes the results and discusses insights and relevance to cell
signalling.

9.2 Models and Methods

We now present the models which we base our investigation on. Since the focus is on
monostable and bistable switches and reversible and irreversible signal transduction,
we use appropriate models which focus on these essential aspects. At the outset we
note that there are multiple factors which can give rise to monostable switches in
signalling pathways: these include co-operativity, gradual combinations of steps in a
cascade (e.g. MAPK cascades), zeroth order ultrasensitivity, sequestration/molecular
titration and multisite phosphorylation. Likewise bistability typically results from
strong positive feedback, which could include double negative feedback. Naturally
there are different models for monostable switches, and also different model variants
for bistable switches. This could be also generated via mechanisms such as multisite
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Fig. 9.1 Schematic of combinations of upstream and downstream modules. The models investigated
are a A monostable reversible model b A bistable reversible model c A monostable irreversible
model d A bistable irreversible model

phosphorylation which does not have an explicit positive feedback at the level of
network components [9, 14].

Since our focus is to examine representative aspects of signal transduction
involving monostable and bistable switches and irreversibility in particular, we
employ relatively simple and tractable models of monostable and bistable switches.
We are mainly concerned with the input-output behaviour of these pathways and
thus the details of the models for the most part do not play any important role in our
analysis. More complex switches with additional features encountered in specific
contexts may possibly exhibit some differences, but this may then be understood
both in terms of how generic switches function and the additional effects which are
present there.

In order to focus on the issues of interest, we will focus on 4 models (see Fig. 9.1).
The models involve a sequential interconnection between a switch module (either
monostable or bistable) and a decision module (either reversible or irreversible). The
decision module gives rise to a specific decision when a threshold in this module is
crossed. Thus the 4 different designs we examine are a monstable-reversible model, a
bistable reversible model, a monostable-irreversible model and a bistable-irreversible
model. Examining these models together allows us to elucidate difference and sim-
ilarities between monostable and bistable models with and without irreversibility.

The monostable module which we employ involves a simple feedforward Hill-
type nonlinearity: the Hill coefficient determines the sharpness of the switch. The
model describes the conversion of one species X (present in excess) into another X∗
via an upstream signal S. The governing equation is

d X∗/dt = k(Sn/(An + Sn) − X∗) (9.1)

When this switch is very sharp, it may be well approximated by a step function at
the location S = A, giving rise to the equation
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d X∗/dt = k(H(S − A) − X∗) (9.2)

The monostable module has two parameters in addition to the Hill coefficient: A
which sets the location of the threshold, and k which sets the timescale of the reaction.
We will perform simulations with the Hill model, and analyze the case of the sharp
switch above.

The bistable module, on the other hand is described by a simple model which
captures all the features of bistability and which is tractable (also see Seaton and
Krishnan [12]):

d X∗/dt = −αX∗, a + bS < 0

d X∗/dt = αX∗(1 − X∗)(X∗ − 1 + a + bS), 0 < a + bS < 1

d X∗/dt = α(1 − X∗), a + bS > 1 (9.3)

The bistable module has an analogous parameter α which sets the time scale of
the reaction. In addition it has two parameters a which sets the basal condition of
the switch and b which determines at what signal intensity, the switch is triggered.
Note that in this model, we will assume both a and b are positive. This means that
a + bS is always positive. Since we wish to compare the two switches on an essentially
equal footing, we choose parameters so that the switching thresholds are at the same
location. Thus in the monostable module, we choose A = 1 and choose a high
Hill coefficient of about 10. This ensures that a stimulus strength of 1 (in non-
dimensionless terms) results in switching. In the bistable switch, the parameter a is
chosen so that the basal condition is well within the bistable region a < 1). Note that
the signal strength is strictly non-negative and that with positive a, the basal state
is one in the bistable regime. Since the intrinsic threshold in the bistable switch is
when a + bS = 1, a choice of b = 1 − a ensures that the switching location is also
S = 1. Now the parameters α and k is the above models are chosen so as to represent
comparable time scales in the two modules.

It is worth pointing out that our models, which are essentially minimal models of
monostable and bistable switches have identical amplitudes (they switch from 0 to 1)
and identical switching thresholds, and comparable time scales.

These models are sequentially “connected” to a decision module

d R∗/dt = k f X∗(1 − R∗) − kr R∗ (9.4)

Here the output of the upstream module catalytically drives the downstream reaction.
Implicitly it is assumed that a negligible amount of X∗ is taken up in this conversion
process, and that this reaction may be described by mass action kinetics. In other
words there is negligible retroactivity. This is a very reasonable assumption since (1)
The aspect of holdup is somewhat tangential to the focus of our investigations and (2)
We are in any case employing simplified descriptions which implicitly coarse-grain
many features. Ultimately our models captures the essential aspects of sequential
signalling and information flow leading to decision making.
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In the decision module, a decision is taken when R∗ crosses a threshold Ro

(since R∗ cannot exceed 1, Ro < 1). If this happens in an irreversible fashion,
this results in the irreversible decision module, whereas if it happens in a reversible
fashion, this is a reversible decision module. Even though biochemical reactions in
a cell are typically reversible, in specific instances crossing a threshold can initiate
a series of events/transitions before the system reaches any steady state which is
essentially irreversible. In other cases the nature of the decision is clearly irreversible
(eg cell death). We thus see that the decision modules have the same threshold and
only differ in whether they are by themselves capable of reversible or irreversible
decisions. Sample parameters for this module are chosen so as to ensure that the
threshold can indeed be reached through the driving upstream module.

Our focus will be to examine the behaviour of each of the four modules. Further, we
will focus on the decision making in each of the 4 modules and in particular whether
an irrversible decision (which we also refer to as a transition) is triggered. In partic-
ular we will examine the behaviour of these modules to typical well-characterized
stimuli similar to those available in experiments. These are (1) Step inputs (2) Single
(rectangular) pulses of differing amplitude and time duration (3) Double rectangu-
lar pulses where the time duration between pulses is an additional parameter and
(4) Rectangular pulse trains. Simulations are performed in MATLAB.

Our investigation will thus yield insights into signal transduction and irreversible
decision making in these modules subject to classes of well characterized inputs.
This will also reveal to what extent each of these modules is similar and under which
conditions, differences might arise.

9.3 Results

In this section we examine the dynamic response of our models to various inputs,
analyze the model behaviour and examine the effects of model parameters and also
briefly examine similar signal processing in more complex models. We start by
examining the dynamic behaviour of the models in detail.

9.3.1 Signalling Dynamics

We first examine the behaviour of all our models to a series of inputs of increasing
complexity. Parameter values in the models are fixed for this purpose. The only
parameters which will be varied are those associated with the signal. The effects of
model parameters are discussed later on in this section. The input signals considered
are (i) Step input, with the size of the step being the associated parameter (ii) A
rectangular pulse input which has two parameters, the height of the pulse and the
width of the pulse (iii) A double rectangular pulse, which involves two rectangular
pulses of identical structure separated by a time interval, which results in an additional
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Fig. 9.2 Response of models to step signal. Output response under constant signal input for all
models. A similar behaviour is seen for all models

parameter (iv ) A pulse train of identical pulses which is characterized by the pulse
height, width and spacing. The focus in our investigation is on the decision making in
the models, which is essentially of a binary nature. In the case of the first three inputs
a steady asymptotic sate is indeed attained, while that is not necessarily the case
for the last input. Our focus will be on when the output of the models corresponds
to a transition being triggered. In other words we will examine when this binary
switching decision is made.

Step inputs: We first investigate the response of the models to step inputs.
The behaviour of the models is very clear: if the step height is above the threshold
value, all models result in the asymptotic state corresponding to a binary switching
transition. On the other hand if the step height is below the threshold value then the
asymptotic state is the same as the basal state. Since the models have essentially the
same threshold, all four models yield the same result. This is depicted in Fig. 9.2. It
is worth pointing out that for monostable switches with moderately high Hill coeffi-
cient, this switch may not necessarily be very sharp. In this case (since the asymptotic
amplitude of all switches is the same), the switching threshold for such a switch may
slightly differ from that of sharp monostable/bistable switches.

Single pulse input: We now turn to the next of our inputs: a rectangular pulse. In
this case the input regains its basal state eventually. For such an input the behaviour
which we observe is as follows. A monostable-reversible model can never result in a
binary transition, simply because the whole model is reversible, and there is a unique
steady state (which is stable) for a given input. This is true, irrespective of the height
and width of the pulse. In the case of a bistable-reversible switch, what we observe
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Fig. 9.3 Analysis of bistable reversible model in response to a single pulse. a Time course of
output response to a pulse with various pulse durations for bistable reversible switch, revealing that
a minimum pulse duration is needed to trigger the irreversible output response. b Critical curve
for decision making in this model in terms of input characteristics: pulse amplitude and duration.
The straight line suggests that the critical pulse duration is independent of pulse amplitude and
divides the input parameter space into two sub-domains. The region above the line corresponds to
the situation where a transition occurs. Parameters for the bistable model are α = 0.0044, a = 0.7,
b = 0.3, unless otherwise mentioned. Those of the decision module are k f = 0.1, kr = 0.0044.
Unless mentioned, all parameters are dimensionless

is that if the pulse width (duration) is high enough, this can result in the bistable
switch being permanently triggered, so that even when the input is switched off, the
bistable module is permanently turned on, and this results in the threshold crossed in
the downstream module resulting in a binary decision being made. This is depicted in
Fig. 9.3a showing three pulses of different widths, clearly showing how an increase
in pulse width can lead to the binary decision being triggered. This behaviour can be
understood in terms of the interaction of a transient signal and a bistable switch, as
studied in [12] (also see Bhalla and Iyengar [2]). It is worth emphasizing that of the
two parameters, the parameter which determines whether the decision is triggered
is the width of the pulse. This is further emphasized in Fig. 9.3b revealing a phase
diagram in the input parameter space showing when the binary decision is triggered.
The curve which separates the two outcomes is a straight line parallel to one of the
axes, demonstrating that a threshold in pulse width needs to be crossed in order that
that transition is triggered and that this width is the same, irrespective of pulse height
as long as it is above a basic threshold.

We now examine the monostable irreversible switch (Fig. 9.4). In this case it is
clear that the monostable switch module will revert to its basal state after the pulse
is turned off. However the irreversibility in the decision module can still result in
a transition being triggered. This happens if the pulse width is sufficiently large so
that the monostable module output is high for a sufficiently long time, so that the
threshold in the decision module is reached and a transition is irreversibly triggered.
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Fig. 9.4 Analysis of monostable reversible and irreversible models in response to a single pulse.
Time course of output response to a rectangular pulse with various pulse durations for (a) monostable
irreversible switch (b) monostable reversible models, under the same pulse amplitude S=1.1. The
two cases display dramatically different output responses. In particular, we see that in the monostable
irreversible case, beyond a critical duration a transition is effected. c Critical curve for decision
making in this model in terms of input characteristics: pulse amplitude and duration. The switching
threshold is located at an input value of 1. A very similar trend to the bistable reversible case is
observed. If a monostable switch involving moderate Hill coefficients is employed, the critical curve
is practically flat as seen previously except when the pulse amplitude is close to the threshold. This is
due to the non-sharpness of the switch. d The critical curve for a perfectly sharp monostable switch
revealing a similar trend to the bistable reversible model in Fig. 9.3. Parameters for the monostable
model are A = 1, n = 10, k = 0.012

Again here the pulse height plays practically no role, while the pulse width plays an
important role.

It is worth pointing out that in both the above modules, the pulse height plays
very little in the eventual outcome simply because both switches are sharp and have
the same amplitude, which is independent of the input value, once it is above the
switching threshold. The phase diagram for a perfect monostable switch is also a
straight line parallel to the pulse height axis, as shown in Fig. 9.4. In our simulations
we present results for a fairly sharp monostable switch of Hill coefficient 10 (see
Fig. 9.4c). Here the phase diagram, for the most part is a straight line parallel to
the pulse height axis. However for inputs in the narrow region where the monostable
switch is not fully switched on (the transition zone), a sharp increase in pulse duration
is needed. Thus the phase diagram has a sharply falling off curve which rapidly
becomes parallel to one of the axes.

Finally, we examine the result of the bistable-irreversible module to a single pulse
input. Here again, just as before, a pulse input can allow for the bistable switch to
be triggered on, resulting in a binary decision being made in the module. The one
difference between this module and the bistable reversible module is that once the
threshold in the decision module is crossed, as a result of the bistable module being
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essentially switched on, even if the bistable module is not close to a steady state,
the binary transition is triggered. For the parameters chosen in the basal module,
a single pulse which does not switch on the bistable module will not result in the
binary decision being triggered. On the other hand the irreversibility embedded in the
decision module implies that one can associate a precise time at which the decision is
triggered. While the phase diagram in the input characteristics space (height, width
and spacing) is the same as that of a bistable-reversible switch, different durations of
pulses can substantially affect the time at which the transition is triggered. A longer
duration pulse will result in the transition being triggered faster, as long as it is
possible. The effect of varying the model parameters is studied in the next subsection.

Double pulse input. We now turn to a more complex input: double pulses, which
are assumed to be identical and are characterized by the individual pulse characteris-
tics as well as the time spacing between pulses. At the outset, we note that if a single
pulse is unable to trigger a transition and the spacing between pulses is large, then
the two pulses being effectively decoupled act as two isolated individual pulses and
are unable to trigger a transition either. This is true for all models.

We first start with the monostable reversible model. Here again, since the model
is reversible and the asymptotic state is the basal state, a double pulse input while
inducing a transient is eventually unable to effect the transition. In the case of a
bistable reversible switch, a double pulse input is indeed able to trigger a transition.
There are some conditions for this: firstly the pulse height must be greater than
a minimum value (the threshold and the width must be greater than a minimum
value and for this case the spacing of the pulses must not be great). This is shown
via simulations in Fig. 9.5, where the effect of two pulses of varying spacing are
considered. We find that when the spacing is below a certain value the two pulse
input can indeed induce a transition. Furthermore the two pulse input can induce
a transition where the single pulse will not, and so this situation requires a certain
memory of the bistable module from the first pulse which is used when the second
pulse is input. This is therefore a situation where a two pulse input is able to effect
the switching in the bistable module (without the single pulse doing so) and hence
effect the transition. This result is more clearly seen in the phase diagram where the
condition for a transition is shown with its dependence on the pulse height, width
and spacing (see Fig. 9.5). The figure shows that pulse height plays a very minor
role (the surface in the three parameter space is essentially a translate of a curve in
the third direction. We also see that increasing the spacing can change the outcome
making it possible for no transition to be effected.

When we examine the monostable irreversible switch (Fig. 9.6), we find that the
double pulse can indeed effect a transition in this model too. Again the reason is
similar, with the only difference being that the memory effect from the first pulse
is used along with the second pulse to drive the decision module past the threshold.
A more closely spaced pulse can induce a transition, and will do so more quickly.
The three parameter diagram for this case is shown in Fig. 9.6, and we see a qual-
itatively similar plot to the bistable irreversible case. The only difference between
these cases is that the bistable module is able to more effectively employ the memory
effects from the first pulse to induce a transition. Therefore it generally will have a
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Fig. 9.6 Analysis of monostable irreversible model in response to double pulses. a Time course
of output response under double pulses (with the same pulse characteristics: amplitude S=1.4 and
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which the transition is triggered. b Phase diagram depicting the effects of input characteristics (pulse
amplitude, Ton , and Tof f ) on the transition. The behaviour is very similar to the bistable switch
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greater tolerable spacing between pulses for inducing transitions. This effect may be
understood by noting that the bistability has a built in threshold at basal conditions,
for the model variable, and once this is crossed, the system will asymptote to the
elevated steady state.

We finally analyze the bistable irreversible case. For the parameters chosen, the
bistable irreversible behaves in a very similar way to double pulse inputs as bistable
reversible models. This is because, for the model considered, the only way for the
threshold in the decision module to be crossed is by the bistable module variable
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to become very close to the elevated steady state (and remain there for a fairly
substantial period of time). This requirement guarantees that the bistable module
will get switched on. Thus the behaviour of the module and the phase diagram is
identical to the bistable reversible model.

Pulse train. We conclude this subsection by analyzing the signalling dynamics
of the models when subject to a pulse train. Note that this is an example of a full
fledged dynamic input, and the asymptotic state in general is not steady. In the case
of the monostable reversible model, a pulse train elicits an oscillatory response. If
the pulse train has a high frequency (relative to the time scale of the module) then the
response has oscillations whose amplitude is severely diminished. When the pulse
train has a low frequency, the module exhibits a periodic response of elevated phases
separated by phases when the response is close to basal levels. In any case, in this
model, there is no possibility of a transition.

When we examine the response of a bistable reversible module, we find that
depending on the input it is possible for a period wave train input to induce the bistable
switch module to oscillate very close to the elevated steady state. This is not surprising
since we have already seen that single and double pulse inputs are capable of resulting
in the bistable switch being triggered. A multiple pulse train allows more possibilities
for the bistable switch to be switched on, since the presence of every additional pulse
input only serves to increase the possibility of the bistable switch being switched
on. What is also interesting is that the bistable module actually exhibits very small
amplitude oscillations, which are not easily discernible. The reason for this is that the
system hovers very close to the elevated steady state (which actually doesnt depend
on the level of the signal) and asymptotically approaches it. The behaviour of this
bistable module to different pulse inputs can be of two kinds:in the first case the pulse
train is not actually able to effect a jump in the bistable switch. Thus a periodic pulse
train (assumed to be of sufficiently high amplitude) results in a periodic oscillation,
essentially with periodic jumps from the basal state. This is understood by noting
that the bistable module remains close to the original basal steady state and every
pulse in the pulse train results in a temporary elevation. In the second case, the pulse
train can actually result in the system approaching asymptotically, the elevated state.
Thus in this model, we may say that the transition has been triggered by the pulse
train. A phase diagram depicting the effect of the input parameters in effecting a
transition is shown in Fig. 9.7. As expected the pulse height plays a negligible role,
while longer periods of pulse inputs can lead to a transition.

It is worth pointing out that for other bistable modules, the elevated steady state
does have some (usually weak) dependence on the stimulus level and so one may in
general expect small amplitude oscillations about the elevated state. In these cases
while the asymptotic state is not steady, the response can be said to be one which has
effected the transition, as long as the oscillation amplitude is not too high.

In the case of the monostable irreversible model (Fig. 9.7), we find that a pulse
train can indeed induce a transition owing to the built-in irreversibility. Again this can
be understood in terms of the response of this model to single and double pulse inputs
and the fact that multiple pulses can only increase the possibility of a transition. The
effects of the input parameters on the module response is shown in Fig. 9.7 and here
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Fig. 9.7 Phase diagrams for bistable reversible and monostable irreversible switches in response
to pulse trains. Phase diagram depicting the effects of input characteristic (pulse amplitude, Ton and
Tof f ) in triggering transitions in the (a) bistable reversible (b) monostable irreversible models. The
behaviour of the bistable reversible model is essentially the same as the bistable irreversible model
in this case

again we find minimal dependence of pulse height, and a behaviour of the pulse
duration which is qualitatively similar to that of the bistable reversible switch model.
Finally in the case of the bistable irreversible model, we find that a pulse train can
also induce a transition: this is only to be expected since this model has the bistability
along with the additional irreversibility. An analysis of this model (results not shown)
reveals that the phase diagram for the bistable irreversible model is essentially the
same as the bistable reversible model. The behaviour of this model may be understood
in a manner similar to the previous models.

Overall we see that step changes can induce transitions in all four models, while
pulse inputs can induce transitions in models which have either bistability, irreversible
in the decision module, or both. The qualitative dependence of the transition on input
signal parameters is in fact very similar for these models.

In the above we have seen that the bistable reversible and the bistable irreversible
models behaved in a very similar way which begs the question as to whether the
downstream irreversibility plays any role. While the simulations above indicated
no differences, simulations in the bistable model with a different parameter choice
which changes the basal location (changing the parameter a in the model above)
indicates that important differences can exist. Simulations were performed with a
lower value of a, implying that at basal conditions, a higher barrier needed to be
crossed to trigger the bistable switch. The behaviour of this bistable module coupled
to both reversible and irreversible modules in response to a step input was exactly
as before. When the two models were subject to a pulse input, we again see that the
pulse needed a critical duration to trigger the switch. However a comparison between
the bistable irreversible and bistable reversible switch reveals a clear difference: the
minimum pulse duration needed in the bistable irreversible module is substantially
less than the bistable reversible model. Thus in this case a series of pulse inputs
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Fig. 9.8 Analysis of bistable reversible and irreversible models with different basal conditions in
response to a pulse. a and c Time course of output response with different pulse durations. Again,a
critical pulse duration is found to be necessary to trigger a transition. b and d Critical curve in
terms of input characteristics (pulse duration and amplitude). The critical pulse duration in the
irreversible implementation is shorter than that in the reversible implementation, which indicates
that the downstream irreversibility partially relaxes the constraint of pulse duration that is required
to trigger the irreversible output response. For this simulation the bistable model parameters are
taken to be a = 0.3, b = 0.7

of intermediate duration were able to induce a transition in the bistable irreversible
model but not in the bistable reversible model. For such inputs, the irreversibility
of the decision module played the key role in effecting the transition even though
the bistable switch was itself not triggered. For pulses of sufficient duration which
trigger the bistable switch, the behaviour of both the bistable reversible and the
bistable irreversible models is the same. This is depicted in Fig. 9.8. Overall this
is an example where the downstream irreversibility in the decision module plays a
beneficial role in facilitating the transition and partially relaxing some constraints
associated with the bistable module.

9.3.2 Effects of Model Parameters

We now examine the effects of model parameters to obtain some basic insights into
how important parameters in the models can influence the possibility of a transition.
Our focus will be on the roles of thresholds (including parameters in the basal state
which effectively set thresholds) as well as the roles of the relative time-scales of the
modules.
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Effect of thresholds: At the outset, we note that the monostable and bistable
modules have the same switch amplitude which is normalized to 1. We note that for
this amplitude, if the downstream decision module threshold Ro is too high, then
a transition can never be effected. Specifically if the steady state equilibrium value
of the response for a switched on upstream module (of amplitude 1) is less that
this threshold, i.e. k f /(k f + kr ) < Ro, then the transition will never be effected,
irrespective of whether the downstream module is reversible or irreversible. If the
downstream module is reversible, then the maximum steady state value it can attain
corresponds to an upstream signal of 1 and this value is exactly k f /(k f + kr ). Now
even if the decision module is irreversible, by examining its dynamics we can rewrite
the governing equation as

d R∗/dt = ((kr + k f )[k f /(kr + k f ) − R∗] (9.5)

From this, we immediately see that if R∗ starts out less than k f /(k f + kr ) (as it must
since it is at steady state initially), then it can never attain a value greater than this
transiently. Thus clearly the threshold must be low enough to be attainable, and we
will assume that this is the case below.

Noting the above, and assuming an attainable threshold, we will focus on the
level of the threshold, and the basal state in the bistable module (which is related)
. At the outset we note that for step changes, all modules are capable of exhibiting
the transition and their behaviour is thus essentially the same here. The irreversible
decision modules have associated with them a time of transition, and this decreases
as the threshold is reduced.

We now focus on the response of these models to transient stimuli such as pulses.
As mentioned before, a monostable-reversible module can never result in a transition.
In the case of a bistable reversible module, decreasing the threshold does not actually
have any important effect, since the only way to effect an irreversible transition in
this module is to effect a switch in the bistable module, which is independent of
downstream parameters. On the other hand changing the paramater a in the bistable
module, keeping everything else fixed has an important quantitative effect. We note
that at basal conditions, the bistable model variable has to attain a value of 1 − a to
ensure that it will eventually be switched (in the absence of a signal the module has
three steady states 0, 1 − a, 1 and the intermediate unstable state sets the threshold
which must be crossed for the switch to be triggered). Thus decreasing the value
of a makes it more difficult for the module to be switched by transient signals. In
particular the minimum time duration for a pulse to induce switching is (1/α)ln(1/a)

and so decreasing a implies the mininum duration of a pulse increases.
In the case of a monostable irreversible switch, decreasing the threshold Ro makes

it easier to switch in a transient signal. This is also the case in a bistable-irreversible
switch. If we define a critical signal strength So given by k f So/(k f So +kr ) = Ro, we
see that this critical signal strength monotonically affects Ro. In particular we see that
if the switch variable is maintained above this value, then the system is guaranteed
to have a transition. Of course, signals which fall below this level can also lead to
transitions. Now in the case of a bistable irreversible switch we see a combination
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of two factors. If the switch variable can attain a height 1 − a it is guaranteed for the
bistable switch to be switched on, while if the variable is maintained above So it is
guaranteed to effect a transition. If So < 1 − a it is indeed possible for a transient
signal to not cause the bistable switch to switch on, while effecting the transition
through the downstream module. This is simplest to see in the case where the decision
module is much faster than the switch module. If a pulse input of sufficient duration
causes the variable in the bistable module to become greater than So (but less than
1−a) then this can immediately drive the transition in the downstream module. This
situation of having the downstream irreversibility be responsible for the transition
expands the possibilities for the transition to be effected (in particular when the
bistable switch is unable to do so) and is similar to the simulation result seen above.
On the other hand if So > 1 −a then any transient signal which causes the transition
must of necessity drive the switch module above So and this makes it guaranteed for
the bistable module to be switched on. Thus in this case, all signals which effect the
transition also switch the bistable module on. For this case the module would switch
on whether or not the downstream module was irreversible.

Effect of timescales: Having discussed the effect of thresholds, we now turn to
the role of timescales. We consider two cases, one where the decision module is much
faster than the switch module, and the other where the switch module is faster than
the decision module. Note that the dynamics of the decision module can be altered
by changing the parameters k f and kr keeping their ratio fixed. Firstly we note that
if the decision module is reversible, the relative timescales do not play a role. In the
reversible module, the only way to effect a transition is to have the upstream module
switched on (essentially) permanently. In the case where the downstream module is
irreversible the relative time scales play an important role.

Suppose the downstream module is much faster than the upstream module, then it
is at a quasisteady state. Therefore transient variations in the switch module can drive
the decision module and effect the transition. This situation is particularly suitable
for a situation where the upstream module may not be permanently switched. All that
is needed is to ensure that the variable in the upstream module (whether monostable
or bistable) reaches a value So. In the case where the downstream module is slow, the
downstream module is slowly regulated by the upstream module. For the transition
to be triggered in the decision module, the upstream module must be at a high enough
value (in particular higher than So) for a long enough time, the time requirements
being dictated by the decision module. This is certainly possible in both monostable
(for an input pulse of long duration) and bistable modules. For bistable modules
however, the constraint of needing the variable value to be high enough for a long
time results in the switch being effected in this module. Thus if the downstream
module is slow, a monstable module can effect the switching if it is kept switched
(by the driving signal) for a long time or by the bistable module being triggered
(whether by a transient signal of short or long duration).

Taken together we can identify some essential design features in these models. A
high threshold and slow decision module requires the switch module to be switched
on for a long time if not permanently (and in the case of the bistable module switched
on). A low threshold and a fast decision module is particularly amenable to relatively
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weak transient signals driving the transition even bypassing the switching effects to
some extent. In this situation, the irreversibility in the downstream module (when it
exists) plays a dominant effect even if bistability is present upstream, and actually
decision making in the system is quite insensitive to the nature of the upstream
module. A high threshold and fast decision module needs the switch module to reach
a sufficiently high level and even if the irreversibility in decision module triggers
the decision, it invariably also involves the bistable module being switched on. The
decision making is rate-limited by the upstream module. A low threshold and a
slow decision module is a mixed situation. Here a monostable switch can remain
switched on for a moderate time, while for a bistable switch depending on the relative
magnitudes of So and the bistable threshold, it may be possible to switch without
invoking the switching in the bistable module.

9.3.2.1 Model Analysis

To complement our discussion above, we present some analysis of our models. We
start by noting that for a step input of sufficient magnitude, both monostable and
bistable switches are triggered, and hence the response of all models at steady state is

R∗ = k f /(kr + k f ) (9.6)

As mentioned, the threshold Ro in the decision module must be below this value
for a transition to be triggered. For all models, this value of R∗ represents an upper
bound (the initial condition for all models corresponds to steady state conditions
with S = 0).

To proceed further with the analysis, we will make a simplification, purely for
the sake of transparency in analysis. In the decision module, we will assume that
R∗ << 1. This will happen if k f is much less than kr (for a transition to occur,
this naturally means that Ro << 1). This assumption simplifies the analysis of the
dynamics in the decision module without making any important restrictions. In our
analysis we will assume that the parameters k and α are not equal to kr .

The dynamics of the decision module is now well approximated by

d R∗/dt = k f X∗ − kr R∗ (9.7)

We consider the response of both monostable and bistable models to a pulse signal.
The pulse corresponds to a step of amplitude So > 1 for a time duration T. The
response of the monostable module is

X∗ = 1 − exp(−kt), t < T

X∗ = (1 − exp(−kT ))exp(−k(t − T )), t > T (9.8)

The switch module response attains an amplitude of 1−exp(−kT ) before decreasing.
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The response of the bistable module is

X∗ = 1 − exp(−αt), t < T

d X∗/dt = −αX∗(1 − X∗)(X∗ − (1 − a)), t > T (9.9)

The response for t > T is obtained by solving the nonlinear differential equation,
and while an analytical expression can be obtained, it becomes difficult to explicitly
obtain X∗ as a function of time for t > T . The key insight which is relevant here is
that if X∗(T ) = 1−exp(−αT ) is greater than the basal bistable barrier of 1−a, then
switching is guaranteed to a pulse input, and the system will subsequently evolve
to the elevated steady state. This requires that exp(−αT ) < a or in other words
T > (1/α)ln(1/a).

Now the response of the decision module is given by

R∗ = exp(−kr t)

t∫

0

X∗(s)exp(kr s)k f ds (9.10)

We can use this to make some key inferences. Firstly, suppose the upstream module
does get permanently switched on, then we have X (t) → 1 as t → ∞, in which case
R∗ → k f /kr . This guarantees that the transition is triggered. On the other hand if the
upstream module gets switched off, then X∗ → 0 as t → ∞. In this case, a transition
may be triggered if the threshold in the decision module is reached transiently.

The response of the decision module with an upstream monostable switch is

R∗ = (k f /kr )(1 − exp(−kr t)) − (k f /(kr − k))(exp(−kt) − exp(−kr t)), t < T (9.11)

Note that the second term is negative. Clearly if T is very large then R∗ will approach
k f /kr very closely. If the decision module is irreversible, a transition will be triggered
at a time instant to where R∗(to) = Ro. A positive to value less than T signifies the
possibility of an irreversible transition. This is not of course guaranteed.

Note that it is possible for the transition to be triggered in some cases, after the
initial duration of the pulse. For the subsequent dynamics after the input stimulus is
removed, we have

R∗(t) = R∗(T )exp(kr (T − t)) + (k f /(kr − k))(exp(kT ) − 1)

[exp(−kt) − exp((−kT − kr (t − T ))], t > T (9.12)

Clearly it is possible for a transition to be triggered for t > T .
One can obtain further insights from the above expressions in certain limiting

conditions. In the first case, suppose k << kr , then we notice from the expression
for R∗ for t < T that the response is well approximated by

R∗ = (k f /kr )(1 − exp(−kt)), t < T (9.13)
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from which we immediately see that the time for the transition to be triggered is

t0 = (1/k)ln(k f /kr − Ro) (9.14)

assuming it is less than T. It is also clear from the expression for R∗ for t > T in this
case that R∗ decreases after t > T . This means that an irreversible transition must
be triggered before time T if it is to be triggered at all.

The opposite case k >> kr can also be considered. Here from the expression for
the response we obtain

R∗(T ) = (k f /kr )(1 − exp(−kr T )) − (k f /(−k))(−exp(−kr T )), t < T (9.15)

From this we see that a transition can be triggered for a pulse of long enough duration
T. It is also worth pointing out that if k f and kr are made small, keeping their ratio
fixed, and kr << k, this indicates that a pulse of duration which is of the order of
the inverse of kr (T = O(1/kr )) is needed. The essential insight here is that a pulse
of long enough duration (which is determined by the decision module) is needed to
trigger the transition (Fig. 9.10).

Similar insights can be obtained for the bistable module. For t < T , the dynamics
of X∗ here is very similar to the monostable module (replace k by α) and exactly
parallel conclusions can be drawn. However depending on X∗(T ), it is possible for the
bistable module to be switched on (if X∗(T ) > 1−a) guaranteeing a transition, or for
the transition to be triggered before t = T (through the downstream irreversibility),
or for the downstream irreversibility to trigger the transition after t = T , with the
bistable switch not being switched. In general if X∗(t) < 1 − a but high enough for
R∗ to exceed Ro a transition can be triggered. This can be analyzed similar to the
analysis above, except that in the bistable case, explicitly obtaining X∗ as a function
of time is not possible.

Overall our analysis reveals the balance of factors in effecting a transition and the
role of the thresholds and relative time scales.

9.3.3 Behaviour of Extended Models

We provide an example to illustrate the implications of our results. We consider a
model where a signal enters the cell, and may also be pumped out. The signal can
initiate an irreversible decision through the signalling cascades via a switch combined
with a decision module. An example of this is when drugs are pumped into cells
whereupon they may trigger an apoptotic response [8]. A model for this involves
augmenting signalling models of the kind studied earlier with additional features.
The additional features of the model are described by the following equations.

dce/dt = P(Q.S − ce) + V2ci/(k2 + ci ) − V1ce/(k1 + ce)

dci/dt = −v2ci/(k2 + ci ) + v1ce/(k1 + ce)
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Fig. 9.9 Analysis of signal transduction and decision making in different configurations in response
to pulse signal in a specific setting. Critical curves in terms of input characteristics (pulse amplitude
and duration) for bistable reversible, bistable irreversible and monostable irreversible switches in
a specific model setting, where the pulse signal is input to a signalling cascade involving a switch
and a decision module. In addition, other features involving pumping the chemical signal in and out
of the cell are also present. The same output response is obtained for both bistable reversible and
irreversible pathways in response to a rectangular pulse, and together with monostable irreversible
switch, all combinations give rise to strikingly similar phase diagrams. The model parameters are
P = 0.33, Q = 0.25, k1 = 0.219, k2 = 1.37, V1 = V2 = 4.67, v1 = v2 = 0.467

This module describes the generation of drug ce in the extracellular medium by an
external signal S, its pumping into the cell via Michaelis Menten kinetics (maximum
rate V1) and the pumping out of intracellular drug ci also via Michaelis Menten
kinetics (maximum rate V2). The intracellular drug is the input for a signalling cascade
which involves a switch module combined with a decision module.

Simulations were performed with different kinds of inputs, for both kinds of switch
modules. Here again, there is a critical value of S which can result in cell killing. In
the case of a pulse, a pulse must have a sufficient duration to induce killing. A phase
diagram of input parameters for a pulse signal to result in cell killing reveals that
bistable-reversible, monostable-irreversible and bistable-irreversible modules have
a very similar phase diagrams. This is illustrated in Fig. 9.9. This indicates that even
in more complex settings it is not easy to obtain clear distinctions between these
modules, and that the insights obtained above continue to hold good.
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Irreversible transition

Step input
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(2) Pulse duration ≥ minimum pulse duration 
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(2) Pulse duration ≥ minimum pulse duration
(3) Pulse interval ≤ maximum pulse interval

Key factors/
parameters

The downstream irreversibility is a 
dominant/necessary factor in 
providing the capability for an 
irreversible transition.

(1) Both models can give rise to
the irreversible transition; either 
downstream irreversibility or 
upstream bistability can be a
dominant and triggering factor, 
depending on the signal and 
parameters (threshold and relative 
time scales).
(2) Under certain cases, 
downstream irreversibility
provides a degree of redundancy in 
triggering an irreversible 
transition, and partially relaxes the 
constraint of pulse duration.

Downstream: 
Reversible 
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Upstream: 
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Fig. 9.10 A tabular summary of essential results. The table summarizes the essential results
obtained from the study

9.4 Conclusions

Switch-like behaviour and thresholds are ubiquitous in cell signalling. In addition,
there are a number of contexts in which irreversible signal processing and decision
making occurs: this includes transitions in the cell cycle, apoptosis, decisions to
differentiate etc. Further, other signalling which triggers decisions such as degrada-
tion of particular proteins may be essentially irreversible (eg see Varedi et al. [15]).
In this article we employed a systems approach to examine the dynamics of two
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typical switches, monostable and bistable switches, and how they could be involved in
irreversible information transformation in signalling pathways. The focus was to
investigate how irreversible decision making may be realized, especially through dif-
ferent kinds of switch modules, and identify the capabilities and constraints involved.
This approach provides a basis for understanding irreversible decision making in dif-
ferent cellular contexts.

Our models conceptualized the irreversible decision making through a sequential
combination of a switching “module” and a decision “module”. Keeping in mind
our simplified approach and focussing on only essential elements, we do not con-
sider other elements such as retroactivity, or include details specific to particular
cellular signalling contexts; likewise we employ generic descriptions of monostable
and bistable switches which have typical input-output behaviour, rather than focus
on specific examples. Our study involved studying combinations of monostable and
bistable switches, in combination with simple decision modules which could either
be reversible or irreversible. While different reactions in signalling pathways are
reversible in principle, sometimes key transitions occur as a result of some threshold
being crossed, triggering a particular new event which is the source of the irreversibil-
ity. We emphasize that every one of the model configurations we have studied has
been invoked explicitly or implicitly in one context or another.

Our analysis of the modules reveals that while a monostable reversible module
by itself is incapable of irreversible transitions, bistable-reversible, monostable-
irreversible and bistable-irreversible models were all capable of irreversible decision
making. All these models were capable of exhibiting transitions in response to tran-
sient stimuli such as pulse signals. The bistable models have irreversibility built in
to them, while monostable models coupled to irreversible decision modules could
result in irreversible decision making. Our analysis examined the signal transduction
of all these models to common experimentally employed inputs such as single pulses,
multiple pulses and pulse trains, and examined the key parameters in the input which
would result in an irreversible decision. We found that all these modules were capable
of irreversible transitions in response to these signals and that the qualitative effects
of the input parameters on all these modules were similar. Furthermore, we found
that the quantitative effects of the input parameters on whether the irreversible tran-
sition was realized could be made very similar, by appropriate choice of parameters.
The implication for detailed models in concrete contexts is that it may be possible to
relatively easily fit the steady state response to simple classes of inputs by suitable
choices of a few parameters. Examining these models in the context of a model of
drug induced cell killing, incorporating drug getting pumped in and out of the cell and
eliciting an apoptotic response via signalling pathways involving switches reveals
that the response of the models to the various inputs with respect to whether cells were
killed was in fact strikingly similar, even though there were qualitative differences
in all these models. This is also in agreement with the behaviour of such pathways
in a distributed model of drug transport, uptake and drug induced killing [8].

Our examination of key parameters in the models allowed us to elucidate the key
capabilities and constraints associated with each combination of modules with respect
to irreversible decision making. In general, having a lower threshold, made it easier
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for a transition to be triggered and in particular made it easier and more feasible for
an irreversibility in the decision module to trigger the transition. Lower threshold not
only made it possible for monostable irreversible models to more easily effect a tran-
sition, but also had the same effect in bistable irreversible models. It allowed for tran-
sitions to be effected in bistable irreversible models without the bistable switch being
triggered, thus making the irreversibility in the decision module, the dominant factor.

With respect to time scales, in general a slower switch module and fast decision
module, facilitated transitions, and in particular made transitions associated with irre-
versible decision modules much easier. Thus even here, a bistable irreversible module
could effect the transition without a bistable switch being triggered. Therefore, the
bistability notwithstanding, the module exhibited an irreversible transition owing to
the downstream irreversibility, and in a manner very similar to a monostable irre-
versible switch. On the other hand slow decision modules implied that in the bistable
case, a transition was effected in response to pulse stimuli, with the bistable module
very likely switched on. This was because, for the irreversible transition a fair level
of stimulus to the decision model was needed for a sustained and long period of
time, which would inevitably (due to the intrinsic dynamics of the bistable mod-
ule) cause the bistable switch to be triggered. Overall irreversibility in the decision
module as the dominant factor was favoured by fast decision modules and not too
high threshold. High threshold and slow decision modules implied that either the
transition occurred due to a long transient input (monostable irreversible model) or
inevitably resulted in the bistable switch being triggered and being the dominant
factor. The presence of irreversibility in the downstream module when combined
with a bistable module could thus be a redundant effect in this case, whereas in the
previous case, the irreversibility downstream clearly enhanced the capability of the
overall pathway for an irreversible transition, relaxing constraints associated with
the upstream module.

9.5 Discussion

Since irreversible transitions occur in multiple contexts in cell signalling pathways
it is important to carefully identify the source of the irreversibility. Very often in
cell signalling modules, such transitions are modeled by bistable switches, even
though the bistability is only shown to be plausible and not clearly demonstrated.
In some cases it is acknowledged that there may be an additional irreversibility
downstream, which was not considered important. In other situations such as drug-
induced apoptosis, there is a debate as to what the mechanism is [1, 3, 6, 8, 17]. In
individual contexts there are so-called validated models which match models to data
but which do not actually deal with the key issue of the nature of the transition. In
other cases bistable models are in effect modelled as a shorthand for an irreversible
transition, though it is not clear if bistability actually exists. This situation is quite
striking since monostable and bistable switches are signalling features with very
different dynamical characteristics, even qualitatively.
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Our results reveal that in order to discriminate between monostable and bistable
models, careful experiments must be performed with a sufficiently broad and rich
class of transient signals (perhaps designed) on one hand, and carefully monitor-
ing and tracking the possibility of discrete (essentially) irreversible cellular events.
It indicates that such events could by themselves (especially coupled with monostable
switches and thresholds) be at work in different contexts and that bistability may
either be not present or not the dominant factor. Further while from a modelling
point of view bistable switches may be appealing as a robust structure which causes
an irreversible transition, the robustness in actual cellular signalling may be realized
by a host of other factors which for example act to prevent an irreversible transi-
tion from happening, which may in the end be realized by both monostable and
multistable signalling circuits. Our results and insights also have implications for
engineering signalling pathways to result in irreversible decision making and the
capabilities and constraints involved.

The skeletal modelling framework we employed allows us to investigate and
understand such signal transduction in different contexts and appreciate the role
and relevance of additional layers of regulation involved. From a systems point of
view our studies highlight the need to go well beyond steady state analysis not only
experimentally but also theoretically to understand essential aspects of cell signalling
and the complexity of the organization of information flow in living systems.

9.6 Lessons Learnt

1. Irreversible transitions can arise through both monostable and bistable signalling
pathways. In the case of monostable pathways this has to be due to some irreversible
downstream event being triggered

2. Insights into design capabilities and constraints and key factors involved in
irreversible decision making were obtained by the analysis of a series of simplified
models which focus on essential aspects.

3. The analysis and results can be used both in modelling and understanding
complex signal transduction also and in designing synthetic circuits with irreversible
decision making.

References

1. Albeck JG, Burke JM, Spencer SL, Lauffenburger DA, Sorger PK (2008) Modeling a snap-
action, variable-delay switch controlling extrinsic cell death. PLoS Biol 6:2831–2852

2. Bhalla U, Iyengar R (1999) Emergent properties of networks of biological signaling pathways.
Science 283:381–387

3. Eissing T, Conzelmann H, Gilles ED, Allgower F, Bullinger E, Scheurich P (2004) Bistability
analyses of a caspase activation model for receptor-induced apoptosis. J Biol Chem 279:36892–
36897



9 An Investigation of Signal Transduction and Irreversible Decision Making 243

4. Ferrell JE, Xiong W (2001) Bistability in cell signaling: how to make continuous processes
discontinuous, and reversible processes irreversible. Chaos 11:227–236

5. Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent modification
in biological systems. Proc Natl Acad Sci USA 78:6840–6844

6. Gu C, Zhang J, Chen Y, Lei J (2011) A trigger model of apoptosis induced by tumor necrosis
factor signaling. BMC Syst Biol 5(Suppl 1):S13

7. Huang C, Ferrell J (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc
Natl Acad Sci USA 93:10078–10083

8. Liu C, Krishnan J, Xu XY (2011) A systems-based mathematical modelling framework for
investigating the effect of drugs on solid tumours. Theor Biol Med Model 8:45

9. Markevich NI, Hoek JB, Kholodenko BN (2004) Signaling switches and bistability arising
from multisite phosphorylation in protein kinase cascades. J Cell Biol 164:353–359

10. Novak B, Tyson JJ, Gyorffy B, Csikasz-Nagy A (2007) Irreversible cell-cycle transitions are
due to systems-level feedback. Nat Cell Biol 9:724–728

11. Schittler D, Hasenauer J, Allgower F, Waldherr S (2010) Cell differentiation modeled via a
coupled two-switch regulatory network. Chaos 20

12. Seaton D, Krishnan J (2011a) A modular systems approach to elucidating the interaction of
adaptive and monostable and bistable threshold modules. IET Syst Biol 5:81–94

13. Seaton D, Krishnan J (2011b) The coupling of pathways and processes through shared com-
ponents. BMC Syst Biol 5:103

14. Thomson M, Gunawardena J (2009) Unlimited multistability in multisite phosphorylation
systems. Nature 460:274–277

15. Varedi KSM, Ventura AC, Merajver SD, Lin XN(2010) Multisite phosphorylation provides an
effective and flexible mechanism for switch-like protein degradation. PLoS One 5:e14029

16. Yao G, Lee TJ, Mori S, Nevins JR, You L (2008) A bistable Rb-E2F switch underlies the
restriction point. Nat Cell Biol 10:476–482

17. Zhang T, Brazhnik P, Tyson J (2009) Computational analysis of dynamical responses to the
intrinsic pathway of programmed cell death. Biophys J 97:415–434



Chapter 10
From Specification to Parameters: A
Linearization Approach

Heinz Koeppl, Marc Hafner and James Lu

Abstract With the improvement of protocols for the assembly of transcriptional
parts, synthetic biological devices can now be reliably assembled based on a design.
The standardization of the parts open up the way for in silico design tools that
improve the construct and optimize devices with respect to given formal specifi-
cations. The simplest such optimization is the selection of kinetic parameters and
protein abundances such that the specified constraints are robustly satisfied. In this
chapter we address the problem of determining parameter values that fulfill specifica-
tions expressed in terms of a functional on the trajectories of a dynamical model. We
solve this inverse problem by linearizing the forward operator that maps parameter
sets to specifications, and then inverting it locally. This approach has two advantages
over brute-force random sampling. First, the linearization approach allows us to map
back intervals instead of points and second, every obtained value in the parameter
region is satisfying the specifications by construction.
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10.1 Introduction

Synthetic biology places emphasis on small, standardized molecular parts and
devices, mostly operating at the transcriptional level [1, 2]. With standardization
comes the need for rigorous quantitative characterization of such devices and com-
positional theory to reliably build larger systems from small canonical circuits. For
now most synthetic circuits implemented in vivo were constructed from a small num-
ber of components with topology and parameter values found by trial-and-error. The
development of larger synthetic systems necessitates the use of appropriate design
methodologies. In silico analyses can provide significant insights into the construc-
tion of complex synthetic systems, but due to the poor quantification of experimental
and micro-environmental conditions, the predictive capability of in silico models
for in vitro implementations remains limited. Apart from experimental limitations,
modeling attempts to date most often make simplifying assumptions about all the
perturbations that a synthetic construct is facing in vivo. For instance, only a few
studies account for the large extrinsic noise [3–5] and in particular the one introduced
by variations of plasmid copy number [6].

For a given circuit topology, kinetic parameters and other parameters that are
involved in controlling the expression level of molecular species (e.g. promoter activ-
ity or number of ribosome binding sites) are important design parameters in synthetic
biology. A major challenge is to find a set of parameters that satisfies the behavioral
specification of a device [7]. Computer science offers various languages to formally
define the proper functioning of a piece of code or hardware. Such specification lan-
guages of formal verification are used to check important behavioral properties, such
as liveness, safety or fairness [8]. One convenient way to specify such properties is
to use temporal logic, which is considered an extension of classical propositional
reasoning, where propositional variables may change their truth values over time. A
prominent such logic is the linear temporal logic (LTL), where the truth value of the
propositions is interpreted over a linear timeline [8]. Such techniques were already
applied to investigate robustness of computational models in system biology [9].

Mathematically, the design problem is an inverse problem and hence inherits the
general feature of such problems, namely ill-posedness [10, 11]. More specifically,
for a certain behavioral specification one aims to find the corresponding parameter
set that gives rise to such behavior. An simple example for a quantity in feature space
could be the concentration of a molecular species at particular time-points. The prob-
lem is closely related to parameter optimization and even more so to robust optimiza-
tion, where an objective function—generally encoding some behavioral constraint
(e.g. making model trajectories close to the measurements)—is optimized to yield
the optimal parameter set. Ill-posedness refers to the observation that two close-by
points in specification or behavioral feature space may map to very distant points
in the parameter space, indicating that this mapping is generally not contractive but
rather expansive. The inverse and corresponding forward problem is illustated in
Fig. 10.1.
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Fig. 10.1 a The forward problem of defining a parameter set from which trajectories and their
behavioral features are computed. b The inverse problem of finding a parameter regions for a
predetermined behavioral specification region S. Columns from left to right correspond to parameter
space, trajectory space and behavioral feature space, respectively. Connected convex sets can map
to nonconvex non-connected regions

In the chapter we restrict ourselves to models obeying the reaction rate equation
and hence constitute a set of nonlinear ordinary differential equations. In general,
connected domains may map to disconnected domains, for instance if the dynamical
system contains bifurcation points (e.g. see Fig. 10.1). For the proposed linearization
approach we will further restrict ourselves to connected domains in the respective
image space. Moreover, we will not resort to specifying behavior through temporal
logics but will define general specification functionals. These are mappings β from
an appropriate function space X of n-dimensional trajectories (e.g. L2([0, T ],Rn)

to the m-dimensional reals and we choose the form

β(x) ≡
∫ T

0
g(s, x(s))ds

with x ≤ X and the feature kernel g : R∞0 × R
n ∈ F , where F ≥ R

m . A
special and more tractable version of the kernel is the convolution, i.e. g(t, x(t)) =
h(T − t)x(t). In the following we will only require the map x ∗∈ g(·, x) to be
once-differentiable. With this, we can define the forward map from a p-dimensional
parameter space to the feature space as the composition F ≡ β ◦σ, with σ : R

p ∈
X . The trajectories x ≤ X are generated by the reaction rate equation

d

dt
x(t) = Nv(x(t), k) and x(0) = x0, (10.1)
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with the stoichiometric matrix N ≤ Z
n×q , the reaction flux vector v : Rn∞0 ×R

p
∞0 ∈

R
q
∞0 and k ≤ R

p the parameter set. In principle, specification functionals can also
be the positions of equilibrium points, for instance with

β(x) = lim
t∈∃ x(t),

where the support of x is enlarged appropriately. Hence, if initial conditions x0 are
treated as parameters as well the domain in specification space would show all equi-
librium points and will in general also contain bifurcation points. The corresponding
inverse problem or design problem of placing equilibrium points and bifurcation
points at particular position of the state space is closely related to inverse bifurcation
analysis [12, 13]. That is, given a desired coordinate for a bifurcation point one aims
to determine its associated parameter set. An example illustrating the problem for
a bistable system arising in a kinetic model for lipoprotein metabolism [14, 15] is
shown in Fig. 10.2. Throughout the remaining part of this chapter we will not con-
sider such asymptotic behavioral features and hence restrict the support for x to some
finite interval [0, T ]. Subsequently, we outline in Sect. 10.2 the proposed backward
sampling approach and Sect. 10.3 provides a simulation study.

10.2 Backward Mapping via Linearization

The brute-force method of determining the parameter region that satisfies a cer-
tain behavioral specification S ≥ F usually proceeds by Monte Carlo sampling of
parameter sets, generating corresponding trajectories according to (10.1), checking
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whether those satisfy S and finally retaining only those parameter sets that led
to satisfied specification S. There are two immediate downsides of this approach.
First, most draws will be unsuccessful for high dimensional parameter spaces, for
tight specifications, or for both. Different approaches using an optimized sampling
[16, 17] have been developed to mitigate this problem, but are not solving it as they
require convergence of the sampling. Second, drawing parameter points in R

p does
not provide guarantees that those points belong to a connected domain of consistent
parameter sets. Here we provide first attempts to tackle both problems.

The main idea is to locally linearize the forward map F around some point and
then locally invert it. Hence, a small enough local patch in feature space can be
mapped backward to a small patch in parameter space. By successively sampling
expansion points in their neighborhoods (e.g. by the ball-walk algorithm [18]) we
can systematically cover the entire specification S and obtain the corresponding
parameter region. A series expansion of F around some initial parameter set k0

reads

F(k0 + dk) = F(k0) + ε F(k)

εk

⎡⎡⎡⎡
k=k0

dk + o(dk)

Defining d f ≡ F(k0 + dk)− F(k0) we see that a neighborhood d f in feature space
to first order can be mapped backward using the Moore-Penrose pseudo-inverse

dk = L†d f,

that we define with care as

L† ≡ lim
κ∈0

(LT L + κI )−1LT = lim
κ∈0

L(L LT + κI )−1, (10.2)

where L denotes the linearized forward map and hence is just the m × p matrix

L ≡ ε F(k)

εk

⎡⎡⎡⎡
k=k0

. (10.3)

Note, that the limit in (10.2) exists even if the inverse of LT L and L LT do not exist.
Such situations are encountered as soon as the number of specification features m
are less than the number of parameters, i.e. the dimension p of the parameter space.
Importantly, we can compute (10.3) efficiently using the variational equation for the
system (10.1). Observe that

L = ε

εk
β ◦ σ(k) =

∫ T

0

εg(s, x)

εx

⎡⎡⎡⎡
x=x(s,k)

εx(s, k)

εk

⎡⎡⎡⎡
k=k0

ds,

where the last terms in the integral is just the sensitivity of the solution of (10.1) to
perturbations in k around k0. According to the variational equation the sensitivity
obeys the following ordinary n × p matrix differential equation
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d

dt

εx(t, k)

εk
= N

⎢
εv(x, k)

εx

εx(t, k)

εk
+ εv(x, k)

εk

⎣
with

εx(0, k)

εk
= 0, (10.4)

where we skipped the explicit dependency on k0 for brevity. Note, that (10.4) is
equivalent to the transient sensitivity analysis of metabolic networks [19, 20], pro-
posed as an extension of classical metabolic control analysis that only deals with
steady state sensitivities. For a certain k0 the sensitivity of the kernel g is a constant
m × n matrix that can be computed explicitly. Thus, by jointly solving (10.1) and
(10.4) for some k0 together with

d

dt
L(t) = εg(s, x)

εx

⎡⎡⎡⎡
x=x(t,k0)

εx(t, k)

εk

⎡⎡⎡⎡
k=k0

with L(0) = 0

up to time T we obtain the linearized map L = L(T ). Hence, for every sampled k0

and associated feature point f 0 we propose to design a feature ball

B f 0(φ) =
⎤

f ≤ F |∇ f − f 0∇2 ⇔ φ
⎥

and map it backward using L†. According to the singular value decomposition
L† = UθV with θ a diagonal matrix with non-negative entries [11], the backward
transformation needs to be a sequence of a rotation, a scaling and another rotation
and hence the image of B f 0 under L† can only be a ellipsoid in the parameter space

⎤
L† f | f ≤ B f 0(φ)

⎥
≤ R

p.

Clearly, sampling a multivariate region with balls of same dimension allow for a
complete coverage of the region—something that is can only be extrapolated when
using point samples [16]. The question to efficiently sample a region with balls has
been addressed in computational geometry and efficient randomized algorithms are
available [18].

We remark that the map L is not the best local approximation to F(k) in some
norm sense. More specifically we can improve on L if we are giving additional
samples of the neighborhood B f 0(φ). Consider we draw another ki ≤ Bk0 , then we
can construct a rank-one update to L

L̃i = L + ΘF − LΘk

∇Θk∇2 ΘkT (10.5)

where ΘF ≡ F(ki ) − F(k0) and Θk ≡ ki − k0. In particular, the rank-one term
(10.5) captures the nonlinear part of F . From (10.5) it follows that the matrix L̃i

satisfies the consistency property

L̃i (ki − k0) = F(ki ) − f 0. (10.6)
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Thus, knowing how to construct rank-one updates over the domain of interest is
equivalent to knowing F(k). In fact, L̃i is the matrix closest to L , with respect to
the Frobenius norm, that satisfies (10.6). Subsequently we will use this improved
linear approximation to F to bound the error that one can incurrs if one uses the
pseudoinverse L† for the backward map. This will also provide means to determine
the maximal ball size φ to stay below a certain error. We quantify the error in the
feature space by the backward map followed by a forward map. That is, we want to
find a φ such that

∇F(k0 + L†( f − f 0)) − f ∇2 ⇔ ψ (10.7)

for all f ≤ B f 0(φ).
Now suppose we know a bound π(φ) for the Frobenius norm of the rank-one

perturbation, i.e. ∇L̃ − L∇F ⇔ π(φ) in the local domain of interest. Note, that π(φ)

could and need to be estimated by sampling. Given a f i ≤ B f 0(φ) the maximal error
of the inverse-forward map is

max
L̃:∇L̃−L∇F ⇔π(φ)

∇L̃ L†( f i − f 0) − ( f i − f 0)∇2

which is known from robust linear squares [11] to be equivalent to the error

∇L L†( f i − f 0) − ( f i − f 0)∇2 + π(φ)∇L†( f i − f 0)∇2.

Assuming that L has linearly independent rows, L L† is the identity matrix and
thereby the error simplifies to

π(φ)∇L†( f i − f 0)∇2.

This result provides one way to determine the radius of the feature ball φ when relying
on the pseudo-inverse

max
φ

φ

subject to

π(φ)∇L†( f − f 0)∇2 ⇔ ψ

∇ f − f 0∇2 ⇔ φ

(10.8)

10.3 Simulation Results

As a proof of concept of our method, we applied it to a simple synthetic sensor
construct [21]. The system is made of several gene copies (e.g. with plasmid trans-
fection), expressing a protein that dimerizes and activates the gene by binding to the
promoter. In presence of the inhibitor (input of the system), the dimer is trapped and
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Fig. 10.3 Simple transcrip-
tional sensor construct. The
dimerized form (A2) of a
protein (A) is its own positive
regulator; the inhibitor (I )
tethers the dimer away in an
inactive form (A2 − I )

cannot bind to the promoter. A schematic of the involved reactions is depicted in
Fig. 10.3.

The system is simulated according to mass-action and obeys

dx1

dt
= k1(x0

5 − x5) + k2x5 − k3x1

dx2

dt
= k4x1 − 2k5x2

2 + 2k6x3 − k11x2

dx3

dt
= k5x2

2 − k6x3 − k7x3 y(t) + k8x4 − k9(x0
5 − x5)x3 + k10x5 − k11x3

dx4

dt
= k7x3 y(t) − k8x4 − k11x4

dx5

dt
= k9(x0

5 − x5)x3 − k10x5 − k11x5.

(10.9)

where the states xi denote the concentration of mRNA, protein, protein-dimer and
dimer-promoter complex, respectively. The quantities x0

5 and y(t) refer the total num-
ber of promoters and the external inhibitor concentration, respectively. The nominal
value and the meaning of the model parameters are summarized in Table 10.1. We
remark that such continuous state-space model have their limitations for transcrip-
tional circuits because they require several gene copies in order to neglect the discrete
Boolean nature of a single gene.

For the specified behavioral features, we expect the dimer to drop quickly after
introduction of inhibitor and then quickly regain a high level after the inhibitor is
washed out of the medium. We also constrain the monomeric protein. The specifica-
tion functionals are the integral of the absolute difference to some target value x⊇(s)
for the monomer and the dimer concentration over two small time intervals for each.
More specifically,

⎦

⎛
β1(x)

β2(x)

⎝

⎞ =
⎦

⎛

⎠ T
0 w1(s)[x2(s, k) − x⊇

2 (s)]2ds

⎠ T
0 w2(s)[x3(s, k) − x⊇

3 (s)]2ds

⎝

⎞ (10.10)

where w is the temporal weight function chosen to be
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Table 10.1 Nominal values and meaning of the kinetic parameters for the model of the synthetic
sensor construct

Basal transcription rate k1 0.02 s −1

Active-promoter transcription rate k2 0.4 s−1

mRNA degradation rate k3 0.3 s−1

Protein translation rate k4 3 (nm s)−1

Dimerization rate k5 0.1 (nm s)−1

Dimer dissociation rate k6 0.001 s−1

Inhibitor binding rate k7 0.011 (nm s)−1

Inhibitor unbinding rate k8 0.2 s−1

Dimer-promoter binding rate k9 0.21 (nm s)−1

Dimer-promoter unbinding rate k10 0.2 s−1

Protein degradation rate k11 0.2 s−1

Values are based on [21] and slightly adapted to obtain a desired threshold behavior

Fig. 10.4 Time courses of monomer (A, x2) and dimer (A2, x3) concentration of (10.9) for an
addition and removal of the inhibitor (I , y); the target values and time intervals chosen for the
specification functionals are indicated by solid black lines

wi (t) =
{

1 for t ≤ [t1, t2] ∪ [t3, t4]
0 otherwise

for i = 1, 2 (10.11)

The actual values for time-intervals for w1 and w2, as well as the target values are
shown together with the trajectories for the nominal system (10.9) in Fig. 10.4.
For this case study we assume that we have means to design the binding rate of the
inhibitor to the dimer k7 and the binding rate of the dimer to the promoter k9. To assess
the error incurred by the linearization we consider the reverse-forward mapping as
described in (10.7). Hence for various size of φ we perform the inverse mapping
with L† and the forward mapping with F . If the maps are exact we should obviously
obtain a ball with the same φ. Any deviation ψ thereof reflects the approximation
of F−1 by L†. In Fig. 10.5 the images of B f 0(φ) under L† and F ◦ L† are shown
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Fig. 10.5 Contours of B f 0 (φ) (blue) in feature space (first row) are mapped back to the parameter
space via L† (second row) and mapped forward using F (red) for increasing size of φ (from left to
right)
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Fig. 10.6 Covering a certain specification range S (black rectangle) by overlapping balls, (a) which
in turn yields overlapping ellipsoids in the parameter space (b). The precision of the mapping is
illustrated by the reverse-forward map in (c). The centers of the balls are illustrated by crosses

for various radii φ. Hence, for an intermediate size of φ a good trade-off between
approximation accuracy and sampling coverage is achievable. A systematic sampling
of a predetermined specification area S would proceed by successively sampling
overlapping balls with radii adapted to maintain ψ under a certain value as illustrated
in Fig. 10.6. In this example, the coverage of the region S is above 98 % using 50 balls
of different radii. The lower left corner of the specification space (Fig. 10.6a) maps to
a strongly nonlinear region of the parameter space (upper right corner in Fig. 10.6b)
and therefore forces the use of smaller balls to keep the error in acceptable range.
On the contrary, the upper right region of the specification space is more linear and
larger balls can be used with limited relative error (Fig. 10.6c).
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10.4 Conclusion

We presented a novel method to determine the parameter region of a biochemical
reaction network that is consistent with a certain dynamical, behavioral specification.
We defined specifications in a novel and general way that requires only the speci-
fication map to be once differentiable with respect to the states of the underlying
differential equations. We showed that by locally linearizing this map we can solve
the desired inverse problem of finding a parameter region for a given specification.
As regions, instead of points, are mapped back to parameter space the scheme is
in principle able to cover (given some regularity conditions) the feature and para-
meter space—something that is not possible with simple point sampling. We also
discuss means for estimating the size of the local neighborhood in order to guarantee
certain approximation errors. In this work, we considered classes of models based
on ordinary differential equations, but the outlined framework can be extended to
include stochastic dynamical models through the use of moment closure methods,
for instance.

Acknowledgments H.K. acknowledges the support from the Swiss National Science Foundation
(SNSF) grant number PP00P2_128503.
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Chapter 11
Simplified Computational Design of Digital
Synthetic Gene Circuits

Mario Andrea Marchisio and Jörg Stelling

Abstract One ultimate goal for synthetic biology is the complete computer-aided
design of novel gene circuits. Here, we show how concepts and algorithms from
electrical engineering can be exploited to set up a framework for the computational,
automatic design of gene Boolean gates and devices. As in electrical engineering,
the modular design of digital synthetic gene circuits can be automated via the Kar-
naugh map algorithm. However, differently from electronics, the circuit scheme
corresponding to a Boolean formula is not unique since the wiring between gates
can be established by transcription factors or small RNAs. In particular, we discuss
a new, simplified version of our previous algorithm that is better tailored to wet-lab
circuit implementation.

Keywords Digital circuits · Parts · Pools · Karnaugh map methods

11.1 Modular Design of Synthetic Gene Circuits

It is a central concept of synthetic biology, to design novel circuits—as in other
engineering disciplines—by combining well-defined parts, devices, and higher-order
functions [1]. For biological circuit design, however, this approach of bottom-up
design of novel synthetic gene circuits faces several conceptual challenges. Funda-
mentally, the design requires the definition of functional modules, but it is not clear
what the most suitable criteria for such definitionin complex biological systems
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Promoter RBS Coding regions TerminatorsRNA

Standard Biological Parts

Pools of common signal carriers

RNA
Polymerases 

Ribosomes Transcription  
factors

Small RNAs Chemicals

Fig. 11.1 Symbols of parts and pools. Symbols of standard biological parts (from the MIT registry)
and pools used throughout the chapter (figure adapted from [3])

with non-linear dynamics could be [2]. The modules have to be composable, which
means that they must share common input/output signals in order to be assembled
into devices of higher complexity.

Such concepts often use analogies between biological and electrical engineering.
In electrical devices, basic components such as resistors and capacitors are connected
to each other inside circuits via the exchange of electrons. In a similar way, Standard
Biological Parts are defined as DNA traits with well-characterized functions in tran-
scription or translation. According to the MIT Registry of Standard Biological Parts
(http://parts.igem.org/), parts are divided into categories such as promoters, ribosome
binding sites (RBSs), coding regions, and terminators. These genetic parts are com-
posable since they exchange several molecules referred to as common signal carriers.
These carriers can be RNA polymerases and ribosomes [4], which lead to mRNA
and protein synthesis. Similarly, transcription factors, small RNAs, and chemicals
permit regulation among circuit components and interaction with the environment
[5].

To enable computer-aided, rational design in line with these ideas, we previously
developed a computational tool for the visual, modular design of synthetic gene
circuits [5, 6]. In addition to standard parts, we introduced another kind of modules,
namely pools that store free signal carriers, i.e., the circuit’s biological potentials
(see Fig. 11.1 for the graphical notation of modules and parts used in the following).

To represent the dynamic behavior of parts and pools, the modules are mod-
eled according to full mass-action kinetics. These modular models are generated
independently by running the corresponding Perl scripts that require, as input, para-
meter values and, when necessary, structural details such as the number of operators
along a promoter sequence. Parts and pools are encoded into separate MDL (Model

http://parts.igem.org/
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FaPSb,Ffree 

SiPSb,Sfree 

RNAPS 

RNAPSb,RNAfree 

RiPSb,rfree  

PoPSb,Polfree 

Fig. 11.2 Exchange of signal carriers among Parts and Pools. RNA polymerases flow through
every standard biological part. The PoPS flux (Polymerase Per Second—simple arrows, solid lines)
along each transcription unit (here represented as boxes) is originated by the interaction of free
polymerases and promoters. Each promoter receives from the polymerase pool the amount of free
molecules of polymerases (Pol f ree) and it sends back a balance flux (PoP Sb) that arises from the
binding and unbinding reactions of RNA polymerases with the DNA (simple arrows, dashed lines).
Polymerases leave a transcription unit at the terminator and then return to their pool. Similarly,
free ribosomes (r f ree) interact with RBSs on the mRNA. Here, the RiPS flux (Ribosomep Per
Second—line arrows) starts and ends at coding regions where ribosomes are released again. Inside
coding regions, moreover, transcription factors are produced. They flow directly to their pool (FaPS,
Factor Per Second—concave arrows) and they are subsequently exchanged (F f ree and Fa P Sb)
with the promoters they regulate. Furthermore, transcription factors can be activated or inhibited
by chemicals (or environmental signals) inside the promoter or directly in their own pool. Free
signal amount (S f ree) and balance flux (Si P Sb , Signal Per Second—diamond arrows) are also
relevant for RBSs when they contain riboswitches (not shown in the figure). Small RNAs are the
last common signal carrier considered in our model. They are transcribed into an sRNA part and
sent to their pool (RNAPS flux, RNA Per Second—circle arrows). From here, they get access to
every RBSs they regulate (as RN A f ree and RN AP Sb)

Definition Language) files [7] and can be handled within ProMoT [8]. In particular,
ProMoT provides the user with a GUI where modules are deployed and connected
via wires. Module interfaces are called terminals. Through them, parts have access
to the current concentrations of free signal carriers in pools and parts exchange
(with another part or a pool) fluxes of signal carriers, that is, biological currents (see
Fig. 11.2 for a more detailed representation).

While the basic infrastructure for computer-aided design, thus, is available, circuit
construction in most cases is still manual. In contrast to electrical circuit design,
however, few methods for the automated design—in the sense of generating a circuit
structure that allows to meet user-defined, functional performance specification—are
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available for synthetic gene circuits. Here, we focus on the simplified computational
design for a particular class of gene circuits, namely synthetic devices for arbitrary
computations of Boolean logic.

11.2 Automatic Circuit Design

The design of a genetic circuit able to accomplish a specific task is, in general, not an
easy operation. First, one has to determine the circuit structure. This step requires one
to gather parts into bigger modules, such as motifs [9], whose dynamics is known;
combinatorial effects may lead to an explosion of structural design alternatives here.
Afterwards, genetic parts themselves have to be identified. This corresponds to find-
ing those values of their kinetic parameters that make the overall circuit work as
desired. Computational solutions that aim at the automatic design of genetic circuits
starting from a target output function have been proposed [10–13]. They are all based
on stochastic algorithms that perform a double optimization procedure in order to
derive both circuit structure and parameter values. This approach, however, does not
scale linearly (or polynomially) with the circuit size, and it might therefore require
the adoption of very simplified biological models to describe circuit components
(e.g., by representing translation as a single-step event).

As we showed in a previous publication [3], digital gene circuits can be designed
in a simpler way. For this class of circuits, the truth table replaces any target function
and it fully specifies the relation between circuit inputs (externally added chemicals or
signals from other synthetic or natural biological circuits) and output (fluorescence,
for instance). Moreover, via the Karnaugh map algorithm [14], the truth table can
be converted directly into a Boolean formula from which the circuit scheme—where
Boolean gates are organized in two or three layers—follows immediately. Hence,
the circuit structure is given without a need for any optimization procedure. We will
illustrate these concepts with a simple example in the following.

11.2.1 Bringing Electronics into Biology: The Karnaugh
Map Method

The truth table of a logic circuit represents the relations between (multiple) inputs and
outputs in terms of ‘0’ and ‘1’ states, and every row of the table pertains to a specific
combination of discrete inputs and the resulting outputs. Every truth table is asso-
ciated with two different minimal Boolean formulas: the CNF (Conjunctive Normal
Forms) formula and the DNF (Disjunctive Normal Form) formula. In electronics, the
former is called POS (Product Of Sums), the latter SOP (Sum Of Products). For any
truth table, both Boolean formulas can (in principle) be derived with the Karnaugh
map method.
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Fig. 11.3 The Karnaugh map
method. a A Karnaugh map is
a rearrangement of the content
of a truth table. In the first
column a values are written,
whereas the first row contains
the b and c bits together.
Their sequence 00, 01, 11,
10 is an example of a Grey
code. b The SOP formula is
obtained after grouping the
1s present into the Karnaugh
map. c Different from the SOP
formula, clauses in POS are
determined by considering the
complement (here indicated
as Cp) of each variable whose
digit is conserved within a
group. Moreover, each clause
contains a logic sum (OR) of
input variables and the whole
formula is a logic product
(AND) of clauses

a b c o
0 0 0 0 
0 0 1 1 
0 1 0 0 
1 0 0 0 
0 1 1 1 
1 0 1 0 
1 1 0 1 
1 1 1 1 

Truth table 

00 01 11 10

0 0 1 1 0

1 0 0 1 1

Karnaugh map 

a 
bc

00 01 11 10 

0 0 1 1 0 

1 0 0 1 1 

a 
bc

SOP solution=NOT(a)c+ab

a b c
0 0 1 
0 1 1 
0 X 1 

NOT(a)c

a b c
1 1 1 
1 1 0 
1 1 X 

ab

00 01 11 10 

0 0 1 1 0 

1 0 0 1 1 

a 
bc

POS solution=(NOT(a)+b)(a+c) 

a b c
1 0 0 
1 0 1 
1 0 X 

NOT(a)+b

a b c
0 0 0 
0 1 0 
0 X 0 

a+cCp Cp 

(a)

(b)

(c)

A Karnaugh map is simply a rearrangement of a truth table where two adjacent
inputs differ at most by one digit only (a so called Grey code sequence—see
Fig. 11.3a). In order to extract the SOP Boolean formula from a Karnaugh map,
one has to group all the 1s in the table. Each group can contain only a power of two
of 1s and it needs to have a square or rectangular shape, which means that 1s cannot
be gathered in diagonal. First, one should try to construct groups as big as possible
and then reduce their dimension, leaving groups of single 1s only at the very last
step. Notice that overlaps between different groups are also allowed. As shown in
Fig. 11.3b, in our example we have four 1s than can be gathered into two groups of
dimension two. Each group corresponds to a clause in the formula. Only variables
whose digit stays constant inside the group appear in the clause: if their binary value
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is 0, they are negated. In this case, both clauses represent a logic product (AND)
of their inputs. The whole SOP formula is finally given by the logic addition (OR)
of the two clauses. As for the POS formula, an analogous procedure holds where,
however, 0s have to be gathered instead (see Fig. 11.3c for further details).

Both for SOP and POS, a circuit can be organized in three layers of gates: an
input layer containing YES (these gates exist only in biology and have no electronic
counterpart) and NOT gates for true and false input values, respectively; an internal
layer made of as many gates (AND in SOP, OR in POS) as the clauses in the Boolean
formula; a final layer comprising a single gate: AND in POS and OR in SOP. However,
in a SOP circuit, every AND gate may produce the circuit output, making the presence
of the final OR gate unnecessary (see Fig. 11.10a). This distributed output architecture
has been recently shown to be functional for the design of Boolean circuits [15].

Furthermore, recall that one of the De Morgan laws [16] claims that

(a + b) = ab, (11.1)

where a denotes the negation (NOT) of signal a. Therefore, the POS formula in our
example can be rewritten as

P O S = (ac) + (ab). (11.2)

Hence, both SOP and POS require only three kinds of gates: YES, NOT, and AND.
Moreover, the POS scheme that results from Eq. (11.2) looks like a SOP one where the
final OR gate is replaced by a NOT that takes, as the only input, a negative regulatory
factor produced by all the AND gates in the internal layer (see Fig. 11.11a).

Overall, thus, standard methods for logic circuit design allow both a systematic and
a potentially compact (in terms of implementation) construction of alternative digital
circuit design. The critical question, however, is to what extent these alternatives
can be realized in biological systems, and how uncertainty, non-linearity, and other
characteristics of biological systems affect their performance.

11.2.2 Gene Boolean Gates

Although different designs of diverse complexity are possible for engineering genetic
Boolean gates (see for instance [17]), the most common ways to confer a digital
behavior to genes and their products employ the transcriptional control via designed
promoters [18, 19] and the translation regulation at the mRNA level using structures
such as riboswitches/ribozymes [20] or antisense RNA base-pairing [21, 22].

Here, we consider chemicals as inputs for our digital circuits. They fall into two
categories that, following the notation in [23], are referred to as inducers (i) such
as IPTG (acting on the Lac repressor) and corepressors (c) such as tetracycline
(binding to the Tet inverse repressor). Chemicals regulate transcription by binding
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Fig. 11.4 Inducer-based gates. YES gates produce either active repressors (Ras) or inactive activa-
tors (Ais) to which inducers bind. NOT gates require one more gene in a two-step cascade. Notice
that throughout the gate and circuit schemes in this chapter, terminators have been always omitted,
and RBSs are only shown when they are regulated

to transcription factor proteins (repressors or activators) and modifying their state
(active or inactive), and therefore their action on the DNA. Moreover, chemicals can
control translation as well, by binding riboswitches or ribozymes, thereby causing
structural changes of the mRNA.

We extend our previous Boolean gate design [3] by allowing inducers and core-
pressors to interact both with repressors and activators. In particular, inducers bind
active repressors (Ra) and inactive activators (Ai). If we put a gene expressing a
fluorescent protein under the control of either transcription factor, we will register
fluorescence only in the presence of inducer molecules: this is what we call a YES
gate. To have a NOT gate, on the contrary, we shall require that fluorescence is
expressed only in the absence of inducers. This is achieved via a two-step cascade
where the chemically regulated Ra or Ai acts on a downstream gene that encodes a
negative regulatory factor (either a repressors or an sRNA) that, in its turn, controls
the synthesis of the fluorescent protein (see Figs. 11.4 and 11.6). Only when inducers
are present, the promoter in the first step of the cascade is either freed from repressors
or bound by activators. In both cases, the negative factor is produced and fluores-
cence is switched off. We shall notice that in this work, small RNAs are assumed to
behave only as translational repressors: this is, indeed, their most common function,
although it was reported that they can also activate protein synthesis [24].

A complementary picture holds for corepressors. They bind either inactive repres-
sors (Ri) or active activators (Aa) and realize “naturally” NOT gates, whereas YES
gates require the two-step cascade configuration (see Figs. 11.5 and 11.6).

In analogy to [15], with this design of YES and NOT gates, AND gates are
simply transcription units that are regulated by the outputs of the input gates, that
is, regulatory factors that represent true and false variables (see Fig. 11.7). However,
when a promoter is under the action of two activators, they have to act cooperatively
in order to mimic the AND behavior properly.
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Fig. 11.5 Corepressor-based gates. NOT gates synthesize either Ris or Aas on which corepressors
exert their action. YES gates require, on the contrary, the more complex two-step cascade structure
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Fig. 11.8 Riboswitches-
based gates. a Inducers
activate riboswitches that
are in the default ‘off’ state
(rof f ), allowing fluorescence
production (YES). Corepres-
sors, on the contrary, switch
off the synthesis of fluores-
cent proteins by inactivating
‘on’ riboswitches (ron). In the
gates’ schemes, RBSs have
been replaced with hairpins
representing riboswitches.
b Riboswitches-based con-
figuration of the AND gate
corresponding to the Boolean
formula ab. The truth table is
shown in Fig. 11.7
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Finally, in our representation, AND gates can contain riboswitches along their
mRNA (on the RBS, since we consider bacterial cells). They are either activated by
inducers (YES) or deactivated by corepressors (NOT—see Fig. 11.8).

Overall, thus, digital circuit design for biology provides different design alterna-
tives, in terms of the delineation of circuit structures as well as of the basic imple-
mentations of biological gates. For practical applications, it is therefore essential to
evaluate the performance of these alternatives systematically; this is the topic of the
following section.

11.3 Design Alternatives for Digital Gene Circuits

For the evaluation of design alternatives, we will focus on the comparison of (dynamic
mathematical models for) POS- and SOP-based design. Both of them are generated
automatically through the computational methods described below.

11.3.1 The Computational Tool

In order to run our computational tool for the simplified automatic design of syn-
thetic gene digital circuits, a user has to specify the inputs, that is, the chemicals’ type
(i or c) and the corresponding regulatory factors (transcription factors or riboswitches)
together with the circuit truth table. Although the Karnaugh map method works
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Fig. 11.9 Split AND gate configuration. In our model, AND gates cannot take three inputs of the
same kind such as the tree repressors depicted here (each repressor is supposed to bind a different
inducer; not shown). The first two repressors stay on the original AND gate that, however, does not
produce any more a fluorescent protein but an activator. This activator regulates, together with the
third repressor, a new AND gate where fluorescence is now produced

efficiently up to 6 inputs, current limitations in the implementation of engineered
synthetic gene circuits (primarily due to the limited number of orthogonal compo-
nents, see also [25]) forced us to restrict our algorithms to the cases of 2 or 3 input
chemicals.

After calculating both SOP and POS circuit formulas, all the possible YES and
NOT gates compatible with the rules presented in the previous section are gener-
ated. Hence, false inducers that act on a transcription factor are associated with two
possible NOT gates that produce a repressor and an sRNA, respectively. Similarly,
true corepressors will correspond to two diverse YES gates. Each combination of
the available YES and NOT gates gives rise to a different circuit scheme. Provided
that no riboswitches are involved, a solution is always purely transcriptional, that
means it contains only repressors and activators whereas all the other solutions show
a mixture of transcription factors and small RNAs to transduce the input signal from
the input to the final layer of gates.

In our model, promoters and RBSs cannot be regulated by more than two factors.
Whenever an AND gate requires either three different transcription factors or sRNAs,
it is split into two new AND gates that are regulated by two factors only. The first AND
gate receives two of the original inputs and it produces an activator that regulates the
second AND gate together with the third original input (see Fig. 11.9). A combined
control of transcription and translation is always allowed for AND gates.

As mentioned above, SOP circuits make use of the distributed output architecture,
whereas POS designs require a final NOT gate. The latter, in general, is controlled
by a repressor that is the common output of the internal layer. However, if none of
the AND-gate RBSs is regulated either by sRNAs or by chemicals, a further solution
is taken into account where all the AND gates produce a small RNA to control the
final NOT gate.

Solutions both in SOP and POS are ranked according to the complexity score S
defined as

S = 2nR−1 + 2n A−1 + ns; nR, n A ≥ 1 (11.3)
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where nR is the number of repressors in the circuit, n A the one of activators, and ns

is the amount of small RNAs present in the network. This score aims at representing
the practical effort for implementing a circuit and it is based on the assumption
that transcription factors are more difficult to be engineered than small RNAs [3].
Hence, Eq. (11.3) favors the usage of translational control mechanisms. However,
recent progress in DNA-binding-factor engineering due to zinc-finger proteins [26]
and TAL effectors [27] might force us to revise, in the future, our definition of circuit
complexity.

Finally, a user can choose a solution both in SOP and POS: they are encoded into
MDL files and can be visualized (and modified, if desired) with ProMoT. From here,
solutions can be exported into formats suitable for simulations such as SBML [28]
and Matlab (MathWorks, Nantucket/MA).

11.3.2 SOP and POS Solution: A Comparison

To illustrate the dynamics and the performance of the digital circuits designed by
our tool, we simulated the time-dependent behavior of the SOP and POS solutions
that minimize the complexity score S to reproduce the truth table sowhn in Fig. 11.3.
Both the minimal circuits have a low complexity score of S = 5; note that the
complexity scores for all design alternatives cover a range between S = 5 and
S = 9. However, whereas the minimal SOP solution employs three transcription
factors (two activators and one repressor) together with two sRNAs (Fig. 11.10a)
and a total of seven genes, the POS scheme needs two activators, two repressors, and
one small RNA, leading to eight genes overall (the extra gene is essentially due to the
final NOT gate—see Fig. 11.11a). Therefore, the SOP solution should be preferable
for a wet-lab implementation.

To characterize the circuit performance, we employ dynamic simulation of the
ordinary differential equation-based model generated by the circuit design tool, using
standard settings for all kinetic parameters. When we characterize the circuit perfor-
mance with the signal separation between the 1 and 0 outputs (σ , calculated as the
difference between the minimal steady-state protein number for a 1 and the maximal
for a 0—for other possible parameters see [3]), the SOP circuit clearly outperforms
the POS circuit (see Figs. 11.10b and 11.11b). Moreover, the SOP implementation
seems to respond faster to changes in the input since all the eight possible outputs—
one for each truth table entry—reach the steady state within 12 h, whereas several
responses of the POS circuit take more than twice as much.

Despite all these advantages, the SOP solution shows the non-negligible
drawback—due to the distributed-output architecture—of producing more than 50
proteins for some of its 0 outputs. This might be a problem if the circuit were inte-
grated into a more complex structure where its output has to control some downstream
components. In this case, the POS solution would be a better choice since almost no
protein is present in correspondence to any 0 output.
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Fig. 11.10 SOP solution.
a Scheme of the mini-
mal SOP solution. A pool
of reporter proteins sym-
bolizes the distributed-
output architecture. b Time-
dependent circuit simulations.
For each truth table entry, the
circuit reaches, first, a steady
state in absence of chemicals
(not shown) and afterwards it
is fed with the specific com-
bination of input molecules.
Trajectories for input combi-
nations that are designed to
yield logic 1s in the output are
black, dashed lines whereas
the 0 s for outputs are gray,
solid lines

(a)

a

b

c

Ra

Aa

Ai

Input layer Internal layer

(b)

σ

The example illustrates that, in synthetic circuit engineering, usually several
performance criteria are important. Conflicting criteria and their corresponding trade-
offs require the investigation of potentially large numbers of design alternatives,
which is not possible by manual circuit design and analysis.

11.4 Lessons From Electronics

Methods and algorithms developed in electrical engineering for the design and con-
struction of complex devices are now being applied to biology in order to implement
novel gene circuits in a rational and systematic way. Despite the intrinsic complexity
of biological systems, simple modules (i.e., repetitive patterns) are found in nature
and they serve as basic building blocks for the synthesis of synthetic constructs based
on DNA manipulation. Moreover, concepts such as signal carriers and pools (which
represent “bio-electrons” and bio-batteries, respectively) permit us to give a visual
representation of the interconnections and the possible cross-talk among gene circuit
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Fig. 11.11 POS solution. a Scheme of the minimal POS solution. The final NOT gate is the only
gene responsible for the output production. b Time-dependent circuit simulations in analogy to the
SOP solution (Fig. 11.10b)

components. Finally, algorithms such as the Karnaugh map method provide syn-
thetic biologists with rules for the design of new systems that are able to perform
well-defined functions such as sensing chemicals or carrying out computations [29].

11.5 Conclusions and Perspectives

We presented a simplified version of our original method for the automatic design of
digital synthetic gene circuits [3]. Specifically, we reduced the maximal input number
from four to three, but we allowed for more degrees of freedom in circuit design: the
two kinds of chemicals considered (inducers and corepressors) may interact both with
repressor and activator proteins. YES and NOT gates are constructed in a new and less
complex way. They convert the input signals into transcription factors and/or small
RNAs. AND gates are controlled by these regulatory factors or, alternatively, directly
by chemicals when they host riboswitches on their RBSs. Finally, with a distributed
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output architecture, circuits in SOP no longer require the final gate whereas circuits
in POS, though still organized in three layers, do not need any NOR gate.

More generally, the example of digital circuit design shows that gene circuits
could be re-shaped according to the experimental technology available, in our case
just by varying the rules for engineering YES, NOT, and AND gates. At least for
digital signal processing in engineered cells or cell populations, we anticipate that
very complex Boolean logic networks might be built in the future by decomposing
them into functional submodules that communicate within a cellular consortium [15].
For this, bio-chemical mechanisms different from mere transcription and translation
regulation could be also exploited [30]. Ultimately, the most suitable circuit design,
however, will be determined by (trade-offs) performance specifications as well as by
practical implementability in biology.
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Chapter 12
Synthetic Biochemical Devices
for Programmable Dynamic Behavior

Jongmin Kim and Elisa Franco

Abstract The ability to harness biomolecules as tools for systematic engineering
is fundamental to future developments of biotechnology and nanotechnology. Espe-
cially suitable for such applications are nucleic acid-based circuits with predictable
interactions, allowing for rational design of circuit functions and dynamics. Here,
we focus on synthetic transcriptional circuits utilizing the modular architecture of
nucleic acid templates and the catalytic power of natural enzymes. The programma-
bility of dynamic behaviors for synthetic circuits is illustrated through elementary
circuits such as an adapter, a bistable switch, and several oscillators. Further, the
effect of downstream processes on the central dynamical system illustrates the need
for systematic methods of composing biomolecular circuits. We present insulating
and amplifying devices as a solution for scaling up biomolecular networks much
as in electronic circuits. Future applications of biomolecular programs will open up
new possibilities in nanorobotics, nanomedicine, and artificial cells.
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12.1 Introduction

Biology is the science of the century [9]. Understanding the molecular processes
underlying cellular functions is fundamental to advance our ability to cure diseases
and improve the quality of life. In parallel, our increasing biological knowledge
has opened up unprecedented opportunities to use biological molecules as compo-
nents to build new, synthetic devices for a variety of purposes, including molecular
computing, nanofabrication, and new biomaterials [1, 4, 11, 19, 24].

In this picture, nucleic acids have not only emerged as fundamental molecules
for storing and propagating genetic information, but also as an excellent biochem-
ical material to build synthetic biodevices, including nanostructures and circuits.
The specificity of Watson-Crick base pair interactions allows us to rationally design
systems of strands that bind according to desired spatial and temporal patterns. By
simply choosing the sequence of bases in each strand, we determine the binding
affinity, and thus the overall supramolecular configuration, of the strands ensemble.
Thanks to refined knowledge of base-pairing thermodynamic parameters, models
allow us to both predict the structure corresponding to a given sequence, and also
to compute candidate optimal sequences that will yield a desired structure [34, 64].
Interactions of nucleic acids with other ligands cannot be rationally designed, but
they can be achieved through directed evolution techniques [10, 54]. Recently, a
variety of modified nucleic acids, presenting improved thermodynamic properties,
have been chemically synthesized [22]. Finally, custom synthesis of nucleic acid
sequences is inexpensive (from $0.2 per base-pair) and reliable. Thus, nucleic acids
are one of the most versatile self-assembling materials for nanotechnology: we can
use them to rationally build circuits [41] and nanostructures [40], and we can inter-
face these devices with a variety of materials and other biological molecules [30, 35,
56].

In this chapter, we focus our attention on synthetic transcriptional systems,
dynamic molecular circuits that can be built using nucleic acids and off-the-shelf
enzymes. These circuits recapitulate gene regulatory processes in cells with a reduced
number of components: therefore, they are a promising toolkit to rationally reproduce
many functions that are unique to cells and not yet achievable by any human-designed
material or system, such as spatial adaptability, self-repair, and replication. Thus far,
transcriptional circuits have been employed to build basic components including
bistable, oscillating, and adapting systems [26–28]. The integration of all these com-
ponents will allow us to build multi-layered devices of growing complexity; however,
systematic methods allowing for a modular integration are needed to prevent unde-
sired interactions and perturbations typical of molecular networks in the absence of
compartments [15].

We begin this chapter with a general introduction to nucleic acids and proteins as
molecular materials, and then we describe how they can be employed to build syn-
thetic reaction primitives and thus dynamics. An overview of available transcriptional
modules, focused on oscillators and adapting circuits, is followed by a discussion on
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scalability and signal transmission in interconnected circuits. Finally, we provide an
outlook on the future applications of this toolkit.

12.2 Molecular Parts

In this section we briefly and broadly introduce nucleic acids and proteins as
components to construct dynamic, artificial biochemical circuits.

Nucleic acids A nucleic acid strand is a long polymer made from repeating units
called nucleotides. Each nucleotide contains both a backbone segment, which holds
the chain together, and a base, which interacts with other bases forming hydrogen
bonds. Natural nucleic acids are RNA and DNA, which differ in the backbone chem-
ical composition (Ribose in RNA and Deoxyribose for DNA) and in one element in
the set of bases: Adenine, Guanine, and Cytosine (A, G, and C) are common to both
DNA and RNA; Thymine (T) is found in DNA, and Uracil (U) in RNA. The thermo-
dynamic interactions causing bases to bind are well characterized [32]; the canonical
Watson-Crick binding patterns are A–T (A–U in RNA) and C–G (non-Watson-Crick
interactions e.g. G–U can contribute significant energy as well). The backbone mole-
cule is asymmetric, and its direction is defined by the geometry of the sugar molecule,
in particular the 3′ and 5′ position of carbon atoms in the ring, see Fig. 12.1a. Thus,
a sequence of several nucleotides is always written in the 5′–3′ direction. Binding
of bases results in the well-known double helix structure of DNA (in nature, DNA
typically occurs in a double-stranded form); however, more generally, nucleic acid
strands “fold” into secondary structures that result in the configuration with mini-
mum free energy from a thermodynamic point of view. Thus, single-stranded nucleic
acids can fold onto themselves forming loops and hairpins, and bind to other strands
forming multi-stranded complexes. These folding interactions occur spontaneously,
thus secondary and tertiary structures of single or ensembles of strands are said to
self-assemble.

Due to the well-understood specificity of Watson-Crick base-pairing interactions,
DNA and RNA have emerged out of their biological role of information storage
and transport, and are repurposed as an easily programmable material for nanoscale
construction [8, 45]. Notable examples of self-assembled nanostructures include sys-
tems of tiles, origami, and 3-D lego-like blocks [7, 23, 45, 46]. As we will detail
in the next sections, the principle of self-assembly can be used to build logic and
dynamic circuits. A significant advantage of nucleic acids is that desired binding pat-
terns among strands can be easily specified by designing complementary domains
at an abstract level; domain examples, highlighted in different colors, are shown in
Fig. 12.1b, c. Once domain-level strand interactions are chosen, specific candidate
sequences can be designed systematically with one of the many available compil-
ers [31] and design toolboxes such as NUPACK [64], DSD [39] and DNADesign
(developed in the E. Winfree lab at Caltech). These software toolboxes operate much
like optimization suites, where base sequences are optimized to guarantee that the
minimum folding energy of the system occurs at the desired binding configuration,
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Fig. 12.1 Nucleic acids as programmable substrates. a Structure of a DNA double helical molecule
(image adapted from www.wikipedia.org). b Partially double-stranded complex with a toehold
domain (pink). c Schematic of a branch migration reaction and corresponding ordinary differential
equations

satisfying the domain complementarity constraints. Nucleic acid strands can specifi-
cally bind to other molecules and materials (metals and non-metals) as well; however,
as previously mentiond, in this case sequences cannot be designed rationally through
software interfaces, but can be selected through directed evolution techniques such
as SELEX [10, 54].

Proteins According to the central dogma of molecular biology, proteins are
generated by complex cellular machinery through a process called RNA transla-
tion: a chain of amino-acids is produced starting from a chain of messenger RNA;
RNA is in turn transcribed from a DNA template. Each amino acid corresponds to a
specific triplet of bases, or codon. It is not our purpose to provide detailed information
on protein composition and “encoding”, which is rather complex. Indeed, proteins
are molecules whose chemical and spatial organization is extremely difficult to pre-
dict [33]. Using the efficient transcription and translation processes recapitulated in
vitro, several synthetic biomolecular circuits have been demonstrated [20, 38, 50,
51]. Because this chapter focuses primarily on the use of nucleic acids to build circuits
and systems, we briefly introduce polymerases and nucleases, classes of proteins that
directly interact with nucleic acids, and are particularly simple to manufacture and
utilize in vitro.

Polymerases are a class of proteins that catalyze the formation of nucleic acid
polymers starting from nucleotides (dNTPs for DNA, rNTPs for RNA). Several
types of DNA and RNA polymerases are commercially available; they differ in their
molecular structures, specific functions (e.g., repair or replication), and substrates.
Most reactions involving bacteriophage polymerases are relatively simple to recreate
in vitro. In particular, the circuits described in this chapter will rely on transcription
reactions carried out by the bacteriophage T7 RNA polymerase (T7 RNAP). We
choose this polymerase because of its simple architecture (a single unit 99kDa pro-
tein), short promoter region (only 17 bases), and strong activity (it is typically used in

www.wikipedia.org
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many in vitro applications). T7 RNAP is extremely promoter-specific and transcribes
only DNA downstream of a T7 promoter where templated RNA synthesis proceeds
from the 5′ end to the 3′ end. However, T7 RNAP also generates abortive transcripts
(shorter than the full-length RNA signal) [21] and catalyzes aberrant untemplated
reactions at a slow rate [57]. Some of the known side reactions can be taken into
account at the design stage to minimize adverse effects on circuit operation [27].

Nucleases cleave the phosphodiester bonds between the nucleotide subunits of
nucleic acids. Thus, in contrast with polymerases that catalyze formation of nucleic
acid chains, nucleases cut or degrade the chains in various manners. In particu-
lar, we will consider RNA degrading enzymes such as RNase H and RNase R.
Escherichia coli RNase H is used to selectively degrade RNA signals within RNA-
DNA hybrid substrates [15, 27, 28]. However, as an endonuclease requiring stable
RNA-DNA hybrid as substrates, RNase H cannot degrade RNA signals completely,
leaving chunks of RNA pieces as incomplete degradation products [43]. Another
RNase specific to single-stranded RNA, E. coli RNase R, can be utilized for circuit
functions and/or to clean up short RNA fragments [55].

12.3 Reaction Primitives and Circuit Elements

Computations or operations with molecules can be performed by first identifying
systems of chemical reactions exhibiting the desired dyamics, and then by imple-
menting such reactions using appropriate substrates. Nucleic acids are the biomole-
cule of choice for constructing reaction networks, due to their programmable self-
assembly properties; together with commercially available enzymes, they can be
used as building blocks to generate or approximate biochemical reaction primitives.
Without presumption of rigor we will describe some simple examples. We address
the reader to [27, 53] for specific details.

Nucleic acid hybridization kinetics naturally implement second-order chemical
dynamics. Two complementary strands A and B bind at a rate kAB that depends on
their conformational states (secondary structures) and environmental factors such
as temperature and salt conditions [16], and form a complex X with the following
dynamics:

d

dt
A = −kAB A · B = d

dt
B,

d

dt
X = kAB A · B.

Now, if perfectly double stranded, complex X is inert and may not be used for further
reactions involving nucleic acids. However, the presence of an exposed overhang
or toehold in one of the strands forming X (pink domain in Fig. 12.1b), allows
other strands to initiate interaction with the toehold region of X and displace a
single-stranded component through branch migration process [63], schematically
represented in Fig. 12.1c. The resulting dynamics are systematically derived using
mass action kinetics.
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The principle of toehold-mediated branch migration is used in a variety of recent
circuit design methods, where multi-input and multi-output DNA complexes or
“gates” can implement arbitrary chemical reaction dynamics after proper scaling
of reaction rates [41, 53].

To expand the range of dynamics implementable with biochemical substrates,
we can combine hybridization and gating techniques with enzymatic reactions. As
previously mentioned, several off-the-shelf proteins allow us to reproduce routinely
a variety of biochemical processes such as transcription, replication, nicking and
ligation. The classical Michaelis-Menten approach is generally a good approximation
of the detailed enzymatic reaction dynamics, when the substrate concentration is large
relative to the enzyme, and the binding and unbinding reactions of substrate and
enzyme are fast. For example, consider a transcription process where the substrate
S is a synthetic gene, the enzyme E is an RNA polymerase, and the product P is an
RNA species:

E + S

k+
β

σ

k−
Ê S

kcat−−≤ E + S + P.

Assuming that the dynamics of the species Ê S reach a steady state fast:

d

dt
Ê S = k+E · S − k− Ê S − kcat Ê S = 0,

Ê S = k+E · S

k− + kcat
= E · S

KM
,

where KM is the Michaelis constant. In the last equation, we may further apply mass
conservation:

Etot = E + Ê S,

S ∞ Stot .

Then, the Michaelis-Menten approximation yields:

d

dt
P = kcat Ê S = kcat

KM
S

⎡
Etot

1 + S
KM

⎢
.

Depending on the amount of substrate relative to KM , the dynamics of product P
range from linear (first order) to saturated (zeroth order) as a function of the substrate.
If the substrate amount varies over time, then nonlinear dynamics can be generated.

Transcriptional circuits build on the examples we just overviewed. The elementary
unit of synthetic transcriptional networks is a DNA switch, which serves the role of
simplified gene in a genetic regulatory circuit. The basic requirements for a synthetic
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Fig. 12.2 Components of synthetic transcriptional circuits. The synthetic transcriptional circuits
consist of switchable DNA templates and a few enzymes. The switchable DNA templates have
a modular architecture consisting of an upstream input domain, a promoter for RNA polymerase
(boxed region with arrows to indicate direction of transcription), and a downstream output domain.
In its OFF state, the promoter domain of switch template is incomplete, i.e., partially single-stranded;
in its ON state, an activator strand complements the missing promoter region such that the promoter
domain is complete except for a nick. RNA polymerase drives the production of RNA signals using
rNTP as fuels, while RNase removes transient RNA signals

DNA switch are to have a modular domain architecture and to have two distinct
conformations with different transcriptional efficiency. Because the thermodynamics
of DNA structures are well-known, it is straightforward to predict the conformational
state from sequence information alone. To achieve modularity, the input domain of a
DNA switch is placed upstream of the promoter region for RNAP; the output domain
is placed downstream of the promoter region.

A possible mechanism of activation is the complementation of an incomplete
promoter region within the OFF-state DNA switch. Figure 12.2 illustrates the design
for DNA transcriptional switches and the mechanism for activation. Despite the nick,
a break in the DNA backbone, within the promoter region, the ON-state DNA switch
was found to transcribe well, approximately half as efficiently as the complete duplex
promoter [27]. The ON-state switch can be converted back to an OFF-state switch
using a perfect complement of the activator strand through a toehold-mediated strand
displacement reaction [63]. Figure 12.3 illustrates the mechanism for inhibition. This
set of binding reactions provides a means to choose the thresholds of the sigmoidal
inhibition and activation functions, as described below.

The network computation is powered by rNTPs that drive the synthesis of RNA
signals by RNAP, while RNases force transient RNA signals to decay. Since many
of the RNA signals exert their effects through stoichiometric binding to target DNA
strands, E. coli RNase H is used to selectively degrade RNA signals within RNA-
DNA hybrid substrates [15, 27, 28]. Another RNase specific to single-stranded RNA,
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Fig. 12.3 Molecular implementation of inverter and repeater switches. For an inverter switch, an
inhibiting RNA strand rI displaces DNA activator strand A from the promoter region of the active
template T·A, leaving the template in its transcriptionally inactive state T. The excess concentration
of activator strand A can be used to set the inhibition threshold (K I = [Atot] − 1

2 [Ttot]). For a
repeater switch, the activation of switch template is achieved indirectly: an activating RNA strand
rA first displaces the DNA inhibitor dI from the inhibiting complex A·dI; then, the released activator
A binds to its target template T such that a transcriptionally active T·A complex forms. Here the
excess of dI over A strands is used to set the activation threshold (K A = [dItot] − [Atot] + 1

2 [Ttot])

E. coli RNase R, can be utilized for circuit functions and/or to clean up short RNA
fragments [55].

12.4 Synthetic Biochemical Devices

The modular and flexible architecture of synthetic transcriptional network allows
scaling up of network complexity. In principle, the synthetic transcriptional net-
work is equivalent to neural networks capable of an associative memory task and a
winner-take-all computation [25, 42]. In this section, we focus on the experimen-
tal implementation of elementary circuits and quantitative understanding thereof.
Figure 12.4 illustrates examples of elementary circuits where the simple reaction
primitives are implemented for functional circuits.
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Fig. 12.4 Systematic construction of transcriptional circuits composed of modular switch motifs.
Feedforward circuits include a cascade (as a part of oscillator circuit) and an adapter proposed
in [26]. A bistable autoregulatory switch in [55] and a bistable circuit in [27] are examples of
positive-feedback circuits; oscillators constructed in [28] are examples of negative-feedback circuits

12.4.1 Oscillator

A negative-feedback loop with delays has been utilized as the mechanism to generate
temporal oscillations [17]. Using the inverter and repeater transcriptional switch
motifs introduced earlier (Fig. 12.3), we constructed a two-switch negative feedback
oscillator with the connectivity shown in Fig. 12.5a (cf. Fig. 12.4). A total of seven
DNA strands are used, in addition to the two enzymes, RNAP and RNase H. RNA
activator rA1 activates the production of RNA inhibitor rI2 by modulating switch
Sw21, whereas RNA inhibitor rI2, in turn, inhibits the production of RNA activator
rA1 by modulating switch Sw12.

First, we introduce a simplified 4-dimensional model to illustrate dynamics of a
two-switch negative feedback oscillator. We take the two RNA species as dynamic
signals and assume that their production rates are solely determined by the ON-



282 J. Kim and E. Franco

state switch concentrations and their degradation rates depend only on their own
concentrations.

d[rA1]
dt

= kp · [T12A2] − kd · [rA1], (12.1)

d[rI2]
dt

= kp · [T21A1] − kd · [rI2], (12.2)

where kp is the production rate from an ON-state switch and kd is the degradation rate
for RNA species. Experimentally, we observed that the steady-state switch response
to RNA inputs can be reasonably approximated by Hill functions with thresholds set
by the concentration of the strands competing for the activator. Thus, the two switch
states are modeled to follow RNA input changes with relaxation time τ as follows:

d[T12A2]
dt

= 1

τ

⎣

⎤⎥[T12tot] 1

1 +
⎦ [rI2]

K I

⎛n − [T12A2]
⎝

⎞⎠ , (12.3)

d[T21A1]
dt

= 1

τ

⎣

⎤⎥[T21tot]
⎣

⎤⎥1 − 1

1 +
⎦ [rA1]

K A

⎛m

⎝

⎞⎠− [T21A1]
⎝

⎞⎠ , (12.4)

where K A and K I are the activation and inhibition thresholds for RNA activator rA1
and RNA inhibitor rI2. Reasonable approximations for the thresholds are given in
terms of concentrations of molecular species as follows: K I = [A2tot] − 1

2 [T12tot]
and K A = [dI1tot]−[A1tot]+ 1

2 [T21tot] (See [28] for more details on approximations
for m, n, and τ .). Simulated traces for the RNA species showed oscillation with
reasonable parameter choices (Fig. 12.5b).

To explore the phase space of the simple model, we introduce non-dimensional
variables as follows:

x = [rA1]
K A

, y = [rI2]
K I

, u = [T12A2]
[T12tot] , v = [T21A1]

[T21tot] , s = t

τ
. (12.5)

Replacing the non-dimensional variables to Eqs. (12.1)–(12.4), we obtain:

γ
dx

ds
= α · u − x, γ

dy

ds
= β · v − y, (12.6)

du

ds
= 1

1 + yn
− u,

dv

ds
= 1 − 1

1 + xm
− v, (12.7)

where α = 1
K A

kp
kd

[T12tot], β = 1
K I

kp
kd

[T21tot], and γ = 1
kd ·τ .

The nullclines for x and y are calculated as follows: u = 1
1+yn and v = 1 − 1

1+xm

at steady-state, and thus, the nullcline for x (i.e., dx
ds = 0) becomes x = αu = α

1+yn



12 Synthetic Biochemical Devices for Programmable Dynamic Behaviors 283

(a) (b)

rA1

SW21

rI2

SW12
0 200 400 600

0

1

2

3

4

5

Minutes

 

 

rA1 rI2

2 4 6 8 10
0

2

4

6

8

10

x

y

= 10
 

=10

=8

 

=6
=4

(c)

[R
N

A
] (

m
µM

)

Fig. 12.5 a Scheme of the two-node synthetic oscillator. b Example trajectories for the RNA species
in the four-dimensional model. The parameters are chosen as follows: kp = 0.05 /s, kd = 0.001 /s,
K A = K I = 0.5 μM, [T21tot] = [T12tot] = 100 nM, m = n = 3, τ = 1000 s (this choice
guarantees γ = 1). The initial conditions are the following: [rA1](0) = 0 μM, [T21A1](0) =
0 nM, [rI2](0) = 0 μM, [T12A2](0) = 100 nM. c Nullclines for x and y (non-dimensional
variables corresponding to switch states) of the non-dimensional model where the parame-
ter β was varied. The trajectories of x and y admit oscillation. The parameters are chosen as
α = 10, m = n = 3, γ = 1

and the nullcline for y (i.e., dy
ds = 0) becomes y = β

⎦
1 − 1

1+xm

⎛
. Because the

nullcline for x as a function of y is monotonically decreasing while the nullcline
for y as a function of x is monotonically increasing, the system admits a single
fixed point. Nullclines are numerically computed in Fig. 12.5c for a wide range of
β. The stability of the fixed point as calculated by the Jacobian matrix determines
whether the system admits oscillations. Similarly, an analysis using control theoretic
tools reveal that there are oscillating and non-oscillating domains determined by the
gain of feedback system; this can be easily seen by linearizing the system around
the unique equilibrium, and deriving the closed loop transfer function. Note that
the system cannot oscillate when the time-scale separation for RNA dynamics and
switch dynamics is valid (i.e., γ ∈ 1 or γ ≥ 1) because the reduced two-dimensional
systems cannot admit oscillations. (See [28] for more details.) On the other hand, a
two-dimensional system can admit oscillations if augmented by a positive feedback
loop [2, 28].

While insightful for understanding basic requirements for oscillations and eluci-
dating the space of dynamic potentials, the simple model neglects important details
of the experimental system, such as asymmetries between switches and the com-
plexities of enzyme and hybridization reactions. Therefore, a detailed model built
from first principles was utilized to determine experimental conditions conducive
to oscillations (See [28] for more details.). An important deviation from the simple
model was that the Michaelis–Menten enzyme reaction was used instead of first-
order approximations. The RNAP needs to support transcription from both switch
templates and the RNase H works on both RNA signals within the RNA-DNA hybrid
complexes. When the enzymes are saturated as the substrate concentrations increase,
the enzyme reaction dynamics are no longer first-order but approach constant rates
(zeroth order) determined by the maximum capacity of enzymes. The coupling of
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reactions through common enzymes or resources have significant ramifications in
the dynamics of systems, leading to non-intuitive results at times [44, 62]. On the
other hand, the saturation of degradation enzymes may help increase the domain of
oscillations [61]. Using a straightforward random sampling technique inspired by
stochastic high-dimensional sensitivity analysis [12], the initial experimental con-
ditions were determined which showed a damped oscillation; further optimization
lead to sustained oscillations.

However, even the detailed model failed to capture certain aspects of experimen-
tal results, i.e., the continued accumulation of RNA signals after each cycle. When
an initial hypothesis of reduced enzyme activity was implemented in the augmented
model, the simulation result was not able to generate such phenomena. An alterna-
tive hypothesis that the incomplete degradation product interferes with the intended
signal propagation among switches was implemented: this augmented model quali-
tatively captured the experimental observation. It is interesting to note that the syn-
thetic oscillator was able to mount an increased signal response to compensate for
the reduced signal transmission efficiency due to the presence of interfering species,
showing robustness to such disturbance. The waste management is a different type of
crosstalk not often discussed in synthetic biology. Although it is plausible that biolog-
ical systems are equipped to handle waste management issues efficiently, introduction
of novel molecular species to biological systems may cause unexpected difficulties.
As an analogous example, the bacteria E. coli cannot survive without oligoRNase
that specifically degrades short single-stranded RNA species [13], indicating the
importance of waste management for biological circuits.

12.4.2 Adapter

One common feature found in many sensory systems of living organisms is the
exact adaptation in which the output upon change of input to a new constant level
gradually returns to a steady level independent of the input [52, 58]. A classic example
is the bacterial chemotaxis in which bacteria responds to the gradient rather than
the absolute level of nutrients. A type-1 incoherent feedforward loop (IFFL) is a
regulatory pattern in which an input u serving as an activator controls a target gene
y and also activates a repressor of that target gene, x [36] (cf. Fig. 12.4).

A generalized model of ‘sniffer’ [59] can take the following form:

ẋ = α1 · u − β1 · x − k · x · y, (12.8)

ẏ = α2 · u − β2 · y − k · x · y. (12.9)

Here, the α1 and α2 terms reflect a generic asymmetry in the effectiveness of u as an
activator for x and y. The β1 and β2 are generic degradation terms for x and y. One
notable characteristic is the existence of the k · x · y term for dynamics of both x and
y; this type of accelerated degradation term can be chosen for the case in which x and
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Fig. 12.6 a Scheme of the synthetic adapter. b Example trajectories for the input and RNA species.
The parameters are chosen as follows: [T1tot] = 200 nM, [T2tot] = 100 nM, k+ = 105/M/s, kp =
0.1/s,β1 = 0.01/s,β2 = 0.0001/s, and k = 105/M/s

y stoichiometrically react to annihilate each other as in the small RNA regulatory
circuits in biological systems [37].

Using the transcriptional switch as the regulatory motif and the aptamer for chro-
mophore malachite green (MG) as the output signal, we can construct an IFFL circuit
and monitor its output state real-time (Fig. 12.6a). It is straightforward to design two
transcriptional switches that share common input domains such that they are acti-
vated by the same DNA activator A and transcribe different outputs: MG aptamer
(“rMG”) and its inhibitor (“iMG”). The MG aptamer, rMG, consists of a short RNA
sequence whose central loop region serves as the binding pocket of MG [18]; upon
binding to MG aptamer, rMG, the fluorescence signal of MG greatly increases. The
inhibitor for rMG consists of domains that complement part of rMG such that it
opens up the central loop region of rMG upon binding. Therefore, rMG bound to
iMG loses the binding pocket for MG and the fluorescence signal decreases.

Table 12.1 shows the list of hybridization and branch migration reactions and
enzyme reactions approximated as first-order reactions. The dynamics of this in
vitro circuit (Fig. 12.6a) can be described by the following four ordinary differential
equations:

˙[T1 · A] = k+[T1][A], (12.10)
˙[T2 · A] = k+[T2][A], (12.11)
˙[iMG] = kp[T1 · A] − β1[iMG] − k[iMG][rMG], (12.12)
˙[rMG] = kp[T2 · A] − β2[rMG] − k[iMG][rMG]. (12.13)
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Table 12.1 Reaction
pathways for the
transcriptional adapter circuit

Reaction type Reaction

Activation T1 + A
k+−−−≤ T1·A

Activation T2 + A
k+−−−≤ T2·A

Production T1·A k p−−−≤ T1·A + iMG

Production T2·A k p−−−≤ T2·A + rMG

Degradation iMG
β1−−−≤ φ

Degradation rMG
β2−−−≤ φ

Inhibition rMG + iMG
k−−−≤ rMG·iMG

The system preserves the conservation relations, [Ti tot] = [Ti] + [Ti ·A], and similarly
for [Atot]. Because the binding of A to either of switches is practically irreversible,
we expect that [A]∗ 0 and [T1·A] + [T2·A] ∗ [Atot] at steady-state given [Atot] <

[T1tot] + [T2tot]. Let u = [Atot], x = [iMG], and y = [rMG]. Then, we obtain the
same set of ODEs as in Eqs. (12.8) and (12.9) for (12.12) and (12.13) as follows:

ẋ = α1 · u − β1 · x − k · x · y, (12.14)

ẏ = α2 · u − β2 · y − k · x · y, (12.15)

where α1 and α2 are functions of kp (RNAP concentration), [T1tot], and [T2tot], β1
and β2 are functions of RNase R concentration and the secondary structure of RNA
molecules, and k is a function of the length of exposed toehold of rMG. Therefore,
all of the rate constants are amenable to tuning (See [26] for details.).

If β2 is zero with other constants being positive, the steady-state of x is pro-
portional to the input u and the steady-state of y is independent of u, satisfying
the requirement of exact adaptation (if α1 > α2). The steady-state solutions are as
follows:

xs = (α1 − α2)u

β1
, ys = α2 · β1

k(α1 − α2)
. (12.16)

Through mathematical analysis, we can demonstrate that the transcriptional circuit
designed to have an IFFL motif can provide exact adaptation behavior as long as
β2 is orders of magnitude smaller than β1 (Fig. 12.6b). Differential regulation of
the two degradation rate constants, β1 and β2, is possible by utilizing the substrate
recognition property of RNase R: RNase R can tightly bind to a single-stranded RNA
that has no secondary structure with a Kd of 2 nM, while it binds weakly to a duplex
RNA having less than 4nt 3′ overhang with a Kd greater than 5 μM [60]. Therefore,
iMG designed to have no significant secondary structure degrades fast, while rMG
designed to have a strong secondary structure with no 3′ overhang degrades slow,
satisfying the requirement β1 ≥ β2. Employing different secondary structures for
RNA substrates at their 3′ ends offers an opportunity to tune the degradation rates
by RNase R.
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The preliminary experimental data support the simplified mathematical model
used to describe the dynamics of transcriptional adapter circuit. It is interesting to
note that the simplified model could capture the experimental data effectively without
resorting to more detailed models which was necessary to capture the behavior of
oscillator circuit. One of the important distinctions between the adapter circuit and the
oscillator circuit is the mechanism of degradation. The degradation mechanism used
for the oscillator circuit relies on RNase H, an endonuclease that cleaves substrates in
the middle. While mostly processive in its mode of action, RNase H cannot process 5–
7 bases at the 5′ end of RNA within the RNA-DNA substrate, leaving a relatively big
chunk of RNA that can potentially interfere with the intended hybridization reactions.
On the other hand, the degradation for the adapter circuit relies solely on RNase R,
an exonuclease that cleaves RNA substrates from its 3′ end. RNase R is known to
process highly structured RNA down to di- and trinucleotides [5]: the resulting dimer
or trimer would be too short to interfere with the designed hybridization reactions.
Therefore, the successful application of simple model for the adapter circuit can in
part be ascribed to the efficient waste management through RNase R.

12.4.3 Signal Transmission

The devices we just described have an important role in the development of inte-
grated biochemical systems for molecular computation, robotics, and nanomedicine.
For example, synthetic circuitry capable of site recognition, timed operations, and
sampling of environment could lead to smart drug delivery systems: oscillators, mem-
ory elements and nucleic acid sensors (e.g., aptamers) would have to be combined
in larger integrated circuits.

Thus, the usefulness of all these modules is based on their ability to be intercon-
nected easily and reliably, transmitting and receiving molecular signals like electrical
circuits. However, a major challenge highlighted in the recent literature is the intrin-
sic inability of many biological pathways to perform modular signal transmission [6,
48]. This challenge is best exemplified through the problem of propagating oscil-
lations generated by our molecular clock in Eqs. (12.1)–(12.4) to a downstream
‘load’, L. Without loss of generality, we will assume that we can couple rI2 to L (the
same analysis can be easily carried out for the switch elements SW21, SW12 and
rA1). A schematic representation of this model problem is shown in Fig. 12.7a. We
distinguish two cases:

1. rI2 is consumed by the load. We call this ‘consumptive’ coupling. The corre-
sponding chemical reactions are:

rI2 + L
kf−≤ La kr−≤ L.

2. rI2 is not consumed by the load. We call this ‘non-consumptive’ coupling.
The corresponding chemical reactions are:
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rI2 + L
kf−≤ La kr−≤ rI2 + L.

These additional reactions introduce some modifications in the oscillator
Eqs. (12.1)–(12.4). In particular, the dynamics of rI2 are perturbed, and we must
now augment our model to include the dynamics of the load:

d[rI2]
dt

= kp · [SW21] − kd · [rI2] + kr · [La]
consumptive︷ ︸︸ ︷

−kf · [L][rI2]︸ ︷︷ ︸
non−consumptive

, (12.17)

d[La]
dt

= −kr · [La] + kf · [L][rI2]. (12.18)

For illustrative purposes, we choose kr = 0.003 /s and kf = 1.9 · 103 /M/s for the
numerical simulations (other parameters are unchanged from Fig. 12.5). Here we
do not derive the full non-dimensional model for the oscillator with load; we refer
the reader to the supplement of [15] for further details. For simplicity we focus on
the consumptive coupling example. The non-consumptive case has been considered
in [6], where the authors derive an analytical expression for the retroactivity induced
by the load (Note that the derivation in [6] relied on a time scale separation argument
which requires arbitrarily fast rates for kr and kf ; this may not be applicable depending
on the biomolecular system under consideration.). Proceeding with our example, we
assume that the load dynamics are fast relative to the source; thus we have a stationary
expression:

[L̂a](t) = [Ltot]
⎜

1 − kr

kr + kf [r̂I2](t)
)

, (12.19)

where [r̂I2](t) is an approximated solution, due to our stationary assumption. If we
plug the load stationary solution into the consumptive dynamics of [rI2] (approxi-
mated), we find:

d[r̂I2]
dt

= kp · [SW21] − kd · [r̂I2] −kf · [r̂I2][Ltot]
⎜

kr

kr + kf [r̂I2]
)

, (12.20)

where the box highlights the quasi-steady state approximated perturbation term.
Loosely speaking, the total amount of load linearly modulates an additional, bounded
degradation term (In fact, the perturbation term converges to kr ·[Ltot] for high values
of [rI2].). The differential equations above were solved for varying amounts of [Ltot]
numerically. As shown in Fig. 12.7b and c, a large load significantly deteriorates the
oscillation.

We can make some analytical considerations on the load dynamics. Assume that
[rI2](t) is a sinusoidal signal: then, using the so called ‘contractivity’ theory [47] we
can elegantly show that also [La](t) is a periodic signal. In short, it is sufficient to
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Fig. 12.7 a Scheme of the two-node synthetic oscillator connected to a load L. b Trajectories of
[rI2] for variable, increasing load, highlighting the deterioration of the oscillation amplitude and
frequency. c Load traces:

verify that the linearization of the differential equation for the load is bounded by a
negative constant, satisfying the definition of contractivity. Since our system evolves
on a compact and convex set, such property is global inside such set, and for any
initial condition the system will converge to the periodic solution. In particular, we
can show that the dynamics of [La] converge exponentially to a stationary periodic
solution, and the convergence speed is larger than kr .

While the stationary behavior of the load is periodic, the efficiency of the signal
transmission is compromised. This loss of efficiency can be evaluated analytically
using the static load approximation of Eq. (12.19). In particular, we can compute the
amplitude of the load as a function of the oscillator amplitude. We will assume that
[rI2](t) = A0 + A1 sin ωt, where A0, A1 > 0 and A0 > A1. Define κ = kr/kf . The
amplitude of the load oscillations is then given by:

AL = [Ltot]
2

⎜
κ

κ + (A0 − A1)
− κ

κ + (A0 + A1)

)
.

By taking the derivative of AL with respect to κ, and setting the derivative to zero,
we can calculate the value of κ that maximizes AL:

κmax =
√

A2
0 − A2

1.

For instance, take A0 ∞ 1.9 μM and A1 ∞ 1.12 μM, the mean and amplitude of the
nominal [rI2] oscillations. Then, if we assume kr = 0.003 /s, the value of kf that
maximizes the load amplitude is kf ∗ 1.9 · 103 /M/s.

Now let us examine the back-action of the load on the oscillator components,
highlighted in the box of Eq. (12.20). How can the perturbation on the oscillator be
reduced?

We start from Eqs. (12.19) and (12.20), where the quasi-steady state approxima-
tion for the dynamics of [La](t) is substituted in the dynamics of [rI2].
Equation (12.20) clearly shows that when it is not practical to modify the bind-
ing rates that introduce the coupling, the only way to reduce perturbation is to use a
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Fig. 12.8 a Scheme of the two-node synthetic oscillator with an insulated load. b Trajectories of
[rI2] for variable insulator and load: insulation reduces retroactivity effect. c Load traces: insulation
guarantees signal transmission

minimal amount of load. We can overcome this restriction by coupling the oscilla-
tory signal to a small amount of another molecular device, whose output is capable
of amplifying the oscillator signal and driving large amounts of load. We will call
this device an insulator, inspired by the analysis proposed in [6, 14]. A schematic
representation of this idea is shown in Fig. 12.8a.

An insulating device can be implemented easily as a small amount of a third switch,
Ins, which is directly coupled to the oscillator. The RNA output from the insulating
switch, InsOut, is used to drive the load. The differential equations describing the
dynamics of rI2 and the insulated load are:

d[rI2]
dt

= kp · [SW21] − kd · [rI2] − kf · [Ins][rI2],
d[Ins]

dt
= kr · [Insa] − kf · [Ins][rI2],

d[InsOut]
dt

= ki
p · [Insa] − ki

d · [InsOut] − ki
f · [InsOut][L],

d[L]
dt

= ki
r · ([Ltot] − [L]) − ki

f · [InsOut][L].

(The remaining differential equations for rA1, SW21, and SW12, are unchanged.)
The additional parameters for insulator are chosen for numerical simulations as
follows: ki

p = 0.15 /s, ki
d = 0.003 /s, ki

r = 0.003 /s and ki
f = 3 · 103 /M/s (All

the other parameters are the same as in Fig. 12.7.). The simulation results showed
insulation, i.e., little retroactivity, from the load as well as proper signal transmission
(Fig. 12.8b, c).
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Now the direct load on the oscillator is given by the insulator switch, coupled
consumptively to the oscillator. Following our previous reasonings, we can show
that the active state of the switch can be approximated as:

[̂Insa] ∞ [Instot]
⎜

1 − kr

kr + kf [r̂I2](t)
)

.

Using this approximation, the perturbation on the dynamics of rI2 can be reduced
arbitrarily by minimizing the amount of [Instot].

We can quantify the efficiency of insulated signal transmission starting from the
expressions derived previously. As shown in [15], if the production and degradation
rates of the insulator output are suitably chosen, we can ensure not only propagation
but also amplification of the oscillatory signal.

This particular example, where we have described the challenges arising in
propagating a molecular oscillatory signal to a downstream load, clearly shows that
to scale up synthetic biological circuits we need systematic methods to ensure mod-
ular signal transmissions. Insulation devices, which decouple signal source and load
while introducing amplification, are a possible solution to interconnect modules char-
acterized in isolation, ensuring proper signal transmission and reduced back-action.

12.5 The Future of Biosynthetic Circuits

In this chapter we have introduced a variety of molecular circuit elements and devices
that can be built using nucleic acids and proteins. The programmability of nucleic
acids, which follows from their predictable, highly specific Watson-Crick base pair-
ing interactions, allows us to design molecular interactions systematically with
unprecedented easiness much as writing codes in programming languages. Although
we merely scratched the surface of the possible range of programming methods
for biomolecular reactions, we have described how general reaction dynamics can
be synthesized using DNA, RNA, and proteins. These reactions underlie the basis
of a variety of circuits with predictable input/output functionalities: in particular,
we described synthetic transcriptional circuits and their application in constructing
oscillators, bistable circuits, adapters, and a range of other architectures. Finally, we
discussed design requirements to ensure scalability of molecular circuits.

Throughout this chapter, we have briefly mentioned some of the challenges
affecting synthetic biochemical systems. It is worth recalling that enzymatic processes
introduce phenomena such as abortive transcription and incomplete degradation
pathways, which create waste management issues in existing circuits. Advances
in rational enzyme design, a rapidly advancing research area, will possibly allow
custom design options to improve performance. Undesired interactions among com-
plexes (including unwanted binding and output leak in DNA gates) is another chal-
lenge in designing nucleic acid circuits: while circuits comprising over 100 species
have been successfully demonstrated [41], systematic design methods to avoid spu-
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rious interactions are still in demand. Universal toeholds and stringent stoichiometry
requirements (enforced through gel purifications) have been proposed as possible
solutions to this issue.

Nucleic acid-based circuits have thus far been used to demonstrate various compu-
tational programs, including logic circuits and neural networks [42, 49], and layered
dynamic circuits [15]; once suitably adapted to operate in complex cellular environ-
ment, strand displacement cascades promise to yield a versatile synthetic platform
for control of gene expression [3].

An emerging application for programmable biosynthetic circuits is the generation
of advanced materials. We previously mentioned a range of techniques to build self-
assembled nanostructures using DNA, including two and three dimensional origami,
nanotubes, and molecular machines. Dynamic nucleic acid circuits could be used to
power and direct assembly of nanostructures, creating one of the first generations of
entirely synthetic, dynamic, programmable biomaterials [29].

Finally, the circuits we described are a promising toolkit to develop artificial
cells [38]. Cells can be viewed as complex ensembles of molecular circuits, shaped by
billions of years of evolutionary tinkering. Understanding the extent to which human-
developed design principles can be implemented for synthetic biological compart-
ments that recapitulate the main cellular functions (such as information processing,
growth, replication, and motility) is of fundamental scientific interest. If successful,
artificial cells could be useful as drug delivery, probing and sampling devices for
nanomedicine.
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