
Chapter 5
Towards the Modular Decomposition
of the Metabolic Network

Anne Goelzer and Vincent Fromion

Abstract Modular systems emerged in biology through natural selection and
evolution, even at the scale of the cell with the cellular processes performing
elementary and specialized tasks. However, the existence of modules is question-
able when the regulatory networks of the cell are superimposed, in particular for the
metabolic network. In this chapter, a theoretical framework that allows the breakdown
of the steady-state metabolic network of bacteria into elementary modules is intro-
duced. The modular decomposition confers good systemic and control properties,
such as the decoupling of the steady-state regime with respect to the co-metabolites
or co-factors, to the entire system. The biological configurations and their impact
on the module properties are discussed in detail. In particular, the presence of irre-
versible enzymes was found to be critical in the module definition. Moreover, the
proposed framework can be used to qualitatively predict the dynamics of the module
components and to analyse biological datasets.

Keywords Modular ·Metabolic network ·Steady-state ·Metabolite ·RNA ·DNA ·
Enzyme · Bacillus subtilis · Genetic · Regulatory network · Pathway · Genetic
control · End product control structure (EPCS)

5.1 Introduction

Modularity emerged at all scale in living organisms, from organs in mammals to
cellular processes in bacteria such as DNA replication. These sub-systems, empir-
ically identified through their functions, perform elementary specialized tasks, that
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are coordinated to achieve the growth and the survival of the organism. Despite
the existence of these specialized sub-systems, the existence of modules is ques-
tionable when the regulatory networks of the cell are superimposed, and in partic-
ular for the metabolic network. The metabolic network is a central cellular process
whose main function is to produce energy and the main building blocks for bio-
mass synthesis like amino acids or nucleotides. It is composed of a large set of
highly connected chemical reactions (more than 2,000 reactions for the bacterium
Escherichia coli [11]) catalysed by enzymes. The questions that we adressed in
this chapter is: can we identify modules and, more generally any structure in the
metabolic network when the metabolic regulatory network is considered? Can we
establish intrinsic and structural properties associated to this organisation? These
questions are ambitious and require, as a preliminary step, to have the regulatory
network of the metabolic pathways of an organism, enough complete and exhaustive
to tackle these questions. To this purpose, we focused on the metabolic network of
the “simplest” organism, the bacterium. However, since the metabolic pathways are
highly conserved in higher organisms, the results obtained in this chapter are also
interesting.

In previous works [17], we inferred the genetic and metabolic regulatory net-
work for the model bacterium Bacillus subtilis using information in the literature
and databases. From the analysis of this network, we pointed out, in agreement with
the results of [21], the key role of metabolites in the genetic control of metabolic
networks. Moreover, we identified (a) two main control structures of metabolic path-
ways and (b) the standard biological configurations that are found in the metabolic
network. Most existing studies focus on the behaviour of metabolic pathways (or
signalling pathways) and consider a specific metabolic configuration [3, 28, 34, 36].
Because of the strong non-linearity of the dynamical model that is used to describe
the system, these authors mainly focused on identifying the stability conditions for
a simplified model. Moreover, their results are rarely discussed from a biological
point of view. Some work has dealt with more realistic metabolic configurations [1,
2], but these models do not integrate genetic regulation.

In contrast to these studies, our approach analyses the existence and uniqueness
of a structural steady-state regime for any metabolic pathway, regardless of its con-
figuration and its genetic and enzymatic regulatory mechanisms. We identified two
types of well-defined elementary modules that have specific mathematical properties.
This module definition can then be used to study the decomposition of a complete
metabolic network into modules.

This chapter is organised as follows. Section 5.2 briefly introduces the main
results of our work [17] and details the identification of two control structures in
the metabolic network, which are considered elementary modules. Sections 5.3 and
5.4 discuss the existence and uniqueness of a steady state in the two elementary
modules and in a large diversity of biological configurations. Section 5.5 examines
the connection and the coordination between modules. Section 5.6 focuses on the
decomposition of the metabolic network of B. subtilis into modules.
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5.2 Two Main Control Structures in Metabolic Pathways

The analysis of the B. subtilis metabolic network (see Fig. 5.1 (top) and [17]) led to
the identification of two distinct control structures in metabolic pathways. In the first
control structure, which we named end-product control structure (EPCS), the last
metabolite of the metabolic pathway is the key factor because it inhibits the activity
of the first enzyme and its synthesis through a genetic regulator. The second structure,
which is called initial-product control structure (IPCS), involves the first metabolite
of the pathway. Increasing concentrations of the first metabolite induces the synthe-
sis of the enzymes in the pathway through a genetic regulator. Based on previous
results [17], we defined two levels of control in metabolic pathways: local regulation
and global regulation [see Fig. 5.1 (bottom)]. The local regulation of a metabolic
pathway corresponds to any type of genetic regulation (transcriptional, translational,
and post-translational) that involves the concentration of an intermediate metabolite
in the controlled pathway. The global regulation of a metabolic pathway is defined
as all non-local regulations. For practical purposes, the local regulation ensures the
induction or repression of enzymes of the pathway according to the concentration
of an intermediate metabolite of the pathway. The global regulation, however, can
change or bypass the local regulation.

The choice of these structures as elementary sub-systems, even if it seems simple at
first, is based on their intrinsic mathematical properties, which will be presented in the
next sections. From an input/output perspective, these control structures correspond
to sub-systems, or modules. In addition, these allow the breakdown of the metabolic
network into sub-systems, which usually correspond to the empirical organisations
of the metabolic network that are defined by biologists.

5.3 The End-Product Control Structure

In this section, the theoretical properties that are related to the end-product con-
trol structure are analysed. In addition, the consequences of these properties will be
assessed from a biological point of view. Compared to previous studies, this work
systematically studies the impact of different biological configurations of metabolic
pathways, which are deduced from the work by [17]. These configurations include
changes in the reversibility/irreversibility of metabolic pathways, the presence of
cofactors, and isoenzymes and the organisation of the genes in an operon.
The EPCS system is shown in Fig. 5.2. As shown, the system is a linear metabolic
pathway that is composed of n metabolites (X1, . . . , Xn) and n − 1 enzymes
(E1, . . . ,En−1) and is controlled by the concentration of the end-product, which
represses the synthesis of the first enzyme E1 (genetic level) and inhibits the activity
of E1 (metabolic level).
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Fig. 5.1 Top two control structures in the metabolic network: one controlled by the last metabolite
(end-product), one controlled by the first metabolite (initial-product). Enzymes (resp. metabolites)
are in pink (resp. yellow). The transcription factor (TF) is the ellipsoid, and the orange arrows refer
to the regulation by metabolites on the enzyme activity and on the TF activity. Bottom two control
levels of a metabolic pathway
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Fig. 5.2 A metabolic pathway
controlled by the end-product (−)
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Model of metabolic level: Following the standard representation of enzymatic reac-
tion of [38], the dynamics of the metabolite concentrations can be described by the
following set of ordinary differential equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

·
x1(t) = ν0(t) − E1(t) f1(x1(t), x2(t), xn(t))
·
x2(t) = E1(t) f1(x1(t), x2(t), xn(t)) − E2(t) f2(x2(t), x3(t))
...

...
...

...
·
xn(t) = En−1(t) fn−1(xn−1(t), xn(t)) − νn(t)

(5.1)

where νn(t)
Δ= En(t) fn(xn(t)) and the characteristics of the enzyme activity fi are

such that:

(a) Reversible enzymes:

• for intermediate enzymes, Ei for i ∈ {2, . . . , n − 1}: fi is continuous,
increasing in xi and decreasing in xi+1 such that fi (0, 0) = 0, fi (xi , 0) >

0 for all xi > 0, and fi (0, xi+1) < 0 for all xi+1 > 0. Moreover, there exist
Mi > 0, M ′

i ≥ 01 such that fi (xi , xi+1) ∈ (−M ′
i , Mi ) for all xi > 0 and

xi+1 ≥ 0. We assume that for xi > 0, there always exists xi+1 > 0 such that
fi (xi , xi+1) = 0.

• for the first enzyme, E1: f1(0, 0, xn) = 0 for all xn ≥ 0, f1(x1, 0, xn) > 0
for all x1 > 0 and xn ≥ 0, and f1(0, x2, xn) < 0 for all x2 > 0 and xn ≥ 0.
Moreover, there exist M1 > 0, M ′

1 ≥ 0 such that f1(x1, x2, xn) ∈ (−M ′
1, M1),

for all x1 > 0, x2 ≥ 0 and xn ≥ 0. Moreover, we also assume that for all
x1 > 0 and xn ≥ 0, there exists x2 > 0 such that f1(x1, x2, xn) = 0.

In addition, f1(x1, x2, xn) is continuous and increasing (resp. decreasing)
in x1 (resp. x2). Moreover, if f1(x1, x2, 0) < 0 for all x1 > 0 and x2 >

0, then f1 is increasing in xn ; similarly, if f1(x1, x2, 0) > 0 for all x1 >

0 and x2 > 0, then f1 is decreasing in xn . Moreover, for all x1 > 0 and
x2 > 0, lim

xn→+∞ f1(x1, x2, xn) = 0.

• for the last enzyme, En : En represents the set of chemical reactions that
consume xn and summarises the link between the flux that is produced by
the metabolic pathway and the final concentration. The characteristics of fn

mainly depend on other modules. In addition, fn is continuous and increasing
in xn such that fn(0) = 0.

1 All constants introduced in this chapter are assumed to be finite.
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(b) Irreversible enzymes:

• for the intermediate enzymes, Ei for i ∈ {2, . . . , n − 1}: fi is continuous and
increasing in xi such that fi (0) = 0. Moreover, there exists Mi > 0 such that
fi (xi ) ∈ (0, Mi ) for all xi > 0 and limxi →+∞ fi (xi ) = Mi .

• for the first enzyme, E1: f1(0, xn) = 0 for all xn ≥ 0. There exists M1 > 0
such that f1(x1, xn) ∈ (0, M1) for all x1 > 0 and xn ≥ 0. Moreover, f1
is continuous, increasing in x1 and decreasing in xn such that for all x1 >

0, lim
xn→+∞ f1(x1, xn) = 0.

Model of the control at the genetic level: Enzyme synthesis occurs in two steps:
the gene is first transcribed by the RNA polymerase to produce the RNA messenger
(mRNA), which is then translated by the ribosomes to produce the protein. By noting
m, YL and RL as the concentrations of mRNAs, free RNA polymerases and free
ribosomes, respectively, a simplified dynamic model of the synthesis of an enzyme
E can be written: {

ṁ(t) = kmYL(t − τm) − kdm(t)

Ė(t) = kem(t)RL(t − τe) − μE(t)
(5.2)

where

(a) km , kd and ke are the affinity of the promoter for the RNA polymerase, the
degradation of mRNA and the affinity of the ribosome for the mRNA, respec-
tively;

(b) μ is the growth rate of the bacterium in exponential growth (μ can then be
calculated such that Ṅ (t) = μN (t), where N (t) is the concentration of the
bacterial population);

(c) τm is the transcriptional delay, which corresponds to the time required for
mRNA availability for ribosomes; and

(d) τe is the translational delay, which corresponds to the time required for trans-
lation of the mRNA.

Moreover, if the synthesis of the mRNA or the enzyme is inhibited by a factor, such
as a metabolite, the previous equations also depend on the factor. For example, if the
synthesis of the mRNA is inhibited by the metabolite X , which has a concentration
of x , then the first equation is now

ṁ(t) = km fI (x(t))YL(t − τm) − kdm(t)

where f I (x(t)) is continuous, positive and decreasing in x .
If the concentration of the metabolite x has a constant steady state regime x̄ , then

m̄ = km

kd
f I (x̄)ȲL , Ē = kekm

μkd
f I (x̄)ȲL R̄L .
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The steady state does not depend on the delays τm and τe. Since we are only interested
by the study of the steady state, then for the sake of readability and by abuse of
notations, the differential system of enzyme synthesis will be rewritten as

·
E(t) = g(x(t)) − μE(t) or

·
E(t) = h(t) − μE(t) (5.3)

where the delays have been removed. The left equation is used if the enzyme synthesis
is regulated by a metabolite with concentration x . The right equation corresponds to
unregulated enzymes. The functions g and h are continuous, positive, monotonous
with respect to their arguments and, because maximal values structurally exist for
ȲL and RL , bounded.

Remark 1 The half life of mRNA (log(2)k−1
d ) is approximately 2–3 min [10] and

the growth rate μ, which depends on the medium composition, corresponds to a
generation time (log(2)μ−1) that is between 30 min and several hours [29]. Therefore,
the mRNA equation is usually assumed to be at steady state with respect to the enzyme
equation. Moreover, the value of the translational delay τe is less than 1 min [5] and
is therefore often neglected compared to μ.

For the metabolic pathway shown in Fig. 5.2, where E1 is inhibited by xn , we
have ⎧

⎨

⎩

·
E1(t) = g(xn(t)) − μE1(t)
·
Ei (t) = hi (t) − μEi (t) for i ∈ {2, . . . , n}

(5.4)

where

(a) The function g is continuous, positive and decreasing in xn . Moreover, we
assume that g(0) = Pmax, where Pmax > 0 and lim

x→+∞g(x) = 0.

(b) The functions hi are assumed to be constant.

Remark 2 In the rest of the chapter, we will assume that a steady-state regime of the
unregulated enzymes always exists and is determined by the steady-state regimes
of other cellular components. The associated differential equations will therefore be
removed from the system for the sake of readability.

The final description of the metabolic pathway shown in Fig. 5.2 is the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

·
x1(t) = ν0(t) − E1(t) f1(x1(t), x2(t), xn(t))
·
x2(t) = E1(t) f1(x1(t), x2(t), xn(t)) − E2(t) f2(x2(t), x3(t))
...

...
...

...
·
xn(t) = En−1(t) fn−1(xn−1(t), xn(t)) − En(t) fn(xn(t))
·
E1(t) = g(xn(t)) − μE1(t)

(5.5)
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If the genes coding for enzymes (E1, . . . ,En−1) are organised in an operon, then
there exists αi > 0 such that

Ei (t) = αi E1(t) (5.6)

for i ∈ {2, . . . , n − 1}.

5.3.1 Characteristics of the Steady-State Regime

In this section, we introduce the main theoretical properties of the elementary mod-
ules on the end-product control structure. To this purpose, we consider the main
biological configurations identified from our model [17] and describe the associated
steady-state regime. These elementary configurations are realistic enough to describe
by combination the entire set of configurations of metabolic pathways of Bacillus
subtilis.

5.3.1.1 The Enzymes are Irreversible and the Genes are in the Same Operon

All enzymes are irreversible and the genes coding for (E1, . . . ,En−1) belong to the
same operon, which means that these are transcribed in the same mRNA. Thus, the
concentrations of the enzymes are assumed to be proportional [see Eq. (5.6)].
The system (5.5) can be written as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

·
x1 = ν0 − E1 f1(x1, xn)
·
x2 = E1( f1(x1, xn) − α2 f2(x2))
... = ...

...
·
xn = αn−1 E1 fn−1(xn−1) − En fn(xn)
·
E1 = g(xn) − μE1

(5.7)

and the steady-state regime is characterised by this result.

Proposition 1 For all μ > 0, En > 0 and x̄1 > 0 there exists a unique steady-state
regime (Ē1, . . . , Ēn−1) and (x̄2, . . . , x̄n) for the system (5.7) given by

⎧
⎪⎪⎨

⎪⎪⎩

Ē1 = g(x̄n)

μ
f1(x̄1, x̄n)g(x̄n) = μEn fn(x̄n)

ν0 = En fn(x̄n)

(5.8)

and for i ∈ {2, . . . , n − 1},
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Ēi = αi
g(x̄n)

μ
and x̄i = f −1

i

(
μEn fn(x̄n)

αi g(x̄n)

)

(5.9)

if and only if for i ∈ {2, . . . , n − 1}

αi Mi >
μEn fn(x̄n)

g(x̄n)
. (5.10)

The proof of this proposition is a particular case of the proof of Proposition 3, which
is shown in page 10. Proposition 1 indicates that the system (5.7) has a unique steady-
state regime if and only if all of the enzymes that belong to the metabolic pathway do
not saturate (the condition (5.10) holds true). Moreover, xn and thus implicitly f1 and
g have key roles in the definition of the steady state. The monotonicity of f1 and g
with respect to xn allows to deduce the unicity of xn . Surprisingly, the characteristics
denoted by fi and the concentrations of the intermediate enzymes have no impact
on the definition of the steady state Ē1, x̄n and the output flux En fn(x̄n) if none of
the intermediate enzymes saturate. Consequently, the sensitivity of the steady-state
regime to a constant perturbation in the concentration of enzyme En (or to a flux
demand νn) only depends on the genetic characteristics g and the characteristics f1
of the first enzyme. The prediction of the steady-state behaviour of the metabolic
pathway can therefore be dramatically simplified, even if it is composed of a large
number of intermediate reactions.

Remark 3 The condition (5.10) can be written as

μEn fn(x̄n)

g(x̄n)
< αi Mi ⇐⇒ f1(x̄1, x̄n) < αi Mi .

Therefore, if M1 < αi Mi for all i ∈ {2, . . . , n −1}, then condition (5.10) is satisfied.

5.3.1.2 Behaviour of the Components of the Metabolic Pathway

The variation of the flux demand with respect to the variation of the concentration
of En will now be discussed. Based on the definition of the steady-state regime,

f1(x̄1, x̄n)g(x̄n)

μ fn(x̄n)

Δ= En .

Therefore, x̄n is decreasing when En is increasing. In addition, the final flux demand

ν̄n
Δ= En fn(x̄n) is by definition equal to f1(x̄1, x̄n)g(x̄n) = ν̄n . Because the left side

of equation is a decreasing function of x̄n , then, when En is increasing, ν̄n is also
increasing (as long as none of the enzymes saturate). Consequently, the metabolic
pathway has a maximal flux capability, which is given by the following corollary.
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Corollary 1 Let the assumptions of Proposition 1 be satisfied. Then the flux demand
has the following upper bound at steady state

g(0)

μ
f1(x̄1, 0). (5.11)

The outer flux is then bounded and the superior value only depends on the charac-
teristics f1 and g of the first enzyme; this is only true if none of the intermediate
enzymes saturate.
The impact of variations in (a) the flux demand and (b) the concentration x1 on the
intermediate metabolite concentrations will now be discussed.

Corollary 2 Let the assumptions of Proposition 1 be satisfied. Then, (a) for all
i ∈ {2, . . . , n − 1} , x̄i = x̄i (En) is increasing in En and x̄n = x̄n(En) is decreas-
ing in En and, (b) for all i ∈ {2, . . . , n}, x̄i (x̄1) and ν̄n(x̄1) are increasing in x̄1.

The intermediate metabolite concentrations are increasing functions of the flux
demand and of x1, whereas the end-product is a decreasing (resp. increasing) function
of the flux demand (resp. x1).

Remark 4 x̄n can be written as a function of x̄1: x̄n
Δ= H(x̄1) . Therefore, at steady

state, the input and output flux and the concentration of the first metabolite x̄1 are
linked by the monotonously increasing relationship ν0 = En fn(H(x̄1)). We then
obtain an input/output description that corresponds to a fictitious enzyme, which
links ν0 to x̄1 and integrates all of the module properties through the functions H
and fn .

Remark 5 A metabolic flux corresponds to a material flow through an enzyme such
that ν = E fE (x). A metabolic flux is thus an intensive quantity, whereas the metabo-
lite concentration is an extensive quantity. This fact explains why, in most mecha-
nisms of gene regulation, only the concentration of a metabolite is used (and not
the flux). As in Ohm’s law (U = RI ), in which the current I is measured through
the measurement of the voltage U for the resistance R, the cell senses the flux ν

through the measurement of the concentration x and a specific mechanism, such as
an enzyme or a genetic regulator.

5.3.1.3 Consequences of Enzyme Saturation

Several factors can result in enzyme saturation; these include an inadequate concen-
tration of the enzyme or its limitation by a cofactor. The effect of enzyme saturation
will now be discussed.

Corollary 3 Let the assumptions of Proposition 1 be satisfied and let us define

ψi∗,sat = min
i∈{2,...,n−1} αi Mi
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and i∗, the value of i for which the minimum is reached (i∗ can also correspond to
a set of possible values). If ψi∗,sat is such that ψi∗,sat < f1(x̄1, 0), then there exists
E∗

n and x̄∗
n such that

μE∗
n fn(x̄∗

n )

g(x̄∗
n )

= ψi∗,sat

and
lim
<

En→E∗
n

x̄i∗ = +∞.

In addition, for En ≥ E∗
n , the regime of the metabolic pathway is saturated.

The output flux is fixed through the saturation of the enzyme ψi∗,sat and by the
characteristics g ofE1. Moreover, the concentration of the metabolite x̄i∗ , which is the
substrate of enzyme i∗, goes theoretically to infinity when En goes to E∗

n . Obviously,
thermodynamical laws prevent the metabolite concentration to go to infinity. Very
high concentrations of metabolites lead to reverse the direction of the chemical
reaction, i.e. the irreversible enzyme becomes reversible (see Sect. 5.3.1.6).

5.3.1.4 Biological Interpretation

The biosynthesis pathways of amino acids are generally regulated by the end product.
The enzyme En and the output flux νn correspond to the tRNA synthase and the flux
of charged-tRNA that is consumed by the ribosomes for the production of proteins at
steady-state, respectively. Thus, an increase in the ribosomal demand usually results
in an increase in the concentration of tRNA synthase (En) due to a genetic regulation
that induces a decrease in the concentration of the amino acid xn . A decrease in xn

leads to the readjustment of the entire pathway (enzyme and metabolites) to provide
the requested flux (assuming that the intermediate enzymes do not saturate). In other
words, for fixed x̄1, the concentration of the amino acid xn must decrease to increase
the capacity of the synthesis pathway and thus satisfy the flux demand within the
limit defined by the characteristics of the first enzyme (Corollary 1).

5.3.1.5 The Genes are Independent

In the following analysis, the genes belonging to the metabolic pathway are not in
the same operon. We assume that a steady state for the intermediate enzyme exists
and is given by (Ei )i∈{2,...,n} > 0.

Proposition 2 For all μ > 0, x̄1 > 0 and Ei > 0 for i ∈ {2, . . . , n}, there exists an
unique steady-state regime Ē1 and (x̄2, . . . , x̄n) for (5.7) such that
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⎧
⎪⎪⎨

⎪⎪⎩

Ē1 = g(x̄n)

μ
f1(x̄1, x̄n)g(x̄n) = μEn fn(x̄n)

ν0 = En fn(x̄n)

(5.12)

and for all i = {2, . . . , n − 1}, x̄i = f −1
i

(
En fn(x̄n)

Ei

)

if and only if En fn(x̄n) <

Ei Mi .

Compared to Proposition 1, only the condition of saturation changes. The link
between the flux demand and the concentrations of the first and last metabolite
that are obtained in Proposition 1 is unchanged as long as none of the intermediate
enzymes saturate. All of the previous results of Sect. 5.3.1.1 can be easily extended.

5.3.1.6 All Enzymes are Reversible

We now assume that all of the enzymes in the metabolic pathway (including the
first enzyme) are reversible. This configuration dramatically changes the properties
obtained in Proposition 1. In contrast, the results in Proposition 1 can be partially
recovered through the presence of a single irreversible enzyme.

Proposition 3 If the genes coding for (E1, . . . ,En−1) belong to the same operon
(see Eq. (5.6)) and if the enzymes Ei for all i ∈ {1, . . . , n − 1} are reversible, then,
for all μ > 0, En > 0 et x̄1 > 0, there exists a unique steady-state regime for the
system (5.5), (Ē1, . . . , Ēn−1) and (x̄2, . . . , x̄n) such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x̄n = Hn(H2(. . . (Hn−1(x̄n, x̄1), x̄1) . . . , x̄1), x̄1)

x̄i = Hi (Hi+1(. . . (Hn−1(x̄n, x̄1), x̄1) . . . , x̄1), x̄1) for i ∈ {2, . . . , n − 1}
E1 = g(x̄n)

μ

Ei = αi
g(x̄n)

μ for i ∈ {2, . . . , n − 1}
ν0 = En fn(x̄n),

(5.13)
where, for all i ∈ {2, . . . , n − 1}, the functions Hi are increasing with respect to
their arguments and the function Hn is decreasing (resp. increasing) with respect to
its first (resp. second) argument.

Proof The proof is inductive.

Step 1: Let us first prove that there exists x∗
2 > 0 such that, for all x̄2 ∈ [0, x∗

2 ], there
exists a unique x̄n ≥ 0 such that

g(x̄n)

μ
f1(x̄1, x̄2, x̄n) = En fn(x̄n). (5.14)

The monotonicity of the functions of the left and the right side of the equation with
respect to x̄n means that, for all x̄1 > 0, there exists x∗

2 > 0 such that f1(x̄1, x̄2, 0) > 0



5 Towards the Modular Decomposition of the Metabolic Network 133

En fn(x̄n)

x̄n

g(x̄n)
μ f1(x̄1,0, x̄n)

g(x̄n)
μ f1(x̄1, x̄∗

2, x̄n)

x̄2
x̄3

En fn(Hn(x̄2))

x̄∗
2

α2
g(Hn(x̄∗2))

μ f2(x̄∗
2, x̄3)

α2
g(Hn(x̄2))

μ f2(x̄2, x̄3)

Fig. 5.3 Intersection of curves En fn(x̄n) and f1(x̄1, x̄2, x̄n) for all x̄2 ∈ [0, x∗
2 ] (left) and of curves

En fn(Hn(x̄2)) and α2
g(Hn(x̄2))

μ
f2(x̄2, x̄3) (right)

for all x̄2 ∈ [0, x∗
2 ) with f1(x̄1, x∗

2 , 0) = 0. Then, for all x̄2 ∈ [0, x∗
2 ), the left side

of Eq. (5.14) is a decreasing function of x̄n , is positive for x̄n = 0 and tends to 0
when x̄n goes to infinity. In addition, the right side of the Eq. (5.14) is an increasing
function of x̄n and is equal to 0 when x̄n = 0. Thus, for all x̄2 ∈ [0, x∗

2 ), the two
curves with respect to x̄n necessarily have a unique intersection point. In addition,
for x̄2 = x∗

2 , x̄n = 0 is the only solution to the Eq. (5.14) (see Fig. 5.3 left), which
concludes the proof of Step 1.

Thus, the function x̄n
Δ= Hn(x̄2, x̄1) is continuous and decreasing in x̄2 and can

be defined for x̄2 ∈ [0, x∗
2 ] such that Hn(0, x̄1) > 0 and Hn(x∗

2 , x̄1) = 0. For the
sake of readability, we omitted the dependence of the equations on x̄1 in the rest of
the proof.

Step 2: The rest of the proof is by induction. If the steady-state regime exists, then
x̄2 and x̄3 are linked by

α2
g(Hn(x̄2))

μ
f2(x̄2, x̄3) = En fn(Hn(x̄2)), (5.15)

where x̄n has been substituted by its expression. As in the first step, we can prove
that there exists2 x̄∗

3 > 0 such that, for all x̄3 ∈ [0, x∗
3 ], there exists x2 ∈ [0, x∗

2 ] such

that Eq. (5.15) is true. Thus, the function x̄2
Δ= H2(x̄3) can be defined, which is well

defined, continuous, increasing in x̄3 for all x̄3 ∈ [0, x∗
3 ], and such that H2(0) > 0

and H2(x∗
3 ) = x∗

2 (See Fig. 5.3 right).

Step 3: Step 2 is repeated for all i ∈ {3, . . . , n − 1}. By definition, x̄i has to be the
solution of the following equation:

2 In fact, x∗
3 is such that f2(x∗

2 , x∗
3 ) = 0, which guarantees that f2(x∗

2 , x̄3) > 0 for all [0, x∗
3 ).
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αi
g(Hn(H2(...(Hi−1(x̄i )))))

μ
fi (x̄i , x̄i+1) = En fn(Hn(H2(. . . (Hi−1(x̄i ))))).

(5.16)
Then, as in the previous step, it is easy to prove the existence of the function Hi

such that xi
Δ= Hi (xi+1) is well defined, continuous, increasing in x̄i+1 for all

x̄i+1 ∈ [0, x∗
i+1], and such that Hi (0) > 0 and Hi (x∗

i+1) = x∗
i .

Step 4: Through the combination of the results of the previous steps, we can deduce
that x̄n exists if the following equation has a solution:

x̄n = Hn(H2(. . . (Hn−1(x̄n)))). (5.17)

By definition, Hn−1 is defined on [0, x∗
n ] such that Hn−1(0) > 0 and Hn−1(x∗

n ) =
x∗

n−1. Let us note that Hn(H2(. . . (Hn−1(0))) > 0 and Hn(H2(. . . (Hn−1(x∗
n )))

= Hn(x∗
2 ) = 0, and because the right side (resp. left side) of Eq. (5.17) is a decreasing

(resp. increasing) function in x̄n , we can deduce that there exists a unique x̄n ∈ [0, x∗
n ),

solution to Eq. (5.17), which concludes the proof.

Remarkably, when all enzymes are reversible, the steady-state regime of the metabolic
pathway always exists. We will not develop the results of this structure because the
systematic analysis of metabolic pathways indicates the presence of at least one irre-
versible enzyme per module [17, 20]. In most cases, the irreversible step corresponds
to the first or second enzyme. The presence of an irreversible enzyme means that the
results of Proposition 1 hold:

Corollary 4 Let the assumptions of Proposition 3 be satisfied. If enzyme E1 is irre-
versible, then, for all μ > 0, En > 0 and x̄1 > 0, there exists a unique steady-state
regime (Ē1, . . . , Ēn−1) and (x̄2, . . . , x̄n) for the system (5.5) such that

⎧
⎪⎪⎨

⎪⎪⎩

Ē1 = g(x̄n)

μ
f1(x̄1, x̄n)g(x̄n) = μEn fn(x̄n)

ν0 = En fn(x̄n)

(5.18)

if and only if (x̄2, . . . , x̄n−1) exists such that, for i ∈ {2, . . . , n − 1}, αi
g(x̄n)

μ
fi (x̄i , x̄i+1) = En fn(x̄n).

As in Proposition 1, the steady-state regime is only defined by f1, g and fn as long as
none of the enzymes saturate. However, the condition of saturation explicitly depends
on the steady-state regime and is then less useful.



5 Towards the Modular Decomposition of the Metabolic Network 135

5.3.2 Integration of the Main Biological Configurations

We will now discuss the impact of different biological configurations in more detail.
These configurations involve changes due to the presence of isoenzymes, co-factors
and co-metabolites. The mathematical results are presented in the most general case
of the end-product control structure, in which only the first enzyme is irreversible
and the genes are not organised in a single operon.

5.3.2.1 Impact of Co-Metabolites and Co-Factors

External factors (co-metabolites and co-factors) usually modulate the rate of
enzymatic reactions. Co-metabolites, such as ATP/ADP, NAD/NADH or glutamine/
glutamate, are also substrates of the enzymes and are transformed into products.
Co-factors, such as ions (e.g. Mg2+, Zn2+) or vitamins, are generally bounded to the
enzyme and are therefore considered to be an enzyme component. Both of these types
of factors can be easily included in our analysis through the introduction of a new
argument in the reaction rate fi of the enzyme. Assuming that the i th reaction requires
a co-metabolite, which is labelled as X P with concentration p, then the rate of reaction
for an irreversible enzyme (resp. reversible) is given by fi (xi , p) (resp. reversible:
fi (xi , xi+1, p)) such that fi (xi , 0) = 0 (resp. reversible: fi (xi , xi+1, 0) = 0) and
the function fi is assumed to be increasing in p.

1. The co-metabolite/co-factor acts on the first enzyme, E1. The maximal flux

of the metabolic pathway is given by ν̄n,max( p̄)
Δ= g(0)

μ
f1(x̄1, 0, p̄), where the co-

metabolite or the co-factor reaches its steady-state regime p̄. If the factor decreases
the activity of the first enzyme, then xn is decreasing and E1 is increasing.
2. The co-metabolite/co-factor acts on the last enzyme,En . By definition, f1(x̄1,x̄n)

g(x̄n) = μEn fn(x̄n, p̄). The limitation of the concentration of the co-metabolite/co-
factor leads to a decrease in the flux demand. Therefore, x̄n and Ē1 are increasing
and decreasing functions of p̄, respectively.
3. The co-metabolite/co-factor acts on an intermediate enzyme, E2, . . . ,En−1.
Remarkably, as long as variations of p do not lead to enzyme saturation, the steady
states of the main components, (ν̄n, x̄n and Ē1), remain unchanged.

5.3.2.2 Role of an Isoenzyme

Isoenzymes are enzymes that catalyse the same chemical reaction. Let the isoenzyme
E

∗
1, as represented in Fig. 5.4, catalyse the same irreversible reaction as E1 (the

first reaction). E∗
1 is not regulated by any intermediate metabolite of the metabolic

pathway (neither at the genetic level or at the enzymatic level), which leads to the
flux E∗

1 f ∗
1 (x1) for x1, E∗

1 ≥ 0.
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Fig. 5.4 Presence of an
isoenzyme in the metabolic
pathway

(−)

Enzymatic and genetic control

E0
X2 X3 Xn−1

E2
Xn

E1 EnEn−1
X1

E
∗
1

Fig. 5.5 Initial-product con-
trol structure

(+) (+)

Genetic control

X1

E0
X2 X3 Xn−1

E2
Xn

E1 EnEn−1

The steady-state regime satisfies the following equation:

f1(x̄1, x̄n)
g(x̄n)

μ
+ E∗

1 f ∗
1 (x̄1) = En fn(x̄n). (5.19)

Moreover, the maximal capability of the flux through the metabolic pathway is also
modified:

ν̄n,max = f1(x̄1, 0)
g(0)

μ
+ E∗

1 f ∗
1 (x̄1).

From Eq. (5.19), as long as the intermediate enzymes do not saturate, the increase of
the flux ν̄n can be obtained either by a decrease in the end product x̄n or an increase
in the concentration of the isoenzyme E∗

1 .

5.4 Other Control Structures

The other elementary module [see Fig. 5.1 (top)], which is named initial-product
control structure, usually corresponds to the control structure of degradation path-
ways. Enzyme synthesis is controlled by the concentration of the first metabolite, x1.
Due to lack of space, we will only give the condition of existence of the steady-state
regime and the qualitative behaviour of the module components to deduce the rules
that dictate the connections between modules.

5.4.1 Initial-Product Control Structure

We will consider the linear pathway that is shown in Fig. 5.5, which consists of n
metabolites (X1, . . . , Xn) and n − 1 irreversible enzymes (E1, . . . ,En−1) for which
the encoding genes are organised in a single operon. The enzyme synthesis is induced
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when the concentration of the first metabolite increases. The behaviour of this path-
way obeys the following system of differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = ν0 − E1 f1(x1)
...

ẋi = E1(αi−1 fi−1(xi−1) − αi fi (xi ))
...

ẋn(t) = αn−1 E1 fn−1(xn−1) − En fn(xn)

Ė1 = g(x1) − μE1

(5.20)

where fi has the same characteristics as in Sect. 5.3 and g is a positive, continuous
and increasing function of x1 such that for all x1 > 0, g(x1) > 0, and g(0) = 0.
We also assume that there exists Pmax > 0 such that lim

x→+∞g(x) = Pmax.

Proposition 4 For all μ > 0, x̄1 > 0 and En > 0, there exists a unique steady-state
regime (x̄2, . . . , x̄n) and (Ē1, …, Ēn−1) to the system (5.20) such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ē1 = g(x̄1)

μ

ν0 = g(x̄1)

μ
f1(x̄1)

x̄i = f −1
i

(
αi−1
αi

fi−1(x̄i−1)
)

for i = {2, . . . , n}

(5.21)

if and only if, for all i ∈ {2, . . . , n − 1}, M1 < αi Mi .
Moreover, the functions x̄i = x̄i (ν0) for i = 1, . . . , n are increasing in ν0, the input

flux is bounded and the maximal value of x̄1 > 0 is ν0,max
Δ= Pmax

μ
M1.

Proof The proof of this proposition is straightforward through the writing of the

steady-state regime, which, by definition, corresponds to ν0 = g(x̄1)

μ
f1(x̄1), and

because of the monotonicity of the functions. The existence of the steady-state regime
is achieved if and only if the enzymes of the pathway are not saturated. This means
that the maximum capacity of each enzyme must be greater than ν0.

Thus, when x̄1 is increasing, the flux ν0 and the concentrations of the downstream
metabolites are increasing. The IPCS module has also specific properties that can
be directly obtained by following the line of the analysis of the EPCS module. The
proofs of all of these results are straightforward and are easily deduced from the
previous proofs.

5.4.1.1 Comparison Between the Different Control Structures

The two control structures that have been analysed have common characteristics,
which were obtained under the assumption that none of the intermediate enzymes
saturate:
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• the steady-state regime is determined by the characteristics of the first enzyme and
its genetic control;

• the maximum capacity of the pathway is limited;
• the co-metabolites of the intermediate enzymes have no impact on the input/output

flux or on the genetic control; and
• the presence of an irreversible enzyme prevents the direct spread of the information

that is carried by the concentrations of downstream metabolites to the upstream
metabolites.

However, there are also notable differences. The EPCS module is inherently driven
by the downstream flux demand through x̄n , whereas the IPCS module is driven
by the upstream flux through x̄1. Moreover, the characteristics fn of the enzyme
En do not affect the existence of a steady-state regime of the IPCS if the control
structure is monotonic. The function fn can be increasing or decreasing in xn . In
other words, a metabolic pathway that is controlled by this type of control structure
cannot accommodate a final flux demand of νn .

5.4.2 Not Controlled Structure

We also introduce a third module, which is named NCS (Not Controlled Structure).
This module consists of enzymes that are not genetically or enzymatically controlled
by a metabolite in the pathway. The input/output feature of the NCS module at steady
state is obtained under the assumption that none of the enzymes of the module saturate
and that the first enzyme is irreversible:

E1 f1(x̄1) = En fn(x̄n). (5.22)

It follows that the steady-state regime is determined by the concentration of the initial
metabolite x̄1 and by the enzymatic characteristics f1 and fn .

5.5 Coordination Between Modules

The mathematical properties that are associated with the two main types of modules
have been characterised in the previous sections. We will now discuss the methods by
which these modules can be coordinated: global regulations [see Fig. 5.1 (bottom)]
and direct connections.

5.5.1 Impact of a Global Regulator

In this section, we investigate the impact of a global regulator on the EPCS module.
The results for the other structure can be easily deduced. Let us consider that the
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synthesis of the first enzyme is also controlled by a global regulator, which leads to

·
E1(t) = g(xn(t), q(t)) − μE1(t)

where q(t) is the effect of the global regulator. This parameter can also represent any
factor that could impact the synthesis of enzyme E1.
Assuming that the global regulator reaches its own steady-state regime q̄ , we can
deduce from the above results that the global regulator changes the relationship
between the concentration of the final product x̄n , the flux demand and the enzyme
concentration:

f1(x̄1, x̄n)g(x̄n, q̄) = μEn fn(x̄n).

As long as none of the intermediate enzymes saturate, the global regulator changes
the steady-state regime at the level of

• the enzyme concentrations (if the genes are in the same operon):

Ē1 = g(x̄n, q̄)

μ
and Ēi = αi

g(x̄n, q̄)

μ
for i ∈ {2, . . . , n − 1},

• the end-product concentration: f1(x̄1, x̄n)g(x̄n, q̄) = μEn fn(x̄n),

• the maximal flux capability of the metabolic pathway: ν̄n,max(q̄)
Δ= g(0, q̄)

μ
f1(x̄1, 0),

• the concentrations of the intermediate metabolites: x̄i = f −1
i

(
μEn fn(x̄n)

αi g(x̄n, q̄)

)

.

A global regulator changes the maximum capability of the metabolic pathway
directly through the modulation of the concentration of different enzymes in the
pathway. Moreover, the flux demand νn adapts itself in agreement with the variations
induced by the effect of q on the production function g.

5.5.2 Interconnections Between Modules

In this section, we investigate the conditions of existence and uniqueness of a struc-
tural steady-state regime for different configurations of connected modules. There-
fore, we analysed two modules that are connected in series and in parallel. We will
first introduce a generic result for modules that are connected in series and will
then provide the rules that define the connection between modules in the summary
tables.
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Fig. 5.6 Connection between
two modules in series
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5.5.2.1 The Input/Output Representation of a Module

Module

(EPCS/IPCS/NCS) xn

νn

q

p

x1

r
(on E1) (saturating [Ei]i=1)

ν0

– End-Product Control Structure (EPCS),
– Initial-Product Control Structure (IPCS),
– Not Controlled Structure (NCS).

In steady state, a module is characterised by its input/output characteristics (dis-
played in the above figure and see Remark 4) whose existence is conditioned by the
assumption that the enzymes do not saturate. In the remainder of this section, we
assume that this condition of existence is always satisfied. The input/output notations
of flux and metabolites are in agreement with systems (5.5), (5.20). We recall the
following input/output characteristics, which were obtained for the three types of
modules:

• EPCS module: x̄n = Hp f (x̄1) and ν0 = νn , (the consequences of Corollary 2 are
extended for the case of (a) only the first enzyme is irreversible and (b) the genes
are not in the same operon), where Hp f is increasing in its argument;

• IPCS module: x̄n = Hpi (x̄1) and ν0 = νn is defined in Proposition 4, which was
extended for the same conditions as the EPCS module, where Hpi is increasing in
its argument;

• NCS module: x̄n = Hncs(x̄1) and ν0 = νn , where Hncs is increasing in its argu-
ment.

We can deduce the following consequences for two modules that are connected
in series (see Fig. 5.6):

• the connection of EPCS modules in series leads to a system with a unique steady-
state regime. For the i th EPCS module, all of the upstream EPCS modules are
reduced through the increasing characteristics Ĥp f such that x̄ i

n = Ĥp f (x̄1
1) and

ν1
0 = νi

n by using x̄ k+1
1 = x̄ k

n and x̄ k
n = Hk

p f (x̄ k
1 ) for k ∈ {1, . . . , i − 1};
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+ is similar to

+

(EPCS/IPCS/NCS)
Module 1

Module 2
(EPCS/IPCS/NCS)

x y

z

x = y+ z

q

p r

r∗p∗

ν2
n

(saturating [E1
i ]i=1)(on E

1
1)

q∗

(saturating [E2
i ]i=1)(on E

2
1)

ν∗

x1
1

x2
n

x1
n

ν1
nν1

0

x1
1 = x2

1

ν2
0

Fig. 5.7 Two modules connected in parallel

• the connection of IPCS modules in series leads to a system that has a unique
steady-state regime. For the i th IPCS module, all of the upstream IPCS modules
are reduced through the increasing characteristics Ĥpi such that x̄ i

n = Ĥpi (x̄1
1)

and ν1
0 = νi

n by using x̄ k+1
1 = x̄ k

n and x̄ k
n = Hk

pi (x̄ k
1 ) for k ∈ {1, . . . , i − 1}.

5.5.2.2 The Rules That Define the Connection of Modules

The rules for the interconnection of modules can easily be deduced from the proofs
of Propositions 3, 4, 5, which are, respectively, shown in pages 12, 17 and 25, for the
connection of modules in series (see Fig. 5.6) or in parallel (see Fig. 5.7) under the
assumption that none of the enzymes are saturated. Tables 5.1 and 5.2 summarise
the rules of interconnection between modules in series and in parallel, respectively.
Specifically, for each of the different connections, these tables show if there exists a
structural nonzero steady-state regime and how changes in ν1, νn and ν∗

n results in
variations in xn , x∗

n , E1, E∗
1 , x1, and x∗

1 . In both tables, for the sake of readability,
we use the following notations: fc for increasing functions and fd for decreasing
functions to describe the monotonicity.

The existence of the equilibrium state is always inferred through the monotonicity
of the functions and by assuming a final demand for all last connected modules (νn =
En fn(xn)). In some cases, such as in a connection of NCS/IPCS/EPCS modules in
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Table 5.1 Rules for the interconnection of several modules in series and characteristics of the
steady-state regime for variations of νn , (ν∗

n ) and ν1 (or ν0)

EPCS EPCS

x1

ν1 νn

xn

ν∗
n

x∗
n

IPCS EPCS

x1

ν1 νn

xn

ν∗
n

x∗
n

Existence of nonzero steady-state regime Existence of nonzero steady-state regime
Feasible adaptation for variations in νn, ν∗

n Impossible adaptation of IPCS for variations in νn, ν∗
n

xn = fd(νn), E1 = fc(νn), x∗
n = fd(νn), E∗

1 = fc(νn), xn = fd(νn), x∗
n = fd(νn), E∗

1 = fc(νn),
xn = fd(ν∗

n ), E1 = fc(ν∗
n ), x∗

n = fd(ν∗
n ), E∗

1 = fc(ν∗
n ), xn = fd(ν∗

n ), x∗
n = fd(ν∗

n ), E∗
1 = fc(ν∗

n ),
xn = fc(ν1), E1 = fd(ν1), x∗

n = fc(ν1), E∗
1 = fd(ν1). xn = fc(ν1), E1 = fc(ν1), x∗

n = fc(ν1), E∗
1 = fd(ν1).

(−)

NCS IPCS EPCS

νn

xn

ν∗
n

x∗
n

ν1

x1

ν0

x0
(+)

NCS IPCS EPCS

νn

xn

ν∗
n

x∗
n

ν1

x1

ν0

x0

Existence of nonzero steady-state regime Steady-state regime conditioned by f0, fn, f ∗
n

Feasible adaptation for variations in νn, ν∗
n

Opposite adaptation of IPCS for variations in νn, ν∗
n

xn = fd(νn), x1 = fc(νn), E1 = fc(νn), x∗
n = fd(νn), E∗

1 = fc(νn), xn = fd(νn), x1 = fd(νn), E1 = fd(νn), x∗
n = fd(νn), E∗

1 = fc(νn),

xn = fd(ν∗
n ), x1 = fc(ν∗

n ), E1 = fc(ν∗
n ), x

∗
n = fd(ν∗

n ), E
∗
1 = fc(ν∗

n ), xn = fd(ν∗
n ), x1 = fd(ν∗

n ), E1 = fd(ν∗
n ), x

∗
n = fd(ν∗

n ), E
∗
1 = fc(ν∗

n ),

xn = fc(ν0), E1 = fc(ν0), x∗
n = fc(ν0), E∗

1 = fd(ν0). xn = fc(ν0), x1 = fc(ν0), E1 = fc(ν0), x∗
n = fc(ν0), E∗

1 = fd(ν0).

EPCS IPCS

x1

ν1 νn

xn

ν∗
n

x∗
n

(−)

EPCS IPCS

x1

ν1 νn

xn

ν∗
n

x∗
n

Existence of nonzero steady-state regime No steady-state regime

Impossible adaptation of IPCS for variations in ν∗
n Opposite adaptation of IPCS for variations in νn, ν∗

n

xn = fd(νn), E1 = fc(νn), x∗
n = fd(νn), E∗

1 = fd(νn), xn = fd(νn), E1 = fc(νn), x∗
n = fd(νn), E∗

1 = fd(νn).
x∗
n = fd(ν∗

n ),
xn = fc(ν1), E1 = fd(ν1), x∗

n = fc(ν1), E∗
1 = fc(ν1).

(+)

EPCS IPCS

x1

ν1 νn

xn

ν∗
n

x∗
n (+) (−)

EPCS NCS IPCS

x1

ν1 νn

xn

ν∗
n

x∗
n

ν∗
1

x∗
1

Existence of nonzero steady-state regime Existence of nonzero steady-state regime

Feasible adaptation for variations in νn, ν∗
n

Feasible adaptation for variations in νn, ν∗
n

xn = fd(νn), E1 = fc(νn), x∗
n = fd(νn), E∗

1 = fc(νn), xn = fd(νn), E1 = fd(νn), x∗
1 = fc(νn), x∗

n = fd(νn), E∗
1 = fc(νn),

xn = fd(ν∗
n ), E1 = fc(ν∗

n ), x
∗
n = fd(ν∗

n ), E
∗
1 = fc(ν∗

n ), xn = fd(ν∗
n ), E1 = fd(ν∗

n ), x
∗
n = fd(ν∗

n ), x
∗
1 = fc(ν∗

n ), E
∗
1 = fc(ν∗

n ),

xn = fc(ν1), E1 = fc(ν1), x∗
n = fc(ν1), E∗

1 = fd(ν1). xn = fc(ν1), E1 = fd(ν1), x∗
n = fc(ν1), x∗

1 = fd(ν1), E∗
1 = fd(ν1).

(+) (+)

EPCS NCS IPCS

x1

ν1 νn

xn

ν∗
n

x∗
n

ν∗
1

x∗
1

Steady-state regime conditioned by f ∗
0 et f ∗

n

Impossible adaptation of IPCS for variations in νn, ν∗
n

xn = fd(νn), E1 = fc(νn), x∗
n = fd(νn), x∗

1 = fd(νn), E∗
1 = fd(νn),

xn = fd(ν∗
n ), E1 = fc(ν∗

n ), x
∗
n = fd(ν∗

n ), x
∗
1 = fd(ν∗

n ), E
∗
1 = fd(ν∗

n ),
xn = fc(ν1), E1 = fd(ν1), x∗

n = fc(ν1), x∗
1 = fd(ν1), E∗

1 = fd(ν1).

We assume that (i) the input flux ν1 (or ν0) is able to maintain the concentration of the first metabolite
x1 (or x0) constant and (ii) the enzymes of the modules do not saturate. fc increasing function and
fd decreasing function

series that is associated with positive feedback (see Table 5.1), we cannot directly
conclude the existence of a steady-state regime. Typically, we obtain a necessary
condition of intersection between two increasing functions:

E0 f0(x0, x̄n) = En fn(x̄n),
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Table 5.2 Rules for the interconnection of several modules in parallel and characteristics of the
steady-state regime for variations of νn , (ν∗

n ) and ν1 (or ν0)

+ EPCS

IPCS

νn

xnx1
ν∗
n

x∗
n

ν1

ν∗
1

ν0
+ IPCS

EPCS

νn

xnx1
ν∗
n

x∗
n

ν1

ν∗
1

ν0

Existence of nonzero steady-state regime Existence of nonzero steady-state regime
Feasible adaptation for variations in νn, ν∗

n Impossible adaptation of IPCS for variations in νn

xn = fd(νn), E1 = fc(νn), no effect on ν∗
n , xn = fd(νn),

x∗
n = fd(ν∗

n ), E
∗
1 = fc(ν∗

n ), no effect on νn, x∗
n = fd(ν∗

n ), E
∗
1 = fc(ν∗

n ), no effect on νn,
xn = fc(ν0), E1 = fd(ν0), x∗

n = fc(ν0), E∗
1 = fd(ν0). xn = fc(ν0), E1 = fc(ν0), x∗

n = fc(ν0), E∗
1 = fd(ν0).

+ IPCS

IPCS

νn

xnx1
ν∗
n

x∗
n

ν1

ν∗
1

ν0

Existence of nonzero steady-state regime
Impossible adaptation of IPCS for variations in ν∗

n

xn = fd(νn), x∗
n = fd(ν∗

n ),
xn = fc(ν0), E1 = fc(ν0), x∗

n = fc(ν0), E∗
1 = fc(ν0).

+

(−)

EPCS

NCS IPCS

νn

xnx1

ν1ν0

ν∗
n

x∗
n

ν∗
0

x∗
1

ν∗
1

+

(+)

EPCS

NCS IPCS

νn

xnx1

ν1ν0

ν∗
n

x∗
n

ν∗
0

x∗
1

ν∗
1

Existence of nonzero steady-state regime Steady-state regime conditioned by f ∗
0 , f ∗

n

Feasible adaptation for variations in νn, ν∗
n

Impossible adaptation of IPCS for variations in ν∗
n

xn = fd(νn), E1 = fc(νn), no effect on ν∗
n , xn = fd(νn), E1 = fc(νn), no effect on ν∗

n ,

x∗
n = fd(ν∗

n ), x
∗
1 = fc(ν∗

n ), E
∗
1 = fc(ν∗

n ), no effect on νn, x∗
n = fd(ν∗

n ), x
∗
1 = fd(ν∗

n ), E
∗
1 = fd(ν∗

n ), no effect on νn,

xn = fc(ν0), E1 = fd(ν0), x∗
n = fc(ν0), x∗

1 = fc(ν0), E∗
1 = fc(ν0). xn = fc(ν0), E1 = fd(ν0), x∗

n = fc(ν0), x∗
1 = fc(ν0), E∗

1 = fc(ν0).

+

(+)

NCS EPCS

IPCS

ν1

ν∗
1

ν0

x0 x1

x∗
n

ν∗
n

xn

νn
+

(−)

NCS EPCS

IPCS

ν1

ν∗
1

ν0

x0 x1

x∗
n

ν∗
n

xn

νn

Steady-state regime conditioned by f0, f ∗
n Existence of nonzero steady-state regime

Impossible adaptation of IPCS for variations in νn, ν∗
n Feasible adaptation for variations in νn, ν∗

n

xn = fd(νn), E1 = fc(νn), x1 = fd(νn), x∗
n = fd(νn), E∗

1 = fd(νn), xn = fd(νn), E1 = fc(νn), x1 = fd(νn), x∗
n = fd(νn), E∗

1 = fd(νn),
xn = fd(ν∗

n ), E1 = fc(ν∗
n ), x1 = fd(ν∗

n ), x
∗
n = fd(ν∗

n ), E
∗
1 = fd(ν∗

n ), xn = fc(ν∗
n ), E1 = fd(ν∗

n ), x1 = fc(ν∗
n ), x

∗
n = fd(ν∗

n ), E
∗
1 = fc(ν∗

n ),
x1 = fc(ν0), xn = fc(ν0), E1 = fd(ν0), x∗

n = fc(ν0), E∗
1 = fc(ν0). x1 = fc(ν0), xn = fc(ν0), E1 = fd(ν0), x∗

n = fc(ν0), E∗
1 = fc(ν0).

We assume that (i) the input flux ν1 (or ν0) is able to maintain the concentration of the first metabolite
x1 (or x0) constant and (ii) the enzymes of the modules do not saturate. fc increasing function and
fd decreasing function

where f0 and fn are both increasing functions of x̄n . By convention, the condition of
existence of the steady-state regime in these cases is dependent, which is in contrast
to those cases in which the existence of the steady state was achieved structurally.
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Modular representation

(+) (+)(+)

(−)

Genetic control
Enzymatic control

IPCS
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NCS

X1 X2 X3 Xn−1

E2

Xn

EnEn−1

X0

νin E2E0

xn
x0

νnνin ν0

x1

Fig. 5.8 The modular decomposition of the synthesis of purines: NCS and IPCS modules are
connected in series and combined with a negative feedback

5.5.2.3 An Example: The Synthesis of Purines

Purines are the main precursors of RNA and DNA synthesis. Thus, one could expect
that the control of the synthesis pathway of purines would be driven by the down-
stream flux demand, i.e., an end-product control structure, such as with amino acids.
Surprisingly, the control structure corresponds to an IPCS module that is coupled
to an enzymatic inhibition of the upstream enzyme E0, which produces the initial
metabolite X1, by the final metabolite Xn [27, 30, 39]. We will now prove that, con-
trary to an IPCS module alone, this control structure is able to cope with a final flux
demand. Schematically, the combination corresponds to a NCS module and an IPCS
module that are connected in series; these connected modules are combined with
negative feedback (see Fig. 5.8). This combination will be referred to as IPCS(−)

in the next section. Moreover, all the genes involved in the purine synthesis are in
operon [39].
The steady-state output flux ν0 of the NCS module is given by:

ν0 = E0 f0(x0, xn), (5.23)

where E0 > 0 is fixed and f0 satisfies the characteristics of an irreversible enzyme
that is inhibited by a metabolite and is decreasing (resp. increasing) in xn (resp. x0).
The flux ν0 is the input flux of module IPCS.

Proposition 5 For all μ > 0, E0 > 0, En > 0 and x0 > 0, there exists a unique
steady-state regime (x̄1, . . . , x̄n) and (Ē1, . . . , Ēn−1) to system (5.20), which is
associated with Eq. (5.23), such that
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⎧
⎪⎪⎨

⎪⎪⎩

E0 f0(x0, x̄n) = En fn(x̄n)

ν0 = E0 f0(x0, x̄n)

νn = En fn(x̄n)

(5.24)

if and only if ν0 < E1 M1 and for all i ∈ {2, . . . , n − 1}, we have ν0 < αi E1 Mi .
Moreover,

• x̄n = x̄n(x0) is increasing in x0.
• x̄n = x̄n(En) is decreasing in En and x̄i = x̄i (En) for i = 1, . . . , n − 1 are

increasing in En.
• x̄i = x̄i (E0) for i = 1, . . . , n are increasing in E0.

Proof The proof is achieved by writing the input/output characteristics of the mod-
ules. The connection between the NCS and IPCS in series is direct and the associated
characteristics is ν̄n−1 = H∗(x̄0, x̄n), where H∗ is increasing in x̄0 and decreasing
in x̄n . Then it remains to connect this characteristics with the final flux demand
En fn(x̄n) = ν̄n , which is increasing in x̄n . Due to the monotonicity of the functions
H∗ and fn with respect to x̄n , we conclude the existence and uniqueness of the steady
state (under the assumption that the enzymes do not saturate). The behaviour of the
module components are deduced from the individual module properties.

Remarkably, the steady-state concentration x̄n of the final metabolite is completely
determined by the concentrations and the characteristics of the enzymes E0 and En

and not by the enzymes of the IPCS module. For fixed E0 and x0, the input flux ν0
is directly determined as a function of νn and x̄n . The other components of the IPCS
module, (Ēi , x̄i ) for i ∈ {1, . . . , n − 1}, are adjusted to cope with the flux demand.
In contrast with the case of the IPCS module alone, this module combination is able
to cope with the final flux demand.

5.6 Decomposition of the Metabolic Network into Modules

5.6.1 The Main Identified Combinations

Tables 5.1 and 5.2 show the rules that define the interconnection between modules,
regardless of their actual presence in an organism. Using the knowledge-based model
of B. subtilis [17], we can indicate the actual combination of modules that are present
in this organism (and in E. coli).
Connection of EPCS-EPCS modules in series: This motif, which corresponds to
the series of two EPCS modules with an intermediate branching point, occurs in (a)
the synthesis of glutamate and glutamine [8, 14, 26, 41, 43], (b) the synthesis of
glutamate and proline [7, 8, 26], and (c) the synthesis of S-adenosyl-methionine and
cysteine [4, 25]. In E. coli, the regulation of the amino acid synthesis pathways have
been deeply characterised; therefore, we found that the synthesis of threonine and
isoleucine can also be represented by a connected EPCS-EPCS motif [20].
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Connection of IPCS-EPCS modules in series: We could not identify this type of
connection in the metabolic model. However, if we consider that the initial-product
control structure is associated with the inhibition of enzymeE0 (IPCS(−) in Fig. 5.8),
the IPCS(−)-EPCS connection can be used to represent the connection between the
glycolysis pathway and the syntheses of isoleucine, leucine and valine [9, 32, 33,
35, 37].
Connection of EPCS-IPCS modules in series: The EPCS/IPCS connection is the
standard configuration that is used to connect the synthesis and degradation pathways
of amino acids, such as arginine [15, 23] and most likely histidine [12, 13, 40, 42].
Unfortunately, the regulation of the synthesis of histidine is unknown. In E. coli, the
synthesis of histidine is controlled by histidine through the corresponding charged-
tRNA and thus by an EPCS module [20]. Usually, a global regulation is present on
the connected IPCS module to prevent the simultaneous induction of both modules
[6, 12, 13, 42].
Connection of IPCS-IPCS modules in series: We identified the presence of the
IPCS-IPCS connection at the level of the synthesis and degradation of fatty acids
[22, 31]. The global regulator CcpA prevents the degradation of the fatty acids in
glycolytic conditions [22, 24]. Moreover, the IPCS/IPCS(−) connection connects the
degradation of carbohydrates with the glycolysis pathways (see references in [17]
and [9]). The IPCS(−)-IPCS(−) connection has not yet been identified. However, it
could exist because the regulatory network is only partially known.

The conditions of existence and uniqueness of the steady-state regime and the
qualitative evolution of the main module components can be deduced for all types of
these realistic combinations. Remarquably, in most of cases, the steady-state regime
exists structurally. Therefore, the existence of steady state only depends on the con-
centrations of enzymes, which have to be high enough to avoid intermediate enzyme
saturation. Finally, the prediction of the qualitative evolution of the main module
components has been successfully used to analyse the consistency of datasets (tran-
scriptome, fluxome and metabolome) (see [16] for details).

5.6.2 An Example: The Synthesis of Lysine

In this section, we used our results to compare a specific metabolic pathway, the
synthesis of lysine, under two distinct physiological conditions: steady-state growth
in glucose and in malate. Both of these growth conditions result in similar growth
rate values. Therefore, we used two datasets that were produced in the European
project BaSysBio (LSHG-CT-2006-037469). Using our approach, we explained the
unexpected repression of the lysine pathway that occurs under malate conditions and
not in glucose. As will be shown in the rest of the section, this effect is most likely a
direct consequence of the high level of aspartate (the first metabolite of the pathway)
that is accumulated under malate growth conditions.
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Fig. 5.9 The synthesis pathway of lysine

Figure 5.9 describes the lysine synthesis pathway and its connections with other
essential pathways, whereas Fig. 5.10 highlights the key elements that are involved
in the regulation of the lysine synthesis pathway:

• the feedback inhibition of the first enzyme of the pathway, which is encoded by
the lysC gene, by the end product (lysine) and

• the genetic regulation of the same gene by an L-box mechanism.

The L-box is a RNA riboswitch that involves lysine. Lysine binds directly to the
lysC nascent mRNA, which causes a structural shift that ends the transcription. The
regulation of the lysA gene by the same L-box mechanism remains elusive and it is
therefore not considered further in the analysis (to maintain the explanation as simple
as possible). This structure is classical in metabolic networks and corresponds to the
end-product control structure that was described in this chapter. We can directly
characterise the properties of the pathway at steady state. The regulation of lysine
synthesis satisfies all of the assumptions that are explained in Corollary 4 because
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Fig. 5.10 Regulatory network
of lysine synthesis
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• LysC is irreversible due to the hydrolysis of ATP,
• The activity of the first enzyme is inhibited by the end product (lysine), and
• The transcription of the first enzyme is repressed by the end-product through an

L-box mechanism.

Based on the results described in Sect. 5.3, the expression of the gene lysC depends
on various factors:

1. metabolites, other than lysine, that act on the first enzyme of the pathway, such
as aspartate,

2. flux demand, which is defined mainly by the activity of the tRNA synthase LysS,
and

3. external factors that modulate the transcription and translation of the first gene,
such as the activity of the RNA polymerases and/or the ribosomes.

The qualitative prediction of the system behaviour with respect to the evolution of
the first metabolite (aspartate) and the flux demand (the activity of tRNA synthase
LysS) can be predicted (see Table 5.3). The predictions that are shown in Table 5.3
can be extended to any other compatible combinations of conditions. Nevertheless,
some qualitative predictions are not possible for some combinations due to their
contradictory effects on the system. A contradictory combination, such as an increase
in both the flux demand and the aspartate pool, could only be solved if the relative
effect of the different factors that act on the regulation is known. Obviously, the
knowledge of these factors is related to the identification of system. Because the
growth rate between the malate and glucose experiments is similar, the impact of
the growth rate on (i) the enzyme synthesis and (ii) the amino acid flux demand by
the ribosomes is limited by these two conditions. We thus identified the different
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Table 5.3 Qualitative prediction of the lysine pathway behaviour under various conditions

Considered conditions Predictions
LysS (En) Aspartate Lysine evolution Flux evolution lysC-mRNA

+ Constant − + +
− Constant + − −
Constant + + + −
Constant − − − +

Table 5.4 Variation of the
lysine module components.
gdwc = gram of cell dry
weight

Module components Glucose Malate

Aspartate (μmol/gdwc) 1.4 10.5
Lysine (μmol/gdwc) 0.1 0.2
mRNA-lysC(log) 14.3 12.3

predictions for a constant flux demand under the two conditions. The concentration
of lysine is then an increasing function of the aspartate concentration, and in contrast,
the expression of lysC is a decreasing function of the aspartate concentration. These
predictions are in agreement with the experimental data (see Table 5.4), which led
us to conclude that the increasing value of the lysine concentration under malate
conditions is most likely due to the increasing aspartate concentration.

5.7 Conclusion

The framework that was proposed in this chapter is dedicated to the formal defi-
nition and characterization of modules in metabolic pathways. This framework is
general enough to study the existence and uniqueness of a structural steady state in
any metabolic pathway, including complete metabolic networks. Combined with our
results in [17], this is the first report, to the best of our knowledge, of a global-scale
analysis of the systematic exploration of all configurations in a realistic biological
model. Remarkably, most of the steady-state regimes of realistic metabolic con-
figurations exist structurally. More globally, the local properties of modules have
important consequences on the entire metabolic network. Indeed, despite the high
coupling that exists in the metabolic pathways (and its associated genetic regulatory
network), the steady-state regime of the entire metabolic network is dramatically
decoupled. In terms of control, this property is highly expected. Otherwise small
variations in a specific module could constantly lead to global genetic adaptations of
the entire metabolic network. Beyond the aspects of controllability of the metabolic
pathways, we recently shown that the sparing management of resources between the
intracellular biological processes of the cell leads to define structural constraints,
whose one of their consequences is the emergence of a modular organisation in the
metabolic network [18, 19]. An interesting perspective of this framework is the study
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of the stability of the elementary modules and their interconnection. The analysis of
the stability of metabolic pathways is an open area of research given the very large
diversity of configurations and systems and the non-linearity of the equations. Some
results have been obtained for linearised systems of specific metabolic pathways
[1–3, 36]. Nevertheless, the obtaining of results on the global stability of nonlinear
biological system even for one single module remains an open question.
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