
Chapter 2
Structural Analysis of Biological Networks

Franco Blanchini and Elisa Franco

Abstract We introduce the idea of structural analysis of biological network models.
In general, mathematical representations of molecular systems are affected by para-
metric uncertainty: experimental validation of models is always affected by errors
and intrinsic variability of biological samples. Using uncertain models for predic-
tions is a delicate task. However, given a plausible representation of a system, it is
often possible to reach general analytical conclusions on the system’s admissible
dynamic behaviors, regardless of specific parameter values: in other words, we say
that certain behaviors are structural for a given model. Here we describe a parameter-
free, qualitative modeling framework and we focus on several case studies, showing
how many paradigmatic behaviors such as multistationarity or oscillations can have
a structural nature. We highlight that classical control theory methods are extremely
helpful in investigating structural properties.

Keywords Biological network · Control theory · Structural analysis · Structural
property ·Enzymatic networks · Jacobian ·Eigenvalue ·Chemical reaction network ·
Robustness · Set invariance · Mitogen activated protein kinase (MAPK)

2.1 Introduction

Structural analysis of a dynamical system aims at revealing behavioral patterns that
occur regardless of the adopted parameters, or, at least, for wide parameters ranges.
Due to their parametric variability, biological models are often subject to structural
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analysis, which can be a very useful tool to reveal or rule out potential dynamic
behaviors.

Even for very simple networks, simulations are the most common approach to
structural investigation. For instance, three-node enzymatic networks are considered
in [1], where numerical analysis shows that adaptability is mostly determined by
interconnection topology rather than specific reaction parameters. In [2], through
numerical exploration of the Jacobian eigenvalues for two, three and four node gene
networks, the authors isolate a series of interconnections which are stable, robustly
with respect to the specific parameters; the isolated structures also turn out to be
the most frequent topologies in existing biological networks databases. For other
examples of numerical robustness analysis, see, for instance [3–8].

Analytical approaches to the study of robustness have been proposed in specific
contexts. A series of recent papers [9, 10] focused on input/output robustness of
ODE models for phosphorylation cascades. In particular, the theory of chemical
reaction networks is used in [10] as a powerful tool to demonstrate the property
of absolute concentration robustness. Indeed, the so-called deficiency theorems are
to date some of the most general results to establish robust stability of a chemical
reaction network [11]. Monotonicity is also a structural property, often useful to
demonstrate certain dynamic behaviors in biological models by imposing general
interaction conditions [12, 13]. Robustness has also been investigated in the context
of compartmental models, common in biology and biochemistry [14]. A survey on
the problem of structural stability is proposed in [15].

Here we review and expand on the framework we proposed in [16], where we
suggest a variety of tools for investigation of robust stability, including Lyapunov and
setinvariance methods, and conditions on the network graph. We will assume that
certain standard properties or assumptions are verified by our model, for example
positivity, monotonicity of key interactions, and boundedness. Based on such general
assumptions,wewill showhowdynamic behaviors can be structurally provedor ruled
out for a range of examples. Our approach does not require numerical simulation
efforts, and we believe that our techniques are instrumental for biological robustness
analysis [17, 18].

The chapter beginswith amotivating example, and a brief summary of the analysis
framework in [16]. Then we consider a certain number of “paradigmatic behaviors"
encountered in biochemical systems, including multistationarity, oscillations, and
adaptation; through simple examples, we show how these behaviors can be deduced
analytically without resorting to simulation. As relevant case studies, we consider a
simplified model of the MAPK pathway and the lac Operon. Finally, we prove some
general results on structural stability and boundedness for qualitative models that
satisfy certain graphical conditions.
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2.1.1 Motivating Example: A Qualitative Model for
Transcriptional Repression

Consider a molecular system where a protein, x1, is translated at a certain steady
rate and represses the production of an RNA species x2. In turn, x2 is the binding
target of another RNA species u2 (x2 and u2 bind and form an inactive complex to
be degraded); unbound x2 is translated into protein x3. A standard parametric model
is, for example, in Eq. (2.1) [19].

ẋ1 = k1u1 − k2x1,

ẋ2 = k3
1

K n
1 + xn

1
− k4x2 − k5x2u2, (2.1)

ẋ3 = k6x2 − k7x3.

Onemight ask what kind of dynamic behaviors can be expected by this system. Since
we cannot analytically solve these ODEs, numerical simulations would provide us
with answers that depend on the parameters we believe are the most accurate in
representing the physical system. Parameters might have been derived by fitting
noisy data, so they are uncertain in practically all cases. The purpose of this chapter,
is to highlight how we can achieve important conclusions on the potential dynamic
behavior of a molecular system without knowing the value of each parameter.

In this specific example, we know that the system parameters are positive and
bounded scalars. The Hill function H(x1) = k3/

(
K n
1 + xn

1

)
is a decreasing function,

sufficiently “flat” near the origin (i.e. with zero derivative), with a single flexus
(second derivative has a single zero) [19, 20]. Then, we can say that for given u1 and
u2 constant or varying on a slower timescale than this system, x1 will converge to
its equilibrium x̄1 = k1u1/k2. Similarly, x̄2 = H(x̄1)/(k4 + k5u2), x̄3 = k6 x̄2/k7.
Regardless of the specific parameter values, and therefore robustly, the system is
stable. While the equilibrium value for the protein x̄1 could grow unbounded with
u1, the RNA species x̄2 is always bounded.

2.2 Qualitative Models for Biological Dynamical Systems

The interactions of RNA species, proteins and biochemical ligands are at the basis
of cellular development, growth, and motion. Such interactions are often complex
and impossible to measure quantitatively. Thus, qualitative models, such as boolean
networks and graph basedmethods, are useful toolswhen trying tomake sense of very
coarse measurements indicating a correlation or static relationship among different
species. When dynamic data are available, it is possible to build qualitative ordinary
differential equationmodels. Rather than choosing specific functional forms tomodel
species interactions (such as Hill functions or polynomial terms), one can just make
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general assumptions on the sign, trend and boundednessof said interactions. While
suchmodels are clearly not amenable to data fitting, they still allow us to reach useful
analytical conclusions on the potential dynamic behaviors of a system.

The general class of qualitative biological models we consider are ordinary dif-
ferential equations whose terms belong to four different categories:

ẋi (t) =
∑

j∈Ai

ai j (x)x j −
∑

h∈Bi

bih(x)xh +
∑

s∈Ci

cis(x) +
∑

l∈Di

dil(x). (2.2)

Variables xi , i = 1, ..., n are concentrations of species. The different terms in
Eq. (2.2) are associated with a specific biological and physical meaning. Terms
ai j (x)x j are associated with production rates of reagents; typically, these functions
are assumed to be polynomial in their arguments; similarly, terms bih(x)xh model
degradation or conversion rates and are also likely to be polynomial in practical cases.
Finally, terms c(·) and d(·) are associated with monotonic nonlinear terms, respec-
tively non-decreasing and non-increasing; these terms are a qualitative representation
of Michaelis-Menten or Hill functions [20].

Sets Ai , Bi , Ci , Di denote the subsets of variables affecting xi . In general,
more than one species can participate in the same term affecting a given variable.
For instance one may have an interaction 2 → 1 influenced also by species x3:
a12(x1, x3)x2. (The alternative notation choice, a13(x1, x2)x3 would be possible.) To
keep our notation simple, we do not denote external inputs with a different symbol.
Inputs can be easily included as dynamic variables ẋu = wu(xu, t) which are not
affected by other states and have the desired dynamics.

2.2.1 General Assumptions

We denote with x̃i = [x1 x2 . . . xi−1 xi+1 . . . xn] the vector of n − 1 components
complementary to xi (e.g. in IR4 x̃2 = [x1 x3 x4]). Then f (x) = (x̃ j , x j ) for all j .
In the remainder of this chapter, we assume that system (2.2) satisfies the following
assumptions:

A 1 (Smoothness) Functions ai j (·), bih(·), cis(·) and dil(·) are nonnegative, contin-
uously differentiable functions.

A 2 Terms bi j (x)x j = 0, for xi = 0. This means that either i = j or bi j (x̃i , 0) = 0.

A 3 Functions bi j (x)x j and aih(x)xh, are strictly increasing in x j and xh respec-
tively.

A 4 (Saturation) Functions cis(x̃s, xs) are nonnegative and non-decreasing in xs ,
while dil(x̃l , xl) are nonnegative and, respectively, non-decreasing in xl . Moreover
cis(x̃s,∞) > 0 and dil(x̃l , 0) > 0. Moreover they are globally bounded.
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In view of the nonnegativity assumptions and Assumption 2, our general
model (2.2) is a nonlinear positive system and its investigation will be restricted to
the positive orthant. We note that reducing dynamic interactions to a form bi j (x)x j

and aih(x)xh is always possible under mild assumptions: for instance, if species
j affects species i with a monotonic functional term fi j (x̃ j , x j ), if such term has
a locally bounded derivative, with f (x̃i , 0) = 0, it can always be rewritten as:
fi j (x) = (

fi j (x)/x j
)

x j = ai j (x)x j (see [14], Sect. 2.1). Using the general class
of models (2.2) and assumptions A1–A4 as a working template for analysis, we
will focus on a series of paradigmatic dynamic behaviors which can be structurally
identified or ruled out in example systems of interest.

2.2.2 Glossary of Properties

The structural analysis of system (2.2) can be greatly facilitated whenever it is legit-
imate to assume that functions a, b, c, d have certain properties such as positivity,
monotonicity, boundedness and other functional characteristics that can be consid-
ered “qualitative and structural properties” [15]. Through such properties, we can
draw conclusions on the dynamic behaviors of the considered systemswithout requir-
ing specific knowledge of parameters and without numerical simulations. However,
it is clear that our approach requires more information than other methods, such as
boolean networks and other graph-based frameworks.

For the reader’s convenience, a list of possible properties and their definitions is
given below, for functions of a scalar variable x .

P 1 f (x) = const ≥ 0 is nonnegative-constant.

P 2 f (x) = const > 0 is positive-constant.

P 3 f (x) is sigmoidal: it is non-decreasing, f (0) = f ′(0) = 0, if 0 < f (∞) < ∞
and its derivative has a unique maximum point, f ′(x) ≤ f ′(x̄) for some x̄ > 0.

P 4 f (x) is complementary sigmoidal: it is non-increasing, 0 < f (0), f ′(0) = 0,
f (∞) = 0 and its derivative has a unique minimum point. In simple words, f is a
CSM function iff f (0) − f (x) is a sigmoidal function.

P 5 f (x) is constant-sigmoidal, the sum of a sigmoid and a positive constant.

P 6 f (x) is constant-complementary-sigmoidal, the sum of a complementary sig-
moid and a constant.

P 7 f (x) is increasing-asymptotically-constant: f ′(x) > 0, 0 < f (∞) < ∞ and
its derivative is decreasing.

P 8 f (x) is decreasing-asymptotically-null: f ′(x) < 0, f (∞) = 0 and its deriva-
tive is increasing.
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Fig. 2.1 Cropped sigmoids
and complementary sigmoids
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P 9 f (x) is decreasing-exactly-null: f ′(x) < 0, for x < x̄ and f (x) = 0 for x ≥ x̄
for some x̄ > 0.

P 10 f (x) is increasing-asymptotically-unbounded: f ′(x) > 0, f (∞) = +∞.

Asan example, the termsd(·) and c(·) in general are associatedwithHill functions,
which are sigmoidal and complementary sigmoidal functions. In somecases itwill be
extremely convenient to introduce assumptionswhich aremild in a biological context
but assure a strong simplification of the mathematics. One possible assumption is
that a sigmoid or a complementary sigmoid is cropped (Fig. 2.1). A cropped sigmoid
is exactly constant above a certain threshold x− and exactly null below another
threshold x+. A cropped complementary sigmoid is exactly null above x− and exactly
constant below x+.

These assumptions extendobviously tomultivariable functions just by considering
one variable at the time. For instance f (x1, x2) can be a sigmoid in x1 and decreasing
in x2.

2.2.3 Network Graphs

Building a dynamical model for a biological system is often a long and challenging
process. For instance, to reveal dynamic interactions among a pool of genes of inter-
est, biologists may need to selectively knockout genes, set up micro RNA assays,
or integrate fluorescent reporters in the genome. The data derived from such exper-
iments are often noisy and uncertain, which implies that also the estimated model
parameters will be uncertain. However, qualitative trends can be reliably assessed
in the dynamic or steady state correlation of biological quantities. Graphical repre-
sentations of such qualitative trends are often used by biologists, to provide intuition
regarding the network main features.

Building on the general model (2.2), we can associate species to nodes of a graph,
and different qualitative relationships between species with different types of arcs:
terms a, b, c and d can be represented as arcs having different end–arrows, as shown
in Fig. 2.2.

These graphs can be immediately constructed, by knowing the correlation trends
among the species of the network, and serve as a support for the construction and
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Fig. 2.2 Arcs associated to
the different terms of our
general model (2.2), and
example graph
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Fig. 2.3 Graph correspond-
ing to the transcriptional
repression example in Sect.
2.1.1
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analysis of a dynamical model. For simple networks, these graphs may facilitate
structural robustness analysis.
Ourmain objective is to show that, at least for reasonably simple networks, structural
robust properties canbe investigatedwith simple analyticalmethods,without the need
for extensive numerical analysis. We suggest a two stage approach:

• Preliminary screening: establish essential information on the network structure,
recognizing which properties (such as P1–P10) pertain to each link.

• Analytical investigation: infer robustness properties based on dynamical systems
tools such as Lyapunov theory, set invariance and linearization.

2.2.4 Example, Continued: Transcriptional Repression

The model for the transcriptional repression system in Eq. (2.1) [19] can be recast in
the general class of models (2.2), and we can immediately draw the corresponding
graph (Fig. 2.3).

ẋ1 = u1 − b11x1, (2.3)

ẋ2 = d21(x1) − b22x2 − b2u2 x2 u2,

ẋ3 = a32x2 − b33x3.

Terms ai j capture first order production rates; bih capture first order degradation
rates. Term d21(x1) is our general substitute for the Hill function [19, 20]; we assume
it is a decreasing function with null derivative at the origin, whose second derivative
has a single zero (flexus), and it is negative on the left of the zero and positive on the
right (such as 1/(1 + x p

1 ), n > 1).
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2.3 Robustness and Structural Properties

Wenowclarify the concepts of robustness and structural properties and their relations.

Definition 1 Let C be a class of systems andP be a property pertaining such a class.
Given a family F ⊂ C we say that P is robustly verified by F , in short robust, if it
is satisfied by each element of F .

Countless examples can be brought about families F and candidate properties. Sta-
bility of equilibria, for instance, is one of the most investigated structural properties
[2, 13, 21].

When we say structural property we refer to the properties of a family F whose
“structure” has been specified. In our case, the structure of a system is the fact that
it belongs to the general class (2.2), thus it satisfies assumptions 1–3, and it enjoys
properties in the set P1–P8.

A realization is any systemwith assumed structure and properties achieved by spe-
cific functions which satisfy these assumptions. The set off all realization is a class.
For instance, going back to the transcriptional repression example, the dynamical
system:

ẋ1 = u1 − 2x1,

ẋ2 = 1

1 + xn
1

− x2 − 2x2u2,

ẋ3 = 2x2 − 2x3,

is a realization of the class represented by system (2.3).

Definition 2 A property P is structural for a class C, if any realization satisfies P .

Note that demonstrating a structural property for a system is harder than proving
that it does not hold (the latter typically only requires to show the existence of a
system which exhibits the considered structure but does not satisfy the property).
For example, consider matrices:

A1 =
[−a b

−c −d

]
A2 =

[−a b
c −d

]

with a, b, c and d positive real parameters. To show that A1 is structurally stable
one has to show that its eigenvalues have negative real part, (in this case, a simple
proof). Conversely to show that A2 is not structurally stable, it is sufficient to find a
realization which is not stable, such as a = 1 b = 1 c = 2 and d = 1.
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STABLE
UNSTABLE

Fig. 2.4 Sketch of a bistable system

2.4 Paradigmatic Structural Properties

We introduce an overview of properties particularly relevant in systems and synthetic
biology. Through simple examples, we highlight how our general approach can be
used to determine analytically the structural nature of such properties.

2.4.1 Multistationarity

A multistationary system is characterized by the presence of several possible equi-
libria. Of particular interest are those systems in which there are three equilibria, of
which two are stable and one unstable, i.e., the system is bistable.

We consider a simple example of a multistationary system (Fig. 2.4):

ẋ1 = x0 + c12(x2) − b11x1 (2.4)

ẋ2 = a21x1 − b22x2

with b11, b22 and a21, positive constants, and with c12(x2) a (non-decreasing) sig-
moidal function. We assume x0 ≥ 0. The following proposition holds:

Proposition 1 For x0 small enough and for b11b22/a21 small enough, system (2.4)
has three equilibria, two stable and one unstable. Conversely, for x0 large or
b11b22/a21 large the system admits a unique, stable equilibrium.

Explanation. Setting ẋ1 = 0 and ẋ2 = 0 we find the equilibria as the roots of the
following equation:

c12(x2) + x0 = b11b22
a21

x2

From Fig. 2.5, it is apparent that if x0 is small and the slope of the line b11b22
a21

x2 is
small, there must be three intersections. Conversely, there is a single intersection for
either x0 or

b11b22
a21

large. �
If three intersections (points A, B, C in Fig. 2.5) are present, there are two stable

points A and B and one unstable. This can be seen by inspecting the Jacobian:

J =
[−b11 c′

12(x̄2)
a21 −b22

]
,
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x 2

C

BA

Fig. 2.5 Sketch of the nullclines for system (2.4)

Fig. 2.6 Schematic representation of oscillatory behavior

whose characteristic polynomial is:

p(s) = s2 + (b11 + b22) + b11b22 − a21c′
12(x̄2).

This second order polynomial is stable if b11b22 − a21c′
12(x̄2) > 0 or

c′
12(x2) <

b11b22
a21

x2,

namely the slope of the sigmoidal function must be smaller that the slope of the line
b11b22/a21. This is the case of points A and C , while the condition is violated at
point B.

2.4.2 Oscillations

Oscillations in molecular and chemical networks are a well-studied phenomenon
(see, for instance [22]). Periodicity in molecular concentrations underlies cell divi-
sion, development, and circadian rhythms. One of the first examples considered in the
literature is the well known Lotka Volterra predator-prey system, whose biochemical
implementation has been studied and attempted in the past [23, 24]. In our general
setup, the Lotka Volterra model is (Fig. 2.6):
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ẋ1 = a11x1 − b12(x2)x1
ẋ2 = a21(x1)x2 − b22x2,

where all functions are strictly increasing and asymptotically unbounded in all argu-
ments. The system admits a single non-trivial equilibrium, the solution of equations:

0 = a11 − b12(x2)

0 = a21(x1) − b22.

The Jacobian of this system at the unique equilibrium is:

J =
[

0 −b′
12(x2)x1

a′
21(x1)x2 0

]
.

This matrix clearly admits pure imaginary eigenvalues for any realization of the
functional terms. Thus, oscillations are a structural property.

In second order systems, sustained oscillations require the presence of a positive
self loop (autocatalytic reactions) represented in this case by the a11 term.

To achieve oscillations without a positive loop reaction, the system must be of at
least third order. For instance the following model

ẋ1 = x10d13(x3) − b11x1 (2.5)

ẋ2 = a21x1 − b22x2,

ẋ3 = a32x2 − b33x3,

where d13(x3) is a complementary sigmoid and the constant are positive, is a candi-
date oscillator. Term x10 is an external input which catalyzes the production d13(x3).

Proposition 2 System (2.5) admits a unique equilibrium. If the minimum value of
the slope d ′

13(x3) is sufficiently large, there exists an interval (possibly unbounded
from above) of input values x10 inducing an oscillatory transition to instability.

Explanation The unique equilibrium point can be derived by the conditions ẋ1 =
ẋ2 = ẋ3 = 0:

x10d13(x3) = b11b22b33
a21a32

x3.

Figure 2.7 shows the qualitative trend of the nullclines above, and clearly highlights
that they admit a single intersection.

Assume that the slope in the intersection point A is large. The Jacobian of the
system at this equilibrium point is

J =
⎡

⎣
−b11 0 −μ
a21 −b22 0
0 b32 −b33

⎤

⎦ , μ = −x0d ′
13(x̄3) > 0.



58 F. Blanchini and E. Franco

Fig. 2.7 Qualitative trend
of the nullclines for
system (2.5).

x 2

A

x 3

The corresponding characteristic polynomial is

p(s) = (s + b11)(s + b22)(s + b33)+ a21a32μ = s3 + p2s2 + p1s + p0 + a21a32μ.

This polynomial has a pair of complex conjugate roots with positive real part, as it
can be inferred from the Ruth–Hurwitz table:

+ 1 p1
+ p2 p0 + a21a32μ
? (p1 p2 − a21a32μ)/p2
+ a21a32μ

for large μ there are two sign in the first column of the table, which means that there
are two unstable roots. These roots cannot be real because the polynomial coefficients
are all positive, so unstable roots must be complex conjugate.

In general, we can say there is an “interval" in parameter space in which oscilla-
tions are admissible: for x0 small, the intersection occurs in a region where the slope
of μ = −x0d ′

13(x̄3) is small, thus there are no changes in the Routh-Hurwitz table
and the system is stable. �

Note that it is not necessarily true that for large x0 the system is unstable; in
addition, the instability interval of x0 may be bounded. In fact, the equilibrium x̄3
increases for large x0, but it may transition to a region where d ′

13 is very small,
compensating for the increase of x0.

2.4.3 Adaptation

A system is adaptive if, when perturbed by a persistent input signal, its output always
reverts to a neighborhood of its value prior to the perturbation, in general after a
transient [1, 25, 26]. A sketch of this behavior is in Fig. 2.8. Adaptation is said to be
perfect if the system’s output reverts to its exact value prior to the perturbation.
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Fig. 2.8 System capable of adaptation

For small perturbations, linearization analysis suggests that adaptation requires
the presence of a zero in the system’s transfer function. If the system includes a
feedback loop, then the presence of a pole at the origin (integrator) is required [25,
26]. Establishing criteria to detect a system’s capability for adaptation is thus simple.
Consider the system:

ẋ1 = −b21(x1)x2 + x0, (2.6)

ẋ2 = a12x1 − b22x2 + u. (2.7)

We assume all the constants are positive, and that function b21(x1) is a cropped
sigmoid, namely it is strictly increasing and exactly positive constant above a certain
threshold. Term x0 is a constant, and u ≥ 0 is a perturbing input.

Proposition 3 If x0 is sufficiently large and u = 0, then system (2.6) has a stable
equilibrium point. Takin y = x2 as the system’s output, perfect adaptation is achieved
with respect to constant perturbations on u > 0.

Explanation. For u = 0 the equilibrium conditions are b21(x1)x2 = x0 and a12x1 −
b22x2. Therefore the equilibrium x̄1 can be expressed as the solution of:

b21(x1)
a12
b22

x1 = x0. (2.8)

For x0 suitably large, x̄1 increases until it falls in the range where b21 (a cropped
sigmoid) is constant, thus b21(x1) = b21(∞), and b′

21(x1) = 0.
In this range, the linearized system is

[
ẋ1
ẋ2

] [
0 −b21(x1)

a21 −b22

] [
x1
x2

]
+

[
0
1

]
u y = [

0 1
] [

x1
x2

]

with output y(t) = x2(t). The state matrix is a stable matrix, with characteristic
polynomial p(s) = s2 + b22s + b21(x1)a21. The transfer function isw(s) = s/p(s),
has a zero at the origin and thus the system locally exhibits perfect adaptation.

If u > 0 increases as a step input, after a transient the output x2 returns to its
original value x̄2 prior to the perturbation. However, the equilibrium of x1 increases
to a new value such that ā12x1 = b22 x̄2 + u. �
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Fig. 2.9 System presenting a spiking behavior

Fig. 2.10 System presenting a persistent response

2.4.4 Spiking and Persistency: The MAPK Network as a Case Study

Spiking is a phenomenon observed in several molecular networks, in which a system
subject to a step input grows rapidly and subsequently undergoes a relaxation, as
sketched in Fig. 2.9. The relaxation bring the system to a new equilibrium, distinct
from the equilibrium prior to the input stimulation.

Persistency is closely related to bistability: it occurs when a transient input vari-
ation causes the system to switch its output to a new value, which persists upon
removal of the input, as shown in Fig. 2.10.

2.4.4.1 A Qualitative Model of the MAPK Pathway

Experiments show that the mitogen-activated proteinkinase (MAPK) pathway in
PC12 rat neural cells exhibits dynamic behaviors that depend on the growth factor
they are exposed to as an input. The response to Epidermal Growth Factor (EGF)
is a spike followed by a relaxation, while the response to Nerve Growth Factor
(NGF) is persistent. In the latter case, the system can be driven to a new state,
which persists after the stimulus has vanished. Ultimately, these dynamic behaviors
correspond to different cell fates: EFG stimulation induces proliferation, while NGF
stimulation induces differentiation. The biochemical mechanisms responsible for
the different input-dependent dynamic response are still unclear. One hypothesis is
that each input generates a specific interaction topology among the kinases. Starting
from experimental results that support this hypothesis [27], in our prevous work
we considered the two network topologies, and we derived and analyzed qualitative
models which exhibit structural properties [28]. Here we use a simplified, third
order model for the pathway. We refer the reader to [28] for a more detailed model
and its derivation. In our reduced order model, we neglect double-phosphorylation
dynamics, and model the active concentration of each MAPK protein with a single
state variable. We also neglect mass conservation assumptions regarding the total
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amount of MAPK protein [13, 16].

MAP3K: ẋ1 = u(x3, x0) − b11x1 (2.9)

MAP2K: ẋ2 = c21(x1) − b22x2 (2.10)

MAP1K: ẋ3 = c32(x2) − b33x3 (2.11)

Output: y = x3 (2.12)

We assume: c21 and c32 are strictly increasing asymptotically constant, i.e. c21(∞) =
ĉ21 < ∞ c32(∞) = ĉ32 < ∞, and null at the origin c21(0) = c32(0) = 0. Terms bii

are positive constants. In essence, this model captures the fact that each protein in the
cascade is activated by its predecessor in the chain; in the absence of term u(x3, x0),
the system would be an open loop, monotonic cascade [12]. Term u(x3, x0) is a
feedback term modulated by an external input x0, and we consider two cases:

EGF u = a10(x3)x0, where a10(x3) is a complementary sigmoid, exactly constant
below a threshold η and exactly null over a threshold ξ. This configuration is
characterized by the presence of a negative feedback loop.

NGF u = a10(x3) + x0, where a10(x3) is a sigmoid, exactly null below a threshold
η and exactly constant over a threshold ξ. This configuration is characterized
by the presence of a positive feedback loop.

Under these assumptions, we show that in the EFG configuration the output exhibits
a spike, while in the NGF configuration the output is persistent.

2.4.5 The EGF-Induced Pathway and Its Spiking Behavior

The system in this configuration admits a single equilibrium; this can be shown as
for the third order oscillator model (2.5).

Consider c21(∞) = ĉ21, c32(∞) = ĉ32, the saturation value. Let x̂2 = ĉ21/b22
be the corresponding “saturation”, limit value of x2. Let, in turn,

x̂3 = c32(x̂2)/b33

be the limit value of x3. For large, increasing values of the input x0, the variable x̂1
increases and the equilibrium values of x2 and x3 approach x̂2 and x̂3. The following
proposition holds:

Proposition 4 Assume that the limit value for x3 is x̂3 > ξ. Then, for x0 constant
sufficiently large, and for xi (0) = 0, we have: (a) First, x3 grows arbitrarily close to
x̂3. (b) Subsequently, x3 relaxes below ξ.

Proof Since a10(x3) is constant for a small values of x3, if x0 is large then by
continuity x1 can grow arbitrarily large in an arbitrarily small amount of time τ > 0.
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Then, considering the time interval [τ , T ] where T is arbitrarily large, and given an
arbitrary μ > 0, by picking x1(τ ) sufficiently large we can guarantee:

x1(t) ≥ μ for t ∈ [τ , T ]. (2.13)

In fact, we have ẋ1 ≥ −b11x1, thus x1(t) ≥ x1(τ )e−b11t on [τ , T ]; therefore, picking
a large initial value x1(τ ), equation (2.13) is verified. Thus, we can guarantee that
variables x2 and x3 have values arbitrarily close to the upper limit x̂2 and x̂3, being
μ and T arbitrarily large.

If x3 increases, at some point in time the condition a10(x3) = 0 is met. This
“switches off” the first variable, whose dynamics become: ẋ1 = −b11x1, thus x1
starts decreasing; variables x2 and x3 follow the same pattern. These concentrations
decrease until x3 ≤ ξ. �

2.4.6 The NGF-Induced Pathway Is an Example of Persistent
Network

Let us now define a10(∞) = ā10 as a saturation value. If x̄3 is greater than the
threshold ξ, then a10(x̄3) = ā10; then, for x0 = 0 we can find the equilibria from the
following conditions:

0 = a10 − b11 x̄1, (2.14)

0 = c21(x̄1) − b22 x̄2, (2.15)

0 = c32(x̄2) − b33 x̄3, (2.16)

which yield x̄1 = ā10/b11; x̄2 = c21(x̄1)/b22; x̄3 = c32(x̄2)/b33. The assumption
x̄3 > ξ means that the positive feedback given by the term ā10 is able to sustain this
positive equilibrium.

Now consider the case where the input x0 becomes arbitrarily large. Thus, x̄1
becomes arbitrarily large. Defining ĉ21 = c21(∞), we find the corresponding limit
values for the steady states: x̂2 = ĉ21/b22 and x̂3 = c32(x̂2)/b33. It is immediate
that x̂1 ≥ x̄1, x̂2 ≥ x̄2, x̂3 ≥ x̄3, because the “hat” equilibrium values are achieved
by means of an arbitrarily large input x0, while the “bar” values are achieved by the
bounded input ā10.

Proposition 5 Assume that x̄3 > ξ and that the previous inequalities are strict:
x̂1 > x̄1, x̂2 > x̄2, x̂3 > x̄3. Then, for xi (0) = 0 the following happens:

(a) If x0 is constant and sufficiently large, and it is applied for a sufficiently long
time interval [0, T ], then x3 grows arbitrary close to x̂3.

(b) If, after time T , the input signal x0 is eliminated (x0 = 0), then x3 remains above
ξ.

(c) Finally, x3 converges to x̄3 from above.
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Proof We have seen that when x0 = 0, x̄1, x̄2, x̄3 are admissible equilibria of the
system. Exactly as done in the EGF-driven network example, we can show that for
a sufficiently large input x0, variables x1 x2 and x3 can grow arbitrarily close to x̂1,
x̂2 and x̂3, above x̄1, x̄2 and x̄3.

We only need to show that if all xi (t) grow above the corresponding x̄i , then they
will not reach values below x̄i after x0 is removed.

We begin by defining the new variables zi = xi − x̄i ; then, żi = ẋi given by
equations (2.9)–(2.11). After x0 is removed, the input is a10(x3); in addition, since
we assume x3 ≥ x̄3 ≥ ξ (so z3 ≥ 0), we have a10(x3) = ā10. If we consider also the
steady state equations (2.14)–(2.16), we get

ż1 = −b11z1 (2.17)

ż2 = c21(z1 + x̄1) − c21(x̄1) − b22z2 (2.18)

ż3 = c32(z2 + z̄2) − c32(z̄2) − b33z3 (2.19)

This is a positive system in the z variables. Because we assumed that at some point
zi (τ ) > 0 (prior to the removal of x0), we can immediately see that this situation is
permanent.

To prove convergence, note that z1 goes to zero in view of Eq. (2.17). Then
c21(z1 + x̄1) − c21(x̄1) goes to 0, so z2 converges to 0. For the same reason, z3
converges to 0. �

2.5 Structural Boundedness and Stability

Our qualitative modeling framework is generally described by Eq. (2.2):

ẋi (t) =
∑

j∈Ai

ai j (x)x j −
∑

h∈Bi

bih(x)xh +
∑

s∈Ci

cis(x) +
∑

l∈Di

dil(x).

The general assumptions we made on functions a, b, c, and d guarantee non-
negativity of the states, which is a required feature to meaningfully model concentra-
tions of molecules. Another important feature of most biochemical system models
is boundedness of their states (possibly with the exception of pathological cases). In
the following, we outline additional assumptions and consequent results regarding
structural boundedness of the solutions to our general model (2.2).

2.5.1 Structural Boundedness

Consider the case in which states in model (2.2) are dissipative, i.e. the dynamics of
each variable include a degradation term −bii (x)xi . We also assume that
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bii (x) > βi > 0.

Obviously, this property alone does not assure the global boundedness of the solution.
However, if no unbounded a-terms were present, it would be simple to show that the
solutions are globally bounded.

Let us assume that eachai j (x) term is boundedby a positive constant 0 ≤ ai j (x) <
āi j . Then, we ask under what conditions we can assure structural boundedness of
the solutions. We build a graph G(A) associated with the ai j terms, where there is a
directed arc from node j to node i for every term ai j . Then, the following theorem
holds.

Theorem 1 The system solution is structurally globally bounded for any initial
condition x(0) ≥ 0 if and only if G(A) has no cycles (including self-cycles) including
aii terms.

In other words, structural boundedness is guaranteed if and only if there is no auto-
catalysis in the system.

Proof Wefirst show that the condition is structurally necessary. Assume, ab absurdo,
that there is a cycle which includes a term ai j . Without restriction assume that the
cycle if formed by the first r nodes 1,2,…,r , forming a sequence a12, a23, …, ar1;
also, assume that each term ai j is lower bounded by a constant κ. We finally assume
that the sum of all bik terms appearing in the first r equations is upper bounded
by η:

r∑

i=1

∑

k∈Bi

bik ≤ η.

Consider the Lyapunov-like function:

V (x1, x2, . . . , xr ) = x1 + x2 + · · · + xr ,

and its derivative

V̇ =
r∑

i=1

ẋi ≥
r∑

i=1

⎡

⎣ai,i+1xi+1 −
∑

k∈Bi

bik xk

⎤

⎦ ≥
r∑

i=1

ai,i+1xi+1 − η

r∑

i=1

xi

≥ (rκ − η)

r∑

i=1

xi = (rκ − η)V .

Then, if η < rκ, V increases and the equilibrium is not stable. Thus, structural
boundedness cannot hold.

Let us now consider the sufficiency part. If there are no cycles in G(A), then there
exists necessarily a node which is a root, i.e. its dynamics do not include ai j terms.
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Let us assume, without loss of generality, that node x1 does not have any a1 j term.
Then:

ẋ1 = −
∑

h∈B1

bih(x)xh +
∑

s∈C1
c1s(x) +

∑

l∈D1

d1l(x)

≤ −β1x1 +
∑

s∈C1
c1s(x) +

∑

l∈D1

d1l(x)

Since the c and d terms are bounded, then the solution x1 is bounded; without loss
of generality, assume x1 ≤ ξ1, ξ1 > 0.

If x1 is bounded, then all terms (if any) of type ak1(x)x1 in other equations remain
bounded: ak1(x)x1 ≤ ā j1ξ1.

Let us consider the other nodes x2, x3, . . . , xn . Since there are no cycles including
ai j terms, there is at least one variable whose equation has either no a terms, or has
only ak1(x)x1 terms from x1, which are bounded. Let us assume node x2 fulfills this
statement. Then:

ẋ2 = ai1(x)x1 −
∑

h∈B2

bih(x)xh −
∑

h∈B2

bih(x)xh +
∑

s∈C2
c2s(x) +

∑

l∈D2

d2l(x)

≤ −β2x2 + ā j1ξ1 +
∑

s∈C2
c2s(x) +

∑

l∈D2

d2l(x).

The above inequality implies boundedness of the solution x2.
The proof can be concluded recursively, by noticing that there must exists a new

variable, say x3 whose equation includes either no ai j terms or only bounded a3 j

terms coming from x1 and x2, and so on. �

The following corollary holds.

Corollary 1 The solution to the general model (2.2) is bounded if and only there
are no ai j terms and all bii terms are lower bounded by a positive constant, bii > βi .

This corollary highligths that boundedness is structurally assured in systemswhere
each species is degraded by terms of at least first order, and all the interaction terms
are bounded.

Example 1 As an example we consider the well known lac Operon genetic network.
We will propose and analyze a qualitative model or class: the classical model pro-
posed in [29] is a realizationwhitin this class. The state variables of ourmodel are: the
concentration of nonfunctional permease protein x1; the concentration of functional
permease protein x2; the concentration of inducer (allolactose) inside the cell x3,
and the concentration of β-galactosidase x4, a quantity that can be experimentally
measured. The concentration of inducer external to the cell is here denoted as an
input function u. A model for this system can be written in the following form (see
[16] for details).
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Fig. 2.11 Graph of the lac
operon network

1 2

3 4u

b11 b22

b33 b44

a32

b32

a21

c13

c43
c3u

ẋ1 = c13(x3) − b11x1,

ẋ2 = a21x1 − b22x2, (2.20)

ẋ3 = a32(u)x2 − b32(x3)x2 + c3uu − b33x3,

ẋ4 = c43(x3) − b44x4,

where c13(x3) = f1(x3), b11 = δ1, a21 = β1, b22 = δ2, a32(u) = f2(u) =,
b32(x3) = f3(x3), c3u = β2, b33 = δ3, c43(x3) = γ f1(x3) and b44 = δ4. This
corresponds to the network in Fig. 2.11.

We assume that c13 is constant-sigmoidal, a32(u) and b32(x3) are increasing-
asymptotically-constant, and the remaining functions a21, b11, b22 and b33 are
positive-constant.

The arcs associated to ai j terms in Fig. 2.11 do not form any cycles. Each node
is dissipative, therefore the solution is structurally bounded.

The requirement of having no ai j cycles can be strong, especially in chemical
reaction networks [11]. However, the conditions in Theorem 1 are necessary and
sufficient;we believe it is unlikely that stronger results can be foundwithout assuming
bounds on the dynamic terms.

Note that Theorem 1 only requires that bounds on the functional terms exist, while
their specifc values need not be known. If such bounds are known, we obtain less
restrictive conditions. Note that model (2.2) can be written compactly as:

ẋ(t) = A(x(t))x(t) − B(x(t))x(t) + C(x(t)) + D(x(t)), (2.21)

or as:
ẋ(t) = M(x(t))x(t) + C(x(t)) + D(x(t)), (2.22)

where M(x(t)) = A(x(t)) − B(x(t)). If the elements of matrix M(x(t)) are con-
strained in a closed (even better if compact) set, M(·) ∈ M, and if and if we can
demonstrate exponential stability of the associated differential inclusion [30]

ẋ ∈ Mx,
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then we can show the overall boundednessof the systems’ solution. To prove bound-
edness it is convenient to exclude a neighborhood of the origin:Nν = {x : xi ≥ ν}.
Theorem 2 Assume that M(x) ∈ M for x ∈ N and assume that the differential
inclusion is bounded and admits a positively homogeneous function V (x) as Lya-
punov function

V̇ (x) = ∇V (x)Mx ≤ −γV (x)

for all M ∈ M. Then the system solution is bounded.

Proof The proof is an immediate consequence of the fact that the trajectories of the
original linear systems are a subset of the possible trajectories of the linear differential
inclusions.

An exponentially stable differential inclusion has bounded solutions if perturbed
by bounded terms

ẋ ∈ Mx + C + D

as in our case. �

Example 2 Consider a biological network composed by two proteins x1 and x2:

ẋ1 = +c10 + a12(x1)x2 − b11x1,

ẋ2 = +c20 − b21(x2)x1 − b22x2.

In this model, we suppose that both x1 and x2 are produced in active form at some
constant rates (terms c10 and c20), but they are inactivated, or degraded, at some speed
proportional to their concentration (terms b11 and b22). However, suppose protein
x1 is activated by binding to x2; this interaction in turn inactivates x2: this pathway
is modeled by terms a12(x1) and b21(x2), which we assume are sigmoidal functions
asymptotically constant, consistently with a cooperative, Hill function-type protein
interaction.

We can rewrite the above equations as:

[
ẋ1
ẋ2

]
=

[ −b11 ā12 + δ12
−b̄21 − δ21 −b22

] [
x1
x2

]
+

[
c10
c20

]
,

where δ12 = a12(x1) − ā12 and δ21 = a21(x1) − ā21 and where ā12 = a12(∞) and
b̄21 = b21(∞).

If the region near the origin is delimited by a “radius” ν sufficiently large, the
bounds on δ12 and δ21 can be taken arbitrarily tight.

So inside Nν , for large ν > 0, we may assume |δ12| ≤ ε and |δ21| ≤ ε with small
ε. Since the nominal system, for δ12 = δ21 = 0 is quadratically stable, it admits a
quadratic Lyapunov function, inside Nν , this is a Lyanpunov function. Inside Nν this
is a Lyapunov function for the system because the contribution of terms δ12x2 and
δ21x1 is negligible.
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This technique allows us to prove boundedness, but not stability of the original
system. Boundedness does imply the existence of equilibria, but their stability may
be or may be not verified.

2.5.2 Structural Stability of Equilibria

If we can establish boundedness of a system, the existence of equilibria is automati-
cally assured. Then, we can ask two main questions:

• How many equilibria are present?
• Which equilibria are stable?

Several results from the so-called degree theory help us find answers; see, for
instance, [31–34]. Here, we recall one particularly useful theorem:

Theorem 3 Assume that all the system’s equilibria x̄ (i) are strictly positive, and
assume that none of them is degenerate, i.e. the Jacobian evaluated at each equilib-
rium has non-zero determinant. Then:

∑

i

sign det
[
−J

(
x̄ (i)

)]
= 1

How does this theorem help us answer our questions? We describe informally
three cases that we can immediately discriminate as a consequence of this theorem.
Suppose analytical expressions for the Jacobian are available, as a function of a
generic equilibrium point.

1. If we can establish that the determinant of −J is always positive, regardless of
specific values for parameters or equilibria, then there is a unique equilibrium.

2. If at an equilibrium point we have det[−J ] < 0, then such equilibrium must
be unstable (because the characteristic polynomial has a negative constant term
p0 = det[−J ].) A consequence of Theorem 3 is that other equilibria must exist;
if they are not degenerate, then there must be at least two equilibria.

3. If there are two stable equilibria, then necessarily another unstable stable equi-
librium must exist.

In a qualitative/parameter-free context, general statements about stability of equi-
libria are difficult to demonstrate. If we restrict our attention to specific classes of
systems, however, we can find structural stability results. We mention a few, well
known examples:

• Chemical reactionnetworksmodeledwithmass actionkinetics: the zero-deficiency
theorem [11] guarantees uniqueness of the equilibrium and asymptotic stability
of networks satisfying specific structural conditions that do not depend on the
reaction rate parameters.
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• Monotone systems: if a system is monotone [35], then its Jacobian has nonneg-
ative non-diagonal entries, in other words it is a Metzler matrix. For a Metzler
matrix, stability is equivalent to having a characteristic polynomial with all pos-
itive coefficients. This property is easy to check analytically in systems of small
dimension.

• Planar systems. Plenty of straightforward methods are available to find structural
stability conditions.

We conclude this section with a paradox:

Difficulty: Structural stability investigation is, generally speaking, an unsolved prob-
lem which typically requires a case-by-case study.

Interest: Stability is generally of little interest to biologists, because many natural
behaviors in biology are known to be (obviously) stable. In other words,
formal proofs of stability are not very informative. However, lack of sta-
bility of an equilibrium can be a hallmark for other interesting behaviors,
such as multistationarity and periodicity.

2.6 Conclusions

A property is structurally robust if it is satisfied by a class of models regardless
of the specific expressions adopted or of the parameter values in the model. This
chapter highlights that qualitative, parameter-free models of molecular networks can
be formulated by making general assumptions on the sign, trend and boundedness of
the species interactions. Linearization, Lyapunov methods, invariant sets and graph-
ical tests are examples of classical control theoretic tools that can be successfully
employed to analize such qualitative models, often reaching strong conclusions on
their admissible dynamic behavior.

Robustness is often tested through simulations, at the price of exhaustive cam-
paigns of numerical trials and, more importantly, with no theoretical guarantee of
robustness. We are far from claiming that numerical simulations are useless: they are
useful, for instance, to falsify “robustness conjectures” by finding suitable numerical
counterexamples. In addition, for very complex systems in which analytical tools
cannot be employed, simulations are the only viable method for analysis. A limit of
our qualitative modeling and analysis approach is its lack of systematic scalability to
complex models. However, the techniques we employed can be successfully used to
study a large class of low dimension systems, and are an important complementary
tool to simulations and experiments.
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