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Understanding is superior to mere practice
Union with the subject matter supersedes that
Dispassion towards all results is better still
And manifests peace immediately

Bhagavat Gita (12:12)
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Foreword

There is no design template more versatile than DNA. Nor are any designs more
consequential than those whose blueprints DNA encodes. This exquisite substance
has been shaped over billions of years by the creative combination of mutation and
selection. Yet in the very long history of this template, it is only during our times
that complex living organisms are beginning to understand and manipulate the
very template whose sequences define them. But how should we go about this
understanding? And how can we use this understanding to more effectively and
responsibly alter the DNA template?

The complexity and diversity of living organisms are daunting. Systems biology
aims at reverse engineering biological complexity for the purpose of understanding
their design principles. By measuring and characterizing interactions of key bio-
logical molecules in response to stimuli and perturbations, systems biology aims to
construct models that capture the complexity of endogenous biological networks.
Through the systematic understanding of such models, it is hoped that one will
achieve a holistic understanding of biological networks and the way they achieve
biological function.

At the same time, the versatility of DNA and the dramatic decrease in the cost
of DNA synthesis is making it possible to economically design and test new
complex genetic circuits. This has given impetus to a new field: Synthetic biology.
In our quest to understand biological complexity, we have examined endogenous
biological subsystems and ascribed functions and design principles to their com-
ponents. But a true understanding of these biological design principles is dem-
onstrated only when one can build such systems de novo and demonstrate their
function. When these circuits do not exhibit behavior consistent with our models,
further investigations will lead to a deeper understanding of the underlying biol-
ogy. Synthetic biology, therefore, serves as an important testbed for our under-
standing of biological principles. But the promise of synthetic biology extends
beyond scientific understanding. Whether it be the detection and interference with
the course of disease through the introduction of designer circuits, the cost-
effective synthesis of new bio-substances, or the development of improved food
products, synthetic biology provides a tremendous opportunity to alleviate suf-
fering and improve the quality of our lives.

ix



In both systems and synthetic biology, challenges abound. Quantitative mod-
eling, analysis, and design of biological networks must contend with difficulties
arising from the inescapable fact that at its most basic level, biology involves
complex dynamic interactions among nonlinear stochastic components, taking
place at multiple temporal and spatial timescales. The complexity of network
interconnections of such components and the crosstalk between them adds another
level of difficulty.

System theory has emerged as a field to deal with the challenges and com-
plexities emerging from the interconnection of engineered systems, many of which
are shared with biological systems. Notions from system theory such as nonlin-
earity, stochasticity, feedback, loading, modularity, robustness, identifiability, etc.,
are needed for a deeper understanding of biological complexity and for a more
reliable design of biological circuits. These concepts are now being utilized to help
us expand our understanding of endogenous biological circuits and to design novel
ones. The articles in this book make significant strides in this direction.

While system theory will undoubtedly aid our understanding and design of
biological systems, there is no doubt that the study of biological designs that have
evolved over billions of years will also shape the future of system theory. For
example, evolution and development are two central themes in biology that have
little analogy with engineered man-made systems. Through the study of these and
other biological themes, new systems notions and insights will undoubtedly
emerge, enriching system theory in the process. One need only look at the history
of feedback, a predominant concept in system theory, to imagine what is possible.
While its human discovery can be traced back a little over one millennium, it is
likely that feedback was invented by nature more than three billion years earlier.
Since then, it has been wildly successful as a biological design principle, as
evidenced by its prevalence at every level of biological organization. One wonders
if an early systematic understanding of this concept in its biological context could
have sped up the course of our own technological development.

As the physical sciences helped us understand the physical world around us
over the last few centuries, so will quantitative biological science help us under-
stand who we are, how we function, and how we can effectively and responsibly
synthesize this most consequential of substances, the DNA. I believe that system
theory will be central to this understanding.

Zürich, September 2013 Mustafa Khammash
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Preface

Underlying every living cell are billions of molecules interacting in a beautifully
concerted network of pathways such as metabolic, signalling, and regulatory
pathways. The complexity of such biological systems has intrigued scientists from
many disciplines and has given birth to the highly influential field of systems
biology wherein a wide array of mathematical techniques, such as flux balance
analysis, and technology platforms, such as next generation sequencing, is used to
understand, elucidate, and predict the functions of complex biological systems.
This field traces its roots to the general systems theory of Ludwig von Bertalanffy
and effectively started in 1952 with a mathematical model of the neuronal action
potential for which Alan Hodgkin and Andrew Huxley received the Nobel Prize in
1963. More recently, the field of synthetic biology, i.e., de novo engineering of
biological systems, has emerged. Here, the phrase ‘biological system’ can assume
a vast spectrum of meanings: DNA, protein, genome, cell, cell population, tissue,
organ, ecosystem, and so on. Scientists from various fields are focusing on how to
render this de novo engineering process more predictable, reliable, scalable,
affordable, and easy. Systems biology and synthetic biology are essentially two
facets of the same entity. As was the case with electronics research in the 1950s, a
large part of synthetic biology research, such as the BioFab project, has focused on
reusable macromolecular ‘‘parts’’ and their standardization so that composability
can be guaranteed. Recent breakthroughs in DNA synthesis and sequencing
combined with newly acquired means to synthesize plasmids and genomes have
enabled major advances in science and engineering and marked the true beginning
of the era of synthetic biology. Significant industrial investments are already
underway. For example, in 2009, Exxon Mobil set up a collaboration worth $600
million with Synthetic Genomics to develop next generation biofuels.

Recent advances in systems and synthetic biology clearly demonstrate the
benefits of a rigorous and systematic approach rooted in the principles of systems
and control theory—not only does it lead to exciting insights and discoveries but it
also reduces the inordinately lengthy trial-and-error process of wet-lab experi-
mentation, thereby facilitating significant savings in human and financial resour-
ces. So far, state-of-the-art systems-and-control-theory-inspired results in systems
and synthetic biology have been scattered across various books and journals from
various disciplines. Hence, we felt the need for an edited book that provides a
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panoramic view and illustrates the potential of such systematic and rigorous
mathematical methods in systems and synthetic biology.

Systems and control theory is a branch of engineering and applied sciences that
rigorously deals with the complexities and uncertainties of interconnected systems
with the objective of characterizing fundamental systemic properties such as sta-
bility, robustness, communication capacity, and other performance metrics. Sys-
tems and control theory also strives to offer concepts and methods that facilitate
the design of systems with rigorous guarantees on these fundamental properties.
For more than 100 years, the insights and techniques provided by systems and
control theory have enabled outstanding technological contributions in diverse
fields such as aerospace, telecommunication, storage, automotive, power systems,
and others. Notable examples include Lyapunov’s theorems, Bellman’s theory of
dynamic programming, Kalman’s filter, H? control theory, Nyquist-Shannon
sampling theorem, Pontryagin’s minimum principle, and Bode’s sensitivity inte-
gral. Can systems and control theory have, or evolve to have, a similar impact in
biology? The chapters in this book demonstrate that, indeed, systems and control
theoretic concepts and techniques can be useful in our quest to understand how
biological systems function and/or how they can be (re-)designed from the bottom
up to yield new biological systems that have rigorously characterized robustness
and performance properties.

Several barriers must be overcome to contribute significantly in this exciting
journey. One of these is the language barrier, e.g., what a systems theorist means
by the word sensitivity is different from what a biologist means by it. Another one
is the knowledge barrier as, traditionally, systems and control theorists and biol-
ogists are not well versed with each other’s knowledge base (although that sce-
nario is now fast changing for the better with the introduction of bioengineering
courses in systems and control theory at the undergraduate and graduate levels).
A third barrier is due to the sheer volume of big data: the European Bioinformatics
Institute in Hixton, UK, which is one of the world’s largest biological data
repositories, currently stores 20 petabytes of data and backups about genes, pro-
teins and small molecules, and this number is more than doubling every year.
Finally, a fourth barrier comes from the effort required to produce timely contri-
butions based on currently available models. As an example of this last barrier, the
systems and control theory community could have played a greater role than it did
in two of the most significant technological advances of the last 50 years: VLSI
and Internet. In retrospect, besides the fact that the systems and control theorists
caught on the Internet too late, by which time infrastructures based on TCP/IP
were already in place, the main difficulty posed by the Internet for the systems and
control theory community was a lack of good models of the underlying networked
system. This lack-of-good-models barrier is even more daunting in biology since
some of the currently available big data are not guaranteed to be reproducible. As
Prof. M. Vidyasagar illustrates and observes in the September 2012 issue of IEEE
Lifesciences, one of the major challenges to the application of systems and control
theory concepts in biology comes from ‘‘the fact that many biological experiments
are not fully repeatable, and thus the resulting data sets are not readily amenable to
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the application of methods that people like us [i.e., systems and control theorists]
take for granted.’’

The chapters in this book serve to propose ways to overcome such barriers and to
illustrate that biologists as well as systems and control theorists can make deep and
timely contributions in life sciences by collaborating with each other to solve
important questions such as how to devise experiments to obtain models of bio-
logical systems, how to obtain predictive models using information extracted from
experimental data, how to choose components for (re-)engineering biological
networks, how to adequately interconnect biological systems, and so on. Further-
more, and as Prof. Mustafa Khammash observes in his foreword, this research will
fundamentally enrich systems and control theory as well by forcing it to investigate
currently open questions that are specific to living biological systems, e.g., Why do
biological systems naturally evolve the way they do? Can the evolvability of bio-
logical systems be consciously exploited for (re-)design and optimization purposes?

This book is intended for (1) systems and control theorists interested in
molecular and cellular biology, and (2) biologists interested in rigorous modeling,
analysis, and control of biological systems. We believe that research at the
intersection of these disciplines will foster exciting discoveries and will stimulate
mutually beneficial developments in systems & control theory and systems &
synthetic biology.

The book consists of 12 chapters contributed by leading researchers from the
fields of systems and control theory, systems biology, synthetic biology, and
computer science. Chapters 1–6 focus on general mathematical concepts, methods,
and tools that are currently used to answer important questions in biology. Chapters
7–12 describe various biological network modeling approaches used to untangle
biological complexity and reverse-engineer biological networks from data.

• Part I—Mathematical Analysis: Chapters 1–6 present core mathematical
concepts and methods that can be used and further adapted for solving specific
problems in biology. As an example, consider the law of mass action. It has been
widely used in chemistry since Guldberg and Waage formulated it in 1864. But
does it have a deeper significance that is applicable outside chemistry? Like-
wise, reaction-diffusion systems feature in all pattern formation problems which,
in turn, are significant in neuronal networks and disease phenotypes. Under
which conditions is spatial uniformity guaranteed? The chapters in this part
provide rigorous mathematical foundations that can be used to resolve such
questions. A brief summary of each chapter is as follows.

– Chapter 1: The law of mass action is used in (bio-)chemistry to characterize
and predict the behavior of interacting (bio-)chemical species. Guldberg and
Waage formulated it in 1864 and it has since been built upon and widely used
in (bio-)chemistry and cellular biology. To make it available for consideration
by researchers in areas other than chemistry, Adleman et al. present it in a
new form, viz., in the context of event systems, after solidifying its mathe-
matical foundations.
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– Chapter 2: Molecular systems often have a mathematical representation with
uncertainties embedded in it. These uncertainties make predictions of the
system’s behavior harder. Nonetheless, it is still possible, in some scenarios,
to obtain certain qualitative behavioral results that are fairly parameter
independent and, instead, are a property of the system structure. Blanchini
and Franco use a parameter-free qualitative modeling framework and show
under which conditions behaviors such as oscillations and multi-stability are
only structure dependent.

– Chapter 3: Reaction-diffusion systems are of central importance in all
applications that feature pattern formations. Aminzare et al. present condi-
tions that guarantee the spatial uniformity of the solutions of reaction-diffu-
sion partial differential equations. They demonstrate that these conditions can
be verified using linear matrix inequalities and outline the applicability of
these results in analyzing biological oscillations and enzymatic signalling
pathways.

– Chapter 4: Biologists often rely on linearized models to examine stability and
on phase-plane analysis to understand the effect of parameter variations.
Although useful, phase-plane analysis cannot be used to address simultaneous
variations in more than two parameters. Kulkarni et al. show how multiplier
theory can be used to overcome these limitations and illustrate its use via a
case study of the celebrated Elowitz–Leibler oscillator.

– Chapter 5: Modularity possibly emerged at the cellular level through natural
selection and evolution. But do modules make sense in the context of met-
abolic networks? Goelzer and Fromion present a framework that allows a
modular decomposition of steady-state metabolic networks, and show how
this framework can also be used for a qualitative predictive modeling based
on omics datasets.

– Chapter 6: Biological network modeling often encounters the problem of how
to deal with hidden state dynamics. Santiello et al. address the problem of
predicting hidden state transitions from temporal sequential datasets (for
example, EEG, EMG, MER) by developing a Bayesian detection paradigm
that combines optimal control and Markov processes.

• Part II—Biological Network Modeling: Chapters 7–12 focus on certain
techniques that can be used to obtain predictive models of biological networks.
Here, the limitations of the perturbation methods used to generate the data, the
vast amount of available data (which does not necessarily correlate with the
amount of information they contain), hidden states, measurement noise, and
other factors combine to render this broad area of research one of the greatest
scientific and technological challenges of today. The chapters in this section
summarize some of these challenges and present architectures that constitute an
important step in arriving at a definitive solution. Somewhat similar, but less
complex system identification problems have been encountered and resolved in
systems theory and computer science over the last decades. Can these tech-
niques and the insight they provide be useful in biology? To answer this
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question, it is crucial to understand the advantages and limitations of each
particular technique. The set of chapters collated in this part aim to highlight the
current state of the art for biological network modeling and the advantages and
limitations of the presented approaches. A brief summary of each chapter is as
follows.

– Chapter 7: In metabolic networks, the metabolite dynamics evolve on much
shorter timescales than their catalytic enzymes. Kuntz et al. show how such
timescale separation can be exploited using Tikhonov’s theorem for singu-
larly perturbed systems to derive reduced models whose behaviors are
guaranteed to remain quantifiably close to those of the non-reduced models.
They illustrate this approach by applying it to an example of genetic feedback
control for branched metabolic pathways.

– Chapter 8: A central theme in complex network theory, popularized by the
study of small-world and scale-free networks at the turn of the last century, is
the study of biological networks using various metrics. In this chapter, Roy
discusses the utility of various network metrics as well as the need to go
beyond fundamental metrics, such as node degree, to better understand how
an organism’s phenotype is encoded by its network topology.

– Chapter 9: Even though most of the complex real-world systems exhibit
nonlinearities, linear models serve as a useful first order approximation.
Carignano et al. present a detailed exposition on how linear system identifi-
cation techniques can be used to obtain causal relationships between bio-
molecular entities.

– Chapter 10: Fisher and Piterman discuss how ideas from computer science
can be useful for model checking in systems biology. They present a meth-
odology to analyze biochemical networks, and specifically a method to test
for a faithful reproduction of biological interactions that are known a priori as
well as to identify interactions that are not known a priori.

– Chapter 11: Bussetto et al. discuss objective-specific strategies for designing
informative experiments in systems biology. Following a formal description
of the task of experimental design, they illustrate the use of Bayesian and
information-theoretic approaches to design experiments in systems biology.

– Chapter 12: Today, there is a critical need for new methods that rapidly
transform high-throughput genomics, transcriptomics, and metabolomics data
into predictive network models for metabolic engineering and synthetic
biology. In this chapter, Chandrasekaran describes the state of the art of these
methods and explains an approach for this purpose called Probabilistic
Regulation of Metabolism (PROM).

The burgeoning fields of systems biology and synthetic biology have thrown up
a very large number of interesting research problems. As the pre-eminent com-
puter scientist Donald Knuth put it, ‘‘biology easily has 500 years of exciting
problems to work on.’’ The chapters in this book address but a small fraction of
these interesting challenges. Nevertheless, we believe this book can serve as a
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good introduction on some of the currently open problems and on some of the
state-of-the-art concepts and techniques available to propose solutions to such
problems.

We are very grateful to all authors for their invaluable time and contributions
and to Prof. Mustafa Khammash (ETH Zürich) for his stimulating foreword. We
are also grateful to our institutions: University of Minnesota (Minneapolis, USA),
Imperial College (London, UK), and Indian Institute of Technology Madras
(Chennai, India) for their support and for providing a stimulating work environ-
ment. Finally, we thank and acknowledge the financial support of our respective
funding agencies: the National Science Foundation, the UK Engineering and
Physical Sciences Research Council, and the Ministry of Human Resource and
Development of the Government of India.

Minneapolis, MN, USA, September 2013 Vishwesh V. Kulkarni
London, UK Guy-Bart Stan
Chennai, India Karthik Raman
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Mathematical Analysis



Chapter 1
On the Mathematics of the Law of Mass Action

Leonard Adleman, Manoj Gopalkrishnan, Ming-Deh Huang, Pablo Moisset
and Dustin Reishus

Abstract In 1864, Waage and Guldberg formulated the “law of mass action.” Since
that time, chemists, chemical engineers, physicists and mathematicians have amassed
a great deal of knowledge on the topic. In our view, sufficient understanding has
been acquired to warrant a formal mathematical consolidation. A major goal of this
consolidation is to solidify the mathematical foundations of mass action chemistry—
to provide precise definitions, elucidate what can now be proved, and indicate what
is only conjectured. In addition, we believe that the law of mass action is of intrinsic
mathematical interest and should be made available in a form that might transcend
its application to chemistry alone. We present the law of mass action in the context
of a dynamical theory of sets of binomials over the complex numbers.

Keywords Law of mass action · Mass action kinetics · Event systems · Binomials ·
String theory · Differential equations · Flow-invariant affine subspaces · Natural
event systems · Lyapunov function
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4 L. Adleman et al.

1.1 Introduction

The study of mass action kinetics dates back at least to 1864, when Guldberg and
Waage [7] formulated the “law of mass action.” Since that time, a great deal of
knowledge on the topic has been amassed in the form of empirical facts, physi-
cal theories and mathematical theorems by chemists, chemical engineers, physi-
cists and mathematicians. In recent years, Horn and Jackson [10], and Feinberg
[5] have made significant mathematical contributions, and these have guided our
work.

It is our view that a critical mass of knowledge has been obtained, sufficient to
warrant a formal mathematical consolidation. A major goal of this consolidation is to
solidify the mathematical foundations of this aspect of chemistry—to provide precise
definitions, elucidate what can now be proved, and indicate what is only conjectured.
In addition, we believe that the law of mass action is of intrinsic mathematical interest
and should be made available in a form that might transcend their application to
chemistry alone.

To make the law of mass action available for consideration by researchers in areas
other than chemistry, we present mass action kinetics in a new form, which we call
event-systems. Our formulation begins with the observation that systems of chemical
reactions can be represented by sets of binomials. This gives us an opportunity to
extend the law of mass action to arbitrary sets of binomials. Once this extension
is made, there is no reason to restrict ourselves to binomials with real coefficients.
Hence, we are led to a dynamical theory of sets of binomials over the complex
numbers. Possible mathematical applications of this theory include:

1. Binomials are objects of intrinsic mathematical interest [4]. For example, they
occur in the study of toric varieties, and hence in string theory. With each set
of binomials over the complex numbers, we associate a corresponding system
of differential equations. Ideally, this dynamical viewpoint will help advance the
theory of binomials, and enhance our understanding of their associated algebraic
sets.

2. When we extend the study of the law of mass action to sets of binomials over the
complex numbers, we can consider reactions that involve complex rates, complex
concentrations, and move through complex time. Extending to the complex num-
bers gives us direct access to the powerful theorems of complex analysis. Though
this clearly transcends conventional chemistry, it may have applications in pure
mathematics.
For example, in ongoing work, we seek to exploit an analogy between number
theory and chemistry, where atoms are to molecules as primes are to numbers. We
associate a distinct species with each natural number. Then each multiplication
rule m × n = mn is encoded by a reaction where the species corresponding to
the number m reacts with the species corresponding to the number n to form the
species corresponding to the number mn. With an appropriate choice of specific
rates of reactions the resulting event-system has the property that the sum of equi-
librium concentrations of all species at complex temperature s is the value of the
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Riemann zeta function at s. We hope to pursue this approach to study questions
related to the distribution of the primes.

3. Systems of linear differential equations are well understood. In contrast, systems
of ordinary non-linear differential equations can be notoriously intractable. Differ-
ential equations that arise from event-systems lie somewhere in between—more
structured than arbitrary non-linear differential equations, but more challenging
than linear differential equations. As such, they appear to be an important new
class for consideration in the theory of ordinary differential equations.

In addition to their use in mathematics, event-systems provide a vehicle by which
ideas in algebraic geometry may be made readily available to the study of mass action
kinetics. As such, they may help solidify the foundations of this aspect of chemistry.
We expand on this in Sect. 1.7.

Part of our motivation for this research comes from the emerging field of nanotech-
nology. To quote from [1], “Self-assembly is the ubiquitous process by which objects
autonomously assemble into complexes. Nature provides many examples: Atoms
react to form molecules. Molecules react to form crystals and supramolecules. Cells
sometimes coalesce to form organisms. Even heavenly bodies self-assemble into
astronomical systems. It has been suggested that self-assembly will ultimately be-
come an important technology, enabling the fabrication of great quantities of small
objects such as computer circuits… Despite its importance, self-assembly is poorly
understood.” Hopefully, the theory of event-systems is a step towards understanding
this important process.

The chapter is organized as follows:
In Sect. 1.2, we present the basic mathematical notations and definitions for the

study of event-systems.
In Sect. 1.3, and all of the sections that follow, we restrict to finite event-

systems. Theorem 3 demonstrates that the stoichiometric coefficients give rise to
flow-invariant affine subspaces—“conservation classes.”

In Sect. 1.4, and all of the sections that follow, we restrict to “physical event-
systems.” Though we have defined event-systems over the complex numbers, in this
chapter we focus on consolidating results from the mass action kinetics of reversible
chemical reactions. Physical event-systems capture the idea that the specific rates of
chemical reactions are always positive real numbers. The main result of this section
is Theorem 4, which demonstrates that for physical event-systems, if initially all
concentrations are non-negative, then they stay non-negative for all future real times
so long as the solution exists. Further, the concentration of every species whose initial
concentration is positive, stays positive.

In Sect. 1.5, and all the sections that follow, we restrict to “natural event-systems.”
Natural event-systems capture the concept of detailed balance from chemistry. In
Theorem 5, we give four equivalent characterizations of natural event-systems; in
particular, we show that natural event-systems are precisely those physical event-
systems that have no “energy cycles.” In Theorem 7, following Horn and Jack-
son [10], we show that natural event-systems have associated Lyapunov functions.
This theorem is reminiscent of the second law of thermodynamics. The main result
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of this section is Theorem 10, which establishes that for natural event-systems, given
non-negative initial conditions:

1. Solutions exist for all forward real times.
2. Solutions are uniformly bounded in forward real time.
3. All positive equilibria satisfy detailed balance.
4. Every conservation class containing a positive point also contains exactly one

positive equilibrium point.
5. Every positive equilibrium point is asymptotically stable relative to its conserva-

tion class.

For systems of reversible reactions that satisfy detailed balance, must concentrations
approach equilibrium? We believe this to be the case, but are unable to prove it. In
1972, an incorrect proof was offered [10, Lemma 4C]. This proof was retracted in
1974 [9]. To the best of our knowledge, this question in mass action kinetics remains
unresolved [14, p. 10]. We pose it formally in Open Problem 1, and consider it the
fundamental open question in the field.

In Sect. 1.6, we introduce the notion of “atomic event-systems.” As the name
suggests, this is an attempt to capture mathematically the atomic hypothesis that all
species are composed of atoms. The main theorem of this section is Theorem 11,
which establishes that for natural, atomic event-systems, solutions with positive ini-
tial conditions asymptotically approach positive equilibria. Hence, Open Problem 1
is resolved in the affirmative for this restricted class of event-systems.

1.2 Basic Definitions and Notation

Before formally defining event-systems, we give a very brief, informal introduction
to chemical reactions. All reactions are assumed to take place at constant temperature
in a well-stirred vessel of constant volume.

Consider
A + 2B

σ
�
τ

C.

This chemical equation concerns the reacting species A, B and C . In the forward
direction, one mole of A combines with two moles of B to form one mole of C . The
symbol “σ” represents a real number greater than zero. It denotes, in appropriate
units, the rate of the forward reaction when the reaction vessel contains one mole
of A and one mole of B. It is called the specific rate of the forward reaction. In the
reverse direction, one mole of C decomposes to form one mole of A and two moles
of B. The symbol “τ” represents the specific rate of the reverse reaction. Chemists
typically determine specific rates empirically. Though irreversible reactions (those
with σ = 0 or τ = 0) have been studied, they will not be considered in this chapter.

Inspired by the law of mass action, we introduce a multiplicative notation for
chemical reactions, as an alternative to the chemical equation notation. In our
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notation, each chemical reaction is represented by a binomial. Consider the follow-
ing examples. On the left are chemical equations. On the right are the corresponding
binomials.

X2
1/2
�
1/3

X1 → 1

3
X2 − 1

2
X1

X3
1/2
�
1/3

X1 + X2 → 1

3
X3 − 1

2
X1 X2

2X1 + 3X6
σ
�
τ

3X1 + 2X2 → σX2
1 X3

6 − τ X3
1 X2

2

Our notation leads us to view every set of binomials over an arbitrary field F as
a formal system of reversible reactions with specific rates in F\{0}. For our present
purposes, we will restrict our attention to binomials over the complex numbers. With
this in mind, we now define our notion of event-system.

Notation 1 Let C∞ = ⋃∞
n=1 C[X1, X2, . . . , Xn]. A monic monomial of C∞ is a

product of the form
⎪∞

i=1 Xei
i where the ei are non-negative integers all but finitely

many of which are zero. We will write M∞ to denote the set of all monic monomials
of C∞. More generally, if S ⊂ {X1, X2, . . .}, we let C[S] be the ring of polynomials
with indeterminants in S and we let MS = M∞ ∩ C[S] (i.e. the monic monomials
in C[S]).

If n ∈ Z>0, p ∈ C[X1, X2, . . . , Xn], and a = ⇐a1, a2, . . . , an〉 ∈ C
n then, as is

usual, we will let p(a) denote the value of p on argument a.
Given two monic monomials M = ⎪∞

i=1 Xei
i and N = ⎪∞

i=1 X fi
i from M∞, we

will say M precedes N (and we will write M ≺ N) iff M 
= N and for the least i
such that ei 
= fi , ei < fi .

It follows that 1 is a monic monomial of C∞ and that each element of C∞ is
a C-linear combination of finitely many monic monomials. We will be particularly
concerned with the set of binomials B∞ = {σM + τ N | σ, τ ∈ C\{0} and M, N
are distinct monic monomials of C∞}.
Definition 2 (Event-system) An event-system E is a nonempty subset of B∞.

If E is an event-system, its elements will be called “E -events” or just “events.”
Note that if σM + τ N is an event then M 
= N .

Our map from chemical equations to events is as follows. A chemical equation

∑

i

ai Xi
σ
�
τ

∑

j

b j X j goes to:

1. σ
⎜

i

Xai
i − τ

⎜

j

X
b j
j if

⎜

i

Xai
i ≺

⎜

j

X
b j
j

or 2. τ
⎜

j

X
b j
j − σ

⎜

i

Xai
i if

⎜

j

X
b j
j ≺

⎜

i

Xai
i
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For example:

X1
1/3
�
1/2

X2 → 1

3
X2 − 1

2
X1 (because X2 ≺ X1)

X2
1/2
�
1/3

X1 → 1

3
X2 − 1

2
X1

X1
−1/3
�−1/2

X2 → −1

3
X2 + 1

2
X1

X1
1/3
�−1/2

X2 → 1

3
X2 + 1

2
X1

X1 + X2
1/3
�
1/2

X3 → 1

3
X3 − 1

2
X1 X2

3X1 + 2X2
σ
�
τ

2X1 + 3X6 → τ X2
1 X3

6 − σX3
1 X2

2

Note that our order of monomials is arbitrary. Any linear order would do. The
order is necessary to achieve a one-to-one map from chemical reactions to events.

Our definition of event-systems allows for an infinite number of reactions, and
an infinite number of reacting species. Indeed, polymerization reactions are com-
monplace in nature and, in principle, they are capable of creating arbitrarily long
polymers (for example, DNA molecules).

The next definition introduces the notion of systems of reactions for which the
number of reacting species is finite.

Definition 3 (Finite-dimensional event-system) An event-system E is finite-
dimensional iff there exists an n ∈ Z>0 such that E ⊂ C[X1, X2, . . . , Xn].
Definition 4 (Dimension of event-systems) Let E be a finite-dimensional event-
system. Then the least n such that E ⊂ C[X1, X2, . . . , Xn] is the dimension of
E .

Definition 5 (Physical event, Physical event-system) A binomial e ∈ B∞ is a phys-
ical event iff there exist σ, τ ∈ R>0 and M , N ∈ M∞ such that M ≺ N and
e = σM − τ N . An event-system E is physical iff each e ∈ E is physical.

Chemical reaction systems typically have positive real forward and backward
rates. Physical event-systems generalize this notion.

Definition 6 Let n ∈ Z>0. Let α = ⇐α1,α2, . . . ,αn〉 ∈ C
n .

1. α is a non-negative point iff for i = 1, 2, . . . , n, αi ∈ R≥0.
2. α is a positive point iff for i = 1, 2, . . . , n, αi ∈ R>0.
3. α is a z-point iff there exists an i such that αi = 0.

In chemistry, a system is said to have achieved detailed balance when it is at a point
where the net flux of each reaction is zero. Given the corresponding event-system,
points of detailed balance corresponds to points where each event evaluates to zero,
and vice versa. We call such points “strong equilibrium points.”
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Definition 7 (Strong equilibrium point) Let E be a finite-dimensional event-system
of dimension n. α ∈ C

n is a strong E -equilibrium point iff for all e ∈ E , e(α) = 0.

In the language of algebraic geometry, when E is a finite-dimensional event-
system, its corresponding algebraic set is precisely the set of its strong E -equilibrium
points.

It is widely believed that all “real” chemical reactions achieve detailed balance.
We now introduce natural event-systems, a restriction of finite-dimensional, physical
event-systems to those that can achieve detailed balance.

Definition 8 (Natural event-system) A finite-dimensional event-system E is natural
iff it is physical and there exists a positive strong E -equilibrium point.

Our next goal is to introduce atomic event-systems: finite-dimensional event-
systems obeying the atomic hypothesis that all species are composed of atoms.
Towards this goal, we will define a graph for each finite-dimensional event-system.
The vertices of this graph are the monomials from M∞ and the edges are determined
by the events. If a weight r is assigned to an edge, then r represents the energy
released when a reaction corresponding to that edge takes place. For the purpose of
defining atomic event-systems, the reader may ignore the weights; they are included
here for use elsewhere in the chapter (Definition 24).

Though graphs corresponding to systems of chemical reactions have been defined
elsewhere (e.g. [5, 14, p. 10]), it is important to note that these definitions do not
coincide with ours.

Definition 9 (Event-graph) Let E be a finite-dimensional event-system. The event-
graph GE = ⇐V, E, w〉 is a weighted, directed multigraph such that:

1. V = M∞
2. For all M1, M2 ∈ M∞, for all r ∈ C,

⇐M1, M2〉 ∈ E and r ∈ w (⇐M1, M2〉) iff
there exist e ∈ E and σ, τ ∈ C and M, N , T ∈ M∞ such that e = σM + τ N
and M ≺ N and either
(a) M1 = T M and M2 = T N and r = ln

(−σ
τ

)
or

(b) M1 = T N and M2 = T M and r = − ln
(−σ

τ

)

Notice that two distinct weights r1 and r2 could be assigned to a single edge. For
example, let E = {X1 X2 − 2X2

1, X2 − 5X1}. Consider the edge in GE from the
monomial X2

1 to the monomial X1 X2. Weight ln 2 is assigned to this edge due to the
event X1 X2 − 2X2

1, with T = 1. Weight ln 5 is also assigned to this edge due to the
event X2 − 5X1, with T = X1.

Definition 10 Let E be a finite-dimensional event-system. For all M ∈ M∞, the
connected component of M , denoted CE (M), is the set of all N ∈ M∞ such that
there is a path in GE from M to N .

It follows from the definition of “path” that every monomial belongs to its
connected component.
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Definition 11 (Atomic event-system) Let E be a finite-dimensional event-system of
dimension n. Let S = {X1, X2, . . . , Xn}. Let AE = {

Xi ∈ S | CE (Xi ) = {Xi }
}
. E

is atomic iff for all M ∈ MS , C(M) contains a unique monomial in MAE .

If E is atomic then the members of AE will be called the atoms of E . It follows
from the definition that in atomic event-systems, atoms are not decomposable, non-
atoms are uniquely decomposable into atoms and events preserve atoms.

Since the set M{X1,X2...,Xn} is infinite, it is not possible to decide whether E
is atomic by exhaustively checking the connected component of every monomial
in M{X1,X2...,Xn}. The following is sometimes helpful in deciding whether a finite-
dimensional event-system is atomic (proof not provided).

Let E be an event-system of dimension n with no event of the form σ + τ N . Let
BE = {Xi | For all σ, τ ∈ C\{0} and N ∈ M∞: σXi +τ N /∈ E }. Then E is atomic iff
there exist M1 ∈ CE (X1)∩MBE , M2 ∈ CE (X2)∩MBE , . . . , Mn ∈ CE (Xn)∩MBE

such that:

For all σ

n⎜

i=1

Xai
i − τ

n⎜

i=1

Xbi
i ∈ E ,

n⎜

i=1

Mai
i =

n⎜

i=1

Mbi
i . (1.1)

We have shown (proof not provided) that if E and BE are as above, and there exist
M1 ∈ CE (X1)∩MBE , M2 ∈ CE (X2)∩MBE , . . . , Mn ∈ CE (Xn)∩MBE and there

exists σ
⎪n

i=1 Xai
i −τ

⎪n
i=1 Xbi

i ∈ E such that
⎪n

i=1 Mai
i 
= ⎪n

i=1 Mbi
i , then E is not

atomic. Hence, to check whether an event-system with no event of the form σ + τ N
is atomic, it suffices to examine an arbitrary choice of M1 ∈ CE (X1) ∩ MBE , M2 ∈
CE (X2) ∩ MBE , . . . , Mn ∈ CE (Xn) ∩ MBE , if one exists, and check whether (1.1)
above holds.

Example 1 Let E = {X2
2 − X2

1}. Then BE = {X1, X2}. Let M1 = X1 and M2 = X2.
Trivially, M1, M2 ∈ MBE , M1 ∈ CE (X1) and M2 ∈ CE (X2). Consider the event
X2

2 − X2
1. Since M2

2 = X2
2 
= X2

1 = M2
1 , E is not atomic. Note that the event X2

2 − X2
1

does not preserve atoms.

Example 2 Let E = {X2
4 − X2, X2

5 − X3, X2 X3 − X1}. Then BE = {X4, X5}. Let
M1 = X2

4 X2
5, M2 = X2

4, M3 = X2
5, M4 = X4, M5 = X5. Clearly these are all in

MBE . X2
5 − X3 ∈ E implies M3 ∈ CE (X3). X2

4 − X2 ∈ E implies M2 ∈ CE (X2).
Since (X1, X2 X3, X2 X2

5, X2
4 X2

5) is a path in GE , we have M1 ∈ CE (X1). For
the event X2

4 − X2, we have M2
4 = X2

4 = M2. For the event X2
5 − X3, we have

M2
5 = X2

5 = M3. For the event X2 X3 − X1, we have M2 M3 = X2
4 X2

5 = M1.
Therefore, E is atomic.

Note that it is possible to have an atomic event-system where AE is the empty
set. For example:

Example 3 Let E = {1 − X1}. In this case, S = {X1} and MS is the set
{1, X1, X2

1, X3
1, . . . }. It is clear that MS forms a single connected component C

in GE . Hence, X1 is not in AE , and AE = ∅. 1 is the only monomial in MAE . Since
1 is in C , E is atomic.
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1.3 Finite Event-Systems

The study of infinite event-systems is embryonic and appears to be quite challenging.
In the rest of this chapter only finite event-systems (i.e., where the set E is finite)
will be considered. It is clear that all finite event-systems are finite-dimensional.

Definition 12 (Stoichiometric matrix) Let E = {e1, e2, . . . , em} be an event-system
of dimension n. Let i ≤ n and j ≤ m be positive integers. Let e j = σM + τ N ,
where M ≺ N . Then γ j,i is the number of times Xi divides N minus the number
of times Xi divides M . The stoichiometric matrix ΓE of E is the m × n matrix of
integers ΓE = (γ j,i )m×n .

Example 4 Let e1 = 0.5X5
2 − 500X1 X3

2 X7. Let E = {e1}. Then γ1,1 = 1,
γ1,2 = −2, γ1,7 = 1 and for all other i , γ1,i = 0, hence ΓE = (

1 −2 0 0 0 0 1
)
.

Definition 13 Let E = {e1, . . . , em} be a finite event-system of dimension n. Then:

1. PE is the column vector ⇐P1, P2, . . . , Pn〉T = Γ T
E ⇐e1, e2, . . . , em〉T .

2. Let α ∈ C
n . Then α is an E -equilibrium point iff for i = 1, 2, . . . , n: Pi (α) = 0.

The Pi ’s arise from the Law of Mass Action in chemistry. For a system of chemical
reactions, the Pi ’s are the right-hand sides of the differential equations that describe
the concentration kinetics. Definition 13 extends the Law of Mass Action to arbitrary
event-systems, and hence, arbitrary sets of binomials.

It follows from the definition that for finite event-systems, all strong equilibrium
points are equilibrium points, but the converse need not be true.

Example 5 Let e1 = X2 − X1 and e2 = X2 − 2X1. Let E = {e1, e2}. Then

ΓE =
(

1 −1
1 −1

)

and pE =
(

P1
P2

)

=
(

2X2 − 3X1
3X1 − 2X2

)

. Therefore (2, 3) is an E -

equilibrium point. Since e1(2, 3) = 1, (2, 3) is not a strong E -equilibrium point.

Example 6 Let e1 = 6 − X1 X2 and e2 = 2X2
2 − 9X1. Let E = {e1, e2}. Then

ΓE =
(

1 1
1 −2

)

and pE =
(

P1
P2

)

=
(

6 − X1 X2 + 2X2
2 − 9X1

6 − X1 X2 − 4X2
2 + 18X1

)

. The point

(2, 3) is a strong equilibrium point because e1(2, 3) = 0 and e2(2, 3) = 0. Since
P1(2, 3) = e1(2, 3) + e2(2, 3) = 0 and P2(2, 3) = e1(2, 3) − 2e2(2, 3) = 0, the
point (2, 3) is also an equilibrium point.

The event-system in Example 5 is not natural, whereas the one in Example 6 is.
In Theorem 8, it is shown that if E is a finite, natural event-system then all positive
E -equilibrium points are strong E -equilibrium points.

Definition 14 (Event-process) Let E be a finite event-system of dimension n. Let
⇐P1, P2, . . . , Pn〉T = pE . Let Ω ⊆ C be a non-empty simply-connected open set.
Let f = ⇐ f1, f2, . . . , fn〉 where for i = 1, 2, . . . , n, fi : C → C is defined on Ω .
Then f is an E -process on Ω iff for i = 1, 2, . . . , n:
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1. f ∃
i exists on Ω .

2. f ∃
i = Pi ◦ f on Ω .

Note that E -processes evolve through complex time, and hence generalize the
idea of the time-evolution of concentrations in a system of chemical reactions.

Definition 14 immediately implies that if f = ⇐ f1, f2, . . . , fn〉 is an E -process
on Ω , then for i = 1, 2, . . . , n, fi is holomorphic on Ω . In particular, for each i and
all α ∈ Ω , there is a power series around α that agrees with fi on a disk of non-zero
radius.

Systems of chemical reactions sometimes obey certain conservation laws. For
example, they may conserve mass, or the total number of each kind of atom. Event-
systems also sometimes obey conservation laws.

Definition 15 (Conservation law, Linear conservation law) Let E be a finite event-
system of dimension n. A function g: Cn → C is a conservation law of E iff g is
holomorphic on C

n , g(⇐0, 0, . . . , 0〉) = 0 and ∇g · PE is identically zero on C
n . If

g is a conservation law of E and g is linear (i.e. ∀c ∈ C,∀α,β ∈ C
n, g(cα + β) =

cg(α) + g(β)), then g is a linear conservation law of E .

The event-system described in Example 5 has a linear conservation law g(X1, X2)

= X1 + X2. The next theorem shows that conservation laws of E are dynamical
invariants of E -processes.

Theorem 1 For all finite event-systems E , for all conservation laws g of E , for all
simply-connected open sets Ω ⊆ C, for all E -processes f on Ω , there exists k ∈ C

such that g ◦ f − k is identically zero on Ω .

Proof Let n be the dimension of E . Let ⇐P1, P2, . . . , Pn〉T = pE . For all t ∈ Ω , by
Definition 14, for i = 1, 2, . . . , n, fi (t) and f ∃

i (t) are defined. Further, by Defini-
tion 15, g is holomorphic on C

n . Hence, g◦ f is holomorphic on Ω . Therefore, by the
chain rule, (g ◦ f )∃(t) = (∇g| f (t)) · ⇐ f ∃

1(t), f ∃
2(t), . . . , f ∃

n(t)〉. By Definition 14, for
all t ∈ Ω , ⇐ f ∃

1(t), f ∃
2(t), . . . , f ∃

n(t)〉 = ⇐P1( f (t)), P2( f (t)), . . . , Pn( f (t))〉. From
these, it follows that (g ◦ f )∃(t) = (∇g · PE )( f (t)). But by Definition 15, ∇g · PE
is identically zero. Hence, for all t ∈ Ω , (g ◦ f )∃(t) = 0. In addition, Ω is a simply-
connected open set. Therefore, by [2, Theorem 11], there exists k ∈ C such that
g ◦ f − k is identically zero on Ω .

The next theorem shows a way to derive linear conservation laws of an event-
system from its stoichiometric matrix.

Theorem 2 Let E be a finite event-system of dimension n. For all V ∈ ker ΓE ,
V · ⇐X1, . . . , Xn〉 is a linear conservation law of E .

Proof Let Γ = ΓE , then ker Γ is orthogonal to the image of Γ T . By the definition
of P = PE , for all w ∈ C

n , P(w) lies in the image of Γ T . Hence, for all V ∈ ker Γ ,
for all w ∈ C

n , V · P(w) = 0. But V is the gradient of V · ⇐X1, . . . , Xn〉. It now
follows from Definition 15 that V · ⇐X1, . . . , Xn〉 is a linear conservation law of E .



1 On the Mathematics of the Law of Mass Action 13

Definition 16 (Primitive conservation law) Let E be a finite event-system of
dimension n. For all V ∈ ker ΓE , the linear conservation law V · ⇐X1, X2, . . . , Xn〉
is a primitive conservation law.

We can show that in physical event-systems all linear conservation laws are prim-
itive and, in natural event-systems, all conservation laws arise from the primitive
ones.

Definition 17 (Conservation class, Positive conservation class) Let E be a finite
event-system of dimension n. A coset of (ker ΓE )⊥ is a conservation class of E .
If a conservation class of E contains a positive point, then the class is a positive
conservation class of E .

Equivalently, α,β ∈ C
n are in the same conservation class if and only if they

agree on all primitive conservation laws. Note that if H is a conservation class of E
then it is closed in C

n . The following theorem shows that the name “conservation
class” is appropriate.

Theorem 3 Let E be a finite event-system. Let Ω ⊂ C be a simply-connected open
set containing 0. Let f be an E -process on Ω . Let H be a conservation class of E
containing f (0). Then for all t ∈ Ω , f (t) ∈ H.

Proof LetE , Ω , f , H and t be as in the statement of this theorem. For all V ∈ ker ΓE ,
the primitive conservation law V · ⇐X1, X2, . . . , Xn〉 is a dynamical invariant of f ,
from Theorem 2 and Theorem 1. Hence,

V · ⇐ f1(0), f2(0), . . . , fn(0)〉 = V · ⇐ f1(t), f2(t), . . . , fn(t)〉

That is,
V · ⇐ f1(0) − f1(t), f2(0) − f2(t), . . . , fn(0) − fn(t)〉 = 0

Hence, f (t) − f (0) is in (ker ΓE )⊥. By Definition 17, f (t) ∈ H .

1.4 Finite Physical Event-Systems

In this section, we investigate finite, physical event-systems—a generalization of
systems of chemical reactions.

It is widely believed that systems of chemical reactions that begin with posi-
tive (respectively, non-negative) concentrations will have positive (respectively, non-
negative) concentrations at all future times. This property has been addressed math-
ematically in numerous papers [6, p. 6], [5, Remark 3.4], [3, Theorem 3.2], [14,
Lemma 2.1]. The notion of “system of chemical reactions” varies between papers.
Several papers have provided no proof, incomplete proofs or inadequate proofs that
this property holds for their systems. Sontag [14, Lemma 2.1] provides a lovely
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proof of this property for the systems he considers—zero deficiency reaction net-
works with one linkage class. We shall prove in Theorem 4 that the property holds
for finite, physical event-systems. Finite, physical event-systems have a large inter-
section with the systems considered by Sontag, but each includes a large class of
systems that the other does not. We remark that our methods of proof differ from
Sontag’s, but it is possible that Sontag’s proof might be adaptable to our setting.

Lemma 4 and Lemma 10 are proved here because they apply to finite, physical
event-systems. However, they are only invoked in subsequent sections. Lemma 4
relates E -processes to solutions of ordinary differential equations over the reals.
Lemma 10 establishes that if an E -process defined on the positive reals starts at
a real, non-negative point, then its ω-limit set is invariant and contains only real,
non-negative points.

The next lemma shows that if two E -processes evaluate to the same real point
on a real argument then they must agree and be real-valued on an open interval
containing that argument. The proof exploits the fact that E -processes are analytic,
by considering their power series expansions.

Lemma 1 Let E be a finite, physical event-system of dimension n, let Ω,Ω ∃ ⊆ C

be open and simply-connected, let f = ⇐ f1, f2, . . . , fn〉 be an E -process on Ω and
let g = ⇐g1, g2, . . . , gn〉 be an E -process on Ω ∃. If t0 ∈ Ω ∩Ω ∃ ∩ R and f (t0) ∈ R

n

and f (t0) = g(t0), then there exists an open interval I ⊆ R such that t0 ∈ I and for
all t ∈ I :

1. f (t) = g(t).
2. For i = 1, 2, . . . , n: if

∑∞
j=0 c j (z − t0) j is the Taylor series expansion of fi at

t0 then for all j ∈ Z≥0, c j ∈ R.
3. f (t) ∈ R

n.

Proof Let k ∈ Z≥0. By Definition 14, f and g are vectors of functions an-
alytic at t0. For i = 1, 2, . . . , n, let f (k)

i be the kth derivative of fi and let

f (k) = ⇐ f (k)
1 , f (k)

2 , . . . , f (k)
n 〉. Define g(k)

i and g(k) similarly. To prove 1, it is
enough to show that for i = 1, 2, . . . , n, fi and gi have the same Taylor series
around t0. Let V0 = ⇐X1, X2, . . . , Xn〉. Let Vk = Jac(Vk−1)PE (recall that if
H = ⇐h1(X1, X2, . . . , Xm), h2(X1, X2, . . . , Xm), . . . , hn(X1, X2, . . . , Xm)〉 is a
vector of functions in m variables then Jac(H) is the n × m matrix (

∂hi
∂x j

), where
i = 1, 2, . . . , n and j = 1, 2, . . . , m). Let ⇐Vk,1, Vk,2, . . . , Vk,n〉 = Vk . We claim
that f (k) = Vk ◦ f on Ω and g(k) = Vk ◦ g on Ω ∃ and for i = 1, 2, . . . , n,
Vk,i ∈ R[X1, X2, . . . , Xn]. We prove the claim by induction on k. If k = 0, the
proof is immediate. If k ≥ 1, on Ω:

f (k) = ( f (k−1))∃

= (Vk−1 ◦ f )∃ (Inductive hypothesis)

= (Jac(Vk−1) ◦ f ) f ∃ (Chain-rule of derivation)

= (Jac(Vk−1) ◦ f )(PE ◦ f ) ( f is an E -process)
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= (Jac(Vk−1)PE ) ◦ f

= Vk ◦ f

By a similar argument, we conclude that g(k) = Vk ◦ g on Ω ∃. By the induc-
tive hypothesis, Vk−1 is a vector of polynomials in R[X1, X2, . . . , Xn]. It follows
that Jac(Vk−1) is an n × n matrix of polynomials in R[X1, X2, . . . , Xn]. Since
E is physical, PE is a vector of polynomials in R[X1, X2, . . . , Xn]. Therefore,
Vk = Jac(Vk−1)PE is a vector of polynomials in R[X1, X2, . . . , Xn]. This estab-
lishes the claim.

We have proved that f (k) = Vk ◦ f on Ω and g(k) = Vk ◦ g on Ω ∃. Since, by
assumption, t0 ∈ Ω ∩ Ω ∃ and f (t0) = g(t0), it follows that f (k)(t0) = g(k)(t0).
Therefore, for i = 1, 2, . . . , n, fi and gi have the same Taylor series around t0.
For i = 1, 2, . . . , n, let ai be the radius of convergence of the Taylor series of fi

around t0. Let r f = mini∈{1,2,...,n} ai . Define rg similarly. Let D ⊆ Ω ∩ Ω ∃ be some
non-empty open disk centered at t0 with radius r ≤ min(r f , rg). Since Ω and Ω ∃
are open sets and t0 ∈ Ω ∩ Ω ∃, such a disk must exist. Letting I = (t0 − r, t0 + r)

completes the proof of 1.
By assumption, f (t0) ∈ R

n , and we have proved that f (k) = Vk ◦ f and Vk

is a vector of polynomials in R[X1, X2, . . . , Xn]. It follows that f (k)(t0) ∈ R
n .

Therefore, for i = 1, 2, . . . , n, all coefficients in the Taylor series of fi around t0 are
real. It follows that fi is real valued on I , completing the proof of 3.

The next lemma is a kind of uniqueness result. It shows that if two E -processes
evaluate to the same real point at 0 then they must agree and be real-valued on
every open interval containing 0 where both are defined. The proof uses continuity
to extend the result of Lemma 1.

Lemma 2 Let E be a finite, physical event-system of dimension n, let Ω,Ω ∃ ⊆ C

be open and simply-connected, let f = ⇐ f1, f2, . . . , fn〉 be an E -process on Ω and
let g = ⇐g1, g2, . . . , gn〉 be an E -process on Ω ∃. If 0 ∈ Ω ∩ Ω ∃ and f (0) ∈ R

n and
f (0) = g(0), then for all open intervals I ⊆ Ω ∩ Ω ∃ ∩ R such that 0 ∈ I , for all
t ∈ I , f (t) = g(t) and f (t) ∈ R

n.

Proof Assume there exists an open interval I ⊆ Ω ∩ Ω ∃ ∩ R such that 0 ∈ I
and B = {t ∈ I | f (t) 
= g(t) or f (t) 
∈ R

n} 
= ∅. Let BP = B ∩ R≥0 and let
BN = B ∩ R<0. Note that B = BP ∪ BN , hence, BP 
= ∅ or BN 
= ∅. Suppose
BP 
= ∅ and let tP = inf(BP ). By Lemma 1, there exists an ε ∈ R>0 such that
(−ε, ε) ∩ B = ∅. Hence, tP ≥ ε > 0. By definition of tP , for all t ∈ [0, tP ),
f (t) = g(t) and f (t) ∈ R

n . Since f and g are analytic at tP , they are continuous at
tP . Therefore, f (tP ) = g(tP) and f (tP ) ∈ R

n . By Lemma 1, there exists an ε∃ ∈ R>0
such that for all t ∈ (tP − ε∃, tP + ε∃), f (t) = g(t) and f (t) ∈ R

n , contradicting
tP being the infimum of BP . Therefore, BP = ∅. Using a similar agument, we can
prove that BN = ∅. Therefore, B = ∅, and for all t ∈ I , f (tP ) = g(tP) and
f (tP ) ∈ R

n .

The next lemma is a convenient technical result that lets us ignore the choice of
origin for the time variable.
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Lemma 3 Let E be a finite, physical event-system of dimension n, let Ω, Ω̃ ⊆ C

be open and simply connected, let f = ⇐ f1, f2, . . . , fn〉 be an E -process on Ω and
let f̃ = ⇐ f̃1, f̃2, . . . , f̃n〉 be an E -process on Ω̃ . Let u ∈ Ω and ũ ∈ Ω̃ and α ∈ R

n.
Let I ⊆ R be an open interval. If

1. f (u) = f̃ (ũ) = α and
2. 0 ∈ I and
3. for all s ∈ I , u + s ∈ Ω and ũ + s ∈ Ω̃

then for all t ∈ I , f (u + t) = f̃ (ũ + t).

Proof Suppose f (u) = f̃ (ũ) = α ∈ R
n . Let Ωu = {z ∈ C | u + z ∈ Ω} and Ω̃ũ =

{z ∈ C | ũ + z ∈ Ω̃}. Let h = ⇐h1, h2, . . . , hn〉 where for i = 1, 2, . . . , n, hi : Ωu →
C is such that for all z ∈ Ωu , hi (z) = fi (u + z) and let h̃ = ⇐h̃1, h̃2, . . . , h̃n〉 where
for i = 1, 2, . . . , n, h̃i : Ω̃ũ → C is such that for all z ∈ Ω̃ũ , h̃i (z) = f̃i (ũ + z).
Since u + z is differentiable on Ωu and for i = 1, 2, . . . , n, fi is differentiable
on Ω , it follows that for i = 1, 2, . . . , n, hi is differentiable on Ωu . Further, for
i = 1, 2, . . . , n, for all z ∈ Ωu , h∃

i (z) = f ∃
i (u + z) = pE ( fi (u + z)) = pE (hi (z)),

so h is anE -process on Ωu . Similarly, h̃ is anE -process on Ω̃ũ . Note that 0 ∈ Ωu∩Ω̃ũ
because u ∈ Ω and ũ ∈ Ω̃ and that h(0) = h̃(0) = α because f (u) = f̃ (ũ) = α.
By Lemma 2, for all open intervals I ⊆ Ωu ∩ Ω̃ũ ∩ R such that 0 ∈ I , for all t ∈ I ,
h(t) = h̃(t), so f (u + t) = f̃ (ũ + t).

Because event-systems are defined over the complex numbers, we have access
to results from complex analysis. However, there is a considerable body of results
regarding ordinary differential equations over the reals. Definition 18 and Lemma 4
establish a relationship between E -processes and solutions to systems of ordinary
differential equations over the reals.

Definition 18 (Real event-process) Let E be a finite, physical event-system of
dimension n. Let ⇐P1, P2, . . . , Pn〉T = pE . Let I ⊆ R be an interval. Let
h = ⇐h1, h2, . . . , hn〉 where for i = 1, 2, . . . , n, hi : R → R is defined on I . Then h
is a real-E -process on I iff for i = 1, 2, . . . , n:

1. h∃
i exists on I .

2. h∃
i = Pi ◦ h on I .

Lemma 4 (All real-E -processes are restrictions of E -processes) Let E be a fi-
nite, physical event-system of dimension n. Let I ⊆ R be an interval. Let h =
⇐h1, h2, . . . , hn〉 be a real-E -process on I . Then there exist an open, simply-
connected Ω ⊆ C and an E -process f on Ω such that:

1. I ⊂ Ω

2. For all t ∈ I : f (t) = h(t).

Proof Let P = ⇐P1, P2, . . . , Pn〉 = PE . For i = 1, 2, . . . , n, Pi is a polynomial and
therefore analytic on C

n . By Cauchy’s existence theorem for ordinary differential
equations with analytic right-hand sides [12], for all a ∈ I , there exist a non-empty
open disk Da ⊆ C centered at a and functions fa,1, fa,2, . . . , fa,n analytic on Da

such that for i = 1, 2, . . . , n :
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1. fa,i (a) = hi (a)

2. f ∃
a,i exists on Da and for all t ∈ Da : f ∃

a,i (t) = Pi ( fa,1(t), fa,2(t), . . . , fa,n(t)).
That is, fa = ⇐ fa,1, fa,2, . . . , fa,n〉 is an E -process on Da .

Claim For all a ∈ I , there exists δa ∈ R>0 such that for all t ∈ I ∩ (a − δa, a +
δa): fa(t) = h(t). To see this, by Lemma 1, for all a ∈ I there exists βa ∈ R>0 such
that for all t ∈ (a − βa, a + βa) ∩ Da, fa(t) ∈ R

n. Let Ia = (a − βa, a + βa) ∩ Da.
Note that fa |Ia is a real-E -process on Ia. By the theorem of uniqueness of solutions
to differential equations with C 1 right-hand sides [8], there exists γa ∈ R>0 such
that for all t ∈ (a − γa, a + γa) ∩ Ia ∩ I , fa(t) = h(t). Clearly, we can choose
δa ∈ R>0 such that (a − δa, a + δa) ⊆ (a − γa, a + γa) ∩ Ia. This establishes the
claim.

For all a ∈ I , let δa ∈ R>0 be such that for all t ∈ I ∩(a−δa, a+δa): fa(t) = h(t).
Let ⎟Da be an open disk centered at a of radius δa .

Claim For all a1, a2 ∈ I , for all t ∈ ⎟Da1 ∩ ⎟Da2 : fa1(t) = fa2(t). To see this, suppose
⎟Da1 ∩ ⎟Da2 
= ∅. Let J = ⎟Da1 ∩ ⎟Da2 ∩R. Since ⎟Da1 and ⎟Da2 are open disks centered
on the real line, J is a non-empty open real interval. For all t ∈ J , by the claim
above, fa1(t) = h(t) and fa2(t) = h(t). Hence, fa1(t) = fa2(t). Since J is a non-
empty interval, J contains an accumulation point. Since fa1 and fa2 are analytic on
⎟Da1 ∩ ⎟Da2 and ⎟Da1 ∩ ⎟Da2 is simply connected, for all t ∈ ⎟Da1 ∩ ⎟Da2 : fa1(t) = fa2(t).
This establishes the claim.

Let Ω = ⋃
a∈I

⎟Da . Clearly, I ⊂ Ω . Ω is a union of open discs, and is therefore
open.

For all t ∈ Ω , there exists a ∈ I such that t ∈ ⎟Da . Since ⎟Da is a disk, t and a
are path-connected in Ω . Since I is path-connected, and I ⊆ Ω , it follows that Ω is
path-connected.

To see that Ω is simply-connected, consider the function R: [0, 1] × Ω → Ω

given by (u, z) �→ Re(z)+i Im(z)(1−u). Observe that R is continuous on [0, 1]×Ω ,
and for all z ∈ Ω: R(0, z) = z, R(1,Ω) ⊂ Ω , and for all u ∈ [0, 1], for all z ∈ Ω ∩
R: R(u, z) ∈ Ω . Therefore, R is a deformation retraction. Note that R(0,Ω) = Ω

and R(1,Ω) ⊆ R, and Ω is path-connected together imply that R(1,Ω) is a real
interval. Hence, R(1,Ω) is simply-connected. Since R was a deformation retraction,
Ω is simply-connected.

Let f : Ω → C
n be the unique function such that for all a ∈ I , for all t ∈

⎟Da : f (t) = fa(t). By the claim above and from the definition of Ω , f is well-
defined.

Observe that for all t ∈ I ,

h(t) = ft (t) (Definition of ft )

= f (t) (I ⊂ Ω and definition of f ).

Claim f is an E -process on Ω . From the definitions of Ω and f , for all t ∈ Ω ,
there exists a ∈ I such that t ∈ ⎟Da and for all s ∈ ⎟Da, f (s) = fa(s). Since fa is an
E -process on ⎟Da, the claim follows.
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In Theorem 4, we prove that if E is a finite, physical event-system, then E -
processes that begin at positive (respectively non-negative) points remain positive
(respectively non-negative) through all forward real time where they are defined. In
fact, Theorem 4 establishes more detail about E -processes. In particular, if at some
time a species’ concentration is positive, then it will be positive at subsequent times.

Theorem 4 Let E be a finite, physical event-system of dimension n, let Ω ⊆ C be
open and simply-connected, and let f = ⇐ f1, f2, . . . , fn〉 be an E -process on Ω .
If I ⊆ Ω ∩ R≥0 is connected and 0 ∈ I and f (0) is a non-negative point then for
k = 1, 2, . . . , n either:

1. For all t ∈ I , fk(t) = 0, or
2. For all t ∈ I ∩ R>0, fk(t) ∈ R>0.

The proof of Theorem 4 is highly technical, and relies on a detailed examination
of the vector of polynomials pE . This allows us to show (Lemma 7) that if f =
⇐ f1, f2, . . . , fn〉 is an E -process that at real time t0 is non-negative, then each fi is
“right non-negative.” That is, the Taylor series expansion of fi around t0 has real
coefficients and the first non-zero coefficient, if any, is positive. Further, (Lemma 9)
if fi (t0) = 0 and its Taylor series expansion has a non-zero coefficient, then there
exists k such that fk(t0) = 0 and the first derivative of fk with respect to time is
positive at t0.

Definition 19 Let n ∈ Z>0 and let k ∈ {1, 2, . . . , n}. A polynomial f ∈ R[X1, X2,

. . . , Xn] is non-nullifying with respect to k iff there exist m ∈ N, c1, c2, . . . , cm ∈
R>0, M1, M2, . . . , Mm ∈ M{X1,X2,...,Xn} and h ∈ R[X1, X2, . . . , Xn] such that
f = ∑m

i=1 ci Mi + Xkh.

Observe that for all k, the polynomial 0 is non-nullifying with respect to k.

Lemma 5 Let E be a finite, physical event-system of dimension n. Let ⇐P1, P2, . . . ,

Pn〉 = pE . Then, for all i ∈ {1, 2, . . . , n}, Pi is non-nullifying with respect to i .

Proof Let m = |E |. Let (γ j,i )m×n = ΓE . Since E is physical, there exist
σ1,σ2, . . . ,σm , τ1, τ2, . . . , τm ∈ R>0 and M1, M2, . . . , Mm, N1, N2, . . . , Nm ∈
M∞ such that for j = 1, 2, . . . , m: M j ≺ N j and {σ1 M1 − τ1 N1,σ2 M2, τ2 N2, . . . ,

σm Mm − τm Nm} = E . Let i ∈ {1, 2, . . . , n}.
From the definition of pE , Pi = ∑m

j=1 γ j,i (σ j M j −τ j N j ). It is sufficient to prove
that for j = 1, 2, . . . , m: γ j,i (σ j M j − τ j N j ) is non-nullifying with respect to i . Let
j ∈ {1, 2, . . . , m}. If γ j,i = 0 then γ j,i (σ j M j − τ j N j ) = 0 which is non-nullifying
with respect to i . If γ j,i > 0 then, from the definition of ΓE , Xi | N j and

γ j,i (σ j M j − τ j N j ) = γ j,iσ j M j + Xi

(

−γ j,iτ j
N j

Xi

)

which is non-nullifying with respect to i since γ j,iσ j > 0. Similarly, if γ j,i < 0 then
Xi |M j and
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γ j,i (σ j M j − τ j N j ) = −γ j,iτ j N j + Xiγ j,iσ j
M j

Xi

which is non-nullifying with respect to i since −γ j,iτ j > 0. Hence, Pi is non-
nullifying with respect to i .

Definition 20 Let t0 ∈ C, let f : C → C be analytic at t0 and let f (t) = ∑∞
k=0 ck(t−

t0)k be the Taylor series expansion of f around t0. Then O( f, t0) is the least k such
that ck 
= 0. If for all k, ck = 0, then O( f, t0) = ∞.

Definition 21 (Right non-negative) Let t0 ∈ R, let f : C → C be analytic at t0 and
let f (t) = ∑∞

k=0 ck(t − t0)k be the Taylor series expansion of f around t0. Then f
is RNN at t0 iff both:

1. For all k ∈ N, ck ∈ R and
2. Either O( f, t0) = ∞ or cO( f,t0) ∈ R>0.

Lemma 6 Let t0 ∈ C. Let f, g: C → C be functions analytic at t0. Then:

1. O( f · g, t0) = O( f, t0) + O(g, t0).
2. If t0 ∈ R and f, g are RNN at t0 then f · g is RNN at t0.

The proof is obvious.

Lemma 7 Let E be a finite, physical event-system of dimension n, let Ω ⊆ C be
open and simply-connected and let f = ⇐ f1, f2, . . . , fn〉 be an E -process on Ω . For
all t0 ∈ Ω ∩ R, if f (t0) ∈ R

n≥0 then for i = 1, 2, . . . , n: fi is RNN at t0.

Proof Suppose t0 ∈ Ω ∩ R and f (t0) ∈ R
n≥0. Let p = ⇐P1, P2, . . . , Pn〉 = pE . Let

C = {i | fi is not RNN at t0}.
For the sake of contradiction, suppose C 
= ∅. Let m = mini∈C O( fi , t0). Let

k ∈ C be such that O( fk, t0) = m. Let fk(t) = ∑∞
i=0 ai (t − t0)i be the Taylor

series expansion of fk around t0. Since E is physical and t0 ∈ R and f (t0) ∈ R
n≥0,

it follows from Lemma 1.2 that for all i ∈ N, ai ∈ R. Further:

a0 = a1 = · · · = am−1 = 0 (O( fk, t0) = m.) (1.2)

am ∈ R<0 ( fk is not RNN at t0.) (1.3)

Since f (t0) ∈ R
n≥0 and am ∈ R<0 and a0 = fk(t0), it follows that m > 0.

Consider f ∃
k = Pk ◦ f . By differentiation, the Taylor series expansion of f ∃

k at t0
is:

f ∃
k(t) =

∞∑

i=0

(i + 1)ai+1(t − t0)
i . (1.4)

From Lemma 5, Pk is non-nullifying. Hence, there exist l ∈ N, b1, b2, . . . , bl ∈ R>0,
M1, M2, . . . , Ml ∈ M{X1,X2,...,Xn} and h ∈ R[X1, X2, . . . , Xn] such that Pk =
∑l

j=1 b j M j + Xk · h. Then for all t ∈ Ω:
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f ∃
k(t) = Pk ◦ f (t) =

l∑

j=1

b j M j ◦ f (t) + fk(t) · (h ◦ f (t)) (1.5)

Since h is a polynomial, h ◦ f is analytic at t0. Therefore, fk · (h ◦ f ) is analytic at
t0. Let

∑∞
i=0 ci (t−t0)i be the Taylor series expansion of fk ·(h◦ f ) at t0. Similarly, for

j = 1, 2, . . . , l, b j M j ◦ f is analytic at t0. Let
∑∞

i=0 d j,i (t − t0)i be the Taylor series
expansion of b j M j ◦ f at t0. From (1.4), (1.5), equating Taylor series coefficients,
for i = 0, 1, . . . , m − 1:

(i + 1)ai+1 = ci +
l∑

j=1

d j,i (1.6)

From Lemma 6.1,

O( fk · (h ◦ f ), t0) = O( fk, t0) + O(h ◦ f, t0) ≥ O( fk, t0) = m

Hence,

c0 = c1 = · · · = cm−1 = 0. (1.7)

From (1.2), (1.6), (1.7), for i = 0, 1, . . . , m − 2:

l∑

j=1

d j,i = 0 (1.8)

Since m > 0, from (1.3), (1.6), (1.7):

l∑

j=1

d j,m−1 = mam ∈ R<0 (1.9)

Let i0 = min j=1,2,...,l{O(b j M j ◦ f, t0)}. From (1.9), it follows that i0 ≤ m − 1.
Case 1: For j = 1, 2, . . . , l: d j,i0 ∈ R≥0. From the definition of i0 it follows that
∑l

j=1 d j,i0 ∈ R>0. If i0 < m−1, this contradicts (1.8). If i0 = m−1, this contradicts
(1.9).
Case 2: There exists j0 ∈ {1, 2, . . . , l} such that d j0,i0 ∈ R<0. From the definition of
i0, O(b j0 M j0 , t0) = i0 ≤ m −1. Therefore, for each i such that Xi |M j0 , O( fi , t0) ≤
m −1. From the definitions of C and m, this implies that for each i such that Xi |M j0 ,
fi is RNN at t0. Since b j0 ∈ R>0, it follows that b j0 M j0 ◦ f is a product of RNN
functions. Hence, by Lemma 6.2, b j0 M j0 ◦ f is RNN at t0 and d j0,i0 ∈ R>0, a
contradiction.

Hence, for i = 1, 2, . . . , n, fi is RNN at t0.
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Lemma 8 Let t0 ∈ R and let f be a function RNN at t0. There exists an ε ∈ R>0
such that either for all t ∈ (t0, t0+ε), f (t) ∈ R>0 or for all t ∈ (t0, t0+ε), f (t) = 0.

Proof Let m = O( f, t0). If m = ∞, f is identically zero and the lemma follows
immediately. Otherwise, let f (m) denote the mth derivative of f . Since f is RNN
at t0 and has order m, f (m)(t0) ∈ R>0. Since f is analytic at t0, f (m) is analytic at
t0, and hence continuous at t0. By continuity, there exists ε ∈ R>0 such that for all
τ ∈ [t0, t0 + ε]: f (m)(τ ) ∈ R>0. From Taylor’s theorem, for all t ∈ (t0, t0 + ε), there
exists τ ∈ [t0, t0 + ε] such that:

f (t) = (t − t0)m

m! f (m)(τ )

Therefore, f (t) ∈ R>0.

Note that Lemmas 7 and 8 together already imply that if E is a finite, physi-
cal event-system, then E -processes that begin at non-negative points remain non-
negative through all forward real time where they are defined. This result is weaker
than Theorem 4.

Lemma 9 Let E be a finite, physical event-system of dimension n, let Ω ⊆ C

be open and simply-connected, let f = ⇐ f1, f2, . . . , fn〉 be an E -process on Ω .
Let t0 ∈ Ω . If f (t0) is non-negative and there exists j ∈ {1, 2, . . . , n} such that
0 < O( f j , t0) < ∞ then there exists k ∈ {1, 2, . . . , n} such that O( fk, t0) = 1.

Proof Suppose f (t0) ∈ R
n≥0. Let C = {i |0 < O( fi , t0) < ∞}. Suppose C 
= ∅.

Let m = mini∈C O( fi , t0). There exists k ∈ C such that O( fk, t0) = m.
Let p = ⇐P1, P2, . . . , Pn〉 = pE . From Lemma 5, Pk is non-nullifying with

respect to k. Hence, there exist l ∈ N, b1, b2, . . . , bl ∈ R>0, M1, M2, . . . , Ml ∈
M{X1,X2,...,Xn} and h ∈ R[X1, X2, . . . , Xn] such that Pk = ∑l

j=1 b j M j + Xk · h.

For all t ∈ Ω: f ∃
k(t) = Pk ◦ f (t) = ∑l

j=1 b j M j ◦ f (t) + fk(t) · (h ◦ f (t)).
From Lemma 6.1, O( fk · (h ◦ f ), t0) = O( fk, t0) + O(h ◦ f, t0) ≥ O( fk, t0) = m.
It follows that:

m − 1 = O( f ∃
k, t0) = O

⎛

⎝
l∑

j=1

b j M j ◦ f, t0

⎞

⎠ (1.10)

From Lemmas (6.2) and Lemma 7, for j = 1, 2, . . . , l: b j M j ◦ f is RNN at
t0. It follows that O(

∑l
j=1 b j M j ◦ f, t0) = min j=1,2,...,l O(b j M j ◦ f, t0). From

Eq. (1.10), m − 1 = min j=1,2,...,l O(b j M j ◦ f, t0). Hence, there exists j0 such
that O(b j0 M j0 ◦ f, t0) = m − 1. From Lemma (6.1), for all i such that Xi |M j0 ,
O( fi , t0) ≤ m−1. From the definition of m, for all i such that Xi |M j0 , O( fi , t0) = 0.
It follows that m − 1 = O(b j0 M j0 ◦ f, t0) = 0. Hence, m = 1.

We are now ready to prove Theorem 4.
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Proof (Proof of Theorem 4) Suppose I ⊆ Ω ∩ R≥0 is connected and 0 ∈ I and
f (0) is a non-negative point. If I ∩ R>0 = ∅, the theorem is immediate. Suppose
I ∩ R>0 
= ∅.

It is clear that for all k, O( fk, 0) = ∞ iff for all t ∈ I , fk(t) = 0. Let C = {i |
O( fi , 0) 
= ∞}. From Lemmas 7 and 8, for all k ∈ C , there exists εk ∈ I ∩ R>0
such that for all t ∈ (0, εk): fk(t) ∈ R>0.

Suppose for the sake of contradiction that there exist i ∈ C and t ∈ I ∩ R>0
such that fi (t) /∈ R>0. From Lemma 2, fi (t) ∈ R. Since fi (εi/2) ∈ R>0 and
fi (t) ∈ R≤0, by continuity there exists t ∃ ∈ I ∩ R>0 such that fi (t ∃) = 0.

Let t0 = inf{t ∈ I ∩ R>0 | There exists i ∈ C with fi (t) = 0}. It follows that:

1. t0 ∈ R>0 because t0 ≥ mini∈C {εi }.
2. f (t0) ∈ R

n≥0, from the definition of t0.
3. There exists i1 ∈ C such that O( fi1 , t0) = 1. This follows because there exist

i0 ∈ C and T ⊆ I ∩ R>0 such that t0 = inf(T ) and for all t ∈ T : fi0(t) = 0.
By continuity, fi0(t0) = 0. Hence, O( fi0 , t0) > 0. Since i0 ∈ C , O( fi0 , 0) 
=
∞. By connectedness of I , O( fi0 , t0) 
= ∞. Therefore, 0 < O( fi0 , t0) < ∞.
Since f (t0) ∈ R

n≥0, by Lemma (9), there exists i1 ∈ {1, 2, . . . , n} such that
O( fi1 , t0) = 1. Assume i1 /∈ C . Then O( fi1 , 0) = ∞. By connectedness of I ,
O( fi1 , t0) = ∞, contradicting that O( fi1 , t0) = 1. Hence, i1 ∈ C .
Hence, fi1(t0) = 0. Since f (t0) ∈ R

n≥0, by Lemma (7) f ∃
i1
(t0) ∈ R>0.

From the definition of t0, for all t ∈ (0, t0), fi1(t) ∈ R>0. Since t0 ∈ R>0,

f ∃
i1
(t0) = lim

h→0+
fi1(t0) − fi1(t0 − h)

h
= lim

h→0+
− fi1(t0 − h)

h
∈ R≤0,

a contradiction. The theorem follows.

There is a notion in chemistry that, for systems of chemical reactions, concentra-
tions evolve through time to reach equilibrium. In later sections of this chapter, we
will investigate this notion. In the remainder of this section of the chapter, we will
prepare for that investigation.

Definition 22 Let E be a finite event-system of dimension n, let Ω ⊆ C be open,
simply connected and such that R≥0 ⊆ Ω , let f be an E -process on Ω , and let
q ∈ C

n . Then q is an ω-limit point of f iff for all ε ∈ R>0 there exists a sequence
of non-negative reals {ti }i∈Z>0 such that ti → ∞ as i → ∞ and for all i ∈ Z>0,
‖ f (ti ) − q‖2 < ε.

Sometimes, an ω-limit is defined by the existence of a single sequence of times
such that the value approaches the limit. The above definition is easily seen to be
equivalent.

Definition 23 Let E be a finite event-system of dimension n and let S ⊆ C
n . S is

an invariant set of E iff for all q ∈ S, for all open, simply-connected Ω ⊆ C, for
all E -processes f on Ω , if 0 ∈ Ω and f (0) = q then for all t ∈ R≥0 such that
[0, t] ⊆ Ω , f (t) ∈ S.
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Lemma 10 Let E be a finite, physical event-system of dimension n, let Ω ⊆ C be
open and simply connected, and let f be an E -process on Ω . If R≥0 ⊆ Ω and f (0)

is a non-negative point, then the set of all ω-limit points of f is an invariant set of E
and is contained in R

n≥0.

Proof Let S be the set of all ω-limit points of f . By Lemma 4, for all t ∈ R≥0,
f (t) ∈ R

n≥0, hence S ⊆ R
n≥0.

Let q ∈ S, let Ω̃ ⊆ C be open, simply-connected, and such that 0 ∈ Ω̃ , and let h
be an E -process on Ω̃ such that h(0) = q. Suppose u ∈ R≥0 and [0, u] ⊆ Ω̃ . Since
E is finite and physical, pE |Rn can be viewed as a map f : Rn → R

n of class C 1. By
Lemma 2, for all t ∈ [0, u], h(t) ∈ R

n , so h|[0,u] can be viewed as a map X : [0, u] →
R

n such that X ∃ = f (X). By Hirsch [8, p. 147], there exists a neighborhood U ⊂ R
n

of q and a constant K such that for all α ∈ U , there exists a unique real-E -process
ρα defined on [0, u] with ρα(0) = α and ‖ρα(u)−h(u)‖2 ≤ K‖α−q‖2 exp(K u).
Observe that necessarily K ∈ R≥0. By Lemma 4 for all α ∈ U there exists an open,
simply-connected Ωα ⊆ C and anE -process ρα on Ωα such that [0, u] ⊆ Ωα and for
all t ∈ [0, u], ρα(t) = ρα(t). Therefore, ‖ρα(u) − h(u)‖2 ≤ K‖α − q‖2 exp(K u).

Let ε ∈ R>0 and let δ1, δ2 ∈ R>0 be such that K δ1 exp(K u) ≤ ε and the open
ball centered at q of radius δ2 is contained in U . Let δ = min(δ1, δ2). Since q is an
ω-limit point of f , there exists a sequence of non-negative reals {ti }i∈Z>0 such that
ti → ∞ as i → ∞ and for all i ∈ Z>0, ‖ f (ti ) − q‖2 < δ. Then for all i ∈ Z>0,
f (ti ) ∈ U , so by Lemma 3 for all t ∈ [0, u], f (ti + t) = ρ f (ti )(t). Then

‖ f (ti + u) − h(u)‖2 = ‖ρ f (ti )(u) − h(u)‖2

≤ K‖ f (ti ) − q‖2 exp(K u)

≤ K δ exp(K u)

≤ ε

Thus h(u) is an ω-limit point of f , so S is an invariant set of E .

1.5 Finite Natural Event-Systems

In this section, we focus on finite, natural event-systems—a subclass of finite, phys-
ical event-systems which has much in common with systems of chemical reactions
that obey detailed balance.

In chemical reactions, the total bond energy of the reactants minus the total bond
energy of the products is a measure of the heat released. For example, in the reaction,
σX2 − τ X1, ln

(
σ
τ

)
is taken to be the quantity of heat released. If there are multiple

reaction paths that take the same reactants to the same products, then the quantity of
heat released along each path must be the same.

The finite, physical event-system E = {2X2 − X1, X2 − X1} does not behave like
a chemical reaction system since, when X2 is converted to X1 by the first reaction,
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ln (2) units of heat are released; however, when X2 is converted to X1 by the second
reaction, ln (1) = 0 units of heat are released. When an event-system admits a pair
of paths from the same reactants to the same products but with different quantities
of heat released, we say that the system has an “energy cycle.”

Definition 24 (Energy cycle) Let E be a finite, physical event-system. E has an
energy cycle iff GE has a cycle of non-zero weight.

Example 7 For the physical event-system E1 = {2X2 − X1, X2 − X1}, the event
X2 − X1 induces an edge ⇐X2, X1〉 in the event graph with weight ln

( 1
1

) = 0.
The event 2X2 − X1 induces an edge ⇐X1, X2〉 with weight − ln

( 2
1

) = − ln (2).
The weight of the cycle from X2 to X1 and back to X2 using these two edges, is
− ln (2) 
= 0. Hence, E1 has an energy cycle by Definition 24.

Example 8 For the physical event-system E2 = {X2 − X1, 2X3 X4 − X2 X3, X4 X5 −
X1 X5}, the cycle ⇐X3 X4 X5, X2 X3 X5, X1 X3 X5, X3 X4 X5〉 is induced by the se-
quence of events 2X3 X4 − X2 X3, X2 − X1, X4 X5 − X1 X5 and has corresponding
weight ln 2

1 + ln 1
1 + ln 1

1 = ln (2) 
= 0. Hence, E2 has an energy cycle.

The following theorem gives multiple characterizations of natural event-systems.

Theorem 5 Let E be a finite, physical event-system of dimension n. The following
are equivalent:

1. E is natural.
2. E has a strong equilibrium point that is not a z-point. (i.e. there exists α ∈ C

n

such that for all i = 1 to n, αi 
= 0 and for all e ∈ E , e (α) = 0.)

3. E has no energy cycles.
4. If E = {σ1 M1 − τ1 N1,σ2 M2 − τ2 N2, . . . ,σm Mm − τm Nm} and for all j = 1 to

m, M j ≺ N j and σ j , τ j > 0 then there exists α ∈ R
n such that

ΓE α =
⎨

ln

(
σ1

τ1

)

, . . . , ln

(
σm

τm

)⎩T

.

To prove Theorem 5, we will use the following lemma.

Lemma 11 Let E = {σ1 M1−τ1 N1,σ2 M2 −τ2 N2, . . . ,σm Mm −τm Nm} be a finite,
physical event-system of dimension n such that for all j = 1 to m, σ j , τ j > 0 and
M j ≺ N j . Then for all α = ⇐α1,α2, . . . ,αn〉T ∈ R

n,

ΓE · α =
⎨

ln

(
σ1

τ1

)

, ln

(
σ2

τ2

)

, . . . , ln

(
σm

τm

)⎩T

iff ⇐eα1 , · · · , eαn 〉 is a positive strong E -equilibrium point.

Proof Let E = {σ1 M1 − τ1 N1,σ2 M2 − τ2 N2, . . . ,σm Mm − τm Nm} and for all
j = 1 to m, M j ≺ N j and σ j , τ j > 0. Let Γ = ΓE . For all α = ⇐α1, . . . ,αn〉 ∈ R

n ,
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Γ α =
⎨

ln

(
σ1

τ1

)

, ln

(
σ2

τ2

)

, . . . , ln

(
σm

τm

)⎩T

⇔
n∑

i=1

γ j,iαi = ln
(
σ j/τ j

)
, ∀ j = 1, 2, . . . , m

⇔
n⎜

i=1

(
eαi

)γ j,i = σ j/τ j , ∀ j = 1, 2, . . . , m (Exponentiation.)

⇔N j
(⇐eα1 , . . . , eαn 〉) /M j

(⇐eα1 , . . . , eαn 〉) = σ j/τ j , ∀ j = 1, 2, . . . , m

(Definition of Γ.)

⇔ σ j M j
(⇐eα1 , . . . , eαn 〉) − τ j N j

(⇐eα1 , . . . , eαn 〉) = 0, ∀ j = 1, 2, . . . , m

⇔ ⇐eα1 , . . . , eαn 〉is a positive strong E -equilibrium point.

Proof (Proof of Theorem 5) (4) ⇒ (1) : Follows from Lemma 11.
(1) ⇒ (2) : Follows immediately from definitions.
(2) ⇒ (3) :
Consider an arbitrary cycle C in GE given by the sequence of k edges {⇐v0, v1〉, ⇐v1,

v2〉, . . . , ⇐vk−1, vk = v0〉} with corresponding weights r1, r2, . . . , rk . By Defini-
tion 9, for i = 1, 2, . . . , k, there exist Ti ∈ M∞ and ei ∈ E with ei = σi Mi − τi Ni

where σi , τi > 0 and Mi , Ni ∈ M∞ and Mi ≺ Ni such that either
(1) vi−1 = Ti Mi and vi = Ti Ni and ri = ln σi

τi
∈ w (⇐vi−1, vi 〉) or

(2) vi−1 = Ti Ni and vi = Ti Mi and ri = − ln σi
τi

∈ w (⇐vi−1, vi 〉)
Hence, there exists a vector b = ⇐b1, b2, . . . , bk〉 with bi = 0 or 1 such that:

k⎜

i=1

Mbi
i N 1−bi

i =
k⎜

i=1

M1−bi
i N bi

i (1.11)

w (C ) =
k∑

i=1

ri =
k∑

i=1

(2bi − 1) ln

(
σi

τi

)

(1.12)

Let α be a strong equilibrium point of E that is not a z-point. Then, by Definition 7,
for i = 1 to k, σi Mi (α) − τi Ni (α) = 0
⇒ σi Mi (α) = τi Ni (α) for i = 1 to k
⇒ (σi Mi (α))bi = (τi Ni (α))bi and (τi Ni (α))1−bi = (σi Mi (α))1−bi for i = 1 to k
⇒ (σi Mi (α))bi (τi Ni (α))1−bi = (σi Mi (α))1−bi (τi Ni (α))bi for i = 1 to k
⇒ ⎪k

i=1 (σi Mi (α))bi (τi Ni (α))1−bi = ⎪k
i=1 (σi Mi (α))1−bi (τi Ni (α))bi

⇒ ⎪k
i=1 σi

bi τi
1−bi = ⎪k

i=1 σi
1−bi τi

bi [From Eq. (1.1) and since α is not a z-point]

⇒ ⎪k
i=1

σi
bi τi

1−bi

σi
1−bi τi

bi
= 1

⇒ ∑k
i=1 (2bi − 1) ln

⎫
σi
τi

⎬
= 0 [Taking logarithm]

⇒ w (C ) = 0 [From Eq. (1.2)]
Hence, E has no energy cycle.
(3) ⇒ (4) :
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Let E = {σ1 M1 − τ1 N1,σ2 M2 − τ2 N2, . . . ,σm Mm − τm Nm} and for all j = 1 to
m, M j ≺ N j and σ j , τ j > 0. Let Γ = ΓE . We shall prove that if the linear equation
Γ α = ⇐ln (σ1/τ1) , . . . , ln (σm/τm)〉T has no solution in R

n then E has an energy
cycle. For j = 1 to m, let Γ j be the j th row of Γ . If the system of linear equations
Γ α = ⇐ln (σ1/τ1) , . . . , ln (σm/τm)〉T has no solution in R

n then, from linear algebra
[13, p. 164, Theorem] and the fact that Γ is a matrix of integers, it follows that there
exists l, there exist (not necessarily distinct) integers j1, j2, . . . , jl ∈ {1, 2, . . . , m},
there exist a1, a2, . . . , al ∈ {+1,−1} such that:

a1Γ j1 + a2Γ j2 + · · · + alΓ jl = 0 (1.13)

a1 ln
(
σ j1/τ j1

) + a2 ln
(
σ j2/τ j2

) + · · · + al ln
(
σ jl /τ jl

) 
= 0 (1.14)

Consider the sequence C of l + 1 vertices in the event-graph defined recursively
by

v0 =
l⎜

i=1,ai =+1

M ji

l⎜

i=1,ai =−1

N ji

and for i = 1 to l,

vi = vi−1 N ai
ji

Mai
ji

Observe that by (3),
l⎜

i=1

(
N ji

M ji

)ai

= 1

Hence,

v0 =
l⎜

i=1,ai =+1

Mai
ji

l⎜

i=1,ai =−1

N−ai
ji

=
l⎜

i=1,ai =+1

N ai
ji

l⎜

i=1,ai =−1

M−ai
ji

= vl

Hence, C is a cycle. Further, for i = 1 to l,
ai ln

σ ji
τ ji

∈ w (⇐vi−1, vi 〉)
From Eq. (1.4),

w (C ) = a1 ln
(
σ j1/τ j1

) + a2 ln
(
σ j2/τ j2

) + · · · + al ln
(
σ jl /τ jl

) 
= 0

Hence, C is an energy cycle.

Horn and Jackson [10] and Feinberg [5] have proved that chemical reaction
networks with appropriate properties admit Lyapunov functions. While finite, nat-
ural event-systems are closely related to the chemical reaction networks consid-
ered by Horn and Jackson and by Feinberg, they are not identical. Consequently,
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we will prove the existence of Lyapunov functions for finite, natural event-systems
(Theorem 7).

The Lyapunov function is analogous in form and properties to “Entropy of the
Universe” in thermodynamics. The Lyapunov function composed with an event-
process is monotonic with respect to time, providing an analogy to the second law
of thermodynamics.

Definition 25 Let E be a finite, natural event-system of dimension n with positive
strong E -equilibrium point c = ⇐c1, c2, . . . , cn〉. Then gE ,c: Rn

>0 → R is given by

gE ,c (x1, x2, . . . , xn) =
n∑

i=1

(xi (ln (xi ) − 1 − ln (ci )) + ci )

The function gE ,c will turn out to be the desired Lyapunov function.
Note that if E1 and E2 are two finite natural event-systems of the same dimension

and if c is a positive strong E1-equilibrium point as well as a positive strong E2-
equilibrium point, then the functions gE1,c and gE2,c are identical.

Lemma 12 Let E = {σ1 M1−τ1 N1,σ2 M2 −τ2 N2, . . . ,σm Mm −τm Nm} be a finite,
natural event-system of dimension n with positive strong E -equilibrium point c, such
that for all j = 1 to m, σ j , τ j > 0 and M j ≺ N j . Then for all x ∈ R

n
>0,

∇gE ,c (x) · PE (x) =
m∑

j=1

(
σ j M j (x) − τ j N j (x)

)
ln

(
τ j N j (x)

σ j M j (x)

)

Proof Let g = gE ,c. Let x = ⇐x1, x2, . . . , xn〉 ∈ R
n
>0. Let P = PE .

∇g (x) · P (x) =
n∑

i=1

(
∂g

∂xi
(x) · Pi (x)

)

=
n∑

i=1

ln

(
xi

ci

)
⎛

⎝
m∑

j=1

γ j,i
(
σ j M j (x) − τ j N j (x)

)
⎞

⎠

=
m∑

j=1

(
σ j M j (x) − τ j N j (x)

) n∑

i=1

ln

((
xi

ci

)γ j,i
)

=
m∑

j=1

(
σ j M j (x) − τ j N j (x)

)
ln

⎭
n⎜

i=1

(
xi

ci

)γ j,i
)

=
m∑

j=1

(
σ j M j (x) − τ j N j (x)

)
ln

(
τ j N j (x)

σ j M j (x)

)

The last equality follows from the definition of ΓE and the fact that c is a strong-
equilibrium point.
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Lemma 13 For all x ∈ R>0, (1 − x) ln (x) ≤ 0 with equality iff x = 1.

Proof If 0 < x < 1 then 1 − x > 0 and ln(x) < 0. If x > 1 then 1 − x <

0 and ln(x) > 0. In either case, the product is strictly negative. If x = 1 then
(1 − x) ln (x) =0

Theorem 6 Let E be a finite, natural event-system of dimension n with positive
strong E -equilibrium point c. Then for all x ∈ R

n
>0, ∇gE ,c (x) · PE (x) ≤ 0 with

equality iff x is a strong E -equilibrium point.

Proof Let E = {σ1 M1 − τ1 N1,σ2 M2 − τ2 N2, . . . ,σm Mm − τm Nm} be a finite,
natural event-system of dimension n with positive strong E -equilibrium point c,
such that for all j = 1 to m, σ j , τ j > 0 and M j ≺ N j . Let P = PE and let
g = gE ,c. By Lemma 12, for all x ∈ R

n
>0,

∇g (x) · P (x) =
m∑

j=1

(
σ j M j (x) − τ j N j (x)

)
ln

(
τ j N j (x)

σ j M j (x)

)

From Lemma 13 and the observation that for j = 1, 2, . . . , m, M j (x) , N j (x) > 0
when x ∈ R

n
>0 and by assumption σ j , τ j > 0, we have,

∇g (x) · P (x) ≤ 0

with equality iff for all j = 1, 2, . . . , m, σ j M j (x) = τ j N j (x). This occurs iff x is
a strong E -equilibrium point.

Recall that a function g is a Lyapunov function at a point p for a vector field V
iff g is smooth, positive definite at p and LV g is negative semi-definite at p [11,
p. 131]. For a finite natural event-system E , PE induces a vector field on R

n . We
will show that, if c is a positive strong E -equilibrium point, then gE ,c is a Lyapunov
function at c for the vector field induced by PE .

Theorem 7 (Existence of Lyapunov Function) LetE be a finite, natural event-system
of dimension n with positive strong E -equilibrium point c. Then gE ,c is a Lyapunov
function for the vector field induced by PE at c.

Proof Let g = gE ,c. For i = 1, 2, . . . , n:

∂g

∂xi
= ln

(
xi

ci

)

which are all in C∞ as functions on R
n
>0, hence g is in C∞.

∂g

∂xi
(c) = ln

(
ci

ci

)

= 0
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establishes that ∇g (c) = 0. For i = 1, 2, . . . , n, for k = 1, 2, . . . , n:

∂2g

∂xk∂xi
= δi,k

xi

where δi,k is the Kronecker delta function. Hence, for all x ∈ R
n
>0, the Hessian of g

at x is positive definite. Therefore, g is strictly convex over R
n
>0. Further, g (c) = 0

and ∇g (c) = 0 and g is strictly convex together imply that g is positive definite
at c. To establish g as a Lyapunov function, it remains to show that the directional
derivative L pg of g in the direction of the vector field induced by P = PE is
negative semi-definite at c. This follows from Theorem 6 since for all x ∈ R

n
>0,

L pg (x) = ∇g (x) · P (x) ≤ 0.

Henceforth, the function gE ,c will be called the Lyapunov function of E at c.
The next theorem shows that finite, natural event-systems satisfy a form of “detailed
balance.”

Theorem 8 If E is a natural, finite event-system of dimension n then all positive
E -equilibrium points are strong E -equilibrium points.

Proof Let P = PE . Let c ∈ R
n
>0 be a positive strong E -equilibrium point. Let x be

a positive E -equilibrium point. That is, P(x) = 0. Hence, ∇gE ,c (x) · PE (x) = 0.
By Theorem 6, x is a strong E -equilibrium point.

The following lemma was proved by Feinberg [5, Proposition B.1].

Lemma 14 Let n > 0 be an integer. Let U be a linear subspace of R
n, and let

a = ⇐a1, a2, . . . , an〉 and b be elements of R
n
>0. There is a unique element μ =

⇐μ1,μ2, · · · ,μn〉 ∈ U⊥ such that ⇐a1eμ1 , a2eμ2 , . . . , aneμn 〉 − b is an element of U.

The next theorem follows from one proved by Horn and Jackson [10, Lemma 4B].
Our proof is derived from Feinberg’s [5, Proposition 5.1].

Theorem 9 Let E be a finite, natural event-system of dimension n. Let H be a
positive conservation class of E . Then H contains exactly one positive strong E -
equilibrium point.

Proof Let Γ = ΓE . Let c∗ = ⇐c∗
1, c∗

2, . . . , c∗
n〉 be a positive strong E -equilibrium

point. Let P ∈ H ∩ R
n
>0. For all c ∈ R

n
>0,

(1) c is a strong E -equilibrium point
⇔ Γ ⇐ln(c1), ln(c2), . . . , ln(cn)〉T = Γ ⇐ln(c∗

1), ln(c∗
2), . . . , ln(c∗

n)〉T . (Lemma 11)

⇔ Γ
⎢
ln

⎫
c1
c∗

1

⎬
, ln

⎫
c2
c∗

2

⎬
, . . . , ln

⎫
cn
c∗

n

⎬〉T = 0

⇔ There exists μ = ⇐μ1,μ2, . . . ,μn〉 ∈ ker Γ ∩ R
n such that ⇐ln

⎫
c1
c∗

1

⎬
,

ln
⎫

c2
c∗

2

⎬
, . . . , ln

⎫
cn
c∗

n

⎬
〉T = μ.
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⇔ There exists μ = ⇐μ1,μ2, . . . ,μn〉 ∈ ker Γ ∩ R
n such that ci = c∗

i eμi for
i = 1, 2, . . . , n.

(2) c ∈ H ∩ R
n ⇔ c − P ∈ (ker Γ )⊥ ∩ R

n . (By Definition 17)
From (1) and (2), c is a positive strong E -equilibrium point in H iff there exists μ ∈
ker Γ ∩R

n such that c = ⇐c∗
1eμ1 , c∗

2eμ2 , . . . , c∗
neμn 〉 and ⇐c∗

1eμ1 , c∗
2eμ2 , . . . , c∗

neμn 〉−
P ∈ (ker Γ )⊥ ∩ R

n . Applying Lemma 14 with a = c∗, b = P and U =
(ker Γ )⊥ ∩ R

n , it follows that there exists a unique μ of the desired form. Hence,
there exists a unique positive strong E -equilibrium point in H given by c =
⇐c∗

1eμ1 , c∗
2eμ2 , . . . , c∗

neμn 〉.
To prove the main theorem of this section (Theorem 10), we will first establish

several technical lemmas.
Lemma 15 shows that an event that remains zero at all times along a process can

be ignored.

Lemma 15 Let E be a finite event-system of dimension n, let Ω ⊆ C be non-empty,
open and simply-connected, and let f = ⇐ f1, f2, . . . , fn〉 be an E -process on Ω .
Then either for all t ∈ Ω , f (t) is a strong E -equilibrium point or there exist a finite
event-system Ê of dimension n̂ ≤ n, an Ê -process f̂ = ⇐ f̂1, f̂2, . . . , f̂n̂〉 on Ω , and
a permutation π on {1, 2, . . . , n} such that:

1. If E is physical then Ê is physical.
2. If E is natural then Ê is natural.
3. If c = ⇐c1, c2, . . . , cn〉 is a positive strong E -equilibrium point, then

ĉ = ⇐cπ−1(1), cπ−1(2), . . . , cπ−1(n̂)〉 is a positive strong Ê -equilibrium point.

4. For all e ∈ Ê , there exists t ∈ Ω such that e( f̂ (t)) 
= 0.
5. If Ê is natural, I ⊆ Ω ∩ R≥0 is connected, 0 ∈ I and f (0) is a non-negative

point then for all t ∈ I ∩ R>0, f̂ (t) is a positive point.
6. For i = 1, 2, . . . , n, if π(i) ≤ n̂ then for all t ∈ Ω , fi (t) = f̂π(i)(t).
7. For i = 1, 2, . . . , n, if π(i) > n̂ then for all t1, t2 ∈ Ω , fi (t1) = fi (t2).

Proof Let m = |E |. Let E1 = {e ∈ E | there exists t ∈ Ω, e( f (t)) 
= 0}. If
E1 = ∅ then for all t ∈ Ω, e( f (t)) = 0, so f (t) is a strong E -equilibrium point
and the Lemma holds. Assume E1 
= ∅ and let m̂ = |E1|. For j = 1, 2, . . . , m,

let σ j , τ j ∈ R>0 and M j = ⎪n
i=1 X

a j,i
i , N j = ⎪n

i=1 X
b j,i
i ∈ M∞ be such that

M j ≺ N j and {σ1 M1 − τ1 N1,σ2 M2 − τ2 N2, . . . ,σm̂ Mm̂ − τm̂ Nm̂} = E1 and
{σ1 M1 − τ1 N1,σ2 M2 − τ2 N2, . . . ,σm Mm − τm Nm} = E .

Let C = {i | there exists j ≤ m̂ such that either a j,i 
= 0 or b j,i 
= 0}. Let
n̂ = |C |. Let π be a permutation on {1, 2, . . . , n} such that π(C) = {1, 2, . . . , n̂}.

For j = 1, 2, . . . , m̂, let eπ, j = σ j
⎪n̂

i=1 X
a j,π−1(i)
i − τ j

⎪n̂
i=1 X

b j,π−1(i)
i . Let

Ê = {eπ,1, eπ,2, . . . , eπ,m̂}.
It follows that Ê is a finite event-system of dimension n̂ ≤ n. For i = 1, 2, . . . , n̂,

let f̂i = fπ−1(i). Let f̂ = ⇐ f̂1, f̂2, . . . , f̂n̂〉.
Let (γ j,i )m×n = ΓE . Let (γ̂ j,i )m̂×n̂ = Γ

Ê
. It follows that for j = 1, 2, . . . , m̂,

for i = 1, 2, . . . , n̂,
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γ̂ j,i = b j,π−1(i) − a j,π−1(i) = γ j,π−1(i). (1.15)

We claim that f̂ is an Ê -process on Ω . To see this, for k = 1, 2, . . . , n̂, for all
t ∈ Ω :

f̂ ∃
k(t) = f ∃

π−1(k)
(t) [Definition of f̂k .]

=
⎡

⎣

⎛

⎝
m∑

j=1

γ j,π−1(k)

⎭

σ j

n⎜

i=1

X
a j,i
i − τ j

n⎜

i=1

X
b j,i
i

)⎞

⎠ ◦ f

⎤

⎦ (t)

[ f is an E -process on Ω.]

=
⎡

⎣

⎛

⎝
m̂∑

j=1

γ j,π−1(k)

⎭

σ j

n⎜

i=1

X
a j,i
i − τ j

n⎜

i=1

X
b j,i
i

)⎞

⎠ ◦ f

⎤

⎦ (t)

[Definition of E1.]

=
⎡

⎣

⎛

⎝
m̂∑

j=1

γ j,π−1(k)

⎭

σ j

⎜

i∈C

X
a j,i
i − τ j

⎜

i∈C

X
b j,i
i

)⎞

⎠ ◦ f

⎤

⎦ (t)

[ j ≤ m̂, i /∈ C ⇒ a j,i = b j,i = 0.]

=
⎡

⎣

⎛

⎝
m̂∑

j=1

γ j,π−1(k)

⎛

⎝σ j

n̂⎜

i=1

X
a j,π−1(i)

π−1(i)
− τ j

n̂⎜

i=1

X
b j,π−1(i)

π−1(i)

⎞

⎠

⎞

⎠ ◦ f

⎤

⎦ (t)

[π(C) = {1, 2, . . . , n̂}.]

=
m̂∑

j=1

γ j,π−1(k)

⎛

⎝σ j

n̂⎜

i=1

( fπ−1(i)(t))
a j,π−1(i) − τ j

n̂⎜

i=1

( fπ−1(i)(t))
b j,π−1(i)

⎞

⎠

[By composition.]

=
m̂∑

j=1

γ̂ j,k

⎛

⎝σ j

n̂⎜

i=1

( fπ−1(i)(t))
a j,π−1(i) − τ j

n̂⎜

i=1

( fπ−1(i)(t))
b j,π−1(i)

⎞

⎠

[From (15).]

=
m̂∑

j=1

γ̂ j,k

⎛

⎝σ j

n̂⎜

i=1

( f̂i (t))
a j,π−1(i) − τ j

n̂⎜

i=1

( f̂i (t))
b j,π−1(i)

⎞

⎠

[Definition of f̂i .]

=
⎡

⎣

⎛

⎝
m̂∑

j=1

γ̂ j,keπ, j

⎞

⎠ ◦ f̂

⎤

⎦ (t) [Definition of eπ, j .]

This establishes the claim.
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With Ê , n̂, f̂ and π as described, we will now establish (1) through (6).

1. Follows from the definition of Ê .
2. Follows from 3.
3. Suppose E is natural. Hence, there exists a positive strong E -equilibrium point

⇐c1, c2, . . . , cn〉. For j = 1, 2, . . . , m̂ :

eπ, j (cπ−1(1), cπ−1(2), . . . , cπ−1(n̂))

= σ j

n̂⎜

i=1

c
a j,π−1(i)

π−1(i)
− τ j

n̂⎜

i=1

c
b j,π−1(i)

π−1(i)

= σ j

⎜

i∈C

c
a j,i
i − τ j

⎜

i∈C

c
b j,i
i [ j ≤ m̂, i /∈ C ⇒ a j,i = b j,i = 0.]

= e j (c1, c2, . . . , cn)

= 0

Hence, ĉ is a positive strong Ê -equilibrium point.
4. Suppose j ≤ m̂. Then for all t ∈ Ω :

eπ, j ( f̂ (t)) = σ j

n̂⎜

i=1

( f̂i (t))
a j,π−1(i) − τ j

n̂⎜

i=1

( f̂i (t))
b j,π−1(i)

= σ j

n̂⎜

i=1

( fπ−1(i)(t))
a j,π−1(i) − τ j

n̂⎜

i=1

( fπ−1(i)(t))
b j,π−1(i)

= σ j

⎜

i∈C

( fi (t))
a j,i − τ j

⎜

i∈C

( fi (t))
b j,i

= σ j

n⎜

i=1

( fi (t))
a j,i − τ j

n⎜

i=1

( fi (t))
b j,i

[ j ≤ m̂, i /∈ C ⇒ a j,i = b j,i = 0.]

=
⎭⎭

σ j

n⎜

i=1

X
a j,i
i − τ j

n⎜

i=1

X
b j,i
i

)

◦ f

)

(t)

= e j ( f (t))

Since j ≤ m̂, therefore e j ∈ E1 and there exists t ∈ Ω such that e j ( f (t)) 
= 0.
Hence, for all eπ, j ∈ Ê , there exists t ∈ Ω such that eπ, j ( f̂ (t)) 
= 0.

5. Suppose Ê is natural, I ⊆ Ω∩R≥0 is connected, 0 ∈ I and f (0) is a non-negative
point. It follows that f̂ (0) is a non-negative point and, from Theorem 4, for all
t ∈ I , f̂ (t) is a non-negative point. Suppose, for the sake of contradiction, that
there exist i0 ≤ n̂ and t0 ∈ I ∩R>0 such that f̂i0(t0) = 0. From Theorem 4 again,
f̂i0(0) = 0 and for all t ∈ I : f̂i0(t) = 0. Since I is an interval and 0, t0 ∈ I ,
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I contains an accumulation point. Hence, since f̂i0 is analytic on Ω and Ω is
connected, for all t ∈ Ω :

f̂i0(t) = 0. (1.16)

It follows that for all t ∈ Ω :

0 = f̂ ∃
i0
(t) =

m̂∑

j=1

γ̂ j,i0 eπ, j ( f̂ (t)). (1.17)

We claim that for j = 1, 2, . . . , m̂, for all t ∈ Ω: γ̂ j,i0 eπ, j ( f̂ (t)) ≥ 0.
Case 1: Suppose γ̂ j,i0 = 0. Then γ̂ j,i0 eπ, j ( f̂ (t)) = 0 ≥ 0.
Case 2: Suppose γ̂ j,i0 > 0. Then b j,π−1(i0)

> 0. Hence,

eπ, j ( f̂ (t)) = σ j

n̂⎜

i=1

( f̂i (t))
a j,π−1(i) − τ j

n̂⎜

i=1

( f̂i (t))
b j,π−1(i)

= σ j

n̂⎜

i=1

( f̂i (t))
a j,π−1(i) [Since b j,π−1(i0)

> 0 and from 16, f̂i0(t) = 0.]
≥ 0 [ f̂ (t) is a non-negative point, by Theorem 4]

Hence, γ̂ j,i0 eπ, j ( f̂ (t)) ≥ 0.
Case 3: Suppose γ̂ j,i0 < 0. Then a j,π−1(i0)

> 0. Hence,

eπ, j ( f̂ (t)) = σ j

n̂⎜

i=1

( f̂i (t))
a j,π−1(i) − τ j

n̂⎜

i=1

( f̂i (t))
b j,π−1(i)

= −τ j

n̂⎜

i=1

( f̂i (t))
b j,π−1(i) [Since a j,π−1(i0)

> 0 and from 16, f̂i0(t) = 0.]
≤ 0 [ f̂ (t) is a non-negative point, by Theorem 4]

Hence, γ̂ j,i0 eπ, j ( f̂ (t)) ≥ 0. This completes the proof of the claim.
From 1.17 and the claim, it now follows that for j = 1, 2, . . . , m̂, for all t ∈ Ω :

γ̂ j,i0 eπ, j ( f̂ (t)) = 0 (1.18)
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Since i0 ≤ n̂, there exists j0 ≤ m̂ such that either a j0,i0 
= 0 or b j0,i0 
= 0. If
γ̂ j0,i0 
= 0 then, from 1.18, eπ, j0( f̂ (t)) = 0. If γ̂ j0,i0 = 0 then, since γ̂ j0,i0 =
b j0,i0 − a j0,i0 , it follows that a j0,i0 
= 0 and b j0,i0 
= 0. Hence, Xi0 divides eπ, j0 .
From 1.16, it follows that eπ, j0( f̂ (t)) = 0. Hence, irrespective of the value of
γ̂ j0,i0 , for all t ∈ Ω: eπ, j0( f̂ (t)) = 0. Since eπ, j0 is an element of Ê , this leads
to a contradiction with Lemma 15.4. Hence, for all i ≤ n̂, for all t ∈ I ∩ R>0:
f̂i (t) > 0.

6. Follows from the definition of f̂ .
7. For i = 1, 2, . . . , n, if π(i) > n̂ then i /∈ C . That is, for j = 1, 2, . . . , m: γ j,i =

b j,i − a j,i = 0 − 0 = 0. Hence, for all t ∈ Ω: f ∃
i (t) = ∑m

j=1 γ j,i e j ( f (t)) = 0.
Hence, since fi is analytic on Ω , and Ω is simply-connected, for all t1, t2 ∈
Ω: fi (t1) = fi (t2).

We have described, for finite, natural event-systems, Lyapunov functions on the
positive orthant. We next extend the definition of these Lyapunov functions to admit
values at non-negative points.

Definition 26 Let E be a finite, natural event-system of dimension n with positive
strong E -equilibrium point c = ⇐c1, c2, . . . , cn〉. For all v ∈ R>0, let gv: R≥0 → R

be such that for all x ∈ R≥0

gv(x) =
{

x(ln(x) − 1 − ln(v)) + v, if x > 0;
v, otherwise.

(1.19)

Then the extended lyapunov function gE ,c: Rn≥0 → R is

gE ,c(x1, x2, . . . , xn) =
n∑

i=1

gci (xi ) (1.20)

The next lemma lists some properties of extended Lyapunov functions.

Lemma 16 Let E be a finite, natural event-system of dimension n with positive
strong E -equilibrium point c = ⇐c1, c2, . . . , cn〉. Then:

1. gE ,c is continuous on R
n≥0.

2. For all x1, x2, . . . , xn ∈ R≥0, gE ,c(x1, x2, . . . , xn) ≥ 0 with equality iff
⇐x1, x2, . . . , xn〉 = c.

3. For all r ∈ R≥0, the set {x ∈ R
n≥0 | gE ,c(x) ≤ r} is bounded.

4. If Ω ⊆ C is open, simply connected and such that 0 ∈ Ω , f = ⇐ f1, f2, . . . , fn〉
is an E -process on Ω such that f (0) is a non-negative point, and I ⊆ R≥0 ∩ Ω

is an interval such that 0 ∈ I then (gE ,c ◦ f ) is monotonically non-increasing on
I .

Proof For i = 1, 2, . . . , n, let gci (x) be as defined in Eq. 1.19.
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1. For i = 1, 2, . . . , n, gci is continuous on R>0 and limx→0+ gci (x) = ci =
gci (0), so gci is continuous on R≥0. Since gE ,c is the finite sum of continuous
functions on R≥0, gE ,c is continuous on R

n≥0.

2. Let j ∈ {1, 2, . . . , n}. Let g = gc j . For all x ∈ R>0, g ∃(x) = ln

(
x

c j

)

. If

0 < x < c j then, by substitution, g ∃(x) < 0. Similarly, if x > c j then g ∃(x) > 0.
Hence, g is monotonically decreasing in (0, c j ) and monotonically increasing in
(c j ,∞). From continuity of g in R≥0, it follows that

For all x ∈ R≥0, g(x) ≥ g(c j ) = 0 with equality iff x = c j . (1.21)

From Eqs. (1.20) and (1.21), the claim follows.
3. Observe that limx→+∞ g(x) = +∞. It follows that:

For all r ∈ R≥0, the set {x ∈ R≥0 | g(x) ≤ r} is bounded. (1.22)

If x1, x2, . . . , xn ∈ R≥0 are such that gE ,c(x1, x2, . . . , xn) ≤ r , it follows from
Eqs. (1.20) and (1.21) that for i = 1, 2, . . . , n: gci (xi ) ≤ r . The claim now follows
from Eq. (1.22).

4. Let Ω ⊆ C be open, simply connected, and such that 0 ∈ Ω; let f =
⇐ f1, f2, . . . , fn〉 be an E -process on Ω such that f (0) is a non-negative point; and let
I ⊆ R≥0 ∩Ω be an interval such that 0 ∈ I . By Lemma 15 there exists n̂, Ê , f̂ , and
π satisfying 15.1–15.7. Let ĉ = ⇐ĉ1, ĉ2, . . . , ĉn̂〉 = ⇐cπ−1(1), cπ−1(2), . . . , cπ−1(n̂)〉.
By Lemma 15.2, ĉ is a positive strong equilibrium point of Ê . Then for all t ∈ I ,

(
gE ,c ◦ f

)
(t) = ∑n

i=1 gci ( fi (t)) [Eq. (20)]
= ∑

i : π(i)≤n̂ gci ( fi (t)) + ∑
i : π(i)>n̂ gci ( fi (t))

= ∑n̂
i=1 gcπ−1(i)

(
fπ−1(i)(t)

) + ∑
i : π(i)>n̂ gci ( fi (t))

= ∑n̂
i=1 gĉi

⎫
f̂i (t)

⎬
+ ∑

i : π(i)>n̂ gci ( fi (t))

[Definition of ĉ and Lemma 15.6]

=
⎫

g
Ê ,ĉ ◦ f̂

⎬
(t) + ∑

i : π(i)>n̂ gci ( fi (t)) [Eq. (20)]

=
⎫

g
Ê ,ĉ ◦ f̂

⎬
(t) + constant [Lemma 15.7]

By Definition 26, for all x ∈ R
n̂
>0, gÊ ,ĉ(x) = gÊ ,ĉ(x). By Lemma 15.5, for all

t ∈ I ∩ R>0, f̂ (t) ∈ R
n̂
>0. So for all t ∈ I ∩ R>0,

⎫
g
Ê ,ĉ ◦ f̂

⎬
(t) =

⎫
g
Ê ,ĉ ◦ f̂

⎬
(t).

Then, for all t ∈ I ∩ R>0,

⎫
gÊ ,ĉ ◦ f̂

⎬∃
(t) =

⎫
gÊ ,ĉ ◦ f̂

⎬∃
(t)

= ∇g
Ê ,ĉ

⎫
f̂ (t)

⎬
· f̂ ∃(t) [Chain rule.]
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= ∇g
Ê ,ĉ

⎫
f̂ (t)

⎬
· p

Ê

⎫
f̂ (t)

⎬
[Definition 14.]

≤ 0 [Theorem 6.]

Therefore
⎫

g
Ê ,ĉ ◦ f̂

⎬
is non-increasing on I ∩ R>0.

By Definition 14, f̂ is continuous on I ; by Theorem 4, f̂ (I ) ⊆ R
n̂≥0; and by

Lemma 16.1, gÊ ,ĉ is continuous on R
n̂≥0; so

⎫
gÊ ,ĉ ◦ f̂

⎬
is continuous on I . Therefore

⎫
g
Ê ,ĉ ◦ f̂

⎬
is non-increasing on I . Thus (gE ,c ◦ f ) is a constant plus a monotonically

non-increasing function on I , so (gE ,c ◦ f ) is monotonically non-increasing on I .

The next lemma makes use of properties of the extended Lyapunov function
to show that E -processes starting at non-negative points are uniformly bounded in
forward real time.

Lemma 17 Let E be a finite, natural event-system of dimension n. Let α ∈ R
n≥0.

There exists k ∈ R≥0 such that for all Ω ⊆ C open and simply connected and such
that 0 ∈ Ω , for all E -processes f = ⇐ f1, f2, . . . , fn〉 on Ω such that f (0) = α,
for all intervals I ⊆ Ω ∩ R≥0 such that 0 ∈ I , for all t ∈ I , for i = 1, 2, . . . , n:
fi (t) ∈ R and 0 ≤ fi (t) < k.

Proof Since E is natural, let c ∈ R
n
>0 be a positive strong E -equilibrium point. Let

g = gE ,c.
Let Π = g(α). Let S = {x ∈ R

n≥0 | g(x) ≤ Π}. By Lemma 16.3, S is bounded.
Hence, let k be such that for all x ∈ S: |x |∞ < k.

Let Ω ⊆ C be open, simply connected, and such that 0 ∈ Ω; let f =
⇐ f1, f2, . . . , fn〉 be an E -process on Ω such that f (0) = α; and let I ⊆ R≥0 ∩ Ω

be an interval such that 0 ∈ I .
From Theorem 4, for all t ∈ I , for i = 1, 2, . . . , n: fi (t) ∈ R and fi (t) ≥ 0.
Consider the function:

g ◦ f |I : I → R

From Lemma 16.4, for all t ∈ I , g ◦ f |I is monotonically non-increasing on I . That
is, for all t ∈ I ,

g( f (t)) ≤ Π (1.23)

It follows from Eq. 1.23 and the definition of S that f (I ) ⊆ S. By the definition
of k, it follows that for all t ∈ I , for i = 1, 2, . . . , n, fi (t) < k.

The next lemma shows that, because E -processes starting at non-negative points
are uniformly bounded in real time, they can be continued forever along forward real
time.

Lemma 18 (Existence and uniqueness of E -process.) Let E be a finite, natural
event-system of dimension n. Let α ∈ R

n≥0. There exist a simply-connected open set
Ω ⊆ C, an E -process f = ⇐ f1, f2, . . . , fn〉 on Ω and k ∈ R≥0 such that:
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1. R≥0 ⊆ Ω .
2. f (0) = α.
3. For all t ∈ R≥0, for i = 1, 2, . . . , n: fi (t) ∈ R and 0 ≤ fi (t) < k.
4. For all simply-connected open sets Ω̃ ⊆ C, for all E -processes f̃ on Ω̃ , for all

intervals I ⊆ Ω̃ ∩ R≥0, if 0 ∈ I and f̃ (0) = α, then for all t ∈ I , f (t) = f̃ (t).

Proof Claim: There exists k ∈ R≥0 such that for all intervals I ⊆ R≥0 with 0 ∈ I ,
for all real-E -processes h̃ = ⇐h̃1, h̃2, . . . , h̃n〉 on I with h̃(0) = α, for all t ∈ I , for
i = 1, 2, . . . , n: 0 ≤ h̃i (t) ≤ k.

To see this, let I ⊆ R≥0 be an interval such that 0 ∈ I . Let h̃ = ⇐h̃1, h̃2, . . . , h̃n〉
be a real-E -process on I such that h̃(0) = α.

From Lemma 4, there exist an open, simply-connected Ω̃ ⊆ C and an E -process
f̃ = ⇐ f̃1, f̃2, . . . , f̃n〉 on Ω̃ such that:

1. I ⊂ Ω̃

2. For all t ∈ I : f̃ (t) = h̃(t).

From Lemma 17, there exists k ∈ R≥0 such that for all t ∈ I , for i =
1, 2, . . . , n: f̃i (t) ∈ R and 0 ≤ f̃i (t) < k. That is, for all t ∈ I , for i =
1, 2, . . . , n: 0 ≤ h̃i (t) < k. This proves the claim.

Therefore, by [8, p. 397, Corollary], there exists k ∈ R≥0, there is a real-E -
process h = ⇐h1, h2, . . . , hn〉 on R≥0 such that h(0) = α and for all t ∈ R≥0,
for i = 1, 2, . . . , n: 0 ≤ hi (t) < k. By Lemma 4, there exist an open, simply-
connected Ω ⊆ C and an E -process f on Ω such that R≥0 ⊆ Ω and for all
t ∈ R≥0, f (t) = h(t). Therefore, for all t ∈ R≥0, for i = 1, 2, . . . , n: fi (t) ∈ R and
0 ≤ fi (t) < k. Hence, Parts (1, 2, 3) are established. Part(4) follows from Lemma 2.

The next lemma shows that the ω-limit points of E -processes that start at non-
negative points satisfy detailed balance.

Lemma 19 Let E be a finite, natural event-system of dimension n, let Ω ⊆ C be
open and simply-connected, let f be an E -process on Ω , and let q ∈ C

n. If R≥0 ⊆ Ω

and f (0) is a non-negative point and q is an ω-limit point of f , then q ∈ R
n≥0 and

is a strong E -equilibrium point.

Proof Suppose R≥0 ⊆ Ω , f (0) is a non-negative point, S is the set of ω-limit points
of f , and q ∈ S. By Lemma 10 q ∈ R

n≥0. By Lemma 18 there exists an open, simply-
connected Ωq ⊆ C such that R≥0 ⊆ Ωq and an E -process h = ⇐h1, h2, . . . , hn〉 on
Ωq such that h (0) = q.

Let c be a positive strong E -equilibrium point. By Lemma 16.2, gE ,c ( f (t))
is bounded below and, by Lemma 16.4, is monotonically non-increasing on R≥0.
Therefore limt→∞ gE ,c ( f (t)) exists. Since gE ,c is continuous, for all α ∈ S,
gE ,c (α) = limt→∞ gE ,c ( f (t)). By Lemma 10, for all t ∈ R≥0, h(t) ∈ S. Hence,
gE ,c (h (t)) is constant on R≥0.

By Lemma 15 either q is a strong E -equilibrium or there exists a finite event-
system Ê of dimension n̂ ≤ n, an Ê -process ĥ = ⇐ĥ1, ĥ2, . . . , ĥn̂〉 on Ωq , and a
permutation π on {1, 2, . . . , n} satisfying 1–7 of Lemma 15.
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Assume q is not a strong E -equilibrium point. By Lemma 15.6, for i =
1, 2, . . . , n̂, for all t ∈ Ωq , ĥi (t) = hπ−1(i) (t). Let ĉ = ⇐ĉ1, ĉ2, . . . , ĉn̂〉 =
⇐cπ−1(1), cπ−1(2), . . . , cπ−1(n̂)〉. By Lemma 15.3, ĉ is an Ê -strong equilibrium point.

For all v ∈ R>0, let gv be as defined in Eq. 1.19 in Definition 26. Then for all
t ∈ R≥0,

gE ,c (h (t)) − g
Ê ,ĉ

⎫
ĥ (t)

⎬
=

n∑

i=1

gci (hi (t)) −
n̂∑

j=1

gĉ j

⎫
ĥ j (t)

⎬

=
n∑

i=1

gci (hi (t)) −
n̂∑

j=1

gcπ−1( j)

(
hπ−1( j) (t)

)

=
n∑

i=1

gcπ−1(i)

(
hπ−1(i) (t)

) −
n̂∑

j=1

gcπ−1( j)

(
hπ−1( j) (t)

)

=
n∑

i=n̂+1

gcπ−1(i)

(
hπ−1(i) (t)

)

But, by Lemma 15.7, if π (i) >n̂ then hi (t) is constant. Hence, gcπ−1(i)

(
hπ−1(i) (t)

)

is constant for i = n̂ + 1, n̂ + 2, . . . , n, so gE ,c (h (t)) − g
Ê ,ĉ

⎫
ĥ (t)

⎬
is constant.

Since gE ,c (h (t)) and gE ,c (h (t)) − g
Ê ,ĉ

⎫
ĥ (t)

⎬
are both constant, g

Ê ,ĉ

⎫
ĥ (t)

⎬

must be constant. By Lemma 15.5, for all t ∈ R>0, ĥ (t) is a positive point, so by

Definitions 25 and 26, g
Ê ,ĉ

⎫
ĥ (t)

⎬
= g

Ê ,ĉ

⎫
ĥ (t)

⎬
. Since g

Ê ,ĉ

⎫
ĥ (t)

⎬
is constant,

d
dt g

Ê ,ĉ

⎫
ĥ (t)

⎬
= ∇g

Ê ,ĉ

⎫
ĥ (t)

⎬
· pE

⎫
ĥ (t)

⎬
= 0. Then by Theorem 6 and continuity

ĥ (0) must be a strong Ê -equilibrium point, so for all e ∈ Ê , for all t ∈ Ωq ,
e(ĥ(t)) = 0, which contradicts Lemma 15.4. Therefore q is a strong E -equilibrium
point.

The next theorem consolidates our results concerning natural event-systems. It
also establishes that positive strong equilibrium points are locally attractive relative
to their conservation classes. Together with the existence of a Lyapunov function,
this implies that positive strong equilibrium points are asymptotically stable relative
to their conservation classes [11, Theorem 5.57].

Theorem 10 Let E be a finite, natural event-system of dimension n. Let H be a
positive conservation class of E . Then:

1. For all x ∈ H ∩ R
n≥0, there exist k ∈ R≥0, an open, simply-connected Ω ⊆ C

and an E -process f = ⇐ f1, f2, . . . , fn〉 on Ω such that:

a. R≥0 ⊆ Ω .
b. f (0) = x.
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c. For all t ∈ R≥0, f (t) ∈ H ∩ R
n≥0.

d. For all t ∈ R≥0, for i = 1, 2, . . . , n, 0 ≤ fi (t) ≤ k.
e. For all open, simply-connected Ω̃ ⊆ C, for all E -processes f̃ on Ω̃ , if

0 ∈ Ω̃ and f̃ (0) = x then for all intervals I ⊆ Ω̃ ∩ R≥0 such that 0 ∈ I ,
for all t ∈ I : f (t) = f̃ (t).

2. There exists c ∈ H such that:

a. c is a positive strong E -equilibrium point.
b. For all d ∈ H, if d is a positive strong E -equilibrium point, then d = c.
a. There exists U ⊆ H ∩ R

n
>0 such that

i. U is open in H ∩ R
n
>0.

ii. c ∈ U.
iii. For all x ∈ U, there exist an open, simply-connected Ω ⊆ C and an

E -process f on Ω such that
A. R≥0 ⊆ Ω .
B. f (0) = x.
C. f (t) → c as t → ∞ along the positive real line. (i.e. for all

ε ∈ R>0, there exists t0 ∈ R>0 such that for all t ∈ R>t0 : || f (t) −
c||2 < ε.)

Proof 1. Follows from Lemma 18 and Theorem 3.
2a and 2b follow from Theorem 9.
2c Let c ∈ H be a positive strong-E -equilibrium point as in Theorem 10.2a. Let

g = gE ,c. Let T = H ∩ R
n
>0. For all x ∈ H ∩ R

n , for all r ∈ R>0, let

Br (x) = {
y ∈ H ∩ R

n | ‖x − y‖2 < r
}

Sr (x) = {
y ∈ H ∩ R

n | ‖x − y‖2 = r
}

Br (x) = {
y ∈ H ∩ R

n | ‖x − y‖2 ≤ r
}

Since R
n
>0 is open in R

n , it follows that T is open in H ∩ R
n . Therefore, there

exists δ ∈ R>0 such that B2δ(c) ⊆ T . Let δ ∈ R>0 be such that B2δ(c) ⊆ T . It
follows that Bδ(c) ⊆ T .

Since g is continuous and Sδ(c) is compact, let x0 ∈ Sδ(c) be such that g(x0) =
infx∈Sδ(c) g(x). Let U = Bδ(c) ∩ {x ∈ T | g(x) < g(x0)}. It follows that U is open
in T . Since x0 
= c, and by Lemma 16.2, g(x0) = gE ,c(x0) > 0 = g(c). Hence,
c ∈ U .

Let x ∈ U . From Lemma 18, there exist an open, simply-connected Ω ⊂ C and
an E -process f on Ω such that R≥0 ⊆ Ω and f (0) = x .

We claim that for all t ∈ R≥0, f (t) ∈ Bδ(c). Suppose not. Then there exists
t0 ∈ R≥0 such that f (t0) ∈ Sδ(c). From the definition of x0, g(x0) ≤ g( f (t0)).
Since f (0) = x ∈ U , g( f (0)) < g(x0). Hence, g( f (0)) < g( f (t0)), contradicting
Lemma 16.4.

To see that f (t) → c as t → ∞ along the positive real line, suppose not. Then
there exists ε ∈ R>0 such that ε < δ and there exists an increasing sequence of
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real numbers {ti ∈ R>0}i∈Z>0 such that ti → ∞ as i → ∞ and for all i , f (ti ) ∈
Bδ(c)\Bε(c). Since Bδ(c)\Bε(c) is compact, there exists a convergent subsequence.
By Definition 22, the limit of this subsequence is an ω-limit point q of f such
that q ∈ Bδ(c)\Bε(c). From Lemma 19, q is a strong-E -equilibrium point. Since
q ∈ Bδ(c), q ∈ T . From Theorem 9, q = c. Hence, c /∈ Bε(c), a contradiction.

We have established that positive strong equilibrium points are asymptotically
stable relative to their conservation classes. A stronger result would be that if an
E -process starts at a positive point then it asymptotically tends to the positive strong
equilibrium point in its conservation class. Such a result is related to the widely-held
notion that, for systems of chemical reactions, concentrations approach equilibrium.
We have been unable to prove this result. We will now state it as an open problem. This
problem has a long history. It appears to have been first suggested in [10, Lemma 4C],
where it was accompanied by an incorrect proof. The proof was retracted in [9].

Open Problem 1 Let E be a finite, natural event-system of dimension n. Let H be
a positive conservation class of E . Then

1. For all x ∈ H ∩ R
n≥0, there exist k ∈ R≥0, an open, simply-connected Ω ⊆ C

and an E -process f = ⇐ f1, f2, . . . , fn〉 on Ω such that:

a. R≥0 ⊆ Ω .
b. f (0) = x.
c. For all t ∈ R≥0, f (t) ∈ H ∩ R

n≥0.
d. For all t ∈ R≥0, for i = 1, 2, . . . , n, 0 ≤ fi (t) < k.
e. For all open, simply-connected Ω̃ ⊆ C, for all E -processes f̃ on Ω̃ , if

0 ∈ Ω̃ and f̃ (0) = x then for all intervals I ⊆ Ω̃ ∩ R≥0, if 0 ∈ I then for
all t ∈ I : f (t) = f̃ (t).

2. There exists c ∈ H such that:

a. c is a positive strong E -equilibrium point.
b. For all d ∈ H, if d is a positive strong E -equilibrium point, then d = c.
c. For all x ∈ H ∩ R

n
>0, there exist an open, simply-connected Ω ⊆ C and an

E -process f on Ω such that:
i. R≥0 ⊆ Ω .

ii. f (0) = x.
iii. f (t) → c as t → ∞ along the positive real line. (i.e. for all ε ∈ R>0,

there exists t0 ∈ R>0 such that for all t ∈ R>t0 : || f (t) − c||2 < ε.)

In light of Theorem 10, Open Problem 1 is equivalent to the following statement.

Open Problem 2 Let E be a finite, natural event-system of dimension n. Let x ∈
R

n
>0. Then there exists an open, simply-connected Ω ⊆ C, an E -process f on Ω

and a positive strong E -equilibrium point c such that:

1. R≥0 ⊆ Ω .
2. f (0) = x.
3. f (t) → c as t → ∞ along the positive real line. (i.e. for all ε ∈ R>0, there exists

t0 ∈ R>0 such that for all t ∈ R>t0 : || f (t) − c||2 < ε.)
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1.6 Finite Natural Atomic Event-Systems

In this section, we settle Open 1 in the affirmative for the case of finite, natural, atomic
event-systems. The atomic hypothesis appears to be a natural assumption to make
concerning systems of chemical reactions. Therefore, our result may be considered
a validation of the notion in chemistry that concentrations tend to equilibrium. We
will prove the following theorem:

Theorem 11 Let E be a finite, natural, atomic event-system of dimension n. Let
α ∈ R

n
>0. Then there exists an open, simply-connected Ω ⊆ C, an E -process f on

Ω , and a positive strong E -equilibrium point c such that:

1. R≥0 ⊆ Ω ,
2. f (0) = α, and
3. f (t) → c as t → ∞ along the positive real line (i.e. for all ε ∈ R>0, there exists

t0 ∈ R>0 such that for all t ∈ R>t0 : ‖ f (t) − c‖2 < ε).

It follows from Theorem 10 that the point c depends only on the conservation
class of α and not on α itself. That is, two E -processes starting at positive points in
the same conservation class asymptotically converge to the same c.

Implicit in the atomic hypothesis is the idea that atoms are neither created nor
destroyed, but rather are conserved by chemical reactions. Our proof uses a formal
analog of this idea. Recall from Definition 11 that ifE is atomic then CE (M) contains
a unique monomial from MAE .

Definition 27 Let E be a finite, natural, atomic event-system of dimension n.
The atomic decomposition map DE : M{X1,X2,...,Xn} → Z

n≥0 is the function M �→
⇐b1, b2, . . . , bn〉 such that Xb1

1 Xb2
2 · · · Xbn

n ∈ CE (M) ∩ MAE .

The next lemma lists some properties of the atomic decomposition map. Note
that though the event-graph GE is directed, if M and N are monomials and there
exists a path in GE from M to N then there also exists a path in GE from N to M .
Informally, this is because all events are “reversible.”

Lemma 20 Let E be a finite, natural, atomic event-system of dimension n and let
M, N ∈ M{X1,X2,...,Xn}. Then:

1. DE (M) = DE (N ) if and only if CE (M) = CE (N ).
2. DE (M N ) = DE (M) + DE (N ).

Proof Let D = DE .
(1) D(M) = D(N ) = ⇐b1, b2, . . . , bn〉 if and only if Xb1

1 Xb2
2 · · · Xbn

n ∈ CE (M)

and Xb1
1 Xb2

2 · · · Xbn
n ∈ CE (N ). Then CE (M) = CE (N ).

(2) Let D(M) = ⇐b1, b2, . . . , bn〉 and D(N ) = ⇐c1, c2, . . . , cn〉. Then, in
GE there is a path from M to Xb1

1 Xb2
2 · · · Xbn

n ∈ MAE and a path from N to

Xc1
1 Xc2

2 · · · Xcn
n ∈ MAE . It follows that there is a path from M N to Xb1+c1

1 Xb2+c2
2 · · ·

Xbn+cn
n ∈ MAE . Hence D(M N ) = ⇐b1+c1, b2+c2, . . . , bn +cn〉 = D(M)+D(N ).
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Definition 28 Let E be a finite, natural, atomic event-system of dimension n. For
all i ∈ {1, 2, . . . , n}, for all M ∈ M{X1,X2,...,Xn}, DE ,i (M) is the i th component of
DE (M).

Definition 29 Let E be a finite, natural, atomic event-system of dimension n. For
all i ∈ {1, 2, . . . , n} the function κE ,i : Cn → C is given by

⇐z1, z2, . . . , zn〉 �−→
n∑

j=1

DE ,i (X j )z j .

Lemma 21 Let E be a finite, natural, atomic event-system of dimension n. Then for
all i ∈ {1, 2, . . . , n}, the function κE ,i is a conservation law of E .

Proof Let m = |E |, and for j = 1, 2, . . . , m, let σ j , τ j ∈ R>0 and M j , N j ∈
M∞ with M j ≺ N j be such that E = {σ1 M1 − τ1 N1, . . . ,σm Mm − τm Nm}. For
i = 1, 2, . . . , n, let a j,i , b j,i ∈ Z>0 be such that M j = X

a j,1
1 X

a j,2
2 · · · X

a j,n
n and

N j = X
b j,1
1 X

b j,2
2 · · · X

b j,n
n . Let (γ j,i )m×n = ΓE .

Then for j = 1, 2, . . . , m:

σ j M j − τ j N j ∈ E
⇒ M j ∈ CE (N j ) [Definition 9]
⇒ DE (M j ) = DE (N j ) [Lemma 20]
⇒ ∑n

i=1 a j,i DE (Xi ) = ∑n
i=1 b j,i DE (Xi ) [Lemma 20]

⇒ ∑n
i=1(b j,i − a j,i )DE (Xi ) = 0

⇒ ∑n
i=1 γ j,i DE (Xi ) = 0 [Definition 12]

It follows that for all j ∈ {1, 2, . . . , m}, for all k ∈ {1, 2, . . . , n},
n∑

i=1

γ j,i DE ,k(Xi ) = 0

Therefore, for all k ∈ {1, 2, . . . , n}, ΓE ·⇐DE ,k(X1), DE ,k(X2), . . . , DE ,k(Xn)〉T

= 0. Since the vector ⇐DE ,k(X1), DE ,k(X2), . . . , DE ,k(Xn)〉T is in the kernel of ΓE ,
by Theorem 2, κE ,k is a conservation law of E .

Lemma 22 Let E be a finite, natural event-system of dimension n. Let M, N ∈ M∞
and let q ∈ C

n. If M ∈ CE (N ) and q is a strong E -equilibrium point and M(q) = 0,
then N (q) = 0.

Proof Let ⇐v0, v1〉 be an edge in GE . Then there exist e ∈ E and σ, τ ∈ R>0 and
T, U, V ∈ M∞ such that e = σU − τV and v0 = T U and v1 = T V .

Assume v0(q) = 0. Then either T (q) = 0 or U (q) = 0. If T (q) = 0 then
v1(q) = 0. If U (q) = 0 and q is a strong E -equilibrium point, then e(q) = σU (q)−
τV (q) = 0, so V (q) = 0. Therefore v1(q) = 0. The lemma follows by induction.
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We are now ready to prove Theorem 11.

Proof (Proof of Theorem 11) Since α is a positive point, it is in some positive
conservation class H . By Theorem 10:

1. There exists exactly one positive strong E -equilibrium point c ∈ H .
2. There exist an open and simply-connected Ω ⊆ C and an E -process f on Ω

such that R≥0 ⊂ Ω and f (0) = α.
3. For all t ∈ R≥0, f (t) ∈ H ∩ R

n≥0.
4. There exists k ∈ R≥0 such that for i = 1, 2, . . . , n, for all t ∈ R≥0, fi (t) ∈ R

and 0 ≤ fi (t) ≤ k.

Let {t j } j∈Z>0 be an infinite sequence of non-negative reals such that t j → ∞ as
j → ∞. Then { f (t j )} j∈Z>0 is an infinite sequence contained in a compact subset
of R

n , so it must have a convergent subsequence. Let q = ⇐q1, q2, . . . , qn〉 ∈ C
n be

the limit point of a convergent subsequence of { f (t j )} j∈Z>0 . H and R
n≥0 are both

closed in C
n , so q ∈ H ∩ R

n≥0. Since E is natural and q is an ω-limit of f , q must
be a strong E -equilibrium point by Lemma 19.

Assume, for the sake of contradiction, that q /∈ R
n
>0. Let i ∈ {1, 2, . . . , n} be

such that qi = 0. Let N ∈ CE (Xi ) ∩ MAE . Since E is atomic, a unique such N
exists. It follows from the definition of event graph that Xi ∈ CE (N ). By Lemma 22,
N (q) = Xi (q) = qi = 0. It follows that N 
= 1. Hence, there exists Xa ∈ AE such
that Xa divides N and Xa(q) = 0.

For all j ∈ {1, 2, . . . , n} such that DE ,a(X j ) 
= 0, let M j ∈ CE (X j ) ∩ MAE .
Then Xa divides M j , so M j (q) = 0. Again by Lemma 22, X j (q) = M j (q) = 0, so
q j = 0. It follows that for all j ∈ {1, 2, . . . , n} either DE ,a(X j ) = 0 or q j = 0 so

κE ,a(q) =
n∑

j=1

DE ,a(X j )q j = 0.

Since κE ,a is a conservation law of E by Lemma 21 and q is an ω-limit point of f ,
it follows that

κE ,a(α) = 0. (1.24)

For all j , DE ,a(X j ) is nonnegative, and α is a positive point, so for all j ∈
{1, 2, . . . , n}, DE ,a(X j )α j ≥ 0. But DE ,a(Xa) = 1 and αa > 0 so κE ,a(α) > 0,
contradicting Eq. (1.24). Therefore q ∈ R

n
>0. Since c is the unique positive strong

E -equilibrium point in H , c = q.
Let U ⊆ H ∩ R

n
>0 be the open set stated to exist in Theorem 10.2c. Since c is an

ω-limit point of f , there exists t0 ∈ R>0 such that f (t0) ∈ U . Again by Theorem 10,
there exist Ω̃ ⊆ C and an E -process f̃ on Ω̃ such that R≥0 ⊆ Ω̃ and f̃ (0) = f (t0)
and f̃ (t) → c as t → ∞. By Lemma 3, for all t ∈ R≥0, f (t + t0) = f̃ (t). Therefore,
f (t) → c as t → ∞.
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1.7 Lessons Learnt

We have endeavored to place the kinetic theory of chemical reactions on a firm
mathematical foundation and to make the law of mass action available for purely
mathematical consideration.

With regard to chemistry, we have proven that many of the expectations acquired
through empirical study are warranted. In particular:

1. For finite event-systems, the stoichiometric coefficients determine conservation
laws that processes must obey (Theorem 3). In fact, we can show

a. For finite, physical event-systems, the stoichiometric coefficients determine
all linear conservation laws;

b. For finite, natural event-systems, the stoichiometric coefficients determine
all conservation laws.

2. For finite, physical event-systems, a process begun with positive (non-negative)
concentrations will retain positive (non-negative) concentrations through forward
real time where it is defined (Theorem 4). For finite, natural event-systems, a
process begun with positive (non-negative) concentrations will retain positive
(non-negative) concentrations through all forward real time (Theorem 10)—that
is, it will be defined through all forward real time.

3. Finite, natural event-systems must obey the “second law of thermodynam-
ics” (Theorem 7). In addition, the flow of energy is very restrictive—finite, natural
event-systems can contain no energy cycles (Theorem 5).

4. For finite, natural event-systems, every positive conservation class contains ex-
actly one positive equilibrium point. This point is a strong equilibrium point and
is asymptotically stable relative to its conservation class (Theorem 10).

Unfortunately, we, like our predecessors, are unable to settle the problem of
whether a process begun with positive concentrations must approach equilibrium.
We consider this the fundamental open problem in the field (Open Problem 1). For
finite, natural event-systems that obey a mathematical analogue of the atomic hy-
pothesis, we settle Open Problem 1 in the affirmative (Theorem 11). In particular, we
show that for finite, natural, atomic event-systems, every positive conservation class
contains exactly one non-negative equilibrium point. This point is a positive strong
equilibrium point and is globally stable relative to the intersection of its conservation
class with the positive orthant.

In terms of expanding the mathematical aspects of our theory, there are several
potentially fruitful avenues including:

1. Complex-analytic aspects of event-systems. While we exploit some of the
complex-analytic properties of processes in this chapter, we believe that a deeper
investigation along these lines is warranted. For example, if we do not restrict the
domain of a process to be simply-connected, then each component of a process
becomes a complete analytic function in the sense of Weierstrass.
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2. Infinite event-systems. Issues of convergence arise when considering infinite
event-systems. To obtain a satisfactory theory, some constraints may be necessary.
For example, a bound on the maximum degree of events may be worth considering.
It may also be possible to generalize the notion of an atomic event-system to
the infinite-dimensional case in such a way that each atom has an associated
conservation law. One might then restrict initial concentrations to those for which
each conservation law has a finite value. Additional constraints are likely to be
needed as well.

3. Algebraic-geometric aspects of event-systems. Every finite event-system that
generates a prime ideal has a corresponding affine toric variety (as defined in [4,
p.15]). The closed points of this variety are the strong equilibria of the event-
system. Further, every affine toric variety is isomorphic to an affine toric variety
whose ideal is generated by a finite event system. One could generalize event-
systems to allow irreversible reactions. In that case, it appears that the prime ideals
generated by such event-systems are exactly the ideals corresponding to affine
toric varieties.
We can show (proof not provided) that finite, natural, atomic event-systems gen-
erate prime ideals. We are working towards settling Open Problem 1 in the affir-
mative for every finite, natural event-system that generates a prime ideal.
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Chapter 2
Structural Analysis of Biological Networks

Franco Blanchini and Elisa Franco

Abstract We introduce the idea of structural analysis of biological network models.
In general, mathematical representations of molecular systems are affected by para-
metric uncertainty: experimental validation of models is always affected by errors
and intrinsic variability of biological samples. Using uncertain models for predic-
tions is a delicate task. However, given a plausible representation of a system, it is
often possible to reach general analytical conclusions on the system’s admissible
dynamic behaviors, regardless of specific parameter values: in other words, we say
that certain behaviors are structural for a given model. Here we describe a parameter-
free, qualitative modeling framework and we focus on several case studies, showing
how many paradigmatic behaviors such as multistationarity or oscillations can have
a structural nature. We highlight that classical control theory methods are extremely
helpful in investigating structural properties.

Keywords Biological network · Control theory · Structural analysis · Structural
property ·Enzymatic networks · Jacobian ·Eigenvalue ·Chemical reaction network ·
Robustness · Set invariance · Mitogen activated protein kinase (MAPK)

2.1 Introduction

Structural analysis of a dynamical system aims at revealing behavioral patterns that
occur regardless of the adopted parameters, or, at least, for wide parameters ranges.
Due to their parametric variability, biological models are often subject to structural
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analysis, which can be a very useful tool to reveal or rule out potential dynamic
behaviors.

Even for very simple networks, simulations are the most common approach to
structural investigation. For instance, three-node enzymatic networks are considered
in [1], where numerical analysis shows that adaptability is mostly determined by
interconnection topology rather than specific reaction parameters. In [2], through
numerical exploration of the Jacobian eigenvalues for two, three and four node gene
networks, the authors isolate a series of interconnections which are stable, robustly
with respect to the specific parameters; the isolated structures also turn out to be
the most frequent topologies in existing biological networks databases. For other
examples of numerical robustness analysis, see, for instance [3–8].

Analytical approaches to the study of robustness have been proposed in specific
contexts. A series of recent papers [9, 10] focused on input/output robustness of
ODE models for phosphorylation cascades. In particular, the theory of chemical
reaction networks is used in [10] as a powerful tool to demonstrate the property
of absolute concentration robustness. Indeed, the so-called deficiency theorems are
to date some of the most general results to establish robust stability of a chemical
reaction network [11]. Monotonicity is also a structural property, often useful to
demonstrate certain dynamic behaviors in biological models by imposing general
interaction conditions [12, 13]. Robustness has also been investigated in the context
of compartmental models, common in biology and biochemistry [14]. A survey on
the problem of structural stability is proposed in [15].

Here we review and expand on the framework we proposed in [16], where we
suggest a variety of tools for investigation of robust stability, including Lyapunov and
setinvariance methods, and conditions on the network graph. We will assume that
certain standard properties or assumptions are verified by our model, for example
positivity, monotonicity of key interactions, and boundedness. Based on such general
assumptions, we will show how dynamic behaviors can be structurally proved or ruled
out for a range of examples. Our approach does not require numerical simulation
efforts, and we believe that our techniques are instrumental for biological robustness
analysis [17, 18].

The chapter begins with a motivating example, and a brief summary of the analysis
framework in [16]. Then we consider a certain number of “paradigmatic behaviors"
encountered in biochemical systems, including multistationarity, oscillations, and
adaptation; through simple examples, we show how these behaviors can be deduced
analytically without resorting to simulation. As relevant case studies, we consider a
simplified model of the MAPK pathway and the lac Operon. Finally, we prove some
general results on structural stability and boundedness for qualitative models that
satisfy certain graphical conditions.
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2.1.1 Motivating Example: A Qualitative Model for
Transcriptional Repression

Consider a molecular system where a protein, x1, is translated at a certain steady
rate and represses the production of an RNA species x2. In turn, x2 is the binding
target of another RNA species u2 (x2 and u2 bind and form an inactive complex to
be degraded); unbound x2 is translated into protein x3. A standard parametric model
is, for example, in Eq. (2.1) [19].

ẋ1 = k1u1 − k2x1,

ẋ2 = k3
1

K n
1 + xn

1
− k4x2 − k5x2u2, (2.1)

ẋ3 = k6x2 − k7x3.

One might ask what kind of dynamic behaviors can be expected by this system. Since
we cannot analytically solve these ODEs, numerical simulations would provide us
with answers that depend on the parameters we believe are the most accurate in
representing the physical system. Parameters might have been derived by fitting
noisy data, so they are uncertain in practically all cases. The purpose of this chapter,
is to highlight how we can achieve important conclusions on the potential dynamic
behavior of a molecular system without knowing the value of each parameter.

In this specific example, we know that the system parameters are positive and
bounded scalars. The Hill function H(x1) = k3/

(
K n

1 + xn
1

⎪
is a decreasing function,

sufficiently “flat” near the origin (i.e. with zero derivative), with a single flexus
(second derivative has a single zero) [19, 20]. Then, we can say that for given u1 and
u2 constant or varying on a slower timescale than this system, x1 will converge to
its equilibrium x̄1 = k1u1/k2. Similarly, x̄2 = H(x̄1)/(k4 + k5u2), x̄3 = k6 x̄2/k7.
Regardless of the specific parameter values, and therefore robustly, the system is
stable. While the equilibrium value for the protein x̄1 could grow unbounded with
u1, the RNA species x̄2 is always bounded.

2.2 Qualitative Models for Biological Dynamical Systems

The interactions of RNA species, proteins and biochemical ligands are at the basis
of cellular development, growth, and motion. Such interactions are often complex
and impossible to measure quantitatively. Thus, qualitative models, such as boolean
networks and graph based methods, are useful tools when trying to make sense of very
coarse measurements indicating a correlation or static relationship among different
species. When dynamic data are available, it is possible to build qualitative ordinary
differential equation models. Rather than choosing specific functional forms to model
species interactions (such as Hill functions or polynomial terms), one can just make
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general assumptions on the sign, trend and boundednessof said interactions. While
such models are clearly not amenable to data fitting, they still allow us to reach useful
analytical conclusions on the potential dynamic behaviors of a system.

The general class of qualitative biological models we consider are ordinary dif-
ferential equations whose terms belong to four different categories:

ẋi (t) =
∑

j→Ai

ai j (x)x j −
∑

h→Bi

bih(x)xh +
∑

s→Ci

cis(x) +
∑

l→Di

dil(x). (2.2)

Variables xi , i = 1, ..., n are concentrations of species. The different terms in
Eq. (2.2) are associated with a specific biological and physical meaning. Terms
ai j (x)x j are associated with production rates of reagents; typically, these functions
are assumed to be polynomial in their arguments; similarly, terms bih(x)xh model
degradation or conversion rates and are also likely to be polynomial in practical cases.
Finally, terms c(·) and d(·) are associated with monotonic nonlinear terms, respec-
tively non-decreasing and non-increasing; these terms are a qualitative representation
of Michaelis-Menten or Hill functions [20].

Sets Ai , Bi , Ci , Di denote the subsets of variables affecting xi . In general,
more than one species can participate in the same term affecting a given variable.
For instance one may have an interaction 2 ∞ 1 influenced also by species x3:
a12(x1, x3)x2. (The alternative notation choice, a13(x1, x2)x3 would be possible.) To
keep our notation simple, we do not denote external inputs with a different symbol.
Inputs can be easily included as dynamic variables ẋu = wu(xu, t) which are not
affected by other states and have the desired dynamics.

2.2.1 General Assumptions

We denote with x̃i = [x1 x2 . . . xi−1 xi+1 . . . xn] the vector of n − 1 components
complementary to xi (e.g. in IR4 x̃2 = [x1 x3 x4]). Then f (x) = (x̃ j , x j ) for all j .
In the remainder of this chapter, we assume that system (2.2) satisfies the following
assumptions:

A 1 (Smoothness) Functions ai j (·), bih(·), cis(·) and dil(·) are nonnegative, contin-
uously differentiable functions.

A 2 Terms bi j (x)x j = 0, for xi = 0. This means that either i = j or bi j (x̃i , 0) = 0.

A 3 Functions bi j (x)x j and aih(x)xh, are strictly increasing in x j and xh respec-
tively.

A 4 (Saturation) Functions cis(x̃s, xs) are nonnegative and non-decreasing in xs ,
while dil(x̃l , xl) are nonnegative and, respectively, non-decreasing in xl . Moreover
cis(x̃s,⊂) > 0 and dil(x̃l , 0) > 0. Moreover they are globally bounded.
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In view of the nonnegativity assumptions and Assumption 2, our general
model (2.2) is a nonlinear positive system and its investigation will be restricted to
the positive orthant. We note that reducing dynamic interactions to a form bi j (x)x j

and aih(x)xh is always possible under mild assumptions: for instance, if species
j affects species i with a monotonic functional term fi j (x̃ j , x j ), if such term has
a locally bounded derivative, with f (x̃i , 0) = 0, it can always be rewritten as:
fi j (x) = (

fi j (x)/x j
⎪

x j = ai j (x)x j (see [14], Sect. 2.1). Using the general class
of models (2.2) and assumptions A1–A4 as a working template for analysis, we
will focus on a series of paradigmatic dynamic behaviors which can be structurally
identified or ruled out in example systems of interest.

2.2.2 Glossary of Properties

The structural analysis of system (2.2) can be greatly facilitated whenever it is legit-
imate to assume that functions a, b, c, d have certain properties such as positivity,
monotonicity, boundedness and other functional characteristics that can be consid-
ered “qualitative and structural properties” [15]. Through such properties, we can
draw conclusions on the dynamic behaviors of the considered systems without requir-
ing specific knowledge of parameters and without numerical simulations. However,
it is clear that our approach requires more information than other methods, such as
boolean networks and other graph-based frameworks.

For the reader’s convenience, a list of possible properties and their definitions is
given below, for functions of a scalar variable x .

P 1 f (x) = const ∩ 0 is nonnegative-constant.

P 2 f (x) = const > 0 is positive-constant.

P 3 f (x) is sigmoidal: it is non-decreasing, f (0) = f ∈(0) = 0, if 0 < f (⊂) < ⊂
and its derivative has a unique maximum point, f ∈(x) ⇐ f ∈(x̄) for some x̄ > 0.

P 4 f (x) is complementary sigmoidal: it is non-increasing, 0 < f (0), f ∈(0) = 0,
f (⊂) = 0 and its derivative has a unique minimum point. In simple words, f is a
CSM function iff f (0) − f (x) is a sigmoidal function.

P 5 f (x) is constant-sigmoidal, the sum of a sigmoid and a positive constant.

P 6 f (x) is constant-complementary-sigmoidal, the sum of a complementary sig-
moid and a constant.

P 7 f (x) is increasing-asymptotically-constant: f ∈(x) > 0, 0 < f (⊂) < ⊂ and
its derivative is decreasing.

P 8 f (x) is decreasing-asymptotically-null: f ∈(x) < 0, f (⊂) = 0 and its deriva-
tive is increasing.
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Fig. 2.1 Cropped sigmoids
and complementary sigmoids
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P 9 f (x) is decreasing-exactly-null: f ∈(x) < 0, for x < x̄ and f (x) = 0 for x ∩ x̄
for some x̄ > 0.

P 10 f (x) is increasing-asymptotically-unbounded: f ∈(x) > 0, f (⊂) = +⊂.

As an example, the terms d(·) and c(·) in general are associated with Hill functions,
which are sigmoidal and complementary sigmoidal functions. In some cases it will be
extremely convenient to introduce assumptions which are mild in a biological context
but assure a strong simplification of the mathematics. One possible assumption is
that a sigmoid or a complementary sigmoid is cropped (Fig. 2.1). A cropped sigmoid
is exactly constant above a certain threshold x− and exactly null below another
threshold x+. A cropped complementary sigmoid is exactly null above x− and exactly
constant below x+.

These assumptions extend obviously to multivariable functions just by considering
one variable at the time. For instance f (x1, x2) can be a sigmoid in x1 and decreasing
in x2.

2.2.3 Network Graphs

Building a dynamical model for a biological system is often a long and challenging
process. For instance, to reveal dynamic interactions among a pool of genes of inter-
est, biologists may need to selectively knockout genes, set up micro RNA assays,
or integrate fluorescent reporters in the genome. The data derived from such exper-
iments are often noisy and uncertain, which implies that also the estimated model
parameters will be uncertain. However, qualitative trends can be reliably assessed
in the dynamic or steady state correlation of biological quantities. Graphical repre-
sentations of such qualitative trends are often used by biologists, to provide intuition
regarding the network main features.

Building on the general model (2.2), we can associate species to nodes of a graph,
and different qualitative relationships between species with different types of arcs:
terms a, b, c and d can be represented as arcs having different end–arrows, as shown
in Fig. 2.2.

These graphs can be immediately constructed, by knowing the correlation trends
among the species of the network, and serve as a support for the construction and
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Fig. 2.2 Arcs associated to
the different terms of our
general model (2.2), and
example graph
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Fig. 2.3 Graph correspond-
ing to the transcriptional
repression example in Sect.
2.1.1

1 2

3

u1

u2

b11 b22

b33

a32

a21d21

b2u2

analysis of a dynamical model. For simple networks, these graphs may facilitate
structural robustness analysis.
Our main objective is to show that, at least for reasonably simple networks, structural
robust properties can be investigated with simple analytical methods, without the need
for extensive numerical analysis. We suggest a two stage approach:

• Preliminary screening: establish essential information on the network structure,
recognizing which properties (such as P1–P10) pertain to each link.

• Analytical investigation: infer robustness properties based on dynamical systems
tools such as Lyapunov theory, set invariance and linearization.

2.2.4 Example, Continued: Transcriptional Repression

The model for the transcriptional repression system in Eq. (2.1) [19] can be recast in
the general class of models (2.2), and we can immediately draw the corresponding
graph (Fig. 2.3).

ẋ1 = u1 − b11x1, (2.3)

ẋ2 = d21(x1) − b22x2 − b2u2 x2 u2,

ẋ3 = a32x2 − b33x3.

Terms ai j capture first order production rates; bih capture first order degradation
rates. Term d21(x1) is our general substitute for the Hill function [19, 20]; we assume
it is a decreasing function with null derivative at the origin, whose second derivative
has a single zero (flexus), and it is negative on the left of the zero and positive on the
right (such as 1/(1 + x p

1 ), n > 1).
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2.3 Robustness and Structural Properties

We now clarify the concepts of robustness and structural properties and their relations.

Definition 1 Let C be a class of systems and P be a property pertaining such a class.
Given a family F ⊂ C we say that P is robustly verified by F , in short robust, if it
is satisfied by each element of F .

Countless examples can be brought about families F and candidate properties. Sta-
bility of equilibria, for instance, is one of the most investigated structural properties
[2, 13, 21].

When we say structural property we refer to the properties of a family F whose
“structure” has been specified. In our case, the structure of a system is the fact that
it belongs to the general class (2.2), thus it satisfies assumptions 1–3, and it enjoys
properties in the set P1–P8.

A realization is any system with assumed structure and properties achieved by spe-
cific functions which satisfy these assumptions. The set off all realization is a class.
For instance, going back to the transcriptional repression example, the dynamical
system:

ẋ1 = u1 − 2x1,

ẋ2 = 1

1 + xn
1

− x2 − 2x2u2,

ẋ3 = 2x2 − 2x3,

is a realization of the class represented by system (2.3).

Definition 2 A property P is structural for a class C, if any realization satisfies P .

Note that demonstrating a structural property for a system is harder than proving
that it does not hold (the latter typically only requires to show the existence of a
system which exhibits the considered structure but does not satisfy the property).
For example, consider matrices:

A1 =
⎜−a b

−c −d

]

A2 =
⎜−a b

c −d

]

with a, b, c and d positive real parameters. To show that A1 is structurally stable
one has to show that its eigenvalues have negative real part, (in this case, a simple
proof). Conversely to show that A2 is not structurally stable, it is sufficient to find a
realization which is not stable, such as a = 1 b = 1 c = 2 and d = 1.
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STABLE
UNSTABLE

Fig. 2.4 Sketch of a bistable system

2.4 Paradigmatic Structural Properties

We introduce an overview of properties particularly relevant in systems and synthetic
biology. Through simple examples, we highlight how our general approach can be
used to determine analytically the structural nature of such properties.

2.4.1 Multistationarity

A multistationary system is characterized by the presence of several possible equi-
libria. Of particular interest are those systems in which there are three equilibria, of
which two are stable and one unstable, i.e., the system is bistable.

We consider a simple example of a multistationary system (Fig. 2.4):

ẋ1 = x0 + c12(x2) − b11x1 (2.4)

ẋ2 = a21x1 − b22x2

with b11, b22 and a21, positive constants, and with c12(x2) a (non-decreasing) sig-
moidal function. We assume x0 ∩ 0. The following proposition holds:

Proposition 1 For x0 small enough and for b11b22/a21 small enough, system (2.4)
has three equilibria, two stable and one unstable. Conversely, for x0 large or
b11b22/a21 large the system admits a unique, stable equilibrium.

Explanation. Setting ẋ1 = 0 and ẋ2 = 0 we find the equilibria as the roots of the
following equation:

c12(x2) + x0 = b11b22

a21
x2

From Fig. 2.5, it is apparent that if x0 is small and the slope of the line b11b22
a21

x2 is
small, there must be three intersections. Conversely, there is a single intersection for
either x0 or b11b22

a21
large. �

If three intersections (points A, B, C in Fig. 2.5) are present, there are two stable
points A and B and one unstable. This can be seen by inspecting the Jacobian:

J =
⎜−b11 c∈

12(x̄2)

a21 −b22

]

,
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x 2

C

BA

Fig. 2.5 Sketch of the nullclines for system (2.4)

Fig. 2.6 Schematic representation of oscillatory behavior

whose characteristic polynomial is:

p(s) = s2 + (b11 + b22) + b11b22 − a21c∈
12(x̄2).

This second order polynomial is stable if b11b22 − a21c∈
12(x̄2) > 0 or

c∈
12(x2) <

b11b22

a21
x2,

namely the slope of the sigmoidal function must be smaller that the slope of the line
b11b22/a21. This is the case of points A and C , while the condition is violated at
point B.

2.4.2 Oscillations

Oscillations in molecular and chemical networks are a well-studied phenomenon
(see, for instance [22]). Periodicity in molecular concentrations underlies cell divi-
sion, development, and circadian rhythms. One of the first examples considered in the
literature is the well known Lotka Volterra predator-prey system, whose biochemical
implementation has been studied and attempted in the past [23, 24]. In our general
setup, the Lotka Volterra model is (Fig. 2.6):
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ẋ1 = a11x1 − b12(x2)x1

ẋ2 = a21(x1)x2 − b22x2,

where all functions are strictly increasing and asymptotically unbounded in all argu-
ments. The system admits a single non-trivial equilibrium, the solution of equations:

0 = a11 − b12(x2)

0 = a21(x1) − b22.

The Jacobian of this system at the unique equilibrium is:

J =
⎜

0 −b∈
12(x2)x1

a∈
21(x1)x2 0

]

.

This matrix clearly admits pure imaginary eigenvalues for any realization of the
functional terms. Thus, oscillations are a structural property.

In second order systems, sustained oscillations require the presence of a positive
self loop (autocatalytic reactions) represented in this case by the a11 term.

To achieve oscillations without a positive loop reaction, the system must be of at
least third order. For instance the following model

ẋ1 = x10d13(x3) − b11x1 (2.5)

ẋ2 = a21x1 − b22x2,

ẋ3 = a32x2 − b33x3,

where d13(x3) is a complementary sigmoid and the constant are positive, is a candi-
date oscillator. Term x10 is an external input which catalyzes the production d13(x3).

Proposition 2 System (2.5) admits a unique equilibrium. If the minimum value of
the slope d ∈

13(x3) is sufficiently large, there exists an interval (possibly unbounded
from above) of input values x10 inducing an oscillatory transition to instability.

Explanation The unique equilibrium point can be derived by the conditions ẋ1 =
ẋ2 = ẋ3 = 0:

x10d13(x3) = b11b22b33

a21a32
x3.

Figure 2.7 shows the qualitative trend of the nullclines above, and clearly highlights
that they admit a single intersection.

Assume that the slope in the intersection point A is large. The Jacobian of the
system at this equilibrium point is

J =



−b11 0 −μ
a21 −b22 0
0 b32 −b33



 , μ = −x0d ∈
13(x̄3) > 0.
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Fig. 2.7 Qualitative trend
of the nullclines for
system (2.5).

x 2

A

x 3

The corresponding characteristic polynomial is

p(s) = (s + b11)(s + b22)(s + b33)+ a21a32μ = s3 + p2s2 + p1s + p0 + a21a32μ.

This polynomial has a pair of complex conjugate roots with positive real part, as it
can be inferred from the Ruth–Hurwitz table:

+ 1 p1
+ p2 p0 + a21a32μ
? (p1 p2 − a21a32μ)/p2
+ a21a32μ

for large μ there are two sign in the first column of the table, which means that there
are two unstable roots. These roots cannot be real because the polynomial coefficients
are all positive, so unstable roots must be complex conjugate.

In general, we can say there is an “interval" in parameter space in which oscilla-
tions are admissible: for x0 small, the intersection occurs in a region where the slope
of μ = −x0d ∈

13(x̄3) is small, thus there are no changes in the Routh-Hurwitz table
and the system is stable. �

Note that it is not necessarily true that for large x0 the system is unstable; in
addition, the instability interval of x0 may be bounded. In fact, the equilibrium x̄3
increases for large x0, but it may transition to a region where d ∈

13 is very small,
compensating for the increase of x0.

2.4.3 Adaptation

A system is adaptive if, when perturbed by a persistent input signal, its output always
reverts to a neighborhood of its value prior to the perturbation, in general after a
transient [1, 25, 26]. A sketch of this behavior is in Fig. 2.8. Adaptation is said to be
perfect if the system’s output reverts to its exact value prior to the perturbation.
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Fig. 2.8 System capable of adaptation

For small perturbations, linearization analysis suggests that adaptation requires
the presence of a zero in the system’s transfer function. If the system includes a
feedback loop, then the presence of a pole at the origin (integrator) is required [25,
26]. Establishing criteria to detect a system’s capability for adaptation is thus simple.
Consider the system:

ẋ1 = −b21(x1)x2 + x0, (2.6)

ẋ2 = a12x1 − b22x2 + u. (2.7)

We assume all the constants are positive, and that function b21(x1) is a cropped
sigmoid, namely it is strictly increasing and exactly positive constant above a certain
threshold. Term x0 is a constant, and u ∩ 0 is a perturbing input.

Proposition 3 If x0 is sufficiently large and u = 0, then system (2.6) has a stable
equilibrium point. Takin y = x2 as the system’s output, perfect adaptation is achieved
with respect to constant perturbations on u > 0.

Explanation. For u = 0 the equilibrium conditions are b21(x1)x2 = x0 and a12x1 −
b22x2. Therefore the equilibrium x̄1 can be expressed as the solution of:

b21(x1)
a12

b22
x1 = x0. (2.8)

For x0 suitably large, x̄1 increases until it falls in the range where b21 (a cropped
sigmoid) is constant, thus b21(x1) = b21(⊂), and b∈

21(x1) = 0.
In this range, the linearized system is

⎜
ẋ1
ẋ2

] ⎜
0 −b21(x1)

a21 −b22

] ⎜
x1
x2

]

+
⎜

0
1

]

u y = [
0 1

]
⎜

x1
x2

]

with output y(t) = x2(t). The state matrix is a stable matrix, with characteristic
polynomial p(s) = s2 + b22s + b21(x1)a21. The transfer function is w(s) = s/p(s),
has a zero at the origin and thus the system locally exhibits perfect adaptation.

If u > 0 increases as a step input, after a transient the output x2 returns to its
original value x̄2 prior to the perturbation. However, the equilibrium of x1 increases
to a new value such that ā12x1 = b22 x̄2 + u. �
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Fig. 2.9 System presenting a spiking behavior

Fig. 2.10 System presenting a persistent response

2.4.4 Spiking and Persistency: The MAPK Network as a Case Study

Spiking is a phenomenon observed in several molecular networks, in which a system
subject to a step input grows rapidly and subsequently undergoes a relaxation, as
sketched in Fig. 2.9. The relaxation bring the system to a new equilibrium, distinct
from the equilibrium prior to the input stimulation.

Persistency is closely related to bistability: it occurs when a transient input vari-
ation causes the system to switch its output to a new value, which persists upon
removal of the input, as shown in Fig. 2.10.

2.4.4.1 A Qualitative Model of the MAPK Pathway

Experiments show that the mitogen-activated proteinkinase (MAPK) pathway in
PC12 rat neural cells exhibits dynamic behaviors that depend on the growth factor
they are exposed to as an input. The response to Epidermal Growth Factor (EGF)
is a spike followed by a relaxation, while the response to Nerve Growth Factor
(NGF) is persistent. In the latter case, the system can be driven to a new state,
which persists after the stimulus has vanished. Ultimately, these dynamic behaviors
correspond to different cell fates: EFG stimulation induces proliferation, while NGF
stimulation induces differentiation. The biochemical mechanisms responsible for
the different input-dependent dynamic response are still unclear. One hypothesis is
that each input generates a specific interaction topology among the kinases. Starting
from experimental results that support this hypothesis [27], in our prevous work
we considered the two network topologies, and we derived and analyzed qualitative
models which exhibit structural properties [28]. Here we use a simplified, third
order model for the pathway. We refer the reader to [28] for a more detailed model
and its derivation. In our reduced order model, we neglect double-phosphorylation
dynamics, and model the active concentration of each MAPK protein with a single
state variable. We also neglect mass conservation assumptions regarding the total
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amount of MAPK protein [13, 16].

MAP3K: ẋ1 = u(x3, x0) − b11x1 (2.9)

MAP2K: ẋ2 = c21(x1) − b22x2 (2.10)

MAP1K: ẋ3 = c32(x2) − b33x3 (2.11)

Output: y = x3 (2.12)

We assume: c21 and c32 are strictly increasing asymptotically constant, i.e. c21(⊂) =
ĉ21 < ⊂ c32(⊂) = ĉ32 < ⊂, and null at the origin c21(0) = c32(0) = 0. Terms bii

are positive constants. In essence, this model captures the fact that each protein in the
cascade is activated by its predecessor in the chain; in the absence of term u(x3, x0),
the system would be an open loop, monotonic cascade [12]. Term u(x3, x0) is a
feedback term modulated by an external input x0, and we consider two cases:

EGF u = a10(x3)x0, where a10(x3) is a complementary sigmoid, exactly constant
below a threshold σ and exactly null over a threshold τ. This configuration is
characterized by the presence of a negative feedback loop.

NGF u = a10(x3) + x0, where a10(x3) is a sigmoid, exactly null below a threshold
σ and exactly constant over a threshold τ. This configuration is characterized
by the presence of a positive feedback loop.

Under these assumptions, we show that in the EFG configuration the output exhibits
a spike, while in the NGF configuration the output is persistent.

2.4.5 The EGF-Induced Pathway and Its Spiking Behavior

The system in this configuration admits a single equilibrium; this can be shown as
for the third order oscillator model (2.5).

Consider c21(⊂) = ĉ21, c32(⊂) = ĉ32, the saturation value. Let x̂2 = ĉ21/b22
be the corresponding “saturation”, limit value of x2. Let, in turn,

x̂3 = c32(x̂2)/b33

be the limit value of x3. For large, increasing values of the input x0, the variable x̂1
increases and the equilibrium values of x2 and x3 approach x̂2 and x̂3. The following
proposition holds:

Proposition 4 Assume that the limit value for x3 is x̂3 > τ. Then, for x0 constant
sufficiently large, and for xi (0) = 0, we have: (a) First, x3 grows arbitrarily close to
x̂3. (b) Subsequently, x3 relaxes below τ.

Proof Since a10(x3) is constant for a small values of x3, if x0 is large then by
continuity x1 can grow arbitrarily large in an arbitrarily small amount of time α > 0.
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Then, considering the time interval [α , T ] where T is arbitrarily large, and given an
arbitrary μ > 0, by picking x1(α ) sufficiently large we can guarantee:

x1(t) ∩ μ for t → [α , T ]. (2.13)

In fact, we have ẋ1 ∩ −b11x1, thus x1(t) ∩ x1(α )e−b11t on [α , T ]; therefore, picking
a large initial value x1(α ), equation (2.13) is verified. Thus, we can guarantee that
variables x2 and x3 have values arbitrarily close to the upper limit x̂2 and x̂3, being
μ and T arbitrarily large.

If x3 increases, at some point in time the condition a10(x3) = 0 is met. This
“switches off” the first variable, whose dynamics become: ẋ1 = −b11x1, thus x1
starts decreasing; variables x2 and x3 follow the same pattern. These concentrations
decrease until x3 ⇐ τ. �

2.4.6 The NGF-Induced Pathway Is an Example of Persistent
Network

Let us now define a10(⊂) = ā10 as a saturation value. If x̄3 is greater than the
threshold τ, then a10(x̄3) = ā10; then, for x0 = 0 we can find the equilibria from the
following conditions:

0 = a10 − b11 x̄1, (2.14)

0 = c21(x̄1) − b22 x̄2, (2.15)

0 = c32(x̄2) − b33 x̄3, (2.16)

which yield x̄1 = ā10/b11; x̄2 = c21(x̄1)/b22; x̄3 = c32(x̄2)/b33. The assumption
x̄3 > τ means that the positive feedback given by the term ā10 is able to sustain this
positive equilibrium.

Now consider the case where the input x0 becomes arbitrarily large. Thus, x̄1
becomes arbitrarily large. Defining ĉ21 = c21(⊂), we find the corresponding limit
values for the steady states: x̂2 = ĉ21/b22 and x̂3 = c32(x̂2)/b33. It is immediate
that x̂1 ∩ x̄1, x̂2 ∩ x̄2, x̂3 ∩ x̄3, because the “hat” equilibrium values are achieved
by means of an arbitrarily large input x0, while the “bar” values are achieved by the
bounded input ā10.

Proposition 5 Assume that x̄3 > τ and that the previous inequalities are strict:
x̂1 > x̄1, x̂2 > x̄2, x̂3 > x̄3. Then, for xi (0) = 0 the following happens:

(a) If x0 is constant and sufficiently large, and it is applied for a sufficiently long
time interval [0, T ], then x3 grows arbitrary close to x̂3.

(b) If, after time T , the input signal x0 is eliminated (x0 = 0), then x3 remains above
τ.

(c) Finally, x3 converges to x̄3 from above.



2 Structural Analysis of Biological Networks 63

Proof We have seen that when x0 = 0, x̄1, x̄2, x̄3 are admissible equilibria of the
system. Exactly as done in the EGF-driven network example, we can show that for
a sufficiently large input x0, variables x1 x2 and x3 can grow arbitrarily close to x̂1,
x̂2 and x̂3, above x̄1, x̄2 and x̄3.

We only need to show that if all xi (t) grow above the corresponding x̄i , then they
will not reach values below x̄i after x0 is removed.

We begin by defining the new variables zi = xi − x̄i ; then, żi = ẋi given by
equations (2.9)–(2.11). After x0 is removed, the input is a10(x3); in addition, since
we assume x3 ∩ x̄3 ∩ τ (so z3 ∩ 0), we have a10(x3) = ā10. If we consider also the
steady state equations (2.14)–(2.16), we get

ż1 = −b11z1 (2.17)

ż2 = c21(z1 + x̄1) − c21(x̄1) − b22z2 (2.18)

ż3 = c32(z2 + z̄2) − c32(z̄2) − b33z3 (2.19)

This is a positive system in the z variables. Because we assumed that at some point
zi (α ) > 0 (prior to the removal of x0), we can immediately see that this situation is
permanent.

To prove convergence, note that z1 goes to zero in view of Eq. (2.17). Then
c21(z1 + x̄1) − c21(x̄1) goes to 0, so z2 converges to 0. For the same reason, z3
converges to 0. �

2.5 Structural Boundedness and Stability

Our qualitative modeling framework is generally described by Eq. (2.2):

ẋi (t) =
∑

j→Ai

ai j (x)x j −
∑

h→Bi

bih(x)xh +
∑

s→Ci

cis(x) +
∑

l→Di

dil(x).

The general assumptions we made on functions a, b, c, and d guarantee non-
negativity of the states, which is a required feature to meaningfully model concentra-
tions of molecules. Another important feature of most biochemical system models
is boundedness of their states (possibly with the exception of pathological cases). In
the following, we outline additional assumptions and consequent results regarding
structural boundedness of the solutions to our general model (2.2).

2.5.1 Structural Boundedness

Consider the case in which states in model (2.2) are dissipative, i.e. the dynamics of
each variable include a degradation term −bii (x)xi . We also assume that
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bii (x) > γi > 0.

Obviously, this property alone does not assure the global boundedness of the solution.
However, if no unbounded a-terms were present, it would be simple to show that the
solutions are globally bounded.

Let us assume that each ai j (x) term is bounded by a positive constant 0 ⇐ ai j (x) <
āi j . Then, we ask under what conditions we can assure structural boundedness of
the solutions. We build a graph G(A) associated with the ai j terms, where there is a
directed arc from node j to node i for every term ai j . Then, the following theorem
holds.

Theorem 1 The system solution is structurally globally bounded for any initial
condition x(0) ∩ 0 if and only if G(A) has no cycles (including self-cycles) including
aii terms.

In other words, structural boundedness is guaranteed if and only if there is no auto-
catalysis in the system.

Proof We first show that the condition is structurally necessary. Assume, ab absurdo,
that there is a cycle which includes a term ai j . Without restriction assume that the
cycle if formed by the first r nodes 1,2,…,r , forming a sequence a12, a23, …, ar1;
also, assume that each term ai j is lower bounded by a constant β. We finally assume
that the sum of all bik terms appearing in the first r equations is upper bounded
by σ:

r∑

i=1

∑

k→Bi

bik ⇐ σ.

Consider the Lyapunov-like function:

V (x1, x2, . . . , xr ) = x1 + x2 + · · · + xr ,

and its derivative

V̇ =
r∑

i=1

ẋi ∩
r∑

i=1



ai,i+1xi+1 −
∑

k→Bi

bik xk



 ∩
r∑

i=1

ai,i+1xi+1 − σ

r∑

i=1

xi

∩ (rβ − σ)

r∑

i=1

xi = (rβ − σ)V .

Then, if σ < rβ, V increases and the equilibrium is not stable. Thus, structural
boundedness cannot hold.

Let us now consider the sufficiency part. If there are no cycles in G(A), then there
exists necessarily a node which is a root, i.e. its dynamics do not include ai j terms.
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Let us assume, without loss of generality, that node x1 does not have any a1 j term.
Then:

ẋ1 = −
∑

h→B1

bih(x)xh +
∑

s→C1

c1s(x) +
∑

l→D1

d1l(x)

⇐ −γ1x1 +
∑

s→C1

c1s(x) +
∑

l→D1

d1l(x)

Since the c and d terms are bounded, then the solution x1 is bounded; without loss
of generality, assume x1 ⇐ τ1, τ1 > 0.

If x1 is bounded, then all terms (if any) of type ak1(x)x1 in other equations remain
bounded: ak1(x)x1 ⇐ ā j1τ1.

Let us consider the other nodes x2, x3, . . . , xn . Since there are no cycles including
ai j terms, there is at least one variable whose equation has either no a terms, or has
only ak1(x)x1 terms from x1, which are bounded. Let us assume node x2 fulfills this
statement. Then:

ẋ2 = ai1(x)x1 −
∑

h→B2

bih(x)xh −
∑

h→B2

bih(x)xh +
∑

s→C2

c2s(x) +
∑

l→D2

d2l(x)

⇐ −γ2x2 + ā j1τ1 +
∑

s→C2

c2s(x) +
∑

l→D2

d2l(x).

The above inequality implies boundedness of the solution x2.
The proof can be concluded recursively, by noticing that there must exists a new

variable, say x3 whose equation includes either no ai j terms or only bounded a3 j

terms coming from x1 and x2, and so on. �

The following corollary holds.

Corollary 1 The solution to the general model (2.2) is bounded if and only there
are no ai j terms and all bii terms are lower bounded by a positive constant, bii > γi .

This corollary highligths that boundedness is structurally assured in systems where
each species is degraded by terms of at least first order, and all the interaction terms
are bounded.

Example 1 As an example we consider the well known lac Operon genetic network.
We will propose and analyze a qualitative model or class: the classical model pro-
posed in [29] is a realization whitin this class. The state variables of our model are: the
concentration of nonfunctional permease protein x1; the concentration of functional
permease protein x2; the concentration of inducer (allolactose) inside the cell x3,
and the concentration of γ-galactosidase x4, a quantity that can be experimentally
measured. The concentration of inducer external to the cell is here denoted as an
input function u. A model for this system can be written in the following form (see
[16] for details).
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Fig. 2.11 Graph of the lac
operon network

1 2

3 4u

b11 b22

b33 b44

a32

b32

a21

c13

c43
c3u

ẋ1 = c13(x3) − b11x1,

ẋ2 = a21x1 − b22x2, (2.20)

ẋ3 = a32(u)x2 − b32(x3)x2 + c3uu − b33x3,

ẋ4 = c43(x3) − b44x4,

where c13(x3) = f1(x3), b11 = ω1, a21 = γ1, b22 = ω2, a32(u) = f2(u) =,
b32(x3) = f3(x3), c3u = γ2, b33 = ω3, c43(x3) = ∂ f1(x3) and b44 = ω4. This
corresponds to the network in Fig. 2.11.

We assume that c13 is constant-sigmoidal, a32(u) and b32(x3) are increasing-
asymptotically-constant, and the remaining functions a21, b11, b22 and b33 are
positive-constant.

The arcs associated to ai j terms in Fig. 2.11 do not form any cycles. Each node
is dissipative, therefore the solution is structurally bounded.

The requirement of having no ai j cycles can be strong, especially in chemical
reaction networks [11]. However, the conditions in Theorem 1 are necessary and
sufficient; we believe it is unlikely that stronger results can be found without assuming
bounds on the dynamic terms.

Note that Theorem 1 only requires that bounds on the functional terms exist, while
their specifc values need not be known. If such bounds are known, we obtain less
restrictive conditions. Note that model (2.2) can be written compactly as:

ẋ(t) = A(x(t))x(t) − B(x(t))x(t) + C(x(t)) + D(x(t)), (2.21)

or as:
ẋ(t) = M(x(t))x(t) + C(x(t)) + D(x(t)), (2.22)

where M(x(t)) = A(x(t)) − B(x(t)). If the elements of matrix M(x(t)) are con-
strained in a closed (even better if compact) set, M(·) → M, and if and if we can
demonstrate exponential stability of the associated differential inclusion [30]

ẋ → Mx,
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then we can show the overall boundednessof the systems’ solution. To prove bound-
edness it is convenient to exclude a neighborhood of the origin: Nε = {x : xi ∩ ε}.
Theorem 2 Assume that M(x) → M for x → N and assume that the differential
inclusion is bounded and admits a positively homogeneous function V (x) as Lya-
punov function

V̇ (x) = ≺V (x)Mx ⇐ −∂V (x)

for all M → M. Then the system solution is bounded.

Proof The proof is an immediate consequence of the fact that the trajectories of the
original linear systems are a subset of the possible trajectories of the linear differential
inclusions.

An exponentially stable differential inclusion has bounded solutions if perturbed
by bounded terms

ẋ → Mx + C + D

as in our case. �

Example 2 Consider a biological network composed by two proteins x1 and x2:

ẋ1 = +c10 + a12(x1)x2 − b11x1,

ẋ2 = +c20 − b21(x2)x1 − b22x2.

In this model, we suppose that both x1 and x2 are produced in active form at some
constant rates (terms c10 and c20), but they are inactivated, or degraded, at some speed
proportional to their concentration (terms b11 and b22). However, suppose protein
x1 is activated by binding to x2; this interaction in turn inactivates x2: this pathway
is modeled by terms a12(x1) and b21(x2), which we assume are sigmoidal functions
asymptotically constant, consistently with a cooperative, Hill function-type protein
interaction.

We can rewrite the above equations as:

⎜
ẋ1
ẋ2

]

=
⎜ −b11 ā12 + ω12

−b̄21 − ω21 −b22

] ⎜
x1
x2

]

+
⎜

c10
c20

]

,

where ω12 = a12(x1) − ā12 and ω21 = a21(x1) − ā21 and where ā12 = a12(⊂) and
b̄21 = b21(⊂).

If the region near the origin is delimited by a “radius” ε sufficiently large, the
bounds on ω12 and ω21 can be taken arbitrarily tight.

So inside Nε , for large ε > 0, we may assume |ω12| ⇐ δ and |ω21| ⇐ δ with small
δ. Since the nominal system, for ω12 = ω21 = 0 is quadratically stable, it admits a
quadratic Lyapunov function, inside Nε , this is a Lyanpunov function. Inside Nε this
is a Lyapunov function for the system because the contribution of terms ω12x2 and
ω21x1 is negligible.
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This technique allows us to prove boundedness, but not stability of the original
system. Boundedness does imply the existence of equilibria, but their stability may
be or may be not verified.

2.5.2 Structural Stability of Equilibria

If we can establish boundedness of a system, the existence of equilibria is automati-
cally assured. Then, we can ask two main questions:

• How many equilibria are present?
• Which equilibria are stable?

Several results from the so-called degree theory help us find answers; see, for
instance, [31–34]. Here, we recall one particularly useful theorem:

Theorem 3 Assume that all the system’s equilibria x̄ (i) are strictly positive, and
assume that none of them is degenerate, i.e. the Jacobian evaluated at each equilib-
rium has non-zero determinant. Then:

∑

i

sign det
[
−J

⎟
x̄ (i)

⎛⎝
= 1

How does this theorem help us answer our questions? We describe informally
three cases that we can immediately discriminate as a consequence of this theorem.
Suppose analytical expressions for the Jacobian are available, as a function of a
generic equilibrium point.

1. If we can establish that the determinant of −J is always positive, regardless of
specific values for parameters or equilibria, then there is a unique equilibrium.

2. If at an equilibrium point we have det[−J ] < 0, then such equilibrium must
be unstable (because the characteristic polynomial has a negative constant term
p0 = det[−J ].) A consequence of Theorem 3 is that other equilibria must exist;
if they are not degenerate, then there must be at least two equilibria.

3. If there are two stable equilibria, then necessarily another unstable stable equi-
librium must exist.

In a qualitative/parameter-free context, general statements about stability of equi-
libria are difficult to demonstrate. If we restrict our attention to specific classes of
systems, however, we can find structural stability results. We mention a few, well
known examples:

• Chemical reaction networks modeled with mass action kinetics: the zero-deficiency
theorem [11] guarantees uniqueness of the equilibrium and asymptotic stability
of networks satisfying specific structural conditions that do not depend on the
reaction rate parameters.
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• Monotone systems: if a system is monotone [35], then its Jacobian has nonneg-
ative non-diagonal entries, in other words it is a Metzler matrix. For a Metzler
matrix, stability is equivalent to having a characteristic polynomial with all pos-
itive coefficients. This property is easy to check analytically in systems of small
dimension.

• Planar systems. Plenty of straightforward methods are available to find structural
stability conditions.

We conclude this section with a paradox:

Difficulty: Structural stability investigation is, generally speaking, an unsolved prob-
lem which typically requires a case-by-case study.

Interest: Stability is generally of little interest to biologists, because many natural
behaviors in biology are known to be (obviously) stable. In other words,
formal proofs of stability are not very informative. However, lack of sta-
bility of an equilibrium can be a hallmark for other interesting behaviors,
such as multistationarity and periodicity.

2.6 Conclusions

A property is structurally robust if it is satisfied by a class of models regardless
of the specific expressions adopted or of the parameter values in the model. This
chapter highlights that qualitative, parameter-free models of molecular networks can
be formulated by making general assumptions on the sign, trend and boundedness of
the species interactions. Linearization, Lyapunov methods, invariant sets and graph-
ical tests are examples of classical control theoretic tools that can be successfully
employed to analize such qualitative models, often reaching strong conclusions on
their admissible dynamic behavior.

Robustness is often tested through simulations, at the price of exhaustive cam-
paigns of numerical trials and, more importantly, with no theoretical guarantee of
robustness. We are far from claiming that numerical simulations are useless: they are
useful, for instance, to falsify “robustness conjectures” by finding suitable numerical
counterexamples. In addition, for very complex systems in which analytical tools
cannot be employed, simulations are the only viable method for analysis. A limit of
our qualitative modeling and analysis approach is its lack of systematic scalability to
complex models. However, the techniques we employed can be successfully used to
study a large class of low dimension systems, and are an important complementary
tool to simulations and experiments.
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Chapter 3
Guaranteeing Spatial Uniformity
in Reaction-Diffusion Systems Using Weighted
L2 Norm Contractions

Zahra Aminzare, Yusef Shafi, Murat Arcak and Eduardo D. Sontag

Abstract We present conditions that guarantee spatial uniformity of the solutions
of reaction-diffusion partial differential equations. These equations are of central
importance to several diverse application fields concerned with pattern formation.
The conditions make use of the Jacobian matrix and Neumann eigenvalues of elliptic
operators on the given spatial domain. We present analogous conditions that apply
to the solutions of diffusively-coupled networks of ordinary differential equations.
We derive numerical tests making use of linear matrix inequalities that are useful
in certifying these conditions. We discuss examples relevant to enzymatic cell sig-
naling and biological oscillators. From a systems biology perspective, the paper’s
main contributions are unified verifiable relaxed conditions that guarantee spatial
uniformity of biological processes.
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3.1 Introduction

This paper studies reaction-diffusion partial differential equations (PDEs) of the form

σu

σt
(τ, t) = F(u(τ, t), t) + Lu(τ, t), (3.1)

where L denotes a diffusion operator. We prove a two-part result that addresses the
question of how the stability of solutions of the PDE relates to stability of solutions of
the underlying ordinary differential equation (ODE) dx

dt (t) = F(x(t), t). The study of
this question is central to many application fields concerned with pattern formation,
ranging from biology (morphogenesis developmental biology, species competition
and cooperation in ecology, epidemiology) [8, 9, 23] and enzymatic reactions in
chemical engineering [24] to spatio-temporal dynamics in semiconductors [21].

The first part of our result shows that when solutions of the ODE have a certain
contraction property, namely μ2,Q(JF (u, t)) < 0 uniformly on u and t , where μ2,Q

is a logarithmic norm (matrix measure) associated to a Q-weighted L2 norm, the
associated PDE, subject to no-flux (Neumann) boundary conditions, enjoys a similar
property. This result complements a similar result shown in [1] which, while allowing
norms L p with p not necessarily equal to 2, had the restriction that it only applied
to diagonal matrices Q and L was the standard Laplacian. Logarithmic norm or
“contraction” approaches arose in the dynamical systems literature [12, 15, 17], and
were extended and much further developed in work by Slotine e.g. [16]; see also [18]
for historical comments.

The second, and complementary, part of our result shows that when μ2,Q(J f

(u, t) − Λ2) < 0, where Λ2 is a nonnegative diagonal matrix whose entries are the
second smallest Neumann eigenvalues of the diffusion operators in (1), the solutions
become spatially homogeneous as t → ∞. This result generalizes the previous
work [3] to allow for spatially-varying diffusion, and makes a contraction principle
implicitly used in [3] explicit.

We next turn to compartmental ordinary differential equations (ODEs), where
each compartment represents a well-mixed spatial domain wherein corresponding
components in adjacent compartments are coupled by diffusion [11], and present
spatial uniformity conditions analogous to those derived for the PDE case. We then
derive convex linear matrix inequality [4] tests as in [3] that can be used to certify the
conditions. Our discussion is punctuated by several examples of biological interest.
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3.2 Spatial Uniformity in Reaction-Diffusion PDEs

In this section, we study the reaction-diffusion PDE (3.1), subject to a Neumann
boundary condition:

⊂ui · n(α, t) = 0 ∩α ∈ σΩ, ∩t ∈ [0,∞). (3.2)

Assumption 1 In (3.1)–(3.2) we assume:

• Ω is a bounded domain in R
m with smooth boundary σΩ and outward normal n.

• F : V × [0,∞) → R
n is a (globally) Lipschitz and twice continuously differ-

entiable vector field with respect to x , and continuous with respect to t , with
components Fi :

F(x, t) = (F1(x, t), . . . , Fn(x, t))T

for some functions Fi : V × [0,∞) → R, where V is a convex subset of R
n .

•
L = diag (L1, . . . ,Ln) , and Lu = (L1u1, . . . ,Lnun)T ,

where for each i = 1, . . . , n,

(Li ui )(τ, t) = ⊂ · (Ai (τ)⊂ui (τ, t)) , (3.3)

and Ai : Ω → R
m×m is symmetric and there exist γi ,βi > 0 such that for all

τ ∈ Ω and ω = (ω1, . . . , ωm)T ∈ R
m ,

γi |ω|2 ⇐ ωT Ai (τ)ω ⇐ βi |ω|2. (3.4)

Suppose that L has r ⇐ n distinct elements L1, . . . , Lr (up to a scalar). Namely,

diag
(L1, . . . ,Ln1 , . . . ,Ln−nr +1, . . . ,Ln

⎪ =
diag

(
d11, . . . , d1n1 , . . . , dr1, . . . , drnr

⎪
diag (L1, . . . , L1, . . . , Lr , . . . , Lr ) ,

where n1 + · · · + nr = n. For each i = 1, . . . , r , let Di be an n × n diagonal matrix
with entries [Di ]ni−1+ j,ni−1+ j = di j , for j = 1, . . . , ni , n0 = 0 elsewhere. Also for
each i = 1, . . . , r , let Li be an n × n diagonal matrix with identical entries Li . Then
L can be written as below,

L =
r∑

i=1

DiLi . (3.5)

Some times it is easier to use expression (3.5) for L to prove theorems in this paper.
For a fixed i ∈ {1, . . . , n}, let ∂k

i be the kth Neumann eigenvalue of the operator
−Li as in (3.3) (∂1

i = 0, ∂k
i > 0 for k > 1, and ∂k

i → ∞ as k → ∞) and ek
i be the

corresponding normalized eigenfunction:
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⊂ ·
⎜

Ai (τ)⊂ek
i (τ)

)
= −∂k

i ek
i (τ), τ ∈ Ω

⊂ek
i (α) · n = 0, α ∈ σΩ (3.6)

Also for each i = 1, . . . , r , let λk
i be the kth Neumann eigenvalue of −Li . Note

that

Λk =
r∑

i=1

λk
i Di , where Λk = diag

⎜
∂k

1, . . . ,∂
k
n

)
. (3.7)

For each k ∈ {1, 2, . . .}, let Ek
i be the subspace spanned by the first kth eigenfunc-

tions:
Ek

i = 〈e1
i , . . . , ek

i ≺.

Now define the map Πk,i on L2(Ω) as follows:

Πk,i (v) = v − εk,i (v),

where εk,i is the orthogonal projection map onto Ek−1
i , and we define E0

i = 0.

Namely for any v = ∑∞
j=1(v, e j

i )e j
i ,

εk,i (v) =
k−1∑

j=1

(v, e j
i )e j

i and Πk,i (v) =
∞∑

j=k

(v, e j
i )e j

i , for k > 1,

ε1,i (v) = 0, and Π1,i (v) = v; (3.8)

where (x, y) := ∫
xT y. Note that for any i = 1, . . . , n,

Π2,i (v) = v − 1

|Ω|
∫

Ω

v. (3.9)

For any v = (v1, . . . , vn), define Πk as follows:

Πk(v) = v − εk(v) where εk(v) = (
εk,1(v1), . . . ,εk,n(vn)

⎪T
.

Observe that εk(v) is the orthogonal projection map onto Ek−1
1 × · · · × Ek−1

n .

Definition 1 By a solution of the PDE

σu

σt
(τ, t) = F(u(τ, t), t) + Lu(τ, t),

⊂ui · n(α, t) = 0 ∩α ∈ σΩ, ∩t ∈ [0,∞)

on an interval [0, T ), where 0 < T ⇐ ∞, we mean a function u = (u1, . . . , un)T ,
with u : Ω̄ × [0, T ) → V , such that:
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1. for each τ ∈ Ω̄ , u(τ, ·) is continuously differentiable;
2. for each t ∈ [0, T ), u(·, t) is in Y, where Y is defined as the following set:

{

v = (v1, . . . , vn)T : Ω̄ → V | vi ∈ C2
R

(
Ω̄
⎪
,

σvi

σn
(α) = 0, ∩α ∈ σΩ ∩i

}

,

where C2
R

(
Ω̄
⎪

is the set of twice continuously differentiable functions Ω̄ → R.
3. for each τ ∈ Ω̄ , and each t ∈ [0, T ), u satisfies the above PDE.

Theorems on existence and uniqueness of solutions for PDEs such as (3.1)–(3.2)
can be found in standard references, e.g. [5, 22].

For any invertible matrix Q, and any 1 ⇐ p ⇐ ∞, and continuous u : Ω → R
n ,

we denote the weighted L p,Q norm, ‖u‖p,Q = ‖Qu‖p, where (Qu)(τ) = Qu(τ)

and ‖ · ‖p indicates the norm in L p(Ω, R
n).

Definition 2 Let (X, ‖ · ‖X ) be a finite dimensional normed vector space over R or
C. The space L(X, X) of linear transformations M : X → X is also a normed vector
space with the induced operator norm

‖M‖X→X = sup
‖x‖X =1

‖Mx‖X .

The logarithmic norm μX (·) induced by ‖ · ‖X is defined as the directional derivative
of the matrix norm, that is,

μX (M) = lim
h→0+

1

h
(‖I + hM‖X→X − 1) ,

where I is the identity operator on X .

In [1], we proved the following lemma:

Lemma 1 Consider the PDE system (3.1)–(3.2), with L = DΔ, where D =
diag(d1, . . . , dn). In addition suppose Assumption 1 holds. For some 1 ⇐ p ⇐ ∞,
and a positive diagonal matrix Q, let

μ := sup
(x,t)∈V ×[0,∞)

μp,Q(JF (x, t)).

(We are using μp,Q to denote the logarithmic norm associated to the norm ‖Qv‖p

in R
n .) Then for any two solutions u and v of (3.1)–(3.2), we have

‖u(·, t) − v(·, t)‖p,Q ⇐ eμt‖u(·, 0) − v(·, 0)‖p,Q .

The first part of the following theorem is a generalization of Lemma 1 to non-
diagonal P for the special case of p = 2. The second part of the theorem is a
generalization of Theorem 1 from [3] to spatially-varying diffusion.
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Theorem 1 Consider the reaction-diffusion system (3.1)–(3.2) and suppose Assump-
tion 1 holds. For k = 1, 2, let

μk := sup
(x,t)∈V ×[0,∞)

μ2,P (JF (x, t) − Λk),

for a positive symmetric matrix P such that for any i = 1, . . . , r:

P2 Di + Di P2 > 0. (3.10)

Then for any two solutions, namely u and v, of (3.1)–(3.2), we have:

‖u(·, t) − v(·, t)‖2,P ⇐ eμ1t‖u(·, 0) − v(·, 0)‖2,P . (3.11)

In addition
‖Π2(u(·, t))‖2,P ⇐ eμ2t‖Π2(u(·, 0))‖2,P . (3.12)

Before proving the main theorem of this section, Theorem 1, we first prove the
following:

Lemma 2 Suppose that P is a positive definite, symmetric matrix and M is an
arbitrary matrix.

1. If μ2,P (M) = μ, then QM + MT Q ⇐ 2μQ, where Q = P2.
2. If for some Q = QT > 0, QM + MT Q ⇐ 2μQ, then there exists P = PT > 0

such that P2 = Q and μ2,P (M) ⇐ μ.

Proof First suppose μ2,P (M) = μ. By definition of μ:

1

2

(

P M P−1 +
⎜

P M P−1
)T

)

⇐ μI.

Since P is symmetric, so is P−1, so

P M P−1 + P−1 MT P ⇐ 2μI.

Now multiplying the last inequality by P on the right and the left, we get:

P2 M + MT P2 ⇐ 2μP2.

This proves 1. Now assume that for some Q = QT > 0, QM + MT Q ⇐ 2μQ.
Since Q > 0, there exists P > 0 such that PT P = Q; moreover, because Q is
symmetric, so is P . Hence we have:

P2 M + MT P2 ⇐ 2μP2.
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Multiplying the last inequality by P−1 from right and from left, we
conclude 2. �

Remark 1 Observe that for Q > 0,

1.
QM + MT Q ⇐ μQ ≥ QM + MT Q ⇐ β I,

where β = μ∂ and ∂ is the smallest eigenvalue of Q.
2.

QM + MT Q ⇐ β I ≥ QM + MT Q ⇐ δQ,

where δ = β

∂∅ and ∂∅ is the largest eigenvalue of Q.

We now recall a result following from the Poincaré principle as in [13], which
gives a variational characterization of the eigenvalues of an elliptic operator.

Lemma 3 Consider an elliptic operator as in (3.3) and letv = v(τ)be a function not

identically zero in L2(Ω) with derivatives
σv

στ j
∈ L2(Ω) that satisfies the Neumann

boundary condition, ⊂v(τ) ·n(τ) = 0, and for any j ∈ {1, . . . , k −1},
∫

Ω

ve j
i = 0.

Then the following inequality holds, for any k ≤ 1:

∫

Ω

⊂v · (Ai (τ)⊂v) dτ ≤ ∂k
i

∫

Ω

v2 dτ. (3.13)

Lemma 4 Suppose u ∈ L2(Ω) satisfies the Neumann boundary conditions. For any
k ∈ {1, 2, . . .},

(Πk(u),LΠk(u)) ⇐ − (Πk(u),ΛkΠk(u)) . (3.14)

In addition for k = 1, 2 and any n × n symmetric matrix Q with the following

property:
Q Di + Di Q > 0 i = 1, . . . , r, (3.15)

we have:
(Πk(u), QLΠk(u)) ⇐ − (Πk(u), QΛkΠk(u)) . (3.16)

Proof Note that by (3.6), for any α ∈ σΩ ,

⊂Πk,i (ui (α)) · n =
∞∑

j=k

(ui , e j
i )⊂e j

i (α) · n = 0.

Also by the definition of Πk,i , for any j = 1, . . . , k − 1,
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∫

Ω

Πk,i (ui )e
j
i dτ = 0.

Then by this last equality, Green’s identity and Lemma 3 we get:

(Πk(u),LΠk(u))

=
∫

Ω

Πk(u)T (⊂ · (A1(τ)⊂Πk,1(u1)
⎪
, . . . ,⊂ · (An(τ)⊂Πk,n(un)

⎪⎪T
dτ

=
n∑

i=1

∫

Ω

Πk,i (ui )⊂ · (Ai (τ)⊂Πk,i (ui )
⎪

dτ

=
n∑

i=1

∫

σΩ

Πk,i (ui )Ai (τ)⊂Πk,i (ui ) · n d S

−
n∑

i=1

∫

Ω

⊂Πk,i (ui )
T Ai (τ)⊂Πk,i (ui ) dτ

⇐ −
n∑

i=1

∂k
i

∫

Ω

Π2
k,i (ui ) dτ

= − (Πk(u),ΛkΠk(u)) .

Since for each i = 1, . . . , r , Q Di + Di Q > 0, there exists positive definite
symmetric matrix Mi , such that Q Di + Di Q = 2MT

i Mi . Note that

2 (Πk(u), Q DiLiΠk(u)) = (Πk(u), (Q Di + Di Q)LiΠk(u))

+ (Πk(u), (Q Di − Di Q)LiΠk(u)) .

A simple calculation shows that (Πk(u), (Q Di − Di Q)LiΠk(u)) = 0 :
Let Y = Q Di . Then since Q and Di are symmetric, Y T = Di Q. Also let

x = Πk(u) and y = Y x = Q DiΠk(u). By the definition of Li , YLi = Li Y , hence
we need to show:

(x,Li y) = (y,Li x).

By the definition of Li , it suffices to show that for any j = 1, . . . , n:

(x j , Li y j ) = (y j , Li x j ).

This last equality holds by the definition of Li , the Neumann boundary condition,
and Green’s identity. Therefore, using (3.14), for k = 1, 2, we get
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(Πk(u), Q DiLiΠk(u)) = 1

2
(Πk(u), (Q Di + Di Q)LiΠk(u))

=
⎜
Πk(u), MT

i MiLiΠk(u)
)

= (MiΠk(u), MiLiΠk(u))

= (MiΠk(u),Li MiΠk(u))

= (Πk(Mi u),LiΠk(Mi u))

⇐ −λk
i (Πk(Mi u),Πk(Mi u))

= −λk
i (Πk(u), Q DiΠk(u)) . (3.17)

Note that by the definition of Li , MiLi = Li Mi . By (3.8) and (3.9), for any i, j =
1, . . . , n,

Πk,i = Πk, j for k = 1, 2.

Therefore MiΠk(u) = Πk(Mi u) and for any l, Πk,l(Mi u) is orthogonal to e1
i . Hence

we can apply the Poincaré principle. Now using (3.5) and (3.17), we get:

(Πk(u), QLΠk(u)) =
r∑

i=1

(Πk(u), Q DiLiΠk(u))

⇐ −
r∑

i=1

λk
i (Πk(u), Q DiΠk(u))

= − (Πk(u), QΛkΠk(u)) . (3.18)

The last equality holds by Eq. (3.7). �

Lemma 5 Suppose u ∈ L2(Ω) satisfies the Neumann boundary conditions. For any
k ∈ {1, 2, . . .},

Πk (Lu) = LΠk(u).

Proof By the definition of Πk and L, it is enough to show that for a fixed i(i =
1, . . . , n),

Πk,i (Li ui ) = LiΠk,i (ui ). (3.19)

Using the fact that Li e
j
i = −∂

j
i e j

i , the right hand side of (3.19) becomes:

LiΠk,i (ui ) = Li

∞∑

i=k

(ui , e j
i )e j

i =
∞∑

i=k

(ui , e j
i )Li e

j
i = −

∞∑

i=k

(ui , e j
i )∂

j
i e j

i ;

and using the orthogonality of the e j
i ’s, the left hand side of (3.19) becomes:
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Πk,i (Li ui ) =
∞∑

j=k

⎜
Li ui , e j

i

)
e j

i =
∞∑

j=k

⎟

Li

∞∑

l=1

(ui , el
i )e

l
i , e j

i

⎛

e j
i

=
∞∑

j=k

⎟ ∞∑

l=1

(ui , el
i )Li e

l
i , e j

i

⎛

e j
i

= −
∞∑

j=k

⎟ ∞∑

l=1

(ui , el
i )∂

l
i e

l
i , e j

i

⎛

e j
i

= −
∞∑

j=k

(ui , e j
i )∂

j
i e j

i .

Hence (3.19) holds. �

Lemma 6 Let w = u − x, where u is a solution of (3.1)–(3.2) and x = ε2(u) or
x = v is another solution of (3.1)–(3.2). Note that for x = v, w = Π1(u − v) and
for x = ε2(u), w = Π2(u). For a positive, symmetric matrix Q, let

Φ(w) := 1

2
(w, Qw).

Then
dΦ

dt
(w) = (w, Q(F(u, t) − F(x, t))) + (w, QLw) . (3.20)

Proof For x = v,

dΦ

dt
(w) = (u − v, Q d

dt (u − v))

= (w, Q(F(u, t) − F(v, t))) + (w, QL(u − v))

= (w, Q(F(u, t) − F(x, t))) + (w, QLw) .

For x = ε2(u), i.e. w = Π2(u),

dΦ

dt
(w) = (Π2(u), Q d

dt (Π2(u)))

= (Π2(u), QΠ2(F(u, t))) + (w, QΠ2(Lu))

= (Π2(u), QΠ2(F(u, t))) + (w, QLΠ2(u)) by Lemma 5
= (Π2(u), Q(F(u, t) − ε2(F(u, t)))) + (w, QLw)

= (Π2(u), Q(F(u, t) − F(ε2(u), t))) + (w, QLw)

+ (Π2(u), Q(ε2(F(u, t)) − F(ε2(u), t)))
= (w, Q(F(u, t) − F(x, t))) + (w, QLw) .

Note that the last equality holds because Q(ε2(F(u, t))−F(ε2(u), t)) is independent
of τ and

∫
Ω

Π2,i (u) = 0. �
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Now we are ready to prove Theorem 1.
Proof of Theorem 1

Proof By Lemma 2,

Q(JF − Λk) + (JF − Λk)
T Q ⇐ 2μk Q, (3.21)

where Q = P2. Define w and Φ(w) as in Lemma 6 for Q = P2. Since Φ(w) =
1

2
‖Pw‖2

2, to prove (3.11) and (3.12), it’s enough to show that for k = 1, 2

d

dt
Φ(w) ⇐ 2μkΦ(w).

Note that by Lemma 4, and the fact that w = Π1(u − v) or w = Π2(u), the second

term of the right hand side of (3.20),
d

dt
Φ(w), satisfies:

(w, QLw) ⇐ −(w, QΛkw). (3.22)

Next, by the Mean Value Theorem for integrals, and using (3.21), we rewrite the
first term of the right hand side of (3.20) as follows:

(w, Q(F(u, t) − F(x, t))) =
∫

Ω

wT (τ, t)Q(F(u(τ, t), t) − F(x, t)) dτ

=
∫

Ω

wT (τ, t)Q

1∫

0

JF (x + sw(τ, t), t) · w(τ, t) ds dτ

=
1∫

0

∫

Ω

wT (τ, t)Q JF (x + sw(τ, t), t) · w(τ, t) dτ ds.

This last equality together with (3.22) imply:

(w, Q(F(u, t) − F(x, t))) + (w, QLw)

⇐
1∫

0

∫

Ω

wT (τ, t)Q
(
JF (x + sw(τ, t), t) − Λk

⎪

· w(τ, t) dτ ds

⇐ 2μk

2

1∫

0

ds
∫

Ω

wT Qw dτ
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= 2μk

2

∫

Ω

wT Qw dτ

= 2μkΦ(w).

Therefore
dΦ

dt
(w) ⇐ 2μkΦ(w).

This last inequality implies (3.11) and (3.12) for k = 1 and k = 2 respectively. �

Corollary 1 In Theorem 1, if μ1 < 0, then (3.1)–(3.2) is contracting, meaning that
solutions converge (exponentially) to each other, as t → +∞ in the weighted L2,P

norm:
‖u(·, t) − v(·, t)‖2,P → 0 ast → ∞.

Corollary 2 In Theorem 1, if μ2 < 0, then solutions converge (exponentially) to
uniform solutions, as t → +∞ in the weighted L2,P norm:

‖Π2(u(·, t))‖2,P → 0 as t → ∞.

Note that (3.16) doesn’t necessarily hold for any k > 2, since for k > 2, the Πk,i ’s
could be different for different i’s. In the following lemma we provide a condition
for which (3.16) holds for any k.

Lemma 7 Assume PL = LP, where P is a positive, symmetric n × n matrix and
P2 = Q. Then for any k = 1, 2, . . .

(Πk(u), QLΠk(u)) ⇐ − (Πk(u), QΛkΠk(u)) .

Proof The proof is analogous to the proof of (3.16), using the fact that PL = LP
implies that P is diagonal (if all Li ’s are different) or block diagonal (for equal
Laplacian operators). �

Remark 2 Note that Theorem 1 is valid if PL = LP is assumed instead of (3.15),
because (3.16) holds by Lemma 7 and this is all that is needed in the proof. In the
following theorem we use this condition to generalize the result of Theorem 1 for any
arbitrary k but restricted to linear systems. We omit the proof, which is analogous.

Theorem 2 Consider the reaction-diffusion system (3.1)-(3.2) and suppose Assump-
tion 1 holds. In addition assume that F is a linear function. For k ∈ {1, 2, . . .}, let

μk := sup
(x,t)∈V ×[0,∞)

μ2,P (JF (x, t) − Λk),

for a positive symmetric matrix P such that PL = LP. Then for any two solutions,
namely u and v, of (3.1)–(3.2), we have:
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‖Πk (u(·, t) − v(·, t)) ‖2,P ⇐ eμk t‖Πk (u(·, 0) − v(·, 0)) ‖2,P . (3.23)

Example 1 In [1] we studied the following system:

xt = z − πx + k1 y − k2(SY − y)x + d1Δx
yt = −k1 y + k2(SY − y)x + d2Δy,

where (x(t), y(t)) ∈ V = [0,∞) × [0, SY ] for all t ≤ 0 (V is convex), and SY , k1,
k2, π, d1, and d2 are arbitrary positive constants.

This two-dimensional system is a prototype for a large class of models of enzy-
matic cell signaling as well as transcriptional components. Generalizations to systems
of higher dimensions, representing networks of such systems, may be studied as well
[19].

In [19], it has been shown that for p = 1, there exists a positive, diagonal matrix
Q, independent of d1 and d2, such that for all (x, y) ∈ V , μ1,Q(JF (x, y)) < 0; and
then by Lemma 1 one concludes that the system is contractive.

Specifically, [1] showed that for any positive, diagonal matrix Q and any p > 1,
there exists (x, y) ∈ V such that μp,Q(JF (x, y)) ≤ 0, where

F = (z − πx + k1 y − k2(SY − y)x,−k1 y + k2(SY − y)x)T ,

and

JF =
(−π − a b

a −b

)

,

with a = k2(SY − y) ∈ [0, k2SY ] and b = k1 + k2x ∈ [k1,∞).
Now we show that there exists some positive, symmetric (but non-diagonal) matrix

P such that for all (x, y) ∈ V , μ2,P JF (x, y) < 0 and P2 D + D P2 > 0, where
D = diag(d1, d2). Then by Theorem 1 (for r = 1 and Li ui = Δui ), and Corollary
1, one can conclude that the system is contractive.

Claim Let Q =
⎝

1 1
1 q

⎞

, where q > max

⎠
⎨

⎩
1 + π

4k1
,

⎟
1

2
⊆

d
+

⊆
d

2

⎛2
⎫
⎬

⎭
, and d =

d1

d2
. Then Q JF + (Q JF )T < 0 and Q D + DQ > 0.

Note that Q is symmetric and positive (because q > 1).
Proof of Claim We first compute Q JF :

⎝
1 1
1 q

⎞ ⎝−π − a b
a −b

⎞

=
⎝ −π 0
−π + (q − 1)a −b(q − 1)

⎞

.

So

Q JF + (JF Q)T =
⎝ −2π −π + (q − 1)a
−π + (q − 1)a −2b(q − 1)

⎞

.
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To show Q JF + J T
F Q < 0, we show that det

(
Q JF (x, y) + J T

F (x, y)Q
⎪

> 0 for all
(x, y) ∈ V :

det
⎜

Q JF + J T
F Q

)
= 4πb(q − 1) − (−π + (q − 1)a)2 .

Note that for any q > 1, f (a) := (−π + (q − 1)a)2 ⇐ π2 on [0, k2SY ], and
g(b) := 4πb(q − 1) ≤ 4πk1(q − 1) on [k1,∞]. So to have det > 0, it’s enough to

have 4πk1(q − 1) − π2 > 0, i.e. q − 1 >
π2

4πk1
, i.e. q > 1 + π

4k1
. Now we compute

Q D + DQ:

Q D + DQ =
⎝

2d1 d1 + d2
d1 + d2 2qd2

⎞

.

Q D + DQ > 0 if and only if det (Q D + DQ) > 0, i.e. 4d1d2q − (d1 + d2)
2 > 0,

i.e. q >

⎟
1

2
⊆

d
+

⊆
d

2

⎛2

, where d = d1

d2
. �

Now by Remark 1 and Lemma 2, for P = ⊆
Q, μ2,P (JF (x, y)) < 0, for all

(x, y) ∈ V .

Example 2 We now provide an example of a class of reaction-diffusion systems
xt = F(x) + DΔx , with x ∈ V (V convex), which satisfy the following conditions:

1. For some positive definite, diagonal matrix Q, sup
x∈V

μ1,Q(JF (x)) < 0 (and hence

by Lemma 1, these systems are contractive).
2. For any positive definite, symmetric (not necessarily diagonal) matrix P ,

supx∈V μ2,P (JF (x)) ≮ 0.

Consider two variable systems of the following type

xt = − f1(x) + g1(y) + d1Δx (3.24)

yt = f2(x) − g2(y) + d2Δy, (3.25)

where d1, d2 are positive constants and (x, y) ∈ V = [0,∞)×[0,∞). The functions
fi and gi take non-negative values. Systems of this form model a case where x decays
according to f1, y decays according to g2, and there is a positive feedback from y to
x (g1) and a positive feedback from x to y ( f2).

Lemma 8 In system (3.24)–(3.25), let J be the Jacobian matrix of

(− f1(x) + g1(y), f2(x) − g2(y))T .

In addition, assume that the following conditions hold for some ∂ > 0, and μ > 0
and all (x, y) ∈ V :
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1. − f ∅
1(x) + ∂| f ∅

2(x)| < −μ < 0;

2. −g∅
2(y) + 1

∂
|g∅

1(y)| < −μ < 0;

3. for any p0 ∈ R

lim
y→∞

(
g∅

1(y) − p0g
∅
2(y)

⎪2

g∅
2(y)

= ∞.

Then

1. for every (x, y) ∈ V , μ1,Q(J (x, y)) < 0, where Q = diag(1,∂); and
2. for each positive definite, symmetric matrix P, there exists some (x, y) ∈ V , such

that μ2,P (J (x, y)) ≤ 0.

Proof The proof of μ1,Q(J (x, y)) < 0 is straightforward from the definition of μ1,Q

and conditions 1 and 2. Now we show that for any positive matrix P =
⎝

p1 p
p p2

⎞

,

there exists some (x0, y0) ∈ V such that μ2,P (J (x0, y0)) ≤ 0. By Lemma 2, it’s
enough to show that for some (x0, y0) ∈ V , P J (x0, y0) + J T (x0, y0)P ≮ 0. We
compute:

P J =
⎝

p1 p
p p2

⎞ ⎝− f ∅
1(x) g∅

1(y)

f ∅
2(x) −g∅

2(y)

⎞

=
⎝−p1 f ∅

1(x) + p f ∅
2(x) p1g

∅
1(y) − pg∅

2(y)

−p f ∅
1(x) + p2 f ∅

2(x) pg∅
1(y) − p2g

∅
2(y)

⎞

.

Therefore, P J + (P J )T is equal to

⎝
2
(−p1 f ∅

1(x) + p f ∅
2(x)

⎪
p1g

∅
1(y) − pg∅

2(y) − p f ∅
1(x) + p2 f ∅

2(x)

p1g
∅
1(y) − pg∅

2(y) − p f ∅
1(x) + p2 f ∅

2(x) 2
(

pg∅
1(y) − p2g

∅
2(y)

⎪
⎞

.

(not showing x and y arguments in f ∅
1 and f ∅

2 for simplicity). Now fix x0 ∈ [0,∞)

and let
A := 2

(−p1 f ∅
1(x0) + p f ∅

2(x0)
⎪
,

and
B := −p f ∅

1(x0) + p2 f ∅
2(x0).

Then det
(
P J + (P J )T

⎪
is equal to

2A
(

pg∅
1(y) − p2g

∅
2(y)

⎪ − (
p1g

∅
1(y) − pg∅

2(y) + B
⎪2

. (3.26)

We will show that det < 0. Dividing both sides of (3.26) by p2
1g

∅
2(y), we get:
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det
(
P J + (P J )T

⎪

p2
1g∅

2(y)
= 2A

(
pg∅

1(y) − p2g
∅
2(y)

⎪

p2
1g

∅
2(y)

−
(
g∅

1(y) − p0g
∅
2(y) + B ∅⎪2

g∅
2(y)

= A∅ p
g∅

1(y)

g∅
2(y)

− A∅ p2

−
(
g∅

1(y) − p0g
∅
2(y)

⎪2

g∅
2(y)

− 2B ∅ g∅
1(y)

g∅
2(y)

+ 2B ∅ p0 − B ∅2

g∅
2(y)

where p0 = p

p1
, A∅ = 2A

p2
1

, and B ∅ = B

p1
.

(Note that p2
1g∅

2(y) > 0 because by condition 2, g∅
2 ≤ μ > 0, and P > 0 implies

p1 ∃= 0.)

By condition 2, 0 ⇐ g∅
1(y)

g∅
2(y)

⇐ ∂ < ∞ for all y. Now using condition 3, we can

find y large enough such that det < 0.

Since det
(
P J (x0, y0) + (P J (x0, y0))

T
⎪

< 0 for some (x0, y0) ∈ V , the matrix
P J + (P J )T has one positive eigenvalue. Therefore P J + (P J )T

≮ 0. �

Example 3 As a concrete example, take the following system

xt = −x + y2+κ + d1Δx
yt = πx − (y3 + y2+κ + dy) + d2Δy,

where 0 < π < 1, 0 < κ ◦ 1, d, d1, and d2 are positive constants and (x, y) ∈ V =
[0,∞) × [0,∞).

In this example we show that, the system is contractive in a weighted L1 norm;
while for any positive, symmetric matrix P , and some (x, y) ∈ V , μ2,P JF (x, y) ≮ 0.
To this end, we verify the conditions of Lemma 8.

For any (x, y) ∈ V , we take in Lemma 8, ∂ = 1, and any μ ∈ (0, min{d, 1 − π}):
1. −1 + π < 0, because 0 < π < 1.
2. − (

3y2 + (2 + κ)y1+κ + d
⎪ + (2 + κ)y1+κ = −3y2 − d ⇐ −d < 0.

3. For any p0 ∈ R,

lim
y→∞

(
(1 − p0)(2 + κ)y1+κ − p0

(
3y2 + d

⎪⎪2

3y2 + (2 + κ)y1+κ + d
= ∞

So the conditions in Lemma 8 are verified. �
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3.3 Spatial Uniformity in Diffusively-Coupled Systems of ODEs

We next consider a compartmental ODE model where each compartment represents
a spatial domain interconnected with the other compartments over an undirected
graph:

u̇(t) = F̃(u(t)) − Lu(t). (3.27)

Recall that if A = (ai j ) is an m × n matrix and B = (bi j ) is a p × q matrix, then
the Kronecker product, denoted by A ∇ B, is the mp × nq block matrix defined as
follows:

A ∇ B :=


⎢


a11 B . . . a1n B
...

. . .
...

am1 B . . . amn B

⎡

⎣
⎤,

where ai j B denote the following p × q matrix:

ai j B :=


⎢


ai j b11 . . . ai j b1q
...

. . .
...

ai j bp1 . . . ai j bpq

⎡

⎣
⎤.

The following are some properties of Kronecker product:

1. (A ∇ B)(C ∇ D) = (AC) ∇ (B D);
2. (A ∇ B)T = AT ∇ BT .

3. Suppose that A and B are square matrices of size n and m respectively. Let
∂1, . . . ,∂n be the eigenvalues of A and μ1, . . . ,μm be those of B (listed according
to multiplicity). Then the eigenvalues of A ∇ B are ∂iμ j for i = 1, . . . , n, and
j = 1, . . . , m.

Assumption 2 In (3.27), we assume:

• For a fixed convex subset of R
n , say V , F̃ : V N → R

nN is a function of the form:

F̃(u) =
⎜

F(u1)T , . . . , F(uN )T
)T

,

where u = (
(u1)T , . . . , (uN )T

⎪T
, with ui ∈ V for each i , and F : V → R

n is a
(globally) Lipschitz function.

• For any u ∈ V N we define ‖u‖p,Q as follows:

‖u‖p,Q =
⎦
⎦
⎦
⎦

⎜
‖Qu1‖p, . . . , ‖QuN ‖p

)T
⎦
⎦
⎦
⎦

p
,

where Q is a symmetric and positive definite matrix and 1 ⇐ p ⇐ ∞.
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With a slight abuse of notation, we use the same symbol for a norm in R
n :

‖x‖p,Q := ‖Qx‖p.

• u : [0,∞) → V N is a continuously differentiable function.
•

L =
n∑

i=1

Li ∇ Ei ,

where for any i = 1, . . . , n, Li ∈ R
N×N is a symmetric positive semidefinite

matrix and L1N = 0, where 1N = (1, . . . , 1)T ∈ RN . The matrix Li is the sym-
metric generalized graph Laplacian (see, e.g., [10]) that describes the interconnec-
tions among component subsystems. For any i = 1, . . . , n, Ei = ei eT

i ∈ R
n×n is

the product of the i th standard basis vector ei multiplied by its transpose.

Similar to the PDE case, we assume that there exists r ⇐ n distinct matrices,
L1, . . . , Lr such that

diag
(
L1, . . . , Ln1 , . . . , Ln−nr +1, . . . , Ln

⎪

= diag
(
d11, . . . , d1n1 , . . . , dr1, . . . , drnr

⎪
diag (L1, . . . , L1, . . . , Lr , . . . , Lr ) ,

where n1 + · · · + nr = n. For each i = 1, . . . , r , let Di be an n × n diagonal
matrix with entries [Di ]ni−1+ j,ni−1+ j = di j , for j = 1, . . . , ni , n0 = 0 elsewhere.
Therefore we can write L as follows:

L =
r∑

i=1

Li ∇ Di (3.28)

For a fixed i ∈ {1, . . . , n}, let ∂k
i be the kth eigenvalue of the matrix Li and ek

i be
the corresponding normalized eigenvector. Also for a fixed i ∈ {1, . . . , r}, let λk

i be
the kth eigenvalue of the matrix Li . Note that

Λk =
r∑

i=1

λk
i Di , (3.29)

where Λk = diag(∂k
1, . . . ,∂

k
n).

For each k ∈ {1, 2, . . . , N }, let Ek
i be the subspace spanned by the first kth

eigenvectors:
Ek

i = 〈e1
i , . . . , ek

i ≺.

Now let εk,i be the orthogonal projection map from R
N onto Ek−1

i . Namely for

any v =
∑N

j=1
(v · e j

i )e j
i ,
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εk,i (v) =
k−1∑

j=1

(v · e j
i )e j

i ,

for 1 < k ⇐ N and ε1,i (v) = 0.
Now for u = (u1, . . . , uN ) with u j ∈ R

n , define εk(u) as follows:

εk(u) =
n∑

j=1

(ε j,k(u j ))
T ∇ e j , (3.30)

for 1 < k ⇐ N , where u j := (u1 · e j , . . . , uN · e j )
T ; and ε1(u) = 0.

Note that for each k and any u, v ∈ R
nN ,

(u − εk(u))T εk(v) =
n∑

j=1

(
u j − ε j,k(u j )

⎪T
ε j,k(v j ) = 0. (3.31)

We also can define εk(u) as follows:

For i = 1, . . . , n, let ei :=
∑N

j=1
e j

i ∇ e j . It is straightforward to show that

e1, . . . , en are linearly independent and for any i, j ∈ {1, . . . , n}, ei T
e j = 0. Hence

one can extend
{
ei
}

1⇐i⇐n to an orthogonal basis for R
nN ,

{
ei
}

1⇐i⇐nN . Then for each

k = 2, . . . , nN , and any u ∈ RnN ,

εk(u) =
k−1∑

j=1

⎜
u · e j

)
e j ,

and ε1(u) = 0. Note that for k = 1, . . . , n, this definition is compatible with (3.30).
We now state Courant-Fischer minimax theorem, from [14].

Lemma 9 Let L be a symmetric, positive semidefinite matrix in R
N×N . Let ∂1 ⇐

· · · ⇐ ∂N be N eigenvalues with e1, . . . , eN corresponding normalized orthogonal
eigenvectors. For any v ∈ R

N , if vT e j = 0 for 1 ⇐ j ⇐ k − 1, then

vT Lv ≤ ∂kvT v.

Lemma 10 Let w := u − x, where u is a solution of (3.27) and x = v is another

solution of (3.27) or x = ε2(u), i.e. x = 1N ∇
⎜

1
N

∑N
j=1 u j

)
. For a positive,

symmetric matrix Q, let

Φ(w) := 1

2
wT (IN ∇ Q) w.
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Then

dΦ

dt
(w) = wT (IN ∇ Q) (F̃(u, t) − F̃(x, t)) − wT (IN ∇ Q)Lw. (3.32)

Proof When x = v, the claim is trivial because both u and v satisfy (3.27). When
x = ε2(u), then, by orthogonality, Eq. (3.31), and the definition of ε2, we have:

dΦ

dt
(w) = (u − ε2(u))T (IN ∇ Q) (F̃(u, t) − ε2(F̃(u, t))) + wT (IN ∇ Q)Lw

= (u − ε2(u))T (IN ∇ Q) F̃(u, t) + wT (IN ∇ Q)Lw

= (u − ε2(u))T (IN ∇ Q) (F̃(u, t) − F̃(ε2(u), t)) + wT (IN ∇ Q)Lw,

The last equality holds because

(u − ε2(u))T (IN ∇ Q) F̃(ε2(u), t)) =
N∑

j=1

(u j − ū)QF(ū)

=



N∑

j=1

u j − Nū



 QF(u) = 0,

where ū = 1

N

∑N

j=1
u j .

Theorem 3 Consider the ODE system (3.27) and suppose Assumption 2 holds. For
k = 1, 2, let

μk := sup
(x,t)∈V ×[0,∞)

μ2,P (JF (x, t) − Λk),

for a positive symmetric matrix P such that for every i = 1, . . . , r ,

P2 Di + Di P2 > 0.

Then for any two solutions, namely u and v, of (3.27), we have:

‖(u − v)(t)‖2,P ⇐ eμ1t‖(u − v)(0)‖2,P . (3.33)

In addition
‖(u − ε2(u))(t)‖2,P ⇐ eμ2t‖(u − ε2(u))(0)‖2,P . (3.34)

Proof By Lemma 2,

Q(JF − Λk) + (JF − Λk)
T Q ⇐ 2μk Q, (3.35)
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where Q = P2. Define w and Φ(w) as in Lemma 10 for Q = P2. Since Φ(w) =
1

2
‖Pw‖2

2, to prove (3.33) and (3.34), it’s enough to show that for k = 1, 2

d

dt
Φ(w) ⇐ 2μkΦ(w).

We rewrite the second term of the right hand side of (3.32) as follows. Since
Q = P2 and P2 Di + Di P2 > 0, there exists symmetric, positive definite matrices
Mi such that Q Di + Di Q = 2MT

i Mi .

wT (IN ∇ Q)Lw = wT (IN ∇ Q)

⎟
r∑

i=1

Li ∇ Di

⎛

w

= wT

⎟
r∑

i=1

IN Li ∇ Q Di

⎛

w

= 1

2

r∑

i=1

wT (Li ∇ (Q Di + Di Q)) w

=
r∑

i=1

wT
⎜

Li ∇ MT
i Mi

)
w

=
r∑

i=1

wT (IN ∇ MT
i ) (Li ∇ In) (IN ∇ Mi ) w

≤
r∑

i=1

λk
i ((IN ∇ Mi )w)T (IN ∇ Mi )w (for k = 1, 2)

=
r∑

i=1

λk
i w

T (IN ∇ MT
i Mi )w

=
r∑

i=1

λk
i w

T (IN ∇ Q Di )w

= wT (IN ∇ QΛk)w [by Eq. (29)]

Therefore
− wT (IN ∇ Q)Lw ⇐ −wT (IN ∇ QΛk)w. (3.36)

Note that the first inequality holds for k = 2 by Lemma 9 and the fact that for
x = ε2(u), by definition, wT 1nN = 0 and hence (IN ∇ Mi ) w1nN = 0. It also holds
for k = 1, since Li and hence Li ∇ In are positive definite, and λ1

i = 0.

Now, by the Mean Value Theorem for integrals, and using (3.21), we rewrite the
first term of the right hand side of (3.32) as follows:
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wT (IN ∇ Q) (F̃(u, t) − F̃(x, t)) =
N∑

i=1

wi T
Q(F(ui , t) − F(xi , t))wi ds

=
N∑

i=1

1∫

0

wi T
Q JF (xi + swi , t)wi ds.

This last equality together with (3.36) imply:

wT (IN ∇ Q) (F̃(u, t) − F̃(x, t)) − wT (IN ∇ Q)Lw

=
N∑

i=1

1∫

0

wi T
Q
⎜

JF (xi + swi , t) − Λk

)
wi ds

⇐
N∑

i=1

2μk

2

1∫

0

ds wi T
Qwi

= 2μk

2
wT (IN ∇ Q)w

= 2μkΦ(w).

Therefore
dΦ

dt
(w) ⇐ 2μkΦ(w).

This last inequality implies (3.33) and (3.34) for k = 1 and k = 2 respectively. �

Corollary 3 In Theorem 3, if μ1 < 0, then (3.27) is contracting, meaning that
solutions converge (exponentially) to each other, as t → +∞ in the P-weighted L2
norm.

Corollary 4 In Theorem 3, if μ2 < 0, then solutions converge (exponentially) to
uniform solutions, as t → +∞ in the P-weighted L2 norm.

3.4 LMI Tests for Guaranteeing Spatial Uniformity

The next two results are modifications of Theorems 2 and 3 in [3]. They allow us to
apply check the conditions in Theorems 1 and 3 through numerical tests involving
linear matrix inequalities.

Proposition 1 If there exist constant matrices Z1, . . . , Zq and Sl , . . . , Sm such that
for all x ∈ V, t ∈ [0,∞),

JF (x, t) ∈ conv{Z1, . . . , Zq} + cone{Sl , . . . , Sm}, (3.37)
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where
conv(Z1, . . . , Zq) = {a1 Z1 + · · · aq Zq | ai ≤ 0,

∑

i

ai = 1},

and
cone(S1, . . . , Sm) = {b1S1 + · · · bm Sm | bi ≤ 0},

then the existence of a scalar μ and symmetric, positive definite matrix Q satisfying

Q (Zi − Λk) + (Zi − Λk)
T Q < μQ, i = 1, . . . , q

QSi + ST
i Q ⇐ 0, i = 1, . . . , m

(3.38)

implies that:
Q(JF (x, t) − Λk) + (JF (x, t) − Λk)

T Q < μQ (3.39)

for all (x, t) ∈ V × [0,∞); or equivalently

μk := sup
(x,t)∈V ×[0,∞)

μ2,P (JF (x, t) − Λk) <
μ

2
, (3.40)

where P2 = Q.
If the image of V × [0,∞) under JF is surjective onto conv{Z1, . . . , Zq} +

cone{Sl , . . . , Sm}, then the converse is true.

Proof First, we rewrite the first set of conditions of (3.38) as:

Q
⎜

Zi − Λk − μ

2
I
)

+
⎜

Zi − Λk − μ

2
I
)T

Q < 0, i = 1, . . . , q (3.41)

Defining D = Λk + μ
2 I , we can rewrite (3.41) as:

Q (Zi − D) + (Zi − D)T Q < 0, i = 1, . . . , q. (3.42)

An application of [3, Theorem 2] concludes the proof. Also an application of
Lemma (2) implies that (3.39) and (3.40) are equivalent. �

We define a convex box as:

box{M0, M1, . . . , Mp} = {M0 + τ1 M1 + . . . + τp Mp | τi ∈ [0, 1]
for each i = 1, . . . , p}. (3.43)

Proposition 2 Suppose that JF (x, t) is contained in a convex box:

JF (x, t) ∈ box{A0, A1, . . . , Al} ∩ x ∈ V, t ∈ [0,∞), (3.44)
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where A1, . . . , Al are rank-one matrices that can be written as Ai = Bi CT
i , with

Bi , Ci ∈ R
n. If there exists a scalar μ and symmetric, positive definite matrix Q

with:

Q =



⎢
⎢
⎢


Q 0 . . . 0
0 p1 0 0
...

. . .
. . .

...

0 . . . 0 pl

⎡

⎣
⎣
⎣
⎤

(3.45)

Q ∈ R
n×n, pi ∈ R, i = 1, . . . , l,

satisfying:

Q
⎝

A0 − Λk B
CT −In

⎞

+
⎝

A0 − Λk B
CT −In

⎞T

Q <

⎝
μQ 0
0 0

⎞

, (3.46)

with B = [B1 . . . Bl ] and C = [C1 . . . Cl ], then the upper left (symmetric, positive
definite) principal submatrix Q satisfies

Q(JF (x, t) − Λk) + (JF (x, t) − Λk)
T Q < μQ; (3.47)

or equivalently

μk := sup
(x,t)∈V ×[0,∞)

μ2,P (JF (x, t) − Λk) <
μ

2
, (3.48)

where P2 = Q.
If l = 1 and the image of V × [0,∞) under J is surjective onto box{A0, A1},

then the converse is true.

Proof First, we rewrite condition (3.46) as

Q
⎝

A0 − Λk − μ
2 I B

CT −In

⎞

+
⎝

A0 − Λk − μ
2 I B

CT −In

⎞T

Q < 0. (3.49)

Defining D = Λk + μ
2 I , we can rewrite (3.41) as:

Q
⎝

A0 − D B
CT −In

⎞

+
⎝

A0 − D B
CT −In

⎞T

Q < 0. (3.50)

An application of [3, Theorem 3] concludes the proof. Also an application of Lemma
(2) implies that (3.47) and (3.48) are equivalent. �

The problem of finding the smallest μ such that there exists a matrix Q as in
Proposition 1 or a matrix Q as in Proposition 2 is quasi-convex and may be solved
iteratively as a sequence of convex semidefinite programs.
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Example 4 Ring Oscillator Circuit Example
Consider the n-stage ring oscillator whose dynamics are given by:

ẋ k
1 = −η1xk

1 − γ1 tanh(β1xk
n ) + wk

1

ẋ k
2 = −η2xk

2 + γ2 tanh(β2xk
1 ) + wk

2

... (3.51)

ẋ k
n = −ηn xk

n + γn tanh(βn xk
n−1) + wk

n,

with coupling between corresponding nodes of each circuit. Ring oscillators have
found wide application in biological oscillators such as the repressilator in [6]. The
parameters ηk = 1

RkCk
, γk , and βk correspond to the gain of each inverter. The input

is given by:
wk

i = di

∑

j∈Nk,i

(x j
i − xk

i ), (3.52)

where di = 1
R(i)Ci

andNk,i denotes the nodes to which node i of circuit k is connected.
We wish to determine if the solution trajectories of each set of like nodes of the
coupled ring oscillator circuit given by (3.51)–(3.52) synchronize, that is:

x j
i − xk

i → 0 exponentially as t → ∞ (3.53)

for any pair ( j, k) ∈ {1, . . . , N } × {1, . . . , N } and any index i ∈ {1, . . . , n}.
For clarity in our discussion, we take n = 3 as in Fig. 3.1. We first write the

Jacobian of the system (3.51), where we have omitted the subscripts indicating circuit
membership:

J (x)
∣
∣
x=x̄ =




−η1 0 δ1(x̄1)

δ2(x̄2) −η2 0
0 δ3(x̄3) −η3

⎡

⎤ , (3.54)

with δ1(x̄1) = −γ1β1sech2(β1 x̄3), δ2(x̄2) = γ2β2sech2(β2 x̄1), and δ3(x̄3) =
γ3β3sech2(β3 x̄2). Define the matrices

A0 =



−η1 0 0

0 −η2 0
0 0 −η3

⎡

⎤ A1 =



0 0 −γ1β1
0 0 0
0 0 0

⎡

⎤

A2 =



0 0 0

γ2β2 0 0
0 0 0

⎡

⎤ A3 =



0 0 0
0 0 0
0 γ3β3 0

⎡

⎤ . (3.55)

Then it follows that J (x) is contained in a convex box:

J (x) ∈ box{A0, A1, A2, A3}. (3.56)
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R1

C1

R2

C2

R3

C3

R1

C1

R2

C2

R3

C3

R1

C1

R2

C2

R3

C3

R(1)

R(1)

R(1)

x1,1

x2,1

x3,1

R(2)

R(2)

x1,2

x2,2

x3,2

Fig. 3.1 An example of a network of interconnected three-stage ring oscillator circuits as in (3.51)
coupled through nodes 1 and 2

While the method of Proposition 1 involves parametrizing a convex box as a convex
hull with 2p vertices, and potentially a prohibitively large linear matrix inequality
computation, the problem structure can be exploited using Proposition 2 to obtain
a simple analytical condition for synchronization of trajectories. In particular, the
Jacobian of the ring oscillator exhibits a cyclic structure. The matrix M for which
we seek a Q satisfying (3.49), or equivalently (3.46), is given by:

M =
⎝

A0 − Λ2 − μ
2 I B

CT −I

⎞

, B =



0 0 −γ1β1

γ2β2 0 0
0 γ3β3 0

⎡

⎤ , C = I3. (3.57)
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Note that the matrix M exhibits a cyclic structure, and by a suitable permutation G
of its rows and columns, it can be brought into a cyclic form M̃ = G MGT . Since M̃
is cyclic, it is amenable to an application of the secant criterion [2], which implies
that the condition

Π3
i=1γiβi

Π3
l=1(ηl + ∂l + μ

2 )
< sec3

⎜ε

3

)
(3.58)

holds if and only if M̃ satisfies

Q̃M̃ + M̃T Q̃ < 0 (3.59)

with negative μ, for some diagonal Q̃ > 0. Pre- and post-multiplying (3.59) by GT

and G, respectively, (3.59) is equivalent to:

GT Q̃G M + MT GT Q̃G < 0. (3.60)

Thus, if Q̃ is diagonal and satisfies (3.59), then Q = GT Q̃G is diagonal and sat-
isfies (3.46). We conclude that if the secant criterion in (3.58) is satisfied, then by
Proposition 2, we have:

sup
(x,t)∈V ×[0,∞)

(JF (x, t) − Λ2) <
μ

2
.

Because Q is diagonal and positive, Q is diagonal and positive. Therefore:

Q Di + Di Q > 0 for each i = 1, . . . , r.

Therefore, since μ < 0, by Corollary 4, we get:

x j
i − xk

i → 0 exponentially as t → ∞ (3.61)

for any pair ( j, k) ∈ {1, . . . , N } × {1, . . . , N } and any index i ∈ {1, 2, 3}.
We note that the condition for synchrony that we have found recovers Theorem

2 in [7], which makes use of an input-output approach to synchronization [20]. We
have derived the condition using Lyapunov functions in an entirely different manner
from the input-output approach.

3.5 Conclusions

We have derived Lyapunov inequality conditions that guarantee spatial uniformity
in the solutions of compartmental ODEs and reaction-diffusion PDEs even when the
diffusion terms vary between species. We have used convex optimization to develop
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tests using linear matrix inequalities that imply the inequality conditions, and have
applied the tests to several examples of biological interest.
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Chapter 4
Robust Tunable Transcriptional Oscillators
Using Dynamic Inversion

Vishwesh V. Kulkarni, Aditya A. Paranjape and Soon-Jo Chung

Abstract We present a theory and associated algorithms to synthesize controllers
that may be used to build robust tunable oscillations in biological networks. As
an illustration, we build robust tunable oscillations in the celebrated repressilator
synthesized by Elowitz and Leibler. The desired oscillations in a set of mRNA’s
and proteins are obtained by injecting an oscillatory input as a reference and by
synthesizing a dynamic inversion based tracking controller. This approach ensures
that the repressilator can exhibit oscillations irrespective of (1) the maximum number
of proteins per cell and (2) the ratio of the protein lifetimes to the mRNA lifetimes.
The frequency and the amplitude of at least one output (either mRNA or protein)
can now be controlled arbitrarily. In addition, we characterize the L2 gain stability
of this 3-node network and generalize it to the case of N -node networks.

Keywords Transcriptional network · Elowitz-Leibler · Dynamic inversion · Adap-
tive control ·L1 adaptive control ·mRNA · Protein ·Tracking controller · Stability ·
Zames-Falb multiplier

4.1 Introduction

The objective of this chapter is to illustrate how dynamic inversion control and the
theory of Zames-Falb multipliers may be used to build tunable networks of synthetic
biological oscillators. Synthesis of robust genetic circuits programmed to perform
a particular function in vivo is a defining goal of synthetic biology. In [6], Elowitz

V. V. Kulkarni (B)

University of Minnesota, Minneapolis, MN, USA
e-mail: vkulkarn@umn.edu

A. A. Paranjape · S.-J. Chung
University of Illinois at Urbana Champaign, Urbana, IL, USA
e-mail: aditya.paranjape@gmail.com

S. -J. Chung
e-mail: sjchung@illinois.edu

V. V. Kulkarni et al. (eds.), A Systems Theoretic Approach to Systems and Synthetic 103
Biology I: Models and System Characterizations, DOI: 10.1007/978-94-017-9041-3_4,
© Springer Science+Business Media Dordrecht 2014



104 V. V. Kulkarni et al.

and Leibler presented one of the first synthetic biological constructs in the form of
a transcriptional oscillator. This oscillator, which we shall refer to as the EL repres-
silator, is obtained by implementing a network of three non-natural transcriptional
repressor systems in Escherichia coli. Synthesis of a green flurorescent protein is
the read out for the state of this network in individual cells. Since the oscillations
reported in [6], with typical periods of hours, are slower than the cell-division cycle,
the state of the oscillator gets transmitted from one generation to the next. The EL
repressilator was published in year 2000 and a number of interesting synthetic bio-
logical oscillators have been synthesized since then (e.g., see [1, 4, 7, 8, 13, 14, 18,
22, 23], and references therein). However, it has a compellingly simple and elegant
construction, and remains a landmark in synthetic biology. Hence, we focus on the
EL repressilator as the given system (i.e., the plant in the control theory terminology)
in which tunable oscillations are to be synthesized. The controller synthesis approach
is somewhat similar to the L1 controller developed in [17] to induce oscillations in
mitogen activated protein kinase (MAPK) cascades. This theory can be applied to
synthesize robust tunable oscillations in other biological systems as well.

4.2 System Description

The repressilator is a cyclic negative-feedback loop comprising three repressor genes
and their corresponding promoters (see Fig. 4.1). The three proteins used are LacI
taken from Escherichia coli, TetR taken from Tn10, which is a DNA sequence with
the ability to move to different positions within a single cell, and cI taken from a
specific species of bacteriophage that infects Escherichia coli. LacI inhibits TetR
transcription, TetR inhibits cI expression, and cI inhibits LacI expression, thus cre-
ating a cyclic negative feedback loop. The following first-order ordinary differential
equations (ODEs), which assume all three repressors are identical except for their
DNA, model the kinetics of the EL repressilator (see [6]):

dmi

dt
= − mi + Γi

1 + pn
j

+ Γi,0,

dpi

dt
= − Ω(pi − mi ), (4.1)

where (i, j) → {(1, 3), (2, 1), (3, 2)}, the indices 1, 2, 3 denote LacI, TetR, and cI,
respectively, pi is the concentration of the repressor-proteins, mi is the concentration
of their corresponding mRNA, Γi,0 denotes the number of protein copies per cell
produced from the promoter type i during continuous growth in the presence of
saturating amounts of repressor and Γi is the surplus in the absence of saturating
amounts of repressor, Ω is the ratio of the protein decay rate to the mRNA decay rate,
and n is a Hill coefficient. Here, time is rescaled in units of the mRNA lifetime, the
protein concentrations are written in units of KM , which is the number of repressors
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Fig. 4.1 i The repressilator is a network in which three nodes are connected in cyclic inhibitary,
i.e., negative, feedback loop. ii Each node comprises repressor a gene, its promoter, and synthesized
protein. Its input stage is an mRNA mi and its output stage is the corresponding protein pi . This
network was implemented in a plasmid by Elowitz and Leibler in [6]. iii The read-out reporter
plasmid contains GFP fluorescence, which is inhibited by TetR. In (i) and (iii), the blunt arrows
represent the inhibition interactions

necessary to half-maximally repress a promoter, and the mRNA oncentrations are
rescaled by their translation efficiency, which is the average number of proteins
produced per mRNA molecule. In [6], it is implicity assumed that Γi = Γ j for all
i, j → {1, 2, 3} and Γi,0 = Γ0 for all i → {1, 2, 3}. Let Π(x)

.= − Γi
1+xn . Let

Δ
.= diag (

1

s + 1
,

1

s + 1
,

1

s + 1
,

1

s + Ω
,

1

s + Ω
,

1

s + Ω
).

Then, a block-diagram representation of the EL repressilator is as shown in
Fig. 4.3; the feedback nonlinearity Φ for this negative feedback system is speci-
fied in Fig. 4.2 while the output y1 and the exciting exogenous inputs r1 and r2 are
defined as follows: y1 = [m1 m2 m3 p1 p2 p3]T , r1 = [Γi,0 Γi,0 Γi,0 0 0 0]T ,
r2 = [0 0 0 0 0 0]T . For mathematical convenience, we shall denote this system, i.e.,
the EL repressilator, as S .

The stable and unstable regions in the state-space for the EL repressilator have
been characterized in [6] as follows. This system of equations has a unique steady

state, which becomes unstable when (Ω+1)2

Ω
< 3X2

4+2X , where X
.= Γnpn−1

(1+pn)2 and p is

a solution to the equation p = Γ
1+pn + Γ0. The boundary between the stable and

the unstable region is as shown in Fig. 4.2. The unstable domain increases with an
increase in the Hill coefficient n and is independent of Ω for sufficiently large values
of Γ. When the leakiness Γi,0 becomes comparable to KM (which is normalized to
1 in [6]), the unstable domain shrinks (compare the curve B, for which Γi,0 = 0, to
the curve C, for which Γi,0/Γi = 0.001). Multipliers required to obtain sufficient
conditions for the stability of such systems are derived in [15] and [16]. It may
be remarked that by substituting the Zames-Falb multipliers used in [2] with these
multipliers, it is possible to obtain a set of sufficient conditions under which this
system will oscillate in response to the initial conditions alone.
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Fig. 4.2 The stability diagram of the repressilator model; the shaded region represents the unstable
steady state while the unshaded region represents the stable steady state. Curve A, which consists of
parameter values n = 2.1 and Γi,0 = 0, marks the boundary between the two regions. The parameter
values for curves B and C are n = 2, Γi,0 = 0 and n = 2 and Γi,0/Γi = 10−3, respectively. Also,
shown are the four regions of interest: Region 1 through Region 4. (Image partially reproduced
from [6])

Fig. 4.3 A block diagram decomposition of the EL repressilator S

4.3 Stability Analysis for S

The notation used is summarized in Table 4.1. We mostly follow the notation intro-
duced in [5, 26]. We say that an operator F mapping a Hilbert space into itself is
positive if the inner-product ∞x, Fx⊂ ∩ 0 ∈x and memoryless if the output is inde-
pendent of the time history of the input. We say that an operator F is input-output
stable if it holds that every norm-bounded input x produces a norm-bounded output
Fx . We say that an operator F is L2-stable if it is input-output stable with the norm
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Table 4.1 Notation Symbol Meaning

(R+)R Set of all (nonnegative) real numbers
R

n Set of all n-dimensional real-valued vectors
R

n×m Set of all n × m real-valued matrices
Z Set of all integers
C 1 Class of continuously differentiable functions
(·)⇐ or (·)T Transpose of a vector or a matrix (·)
skew(·)
[Herm(·)]

Skew [Hermitian] part of (·)

∞x, y⊂ =
∞∫

−∞
yT (t)x(t)dt

∞x, y⊂l =
l∫

0
yT (t)x(t)dt

≺x≺ = √
< x, x > (L2-norm, energy of x)

L2 Space of possibly vector valued signals x
for which the energy ≺x≺ < ∞
for which ≺x≺L < ∞ ∈L → R

≺z≺1 =
∞∫

−∞
|z(t)| dt

x≥ x≥(t) = xT (−t) if x(t) → R
n

(we assume x(t) = 0 for all t < 0)

γ (M) = sup
x

≺Mx≺
≺x≺ (Gain of operator M)

diag(Γi ) Diagonal matrix with Γi as its elements
LTI Linear time-invariant
SISO Single-input-single-output
MIMO Multi-input-multi-output

chosen to be the L2-norm. The term multiplier denotes a convolution operator. We
say that a matrix is stable if the real parts of all its eigenvalues are negative valued.

Definition 1 A function f : Rn ∅≤ R
n is said to be continuously (smoothly) differ-

entiable if the derivative exists and is continuous (smooth). �

Definition 2 A function f : R
n ∅≤ R

m is said to be Lipschitz if there exists a
constant L > 0 such that, for all x1, x2 → R

n , ≺ f (x1) − f (x2)≺ ⊆ L≺x1 − x2≺. �

Definition 3 A system is said to be L2 stable if the energy of its output is finite for
every finite energy input. �

Definition 4 An operator F : L2 −≤ L2 is said to be positive if ∞x, Fx⊂ ∩ 0 ∈x →
L2. If, additionally, there exists a constant δ > 0 such that ∞x, Fx⊂ ∩ δ≺x≺2 ∈x →
L2, then F is said to be strongly positive. �

Definition 5 Let A
.= diag(ai ) and B

.= diag(bi ) be matrices in R
n×n with bi ∩

ai ∈i . A MIMO nonlinearity N : L2 ≤ L2 is said to be a sector [A, B] nonlinearity
if ∞N (x) − Ax, Bx − N (x)⊂ ∩ 0 ∈x → R

n . �
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(i)

(ii)

Fig. 4.4 i The feedback systemΞ : H is stable and linear time-invariant, N → N . ii The systemΞ af-
ter a multiplier transformation—if the Zames-Falb multipliers are used, then M+, M−1+ , M≥−, M≥−1−
are causal and stable with finite gain. (This figure is reproduced, in part, from [27])

Definition 6 N denotes the class of MIMO nonlinearities N : L2 ≤ L2 for which
the following equations hold.

N (0) = 0;
∞r − s, N (r) − N (s)⊂ ∩ 0 ∈ r, x → L2; (4.2)

∃a constant c ∩ 0 such that ||N (r)|| ⊆ c||r || ∈r → L2.

Nodd
.= {N → N : N (x) = −N (−x) ∈x → L2}. �

Remark 1 The inequality (4.2) is the incremental positivity condition, which is a
MIMO extension of the SISO monotonicity property. �

Remark 2 A negative feedback interconnection of a stable LTI system and a N
nonlinearity is commonly referred to as a Lure’ system (see [21, 27]). �

A celebrated result on the L2-stability analysis of Lure’ systems is due to Zames
and Falb (see [27, Theorem 2]). In [27], Zames and Falb introduced a class of non-
causal multipliers to investigate the L2 stability of the feedback system Ξ , shown in
Fig. 4.4i, which has a stable, linear time-invariant (LTI) plant H in the feed-forward
path and a memoryless, norm-bounded, monotone nonlinearity N in the feedback
path; these multipliers are now commonly referred to as the Zames-Falb multipliers.
The Zames-Falb multiplier approach to determining stability of a system relies on
a class of possibly non-causal, linear-time-invariant multipliers that preserves the
positivity of N → N . Furthermore, it is required that any multiplier M in this class
be factorizable as M = M−M+, where M− and M+ have the following properties:

1. M−, M+ are invertible; and
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2. M+, M−1+ , M≥−, M≥−1− are causal and have finite gain.

These properties ensure that for any such multiplier, stability of the system shown
in Fig. 4.4i is equivalent to that of the system shown in Fig. 4.4ii. Stability of the
system then follows if M H is strongly positive and N has finite gain (see [27,
Theorem 2]).

Theorem 1 [27, Zames-Falb Stability Theorem]
Suppose there is a mapping M (the multiplier) of L2 into L2 such that:

1. there are maps M+ and M− of L2 into L2 with the following properties:

a. M = M−M+;
b. M− and M+ are invertible;
c. M+, M−1+ , M≥− and M≥−1− are causal and have finite gains;

2. M H and M≥N are positive;
3. either M H is strongly positive and H has a finite gain or M≥N is strongly

positive and N has a finite gain.

Then e1, e2 → L2. �

Thus, the key step in multiplier theoretic stability analysis of Ξ is the characteri-
zation of multipliers that preserve the positivity of the nonlinearity N of interest.

Definition 7 Modd denotes the class of MIMO transfer functions (convolution op-
erators) M : x ∅≤ m ≥ x where m̂( jω)

.= m0 − ẑ( jω) ∈ω and m0 − ||z||1 > 0. The
subclass obtained under the restriction z(t) ∩ 0 ∈t is designated M . The elements
of M and Modd are called the Zames-Falb multipliers. �

A multiplier M is said to be positivity preserving for a nonlinearity N if the
positivity of N implies the positivity of M N . The following positivity preservation
result is well known.

Theorem 2 ([21, Theorem 2])
Suppose N → N , N → C 1 (or N → Nodd , N → C 1). Then, M≥N is positive for all
M → M (or, respectively, M → Modd) if and only if skew(

∂ N (ζ )
∂ζ

) = 0 ∈ζ → R
n . �

We shall first establish how these background results can be built upon to determine
the L2 stability of the EL repressilator S . Thereafter, we will show how the stability
analysis serves as a basis to synthesize the tunable oscillations in S . Let us consider
the system S̃ obtained from S by replacing Π(·) with Π̃(·), where Π̃(x)

.= Γ− Γ
1+xn

and by setting r1 = [Γ0 Γ0 Γ0 −Γ −Γ −Γ]T . Let ̃ denote the MIMO nonlinearity
obtained by replacing Π(·) with ϕ̃(·) in Φ.

Lemma 1 Let A1, B1 → R
6×6. Let A1

.= −I , where I is an identity matrix and let
B1

.= diag(Γ). Then, the nonlinearity ̃ is a sector [A1, B1] nonlinearity. �

Proof Observe that ϕ̃ is a positive valued monotone nonlinearity with gain Γ—the
gain is Γ for infinitesimally small inputs and zero for arbitrarily large inputs. The
proof follows immediately. �
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The nonlinearity ̃ is not a positive operator. However, an equivalent feedback
interconnection Ŝ in which the feedback nonlinearity, say, Φ̂ is a positive operator
can be obtained from S̃ by applying a suitable loop-shift transformation (see [25,
Chap. 5.6]).

Lemma 2 Consider Φ̃. The loop-shift transformation given by

Φ̂
.= (1 + (Φ̃ − A1)((B1 − A1 − δ I )−1))−1(Φ̃ − A1),

Σ̂
.= (1 + Σ A1)

−1Σ + (B1 − A1 − δ I )−1,

where δ > 0 is arbitrarily small, transforms Φ̃ into a N nonlinearity. �

Proof The loop-shifted system is shown in Fig. 4.5. The proof trivially follows
by using block diagram reduction on the lines of the arguments presented in [25,
pp. 224–225]. �

A sufficient condition for the L2 stability of the EL repressilator S can now be
stated as follows.

Theorem 3 [Stability of the EL repressilator]
Consider the EL repressilator S . Let A1, B1 → R

6×6. Let A1
.= −I , where I is an

identity matrix and let B1
.= diag(Γ). Let Δ̂

.= (1+Σ A1)
−1Σ + (B1 − A1 − δ I )−1.

Then, S is L2 stable if Σ̂ is stable and if there exists an M → M such that
MΣ̂ > 0. �

Proof Since S and Ŝ are equivalent, the L2 stability of S is verified if the L2
stability of Ŝ is verified. From Lemma 1 and Lemma 2, it follows that the feedback
nonlinearity of the transformed system Ŝ is aN nonlinearity. The proof then follows
using Theorem 1. �

It follows that this approach scales well to cover the case of NS subsystems
connected in a cyclic negative feedback configuration shown in Fig. 4.6. Let us refer
to this system as SN . It may be verified that Theorem 3 generalizes to such an N
node network as follows.

Theorem 4 Consider SN . Let A1, B1 → R
2N×2N . Let A1

.= −I , where I is an
identity matrix and let B1

.= diag(Γ). Let Σ̂
.= (1+Σ A1)

−1Σ + (B1 − A1 −δ I )−1.
Then, S is L2 stable if Σ̂ is stable and if there exists an M → M such that
MΣ̂ > 0. �

We now address the problem of synthesizing tunable oscillations in the El
reprissalator S . We shall demonstrate how a tracking controller may be used to
build robust tunable oscillations in S .
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Fig. 4.5 The feedback system Ŝ . This system is obtained by loop-shifting S̃ . The exogenous
signals and the internal signals get transformed likewise. As a result of the loop-shift, the feedback
nonlinearity Φ̂ is now a positive monotone nonlinearity the positivity of which is preserved by the
Zames-Falb multipliers

(i) 

im ipinput output 

(ii) 

Fig. 4.6 i The network SN has N nodes that are connected in a cyclic inhibitary, i.e., negative,
feedback loop. ii Each node comprises repressor a gene, its promoter, and synthesized protein Its
input stage is an mRNA mi and its output stage is the corresponding protein pi . In (i), the blunt
arrows represent the inhibition interactions

4.4 Background Results for DI Controllers

Several results on synchronization of coupled oscillators have already been estab-
lished (see, e.g., [2, 3, 9, 10], and references therein). The tracking controller pro-
posed by us is based on the dynamic inversion (DI) theory presented in [11]. We shall
demonstrate that it is equivalent to a proportional + integral (PI) controller with an
initial condition dependent bias term. This controller ensures that the tracking error is
of the same order of magnitude as the inverse of the proportional gain. It follows that
a system equipped with a DI-based controller, or a PI controller in general, would
respond with a periodic behaviour when an oscillatory reference signal is supplied
to it.
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We shall first establish a specialized version of [11, Theorem 2] for a first order
system. This result is not original—this version has been described in detail in [19]
and, in brief, in [20]. It is presented here for the sake of completeness and as a
necessity to adequately describe the DI controller for the EL repressilator. Consider
a system described by

ẋ(t) = f (x(t), z(t), u(t)), ż(t) = ζ(x(t), z(t), u(t)), (4.3)

where x(0) = x0 and z(0) = z0 for (x, z, u) → Dx × Dz × Du and where
Dx , Dz, Du ◦ R are domains containing the origin. The functions f, ζ : Dx ×
Dz × Du ≤ R are continuously differentiable with respect to their arguments,
and furthermore, assume that ∂ f/∂u is bounded away from zero in the compact set
Ωx,z,u ◦ Dx × Dz × Du of possible initial conditions, i.e., there exists b0 > 0 such
that |∂ f/∂u| > b0.

Let e(t) = x(t) − r(t) be the tracking error signal. Then, the open loop error
dynamics are given by

ė(t) = f (e(t) + r(t), z(t), u(t)) − ṙ(t), e(0) = e0,

ż(t) = ζ(e(t) + r(t), z(t), u(t)), z(0) = z0. (4.4)

We construct an approximate dynamic inversion controller:

εu̇(t) = −sign

(
∂ f

∂u

)

f(t, x, z, u), (4.5)

where
f(t, x, z, u)

.= f (e(t) + r(t), z(t), u(t)) − ṙ(t) − ame(t), (4.6)

where am > 0 gives the desired rate of convergence.
Let u(t) = h(t, e, z) be an isolated root of f(t, e, z, u) = 0. The reduced system

for the dynamics in (4.4) is given by

ė(t) = −ame(t), e(0) = e0

ż(t) = ζ(e(t) + r(t), z(t), h(t, e(t), z(t)), z(0) = z0.

The boundary layer system is

dv

dτ
= −sign

(
∂ f

∂τ

)

f(t, e, z, v + h(t, e, z)). (4.7)

We assume that three conditions hold for all [t, e, z, u − h(t, e, z), ε] → [0,∞)×
De,z × Dv × [0, ε0] for some domains De,z, Dv ◦ R which contain the origin:

1. The functions f , ζ are such that their partial derivatives with respect to (e, z, u),
and the partial derivative of f with respect to t are continuous and bounded
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on any compact subset of De,z × Dv. Further, h(t, e, z) and
∂ f

∂u
(t, e, z) have

bounded first derivatives with respect to their arguments, and
∂ f

∂e
and

∂ f

∂z
are

Lipschitz in e and z uniformly in t .
2. The origin is an exponentially stable equilibrium of ż(t) = ζ(x, z, h(t, 0, z)).

3. The term

∣
∣
∣
∣
∂ f

∂u

∣
∣
∣
∣, is bounded away from zero.

Theorem 5 ([11, Theorem 2])
Consider the boundary layer system (4.7). Suppose the above three assumptions
hold. Then the origin in as exponentially stable equilibrium. Furthermore, let Ωv

be a compact subset of Rv, where Rv ◦ Dv denotes the region of attraction of the
autonomous system.

dv

dτ
= −sign

(
∂ f

∂u

)

f(0, e0, z0, v + h(0, e0, z0)).

Then for each compact subset Ωz,e ◦ Dz,e there exists a positive constant ε≥ and
T > 0 such that for all t ∩ 0, (e0, z0) → Ωe,z , u0 − h(0, e0, z0) → Ωv, and
0 < ε < ε≥ , the system (4.3), (4.5) has a unique solution xε(t) on [0,∞) and
xε(t) = r(t) + O(ε) holds uniformly for t → [T,∞). �
Remark 3 A DI based controller does not take advantage of any features of the
system dynamics which may induce oscillatory behaviour. Therefore, a DI-based
controller should be employed when the system structure does not naturally permit,
or if it inhibits, an oscillatory behaviour �
Remark 4 A DI-based controller may require high gains if small error margins are
required. On such occasions, a filtered controller may have to be used. A filtered
controller may potentially worsen the error margins, but can be designed to ensure
stability as well as robustness. A promising approach, based on a disturbance ob-
server, can be found in [12]. �
Remark 5 If each subsystem in Σ1 can be made to oscillate, the phase difference
between the oscillations need not be enforced directly. Instead, the interconnection
gains can be chosen to ensure a desired phase difference [24]. �

4.5 DI Controller for Tunable Oscillations Σ1

4.5.1 Problem Formulation

Consider the system of Eq. (4.1) defining the EL repressilator:

dmi

dt
= −mi + Γ

1 − pn
j

+ Γ0i ,

dpi

dt
= −Ω(pi − mi ), (i, j) = {(1, 3), (2, 1), (3, 2)} .
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We refer to each set of the 3 sets of equations (i → {1, 2, 3}) as a component
of the E-L oscillator. The control inputs Γ0i can be used to ensure that mi follows
the desired reference trajectory. In particular, the frequency of the oscillations in mi

can be controlled and the phase difference between mi and m j can be controlled as
well. This is a brute force approach to controlling the phase difference between the
oscillators; in contrast, a method to choose the interconnection network between the
components to achieve the desired phase difference is described in [24]. It may be
noted that since the three components are structurally identical, it is, in principle,
possible to send the same control signal (i.e., Γ0i ∇ Γ0 ∈i) to all components in order
to ensure that the trajectories of m1, m2, and m3 converge. For example, suppose
Γ0 is chosen to ensure that m1 tracks the desired reference trajectory. In this case,
rigorous linear analysis readily shows that m2 and m3 converge to m1; MATLAB
simulation results confirming this convergence are shown in Figs. 4.7 and 4.8, and
we now describe the synthesis of such a controller.

4.5.2 Equivalence of DI and PID Control

We propse a DI based controller to induce oscillations in each oscillator. We develop
a controller for each oscillator, and the same control signal is passed to the other
components of the system. The control law is developed hereafter using the symbols
x, z and u for brevity of notation. Consider an linear time-varying (LTV) system of
the form

ẋ(t) = −a(t)x(t) + σ(t) + g(z)u(t), (4.8)

where z represents external dynamics which are bounded input bounded output
(BIBO) stable with respect to x . Noise and external disturbances are captured in
the term σ(t) which is assumed to be bounded with a bounded derivative. The con-
trol objective is to design u(t) to ensure that x(t) oscillates when both a(t) and g(z)
are unknown. We assume that g(z) > 0 ∈z, i.e., the control effectiveness is positive,
and that g(z) is smoothly differentiable for z > 0 with a bounded derivative.

Let r(t) denote the reference signal which needs to be tracked by a given compo-
nent of the EL repressilator, where r(t) can be chosen as a sine wave with an appro-
priate phase for each component. Then, we write the error dynamics for e = x − r :

ė = −ame + σ + g(z)u − amr − ṙ + (am − a)x, (4.9)

where am > 0 ensures a desired convergence rate; in this equation, we have not stated
the dependence on t explicitly. If we could ensure that g(z)u(t) + σ(t) − amr(t) −
ṙ(t) + (am − a(t))x(t) = 0, then x(t) would be oscillatory. A DI-based control law
given by

u̇(t) = −k(g(z)u(t) − amr(t) − ṙ(t) + (am − a(t))x(t)) (4.10)

ensures tracking with an error bounded above by O(1/k). However, note that
a(t), σ (t) and g(z) are all unknown. The standard practice would be to design
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Fig. 4.7 Evolution of the states m1, m2, m3 of the three oscillators for Γ = Ω = 100 (Region 2).
a Evolution of m3 and r with time. The output m3 tracks the reference input with a non-zero time
lag and oscillates with the desired amplitude and frequency. b Evolution of m1, m2, m3 with time.
All three outputs exhibit oscillations. Since we have only one reference input, the oscillations in
these three outputs cannot be guaranteed to differ on amplitudes and frequencies. c Evolution of
the control signal Γ0(t) with time
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Fig. 4.8 Evolution of the states m1, m2, m3 of the three repressilator when the parameters are
chosen from the other three regions. a The parameters are chosen from Region 1. b The parameters
are chosen from Region 3. c The parameters are chosen from Region 4. The simulation result
indicate that the dynamic inversion controller is able to synthesize similar oscillations regardless of
the choice of parameters

an adaptive law to estimate them [12]. Instead, using Eq. (4.9), we can rewrite the
control law as

u̇(t) = −k(ė(t) + ame(t)). (4.11)

This control law still requires that we measure ė(t). This can be done in practice by
passing the signal e(t) through a lead compensator. However, as an alternative, by
integrating both sides, we obtain a standard PI controller augmented by a constant
which depends on the inital conditions:

u(t) = −kpe(t) − ki

t∫

0

e(τ )dτ + u(0) + kpe(0), (4.12)

where kp = k, i.e., the error bound is on the same order as the inverse of the
proportional gain.

Consider the Eq. (4.12). We can set u(0) = 0. Therefore, the controller only
needs to memorize

∫ t
0 e(τ )dτ and e(0). Furthermore, the expression for u̇(t) sug-
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Fig. 4.9 Evolution of the states of the three oscillators with time for Γ = 200, Ω = 3. Here, the
commanded phase lag between the reference signal and mi is, respectively, 0 ∀, 120 ∀, 240 ∀, where
i → {1, 2, 3}. The plots show that the tracking controller performs well and ensures zero steady state
error

gests that e(0) need not be recorded if ė(t) is available. In practice, ė(t) can be
measured by passing the signal e(t) through a lead compensator which, in turn, only
requires a knowledge of e(t) and

∫ t
0 e(τ )dτ . Finally, the integral action needs to be

accompanied by filtering in practice to ensure that noise does not manifest itself in
the integrated value. This establishes the equivalence of this DI controller and the
standard proportional integral derivative (PID) controller. Finally, the control law
designed here does not, in any way, drive the z-dynamics. Instead, the fact that they
are L2-stable ensures that z does not diverge. As a result, g(z) does not diverge, it
being globally Lipschitz in z.

4.6 Simulation Results

The simulation results for the EL repressilator S when this control law is imple-
mented are shown in Fig. 4.7 for the case of Γ = Ω = 100—in this region, S is
known to be unstable (see Fig. 4.2). The control signal Γ0 is chosen to ensure that
m3 tracks the desired sinusoidal profile. The three simulation plots illustrate tunable
oscillations that are generated when the parameters are chosen from the Region 2
of Fig. 4.7. The oscillations can be generated if the parameters are chosen from
other regions as well (see Fig. 4.8). This illustrates the utility of our DI controller in
synthesizing tunable oscillations in the EL repressilator.

If Γ0i are chosen independently of each other, it is possible to control the phase
difference between the three components by sending reference signals which are
offset from each other by the desired phase difference. We implemented this feedback
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Fig. 4.10 Evolution of the states of the three oscillators with time for Γ = 200, Ω = 3. Here, the
commanded phase lag between the reference signal and mi is, respectively, 0 ∀, 90 ∀, 180 ∀, where
i → {1, 2, 3}. The plots show that the tracking controller performs well and ensures zero steady state
error

system in MATLAB. The simulation plots are presented in Figs. 4.9 and 4.10, and
demonstrate that the tracking controller performs well and ensures zero stead-state
error even when the desired phase differences between mi are chosen arbitrarily.

4.7 Conclusion

We have presented a theory and associated algorithms to synthesize controllers that
may be used to build robust tunable oscillations in the repressilator, referred to as the
EL repressilator in this manuscript, synthesized in [6]. The EL repssilator is a 3-node
network. We have shown how the Zames-Falb multipliers can be used to determine
the L2 stability of such a network. We have generalized this stability result to cover
the case of N -node networks exhibiting a similar cyclic inhibitary feedback. Then,
we show that the desired oscillations in a set of mRNA’s and proteins can be obtained
by using an oscillatory input as a reference and by synthesizing a dynamic inversion
based tracking controller. This approach ensures that the repressilator can exhibit
oscillations irrespective of (1) the maximum number of proteins per cell and (2) the
ratio of the protein lifetimes to the mRNA lifetimes. The frequency and the amplitude
of at least one output (either mRNA or protein) can now be controlled arbitrarily. The
price paid for this flexibility is that we need a mechanism to set the desired reference
input in the given system.
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Chapter 5
Towards the Modular Decomposition
of the Metabolic Network

Anne Goelzer and Vincent Fromion

Abstract Modular systems emerged in biology through natural selection and
evolution, even at the scale of the cell with the cellular processes performing
elementary and specialized tasks. However, the existence of modules is question-
able when the regulatory networks of the cell are superimposed, in particular for the
metabolic network. In this chapter, a theoretical framework that allows the breakdown
of the steady-state metabolic network of bacteria into elementary modules is intro-
duced. The modular decomposition confers good systemic and control properties,
such as the decoupling of the steady-state regime with respect to the co-metabolites
or co-factors, to the entire system. The biological configurations and their impact
on the module properties are discussed in detail. In particular, the presence of irre-
versible enzymes was found to be critical in the module definition. Moreover, the
proposed framework can be used to qualitatively predict the dynamics of the module
components and to analyse biological datasets.

Keywords Modular ·Metabolic network ·Steady-state ·Metabolite ·RNA ·DNA ·
Enzyme · Bacillus subtilis · Genetic · Regulatory network · Pathway · Genetic
control · End product control structure (EPCS)

5.1 Introduction

Modularity emerged at all scale in living organisms, from organs in mammals to
cellular processes in bacteria such as DNA replication. These sub-systems, empir-
ically identified through their functions, perform elementary specialized tasks, that
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are coordinated to achieve the growth and the survival of the organism. Despite
the existence of these specialized sub-systems, the existence of modules is ques-
tionable when the regulatory networks of the cell are superimposed, and in partic-
ular for the metabolic network. The metabolic network is a central cellular process
whose main function is to produce energy and the main building blocks for bio-
mass synthesis like amino acids or nucleotides. It is composed of a large set of
highly connected chemical reactions (more than 2,000 reactions for the bacterium
Escherichia coli [11]) catalysed by enzymes. The questions that we adressed in
this chapter is: can we identify modules and, more generally any structure in the
metabolic network when the metabolic regulatory network is considered? Can we
establish intrinsic and structural properties associated to this organisation? These
questions are ambitious and require, as a preliminary step, to have the regulatory
network of the metabolic pathways of an organism, enough complete and exhaustive
to tackle these questions. To this purpose, we focused on the metabolic network of
the “simplest” organism, the bacterium. However, since the metabolic pathways are
highly conserved in higher organisms, the results obtained in this chapter are also
interesting.

In previous works [17], we inferred the genetic and metabolic regulatory net-
work for the model bacterium Bacillus subtilis using information in the literature
and databases. From the analysis of this network, we pointed out, in agreement with
the results of [21], the key role of metabolites in the genetic control of metabolic
networks. Moreover, we identified (a) two main control structures of metabolic path-
ways and (b) the standard biological configurations that are found in the metabolic
network. Most existing studies focus on the behaviour of metabolic pathways (or
signalling pathways) and consider a specific metabolic configuration [3, 28, 34, 36].
Because of the strong non-linearity of the dynamical model that is used to describe
the system, these authors mainly focused on identifying the stability conditions for
a simplified model. Moreover, their results are rarely discussed from a biological
point of view. Some work has dealt with more realistic metabolic configurations [1,
2], but these models do not integrate genetic regulation.

In contrast to these studies, our approach analyses the existence and uniqueness
of a structural steady-state regime for any metabolic pathway, regardless of its con-
figuration and its genetic and enzymatic regulatory mechanisms. We identified two
types of well-defined elementary modules that have specific mathematical properties.
This module definition can then be used to study the decomposition of a complete
metabolic network into modules.

This chapter is organised as follows. Section 5.2 briefly introduces the main
results of our work [17] and details the identification of two control structures in
the metabolic network, which are considered elementary modules. Sections 5.3 and
5.4 discuss the existence and uniqueness of a steady state in the two elementary
modules and in a large diversity of biological configurations. Section 5.5 examines
the connection and the coordination between modules. Section 5.6 focuses on the
decomposition of the metabolic network of B. subtilis into modules.
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5.2 Two Main Control Structures in Metabolic Pathways

The analysis of the B. subtilis metabolic network (see Fig. 5.1 (top) and [17]) led to
the identification of two distinct control structures in metabolic pathways. In the first
control structure, which we named end-product control structure (EPCS), the last
metabolite of the metabolic pathway is the key factor because it inhibits the activity
of the first enzyme and its synthesis through a genetic regulator. The second structure,
which is called initial-product control structure (IPCS), involves the first metabolite
of the pathway. Increasing concentrations of the first metabolite induces the synthe-
sis of the enzymes in the pathway through a genetic regulator. Based on previous
results [17], we defined two levels of control in metabolic pathways: local regulation
and global regulation [see Fig. 5.1 (bottom)]. The local regulation of a metabolic
pathway corresponds to any type of genetic regulation (transcriptional, translational,
and post-translational) that involves the concentration of an intermediate metabolite
in the controlled pathway. The global regulation of a metabolic pathway is defined
as all non-local regulations. For practical purposes, the local regulation ensures the
induction or repression of enzymes of the pathway according to the concentration
of an intermediate metabolite of the pathway. The global regulation, however, can
change or bypass the local regulation.

The choice of these structures as elementary sub-systems, even if it seems simple at
first, is based on their intrinsic mathematical properties, which will be presented in the
next sections. From an input/output perspective, these control structures correspond
to sub-systems, or modules. In addition, these allow the breakdown of the metabolic
network into sub-systems, which usually correspond to the empirical organisations
of the metabolic network that are defined by biologists.

5.3 The End-Product Control Structure

In this section, the theoretical properties that are related to the end-product con-
trol structure are analysed. In addition, the consequences of these properties will be
assessed from a biological point of view. Compared to previous studies, this work
systematically studies the impact of different biological configurations of metabolic
pathways, which are deduced from the work by [17]. These configurations include
changes in the reversibility/irreversibility of metabolic pathways, the presence of
cofactors, and isoenzymes and the organisation of the genes in an operon.
The EPCS system is shown in Fig. 5.2. As shown, the system is a linear metabolic
pathway that is composed of n metabolites (X1, . . . , Xn) and n − 1 enzymes
(E1, . . . ,En−1) and is controlled by the concentration of the end-product, which
represses the synthesis of the first enzyme E1 (genetic level) and inhibits the activity
of E1 (metabolic level).
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Fig. 5.1 Top two control structures in the metabolic network: one controlled by the last metabolite
(end-product), one controlled by the first metabolite (initial-product). Enzymes (resp. metabolites)
are in pink (resp. yellow). The transcription factor (TF) is the ellipsoid, and the orange arrows refer
to the regulation by metabolites on the enzyme activity and on the TF activity. Bottom two control
levels of a metabolic pathway



5 Towards the Modular Decomposition of the Metabolic Network 125

Fig. 5.2 A metabolic pathway
controlled by the end-product (−)
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Model of metabolic level: Following the standard representation of enzymatic reac-
tion of [38], the dynamics of the metabolite concentrations can be described by the
following set of ordinary differential equations:


⎪⎪⎪⎪

⎪⎪⎪⎪⎜

·
x1(t) = ν0(t) − E1(t) f1(x1(t), x2(t), xn(t))
·
x2(t) = E1(t) f1(x1(t), x2(t), xn(t)) − E2(t) f2(x2(t), x3(t))
...

...
...

...
·
xn(t) = En−1(t) fn−1(xn−1(t), xn(t)) − νn(t)

(5.1)

where νn(t)
Δ= En(t) fn(xn(t)) and the characteristics of the enzyme activity fi are

such that:

(a) Reversible enzymes:

• for intermediate enzymes, Ei for i → {2, . . . , n − 1}: fi is continuous,
increasing in xi and decreasing in xi+1 such that fi (0, 0) = 0, fi (xi , 0) >

0 for all xi > 0, and fi (0, xi+1) < 0 for all xi+1 > 0. Moreover, there exist
Mi > 0, M ∞

i ⊂ 01 such that fi (xi , xi+1) → (−M ∞
i , Mi ) for all xi > 0 and

xi+1 ⊂ 0. We assume that for xi > 0, there always exists xi+1 > 0 such that
fi (xi , xi+1) = 0.

• for the first enzyme, E1: f1(0, 0, xn) = 0 for all xn ⊂ 0, f1(x1, 0, xn) > 0
for all x1 > 0 and xn ⊂ 0, and f1(0, x2, xn) < 0 for all x2 > 0 and xn ⊂ 0.
Moreover, there exist M1 > 0, M ∞

1 ⊂ 0 such that f1(x1, x2, xn) → (−M ∞
1, M1),

for all x1 > 0, x2 ⊂ 0 and xn ⊂ 0. Moreover, we also assume that for all
x1 > 0 and xn ⊂ 0, there exists x2 > 0 such that f1(x1, x2, xn) = 0.

In addition, f1(x1, x2, xn) is continuous and increasing (resp. decreasing)
in x1 (resp. x2). Moreover, if f1(x1, x2, 0) < 0 for all x1 > 0 and x2 >

0, then f1 is increasing in xn ; similarly, if f1(x1, x2, 0) > 0 for all x1 >

0 and x2 > 0, then f1 is decreasing in xn . Moreover, for all x1 > 0 and
x2 > 0, lim

xn∩+∈ f1(x1, x2, xn) = 0.

• for the last enzyme, En : En represents the set of chemical reactions that
consume xn and summarises the link between the flux that is produced by
the metabolic pathway and the final concentration. The characteristics of fn

mainly depend on other modules. In addition, fn is continuous and increasing
in xn such that fn(0) = 0.

1 All constants introduced in this chapter are assumed to be finite.
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(b) Irreversible enzymes:

• for the intermediate enzymes, Ei for i → {2, . . . , n − 1}: fi is continuous and
increasing in xi such that fi (0) = 0. Moreover, there exists Mi > 0 such that
fi (xi ) → (0, Mi ) for all xi > 0 and limxi ∩+∈ fi (xi ) = Mi .

• for the first enzyme, E1: f1(0, xn) = 0 for all xn ⊂ 0. There exists M1 > 0
such that f1(x1, xn) → (0, M1) for all x1 > 0 and xn ⊂ 0. Moreover, f1
is continuous, increasing in x1 and decreasing in xn such that for all x1 >

0, lim
xn∩+∈ f1(x1, xn) = 0.

Model of the control at the genetic level: Enzyme synthesis occurs in two steps:
the gene is first transcribed by the RNA polymerase to produce the RNA messenger
(mRNA), which is then translated by the ribosomes to produce the protein. By noting
m, YL and RL as the concentrations of mRNAs, free RNA polymerases and free
ribosomes, respectively, a simplified dynamic model of the synthesis of an enzyme
E can be written: {

ṁ(t) = kmYL(t − τm) − kdm(t)

Ė(t) = kem(t)RL(t − τe) − μE(t)
(5.2)

where

(a) km , kd and ke are the affinity of the promoter for the RNA polymerase, the
degradation of mRNA and the affinity of the ribosome for the mRNA, respec-
tively;

(b) μ is the growth rate of the bacterium in exponential growth (μ can then be
calculated such that Ṅ (t) = μN (t), where N (t) is the concentration of the
bacterial population);

(c) τm is the transcriptional delay, which corresponds to the time required for
mRNA availability for ribosomes; and

(d) τe is the translational delay, which corresponds to the time required for trans-
lation of the mRNA.

Moreover, if the synthesis of the mRNA or the enzyme is inhibited by a factor, such
as a metabolite, the previous equations also depend on the factor. For example, if the
synthesis of the mRNA is inhibited by the metabolite X , which has a concentration
of x , then the first equation is now

ṁ(t) = km fI (x(t))YL(t − τm) − kdm(t)

where f I (x(t)) is continuous, positive and decreasing in x .
If the concentration of the metabolite x has a constant steady state regime x̄ , then

m̄ = km

kd
f I (x̄)ȲL , Ē = kekm

μkd
f I (x̄)ȲL R̄L .
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The steady state does not depend on the delays τm and τe. Since we are only interested
by the study of the steady state, then for the sake of readability and by abuse of
notations, the differential system of enzyme synthesis will be rewritten as

·
E(t) = g(x(t)) − μE(t) or

·
E(t) = h(t) − μE(t) (5.3)

where the delays have been removed. The left equation is used if the enzyme synthesis
is regulated by a metabolite with concentration x . The right equation corresponds to
unregulated enzymes. The functions g and h are continuous, positive, monotonous
with respect to their arguments and, because maximal values structurally exist for
ȲL and RL , bounded.

Remark 1 The half life of mRNA (log(2)k−1
d ) is approximately 2–3 min [10] and

the growth rate μ, which depends on the medium composition, corresponds to a
generation time (log(2)μ−1) that is between 30 min and several hours [29]. Therefore,
the mRNA equation is usually assumed to be at steady state with respect to the enzyme
equation. Moreover, the value of the translational delay τe is less than 1 min [5] and
is therefore often neglected compared to μ.

For the metabolic pathway shown in Fig. 5.2, where E1 is inhibited by xn , we
have 



⎜

·
E1(t) = g(xn(t)) − μE1(t)
·
Ei (t) = hi (t) − μEi (t) for i → {2, . . . , n}

(5.4)

where

(a) The function g is continuous, positive and decreasing in xn . Moreover, we
assume that g(0) = Pmax, where Pmax > 0 and lim

x∩+∈g(x) = 0.

(b) The functions hi are assumed to be constant.

Remark 2 In the rest of the chapter, we will assume that a steady-state regime of the
unregulated enzymes always exists and is determined by the steady-state regimes
of other cellular components. The associated differential equations will therefore be
removed from the system for the sake of readability.

The final description of the metabolic pathway shown in Fig. 5.2 is the following:


⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎜

·
x1(t) = ν0(t) − E1(t) f1(x1(t), x2(t), xn(t))
·
x2(t) = E1(t) f1(x1(t), x2(t), xn(t)) − E2(t) f2(x2(t), x3(t))
...

...
...

...
·
xn(t) = En−1(t) fn−1(xn−1(t), xn(t)) − En(t) fn(xn(t))
·
E1(t) = g(xn(t)) − μE1(t)

(5.5)
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If the genes coding for enzymes (E1, . . . ,En−1) are organised in an operon, then
there exists αi > 0 such that

Ei (t) = αi E1(t) (5.6)

for i → {2, . . . , n − 1}.

5.3.1 Characteristics of the Steady-State Regime

In this section, we introduce the main theoretical properties of the elementary mod-
ules on the end-product control structure. To this purpose, we consider the main
biological configurations identified from our model [17] and describe the associated
steady-state regime. These elementary configurations are realistic enough to describe
by combination the entire set of configurations of metabolic pathways of Bacillus
subtilis.

5.3.1.1 The Enzymes are Irreversible and the Genes are in the Same Operon

All enzymes are irreversible and the genes coding for (E1, . . . ,En−1) belong to the
same operon, which means that these are transcribed in the same mRNA. Thus, the
concentrations of the enzymes are assumed to be proportional [see Eq. (5.6)].
The system (5.5) can be written as:


⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎜

·
x1 = ν0 − E1 f1(x1, xn)
·
x2 = E1( f1(x1, xn) − α2 f2(x2))
... = ...

...
·
xn = αn−1 E1 fn−1(xn−1) − En fn(xn)
·
E1 = g(xn) − μE1

(5.7)

and the steady-state regime is characterised by this result.

Proposition 1 For all μ > 0, En > 0 and x̄1 > 0 there exists a unique steady-state
regime (Ē1, . . . , Ēn−1) and (x̄2, . . . , x̄n) for the system (5.7) given by


⎪⎪

⎪⎪⎜

Ē1 = g(x̄n)

μ
f1(x̄1, x̄n)g(x̄n) = μEn fn(x̄n)

ν0 = En fn(x̄n)

(5.8)

and for i → {2, . . . , n − 1},
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Ēi = αi
g(x̄n)

μ
and x̄i = f −1

i

(
μEn fn(x̄n)

αi g(x̄n)

)

(5.9)

if and only if for i → {2, . . . , n − 1}

αi Mi >
μEn fn(x̄n)

g(x̄n)
. (5.10)

The proof of this proposition is a particular case of the proof of Proposition 3, which
is shown in page 10. Proposition 1 indicates that the system (5.7) has a unique steady-
state regime if and only if all of the enzymes that belong to the metabolic pathway do
not saturate (the condition (5.10) holds true). Moreover, xn and thus implicitly f1 and
g have key roles in the definition of the steady state. The monotonicity of f1 and g
with respect to xn allows to deduce the unicity of xn . Surprisingly, the characteristics
denoted by fi and the concentrations of the intermediate enzymes have no impact
on the definition of the steady state Ē1, x̄n and the output flux En fn(x̄n) if none of
the intermediate enzymes saturate. Consequently, the sensitivity of the steady-state
regime to a constant perturbation in the concentration of enzyme En (or to a flux
demand νn) only depends on the genetic characteristics g and the characteristics f1
of the first enzyme. The prediction of the steady-state behaviour of the metabolic
pathway can therefore be dramatically simplified, even if it is composed of a large
number of intermediate reactions.

Remark 3 The condition (5.10) can be written as

μEn fn(x̄n)

g(x̄n)
< αi Mi ⇐⇒ f1(x̄1, x̄n) < αi Mi .

Therefore, if M1 < αi Mi for all i → {2, . . . , n −1}, then condition (5.10) is satisfied.

5.3.1.2 Behaviour of the Components of the Metabolic Pathway

The variation of the flux demand with respect to the variation of the concentration
of En will now be discussed. Based on the definition of the steady-state regime,

f1(x̄1, x̄n)g(x̄n)

μ fn(x̄n)

Δ= En .

Therefore, x̄n is decreasing when En is increasing. In addition, the final flux demand

ν̄n
Δ= En fn(x̄n) is by definition equal to f1(x̄1, x̄n)g(x̄n) = ν̄n . Because the left side

of equation is a decreasing function of x̄n , then, when En is increasing, ν̄n is also
increasing (as long as none of the enzymes saturate). Consequently, the metabolic
pathway has a maximal flux capability, which is given by the following corollary.
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Corollary 1 Let the assumptions of Proposition 1 be satisfied. Then the flux demand
has the following upper bound at steady state

g(0)

μ
f1(x̄1, 0). (5.11)

The outer flux is then bounded and the superior value only depends on the charac-
teristics f1 and g of the first enzyme; this is only true if none of the intermediate
enzymes saturate.
The impact of variations in (a) the flux demand and (b) the concentration x1 on the
intermediate metabolite concentrations will now be discussed.

Corollary 2 Let the assumptions of Proposition 1 be satisfied. Then, (a) for all
i → {2, . . . , n − 1} , x̄i = x̄i (En) is increasing in En and x̄n = x̄n(En) is decreas-
ing in En and, (b) for all i → {2, . . . , n}, x̄i (x̄1) and ν̄n(x̄1) are increasing in x̄1.

The intermediate metabolite concentrations are increasing functions of the flux
demand and of x1, whereas the end-product is a decreasing (resp. increasing) function
of the flux demand (resp. x1).

Remark 4 x̄n can be written as a function of x̄1: x̄n
Δ= H(x̄1) . Therefore, at steady

state, the input and output flux and the concentration of the first metabolite x̄1 are
linked by the monotonously increasing relationship ν0 = En fn(H(x̄1)). We then
obtain an input/output description that corresponds to a fictitious enzyme, which
links ν0 to x̄1 and integrates all of the module properties through the functions H
and fn .

Remark 5 A metabolic flux corresponds to a material flow through an enzyme such
that ν = E fE (x). A metabolic flux is thus an intensive quantity, whereas the metabo-
lite concentration is an extensive quantity. This fact explains why, in most mecha-
nisms of gene regulation, only the concentration of a metabolite is used (and not
the flux). As in Ohm’s law (U = RI ), in which the current I is measured through
the measurement of the voltage U for the resistance R, the cell senses the flux ν

through the measurement of the concentration x and a specific mechanism, such as
an enzyme or a genetic regulator.

5.3.1.3 Consequences of Enzyme Saturation

Several factors can result in enzyme saturation; these include an inadequate concen-
tration of the enzyme or its limitation by a cofactor. The effect of enzyme saturation
will now be discussed.

Corollary 3 Let the assumptions of Proposition 1 be satisfied and let us define

ψi≺,sat = min
i→{2,...,n−1} αi Mi
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and i≺, the value of i for which the minimum is reached (i≺ can also correspond to
a set of possible values). If ψi≺,sat is such that ψi≺,sat < f1(x̄1, 0), then there exists
E≺

n and x̄≺
n such that

μE≺
n fn(x̄≺

n )

g(x̄≺
n )

= ψi≺,sat

and
lim
<

En∩E≺
n

x̄i≺ = +∈.

In addition, for En ⊂ E≺
n , the regime of the metabolic pathway is saturated.

The output flux is fixed through the saturation of the enzyme ψi≺,sat and by the
characteristics g ofE1. Moreover, the concentration of the metabolite x̄i≺ , which is the
substrate of enzyme i≺, goes theoretically to infinity when En goes to E≺

n . Obviously,
thermodynamical laws prevent the metabolite concentration to go to infinity. Very
high concentrations of metabolites lead to reverse the direction of the chemical
reaction, i.e. the irreversible enzyme becomes reversible (see Sect. 5.3.1.6).

5.3.1.4 Biological Interpretation

The biosynthesis pathways of amino acids are generally regulated by the end product.
The enzyme En and the output flux νn correspond to the tRNA synthase and the flux
of charged-tRNA that is consumed by the ribosomes for the production of proteins at
steady-state, respectively. Thus, an increase in the ribosomal demand usually results
in an increase in the concentration of tRNA synthase (En) due to a genetic regulation
that induces a decrease in the concentration of the amino acid xn . A decrease in xn

leads to the readjustment of the entire pathway (enzyme and metabolites) to provide
the requested flux (assuming that the intermediate enzymes do not saturate). In other
words, for fixed x̄1, the concentration of the amino acid xn must decrease to increase
the capacity of the synthesis pathway and thus satisfy the flux demand within the
limit defined by the characteristics of the first enzyme (Corollary 1).

5.3.1.5 The Genes are Independent

In the following analysis, the genes belonging to the metabolic pathway are not in
the same operon. We assume that a steady state for the intermediate enzyme exists
and is given by (Ei )i→{2,...,n} > 0.

Proposition 2 For all μ > 0, x̄1 > 0 and Ei > 0 for i → {2, . . . , n}, there exists an
unique steady-state regime Ē1 and (x̄2, . . . , x̄n) for (5.7) such that
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⎪⎪

⎪⎪⎜

Ē1 = g(x̄n)

μ
f1(x̄1, x̄n)g(x̄n) = μEn fn(x̄n)

ν0 = En fn(x̄n)

(5.12)

and for all i = {2, . . . , n − 1}, x̄i = f −1
i

(
En fn(x̄n)

Ei

)

if and only if En fn(x̄n) <

Ei Mi .

Compared to Proposition 1, only the condition of saturation changes. The link
between the flux demand and the concentrations of the first and last metabolite
that are obtained in Proposition 1 is unchanged as long as none of the intermediate
enzymes saturate. All of the previous results of Sect. 5.3.1.1 can be easily extended.

5.3.1.6 All Enzymes are Reversible

We now assume that all of the enzymes in the metabolic pathway (including the
first enzyme) are reversible. This configuration dramatically changes the properties
obtained in Proposition 1. In contrast, the results in Proposition 1 can be partially
recovered through the presence of a single irreversible enzyme.

Proposition 3 If the genes coding for (E1, . . . ,En−1) belong to the same operon
(see Eq. (5.6)) and if the enzymes Ei for all i → {1, . . . , n − 1} are reversible, then,
for all μ > 0, En > 0 et x̄1 > 0, there exists a unique steady-state regime for the
system (5.5), (Ē1, . . . , Ēn−1) and (x̄2, . . . , x̄n) such that


⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎜

x̄n = Hn(H2(. . . (Hn−1(x̄n, x̄1), x̄1) . . . , x̄1), x̄1)

x̄i = Hi (Hi+1(. . . (Hn−1(x̄n, x̄1), x̄1) . . . , x̄1), x̄1) for i → {2, . . . , n − 1}
E1 = g(x̄n)

μ

Ei = αi
g(x̄n)

μ for i → {2, . . . , n − 1}
ν0 = En fn(x̄n),

(5.13)
where, for all i → {2, . . . , n − 1}, the functions Hi are increasing with respect to
their arguments and the function Hn is decreasing (resp. increasing) with respect to
its first (resp. second) argument.

Proof The proof is inductive.

Step 1: Let us first prove that there exists x≺
2 > 0 such that, for all x̄2 → [0, x≺

2 ], there
exists a unique x̄n ⊂ 0 such that

g(x̄n)

μ
f1(x̄1, x̄2, x̄n) = En fn(x̄n). (5.14)

The monotonicity of the functions of the left and the right side of the equation with
respect to x̄n means that, for all x̄1 > 0, there exists x≺

2 > 0 such that f1(x̄1, x̄2, 0) > 0
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En fn(x̄n)

x̄n

g(x̄n)
μ f1(x̄1,0, x̄n)

g(x̄n)
μ f1(x̄1, x̄∗

2, x̄n)

x̄2
x̄3

En fn(Hn(x̄2))

x̄∗
2

α2
g(Hn(x̄∗2))

μ f2(x̄∗
2, x̄3)

α2
g(Hn(x̄2))

μ f2(x̄2, x̄3)

Fig. 5.3 Intersection of curves En fn(x̄n) and f1(x̄1, x̄2, x̄n) for all x̄2 → [0, x≺
2 ] (left) and of curves

En fn(Hn(x̄2)) and α2
g(Hn(x̄2))

μ
f2(x̄2, x̄3) (right)

for all x̄2 → [0, x≺
2 ) with f1(x̄1, x≺

2 , 0) = 0. Then, for all x̄2 → [0, x≺
2 ), the left side

of Eq. (5.14) is a decreasing function of x̄n , is positive for x̄n = 0 and tends to 0
when x̄n goes to infinity. In addition, the right side of the Eq. (5.14) is an increasing
function of x̄n and is equal to 0 when x̄n = 0. Thus, for all x̄2 → [0, x≺

2 ), the two
curves with respect to x̄n necessarily have a unique intersection point. In addition,
for x̄2 = x≺

2 , x̄n = 0 is the only solution to the Eq. (5.14) (see Fig. 5.3 left), which
concludes the proof of Step 1.

Thus, the function x̄n
Δ= Hn(x̄2, x̄1) is continuous and decreasing in x̄2 and can

be defined for x̄2 → [0, x≺
2 ] such that Hn(0, x̄1) > 0 and Hn(x≺

2 , x̄1) = 0. For the
sake of readability, we omitted the dependence of the equations on x̄1 in the rest of
the proof.

Step 2: The rest of the proof is by induction. If the steady-state regime exists, then
x̄2 and x̄3 are linked by

α2
g(Hn(x̄2))

μ
f2(x̄2, x̄3) = En fn(Hn(x̄2)), (5.15)

where x̄n has been substituted by its expression. As in the first step, we can prove
that there exists2 x̄≺

3 > 0 such that, for all x̄3 → [0, x≺
3 ], there exists x2 → [0, x≺

2 ] such

that Eq. (5.15) is true. Thus, the function x̄2
Δ= H2(x̄3) can be defined, which is well

defined, continuous, increasing in x̄3 for all x̄3 → [0, x≺
3 ], and such that H2(0) > 0

and H2(x≺
3 ) = x≺

2 (See Fig. 5.3 right).

Step 3: Step 2 is repeated for all i → {3, . . . , n − 1}. By definition, x̄i has to be the
solution of the following equation:

2 In fact, x≺
3 is such that f2(x≺

2 , x≺
3 ) = 0, which guarantees that f2(x≺

2 , x̄3) > 0 for all [0, x≺
3 ).
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αi
g(Hn(H2(...(Hi−1(x̄i )))))

μ
fi (x̄i , x̄i+1) = En fn(Hn(H2(. . . (Hi−1(x̄i ))))).

(5.16)
Then, as in the previous step, it is easy to prove the existence of the function Hi

such that xi
Δ= Hi (xi+1) is well defined, continuous, increasing in x̄i+1 for all

x̄i+1 → [0, x≺
i+1], and such that Hi (0) > 0 and Hi (x≺

i+1) = x≺
i .

Step 4: Through the combination of the results of the previous steps, we can deduce
that x̄n exists if the following equation has a solution:

x̄n = Hn(H2(. . . (Hn−1(x̄n)))). (5.17)

By definition, Hn−1 is defined on [0, x≺
n ] such that Hn−1(0) > 0 and Hn−1(x≺

n ) =
x≺

n−1. Let us note that Hn(H2(. . . (Hn−1(0))) > 0 and Hn(H2(. . . (Hn−1(x≺
n )))

= Hn(x≺
2 ) = 0, and because the right side (resp. left side) of Eq. (5.17) is a decreasing

(resp. increasing) function in x̄n , we can deduce that there exists a unique x̄n → [0, x≺
n ),

solution to Eq. (5.17), which concludes the proof.

Remarkably, when all enzymes are reversible, the steady-state regime of the metabolic
pathway always exists. We will not develop the results of this structure because the
systematic analysis of metabolic pathways indicates the presence of at least one irre-
versible enzyme per module [17, 20]. In most cases, the irreversible step corresponds
to the first or second enzyme. The presence of an irreversible enzyme means that the
results of Proposition 1 hold:

Corollary 4 Let the assumptions of Proposition 3 be satisfied. If enzyme E1 is irre-
versible, then, for all μ > 0, En > 0 and x̄1 > 0, there exists a unique steady-state
regime (Ē1, . . . , Ēn−1) and (x̄2, . . . , x̄n) for the system (5.5) such that


⎪⎪

⎪⎪⎜

Ē1 = g(x̄n)

μ
f1(x̄1, x̄n)g(x̄n) = μEn fn(x̄n)

ν0 = En fn(x̄n)

(5.18)

if and only if (x̄2, . . . , x̄n−1) exists such that, for i → {2, . . . , n − 1}, αi
g(x̄n)

μ
fi (x̄i , x̄i+1) = En fn(x̄n).

As in Proposition 1, the steady-state regime is only defined by f1, g and fn as long as
none of the enzymes saturate. However, the condition of saturation explicitly depends
on the steady-state regime and is then less useful.
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5.3.2 Integration of the Main Biological Configurations

We will now discuss the impact of different biological configurations in more detail.
These configurations involve changes due to the presence of isoenzymes, co-factors
and co-metabolites. The mathematical results are presented in the most general case
of the end-product control structure, in which only the first enzyme is irreversible
and the genes are not organised in a single operon.

5.3.2.1 Impact of Co-Metabolites and Co-Factors

External factors (co-metabolites and co-factors) usually modulate the rate of
enzymatic reactions. Co-metabolites, such as ATP/ADP, NAD/NADH or glutamine/
glutamate, are also substrates of the enzymes and are transformed into products.
Co-factors, such as ions (e.g. Mg2+, Zn2+) or vitamins, are generally bounded to the
enzyme and are therefore considered to be an enzyme component. Both of these types
of factors can be easily included in our analysis through the introduction of a new
argument in the reaction rate fi of the enzyme. Assuming that the i th reaction requires
a co-metabolite, which is labelled as X P with concentration p, then the rate of reaction
for an irreversible enzyme (resp. reversible) is given by fi (xi , p) (resp. reversible:
fi (xi , xi+1, p)) such that fi (xi , 0) = 0 (resp. reversible: fi (xi , xi+1, 0) = 0) and
the function fi is assumed to be increasing in p.

1. The co-metabolite/co-factor acts on the first enzyme, E1. The maximal flux

of the metabolic pathway is given by ν̄n,max( p̄)
Δ= g(0)

μ
f1(x̄1, 0, p̄), where the co-

metabolite or the co-factor reaches its steady-state regime p̄. If the factor decreases
the activity of the first enzyme, then xn is decreasing and E1 is increasing.
2. The co-metabolite/co-factor acts on the last enzyme,En . By definition, f1(x̄1,x̄n)

g(x̄n) = μEn fn(x̄n, p̄). The limitation of the concentration of the co-metabolite/co-
factor leads to a decrease in the flux demand. Therefore, x̄n and Ē1 are increasing
and decreasing functions of p̄, respectively.
3. The co-metabolite/co-factor acts on an intermediate enzyme, E2, . . . ,En−1.
Remarkably, as long as variations of p do not lead to enzyme saturation, the steady
states of the main components, (ν̄n, x̄n and Ē1), remain unchanged.

5.3.2.2 Role of an Isoenzyme

Isoenzymes are enzymes that catalyse the same chemical reaction. Let the isoenzyme
E

≺
1, as represented in Fig. 5.4, catalyse the same irreversible reaction as E1 (the

first reaction). E≺
1 is not regulated by any intermediate metabolite of the metabolic

pathway (neither at the genetic level or at the enzymatic level), which leads to the
flux E≺

1 f ≺
1 (x1) for x1, E≺

1 ⊂ 0.
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Fig. 5.4 Presence of an
isoenzyme in the metabolic
pathway

(−)

Enzymatic and genetic control

E0
X2 X3 Xn−1

E2
Xn

E1 EnEn−1
X1

E
∗
1

Fig. 5.5 Initial-product con-
trol structure

(+) (+)

Genetic control

X1

E0
X2 X3 Xn−1

E2
Xn

E1 EnEn−1

The steady-state regime satisfies the following equation:

f1(x̄1, x̄n)
g(x̄n)

μ
+ E≺

1 f ≺
1 (x̄1) = En fn(x̄n). (5.19)

Moreover, the maximal capability of the flux through the metabolic pathway is also
modified:

ν̄n,max = f1(x̄1, 0)
g(0)

μ
+ E≺

1 f ≺
1 (x̄1).

From Eq. (5.19), as long as the intermediate enzymes do not saturate, the increase of
the flux ν̄n can be obtained either by a decrease in the end product x̄n or an increase
in the concentration of the isoenzyme E≺

1 .

5.4 Other Control Structures

The other elementary module [see Fig. 5.1 (top)], which is named initial-product
control structure, usually corresponds to the control structure of degradation path-
ways. Enzyme synthesis is controlled by the concentration of the first metabolite, x1.
Due to lack of space, we will only give the condition of existence of the steady-state
regime and the qualitative behaviour of the module components to deduce the rules
that dictate the connections between modules.

5.4.1 Initial-Product Control Structure

We will consider the linear pathway that is shown in Fig. 5.5, which consists of n
metabolites (X1, . . . , Xn) and n − 1 irreversible enzymes (E1, . . . ,En−1) for which
the encoding genes are organised in a single operon. The enzyme synthesis is induced
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when the concentration of the first metabolite increases. The behaviour of this path-
way obeys the following system of differential equations:


⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎜

ẋ1 = ν0 − E1 f1(x1)
...

ẋi = E1(αi−1 fi−1(xi−1) − αi fi (xi ))
...

ẋn(t) = αn−1 E1 fn−1(xn−1) − En fn(xn)

Ė1 = g(x1) − μE1

(5.20)

where fi has the same characteristics as in Sect. 5.3 and g is a positive, continuous
and increasing function of x1 such that for all x1 > 0, g(x1) > 0, and g(0) = 0.
We also assume that there exists Pmax > 0 such that lim

x∩+∈g(x) = Pmax.

Proposition 4 For all μ > 0, x̄1 > 0 and En > 0, there exists a unique steady-state
regime (x̄2, . . . , x̄n) and (Ē1, …, Ēn−1) to the system (5.20) such that


⎪⎪⎪⎪

⎪⎪⎪⎪⎜

Ē1 = g(x̄1)

μ

ν0 = g(x̄1)

μ
f1(x̄1)

x̄i = f −1
i

(
αi−1
αi

fi−1(x̄i−1)
)

for i = {2, . . . , n}

(5.21)

if and only if, for all i → {2, . . . , n − 1}, M1 < αi Mi .
Moreover, the functions x̄i = x̄i (ν0) for i = 1, . . . , n are increasing in ν0, the input

flux is bounded and the maximal value of x̄1 > 0 is ν0,max
Δ= Pmax

μ
M1.

Proof The proof of this proposition is straightforward through the writing of the

steady-state regime, which, by definition, corresponds to ν0 = g(x̄1)

μ
f1(x̄1), and

because of the monotonicity of the functions. The existence of the steady-state regime
is achieved if and only if the enzymes of the pathway are not saturated. This means
that the maximum capacity of each enzyme must be greater than ν0.

Thus, when x̄1 is increasing, the flux ν0 and the concentrations of the downstream
metabolites are increasing. The IPCS module has also specific properties that can
be directly obtained by following the line of the analysis of the EPCS module. The
proofs of all of these results are straightforward and are easily deduced from the
previous proofs.

5.4.1.1 Comparison Between the Different Control Structures

The two control structures that have been analysed have common characteristics,
which were obtained under the assumption that none of the intermediate enzymes
saturate:
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• the steady-state regime is determined by the characteristics of the first enzyme and
its genetic control;

• the maximum capacity of the pathway is limited;
• the co-metabolites of the intermediate enzymes have no impact on the input/output

flux or on the genetic control; and
• the presence of an irreversible enzyme prevents the direct spread of the information

that is carried by the concentrations of downstream metabolites to the upstream
metabolites.

However, there are also notable differences. The EPCS module is inherently driven
by the downstream flux demand through x̄n , whereas the IPCS module is driven
by the upstream flux through x̄1. Moreover, the characteristics fn of the enzyme
En do not affect the existence of a steady-state regime of the IPCS if the control
structure is monotonic. The function fn can be increasing or decreasing in xn . In
other words, a metabolic pathway that is controlled by this type of control structure
cannot accommodate a final flux demand of νn .

5.4.2 Not Controlled Structure

We also introduce a third module, which is named NCS (Not Controlled Structure).
This module consists of enzymes that are not genetically or enzymatically controlled
by a metabolite in the pathway. The input/output feature of the NCS module at steady
state is obtained under the assumption that none of the enzymes of the module saturate
and that the first enzyme is irreversible:

E1 f1(x̄1) = En fn(x̄n). (5.22)

It follows that the steady-state regime is determined by the concentration of the initial
metabolite x̄1 and by the enzymatic characteristics f1 and fn .

5.5 Coordination Between Modules

The mathematical properties that are associated with the two main types of modules
have been characterised in the previous sections. We will now discuss the methods by
which these modules can be coordinated: global regulations [see Fig. 5.1 (bottom)]
and direct connections.

5.5.1 Impact of a Global Regulator

In this section, we investigate the impact of a global regulator on the EPCS module.
The results for the other structure can be easily deduced. Let us consider that the
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synthesis of the first enzyme is also controlled by a global regulator, which leads to

·
E1(t) = g(xn(t), q(t)) − μE1(t)

where q(t) is the effect of the global regulator. This parameter can also represent any
factor that could impact the synthesis of enzyme E1.
Assuming that the global regulator reaches its own steady-state regime q̄ , we can
deduce from the above results that the global regulator changes the relationship
between the concentration of the final product x̄n , the flux demand and the enzyme
concentration:

f1(x̄1, x̄n)g(x̄n, q̄) = μEn fn(x̄n).

As long as none of the intermediate enzymes saturate, the global regulator changes
the steady-state regime at the level of

• the enzyme concentrations (if the genes are in the same operon):

Ē1 = g(x̄n, q̄)

μ
and Ēi = αi

g(x̄n, q̄)

μ
for i → {2, . . . , n − 1},

• the end-product concentration: f1(x̄1, x̄n)g(x̄n, q̄) = μEn fn(x̄n),

• the maximal flux capability of the metabolic pathway: ν̄n,max(q̄)
Δ= g(0, q̄)

μ
f1(x̄1, 0),

• the concentrations of the intermediate metabolites: x̄i = f −1
i

(
μEn fn(x̄n)

αi g(x̄n, q̄)

)

.

A global regulator changes the maximum capability of the metabolic pathway
directly through the modulation of the concentration of different enzymes in the
pathway. Moreover, the flux demand νn adapts itself in agreement with the variations
induced by the effect of q on the production function g.

5.5.2 Interconnections Between Modules

In this section, we investigate the conditions of existence and uniqueness of a struc-
tural steady-state regime for different configurations of connected modules. There-
fore, we analysed two modules that are connected in series and in parallel. We will
first introduce a generic result for modules that are connected in series and will
then provide the rules that define the connection between modules in the summary
tables.
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Fig. 5.6 Connection between
two modules in series

(EPCS/IPCS/NCS)

Module 1
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5.5.2.1 The Input/Output Representation of a Module

Module

(EPCS/IPCS/NCS) xn

νn

q

p

x1

r
(on E1) (saturating [Ei]i=1)

ν0

– End-Product Control Structure (EPCS),
– Initial-Product Control Structure (IPCS),
– Not Controlled Structure (NCS).

In steady state, a module is characterised by its input/output characteristics (dis-
played in the above figure and see Remark 4) whose existence is conditioned by the
assumption that the enzymes do not saturate. In the remainder of this section, we
assume that this condition of existence is always satisfied. The input/output notations
of flux and metabolites are in agreement with systems (5.5), (5.20). We recall the
following input/output characteristics, which were obtained for the three types of
modules:

• EPCS module: x̄n = Hp f (x̄1) and ν0 = νn , (the consequences of Corollary 2 are
extended for the case of (a) only the first enzyme is irreversible and (b) the genes
are not in the same operon), where Hp f is increasing in its argument;

• IPCS module: x̄n = Hpi (x̄1) and ν0 = νn is defined in Proposition 4, which was
extended for the same conditions as the EPCS module, where Hpi is increasing in
its argument;

• NCS module: x̄n = Hncs(x̄1) and ν0 = νn , where Hncs is increasing in its argu-
ment.

We can deduce the following consequences for two modules that are connected
in series (see Fig. 5.6):

• the connection of EPCS modules in series leads to a system with a unique steady-
state regime. For the i th EPCS module, all of the upstream EPCS modules are
reduced through the increasing characteristics Ĥp f such that x̄ i

n = Ĥp f (x̄1
1) and

ν1
0 = νi

n by using x̄ k+1
1 = x̄ k

n and x̄ k
n = Hk

p f (x̄ k
1 ) for k → {1, . . . , i − 1};
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+ is similar to

+
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Fig. 5.7 Two modules connected in parallel

• the connection of IPCS modules in series leads to a system that has a unique
steady-state regime. For the i th IPCS module, all of the upstream IPCS modules
are reduced through the increasing characteristics Ĥpi such that x̄ i

n = Ĥpi (x̄1
1)

and ν1
0 = νi

n by using x̄ k+1
1 = x̄ k

n and x̄ k
n = Hk

pi (x̄ k
1 ) for k → {1, . . . , i − 1}.

5.5.2.2 The Rules That Define the Connection of Modules

The rules for the interconnection of modules can easily be deduced from the proofs
of Propositions 3, 4, 5, which are, respectively, shown in pages 12, 17 and 25, for the
connection of modules in series (see Fig. 5.6) or in parallel (see Fig. 5.7) under the
assumption that none of the enzymes are saturated. Tables 5.1 and 5.2 summarise
the rules of interconnection between modules in series and in parallel, respectively.
Specifically, for each of the different connections, these tables show if there exists a
structural nonzero steady-state regime and how changes in ν1, νn and ν≺

n results in
variations in xn , x≺

n , E1, E≺
1 , x1, and x≺

1 . In both tables, for the sake of readability,
we use the following notations: fc for increasing functions and fd for decreasing
functions to describe the monotonicity.

The existence of the equilibrium state is always inferred through the monotonicity
of the functions and by assuming a final demand for all last connected modules (νn =
En fn(xn)). In some cases, such as in a connection of NCS/IPCS/EPCS modules in
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Table 5.1 Rules for the interconnection of several modules in series and characteristics of the
steady-state regime for variations of νn , (ν≺

n ) and ν1 (or ν0)

EPCS EPCS

x1

ν1 νn

xn

ν∗
n

x∗
n

IPCS EPCS

x1

ν1 νn

xn

ν∗
n

x∗
n

Existence of nonzero steady-state regime Existence of nonzero steady-state regime
Feasible adaptation for variations in νn, ν∗

n Impossible adaptation of IPCS for variations in νn, ν∗
n

xn = fd(νn), E1 = fc(νn), x∗
n = fd(νn), E∗

1 = fc(νn), xn = fd(νn), x∗
n = fd(νn), E∗

1 = fc(νn),
xn = fd(ν∗

n ), E1 = fc(ν∗
n ), x∗

n = fd(ν∗
n ), E∗

1 = fc(ν∗
n ), xn = fd(ν∗

n ), x∗
n = fd(ν∗

n ), E∗
1 = fc(ν∗

n ),
xn = fc(ν1), E1 = fd(ν1), x∗

n = fc(ν1), E∗
1 = fd(ν1). xn = fc(ν1), E1 = fc(ν1), x∗

n = fc(ν1), E∗
1 = fd(ν1).

(−)

NCS IPCS EPCS

νn

xn

ν∗
n

x∗
n

ν1

x1

ν0

x0
(+)

NCS IPCS EPCS

νn

xn

ν∗
n

x∗
n

ν1

x1

ν0

x0

Existence of nonzero steady-state regime Steady-state regime conditioned by f0, fn, f ∗
n

Feasible adaptation for variations in νn, ν∗
n

Opposite adaptation of IPCS for variations in νn, ν∗
n

xn = fd(νn), x1 = fc(νn), E1 = fc(νn), x∗
n = fd(νn), E∗

1 = fc(νn), xn = fd(νn), x1 = fd(νn), E1 = fd(νn), x∗
n = fd(νn), E∗

1 = fc(νn),

xn = fd(ν∗
n ), x1 = fc(ν∗

n ), E1 = fc(ν∗
n ), x

∗
n = fd(ν∗

n ), E
∗
1 = fc(ν∗

n ), xn = fd(ν∗
n ), x1 = fd(ν∗

n ), E1 = fd(ν∗
n ), x

∗
n = fd(ν∗

n ), E
∗
1 = fc(ν∗

n ),

xn = fc(ν0), E1 = fc(ν0), x∗
n = fc(ν0), E∗

1 = fd(ν0). xn = fc(ν0), x1 = fc(ν0), E1 = fc(ν0), x∗
n = fc(ν0), E∗

1 = fd(ν0).

EPCS IPCS

x1

ν1 νn

xn

ν∗
n

x∗
n

(−)

EPCS IPCS

x1

ν1 νn

xn

ν∗
n

x∗
n

Existence of nonzero steady-state regime No steady-state regime

Impossible adaptation of IPCS for variations in ν∗
n Opposite adaptation of IPCS for variations in νn, ν∗

n

xn = fd(νn), E1 = fc(νn), x∗
n = fd(νn), E∗

1 = fd(νn), xn = fd(νn), E1 = fc(νn), x∗
n = fd(νn), E∗

1 = fd(νn).
x∗
n = fd(ν∗

n ),
xn = fc(ν1), E1 = fd(ν1), x∗

n = fc(ν1), E∗
1 = fc(ν1).

(+)

EPCS IPCS

x1

ν1 νn

xn

ν∗
n

x∗
n (+) (−)

EPCS NCS IPCS

x1

ν1 νn

xn

ν∗
n

x∗
n

ν∗
1

x∗
1

Existence of nonzero steady-state regime Existence of nonzero steady-state regime

Feasible adaptation for variations in νn, ν∗
n

Feasible adaptation for variations in νn, ν∗
n

xn = fd(νn), E1 = fc(νn), x∗
n = fd(νn), E∗

1 = fc(νn), xn = fd(νn), E1 = fd(νn), x∗
1 = fc(νn), x∗

n = fd(νn), E∗
1 = fc(νn),

xn = fd(ν∗
n ), E1 = fc(ν∗

n ), x
∗
n = fd(ν∗

n ), E
∗
1 = fc(ν∗

n ), xn = fd(ν∗
n ), E1 = fd(ν∗

n ), x
∗
n = fd(ν∗

n ), x
∗
1 = fc(ν∗

n ), E
∗
1 = fc(ν∗

n ),

xn = fc(ν1), E1 = fc(ν1), x∗
n = fc(ν1), E∗

1 = fd(ν1). xn = fc(ν1), E1 = fd(ν1), x∗
n = fc(ν1), x∗

1 = fd(ν1), E∗
1 = fd(ν1).

(+) (+)

EPCS NCS IPCS

x1

ν1 νn

xn

ν∗
n

x∗
n

ν∗
1

x∗
1

Steady-state regime conditioned by f ∗
0 et f ∗

n

Impossible adaptation of IPCS for variations in νn, ν∗
n

xn = fd(νn), E1 = fc(νn), x∗
n = fd(νn), x∗

1 = fd(νn), E∗
1 = fd(νn),

xn = fd(ν∗
n ), E1 = fc(ν∗

n ), x
∗
n = fd(ν∗

n ), x
∗
1 = fd(ν∗

n ), E
∗
1 = fd(ν∗

n ),
xn = fc(ν1), E1 = fd(ν1), x∗

n = fc(ν1), x∗
1 = fd(ν1), E∗

1 = fd(ν1).

We assume that (i) the input flux ν1 (or ν0) is able to maintain the concentration of the first metabolite
x1 (or x0) constant and (ii) the enzymes of the modules do not saturate. fc increasing function and
fd decreasing function

series that is associated with positive feedback (see Table 5.1), we cannot directly
conclude the existence of a steady-state regime. Typically, we obtain a necessary
condition of intersection between two increasing functions:

E0 f0(x0, x̄n) = En fn(x̄n),
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Table 5.2 Rules for the interconnection of several modules in parallel and characteristics of the
steady-state regime for variations of νn , (ν≺

n ) and ν1 (or ν0)

+ EPCS

IPCS

νn

xnx1
ν∗
n

x∗
n

ν1

ν∗
1

ν0
+ IPCS

EPCS

νn

xnx1
ν∗
n

x∗
n

ν1

ν∗
1

ν0

Existence of nonzero steady-state regime Existence of nonzero steady-state regime
Feasible adaptation for variations in νn, ν∗

n Impossible adaptation of IPCS for variations in νn

xn = fd(νn), E1 = fc(νn), no effect on ν∗
n , xn = fd(νn),

x∗
n = fd(ν∗

n ), E
∗
1 = fc(ν∗

n ), no effect on νn, x∗
n = fd(ν∗

n ), E
∗
1 = fc(ν∗

n ), no effect on νn,
xn = fc(ν0), E1 = fd(ν0), x∗

n = fc(ν0), E∗
1 = fd(ν0). xn = fc(ν0), E1 = fc(ν0), x∗

n = fc(ν0), E∗
1 = fd(ν0).

+ IPCS

IPCS

νn

xnx1
ν∗
n

x∗
n

ν1

ν∗
1

ν0

Existence of nonzero steady-state regime
Impossible adaptation of IPCS for variations in ν∗

n

xn = fd(νn), x∗
n = fd(ν∗

n ),
xn = fc(ν0), E1 = fc(ν0), x∗

n = fc(ν0), E∗
1 = fc(ν0).

+

(−)

EPCS

NCS IPCS

νn

xnx1

ν1ν0

ν∗
n

x∗
n

ν∗
0

x∗
1

ν∗
1

+

(+)

EPCS

NCS IPCS

νn

xnx1

ν1ν0

ν∗
n

x∗
n

ν∗
0

x∗
1

ν∗
1

Existence of nonzero steady-state regime Steady-state regime conditioned by f ∗
0 , f ∗

n

Feasible adaptation for variations in νn, ν∗
n

Impossible adaptation of IPCS for variations in ν∗
n

xn = fd(νn), E1 = fc(νn), no effect on ν∗
n , xn = fd(νn), E1 = fc(νn), no effect on ν∗

n ,

x∗
n = fd(ν∗

n ), x
∗
1 = fc(ν∗

n ), E
∗
1 = fc(ν∗

n ), no effect on νn, x∗
n = fd(ν∗

n ), x
∗
1 = fd(ν∗

n ), E
∗
1 = fd(ν∗

n ), no effect on νn,

xn = fc(ν0), E1 = fd(ν0), x∗
n = fc(ν0), x∗

1 = fc(ν0), E∗
1 = fc(ν0). xn = fc(ν0), E1 = fd(ν0), x∗

n = fc(ν0), x∗
1 = fc(ν0), E∗

1 = fc(ν0).

+

(+)

NCS EPCS

IPCS

ν1

ν∗
1

ν0

x0 x1

x∗
n

ν∗
n

xn

νn
+

(−)

NCS EPCS

IPCS

ν1

ν∗
1

ν0

x0 x1

x∗
n

ν∗
n

xn

νn

Steady-state regime conditioned by f0, f ∗
n Existence of nonzero steady-state regime

Impossible adaptation of IPCS for variations in νn, ν∗
n Feasible adaptation for variations in νn, ν∗

n

xn = fd(νn), E1 = fc(νn), x1 = fd(νn), x∗
n = fd(νn), E∗

1 = fd(νn), xn = fd(νn), E1 = fc(νn), x1 = fd(νn), x∗
n = fd(νn), E∗

1 = fd(νn),
xn = fd(ν∗

n ), E1 = fc(ν∗
n ), x1 = fd(ν∗

n ), x
∗
n = fd(ν∗

n ), E
∗
1 = fd(ν∗

n ), xn = fc(ν∗
n ), E1 = fd(ν∗

n ), x1 = fc(ν∗
n ), x

∗
n = fd(ν∗

n ), E
∗
1 = fc(ν∗

n ),
x1 = fc(ν0), xn = fc(ν0), E1 = fd(ν0), x∗

n = fc(ν0), E∗
1 = fc(ν0). x1 = fc(ν0), xn = fc(ν0), E1 = fd(ν0), x∗

n = fc(ν0), E∗
1 = fc(ν0).

We assume that (i) the input flux ν1 (or ν0) is able to maintain the concentration of the first metabolite
x1 (or x0) constant and (ii) the enzymes of the modules do not saturate. fc increasing function and
fd decreasing function

where f0 and fn are both increasing functions of x̄n . By convention, the condition of
existence of the steady-state regime in these cases is dependent, which is in contrast
to those cases in which the existence of the steady state was achieved structurally.
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Modular representation

(+) (+)(+)

(−)

Genetic control
Enzymatic control

IPCS

(−)

NCS

X1 X2 X3 Xn−1

E2

Xn

EnEn−1

X0

νin E2E0

xn
x0

νnνin ν0

x1

Fig. 5.8 The modular decomposition of the synthesis of purines: NCS and IPCS modules are
connected in series and combined with a negative feedback

5.5.2.3 An Example: The Synthesis of Purines

Purines are the main precursors of RNA and DNA synthesis. Thus, one could expect
that the control of the synthesis pathway of purines would be driven by the down-
stream flux demand, i.e., an end-product control structure, such as with amino acids.
Surprisingly, the control structure corresponds to an IPCS module that is coupled
to an enzymatic inhibition of the upstream enzyme E0, which produces the initial
metabolite X1, by the final metabolite Xn [27, 30, 39]. We will now prove that, con-
trary to an IPCS module alone, this control structure is able to cope with a final flux
demand. Schematically, the combination corresponds to a NCS module and an IPCS
module that are connected in series; these connected modules are combined with
negative feedback (see Fig. 5.8). This combination will be referred to as IPCS(−)

in the next section. Moreover, all the genes involved in the purine synthesis are in
operon [39].
The steady-state output flux ν0 of the NCS module is given by:

ν0 = E0 f0(x0, xn), (5.23)

where E0 > 0 is fixed and f0 satisfies the characteristics of an irreversible enzyme
that is inhibited by a metabolite and is decreasing (resp. increasing) in xn (resp. x0).
The flux ν0 is the input flux of module IPCS.

Proposition 5 For all μ > 0, E0 > 0, En > 0 and x0 > 0, there exists a unique
steady-state regime (x̄1, . . . , x̄n) and (Ē1, . . . , Ēn−1) to system (5.20), which is
associated with Eq. (5.23), such that
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⎪⎪

⎪⎪⎜

E0 f0(x0, x̄n) = En fn(x̄n)

ν0 = E0 f0(x0, x̄n)

νn = En fn(x̄n)

(5.24)

if and only if ν0 < E1 M1 and for all i → {2, . . . , n − 1}, we have ν0 < αi E1 Mi .
Moreover,

• x̄n = x̄n(x0) is increasing in x0.
• x̄n = x̄n(En) is decreasing in En and x̄i = x̄i (En) for i = 1, . . . , n − 1 are

increasing in En.
• x̄i = x̄i (E0) for i = 1, . . . , n are increasing in E0.

Proof The proof is achieved by writing the input/output characteristics of the mod-
ules. The connection between the NCS and IPCS in series is direct and the associated
characteristics is ν̄n−1 = H≺(x̄0, x̄n), where H≺ is increasing in x̄0 and decreasing
in x̄n . Then it remains to connect this characteristics with the final flux demand
En fn(x̄n) = ν̄n , which is increasing in x̄n . Due to the monotonicity of the functions
H≺ and fn with respect to x̄n , we conclude the existence and uniqueness of the steady
state (under the assumption that the enzymes do not saturate). The behaviour of the
module components are deduced from the individual module properties.

Remarkably, the steady-state concentration x̄n of the final metabolite is completely
determined by the concentrations and the characteristics of the enzymes E0 and En

and not by the enzymes of the IPCS module. For fixed E0 and x0, the input flux ν0
is directly determined as a function of νn and x̄n . The other components of the IPCS
module, (Ēi , x̄i ) for i → {1, . . . , n − 1}, are adjusted to cope with the flux demand.
In contrast with the case of the IPCS module alone, this module combination is able
to cope with the final flux demand.

5.6 Decomposition of the Metabolic Network into Modules

5.6.1 The Main Identified Combinations

Tables 5.1 and 5.2 show the rules that define the interconnection between modules,
regardless of their actual presence in an organism. Using the knowledge-based model
of B. subtilis [17], we can indicate the actual combination of modules that are present
in this organism (and in E. coli).
Connection of EPCS-EPCS modules in series: This motif, which corresponds to
the series of two EPCS modules with an intermediate branching point, occurs in (a)
the synthesis of glutamate and glutamine [8, 14, 26, 41, 43], (b) the synthesis of
glutamate and proline [7, 8, 26], and (c) the synthesis of S-adenosyl-methionine and
cysteine [4, 25]. In E. coli, the regulation of the amino acid synthesis pathways have
been deeply characterised; therefore, we found that the synthesis of threonine and
isoleucine can also be represented by a connected EPCS-EPCS motif [20].
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Connection of IPCS-EPCS modules in series: We could not identify this type of
connection in the metabolic model. However, if we consider that the initial-product
control structure is associated with the inhibition of enzymeE0 (IPCS(−) in Fig. 5.8),
the IPCS(−)-EPCS connection can be used to represent the connection between the
glycolysis pathway and the syntheses of isoleucine, leucine and valine [9, 32, 33,
35, 37].
Connection of EPCS-IPCS modules in series: The EPCS/IPCS connection is the
standard configuration that is used to connect the synthesis and degradation pathways
of amino acids, such as arginine [15, 23] and most likely histidine [12, 13, 40, 42].
Unfortunately, the regulation of the synthesis of histidine is unknown. In E. coli, the
synthesis of histidine is controlled by histidine through the corresponding charged-
tRNA and thus by an EPCS module [20]. Usually, a global regulation is present on
the connected IPCS module to prevent the simultaneous induction of both modules
[6, 12, 13, 42].
Connection of IPCS-IPCS modules in series: We identified the presence of the
IPCS-IPCS connection at the level of the synthesis and degradation of fatty acids
[22, 31]. The global regulator CcpA prevents the degradation of the fatty acids in
glycolytic conditions [22, 24]. Moreover, the IPCS/IPCS(−) connection connects the
degradation of carbohydrates with the glycolysis pathways (see references in [17]
and [9]). The IPCS(−)-IPCS(−) connection has not yet been identified. However, it
could exist because the regulatory network is only partially known.

The conditions of existence and uniqueness of the steady-state regime and the
qualitative evolution of the main module components can be deduced for all types of
these realistic combinations. Remarquably, in most of cases, the steady-state regime
exists structurally. Therefore, the existence of steady state only depends on the con-
centrations of enzymes, which have to be high enough to avoid intermediate enzyme
saturation. Finally, the prediction of the qualitative evolution of the main module
components has been successfully used to analyse the consistency of datasets (tran-
scriptome, fluxome and metabolome) (see [16] for details).

5.6.2 An Example: The Synthesis of Lysine

In this section, we used our results to compare a specific metabolic pathway, the
synthesis of lysine, under two distinct physiological conditions: steady-state growth
in glucose and in malate. Both of these growth conditions result in similar growth
rate values. Therefore, we used two datasets that were produced in the European
project BaSysBio (LSHG-CT-2006-037469). Using our approach, we explained the
unexpected repression of the lysine pathway that occurs under malate conditions and
not in glucose. As will be shown in the rest of the section, this effect is most likely a
direct consequence of the high level of aspartate (the first metabolite of the pathway)
that is accumulated under malate growth conditions.
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Fig. 5.9 The synthesis pathway of lysine

Figure 5.9 describes the lysine synthesis pathway and its connections with other
essential pathways, whereas Fig. 5.10 highlights the key elements that are involved
in the regulation of the lysine synthesis pathway:

• the feedback inhibition of the first enzyme of the pathway, which is encoded by
the lysC gene, by the end product (lysine) and

• the genetic regulation of the same gene by an L-box mechanism.

The L-box is a RNA riboswitch that involves lysine. Lysine binds directly to the
lysC nascent mRNA, which causes a structural shift that ends the transcription. The
regulation of the lysA gene by the same L-box mechanism remains elusive and it is
therefore not considered further in the analysis (to maintain the explanation as simple
as possible). This structure is classical in metabolic networks and corresponds to the
end-product control structure that was described in this chapter. We can directly
characterise the properties of the pathway at steady state. The regulation of lysine
synthesis satisfies all of the assumptions that are explained in Corollary 4 because
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Fig. 5.10 Regulatory network
of lysine synthesis
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• LysC is irreversible due to the hydrolysis of ATP,
• The activity of the first enzyme is inhibited by the end product (lysine), and
• The transcription of the first enzyme is repressed by the end-product through an

L-box mechanism.

Based on the results described in Sect. 5.3, the expression of the gene lysC depends
on various factors:

1. metabolites, other than lysine, that act on the first enzyme of the pathway, such
as aspartate,

2. flux demand, which is defined mainly by the activity of the tRNA synthase LysS,
and

3. external factors that modulate the transcription and translation of the first gene,
such as the activity of the RNA polymerases and/or the ribosomes.

The qualitative prediction of the system behaviour with respect to the evolution of
the first metabolite (aspartate) and the flux demand (the activity of tRNA synthase
LysS) can be predicted (see Table 5.3). The predictions that are shown in Table 5.3
can be extended to any other compatible combinations of conditions. Nevertheless,
some qualitative predictions are not possible for some combinations due to their
contradictory effects on the system. A contradictory combination, such as an increase
in both the flux demand and the aspartate pool, could only be solved if the relative
effect of the different factors that act on the regulation is known. Obviously, the
knowledge of these factors is related to the identification of system. Because the
growth rate between the malate and glucose experiments is similar, the impact of
the growth rate on (i) the enzyme synthesis and (ii) the amino acid flux demand by
the ribosomes is limited by these two conditions. We thus identified the different
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Table 5.3 Qualitative prediction of the lysine pathway behaviour under various conditions

Considered conditions Predictions
LysS (En) Aspartate Lysine evolution Flux evolution lysC-mRNA

+ Constant − + +
− Constant + − −
Constant + + + −
Constant − − − +

Table 5.4 Variation of the
lysine module components.
gdwc = gram of cell dry
weight

Module components Glucose Malate

Aspartate (μmol/gdwc) 1.4 10.5
Lysine (μmol/gdwc) 0.1 0.2
mRNA-lysC(log) 14.3 12.3

predictions for a constant flux demand under the two conditions. The concentration
of lysine is then an increasing function of the aspartate concentration, and in contrast,
the expression of lysC is a decreasing function of the aspartate concentration. These
predictions are in agreement with the experimental data (see Table 5.4), which led
us to conclude that the increasing value of the lysine concentration under malate
conditions is most likely due to the increasing aspartate concentration.

5.7 Conclusion

The framework that was proposed in this chapter is dedicated to the formal defi-
nition and characterization of modules in metabolic pathways. This framework is
general enough to study the existence and uniqueness of a structural steady state in
any metabolic pathway, including complete metabolic networks. Combined with our
results in [17], this is the first report, to the best of our knowledge, of a global-scale
analysis of the systematic exploration of all configurations in a realistic biological
model. Remarkably, most of the steady-state regimes of realistic metabolic con-
figurations exist structurally. More globally, the local properties of modules have
important consequences on the entire metabolic network. Indeed, despite the high
coupling that exists in the metabolic pathways (and its associated genetic regulatory
network), the steady-state regime of the entire metabolic network is dramatically
decoupled. In terms of control, this property is highly expected. Otherwise small
variations in a specific module could constantly lead to global genetic adaptations of
the entire metabolic network. Beyond the aspects of controllability of the metabolic
pathways, we recently shown that the sparing management of resources between the
intracellular biological processes of the cell leads to define structural constraints,
whose one of their consequences is the emergence of a modular organisation in the
metabolic network [18, 19]. An interesting perspective of this framework is the study
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of the stability of the elementary modules and their interconnection. The analysis of
the stability of metabolic pathways is an open area of research given the very large
diversity of configurations and systems and the non-linearity of the equations. Some
results have been obtained for linearised systems of specific metabolic pathways
[1–3, 36]. Nevertheless, the obtaining of results on the global stability of nonlinear
biological system even for one single module remains an open question.

Acknowledgments We thank ANR Dynamocell (NT05-2_44860) and European BaSysBio project
(LSHG-CT-2006-037469) for fundings.

References

1. Alves R, Savageau MA (2000) Effect of overall feedback inhibition in unbranched biosynthetic
pathways. Biophys J 79:2290–2304

2. Alves R, Savageau MA (2001) Irreversibility in unbranched pathways: preferred positions
based on regulatory considerations. Biophys J 80:1174–1185

3. Arcak M, Sontag ED (2006) Diagonal stability of a class of cyclic systems and its connection
with the secant criterion. Automatica 42(9):1531–1537

4. Auger S, Yuen WH, Danchin A, Martin-Verstraete I (2002) The metic operon involved in
methionine biosynthesis in Bacillus subtilis is controlled by transcription antitermination. Mi-
crobiology 148(Pt2):507–518

5. Bremer H, Dennis PP (1996) Modulation of chemical composition and other parameters of
the cell by growth rate. In: Neidhart FC (ed) Escherichia coli and salmonella: cellular and
molecular biology, 2nd edn. American Society of Microbiology Press, Washington DC, USA,
pp 1553–1569

6. Choi SK, Saier MH Jr (2005) Regulation of sigL expression by the catabolite control pro-
tein CcpA involves a roadblock mechanism in Bacillus subtilis: potential connection between
carbon and nitrogen. J Bacteriol 187:6856–6861

7. Chopin A, Biaudet V, Ehrlich D (1998) Analysis of the Bacillus subtilis genome sequence
reveals nine new T-box leaders. Mol Microbiol 29(2):662

8. Commichau FM, Herzberg C, Tripal P, Valerius O, Stlke J (2007) A regulatory protein-protein
interaction governs glutamate biosynthesis in Bacillus subtilis: the glutamate dehydrogenase
RocG moonlights in controlling the transcription factor GltC. Mol Microbiol 65(3):642–654

9. Doan T, Aymerich S (2003) Regulation of the central glycolytic genes in Bacillus subtilis:
binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-
bisphosphate. Mol Microbiol 47(6):1709–1721

10. Even S, Pellegrini O, Zig L, Labas V, Vinh J, Brchemmier-Baey D, Putzer H (2005) Ribonucle-
ases J1 and J2: two novel endoribonucleases in B.subtilis with functional homology to E.coli
RNase E. Nucleic Acids Res 33(7):2141–2152

11. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzi-
manikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for Escherichia coli
K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol
3:121

12. Fisher SH, Rohrer K, Ferson AE (1996) Role of CodY in regulation of the Bacillus subtilis hut
operon. J Bacteriol 178(13):3779–3784

13. Fisher SH, Strauch MA, Atkinson MR, Wray LV Jr (1994) Modulation of Bacillus subtilis
catabolite repression by transition state regulatory protein AbrB. J Bacteriol 176(7):1903–1912

14. Fisher SH, Wray LV Jr (2008) Bacillus subtilis glutamine synthetase regulates its own syn-
thesis by acting as a chaperone to stabilize GlnR-DNA complexes. Proc Natl Acad Sci USA
105(3):1014–1019



5 Towards the Modular Decomposition of the Metabolic Network 151

15. Gardan R, Rapoport G, Debarbouille M (1995) Expression of the rocDEF operon involved in
arginine catabolism in Bacillus subtilis. J Mol Biol 249(5):843–856

16. Goelzer A (2010) Emergence de structures modulaires dans les régulations des systèmes bi-
ologiqes: théorie et applications à Bacillus subtilis. PhD thesis, Ecole Centrale de Lyon, Lyon,
France. In French

17. Goelzer A, Bekkal Brikci F, Martin-Verstraete I, Noirot P, Bessières P, Aymerich S, Fromion
V (2008) Reconstruction and analysis of the genetic and metabolic regulatory networks of the
central metabolism of Bacillus subtilis. BMC Syst Biol 2:20

18. Goelzer A, Fromion V (2011) Bacterial growth rate reflects a bottleneck in resource allocation.
Biochim Biophys Acta 1810(10):978–988

19. Goelzer A, Fromion V, Scorletti G (2011) Cell design in bacteria as a convex optimization
problem. Automatica 47(6):1210–1218

20. Karp PD, Riley M, Saier M, Paulsen IT, Paley SM, Pellegrini-Toole A (2000) The ecocyc and
metacyc databases. Nucleic Acids Res 28(1):56–59

21. Martinez-Antonio A, Janga SC, Salgado H, Collado-Vides J (2006) Internal-sensing machinery
directs the activity of the regulatory network in Escherichia coli. Trends Microbiol 14(1):22–27

22. Matsuoka H, Hirooka K, Fujita Y (2007) Organization and function of the YsiA regulon of
Bacillus subtilis involved in fatty acid degradation. J Biol Chem 282(8):5180–5194

23. Miller CM, Baumberg S, Stockley PG (1997) Operator interactions by the Bacillus subtilis
arginine repressor/activator, AhrC: novel positioning and DNA-mediated assembly of a tran-
scriptional activator at catabolic sites. Mol Microbiol 26(1):37–48

24. Miwa Y, Nakata A, Ogiwara A, Yamamoto M, Fujita Y (2000) Evaluation and characterization
of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res 28(5):1206–
1210

25. Pelchat M, Lapointe J (1999) In vivo and in vitro processing of the Bacillus subtilis transcript
coding for glutamyl-tRNA synthetase, serine acetyltransferase, and cysteinyl-tRNA synthetase.
RNA 5(2):281–289

26. Picossia S, Belitskya BR, Sonenshein AL (2007) Molecular mechanism of the regulation of
Bacillus subtilis gltAB expression by GltC. J Mol Biol 365(5):1298–1313

27. Rappu P, Pullinen T, Mantsala P (2003) In vivo effect of mutations at the prpp binding site of
the bacillus subtilis purine repressor. J Bacteriol 185(22):6728–6731

28. Santillan M, Mackey MC (2001) Dynamic regulation of the tryptophan operon: a modeling
study and comparison with experimental data. Proc Natl Acad Sci USA 98(4):1364–1369

29. Sargent MG (1975) Control of cell length. J Bacteriol 123(1):7–19
30. Saxild HH, Brunstedt K, Nielsen KI, Jarmer H, Nygaard P (2001) Definition of the Bacillus

subtilis PurR operator using genetic and bioinformatic tools and expansion of the PurR regulon
with glyA, guaC, pbuG, xpt-pbuX, yqhZ-folD, and pbuO. J Bacteriol 183(21):6175–6183

31. Schujman GE, Paoletti L, Grossman AD, de Mendoza D (2003) FapR, a bacterial transcription
factor involved in global regulation of membrane lipid biosynthesis. Dev Cell 4(5):663–672

32. Shivers RP, Sonenshein AL (2004) Activation of the Bacillus subtilis global regulator CodY
by direct interaction with branched-chain amino acids. Mol Microbiol 53(2):599–611

33. Shivers RP, Sonenshein AL (2005) Bacillus subtilis ilvB operon: an intersection of global
regulons. Mol Microbiol 56(6):1549–1559

34. Sontag ED (2002) Asymptotic amplitudes and Cauchy gains: a small-gain principle and an
application to inhibitory biological feedback. Syst Control Lett 47:167–179

35. Tojo S, Satomura T, Morisaki K, Deutscher J, Hirooka K, Fujita Y (2005) Elaborate tran-
scription regulation of the Bacillus subtilis ilv-leu operon involved in the biosynthesis of
branched-chain amino acids through global regulators of CcpA, CodY and TnrA. Mol Mi-
crobiol 56(6):1560–1573

36. Tyson JJ, Othmer HG (1978) The dynamics of feedback control circuits in biochemical path-
ways. J Theor Biol 5(1):62

37. Ujita S, Kimura K (1982) Fructose-1,6-biphosphate aldolase from Bacillus subtilis. Methods
Enzymol 90(Pt 5):235–241

38. Volkenstein M (1985) Biophysique. Edition Mir



152 A. Goelzer and V. Fromion

39. Weng M, Nagy PL, Zalkin H (1995) Identification of the Bacillus subtilis pur operon repressor.
Proc Natl Acad Sci USA 92(16):7455–7459

40. Wray LV Jr, Fisher SH (1994) Analysis of Bacillus subtilis hut operon expression indicates that
histidine-dependent induction is mediated primarily by transcriptional antitermination and that
amino acid repression is mediated by two mechanisms: regulation of transcription initiation
and inhibition of histidine transport. J Bacteriol 176(17):5466–5473

41. Wray LV Jr, Fisher SH (2005) A feedback-resistant mutant of Bacillus subtilis glutamine
synthetase with pleiotropic defects in nitrogen-regulated gene expression. J Biol Chem
280(39):33298–33304

42. Wray LV Jr, Pettengill FK, Fisher SH (1994) Catabolite repression of the Bacillus subtilis
hut operon requires a cis-acting site located downstream of the transcription initiation site. J
Bacteriol 176(7):1894–1902

43. Wray LV Jr, Zalieckas JM, Fisher SH (2001) Bacillus subtilis glutamine synthetase controls
gene expression through a protein-protein interaction with transcription factor TnrA. Cell
107(4):427–435



Chapter 6
An Optimal Control Approach to Seizure
Detection in Drug-Resistant Epilepsy

Sabato Santaniello, Samuel P. Burns, William S. Anderson and Sridevi V.
Sarma

Abstract Hidden state transitions are frequent events in complex biological systems
like the brain. Accurately detecting these transitions from sequential measurements
(e.g., EEG, MER, EMG, etc.) is pivotal in several applications at the interface
between engineering and medicine, like neural prosthetics, brain-computer interface,
and drug delivery, but the detection methodologies developed thus far generally suf-
fer from a lack of robustness. We recently addressed this problem by developing a
Bayesian detection paradigm that combines optimal control and Markov processes.
The neural activity is described as a stochastic process generated by a Hidden Markov
Model (HMM) and the detection policy minimizes a loss function of both probabil-
ity of false positives and accuracy (i.e., lag between estimated and actual transition
time). The policy results in a time-varying threshold that applies to the a posteriori
Bayesian probability of state transition and automatically adapts to each newly
acquired measurement, based on the evolution of the HMM and the relative loss
for false positives and accuracy. An application of the proposed paradigm to the
automatic online detection of seizures in drug-resistant epilepsy subjects is here
reported.
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6.1 Hidden State Transition Detection in Medicine

The classic problem of detecting abrupt changes in a sequence of noisy observations
collected from a target system [9, 14, 67, 103] has recently gained large interest
in neuroscience and medicine (e.g., [1, 7, 39, 44, 56, 61, 84, 91, 94, 96, 97, 102,
104, 109, 110]), mainly because changes in the physiologic expression of a com-
plex biological system (e.g., the brain, heart, liver, etc.) often correspond to critical
variations in the clinical or behavioural state. For example, abrupt changes in the
atrio-ventricular depolarization delay, the heart rate variability, or the Q–T intervals
from the clinical electrocardiogram (ECG) may indicate an incoming tachycardia
[19, 50, 96, 97]. The appearance of fast high-frequency oscillations in the intracra-
nial electroencephalogram (iEEG) of an epileptic subject has been recently shown to
precede the onset of a seizure and characterize the epileptic focus [4, 27, 43, 107].
Changes in the spiking pattern of somatotopic neurons in the subthalamic nucleus
and the globus pallidus can be observed a few hundreds of milliseconds before the
actual movement onset of the upper limbs both in non-human primates and Parkin-
son’s disease patients performing a reach out task [30, 83, 106]. Finally, changes
in the spectral content of multi-unit recordings, local field potentials, and iEEG of
the primary motor and ventral premotor areas have been shown to encode the target
position and the kinematic variables (i.e., arm position and velocity) of reach and
grasp movements [8, 28, 51, 55].

In all these examples, the state transitions are hidden in neural measurements and
impact statistics computed from these measurements. Detecting timely and accu-
rately such changes would be pivotal to the development of reliable unsupervised
monitoring devices, event-based responsive therapies, and more naturally controlled
brain-machine interfaces for limb prosthesis. Hence, several methods have been
developed in the last twenty years to detect hidden state transitions from sequential
neural measurements, and several tools from machine learning, artificial neural net-
work, and estimation theory have been exploited to optimize the detection process
[5, 32, 33, 36–38, 44, 45, 54, 68, 73, 91, 93–95, 99]. In particular, it is required
that the detection is online (i.e., after every newly acquired measurement it must be
decided whether or not the change has occurred) and minimizes both the probability
of a false positive (i.e., erroneous detection of a state transition) and the lag between
actual and estimated change time for true positives [9, 67].

However, the detection algorithms developed thus far often reveal lack of
robustness and produce too many false positives when implemented online on test
data [47], perhaps because none of these methods explicitly introduces performance
specifications or a loss function.
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Fig. 6.1 Schematic of the proposed paradigm for seizure onset detection

To cope with these issues, we introduced in [79, 80, 82] a Bayesian framework
for hidden state transition detection that formulates the change point detection as a
“Quickest Detection” (QD) problem [66, 67, 90, 110] and solves it by combining
Hidden Markov Models (HMMs) [21, 23], Bayesian Estimation [10], and Optimal
Control [11].

In our framework, the brain’s activity is modelled as the output of a two-state HMM
where the output neural measurements depend on the actual (not visible) clinical state
and are generated sequentially. Based on the HMM evolution and given current and
past measurements, we recursively compute the a posteriori conditional probability
of state transition (Bayesian Estimation), and, finally, we obtain the optimal detection
policy (ODP) by minimizing a loss function of the expected distance between actual
and detected change time (QD). The loss function is chosen to weight separately
early detection (i.e., before the actual change time, which could be a false positive
condition) and delayed detection (i.e., after the actual change time), thus penalizing
differently the probability of false positives and true positives. This function depends
on both the state-transition probability and the sequential measurements, and it is
minimized via optimal control [11].

In [75–77] we recently applied this framework to the automatic detection of
seizures in drug-resistant epileptic subjects. In this case, we exploited continuous
multi-channel iEEG recordings to develop a time-varying spectrum-based matrix
of the brain network connectivity and, correspondingly, we computed a measure of
the connectivity strength. Then, we assumed that such a measure is the output of
a two-state HMM (the states correspond to the seizure and non-seizure condition,
respectively) and derived the ODP such that seizure-related changes in the stochas-
tic distribution of this measure were automatically detected. A schematic of our
framework for seizure onset detection is reported in Fig. 6.1.

Here, we summarize the main features of our approach and apply it to the seizure
onset detection problem on a novel extended dataset of multi-channel iEEG record-
ings from five drug-resistant epileptic subjects (604 h of recordings, 20 seizures
altogether). A specific measure of connectivity strength [76] is also explored in
order to better characterize the brain activity at the seizure onset.

Our interest in epilepsy and seizure onset detection is motivated by the fact that
(i) epilepsy affects a large population worldwide (over 60 million people) [12, 74,
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xk = 0 xk = 1

zk zk

1−ηk1−ρk

ρk

q0(zk|Hk) q1(zk|Hk)

ηk

Fig. 6.2 HMM schematic with two hidden states (xk = 0 and xk = 1) and observable output zk ,
k = 1, 2, . . .. Γk and Ωk are the probabilities of transition from state 0 to state 1 and vice versa,
respectively. qx(zk |Hk) is the probability function of zk in state x → {0, 1} conditioned on the past
output sequence Hk � {z0, z1, . . . , zk−1}

98] and (ii) the drugs currently used to manage the frequency and severity of the
seizures are ineffective in over 30 % of the epilepsy patients, with often side-effects
due to over-treatment [22, 89]. In this scenario, there is an increasing interest in
automated closed-loop intervention approaches (e.g., responsive neurostimulation
[3, 25]), but such approaches are most effective when administered immediately
prior to or after seizure onset. Therefore, novel unsupervised online seizure detection
policies are required such that the desired performance measures are tuned non-
heuristically by using the design of the loss function.

6.2 Hidden Markov Model and State Evolution

We consider the affected brain under the following assumptions: (i) the brain evolves
according to a two-state hidden Markov model (HMM), where the state is unknown
and “hidden” into a sequence of neural measurements (observations), see Fig. 6.2;
(ii) the observations are available at discrete stages k = 0, 1, 2, . . .; and (iii) the
generic observation zk depends on the current state xk and the previous observa-
tions, which are given in the history sequence Hk � {z0, z1, . . . , zk−1}. Under these
hypotheses, the goal of our paradigm is to detect the transition time T > 0 from state
0 to state 1.

Note that the formulation, which was derived for a two-state HMM in [75–77,
79, 80, 82], can be generalized for an N-state HMM, with N > 2. The HMM is
fully characterized by providing the probability of the initial state p0 � P(x0 = 1),
the conditional probabilities of state transition, Γk � P(xk = 1|xk−1 = 0) and
Ωk � P(xk = 0|xk−1 = 1), for all k, and the probability of the output measurement
qx(z|Hk) � P(zk = z|xk = x, Hk), for any x → {0, 1}, history Hk , and value z
of interest [23]. Finally, note that, because of the use of an HMM and our focus
on the transition from state 0 to state 1 only, T is a discrete random variable with
P(T = k) = Γk

∏k−1
j=0 (1 − Γj).
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In [75, 80] we solved this problem by introducing the Bayesian a posteriori
probabilityΠk of being in state 1 at stage k given the measurements up to and including
stage k, i.e., Πk � P(xk = 1|zk, Hk). It can be shown that the variable Πk evolves
recursively, based on the current and past observations (zk and Hk , respectively), the
probabilities Γk and Ωk of state transition in the HMM, and the ratio Lk � q1(zk |Hk)

q0(zk |Hk)
:

Π0 = P(x0 = 1|z0) = q1(z0)p0

q0(z0)
⎪
1 − p0

) + q1(z0)p0
, (6.1a)

Πk+1 = Lk+1
⎜
Πk

⎪
1 − Ωk+1

) + ΔkΓk+1
]

⎪
1 − Γk+1

)
Δk + ΠkΩk+1 + Lk+1

⎜
Πk

⎪
1 − Ωk+1

) + ΔkΓk+1
] , (6.1b)

� Φk+1(Πk, zk+1, Hk+1),

where Δk � 1 − Πk [80].

6.3 Optimal Control-Based Detection Policy

In [80] we formulated the state transition detection problem as an optimal stopping
problem and we stated the required performance goals upfront by minimizing the
loss function:

J0 � a1ET

{
γ(T − TS)

}
P(T > TS) + a2ET

{
γ2(TS − T)

}
P(T ∞ TS). (6.2)

In (6.2), γ(δ) is a (user-defined) nonnegative and non-decreasing function of the dis-
tance (δ) between the estimated and the actual change time (TS and T , respectively).
We set δ � T − TS or δ � TS − T for early (T > TS) or delayed (T ∞ TS) detection,
respectively, and γ(δ) = 0 for δ < 0. Furthermore, ET {·} in (6.2) is the expected
value and parameters a1, a2 > 0 are parameters introduced to trade-off between
early and delayed detection.

With regard to the specific problem here presented (i.e., seizure onset detection),
T > TS indicates either a false positive (if T does not occur in a reasonably short
time window following the warning, see Sect. 6.6) or an early detection (if T does
occur within the window). Also, we weighted |T − TS| differently in case of early
and delayed detection (linear vs. quadratic value of γ) in order to penalize more
the occurrence of long delays (i.e., TS ⊂ T ), which are unacceptable in case of
responsive treatments to seizures.

We minimized (6.2) by introducing the decision variable uk → {0, 1}, which
indicates whether a state transition has been detected (uk = 1) or not (uk = 0), and
then expanding the original state space model (6.1a, 6.1b):

Πk+1 = fk+1(Πk, zk+1, Hk+1, uk) �
{

Φk+1(Πk, zk+1, Hk+1) uk = 0
termination uk = 1

(6.3)
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In this way, the detection results in deciding the switch time from uk = 0 to uk = 1
that minimizes (6.2) [11]. In (6.3) the “termination” state indicates that we have
stopped caring about the observations zk .

The loss function (6.2) can be constructed in terms of zk , Πk , and uk . To this
purpose, we define a loss-per-stage Gk(Πk, uk) that penalizes both the missing of a
state transition (k > T and uk = 0) and the detection of a transition before its actual
occurrence (k < T and uk = 1), while it is 0 otherwise:

Gk(Πk, uk) �






a2ET

{
γ(k − T)

}
Πk uk = 0

a1ET

{
γ(T − k)

}
Δk uk = 1

0 otherwise
(6.4)

In (6.4) Δk � 1 − Πk and Gk(Πk, uk) = 0 if the switch from uk = 0 to uk = 1 has
occurred before the stage k. We also introduce a terminal loss for missing the state
transition over the whole observation horizon [0, M):

GM(ΠM) =
{

a1ET

{
γ(T − M)

}
ΔM uM−1 = 0

0 otherwise

where ΔM � 1 − ΠM . In this way, for any policy
⎪
u0 = · · · = uTS−1 = 0, uTS = 1

)
,

minimizing the loss function (6.2) corresponds to minimizing the loss function:

Ez0,z1,...,zM

{
GM(ΠM) +

M−1⎟

k=0

Gk(Πk, uk)
⎛

(6.5)

provided that γ is non-decreasing. We note that, in the formulation given in
[75–77, 79, 80, 82], M is finite, i.e., the detection problem is restricted to the class
of decision policies that stop almost surely (i.e., with probability 1) in finite time,
which guarantees that the cumulative loss (6.5) is finite. A generalization to the case
M ∩ ∈ can be achieved by following [11] (vol. II, chapter 6).

Finally, the minimization of the cost (6.5) is achieved recursively by using
Dynamic Programming [11]:

JM(ΠM) = GM(ΠM) (6.6a)

Jk(Πk) = min
{

Gk(Πk, uk = 1), Gk(Πk, uk = 0)

+ Ezk+1

{
Jk+1

⎪
Φk+1(Πk, zk+1, Hk+1)

)|Hk+1
}⎛

(6.6b)

with Hk+1 � (Hk, zk), and the resultant optimal solution (i.e., the estimated state
transition time) is

TODP = min
{

0 < k < M|Πk > Fk(Πk, zk, Hk)
⎛

(6.7)
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where

Fk(Πk, zk, Hk) �
a1ET

{
γ(T − k)

} − Ξk+1

a1ET

{
γ(T − k)

} + a2ET

{
γ(k − T)

}

and

Ξk+1 � Ezk+1

{
Jk+1

⎪
Φk+1(Πk, zk+1, Hk+1)

)|Hk+1
}

=
⎟

z

Jk+1
⎪
Φk+1(Πk, z, Hk+1)

)
P(zk+1 = z|Hk+1)

=
⎟

z

Jk+1
⎪
Φk+1(Πk, z, Hk+1)

)
ωk+1

ωk+1 � q1(z|Hk+1)
⎪
Πk + Δkpk+1

) + q0(z|Hk+1)
⎪
1 − pk+1

)
Δk

and the summation is taken over all the possible values z of zk+1.

6.4 Network-Based Analysis of the iEEG Recordings

In [75, 77] we proposed to apply the ODP policy (6.7) to the automatic detection of
seizure onsets in drug-resistant epileptic subjects. In this case, it is pivotal choosing
a sequence of measurements zk , k = 0, 1, 2, . . ., such that changes in the stochastic
distribution of zk occur at the onset of the seizures.

Several univariate and bivariate measures have been computed thus far by using
single-channel or two-channel EEG signals (both surface and intracranial) [18, 24,
31, 34–36, 40, 41, 49, 52, 58, 59, 61, 69, 73, 93, 99], although none of them
has provided a consistent separation between seizure and non-seizure periods. More
recently, network-based approaches have been proposed to simultaneously analyse
signals from all the available electrodes [6, 16, 46, 65, 71, 72, 86–88, 105]. These
approaches treat each electrode as a node in a graph, and any two nodes are con-
nected if the activities at these sites are dependent. The resultant connectivity matrix
associated with the graph is analysed and statistics computed from this matrix have
revealed significant changes in the graph topology at the seizure onset.

Following this framework, we defined in [75, 77] the connectivity matrix, A, as
the normalized cross-power in a specific epilepsy-related frequency band B among
all the available iEEG signals, i.e., the generic element Ai,j of A is the cross-power
between the iEEG signals recorded by electrode i and j. Then, we computed the
singular value decomposition of A and used the leading singular value ∂1 as the
measurement to be monitored in order to detect a state transition at the seizure onset.

More recently, we noted that the distribution of the whole set of singular values
changes over time because of the occurrence of seizures and these changes might
be reflected by the median value of the singular values [76]. Therefore, we compute
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here A over a sliding window (length: 2.5 s), with 1 s sliding step (i.e., A is updated
every second to capture the evolution of the brain topology), and, for each window
k = 1, 2, . . ., we estimate the median value μ̂∂,k . of the singular values of A. Then, we
use the sequence μ̂∂,k , k = 1, 2, . . . as the output observations zk of the HMM in Fig.
6.2. For sake of seizure detection, indeed, we assume that the epileptic brain follows
the HMM in Fig. 6.2, with x = 1(x = 0) representing the seizure (non-seizure)
condition.

The median μ̂∂ can reflect changes in the distance among the singular values,
e.g., it might be very low if there is only one large singular value (i.e., ∂1 ⊂ ∂i,
i = 2, 3, . . .), while it may become larger in case of a more uniform distribution (i.e.,
∂i ⇐= ∂j, for all i, j = 1, 2, 3, . . .), thus reflecting variations of the synchronization
level in the brain network [72, 87, 88].

Finally, the computation of A exploits the frequency band B = [13,30] Hz for each
subject, as the earliest spectral changes around the seizure onset were consistently
reported in this band.

6.4.1 History-Dependent Model of the Output Measurements

The output probability functions qx(z|Hk), x → {0, 1}, in Fig. 6.2 were computed by
combining generalized linear models (GLMs) and maximum likelihood estimation
[75–77]. Observations were quantized, mapped to integer nonnegative numbers (i.e.,
nk � Q([zk]), with nk → Z+

0 for all k), and fitted by a Poisson law [92]:

qx(zk = z|Hk) ⇐= P(nk = Q([z])|Hk, x) � e−ζx,k
ζ

Q([z])
x,k

Q([z])! (6.8)

where ζx,k is the instantaneous rate and depends on the state x, time k, and the
previous history Hk . Then, the time evolution of ζx,k was modeled via GLM [53]

log ζx,k = αx +
L⎟

j=1

ϕx,jnk−j (6.9)

where the parameter vector Σx � {αx, ϕx,1, . . . , ϕx,L} is fitted on the data via maxi-
mum likelihood estimation [15].

We chose the number of parameters L = 10 in Σx by minimizing the Akaike’s
information criterion [2] over a set of candidate models and, for each subject, Σx

was estimated separately for state x = 0 and x = 1 on training data. Training data
included 1 h of continuous interictal (i.e., seizure-free) recordings and one seizure
period (see Sect. 6.5). The training interictal recordings were collected at least 10 h
before any seizure event.
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Table 6.1 Experimental setup

Subject ID Age/Sex Seizure
origin

Seizure
type

# h Recordings # Seizures # Electrodes

PT-01 18y/M P-T CPS:GTC 134 3 86
PT-02 17y/F I-O CPS:GTC 134 2 40
PT-03 49y/F M-T CPS 69 4 82
PT-04 14y/M P-O CPS:GTC 133 7 77
PT-05 20y/M L-T CPS 134 4 108

I-O = inferior occipital lobe; L-T = lateral temporal lobe; M-T = mesial temporal lobe;
P-O = parietal occipital lobe; P-T = parietal temporal lobe; CPS = complex partial seizure;
CPS:GTC = complex partial seizure with secondary tonic clonic generalization

6.5 Multi-channel Intracranial EEG Recordings

The experimental setup includes five drug-resistant epilepsy subjects, who were
monitored for approximately one week (120.8 ± 28.96 h per subject, mean ± S.D.)
with subdural and depth electrode arrays as part of their pre-surgical evaluation at
the Johns Hopkins University Epilepsy Center. The decisions regarding the need for
invasive monitoring and the placement of electrode arrays were made independently
of our study and solely based on clinical necessity. Acquisition of data for research
purposes was done with no impact on the clinical objectives of the patient’s stay.

Subjects were implanted with subdural grid arrays, subdural strips, or depth
electrode arrays in various combinations as determined by the clinical assessment.
Subdural grids have 20–64 contacts per arrays and were used in combination with
subdural strips (4–8 contacts) or depths arrays. Intracranial contact locations were
documented by post-operative CT co-registered with MRI. Table 6.1 reports subject-
specific information, including the number of electrodes, the duration of the intracra-
nial recordings, and the type and origin of the annotated seizures.

Intracranial EEG signals were acquired continuously from each subject by using
a StellateTM system (Stellate Systems, Inc., Montreal, QC) with 1000 Hz sampling
rate and 300 Hz anti-aliasing filter, converted to EDF format for storage and fur-
ther processing. Board-certified electroencephalographers (up to three) marked, by
consensus, the unequivocal electrographic onset (EO) of each seizure and the period
between seizure onset and termination. The seizure onset was marked after visual
inspection of the iEEG signals and was indicated by a variety of stereotypical elec-
trographic features, e.g., the early presence of beta-band activity (13-25 Hz), bursts
of high frequency oscillations (100-300 Hz), an isolated spike or spike and wave
complex followed by rhythmic activity, or an electrodecremental response [60, 70,
85, 107]. These features were typically present in at least one channel at the onset of
the seizure. In addition to the inspection of the iEEG recordings, video segments of
a video-EEG recordings were analyzed to capture changes in the subject’s behavior.
For each subject, the performances of the ODP were evaluated based on the distance
between the ODP-based detected seizure onsets and the annotated EOs.
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The research protocol was reviewed by the Johns Hopkins Institutional Review
Board and data was stored in a database compliant with HIPAA (Health Insurance
Portability and Accountability Act) regulations.

6.6 ODP Performance Evaluation

In order to be consistent with the evaluation criteria used in [36, 45, 57, 61, 73,
99], we measured the performances of the ODP by considering (i) the delay between
each estimated seizure onset time and the correspondent EO, (ii) the number of true
positive detections (TPs), the number of false positives (FPs), and false negatives
(FNs) [75–77]. In particular, we classified each detection as TP or FP if an EO
occurred within ∆ s from the detection time or not, with ∆ = 20 in order to be
comparable to [36]. EOs that were not detected were classified as FNs.

Furthermore, we compared the ODP with three widely-used paradigms for change
point detection, i.e., the classic Bayesian estimator (BE) [10], the cumulative-sum
detector (CUSUM) [9, 62, 96, 97], and the threshold-based detector (HT), where
the threshold is fixed a priori to an heuristically-chosen value. The estimated seizure
onset given by BE, CUSUM, and HT is:

• BE: TBE � min{0 < k < M|Πk > 0.5},
• CUSUM: TCU � min{0 < k < M|gk > g},
• HT : THT � min{0 < k < M|zk > h},
with g � μg and h � μ̂z, respectively, where μg is the mean value of the CUSUM
variable gk and μ̂z is the median of the output sequence μ̂∂,k during the first seizure
period (training data), respectively. Note that the CUSUM variable gk is defined as:

g0 � 0

gk �
{

gk−1 + lk if gk−1 + lk > 0
0 otherwise

with lk � ln
⎝

q1(zk |Hk)
q0(zk |Hk)

⎞
computed at each stage k [9, 62].

6.7 Results

The ODP framework was used for seizure detection in five drug-resistant epileptic
subjects. One hour of seizure-free multi-channel iEEG recordings and one hand-
annotated seizure per subject were used to estimate the parameters of the model
(6.9) in state x = 0 and x = 1, respectively, while the remaining data was used to



6 An Optimal Control Approach to Seizure Detection 163

LTG10−9

LTG11−10

LTG12−11

LTG13−12

LTG14−13

LTG15−14

LTG16−15

LTG18−17

LTG19−18

LTG20−19

LTG21−20

(a) (b)

(c) (d)

0 100 200 300 400
10

0

10
2

10
4

time (s)

LPS18−17

LPS19−18

LPS20−19

LPS21−20

LPS22−21

LPS23−22

LPS24−23

LPS26−25

LPS27−26

LPS28−27

−20 0 20 40 60 80 100
10

0

10
2

10
3

μ̂ σμ̂ σ

time (s)

Fig. 6.3 Examples of complex partial seizure with (a, c) and without (b, d) tonic-clonic general-
ization. a, b iEEG recordings from multiple focal electrodes (differential montage, labels on the
y-axis). c, d Median of the singular values for the iEEG recordings in a and b, respectively. Dashed
red lines indicate the hand-annotated EO and termination of each seizure, arrows indicate the onset
of the post-convulsion phase. Plots a, c refers to subject PT-01 (seizure #1), plots b, d refers to
subject PT-03 (seizure #1). Log-scale in c, d emphasizes the dynamics around the seizure onset.

validate the detection policy. The state transition probabilities Γk and Ωk in (6.1b)
were assumed time-invariant and estimated for each subject via maximum likelihood
[21, 23]. For sake of simplicity, we implemented the policy (6.5)–(6.7) with the linear
penalty γ(δ) = 2δ−1, which was introduced in [75–77, 80]. Results are reported in
Figs. 6.3, 6.4, 6.5, 6.6, 6.7 and Tables 6.2, 6.3.

6.7.1 Network-Based Connectivity Matrix and Singular Value
Decomposition

Figure 6.3 reports the median μ̂∂ of the singular values around the onset and termina-
tion of a complex partial seizure (CPS), both with and without secondary tonic-clonic
generalization (GTC).

CPS and GTC seizures differ for the duration of the event (GTC seizures are
usually longer than CPSs) and the extension of the brain region involved (GTC
seizures involve a larger part of the brain, frequently the whole brain), and may be
elicited by different pathologic mechanisms [17, 26, 41]. In particular, GTC seizures
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are more severe than simple CPSs, as they quickly spread from a small area (i.e.,
the "focus") to a wide region of the brain, often causing loss of consciousness and
convulsions.

Despite these physiologic and clinical differences, however, μ̂∂ has similar
dynamics in CPS and GTC seizures (Fig. 6.3c, d) and captures a seizure-related
increment of the oscillatory activity of the iEEG signals in the band [13, 30] Hz
(Fig. 6.3a, b). In particular, μ̂∂ is stable and shows minor fluctuations both before
and after seizure, which correspond to steady-state condition. At the seizure onset,
instead, μ̂∂ shows a recurrent pattern, which is consistent across the subjects and
types of seizure: it slowly decreases first and then rapidly increases, thus reaching
a local maximum approximately half of the seizure event. Finally, μ̂∂ decreases to
very small values (i.e., smaller than before the seizure onset) before rapidly returning
to the steady state conditions.

The duration of the second decreasing phase of μ̂∂ (i.e., the one right before the
return to steady-state conditions) depends on the extension of the post-convulsion
phase, which is the relaxation following a paroxysmal activity (arrows in Fig. 6.3a,
b) and usually lasts longer in GTC seizure than simple CPS. Furthermore, the mean
value of μ̂∂ at the seizure termination is lower than the pre-seizure value and, in
case of GTC seizures, it shows an abrupt drop, eventually followed by oscillations
before returning to steady state conditions (Fig. 6.3c). These results are consistent
across all the subjects, despite the various origins and types of the annotated seizures.
In particular, the pattern of μ̂∂ captures the sequence of changes that occur in brain
complexity at the transition from non-seizure to seizure activity and reflects an overall
increase and more uniform distribution of the singular values 20–50 s after the seizure
EO. This pattern might be due to an initial desynchronization at the seizure onset
and then a subsequent strong re-synchronization across different brain regions, as
suggested by the correlation analysis [87, 88]. Furthermore, (i) the low in value of μ̂∂

at the seizure termination, (ii) the subsequent long drift toward the pre-seizure steady-
state values, and (iii) the eventual post-seizure oscillations (GTC seizures) could
overall denote a post-seizure reset of the brain dynamics, with final desynchronization
among the different brain regions and lower iEEG activity [41].

6.7.2 History-Dependent Output Distributions

Figure 6.4 shows the estimated parameters of model (6.9) both in seizure and non-
seizure conditions for the subject reported in Fig. 6.3b, d. A history-independent
kernel-smoothing estimation [13] of the probability distribution function of μ̂∂ is
reported in Fig. 6.4a.

It can be noted that the mean value and the variance of μ̂∂ increase at the seizure
onset but there is a large overlap between the history-independent probability distri-
bution functions in seizure and non-seizure conditions (Fig. 6.4a), which determines
a poor estimation of the Bayesian a posteriori probability Πk , see Fig. 6.5a. In par-
ticular, the history-independent estimations of q0(·) and q1(·) have small amplitude
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Fig. 6.4 History-independent versus history-dependent probability of the output observations. a
Sample distribution of μ̂∂ in non-seizure (blue bars) and seizure (purple bars) conditions. A history-
independent kernel smoothing density estimation of the probability density function (pdf ) is given
for seizure (gray dash-dotted line) and non-seizure (black line) periods. b–d History-dependent
parameters of model (6.9) and 95 % confidence bounds (strips) during non-seizure (b, c, blue) and
seizure (b, d, purple) periods. Data refers to subject PT-03

and poorly modulate at the seizure onset (mostly q0) while, at the termination of
the seizure, both q0 and q1 are ⇐0 because of the post-ictal resetting phase. As a
consequence, the probability Πk does not entirely follow the modulation of μ̂∂ , i.e.,
it correctly rises from 0 to 1 during seizure (Fig. 6.3d and Fig. 6.5a), but then it has an
erroneous late increment to values above 0.5 (the chance level) during the post-ictal
phase , which depends on the poor post-ictal modulation of q0 and q1. According
to (6.1b), the condition Πk > 0.5 erroneously indicates that state x = 1 (seizure) is
more likely than state x = 0 (non-seizure) and might lead to a false positive detection
of state transition.

The history-dependent model (6.8) and (6.9), instead, indicates that, at any given
time k, the probability of the current value of μ̂∂ depends on the pattern in the previous
10 s and that such dependency actually varies with the current state x = 0 or x = 1
(Fig. 6.4c, d). In particular, the maximum likelihood estimation of parameter αx in
(6.9) significantly increases in seizure conditions (Fig. 6.4b) as a consequence of the
higher average value of μ̂∂ during seizure, while the parameters ϕx,j, j = 1, . . . , 10
show larger oscillations and (slightly) larger 95 % confidence bounds in case of non-
seizure data (Fig. 6.4c), thus indicating higher variability (i.e., larger differences)
across consecutive observations and recurrent periodic fluctuations in the sequence
μ̂∂,k .

Differences in model parameters contribute to fit the GLM structure (6.9) to the
actual data sequences and allow a selective modulation of probabilities q0(·) and
q1(·) (Fig. 6.5b). In particular, q1 selectively increases during the seizure, it reaches
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Fig. 6.5 Bayesian probability Πk of state transition (black line) and output probabilities q0(·) (blue
dashed line) and q1(·) (purple line) estimated around seizure #1 in subject PT-03 (see Fig. 6.3b, d).
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Fig. 6.4a. b Probabilities obtained by using the history-dependent GLM (6.9) with parameters
reported in Fig. 6.4b–d. Scale on the left and right y-axis in (a, b) refers to qx(·), x = 0, 1, and Πk ,
respectively

an initial peak a few seconds after the hand-annotated EO, and, then, it reaches a
final peak approximately at the beginning of the convulsive phase (40-60 s after the
EO, see Fig. 6.3b, d), while it is generally low for non-seizure data sequences. Vice
versa, q0 is much higher than q1 on seizure-free data sequences and shows slow
fluctuations, while it quickly decreases to approximately 0 a few seconds after the
hand-annotated EO. The opposite dynamics of q0 and q1 (i) triggers Πk from 0 to 1
just a few seconds after the seizure onset, (ii) causes a fast decrease of Πk toward the
end of the seizure, and (iii) keeps otherwise Πk very low during non-seizure periods.

Interestingly, there are two peaks in the value of q0 during the seizure, one approx-
imately 20 s after the onset and one toward the end of the seizure (Fig. 6.5b). The
first peak accounts for the initial decrease of μ̂∂,k at the seizure onset, while the last
one corresponds to the drop in the value of μ̂∂,k at the beginning of the post-seizure
phase (see Fig. 6.3d).
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Table 6.2 Performance analysis on validation data

Subject ID ODP BE HT CUSUM
FPR TPR FN FPR TPR FN FPR TPR FN FPR TPR FN
(FP/h) (%) (FP/h) (%) (FP/h) (%) (FP/h) (%)

PT-01 0.07 100 0 0.04 100 0 0.01 100 0 0.04 100 0
PT-02 0.29 100 0 0.22 100 0 0.14 100 0 0.27 100 0
PT-03 0.07 100 0 0.06 100 0 0.04 100 0 0.03 100 0
PT-04 0.01 100 0 0.01 100 0 0.01 100 0 0.02 100 0
PT-05 0.04 100 0 0.04 100 0 0.05 100 0 0.05 100 0

6.7.3 Optimal Detection Policy for Seizure Events

The performances of the proposed optimal policy (6.7) and of the other detectors in
Sect. 6.6 are reported in Tables 6.2 and 6.3. Results were obtained by using validation
data only (599 h of continuous iEEG recordings including 15 annotated seizures).

All the policies show high sensitivity (100 % of TPs, i.e., all the seizures were cor-
rectly detected, Table 6.2), low false positive rates (FPR always lower than 0.29 FP/h,
which is required for potential clinical applications), and high concentration of the
(eventual) FPs in a small time window around the actual seizures.

The fact that the false positive rate (FPR) is low also with BE and HT suggests
that the median μ̂∂ selectively increases only during the ictal events and therefore
provides a robust feature to accurately separate the seizures from the remaining
activity. In particular, the pattern of μ̂∂ (Fig. 6.3c, d) and the high values achieved at
the onset of the paroxysmal phase of each seizure (20–50 s after the hand-annotated
EOs, Fig. 6.3a, b) account for the low FPR achieved with the HT detector. In this
case, however, the choice of the threshold h is pivotal to avoid interictal spikes and
outliers in the sequence μ̂∂,k . We chose of h � μ̂z retrospectively in order to detect
only the high values that occur at the beginning of the paroxysmal phase and have
low sample probability during the non-seizure periods (Fig. 6.4a). However, despite
a high specificity value (average FPR: 0.05 ± 0.053), this choice of h determined
large detection delays (Table 6.3) and required approximately 40 % of each ictal
period (41.87 ± 10.38 %) to detect the ongoing seizure, which is generally too much
for clinical applications.

Smaller delays were achieved with the BE and CUSUM detectors (Table 6.3) and
a slightly smaller portion of each ictal period was required to detect the seizures
(35.99 ± 11.56 % and 40.97 ± 17.73 % for BE and CUSUM, respectively) but
the FPR significantly increased (average: 0.07 ± 0.08 and 0.08 ± 0.11 for BE
and CUSUM respectively), mostly because the Bayesian probability Πk and the
cumulative sum variable gk increase with the median μ̂∂ but with a faster pace, i.e.,
they have steeper slope than μ̂∂ (Fig. 6.3d and Fig. 6.5b).

The ODP, instead, addressed the trade-off between specificity (i.e., low FPR) and
detection delay through the design of a suitable the loss function (6.2). In particular,
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Table 6.3 Detection delay on validation data

Subject ID Seizure Detection delay (s)
label # duration (s) ODP BE HT CUSUM

PT-01 2 236.4 35.79 48.79 76.79 51.79
3 358.8 43.20 57.20 135.20 60.20

PT-02 2 82.99 18.06 27.06 34.06 28.06
PT-03 2 77.74 10.33 24.33 26.33 26.33

3 82.23 14.25 28.25 29.25 29.25
4 86.43 20.42 33.42 34.42 79.42

PT-04 2 188.2 85.07 98.07 105.07 99.07
3 203.9 88.45 101.45 105.45 102.45
4 260.0 95.45 109.45 124.45 110.45
5 290.1 98.82 112.82 127.82 114.82
6 366.2 124.20 138.20 147.20 140.20
7 377.9 180.34 194.34 215.34 196.34

PT-05 2 101.6 32.76 40.76 45.76 42.76
3 111.8 33.59 43.59 55.59 46.59
4 108.9 2.65 16.65 17.64 23.65
mean 195.5 58.89 71.62 85.36 76.76
S.D. 112.9 50.90 51.59 57.51 50.02

we used a ratio a2/a1 = 1000 and set M � 1/Γ (i.e., reciprocal of the probability of
transition from state 0 to state 1, Fig. 6.2) in order to penalize more the detection delay,
and we finally achieved a significantly lower delay (paired-sample t-test, p < 0.0005
Bonferroni corrected, see Table 6.3) and required a significantly smaller portion of
each ictal period to detect the seizures (27.26 ± 13.48 %, paired-sample t-test,
p < 0.01 Bonferroni corrected), which may be feasible for clinical applications,
while the increment of the FPR was still limited (average: 0.09±0.11) and compatible
with potential clinical applications.

Figure 6.6 shows the dynamics of the threshold Fk(Πk, zk, Hk) in (6.7) around a
seizure event. Both before and after the seizure, the low values of the probability Πk
(i.e., ⇐0) result in a monotonically decreasing threshold. This is a consequence of the
problem formulation (6.2)–(6.7) with a finite M and the evolution model (6.1a, 6.1b),
and reflects the important fact that the likelihood of a seizure increases over time
when no seizure is detected. In this case, the choice of M guarantees a sufficiently
long evolution window (the optimal policy is reset and restarts every M samples or
right after a detection) which is related to an estimation of the average inter-time
between consecutive seizures.

At the seizure onset, instead, the probability Πk begins to increase (zoom, Fig. 6.7,
bottom row) and such change in dynamics is captured by the non-monotonic behav-
iour of the threshold Fk(·). In particular, Fk(·) has an initial abrupt increment, which
is aimed at avoiding potential outliers in the value of Πk and, then, it remains con-
stantly high (i.e., ⇐1) as a consequence of the steady state value Πk = 1 during the
seizure.
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Fig. 6.6 Probability Πk of state transition (black line) and ODP threshold Fk(Πk, zk, Hk) (red dash-
dotted line) estimated around a seizure (gray background). Data refers to seizure #1 of subject
PT-04

The advantage of the adaptive threshold Fk(·) over the fixed thresholds used with
the BE, HT, and CUSUM detectors is reported in Fig. 6.7, where the fast decreasing
dynamics of Fk(·) allows to capture an early consistent modulation of the probability
Πk well before it reaches the BE threshold value of 0.5. Also, the dynamics of the
sequences μ̂∂,k and gk is slow during the first part of the seizure and more than 30 %
of the ictal period is required to detect a noticeable change in these sequences, which
may account for the long delays reported by the HT and CUSUM detectors. The
Bayesian probability Πk , instead, reveals an earlier modulation, which is determined
by the changes captured with the estimated model parameters Σx , x → {0.1} in (6.9).

6.8 Discussion

We recently developed an optimal control-based framework for change point detec-
tion and we used it to automatically detect seizure events in drug-resistant epilepsy
subjects [75–77, 79, 80, 82]. In particular, we model the evolution of the affected
brain as a hidden Markov chain [23], track the Bayesian probability of a state transi-
tion [10], and finally detect the seizure onset by solving a Quickest Detection problem
[66, 67, 90, 110] via Dynamic Programming [11].

As noted in [80], this framework generalizes the well-known problem of online
change-point detection [9, 14, 67, 103] to a class of output measurements which
are non-binary and history-dependent, thus resulting of interest for applications in
neuroscience and medicine. Also, the optimization problem does not require a spe-
cific type of probability distribution for the change times T (which follows from the
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Fig. 6.7 Zoom in around the seizure reported in Fig. 6.6. From top to bottom: iEEG signals
recorded across multiple focal electrodes (differential montage, labels on the y-axis) around the
hand-annotated EO (dashed vertical line); median μ̂∂ of the singular values estimated from the iEEG
signals above (black line) and HT threshold h (red dashed line); CUSUM variable gk correspondent
to the median μ̂∂ (black line) and CUSUM threshold g (red dashed line); Bayesian probability Πk
correspondent to the median μ̂∂ (black line), BE threshold (black dashed line) and ODP threshold
Fk(Πk, zk, Hk) (red dash-dotted line)

chosen HMM) and the solution is achieved recursively, thus facilitating the online
implementation.

These results improve over recent formulations of the detection problem for appli-
cations in neuroscience [64, 102, 110]. These works, indeed, mainly used spike trains
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(i.e., binary sequences) and detected the change points offline by combining data
from different states and the knowledge of the entire neuronal activity. In particular,
Yu [110] detected changes in the neuronal spiking rate by solving a QD problem,
but strict assumptions were made on the class of output observations (which were
independent and identically distributed) and the change times T (which followed a
geometric distribution).

It is interesting that the solution of the problem (6.3)–(6.6b) results in the
threshold-based policy (6.7), which is adaptive and unsupervised, i.e., the evolution
of the threshold is not set a priori and depends on the adopted HMM, the distribution
functions q0(·) and q1(·) of the output measurements, and the loss function J0 [80].

Threshold-based policies have been extensively explored for seizure detection
(e.g., [24, 31, 34–36, 42, 45, 61, 73]), but threshold are usually fixed or periodically
updated by using heuristic, data-driven paradigms, which might require long training
sessions to be more accurate. Also, these policies usually apply to measurements
computed out of individual or paired iEEG recording channels, thus requiring the
threshold be tuned to the specific location of the electrodes on the brain.

Our detection policy, instead, applies on a Bayesian probability, which is always
in the range [0, 1]. Therefore, the dynamics of the ODP threshold (6.7) does not
explicitly depend on the average amplitude of the measurements in each state and can
be applied to different data generated by the same mechanism across multiple trials
and conditions, thus improving over the existing heuristic threshold-based policies
(e.g., HT, CUSUM, etc.) [80].

It is possible, however, that, although fixed, the threshold in these policies has
been chosen “optimally”, i.e., by minimizing a specific cost function. However, the
unsupervised optimal approaches proposed thus far (e.g., [5, 32, 33, 37, 38, 54,
68, 91, 93, 95, 99, 104]) usually exploit tools from the theory of machine learning,
which means that the optimization process ultimately separates the data in a specific
high-dimension feature space, but does not encompass any penalty for performance
goals. Consequently, the performances of the resultant detection paradigms follow
(and are actually limited by) the formulation of the detection criteria [75].

The proposed framework, instead, defines the required performances first by
appropriately constructing the loss function to be minimized, and then designs the
threshold accordingly, thus allowing to trade off between different objects (e.g., low
probability of false positives versus low distance between actual and detected change
time or low probability of late detection, etc.) depending on the specific application.

Finally, we note that our framework customizes to the specific application and
type of observations by exploiting a time-varying, history-dependent HMM, which
is estimated offline on training data. For sake of simplicity, we considered here a
two-state HMM, with states x = 1 and x = 0 representing the seizure and seizure-
free conditions, respectively. However, our approach can be generalized to problems
with N states (N > 2) and the correspondent optimal detection policy can be derived
as shown in (6.5)–(6.7). This is of particular interest for the seizure onset detection
problem, as we recently showed that the brain may transit across several sub-states
before and during a seizure event [16, 108] In this case, detecting multiple transitions
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or transitions in sub-states preceding the hand-annotated seizure onset would be
mostly valuable to early issue warnings or develop seizure-blocking therapies.

It is interesting, though, that a minimal HMM with just two states was enough to
detect seizures with very low false positive rates. This is perhaps facilitated by the
use of history-dependent generalized linear models (GLMs) to describe the output
probabilities q0(·) and q1(·). GLMs and maximum likelihood methods have been
widely used in the analysis and simulation of neuronal spike trains for several types
of neural disorders (e.g., [15, 20, 29, 63, 78, 81, 83, 100, 101]) and provide a
flexible framework for both stationary and nonstationary analysis. In our case, the
GLM parameters were able to accurately capture changes that occur in the median
of the singular values as soon as the seizure starts while requiring a minimal set of
training data to be estimated in both conditions.

6.8.1 Network-Based Analysis and Singular Value Decomposition

A key aspect of the methodology proposed in [79, 80] is the availability of sequential
output measurements whose probability distribution function changes because of a
hidden state transition. In the application of our framework to seizure detection we
used multi-channel statistics computed out of the iEEG signals as output measure-
ments [75–77]. In particular, the median of the singular values μ̂∂ of the normalized
cross-power based connectivity matrix showed significantly different dynamics in
seizure versus non-seizure periods, which indicates that the linear dependencies exist-
ing among all the recorded sites of the affected brain and the corresponding brain
network topology consistently vary at the transition from interictal to ictal conditions.

The choice of a (linear) network-based output variable is motivated by several
drawbacks that have been reported with most of the statistics computed thus far (e.g.,
[18, 24, 31, 34–36, 40, 41, 49, 52, 58, 59, 61, 69, 73, 93, 99]). These statistics, in
fact, are computed from single channels or small subsets of channels from the focal
area. However, this requires that the focal areas are known a priori with reasonable
accuracy, which might be problematic in case of online detection. This requirement,
instead, is less stringent when exploiting multi-channel statistics, since it is sufficient
that the grid of electrodes is large enough to include the focal areas (which is the
case with the current recording schemes) [75].

Also, it has been noted in [48] that nonlinear multi-channel statistics outperform
linear single-channel and two-channel measures, but require larger amounts of data
and computation, which might be not available during the setup of the detection
paradigm.

Finally, it must be noted that all the statistics computed thus far show different
patterns in various conditions (e.g., during sleep versus wake state, etc.) and may vary
with the specific subject and type of seizure, thus resulting less predictable. These
limitations, however, can be addressed in our model-based approach by increasing the
number of combined channels and computing simple measures off of large enough
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matrices. In particular, more information about the brain network can be derived and
both spatial and temporal features can be included in the same model [75].
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Chapter 7
Model Reduction of Genetic-Metabolic
Networks via Time Scale Separation

Juan Kuntz, Diego Oyarzún and Guy-Bart Stan

Abstract Model reduction techniques often prove indispensable in the analysis of
physical and biological phenomena. A succesful reduction technique can substan-
tially simplify a model while retaining all of its pertinent features. In metabolic
networks, metabolites evolve on much shorter time scales than the catalytic enzymes.
In this chapter, we exploit this discrepancy to justify the reduction via time scale
separation of a class of models of metabolic networks under genetic regulation. We
formalise the concept of a metabolic network and employ Tikhonov’s Theorem for
singularly perturbed systems. We demonstrate the applicability of our result by using
it to address a problem in metabolic engineering: the genetic control of branched
metabolic pathways. We conclude by providing guidelines on how to generalise our
result to larger classes of networks.

Keywords Time scale separation · Model reduction · Genetic-metabolic networks

7.1 Introduction

Biological systems often display large discrepancies in the speed at which different
processes occur. In such cases, time scale separation is frequently employed to reduce
ordinary differential equation (ODE) models of biological phenomena. A classical
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example is found in enzyme kinetics [19], whereby the difference between the speed
of substrate-enzyme binding and product formation is explicitly used to derive the
Michaelis–Menten kinetics.

Another discrepancy is found in genetic-metabolic systems prominent in the field
of Metabolic Engineering. These systems describe networks of enzymatic reactions
where the concentrations of the catalytic enzymes are dynamically regulated by gene
expression. Metabolic reactions occur at rates in the order of seconds or less, while
gene expression usually takes between minutes and hours to complete [12]. For this
reason, the reduction of models of metabolic networks under genetic control by time
scale separation is sometimes used as a stepping stone in the analysis of such models
(e.g., [2, 16]). However, the justification behind these reductions is typically limited
to qualitative arguments discussing the discrepancy in speed between metabolic and
genetic processes. Unfortunately, these arguments sometimes are not sufficient and
the reduced model generated does not behave at all like the original (e.g., see [6] for
a discussion regarding several models of metabolic networks for which the reduction
fails).

In this chapter, we provide sufficient conditions under which reduction via time
scale separation of models of metabolic networks under genetic control can confi-
dently be carried out. In Sect. 7.2 we introduce some notation to describe a general
class of ODE models of metabolic networks under genetic regulation. In addition,
we make certain assumptions on the dynamics of the metabolites. In Sect. 7.3 first
we introduce the main ideas behind time scale separation and we consider networks
in which the enzyme concentrations are fixed. Then, we present our results regarding
the validity of time scale separation as a model reduction tool for metabolic networks.
In Sect. 7.4 we conclude the chapter by discussing the plausibility of the assumptions
we made throughout the text and the applicability of our results. We illustrate the
concepts discussed in the chapter by applying tfhem to the Metabolic Engineering
problem presented in Box 7.1.

Box 7.1: Genetic control of a branched metabolic network

The control of metabolic activity of microbes is a long standing problem of
the field of Metabolic Engineering. It encompasses the genetic modification of
a host organism and its metabolism to optimise or even artificially induce the
organism’s production of a chemical compound that is of commercial value,
e.g., pharmaceuticals, fuels, commodity chemicals, etc., see [25] and references
therein. Often, this consists of two steps. First, the selection of a well studied
microbial organism as a host (e.g., E. coli and S. cerevisae) with some native
metabolite that is a precursor to the chemical of interest. Second, the genetic
modification of the microbe so that it expresses the enzymes that catalyse the
reactions which convert the precursor into the desired molecule [13].
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We study a simple instance of the above scenario. Consider the native metabolic
pathway in Fig. 7.1a, which converts metabolite 1 into metabolite 3. Suppose
that metabolite 2 is a precursor to a chemical of interest, metabolite 4. Suppose
that we can design a plasmid that contains the gene coding for enzyme e,
which catalyses the reaction that converts metabolite 2 into metabolite 4 which
diffuses across the cell membrane. Since the host requires metabolite 3 to live
and grow, we would like to maximise the production of metabolite 4, without
greatly disrupting that of metabolite 3. The question now becomes when and
how should e be expressed so that these goals are met.

Consider implementing the controller architecture in Fig. 7.1b. Roughly,
if there is an excess of 3, indicating that it is safe to divert resources to the
production of 4, then the controller activates the expression of e, which leads
to an increase in the rate of the branch reaction. The branch reaction consumes
2 and, by lowering the concentration of 2, causes a decrease in the production
of 3. This drop in production contributes to driving the concentration of 3 back
to normal levels. If, on the contrary, the concentration of 3 is initially low, then
expression of e drops and the branch shuts off. In this fashion, 2 is exclusively
converted into 3, potentially restoring the concentration of 3 to normal levels.

One could describe the above scenario using a model consisting of five
ODEs, one of them describing the dynamics of the enzyme concentration
and the other four describing the dynamics of the metabolite concentrations.
Coarsely, model reductions employing time scale separation consist of group-
ing model variables into ‘slow’ variables and ‘fast’ variables and then neglect-
ing the dynamics of the fast ones. In our case this grouping would naturally be
the four metabolites as the ‘fast’ variables and the enzyme as the ‘slow’ vari-
ables. Thus, if applicable, the reduction would permit us to draw conclusions
on the behaviour of the network by studying a 1-dimensional model instead of
a 5 dimensional model. This would be highly desirable given that the analy-
sis of a 1 dimensional model is straightforward while that of a 5-dimensional
model can be exceedingly complicated [8].

7.2 Models for Metabolic Reactions Under Genetic Control

Suppose we have a network of n metabolites and m irreversible enzymatic reactions
each of which converts a single metabolite into another. Consider the model for the
network under genetic regulation

ṡ(t) = f (s(t), e(t)), s(0) = s0, (7.1a)

ė(t) = g(s(t), e(t)), e(0) = e0, (7.1b)
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(a) (b)

Fig. 7.1 Control of a branched metabolic pathway. a The native pathway (black) converts metabo-
lite 1 into metabolite 3. The synthetic ‘branch’ (green) converts the native intermediate, metabolite 2,
into a valuable chemical, metabolite 4, and exports it outside the cell. b It is possible to implement
positive feedback from metabolite 3 to the reaction that converts metabolite 2 into 4 by design-
ing a plasmid coding for the enzyme e, whose expression is activated by high concentrations of
metabolite 3

Fig. 7.2 An irreversible, enzymatic reaction. The reaction converts metabolite A into metabolite
B at a rate v(sA, e) which depends exclusively on the concentration of the reactant, sA, and that of
the catalysing enzyme, e

where s denotes the vector of concentrations of the metabolites and e denotes the
vector of concentrations of the enzymes catalysing the m reactions in the network. The
metabolite dynamics, f (·), are defined by the rate at which the reactions consume
and produce the different metabolites. The enzyme dynamics, g(·), model all the
processes involved in enzyme synthesis and degradation.

In this section, we discuss what model (7.1a, 7.1b) represents and make certain
assumptions about it. We begin by discussing the kinetics of individual enzymatic
reactions. Next, we construct the metabolite dynamics (7.1a) from first principles.
We conclude by briefly discussing the enzyme dynamics (7.1b).

7.2.1 Enzyme Kinetics

We consider irreversible enzymatic reactions
like the one shown in Fig. 7.2. The reaction converts a single reactant A into a single

product B. The rate at which the reaction occurs, v(sA, e), depends exclusively on
the concentration of the reactant, sA, and the concentration of the catalysing enzyme,
e.

Assumption 1 The reaction rate, v(sA, e), is smooth and globally Lipschitz contin-
uous. For any given constant enzyme concentration e > 0, we assume that v(·, e) is
bounded, that
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∂v(sA, e)

∂sA
> 0, →sA ∞= 0,

and that v(·, e) is positive definite, that is,

v(0, e) = 0, v(sA, e) > 0, →si ∞= 0.

We denote its least upper bound with

lim
sA⊂+∩ v(sA, e) = v̂(e).

At a network level we need to distinguish between different reactions. To do this,
we write vA⊂B and eA⊂B to refer to the rate and the concentration of the catalysing
enzyme of the reaction with reactant A and product B.

Our assumptions on the kinetics are satisfied by a wide range enzyme kinetics
proposed in the literature [3] (e.g., Michaelis–Menten and Hill type kinetics). Essen-
tially, they state that:

• (Positive definite) If there are no reactant molecules present, the reaction rate is
zero. If there are some reactant and some enzyme molecules present, the reaction
rate is non-zero.

• (Strictly increasing) If there are some enzyme molecules present, then the more
reactant molecules present, the faster the reaction rate.

• (Bounded) Enzymes have a limited number of active sites that reactants can bind
to. Thus, given a fixed number of enzyme molecules, the reaction rate cannot
exceed the maximum rate achieved when all the enzymes’ active sites are bound
by the reactants.

Implicit in our definition of the reaction rates is the assumption that they are time
invariant. It is well known that the rate of a reaction depends on the temperature and
pressure of the medium in which the reaction is taking place. Hence, assuming time
invariance of the reaction kinetics is equivalent to assuming that the cytoplasm can
be approximated to be isobaric and isothermal. This is a common assumption in the
literature on ODE models of biochemical reactions [3, 7].

7.2.2 Metabolic Model

Assuming that the cytoplasm may be approximated to be an isovolumetric and
spatially homogeneous medium [7], the law of mass balance applied to the con-
centration of metabolite number i yields

ṡi (t) = Pi (t) − Ci (t) + Ii (t) − Ei (t), (7.2)
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Fig. 7.3 Acyclicity in
networks. a The network
is acyclic. b The network is
not acyclic; A, B, D, F form
a cycle

(a) (b)

where Pi denotes the rate at which si is produced by the considered genetic-metabolic
network, Ci the rate at which si is consumed by the network, Ii the rate at which
si enters the network from outside and Ei the rate at which si leaves the network.
From now on, we use the convention vi⊂ j ∈ 0 if there is no reaction that converts
metabolite i into j .

A metabolite is produced (consumed) by the reactions of which it is the product
(reactant). We limit our attention to networks whose metabolites can be ordered in
such a way that the following condition is satisfied.

Condition 1 For any i , if j > i then v j⊂i ∈ 0. In other words, metabolite i is not
the product of any reaction whose reactant is metabolite i + 1, i + 2, . . . , n.

Condition 1 has a simple graphical interpretation. Consider the directed graph
whose vertices represent the metabolites and whose edges represent the transfer of
mass (via reactions) from one metabolite to another. Condition 1 is equivalent to the
graph being acyclic, that is, starting at any given vertex one cannot return to that
same vertex by following the edges, see Fig. 7.3. Examples of such networks can be
found in the amino acid biosynthesis pathways of E. coli [24].

Let Ni,i⊂ j denote the stoichiometric coefficient of i in reaction i ⊂ j , that is,
the number of molecules of i involved in reaction i ⊂ j . If Condition 1 holds, we
can write the rates of production as

P1(t) := 0, Pi (t) :=
i−1∑

j=1

Ni, j⊂i v j⊂i (s j , e j⊂i ), i = 2, 3, . . . , n, (7.3)

and the rates of consumption as

Cn(t) := 0, Ci (t) :=
n∑

j=i+1

Ni,i⊂ j vi⊂ j (si , ei⊂ j ), i = 1, 2, . . . , n − 1. (7.4)

Assumption 2 The import rates are constant, Ii (t) := Ii ⇐ 0 → i . The export rate
of a metabolite i , if it exists, is a smooth, globally Lipschitz continuous, positive
definite, bounded function of its concentration such that

∂ Ei (si )

∂si
> 0, →si ∞= 0.
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We denote its least upper bound with

lim
si ⊂+∩ Ei (si ) = Êi →si ∞= 0.

One can use the import and export rates to model a variety of phenomena. For
instance, they may represent the rates at which the metabolites flow in and out of
the cell. Or the rates at which the metabolites are consumed/produced by other
metabolic pathways inside the cell. Additionally, one may use the export rates to
circumvent the isovolumetric assumption and model dilution. In any of these cases
the physical interpretations of Assumption 2 are similar to those we made regarding
the assumptions on the enzyme kinetics (Assumption 1). In addition, assumptions of
the type of Assumption 2 are common in the systems biology literature (for example,
see [4, 17]) and for this reason we shall not discuss them any further.

We can now rewrite the metabolite dynamics, f (s, e), in the model (7.1a, 7.1b)
as

ṡ1 = I1 − E1(s1) −
n∑

j=2

N1,1⊂ j v1 j (s1, e1⊂ j ),

ṡi = Ii +
i−1∑

j=1

Ni, j⊂i v j⊂i (s j , e j⊂i )

− Ei (si ) −
n∑

j=i+1

Ni,i⊂ j vi⊂ j (si , ei⊂ j ), i = 2, 3, . . . , n − 1, (7.5)

ṡn = In +
n−1∑

j=1

Nn, j⊂nv j⊂n(s j , e j⊂n) − En(sn).

Box 7.2: Metabolic model

In our example network we assume that all reactions follow Michaelis-
Menten kinetics

v1⊂2 := kcat1s1

KM1 + s1
e1⊂2, v2⊂3 := kcat2s2

KM2 + s2
e2⊂3, v2⊂4 := kcat3s2

KM3 + s2
e2⊂4.

It is straightforward to verify that Michaelis–Menten kinetics satisfy Assump-
tion 1, see Fig. 7.4.
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Fig. 7.4 Michaelis Menten
kinetics. The kinetics are
strictly increasing, positive
definite and bounded

The network in Fig. 7.1 has a single import rate, I1 and two export rates, E3
and E4. We assume that the export rates may also be described by Michaelis–
Menten functions

E3 := Ê3s3

KO3 + s3
, E4 := Ê4s4

KO4 + s4
.

Hence, we obtain the metabolite dynamics

ṡ1 = I1 − kcat1s1

KM1 + s1
e1⊂2, (7.6a)

ṡ2 = kcat1s1

KM1 + s1
e1⊂2 − kcat2s2

KM2 + s2
e2⊂3 − kcat3s2

KM3 + s2
e2⊂4, (7.6b)

ṡ3 = kcat2s2

KM2 + s2
e2⊂3 − Ê3s3

KO3 + s3
, (7.6c)

ṡ4 = kcat3s2

KM3 + s2
e2⊂4 − Ê4s4

KO4 + s4
. (7.6d)

From Fig. 7.1a it is easy to see that our network satisfies Condition 1, i.e., it
is acyclic. To simplify future computations, we choose kcati = kcat = 32 s−1,
KMi = KM = 4.7 µMs−1 →i and e1⊂2 = e2⊂3 = eN = 200 nM. These
values are representative of reactions in the tryptophan pathway (extracted
from the BRENDA database [18], EC number 5.3.1.24). We also assume that
Ê3 = Ê4 = kcat eN , KO3 = KO4 = KM and use the shorthand e := e2⊂4.

7.2.3 Enzymatic Model

The enzyme dynamics, g(·), are a lumped representation of all the processes
involved in enzyme synthesis and removal. Synthesis encompasses the transcription
of genes encoding the enzymes by RNA polymerases into mRNA strands and the
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(a) (b)

Fig. 7.5 The implementation of feedback via promoter design. a Metabolite 3 induces a confor-
mation change on the transcription factor, which then binds to the promoter of the gene coding for
e and activates its expression. b Hill functions with different Hill coefficients, note that their range
is [0, 1), hence k0 + k1 represent the maximum rate of expression of e

translation of these by ribosomes into proteins that later fold into the actual
enzyme. Most enzyme–enzyme and metabolite–enzyme interactions occur in syn-
thesis, specifically in transcription. In particular, metabolites often act as, or acti-
vate/deactivate transcription factors that inhibit or activate the transcription of genes
coding for other enzymes. Removal typically, includes enzyme degradation by the
cell and dilution due to cell growth.

To keep this exposition general, we shall not define the function g(·) explicitly.
We will only make the following minimal assumptions.

Assumption 3 The enzymes dynamics g(·) are smooth and globally Lipschitz con-
tinuous.

Enzyme degradation and dilution are typically modelled as linear functions of the
enzyme concentration [1]. Synthesis is usually modelled as the sum of a constant (or
basal) expression rate a set of sigmoids (e.g., Hill functions) representing the activat-
ing or repressing effects of the transcription factors on the enzyme expression [2, 14,
15]. These are all smooth and globally Lipschitz continuous functions. The enzyme
dynamics, g(·), are a linear combination of these and, thus, are also a smooth and
globally Lipschitz continuous. For this reason, Assumption 3 holds for a significant
portion of the models presented in the literature.

Box 7.3: Enzymatic model

Consider the controller for the branched metabolic pathway discussed in Box
7.1. Implementing such a controller can be achieved, for example, by designing
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the promoter of the gene coding for e such that 3 binds to some transcription
factor that activates the transcription of e, see Fig. 7.5a. We model the expres-
sion of the branch enzyme e as

ė = k0 + k1σ(s3) − γ e, σ (x) := xh

θh + xh
. (7.7)

This model comes from the balance between protein synthesis and degrada-
tion. We consider a first order removal process with kinetic constant γ , which
accounts for the aggregate effect of degradation and dilution by cell growth
[1]. The synthesis term, k0 + k1σ(s3), describes both transcription and trans-
lation of e. The parameter k0 represents the leaky expression of the enzyme
that occurs regardless whether the gene is activated or repressed, while k1 rep-
resents the compound effect of transcription and translation when the gene
is fully expressed. The function σ(·) takes values in [0, 1) and depends on
the specific molecular mechanisms underlying the interactions both between
metabolite 3 and the transcription factor and those between the transcription
factor and the promoter of the gene coding for the enzyme. Typically, these
types of interactions are modelled as sigmoidal (or Hill) functions [2, 15], see
Fig. 7.5b.

Following [15], we chose the parameter values k0 = 0.03 nM, k1 = 100k0,
γ = 2 × 10−4 s−1, θ = 0.2 µM and h = 2.

7.3 Model Reduction via Time Scale Separation

In this section we present our results regarding time scale separation in genetic-
metabolic systems. We first consider the behaviour of metabolic networks when the
enzyme concentrations are kept fixed in time. There are two reasons behind this.
First, it is a prerequisite of the time scale separation results regarding networks with
varying enzyme concentrations. Second, the study itself is instructive with regard
to understanding the behaviour of the networks. After this, we introduce abstractly
the main ideas of time scale separation and give our results justifying the time scale
separation based reduction of the networks.

7.3.1 Metabolic Networks with Constant Enzyme Concentrations

Suppose that the enzyme concentrations are positive constants, i.e., e(t) ∈ e ∈ R
m
>0.

We find it convenient to rewrite (7.5) as
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ṡi = gi (s1, . . . , si−1, e) − hi (si , e), i = 1, 2, . . . , n, (7.8)

where g1 := I1,

gi (s1, . . . , si−1, e) := Ii +
i−1∑

j=1

Ni, j⊂i v j⊂i (s j , e j⊂i ), i = 2, 3, . . . , n,

and hn(sn) := En(sn),

hi (si , e) := Ei (si ) +
n∑

j=i+1

Ni,i⊂ j vi⊂ j (si , ei⊂ j ), i = 1, 2, . . . , n − 1.

The function gi (·) ⇐ 0 represents the total rate of increase (via both import and
production) of the concentration of metabolite i . Similarly, the function hi (·) ⇐ 0
represents the total rate of decrease (via both export and consumption) of the concen-
tration of metabolite i . To avoid pathological scenarios in which the concentration
of a given metabolite grows unbounded because there is no process that removes the
metabolite, we impose the following condition.

Condition 2 Every metabolite has at least one reaction that consumes it, or it has
a non-trivial export term. In other words, for all i , Ei ∞∈ 0 or there exists a j such
that vi⊂ j ∞∈ 0. Thus, hi ∞∈ 0 for all i .

The non-zero Ei and vi⊂ j functions (if they exist, and Condition 2 ensures at
least one does exists for all i = 1, 2, . . . , n) are bounded, strictly increasing, positive
definite functions of si . Hence, hi , which is a sum of these functions, is also positive
definite and strictly increasing with si and it maps from R⇐0 to [0, ĥi (e)), where

ĥi (e) := Êi +
n∑

j=i+1

Ni,i⊂ j v̂i⊂ j (ei⊂ j ).

We now examine the conditions under which system (7.8) an equilibrium s̄. By
definition, g1 ∈ I1 ⇐ 0, thus ṡ1 = 0 implies

h1(s̄1, e) = I1.

This equation has a solution if and only if the I1 is in the range of the function
h1(s̄1, e). In other words, we require ĥ1(e) > I1. In addition, h1(s̄1, e) is a strictly
increasing function of s̄1, thus if a solution exists it is unique. Now, if we assume
that s̄1, . . . , s̄i−1 exist, then ṡi = 0 implies

hi (s̄i , e) = gi (s̄1, . . . , s̄i−1, e).
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Similarly as before, the equation has a solution if and only if the constant
gi (s̄1, . . . , s̄i−1, e) is in the range of the function hi (s̄i , e), i.e., if ĥi (e) >

gi (s̄1, s̄2, . . . , s̄i−1, e). In addition, hi (s̄i , e) is a strictly increasing function of s̄i ,
Hence if a solution exists it is unique.

Thus, by induction, an equilibrium exists if and only if the following condition is
satisfied.

Condition 3 The vector of constant enzymes e is such that ĥi (e) > gi (s̄1, . . . , s̄i−1,

e)→ i = 1, 2, . . . , n.

Furthermore, by monotonicity of the hi s, if the equilibrium exists it is unique.
Condition 3 is important and has an intuitive interpretation. Regard the metabolites

in the network as large water tanks, their concentrations as the water level in the tanks,
the reactions as pipes connecting the tanks and the reaction rates as the rate of flow
of water through the pipes. In this context, the enzymes may be regarded as valves
whose concentrations modulate the resistance to flow through them. Then gi (·) may
be interpreted as the rate at which water enters the ith tank through the incoming pipes
and hi (·) as the rate at which it leaves through the outgoing pipes. The monotonicity
of hi can be interpreted as ‘the more volume of water in the tank, the greater the
water pressure and thus the bigger the rate at which the water is pushed out of the
tank through the outgoing pipes’. Condition 3 simply ensures that the outgoing pipes
are ‘sufficiently large’ in the sense that the maximum rate at which water can escape
the tank is higher than the equilibrium rate at which water enters.

Condition 1, that the network is acyclic, implies that there is no chain of reac-
tions that convert metabolite i into metabolites 1, 2, . . . , i − 1. Thus, if metabolites
1, 2, . . . , i −1 are at their equilibrium concentrations, they will remain there forever
irrespective of what is happening to the concentrations of metabolites i, i +1, . . . , n.
So, if Condition 3 does not hold for a given metabolite i and metabolites 1, 2, . . . , i−1
are at their equilibrium concentrations, then metabolite i will simply accumulate and
its concentration will grow unbounded.

Box 7.4: Network fluxes

Consider Condition 3 applied to the network in Fig. 7.1a

v̂1⊂2(eN ) > I1, v̂2⊂3(eN ) + v̂2⊂4(e) > v1⊂2(s̄1, eN ),

Ê3 > v2⊂3(s̄2, eN ), Ê4 > v2⊂4(s̄2, e).

By definition, all the reaction rates are non-negative, so v̂2⊂3(eN )+v̂2⊂4(e) ⇐
v̂2⊂3(eN ). Also note that because s̄ is an equilibrium

I1 = v1⊂2(s̄1, eN ) = v2⊂3(s̄2, eN ) + v2⊂4(s̄2, e).

In Box 7.2 we assumed that
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v̂1⊂2(eN ) = v̂2⊂3(eN ) = Ê3 = Ê4 = kcat eN .

So, Condition 3 is satisfied for any postive enzyme concentration, that is e ∈
(0,+∩), if and only if kcat eN > I1.

It can be shown that the fulfilment of Condition 3 does not just imply that the
network has a unique equilibrium, it also implies that the equilibrium is stable.

Lemma 1 Assume that the metabolic network is such that Conditions 1 and 2 are
satisfied and Assumptions 1 and 2 hold. If the enzyme concentrations are fixed in time
at some value such that Condition 3 is satisfied, then (7.8) has a unique equilibrium
which is globally asymptotically stable.

The proof of the above lemma can be found in Appendix 2.

7.3.2 Time Scale Separation

Time scale separation is applicable to systems that can be written as

εż = f (x, z), z(0) = z0 (7.9a)

ẋ = g(x, z), x(0) = x0 (7.9b)

where the components of f :Rn × R
m ⊂ R

n , g:Rn × R
m ⊂ R

m are in the same
order of magnitude for all (x, z) ∈ R

n+m and 0 < ε ≺ 1 is a small positive real
number. The characterising feature of these systems is that the dynamics of some of
the state variables (z) are multiple orders of magnitude faster than those the other
state variables (x), i.e., ż = f (x, z)/ε 
 g(x, z) = ẋ . Suppose that during a small
interval of time within which the value of the slow variables (x) remain approximately
constant, the fast variables (z), which are evolving hundreds/thousands times faster,
reach some steady state or quasi-steady state. If we assume that the dynamics of the
variables z reach this steady-state very quickly (almost instantaneously at the time
scale of the slow variables x), then we can assume that, at the time scale of the slow
variables x , ż = 0 or, equivalently, that

f (x, z) = 0.

Suppose that the above has a unique root z = φ(x), i.e., f (x, φ(x)) = 0 for all x .
Then, at the time scale of the slow variables x , one can focus on studying the reduced
dynamical system

˙̄x = g(x̄, φ(x̄)), x̄(0) = x0 (7.10a)

z̄ = φ(x̄), (7.10b)
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instead of the original system (7.9).
Notice that in contrast with the fast variable z of the original system (7.9), which

starts at time 0 from a given z0, the fast variable z̄ of the reduced system (7.10) is not
free to start from z0 and there may be a large discrepancy between its initial value,
φ(x0), and z0. Thus, there must at least be a short period of time where the behaviour
of reduced system does not approximate well that of the complete system.

Before carrying out the above reduction, we need to address a number of out-
standing issues. For instance, does a quasi-steady state exist? Is it unique? If not,
which quasi-steady state should be used in the reduction? Do the fast variables of
the complete system always tend to their quasi-steady state?

Theorem 2 (in the appendix), known as Tikhonov’s Theorem, partly answers these
questions by providing sufficiency conditions under which the behaviour of the
original system (7.9) is well approximated by that of the reduced system (7.10).
More specifically, if its assumptions are satisfied, Tikhonov’s Theorem ensures
that after some period of time of order ε ln(1/ε), during which the initial discrep-
ancy between z and z̄ dies out, the norm difference between the trajectory of the
complete system (7.9) and that of the reduced system (7.10) remains of order ε

and no more.

7.3.3 Sufficiency Conditions for Time Scale Separation

To be able to state our results regarding time scale separation in genetic-metabolic
systems, we must first re-write the network model (7.1a, 7.1b) in the same form
as (7.9). Usually, this involves some, possibly complicated, change of variables.
However, in the case of genetic-metabolic networks this is not necessary; the ‘fast’
variables are the metabolite concentrations while the ‘slow’ variables are the enzyme
concentrations. Thus all that must be done is to scale the variables so that the new
metabolite dynamics, f (·), and the enzyme dynamics, g(·), are of the same order of
magnitude and all the normalising constants are grouped into a parameter ε multi-
plying ṡ. A systematic way to do this is to non-dimensionalise the network model
(7.1a, 7.1b), which consists of performing a set of variable substitutions such that
the new variables have no physical dimensions associated with them [11].

Box 7.5: Non-dimensionlisation

Consider substituting the variables of our network model (Eqs. (7.6) in
Box 7.2 and (7.7) in Box 7.3) with

z := s

KM
, x := e

ê
, τ := γ t, ê := k0 + k1

γ
. (7.11)
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Notice that the new variables (x, z) have no physical units associated with
them. After re-arranging we get

ε
dz1

dτ
= Ĩ − z1

1 + z1
(7.12a)

ε
dz2

dτ
= z1

1 + z1
− z2

1 + z2
− ê

eN

z2x

1 + z2
(7.12b)

ε
dz3

dτ
= z2

1 + z2
− z3

1 + z3
(7.12c)

ε
dz4

dτ
= ê

eN

z2x

1 + z2
− z4

1 + z4
(7.12d)

dx

dτ
= k0

k0 + k1
+ k1

k0 + k1
σ ≥(z3) − x (7.12e)

where Ĩ = I1
kcat eN

, σ ≥(z3) := σ(KM z3) and ε = KM γ
kcat eN

∅ 1.5 × 10−4.

We can now state our results regarding time scale separation in metabolic networks
under genetic regulation. The proofs for the following lemma and theorem may be
found in Appendix 2.

Lemma 2 Suppose that (7.1a, 7.1b) is such that Conditions 1, 2 and Assumptions
1–3 hold. Consider a non-dimensionalised version of (7.1a, 7.1b)

εṡ(t) = f (s(t), e(t)), s(0) = s0 (7.13a)

ė(t) = g(s(t), e(t)), e(0) = e0 (7.13b)

Then, the unique solution of (7.13),
[
s(t) e(t)

]T
, exists for all t ⇐ 0. In addition, let

A denote the subset of Rm
>0 whose elements are such that Condition 3 holds. There

exists a unique function φ: A ⊂ R
n such that f (φ(e), e) = 0 for all e ∈ A. In

addition, φ(·) is continuously differentiable. Consider the reduced system

˙̄e(t) = g(φ(ē(t)), ē(t)), ē(0) = e0. (7.14)

Suppose that there exists a compact set B ≤ A that is forward invariant with respect
to (7.14). Then, if e0 ∈ B, (7.14) has a unique solution ē(t) ∈ B for all t ⇐ 0.

Theorem 1 Suppose that the assumptions of Lemma 2 are satisfied and that e0 ∈ B.
Then, for any finite time T ⇐ 0

e(t) = ē(t) + O(ε) (7.15)

holds for all t ∈ [0, T ] and there exists a time t1 ⇐ 0, O(ε ln(1/ε)), such that
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s(t) = s̄(t) + O(ε), (7.16)

where s̄(t) := φ(ē(t)), holds for all t ∈ [t1, T ].

Box 7.6: Model Reduction

As discussed in Box 7.4, Condition 3 is satisfied for all values of e ∈ (0,+∩),
or equivalently x ∈ (0,+∩), if and only if Ĩ < 1. Suppose that this is so and
define A := (0,+∩). Then, for any x ∈ A, the non-dimensionalised model
(7.12) has the unique root

φ1(x) = Ĩ

1 − Ĩ
, φ2(x) = φ3(x) = Ĩ

ê
eN

x + 1 − Ĩ
, φ4(x) = Ĩ

eN
ê

1
x + 1 − Ĩ

.

Thus, the reduced model is given by

˙̄x = k0

k0 + k1
+ k1

k0 + k1
σ ≥(φ3(x̄)) − x̄, z̄ = φ(x̄). (7.17)

To satisfy the premise of Theorem 1, and thus justify the reduction, all that
remains to be done is to find a compact subset of A that is forward invariant
with respect to (7.17). Given that σ(x)≥ ∈ [0, 1) for all x ∈ [0,+∩) we have
that

k0

k0 + k1
− x̄ ⊆ ˙̄x ⊆ 1 − x̄ . (7.18)

From the above it is straightforward to see that [ k0
k0+k1

, 1] is a compact subset of

A that is forward invariant with respect to (7.17). Suppose that x0 ∈ [ k0
k0+k1

, 1],
or, equivalently, e0 ∈ [ k0

γ
, k0+k1

γ
]. Then, using the substitutions in (7.11), The-

orem 1 implies that the norm of the difference between the enzyme trajectory
of the our original model (7.6), (7.7) and that of the reduced model (7.17) will
be of order 0.037 nM and that, after a short period of time (of order 1.3 ms),
the norm of the difference between metabolite trajectory of both models will
be of order 0.69 nM, see Fig. 7.6.

The main benefit of carrying out this reduction, is that it can often be considerably
easier to extract analytical results from the lower dimensional reduced model than
from the higher dimensional original model. This is particularly obvious in our
example given that in Box 7.6 we reduced a 5-dimensional model to a 1-dimensional
model.
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(a) (b)

Fig. 7.6 Model reduction. The plots were generated using MATLAB and show the first few seconds
of a simulation of a single trajectory of both the original and reduced models, (7.17) and (7.12),
respectively. These were generated using I1 = 1

2 kcat eN (thus Ĩ1 = I
kcat eN

= 1/2 < 1). a The
trajectory of the metabolites of the complete model (solid lines) converges rapidly to that of the
reduced model (dashed lines). b The trajectory of the enzyme of the complete model remains a
fraction of a nano molar away from that of the reduced model

Box 7.7: Global stability of the reduced model

The dynamics of the reduced system (7.17), g(x̄, φ(x̄)), is a strictly decreasing
function of x̄ . This follows from the fact that φ3 is a decreasing function of its
argument while σ ≥ is an increasing function of its argument. So σ ≥(φ3(x)) is
a decreasing function of x . In addition, due to inequality (7.18), g(0, φ(0)) ⇐

k0
k0+k1

> 0 and g(1, φ(1)) ⊆ 0. This, together with the fact that g(φ(x), x)

is a continuous function of x implies that the reduced model has a unique
equilibrium x̄eq ∈ [0, 1]. Lastly, the reduced model is a 1 dimensional system,
hence, the fact that g(x̄, φ(x̄)) is strictly decreasing in x̄ , implies that the unique
equilibrium is globally asymptotically stable, see Fig. 7.7.

In conclusion, such a controller architecture ensures that the network has
a unique steady state to which the concentrations of the metabolites and of
the enzyme always tend to, regardless of initial their values. In addition, by
modifying the promoter parameters (in particular, the basal expression k0 and
promoter strength k1) one can move the steady state to a more desirable location
(e.g., maximise the steady state concentrations of metabolite 4 while keeping
that of metabolite 3 above a prescribed minimum value). It is also worth men-
tioning, that one can replicate the above analysis to design a controller for
branched metabolic networks with arbitrarily long main pathway and branch.
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(a) (b)

Fig. 7.7 Global stability. a Concentration of metabolite 3 versus time. (a Inset) After a
rapid transient, the initial metabolite concentrations become irrelevant; the metabolites quickly
reach their quasi-steady state that depends exclusively on the value of the enzyme concentrations.
b Concentration of the branch enzyme versus time. Four trajectories with different initial conditions
are plotted alongside the equilibrium (black, dashed). All trajectories converge to the equilibrium.
If the initial enzyme concentration is higher than its equilibrium value (as it is the case for the dark
blue and green trajectories), the branch drains resources away from the native pathway depleting
the concentration of metabolite 2 and, as a consequence, that of metabolite 3 too. The drop in
concentration of 3 is detected by the genetic controller and the expression of the branch enzyme is
repressed. This causes the enzyme concentration to return back to its equilibrium level, and that of
metabolites 2 and 3 to return back to theirs

7.4 Discussion

In this chapter, we exploited the discrepancy in the speeds at which metabolic reac-
tions and gene expression occur to justify the reduction of genetic-metabolic networks
via time scale separation. If applicable, time scale separation reduces a model with n
‘fast’ variables and m ‘slow’ variables to one with just the m ‘slow’ variables. Such a
model reduction can have strong benefits with regards to obtaining analytical results
on the model (e.g., see [2, 16]).

The framework we use to describe genetic-metabolic systems is flexible. The
assumptions made on the enzyme kinetics are minimal and are satisfied by a wide
collection of kinetics models employed in the literature [3]. Furthermore, we make
few assumptions regarding the ODEs describing the enzyme dynamics. Thus, we
allow for a wide range of models for enzyme expression, with the notable exception
of switch like models occasionally employed, e.g., [16]. However, our framework
has some important drawbacks that can limit the applicability of Theorem 1.

First, we deal only with enzymatic reactions, i.e., reactions catalysed by an
enzyme. Although many reactions involved in cellular metabolism are enzymatic
reactions [3], there are also some that are not. This is not too hard to overcome; if
non-enzymatic reactions are included in the network, then, following an approach
nearly identical to that discussed in this chapter, one can obtain similar results regard-
ing the validity of time scale separation.

Implicit in our framework is the assumption that each reaction has a single reactant.
One could potentially include reactions with multiple reactants by following the
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example set by Jackson, Horn and Feinberg and in their work on chemical reaction
network theory (CNRT) [5]. They introduce the idea of chemical complexes, separate
from chemical species (what we refer to as ‘metabolites’). For example, if one has
the reaction A + 2B ⊂ C , A, B and C are the chemical species involved in the
reaction and A + 2B and C are the chemical complexes.

Another subtle but important issue is that the enzyme kinetics our framework
is aimed for (e.g., Michaelis Menten, Hill type functions, etc.) are, themselves, the
outcome of a previous reduction involving a quasi-steady state approximation. Key
to these reductions is the assumption that the enzyme concentrations are constant.
Although this is not the case in the type of models we are examining, where the
enzyme concentrations are modelled as dynamic variables, there has recently been
some progress in showing that these reductions are also valid if the enzyme concen-
trations vary, see [10].

The applicability of our results to the class of genetic-metabolic systems we
consider has two main limitations. The first is that to carry out the reduction, one
must show that the premise of Theorem 1 is satisfied. The second is that our results
are only applicable to acyclic networks, i.e., networks that satisfy Condition 1. The
former is not as much of a hindrance as one expects it to be; the enzyme dynamics,
often, are such that the premise of Theorem 1 is not hard to satisfy. The later is
more serious, in particular because it rules out networks with reversible reactions.
However, one can build on our current result to construct a more general one for the
case of certain non-acyclic networks, e.g., ones that include reversible reactions.

To apply our result, one must first be able to find a compact subset of the set of
all enzyme concentrations such that Condition 3 is satisfied, that is forward invariant
with respect to the reduced model (7.14). Often, in models for enzyme dynamics,
the differential equation describing the evolution of an individual enzyme is coupled
to the metabolites and other enzymes via saturable functions [2, 14, 15]. Hence,
one can often extract certain differential inequalities regarding the time evolution
of individual enzymes that are decoupled from the other metabolites and enzymes.
These can then be used to find the desired forward invariant regions. Indeed, this is
exactly what we did in our example network, see Box 7.6.

The requirement that the network must be acyclic, i.e., that it satisfies Condition
(1), is a limitation. This is especially true because it rules out networks with reversible
reactions. However, if one is willing to impose some more conservative inequalities
than those in Condition 3, it is straightforward to extend the result to a significantly
more general class of networks.

Our proof for the acyclic case consists of showing that the metabolite dynam-
ics, ṡ = f (s, e), are such that the premise of Tikhonov’s Theorem (Theorem 2)
is satisfied. In particular, we show that for any fixed enzyme vector e ∈ R

m
>0 the

system ṡ = f (s, e) has globally asymptotically stable equilibrium. To do this, we
use the fact that the network is acyclic to decompose the system ṡ = f (s, e) into
a series of interconnected 1 dimensional subsystems, or blocks, such that the input
the ith subsystem comes only from the previous i − 1 systems. We then prove cer-
tain properties about these subsystems (essentially that they are converging input
converging state (CICS)) and use these to establish properties about the complete
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system required to satisfy the theorem’s premise. However, there is no reason why to
only use 1-dimensional subsystems other than that it is easier to show that they are
CICS. If one can show that larger blocks, e.g., a 2-dimensional block representing
a reversible reaction, are also CICS then the result would be almost immediate for
‘block-acyclic’ networks containing a mixture of 1 dimensional irreversible reaction
blocks and larger blocks. Indeed, by imposing stronger inequalities than those in
Condition 3, it is straightforward to show that much more general blocks are CICS,
e.g., chains of reversible reactions and loops of irreversible reactions. However, to
simplify this exposition we limit ourselves to the acyclic case. Strictly speaking, to
satisfy the premise of Tikhonov’s Theorem, one must also show that the eigenvalues
of the Jacobian of ṡ = f (s, e) all have negative real parts. This can be done easily
because the network being acyclic implies that the Jacobian is triangular. If one con-
siders a block acyclic network then the Jacobian will be block triangular. All that
one needs to show in this case is that the eigenvalues of the Jacobian of each of the
blocks have negative real parts.

An interesting alternative would be to attempt to use the existing CNRT machinery,
specifically the Deficiency Zero Theorem [5], to re-derive and potentially extend our
results, at least to networks with mass-action kinetics.

Acknowledgments We thank Aivar Sootla for very useful discussions about various topics
described in this chapter and Alexandros Houssein and Keshava Murthy for their valuable advice
regarding how to improve this script.

Appendix

In the appendices we assume that the reader has some familiarity with non-linear
systems theory. Specifically, we assume that the reader is comfortable with the var-
ious notions of stability of equilibria, Lyapunov functions and the existence and
uniqueness results. If not, we refer the reader to the excellent text [8].

We begin by presenting Tikhonov’s Theorem over finite time intervals and some
related results. Next, we discuss the notion of converging input converging state
systems. Lastly, we employ the previous two to prove Lemmas 1 and 2 and Theorem 1.

Throughout the appendices we use ||·|| to denote any vector norm.

A: Tikhonov’s Theorem

As discussed in the main text, a method for dimensionality reduction of non-linear
systems is time scale separation. This is applicable to systems whose state variables
exhibit large differences in the ‘speed’ of their time responses. Core to time scale
separation is the following result first proved by Tikhonov 60 years ago [21, 22].
The version of it presented here is not the original version by Tikhonov, but instead
the version published by Vasil’eva in 1963, which we find easier to work with.
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Theorem 2 [9, 23] Let f :Rn × R
m× ⊂ R

n and g:Rn × R
m ⊂ R

m both be
smooth functions. Consider the system

εż(t) = f (x(t), z(t)), z(0) = z0, z ∈ R
n, (7.19a)

ẋ(t) = g(x(t), z(t)), x(0) = x0, x ∈ R
m, (7.19b)

where ε > 0. Assume for all t ∈ [0, T ] where T ∈ R⇐0 that (7.19) has the unique
solutions x(t), z(t). Consider the following conditions:

1. There exists a unique function φ(·) such that g(x̄(t), φ(x̄(t)) = 0 for all t ∈
[0, T ] where x̄(t) denotes the unique solution over [0, T ] of the reduced system
˙̄x = g(x̄, φ(x̄)), x(0) = x0.

2. Consider the ‘boundary layer’ system

dẑ

dτ
(τ ) = f (x0, ẑ(τ ) + φ(x0)). (7.20)

Assume that the equilibrium ẑ = 0 of (7.20) is globally asymptotically stable,
uniformly in x0.

3. The eigenvalues of
[

∂ f
∂z (·)

]
evaluated along x̄(t), z̄(t), have real parts smaller

than a fixed negative number, i.e.,

Re

(

λi

([
∂ f

∂z

]

(x̄(t), z̄(t))

))

⊆ −c, c ∈ R>0, →i, →t ⇐ 0.

where Re(a) denotes the real part of a ∈ C and λi (A) denotes the ith eigenvalue
of A ∈ R

n×n.

If the three conditions above are satisfied, then relations (7.21) and (7.22) hold
for all t ∈ [0, T ] and there exists a time t1 ⇐ 0, O(ε ln(1/ε)), such that (7.23) holds
for all t ∈ [t1, T ].

x(t) = x̄(t) + O(ε). (7.21)

z(t) = z̄(t) + ẑ(t) + O(ε). (7.22)

z(t) = z̄(t) + O(ε). (7.23)

The Theorem’s first condition ensures that there exists a well defined reduced
model. The second condition verifies that, initially, the trajectory of the complete
system rapidly converges to the one of the reduced system. The third condition
guarantees that after the initial transient dies out the trajectory of the complete system
remains close to the that of the reduced system. It is worth mentioning, that the
above is Tikhonov’s theorem restricted to the special case when the systems are time
invariant and (7.19a) has a unique root. For an excellent treatment of Tikhonov’s
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theorem (including its most general form) and its applications in control theory see
[9].

In verifying the theorem’s last two conditions the following two lemmas will be
useful.

Lemma 3 [22] Consider the boundary system (7.20). Assume that f and the root
φ are continuous functions and that x0 ∈ P where P is a compact subset of Rm.
Suppose that for all x0 ∈ P , the origin of (7.20) is globally asymptotically stable.
Then the origin of (7.20) is globally asymptotically stable, uniformly in x0.

Lemma 4 Consider f (·) in (7.19). Let A be a compact subset of Rn+m and suppose
that

Re

(

λi

([
∂ f

∂z

]

(x, z)

))

< 0, →i, → [
x, z

]T ∈ A.

Then, there exists a c ∈ R>0 such that

Re

(

λi

([
∂ f

∂z

]

(x, z)

))

⊆ −c, →
[

x
z

]T

∈ A.

Proof First, we show that

λ≥(x, z) := max
i

(

λi

([
∂ f

∂z

]

(x, z)

))

, (7.24)

that is, the maximum real part of the eigenvalues of the Jacobian, is a continuous
function of x and z.

The eigenvalues are the roots of the characteristic polynomial of the Jacobian

(i.e., the solutions to det
(
λI −

[
∂ f
∂z

]
(x, z)

)
= 0 where λ ∈ C). The roots of a

polynomial depend continuously on the coefficients of a polynomial. The coefficients
of the characteristic polynomial of the Jacobian above depend continuously of the
entries of the Jacobian. The entries of the Jacobian are continuous functions of x and
z. The composition of two continuous functions is also a continuous function. Thus,
the eigenvalues of the Jacobian are continuous functions of x and z. Thus, (7.24) is
a continuous function of x and z.

The supremum of a continuous function over a compact set is achieved by an ele-
ment in the set. This fact and the lemma’s premise imply that sup[x,z]T ∈A λ≥(x, z) < 0
which completes the proof. �

B: Converging Input Converging State Systems

In Appendix C, we need to prove that the unique equilibrium of the network with
the enzyme concentrations fixed in time (system (7.8)) is globally asymptotically
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stable (GAS). To accomplish this we exploit the acyclycity of the network to break
system (7.8) down into n one dimensional subsystems and study how they interact.
To this end, we introduce the notions of converging input bounded state (CIBS) and
converging input converging state (CICS) systems. These were original presented in
[20] and relate to other more well known concepts such as input to state stable (ISS)
systems.

Definition 1 We say that u(·) is an input if it is a continuous function that maps
from R⇐0 to R

m .

Now, consider the non-autonomous system

ẋ(t) = f (x(t), u(t)), (7.25)

where f (·) is continuous, x ∈ R
n and u(·) is an input. In addition, consider the same

system with ‘zero input’
ẋ(t) = f (x(t), 0). (7.26)

Definition 2 System (7.25) is said to be converging input bounded state (CIBS) if
for any input u(·) such that u(t) ⊂ 0 as t ⊂ +∩ and for any initial conditions
x0 ∈ R

n , the solution exists for all t ⇐ 0 and is bounded.

Definition 3 System (7.25) is said to be converging input converging state (CICS)
if for any input u(·) such that u(t) ⊂ 0 as t ⊂ +∩ and for any initial conditions
x0 ∈ R

n , the solution exists for all t ⇐ 0 and converges to 0 as time tends to infinity.

Lemma 5 Assume that for any input, x(t) exists for all t ⇐ 0. Let V :Rn ⊂ R

be a continuously differentiable, bounded from below and radially unbounded (i.e.,
||x || ⊂ +∩ ∃ V (x) ⊂ +∩) function. If there exists constants α > 0 and β > 0
such that

V̇ (x) = ∂V

∂x
f (x, u) ⊆ 0 → (x, u) ∈ R

n+m : ||x || ⇐ β, ||u|| ⊆ α,

then system (7.25) is CIBS.

Proof We prove by contradiction. Assume that the premise of the lemma is satisfied
and that there exists a u(t) such that ||u(t)|| ⊂ 0 as t ⊂ +∩ but x(t) is unbounded.
By our premise, x(t) is defined for all t ⇐ 0. Thus, there does not exist a finite escape
time, i.e., there does not exists a time T ⇐ 0 such that ||x(t)|| ⊂ +∩ as t ⊂ T .
Thus, the fact that x(t) is unbounded implies that ||x(t)|| ⊂ +∩ as t ⊂ +∩.

Now, ||u(t)|| ⊂ 0 as t ⊂ +∩ implies that there exists a t1 ⇐ 0 such that
→t ⇐ t1, ||u(t)|| ⊆ α. In addition, ||x(t)|| ⊂ +∩ as t ⊂ +∩ implies that there
exists a t2 ⇐ 0 such that →t ⇐ t2, ||x(t)|| ⇐ β. Let t3 := max{t1, t2}. Thus, →t ⇐ t3,
V̇ (x(t)) ⊆ 0 which implies that →t ⇐ t3, V (x(t)) ⊆ V (x(t3)). This implies that x(t)
does not tend to +∩ as t tends to +∩. We have reached a contradiction. �
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Theorem 3 [20] If 0 is a GAS equilibrium of (7.26) then CIBS and CICS are equiv-
alent for (7.25).

Theorem 4 [20] Consider the cascade formed by system (7.25) and the auto-
nomous system ẏ = g(y),

ẋ = f (x, y), (7.27a)

ẏ = g(y), (7.27b)

where g is continuous, y ∈ R
m. Assume the origin of (7.27b) is GAS and that (7.25)

is CICS. Then the origin of (7.27) is GAS.

C: Proof of the Main Results

We begin by demonstrating a series of results regarding the metabolic model when
enzymes are kept at a fixed value. In other words, up to and including the proof
of Lemma 1 we neglect the enzyme dynamics (7.1b) and assume e(t) ∈ e, where
e ∈ R

m
>0 is a constant such that Conditions 1–3 hold. In Sect. 7.3.1, we argued that if

Conditions 1–3 are satisfied, the metabolic network (7.8) has a unique equilibrium
s̄.

We now establish global asymptotic stability of the equilibrium. To do this, instead
of studying the behaviour of the whole network in one go, we examine the behaviour
of individual metabolites, or individual subsystems first, and then using these we
establish the stability property for the whole network. We call

ẋ(t) = f1 (x(t), e) , x(0) = x0 ∈ R⇐0

the 1st subsystem where f1 is defined as in (7.8). Similarly, we call

ẋ(t) = fi (w(t), x(t), e) , x(0) = x0 ∈ R⇐0

the ith subsystem1 where w:R⇐0 ⊂ R
i−1
⇐0 plays the role of an input and fi is defined

as in (7.8) for i = 2, . . . , n. Note that, given that the domain of fi , with i = 2, . . . , n,
is R

i−1
⇐0 × R⇐0 × R⇐0 (the reaction rates, v j⊂i are only defined for non-negative

arguments), it is important that the range of w is R
i−1
⇐0 instead of R

i−1. For this
reason, if we want to employ the CICS machinery introduced in Appendix 2, we first
must alter slightly our definition of an input u(·) (Definition 1, Appendix B).

Definition 4 We say that u(·) is an input to the system ẋ = f (x, u), f : A× B ⊂ R
n

where A × B ◦ R
n × R

m , if it is a continuous function that maps from R⇐0 to B.

1 Here we are abusing slightly our notation by writing the first i − 1 scalar arguments of fi as a
single i − 1 dimensional vector argument.
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It can be shown, in a similar manner as in Appendix B and [20], that Lemma 5 and
Theorems 3 and 4 hold if one replaces the original definition of an input (Definition
1) with the one above (Definition 4) and x0 ∈ R

n with x0 ∈ A.
Returning to our original problem, it is convenient to introduce the change of

coordinates z := x − s̄ and u(·) := w(·) − s̄i where s̄i := [
s̄1 · · · s̄i−1

]T for
i = 2, . . . , n. Then, we can re-write the 1st subsystem as

ż(t) = f1 (z(t) + s̄1, e) , z(0) = z0 ∈ [−s̄1,+∩).

and the ith subsystem

ż(t) = fi

(
u(t) + s̄i , z(t) + s̄i , e

)
, z(0) = z0 ∈ [−s̄i ,+∩). (7.28)

for i = 2, . . . , n. In addition, from now onwards we will say an input u(·) meaning
an input to the ith subsystem (7.28) in the sense of Definition 4.

Proposition 1 For any input given u(·), then the i th subsystem has a unique, con-
tinuous solution z(t) ∈ [−si ,+∩) for all t ⇐ 0.

Proof Each component of f (·) is a linear combination of globally Lipschitz con-
tinuous functions (Assumptions 1 and 2), hence f (·) is globally Lipschitz contin-
uous as well. This and the definition of u(·) (which implies that it is a continuous
function of t), ensure that the i th subsystem, ż = fi

(
u(t) + s̄i , z(t) + s̄i , e

)
, satisfies

the usual conditions for global existence of solutions of time varying systems. Hence
the i th subsystem has a unique, continuous solution z(t) that exists for all t ⇐ 0.
Then, due to the positive definiteness of the gi s and hi s

z = −s̄1 ∃ ż = f1 (0, e) = I1 − h1(0, e) = I1 ⇐ 0

which proves that z(t) ∈ [−s̄1,+∩) for all t ⇐ 0 were z(t) is the solution of the 1st

subsystem, and

z = −s̄i ∃ ż = fi

(
u(t) + s̄i , 0, e

)

= gi

(
u(t) + s̄i , e

)
− hi (0, e) = gi

(
u(t) + s̄i , e

)
⇐ 0

which proves that z(t) ∈ [−s̄i ,+∩) for all t ⇐ 0 were z(t) is the solution of the i th
subsystem, i = 2, . . . , n. �

Proposition 1 is important for two reasons. First, it allows us to regard the state
space of i th subsystem, (7.28), to be [−s̄i ,+∩) instead of R. This makes sense,
we are only interested in non-negative concentrations of the metabolites. Second, it
shows that the vector containing the state of the first i − 1 subsystems is input to the
i th subsystem, in the sense of Definition 4.

Proposition 2 The ith subsystem is CIBS, for any i = 2, . . . , n.
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Proof Let V : R⇐0 ⊂ R⇐0 be defined as

V (z) := 1

2
z2 ∃ V̇ (z) = ∂V

∂z
ż = zż = z

(
gi

(
u + s̄i , e

)
− hi (z + s̄i , e)

)
.

By Condition 3, ĥi (e) > gi (s̄i , e) thus ĥi (e) ⇐ gi (s̄i , e) + δ1, for some δ1 >

0. In addition, by continuity and monotonicity of gi (monotonicity in each of its
arguments), there exists a sufficiently small α > 0 such that

gi

(
α11 + s̄i , e

)
− gi

(
s̄i , e

)
⊆ δ1

2
,

where 11 := [
1 . . . 1

]T . In addition,

||u||∩ ⊆ α ∃ gi

(
u + s̄i , e

)
⊆ gi

(
α11 + s̄i , e

)
⊆ gi

(
s̄i , e

)
+ δ1

2
⊆ ĥi (e) − δ1

2
.

Hence, we have

||u||∩ ⊆ α ∃ gi

(
u + s̄i , e

)
− hi (z + s̄i , e) ⊆ ĥi (e) − δ1

2
− hi (z + s̄i , e).

Because hi (z + s̄i , e) ⊂ ĥi (e) from below as z ⊂ +∩ we can always find a β1
such that z ⇐ β1 ∃ ĥi (e) − hi (z + s̄i , e) ⊆ δ2 for any given δ2 > 0. In addition,
because z ∈ [−s̄i ,+∩), ||z|| > s̄i implies ||z|| = z. Hence, choosing δ2 ⊆ δ1

2 and
defining β := max{β1, s̄i + ε}, where ε > 0, we have

u, z: ||u||∩ ⊆ α, ||z|| ⇐ β ∃ V̇ (z) ⊆ z(ĥi (e) − h(ŝi , e) − δ1

2
) ⊆ z(δ2 − δ1

2
) ⊆ 0

Then, applying Lemma 5 completes the proof. �

Proposition 3 The origin of i th subsystem with zero input (i.e., u(t) ∈ 0) is a
globally asymptotically stable equilibrium, for any i = 1, . . . , n.

Proof We use the Lyapunov function

V (z) := 1

2
z2 ∃ V̇ (z) = ∂V

∂z
ż = z fi (s̄

i , z(t) + s̄i , e)

= z(gi (s̄1, . . . , s̄i−1, e) − hi (z + s̄i , e)).

By the definition of s̄, we have that gi (s̄1, . . . , s̄i−1, e) = hi (s̄i , e). So

V̇ (z) = z(hi (s̄i , e) − hi (z + s̄i , e)).
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Due to the strict monotonicity of hi , z and (hi (s̄i , e) − hi (z + s̄i , e)) have opposite
signs and are both equal to zero if and only if z = 0. Hence, applying Lyapunov’s
Direct Method completes the proof. �

Proposition 4 The ith subsystem is CICS, for any i = 1, . . . , n.

Proof This follows directly from Propositions 2 and 3 and Theorem 3. �

With these preliminary results in mind, we are now ready to prove Lemma 1.

Proof (Lemma 1) As previously pointed out, the solution to the first subsystem is
an input to the second subsystem, in the sense of Definition 4. Consider the cascade
obtained by setting the input of the 2nd subsystem to the state of the 1st subsystem,

ż1(t) = f1 (z1(t) + s̄1, e) ,

ż2(t) = f2 (z1(t) + s̄1, z2(t) + s̄2, e) .

Propositions 3 (i.e., the origin of the 1st subsystem is a GAS equilibrium) and 4
(i.e., the 2nd subsystem is CICS) and Theorem 4 (i.e., that the origin of the inter-
connection of an autonomous system which has a GAS equilibrium at the origin and
a CICS system has a GAS equilibrium) imply that the origin of the above cascade
is GAS. Then, by induction, we see that the origin of the system obtained by iter-
atively cascading the i th subsystem with the cascade formed by the previous i − 1
subsystems is a GAS equilibrium. In other words, the origin of

ż = f (z + s̄, e)

is a GAS equilibrium, which completes the proof. �

Proposition 5 Let A denote the subset of R
m
>0 whose elements are such that Con-

dition 3 holds. There exists a unique function φ: A ⊂ R
n⇐0 such that f (φ(e), e) = 0

for all e ∈ A. Furthermore, this function is continuously differentiable and globally
Lipschitz continuous.

Proof Existence and uniqueness of φ follows from our discussion in Sect. 7.3.1 of
the main text regarding the existence and uniqueness of an equilibrium if the enzymes
are constant. Each component of f (·) is a linear combination of continuously differ-
entiable and globally Lipschitz continuous functions (Assumptions 1 and 2). Thus,
f (·) is continuously differentiable and globally Lipschitz continuous or, equivalently
its partial derivatives exists everywhere, are continuous and bounded. The fact that
f (φ(e), e) = 0 for all e ∈ A implies that the total derivative of f (·) along

[
φ(e) e

]T

is also equal to zero, i.e., f ∇(φ(e), e) = 0 for all e ∈ A. The total derivative of a
function exists and is continuous if and only if the partial derivatives of the function
exist and are continuous. Hence,

∂ f

∂φ
(φ(e), e)

∂φ

∂e
(e) + ∂ f

∂e
(φ(e), e) = 0
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which implies that

∂φ

∂e
(e) = −

(
∂ f

∂φ
(φ(e), e)

)−1
∂ f

∂e
(φ(e), e).

By Condition 1, v j⊂i ∈ 0 if i < j . Hence, i < j ∃ ∂ fi
∂φ j

(φ(e), e) =
∂v j⊂i
∂φ j

(φ j (e), e) = 0. Thus, ∂ f
∂φ

(φ(e), e) is lower triangular. Furthermore, by Condi-
tion 2, hi is strictly increasing, hence

∂ fi

∂φi
(φ(e), e) = −∂hi

∂φi
(φi (e), e) < 0.

Thus,
(

∂ f
∂φ

(φ(e), e)
)−1

exists for all e ∈ A. Hence, ∂φ
∂e (e) exists for all e ∈ A.

Furthermore, ∂φ
∂e (e) is continuous and bounded which shows that φ is continuously

differentiable and globally Lipschitz continuous. �

We are now in a position to prove Lemma 2 and Theorem 1.

Proof (Lemma 2) The existence and uniqueness of s(t) and e(t) follow from
our assumption that f (·) and g(·) are smooth and globally Lipschitz continuous
(Assumptions 1–3). The existence and uniqueness of φ(·) is proven in Proposition 5.
The domain of φ(·) is A. Thus, (7.14) is well-defined if and only if ē(t) remains in A.
This is ensured by the premise, B ≤ A is forward invariant with respect to (7.14) and
e0 ∈ B. In addition, g(·) and φ(·) are globally Lipschitz continuous (Assumption 3,
Proposition 5, respectively), which implies that (7.14) satisfies the usual conditions
for global existence and uniqueness solutions. �

Proof (Theorem 1) The proof is an application of Tikhonov’s Theorem on finite
time intervals (Theorem 2). The existence and uniqueness of φ(·) satisfies the first
condition in the premise of Theorem 2 which requires that the metabolite dynamics,
f (s, e), has a unique root.

The second condition of Tikhonov’s Theorem is that z = φ(e0) is a globally
asymptotically stable equilibrium, uniformly in e0, of the boundary layer system
ż = f (z, e0). Lemma 1 shows that for any given e0 ∈ B ≤ A, φ(e0) is a glob-
ally asymptotically stable equilibrium of ż = f (z, e0). The fact that B is compact
combined with the previous statement form the premise of Lemma 3. Then, Lemma
3 establishes the desired result, i.e., that the equilibrium z = φ(e0) is a globally
asymptotically stable, uniformly in e0.

Proposition 5 shows that φ(·) is continuous. Because ē(t) ∈ B for all time, and B
is a compact set, s̄(t) = φ(ē(t)) must also be confined to some compact set. In the
proof of Proposition 5 we established that for any given e ∈ B ≤ A, the eigenvalues
of the Jacobian of the boundary layer system evaluated at [φ(e), e]T , ∂ f

∂φ
(φ(e), e),

have negative real parts. The previous two statements form the premise of Lemma
4 which shows that the eigenvalues of the Jacobian of the boundary layer system,
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evaluated along
[
φ(ē(t)) ē(t)

]T have real parts smaller than a certain negative real
number, i.e., that the third condition of Tikhonov’s theorem is satisfied. �
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Chapter 8
Networks, Metrics, and Systems Biology

Soumen Roy

Abstract The theory of complex networks plays an important role in Systems
Biology. There are extensive discussions in literature about biological networks bear-
ing the knowledge of function and possessing the key to “emergent properties” of
the system. One would naturally assume that many network metrics need to be thor-
oughly studied to extract maximum information about the system. Interestingly how-
ever, most network papers discuss at most two three metrics at a time. What justifies
the choice of a few metrics, in place of a comprehensive suite of network metrics? Is
there any scientific basis of the choice of metrics or are they invariably handpicked?
More importantly, do these few handpicked metrics carry the maximum information
extractable about the biological system? This chapter discusses how any why the
study of multiple metrics is necessary in biological networks and systems biology.

Keywords Complex networks · Steady state · Flux balance analysis (FBA) · Min-
imization of metabolic adjustment (MOMA) · Elementary mode analysis (EMA) ·
Topology · Topological analysis

8.1 Introduction

Modern high-throughput era has launched a flood of biological data. Apart from the
obvious technical challenges of how to store and manage such copious amounts of
data is, of course, the no less important challenge on how to interpret meaningful
patterns in this flood of data. The manner in which biological interactions need to be
mapped necessitates a separate language for its study. The theory of Complex Net-
works [1, 2], provides a good framework for scripting such interactions in modern
biology. Without such a framework, we would not be able to ask questions about
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the “emergent properties” and “systemic behavior” of complex biological systems
under study.

It was not until the recent developments of complex networks that we had a
mechanism for distinguishing or classifying different networks. Prior to this math-
ematicians, electrical engineers and computer scientists had made a very thorough
study of random graphs. In particular, the models proposed by Erdos and Renyi
had been the subject of extensive research. Modern developments in network theory
[1, 2] showed that diverse networks drawn over all forms of life shared some com-
mon properties which could be quantified by the means of various network metrics.
These are discussed in Sect. 8.2.

It was not only in the identification and classification of topological properties that
these new findings were important. Much more useful insights were to follow. Among
these, a very striking observation was that network topology possesses the potential of
being a major determinant of biological function (or dysfunction). Relations between
topological properties of network nodes (genes, proteins) and functional essentiality
were uncovered in interaction networks [3, 4].

Long before the advent of the complex networks era, extensive modeling had
been undertaken using steady-state flux balance approaches in metabolic networks
[5] via methods like Flux Balance Analysis (FBA) [6] Minimization of Metabolic
Adjustment (MOMA) [7] and Elementary Mode Analysis (EMA) [8].

However, even then, topological analysis has often yielded novel and valuable
insight in metabolic networks. New parameters like synthetic accessibility have
demonstrated sufficient promise in predicting the viability of knockout strains with
accuracy comparable to approaches using biochemical parameters (like FBA etc.)
on large, unbiased mutant data sets [9]. This is notable since determining synthetic
accessibility does not require the knowledge of stoichiometry or maximal uptake
rates for metabolic and transport reactions. On the other hand such knowledge is
essential in FBA, MOMA and EMA. Interestingly, synthetic accessibility can be
rapidly computed for a given network and has no adjustable parameters.

There are extensive discussions in literature about biological networks bearing the
knowledge of biological function and possessing the key to “emergent properties”
of the system. One would naturally assume thorough study of many network metrics
would convey maximum information about the system. Interestingly however, most
network papers discuss at most two three metrics at a time. What justifies the choice
of a few metrics, in place of a comprehensive suite of network metrics? Is there
any scientific basis of the choice of the metrics or are they invariably handpicked?
More importantly, do these few handpicked metrics carry the maximum information
extractable about the biological system? In the next few sections, we will attempt to
answer these questions.
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8.2 Network Metrics

In order to familiarize the readers who is uninitiated with the various network metrics,
we provide at first very basic introduction in this section. In the next section, we then
proceed to investigate how and why multiple network metrics can give us useful
information.

The most common topological metric in networks is degree, which is henceforth
denoted by k. It is the number of connections a node has to other nodes in the net-
work and perhaps also with itself. The distribution of degree is perhaps the most
well-studied item for almost all network systems. It is well-known that Erdos-Renyi
Networks have a Poisson Degree Distribution. However, most real world networks,
including biological networks have a heavy-tailed degree distributions. The most
prominent feature of all heavy-tailed degree distributions is the presence of a few
hubs or high degree nodes in a network with the simultaneous presence of leaves or
low degree nodes.

Of special interest is a class of degree distributions which obey a power law

P(k) = k−γ (8.1)

It is obvious from the above equation that if k is replaced by ak, the form of the
distribution remains invariant. Hence these distributions are also known as “scale-
free” distributions. Power-laws have a special importance across the sciences, eg. in
phase transitions, turbulence, Gutenberg-Richter law, Pareto Law, Zipf law etc. It is
perhaps as a result of this strong presence of power laws across the sciences that many
a times in recent literature one would almost invariably find papers classifying heavy
tailed degree-distributions as “scale-free networks”. This is vexing since many degree
distributions could be fit equally well or perhaps even better by other distributions.
More so, because a very reliable statistical machinery for proper identification of
scale-free networks has existed for quite some time [10].

The rather excessive mention of “hubs” in literature probably arises from the
apparent conclusion that removal of such high-degree nodes could cause massive
damage to the network. However, it has been clearly demonstrated by means of
the “S-metric”, that even in networks with scale-free degree distributions, extremely
important networks like the internet could well be structurally robust and functionally
stable [11]. Therefore, plucking out the hubs from a network might not necessarily
lead to a catastrophe as one might think at the first instance. On the contrary, the
effect could be merely local.

That the hubs are not always the most important nodes in a network has been
known for a long time. Social scientists have clearly demonstrated this via the analysis
of graphs like the “Krackhardt kite graph” shown in Fig. 8.1 [12]. One of the
most important properties of a network node which reflects this fact is known as
“betweenness centrality”, [13]. It measures the fraction of all shortest paths which
passes through a node. The role of betweenness is depicted in Fig. 8.1. At the first
glance, it may appear that targeting a ‘hub’ (like 3) would cause intense damage
to the network. However, the fact is that targeting a high-betweenness node like 7
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Fig. 8.1 The role of
betweenness: it has been
known for long that targeting
high-betweenness node like 7
over hubs (like 3) could cause
much more damage to this
network

which obviously does not possess a relatively high degree would cause much more
damage to this network.

In the world air transportation network, one would probably anticipate that most
shortest flights between any two airports are likely to pass through cities like London
and New York. However, actual analyses showed that 60 % of the 25 most connected
airports of the world did not lie on many of these shortest paths. Instead airports like
Anchorage and Port Moresby [14] lay on many of these shortest paths. The analysis
on weighted networks might however change the results somewhat but the general
importance of these results is not wasted. It is also known that for the US airline net-
work, maximum damage would be done if the airports are targeted by betweenness
rather than hubness [15]. Many papers using biological networks have found impor-
tant results using betweenness [16–20]. Very recently the issue of controllability of
complex biological networks has become very important [21]. The role of centrality
metrics over degree is increasingly being discussed in this regard [22].

While any two nodes in a network might be connected by many paths, of special
interest always, is the length of the shortest path between a pair of nodes. This is
known as the geodesic distance between two nodes. There could of course more than
one shortest path, each equal to the length in the network, connecting a pair of nodes.
The diameter of the graph is another common metric which measures the longest
such shortest path in the network.

Assortative mixing [23], quantifies the likeness of connections, i.e. whether high-
degree nodes are predominantly connected to other high-degree nodes in a network
or to low-degree nodes in a network. The degree assortativity, is defined as the
Pearson correlation coefficient between the degrees of all pairs of connected vertices
in the network. It should however be mentioned that being a correlation coefficient,
assortativity is likely to have its limitations when “outliers” are present in the network.
In these situations, Gini coefficient [24, 25]
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G(k) =
∑N

i=1
∑N

j=1 |ki − k j |
N 2→k∞ , (8.2)

can be expected to capture the true picture, much better [15].
Assortativity has been studied in the context of various biological networks

[26, 27] While it was earlier thought that all biological networks are disassortative, it
has been subsequently found that protein contact networks could be assortative [26].

Another important metric in networks is clustering coefficient,

C = 3 × number of triangles in the network

number of connected triples o f vertices
(8.3)

where a connected triple means a single vertex with edges running to an unordered
pair of other vertices.

Another definition of the clustering coefficient, which has been given by Watts
and Strogatz, who proposed a definition for the clustering coefficient of every node.

Ci = number of triangles connected to vertex i

number of triples centered on vertex i
(8.4)

For vertices with degree 0 or 1, the numerator and denominator are both zero, and
we put Ci = 0. Then the clustering coefficient for the whole network is the average
of the individual clustering coefficients of all nodes.

C = 1

n

∑

i

Ci (8.5)

The Clustering coefficient of real world networks is almost invariably a few order of
magnitudes higher than a random network formed of the same nodes and edges.

Rich club coefficient [28, 29], φ(k) = 2Ek/Nk(Nk − 1) is the ratio, for every
degree k, of the number of actual to the number of potential edges for nodes with
degree greater than k; where Nk is the number of nodes with degree larger than k, and
Ek is the number of edges among those nodes. The human brain which is a complex
network of interlinked regions displays a rich-club organization [30].

Also important network formulations like spectral graph theory are also known
to shed valuable insights in graphs and in biology. For example, spectral graphs have
been studied extensively in biological networks [31, 32].

The list of metrics in Table 8.1 hopefully provides a conceptual introduction to
uninitiated readers who are not familiar with the nuances of complex networks. It
is not meant to be an exhaustive list. It must be mentioned that there are a number
of other network metrics like closeness centrality [12], eigenvector centrality [33],
subgraph centrality [34], bipartivity [35], information centrality [12] etc.
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Table 8.1 Easy summary of common network metrics and concepts associated with each

Metric Notion

Degree / connectivity Number of connections a node has to other nodes in the network and
perhaps also to itself

Geodesic distance Length of the shortest path between a pair of nodes
Betweenness centrality Fraction of all shortest paths which pass through a node; captures

flow in information networks
Closeness centrality Inverse of sum of distance of a node to all other nodes; denotes

“closeness” to other nodes
Clustering coefficient High for nodes in real-world networks; ratio of number of triangles

connected to vertex to number of triples centered on vertex
Degree assortativity Quantifies likeness of connections via pearson correlation coeffi-

cient, e.g. whether high-degree nodes or hubs are predominantly
connected to other high-degree nodes or hubs in the network or to
low-degree nodes

Degree gini coefficient Similar to assortativity. Defined as G(k) =
∑N

i=1
∑N

j=1 |ki −k j |
N 2→k∞ ; useful

if there are outliers in degree distribution
k-core Subgraph constructed by iteratively pruning all vertices of the net-

work with degree less than k
Rich-club coefficient Ratio, for every degree k, of the number of actual to the number of

potential edges for nodes with degree greater than k, where Nk is the
number of nodes with degree larger than k, and Ek be the number
of edges among those nodes. φ(k) = 2Ek/Nk(Nk − 1)

8.3 Multiple Network Metrics

Now that we have a notional foundation about network metrics, it is time to discuss the
relative importance of these network metrics. Degree, hubs and scale-free networks
are already over represented in network literature [36]. However, while degree is
certainly important in some circumstances, they are not always the only important
metric. For example Fig. 8.1 clearly establishes that betweenness is more important
than degree, in a number of scenarios. Again, assortativity is important in some cir-
cumstances [26, 27] and other metrics might play a significant role in other situations.
Thus a question which naturally arises as to how we can identify which metrics are
important in a given scenario and which ones are redundant.

In recent literature, this issue has been adequately addressed by the introduction of
an appropriate quantitative framework [37, 38]. These papers demonstrated how and
why multiple metrics and higher moments of some of these should be simultaneously
studied in complex networks; they consider a significant number of network metrics,
including higher moments of metrics, wherever appropriate. The first few moments
of many distributions often (albeit not always), quantify a distribution sufficiently.
Therefore, distributions of metrics like geodesic, betweenness, degree or clustering
should be studied in depth whenever possible because they might carry important
information about the system. Data mining techniques such as statistical dimension
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reduction techniques like Principal Component Analysis (PCA) [39] and clustering
can then be used for the identification of informative and redundant network metrics.

These papers clearly demonstrate that it is not just the degree or betweenness
or some other metric which is important in every scenario. Most of the meaningful
information is actually carried by a linear combination of some metrics and/or the
higher moments of a few metrics [37, 38].

The power of these methods is demonstrated by the fact that they can also be
used for comparing various network growth models among themselves and to detect
how individual models compare with respect to real word data [37]. At this point,
one might question if the consideration of the first few moments of a distribution is
more an academic than a practical exercise. We will hopefully have an answer to this
question by the end of this section.

To demonstrate this we proposed a new model of network growth which was
called the “graphlet model of network growth”. The motivation for proposing this
model came from the observations that there are several instances in nature and sci-
ence, where network growth via “graphlets” is observed. For example, in biology,
gene duplication can add subnetworks to the network in the evolution of biological
networks [40]. Again, in developmental transcriptional gene regulation, a mutation
in a master regulator can add or eliminate whole pathways [41]. Computer software
networks (composed of interacting functions or classes) often grow by the simulta-
neous addition of small groups of related elements. For example, (1) good design
principles call for classes to be added in small groups called design, and, (2) to allo-
cate, use, and free a resource (such as a file) functions are usually added together
patterns in object-oriented languages [42]. However, most network growth models do
not emphasize on connected node arrivals but on growth models like the Barabasi-
Albert model [43]; which have one or more than one nodes arriving at every instant
of time and attaching to the network by some defined mechanism.

It is apparent that this graphlet model will always produce trees and will not be
able to capture the properties of many real world networks. Hence a new model
was introduced where the incoming graphlet would throw l edges at random with
probability β at each time step.

We then introduced a 15-dimensional attribute vector of seven well-known net-
work properties. It is obvious that being armed with such a suite of metrics, would
enable a very comprehensive and general comparison between any set of networks.
These properties were: the number of nodes, the number of edges, the geodesic
distribution, the betweenness coefficient distribution, the clustering coefficient dis-
tribution, the assortativity, and the degree distribution of the network. For the four dis-
tributions, the mean, standard deviation, and skewness were used as proxy attributes,
adding up to a total of 15 attributes. Normalizing each value by subtracting the
attribute mean and dividing by the attribute’s standard deviation, networks are
mapped to points in a 15-dimensional space defined by these attributes (Fig. 8.2).

Heatmaps are extensively used across the sciences. They are typical tools for
clustering data. Due to the hierarchical clustering used in a heatmap, the rows and
columns get so ordered that the most correlated metrics are placed closest to each
other. Clusters of similar network attributes can be identified by detecting blocks
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Fig. 8.2 Symmetric heatmap of attribute correlations among networks. Red (blue) indicates perfect
correlation (anti-correlation). White is the intermediate case of no correlation. The small amount
of clustering along the diagonal attests to the relative independence of the attributes. Source [37].
Reprinted with permission from European Physical Society

of squares along the diagonal of the heatmap. Sizable blocks along the diagonal
would denote redundancy. At the other end, a limited amount of clustering along the
diagonal would imply that most of the network metrics we have chosen are effectively
independent. Hence they would be informative for our analysis.

For our work, we assembled a collection of 113 diverse real-world networks
from biological, social, and technical domains. This collection includes software call
graphs, a social network of software developers, political social networks, three gene
networks, three protein- protein interaction networks, cellular networks for several
organisms, and several others downloaded from a web repository of networks.

To conduct a comprehensive comparsion across many network metrics, we use a
well known statistical dimension-reduction technique, like Principal Components
Analysis [39]. The PCA algorithm ensures that when high dimensional data is
projected to a lower dimension, the maximum variance of the dataset is retained.
PCA finds the projection of an n- dimensional dataset onto an equidimensional space,
such that the “new axes” (in other words, the principal components) are orthogonal
and linear combinations of the original dimensional variables. The whole exercise is
such that the first d axes, where d ⊂ n retain the maximal variance of the original
data set possible with that many dimensions.

Figure 8.3 shows a projection of our model networks (orange points), the Barabasi-
Albert model networks (light blue), and real-world networks (black) onto the first
three principal components of the eleven-dimensional PCA space of our real-world
data set. We omitted the number of nodes, skew of the degree distribution, and



8 Networks, Metrics, and Systems Biology 219

Fig. 8.3 A projection of our model networks (orange points), the Barabasi-Albert model networks
(light blue), and real-world networks (black) onto the first three principal components of the eleven-
dimensional PCA space of our real-world data set (we omitted the number of nodes, skew of the
degree distribution, and variance and skew of the betweenness distribution from the original 15
attributes). Here, the PCA1 axis is primarily composed of (in terms of their coefficient’s magnitude)
a combination of the number of edges, mean and skew of geodesic, mean and standard deviation
of clustering, and mean and standard deviation of degree. PCA2 is mainly a combination of the
standard deviation and mean of geodesic, and assortativity. PCA3 is mainly a combination of the
mean of betweenness, mean of clustering, number of edges, and standard deviation of degree. As
an example of a spread along an original parameter, the gray arrow is parallel to and shows the
direction and magnitude of assortativity when projected onto this space. Source [37]. Reprinted
with permission from European Physical Society

variance and skew of the betweenness distribution from the original 15 attributes for
reasons discussed in [37]. Here, the PCA1 axis is primarily composed of (in terms
of their coefficient’s magnitude) a combination of the number of edges, mean and
skew of geodesic, mean and standard deviation of clustering, and mean and standard
deviation of degree. PCA2 is mainly a combination of the standard deviation and
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mean of geodesic, and assortativity. PCA3 is mainly a combination of the mean of
betweenness, mean of clustering, number of edges, and standard deviation of degree.
As an example of a spread along an original parameter, the gray arrow is parallel
to and shows the direction and magnitude of assortativity when projected onto this
space. These principal components retain 71 % of the original data variance and
demonstrate the larger coverage potential of the extended graphlet arrival model.

We end this section with the hope that we have been able to answer with clarity
the question as to why we should be considering the higher moments of metric dis-
tributions. That they are indeed informative is reflected by the emphatic presence of
a number of higher moments of metric distributions in the first few principal compo-
nents [37]. Subsequent works in literature using similar approaches and techniques
have also arrived at similar conclusions [44–46].

8.4 From Network Metrics to Organsim Phenotypes

We then build on the methods developed in Sect. 8.3. The question we would like
to ask is whether phenotypes and other biological properties of organisms depend
crucially on the topological properties of their networks. And somewhat more ambi-
tiously, does network topology encode for biological phenotype?

Towards this end, we used metabolic networks of 32 different microbes [38]
based on data deposited in the What Is There (WIT) database [47]. This database
contains metabolic pathways that were predicted using the sequenced genomes of
several organisms. In these networks, edges represent sequences of reactions in the
organisms cells while the nodes are enzymes, substrates, and intermediate com-
plexes. The following three microbial species: Actinobacillus actinomycetemcomi-
tans, Rhodobacter capsulatus, and Methanobacterium thermoautotrophicum were
excluded from the original collection. This was because many of the phenotypic data
or microbe characteristics do not seem to be publicly available for them. The network
sizes vary from 2,982 nodes and 7,300 edges to 595 nodes and 1,354 edges.

The microbe characteristics or phenotypes that were investigated in our work are
(1) microbe class (MC), (2) genome size (GS), (3) GC content (GC), (4) modularity
(Q), (5) number of such modules (NQ), (6) motility (MO), (7) competence (CO),
and whether these microbes are (8) animal pathogens (AP), (9) strict anaerobes
(AN), or (10) extremophiles (EX). As is well-known, microbes are classified as
bacteria or archaea. Genome size refers to the sum total of DNA contained within
one copy of a genome. It is usually measured in the total number of nucleotide base
pairs (commonly as millions of base pairs or mega-bases) or in terms of mass in
picograms. Few microbes have much more DNA compared to other microbes; thus,
an organism’s genome size is not directly proportional to its complexity.

The percentage of nitrogenous bases on a DNA molecule, which is either cytosine
or guanine and not thymine or adenine gives us the GC content. The data for GC
content and genome size were obtained from the National Center for Biotechnology
Information (NCBI) Entrez genome project database. Modularity of a biological net-
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Table 8.2 Exploring the association of microbe characteristics and phenotypes with network
metrics

Range ρbest →ρrand ∞ p-value Best model variables

MC Binary 0.113 0.507 <3 × 10−5 N , E, geo1, geo2, geo3, bet1, bet2, bet3, deg1

GS (0.58, 6.3) 0.476 1.302 <10−6 N , E, betw1, bet2, bet3, deg2, deg3

GC (28.2, 66.6) 0.763 1.158 <9.8 × 10−5 N , E, geo1, geo2, geo3, bet1
Q (0.59, 0.69) 0.005 0.033 <10−6 N , E, geo2, geo3, bet1, bet3, deg1, deg2

NQ (14, 35) 2.102 6.413 <10−6 N , E, geo1, geo2, geo3, bet1, deg1, deg2

MO Binary 0.315 0.577 <1.4 × 10−5 N , E, betw3, deg1, deg2, deg3

CO Binary 0.158 0.683 <9 × 10−6 N , E, geo1, geo2, geo3, betw1, bet3, deg1,

deg2, deg3

AP Binary 0.325 0.567 <10−6 geo1, geo2, betw3, deg2, deg3

AN Binary 0.359 0.495 <2.66 × 10−4 E, geo1, geo3, bet1, bet2, bet3, deg3

EX Binary 0.284 0.540 <10−6 geo1, geo2, bet3, deg1, deg2, deg3

Microbe class (MC); Genome size (GS); GC content (GC); Modularity (Q); Number of modules
(NQ); Motility (MO); Competence (CO); and whether the microbes are Animal pathogens (AP),
Strict anaerobes (AN) or Extremophiles (EX). N , E denote the number of nodes and edges in
the network while geoi , beti , degi denote the i ∩th standardized moment of the network geodesic,
betweenness and degree distributions respectively. The range of a values of a phenotype is given in
case it is not binary. Source [38]. Reprinted with permission from the American Physical Society

work is defined as the fraction of edges within modules less the expected fraction
of such edges. A state-of-the art algorithm [48] was used to determine the commu-
nity structure in networks. This algorithm incorporated the edge directionality. Prior
network community structure algorithms ignored edge directionality and applied
methods developed for community structure in undirected networks. Obviously a lot
of valuable information contained in the edge directions is lost as a result of this.
It is well-known that modularity has an intimate connection to function in Biology.
The concepts of structural and functional modularity are well-defined and modules
typically correspond to gene circuits or pathways. Motility allows microbes to move
away from undesirable environs towards desirable ones. The ability of a cell to take
up extracellular DNA from its environment is measured by its Competence. Those
microbes that do not require oxygen for growth and may even die in its presence
are called Anaerobic organisms. Organisms which require extreme physical or geo-
chemical conditions, in which majority of life on earth cannot survive are known as
Extremophiles. While GS, GC, Q, NQ can take values within the range mentioned
in Table 8.2, the rest of the microbe characteristics or phenotypes are binary e.g., a
microbe is either aerobic or anaerobic; either archaea or bacteria and so on.

We use a suite of 11 complex network metrics, so as to comprehensively compare
all 32 networks simultaneously. To start with by assuming an initial dependence of
the organism phenotype or characteristics on all network metrics because we do not
know a priori which ones associate better than other metrics.

We then iteratively proceed to prune variables whose absence improves or does
not significantly alter the quality of the resulting model. This is done by minimizing
the well-known Akaike information criterion,
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α = 2k − 2 ln L (8.6)

where, k is the number of parameters in the statistical model and L is the maximum
logarithmic likelihood for the estimated model. α is a standard measure in statistics
allowing for selection among various nested models. It penalizes models having
many parameters and scores a model based on its goodness of fit to the data. In this
way, we arrive at our “basis set” containing the smallest number of independent,
indispensable network metrics that can be linked with an organism phenotype. We
then use the root-mean-square error ρ to measure the goodness of fit of our model and
the experimental data. ρ of an estimator Ŷ with respect to the estimated parameter
Y is defined as the square root of the mean squared error,

ρ(Ŷ ) =
√

E[(Ŷ − Y )2] (8.7)

We also report the significance of the best model, which we discussed above by
bootstrapping with respect to the same model and using a random permutation of the
observed data.

Table 8.2 enlists the complete results. We enumerate ρ of these random models,
ρrand , and how many times (or whether at all) ρrand < ρbest . ρbest is obviously ρ

of the best model. The normalized significance reflects the number of times ρrand <

ρbest . We observe 106 such random permutations, for each microbe phenotype. We
also performed an analysis of variance of the difference of the model with all 11 vari-
ables and our model with fewest dependent variables. The difference is not significant.

For half of the microbe phenotypes in this study, namely, GS, Q, NQ, AP, and EX,
we do not come across a single instance where ρrand < ρbest for that phenotype.
For each of these five phenotypes and also for the rest of the ones considered in this
study, ρrand < ρbest , with very low p-values.

Thus we can say with a good amount of confidence that there exists a strong
association of organism phenotypes with relevant topological network metrics. As
observable readily from Table 8.2, the presence of more topological network metrics
does not necessarily enhance the prediction quality.

As mentioned before, an organism’s genome size is not directly proportional to
its complexity. Therefore, it is interesting to observe in Table 8.2 that the association
between topological metrics of the networks and their genome sizes is among the
strongest of all phenotypes explored in this work.

8.5 Lessons Learnt

Networks are effective maps of complex systems. Traditionally biologists have
focussed highly on degree in networks. In the process, they have largely ignored
other metrics like betweenness, closeness etc which carry a lot of information about
the system. The importance of these networks have however been known to sociol-
ogists for decades [12]. It would however, be be a gross generalization to say that
studies on biological networks have so far completely neglected other metrics. Nev-
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erthless, the suggestive examples presented at the start of this chapter followed with
the exhaustive analysis of empirical data buttress our arguement that it is only fair
and wise; not to neglect the effect of other network metrics. A holistic picture of the
system at hand can only be obtained via an exhaustive study of as many network
metrics as possible.

8.6 Conclusion

We began this chapter with a discussion about how network metrics are important
in systems biology and how topological analysis has often yielded novel and valu-
able insight in metabolic networks. New parameters like synthetic accessibility have
demonstrated sufficient promise in predicting the viability of knockout strains with
accuracy comparable to approaches using biochemical parameters (like FBA etc.) on
large, unbiased mutant data sets [9]. we then discussed about the most common met-
ric-degree. Albeit, degree is a very potent metric, we highlighted using simple exam-
ples the incompleteness of using only degree in network analysis. We next tried to
conceptualise a commonly used centrality metric-betweenness. We then introduced
assortavity or degree correlations which inform us as to whether the predominant
pattern of connections in a network (hubs to hubs, hub to leaves or leaves to leaves).
We emphasized on the fact that the list of metrics dealt with here is not exhaustive.
However, the central point of this chapter is not to measure or enlist many network
metrics. Rather, it is to emphasize the importance of the role of simultaneous use
of multiple metrics. Using a suite of standard network metrics and armed with the
higher moments of these metrics, we used standard tools from machine learning like
clustering and principal component analysis to show that the information obtained
from considering multiple network metrics allows us to make an in-depth comparison
of networks and network growth models.

In conclusion, this chapter hopefully establishes that since networks play an
important role in Systems Biology, it is only proper that we venture beyond tra-
ditional approaches of measuring just one or two hand-picked metrics. In fact, we
expect that the use of proper quantitative techniques discussed in Sect. 8.3 in ways
illustrated in Sect. 8.4, will lead to valuable insights not just for biological but for all
types of complex networks.
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Chapter 9
Understanding and Predicting Biological
Networks Using Linear System Identification

Alberto Carignano, Ye Yuan, Neil Dalchau,
Alex A. R. Webb and Jorge Gonçalves

Abstract This chapter demonstrates how linear systems can be used to model
biochemical networks. Such models give predictable power that can be used to gen-
erate hypotheses, which in turn can be (in)validated experimentally. The advantages
of linear systems are that they are relatively simple, efficient to obtain and simu-
late, and have been studied in great detail. In spite of inherent nonlinearities in real
world applications, linear systems have been successfully used in control theory as
a tool to model, analyse and control technological systems. In contrast, although at
the molecular level reactions are nonlinear, modelling of key behaviours important
to predict new features of a system can in many instances be captured by linear
dynamics. Guided by a simple example, this chapter explains step-by-step how to
use linear system identification (SId) to obtain causal relationships between differ-
ent biological species in complex networks. We will cover key aspects of model
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estimation, validation and selection. The corresponding Matlab™ codes will be also
be introduced. The chapter ends with illustrations of practical applications through
two case studies, where SId has been used to further our understanding of biological
networks.

Keywords Linear systems · Nonlinearity · System identification · Linear system
identification · Molecular · Biomolecular · Model selection · State · System · Input ·
Cholesterol

9.1 Introduction

The use of computational and algorithmic approaches in biological research has
greatly increased in the last decade. The development of new technologies is cre-
ating increasingly larger datasets that describe biological responses to genetic or
pharmacological perturbation. Consequently, there exists a pressing need to process
and interpret these data, despite often having only rudimentary knowledge of the
interactions between the constituent components involved in the biological system
of interest.

A spectrum of methodologies and models has arisen to help tackle this challenge,
from purely statistical and correlative approaches to data processing and hypothesis
testing, through to sophisticated agent-based simulations at the molecular or cel-
lular level. Models also range between static (steady-state) descriptions through to
dynamical models, deterministic or stochastic, and spatially homogeneous or het-
erogeneous. The level of abstraction that is chosen is normally a consequence of the
level of prior knowledge one has of the system of interest, and the question being
addressed.

System identification originates in control theory, and is aimed at characterising
specific model classes (systems that include only linear terms, for example) from
observational data alone [7]. In particular, the response of a system to an input, can
be described with such methods. This approach enables efficient inference of the
model parameters, which quantify the interactions between model states (system
components). Applied to a biomolecular system, this approach offers a way of deriv-
ing a dynamical model in which the interactions between the constituent molecules
are unspecified. From such a model, predictions can be made about the dynamical
behaviour in alternative conditions (different input signals), offering the means to
investigate a previously uncharacterised biological network, and generate testable
hypotheses about the functioning and organisation of the system.

In this book chapter, we demonstrate how system identification can be applied
to linear models of biological systems. A tutorial introduces the use of the Matlab
System Identification toolbox to achieve model estimation and cross-validation [7]
through the example of hormone biosynthesis. Following this, two case studies are
introduced in which system identification has led to demonstrable insights into the
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Fig. 9.1 Chemical representation of cholesterol and progesterone molecules

functioning of partially characterised biological mechanisms: the NF-ΓB activation
network [3] and the regulation of cytosolic-free calcium ([Ca2+]cyt) by the circadian
clock in Arabidopsis [4].

9.2 A Tutorial on System Identification: Linear Modelling
of Progesterone Biosynthesis

9.2.1 Background

We start by considering a well characterised biological system, the production of
progesterone from cholesterol. We illustrate how linear SId can be used to study
such a reaction. Cholesterol is a fat molecule that can be ingested and synthesised by
the cell, while progesterone is a fundamental female hormone involved in supporting
gestation [9] (Fig. 9.1)

The conversion of cholesterol into progesterone is a single step of the steroidoge-
nesis metabolic pathway, which generates steroids from cholesterol. All the elements
of this pathway have been studied extensively and a complete dynamical description
of the reaction can be obtained from the literature [9]. Therefore, this pathway offers
an ideal case study for testing novel modelling methodologies. We assume no prior
knowledge and try to deduce a model from time-series experimental measurements
alone.

A natural question that arises when considering the causality of the reaction is
‘how strongly does cholesterol influence the rate of progesterone synthesis?’ In
particular, what are the forward and reverse reaction rates of progesterone-cholesterol
interconversion? In chemical reaction notation, we write

X1
k1−ΩΠ−
k2

X2 (9.1)

where X1 and X2 represent cholesterol and progesterone respectively.
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Assuming that the reaction (9.1) follows mass-action kinetics, then we can write
down mathematical equations that define how the abundance of progesterone and
cholesterol are related in terms of the forward and reverse reaction rates k1 and k2. Let
x1 and x2 represent the concentration of cholesterol and progesterone, respectively.
The reaction formula (9.1) tells us that x1 increases at a rate k2x2 and decreases at
rate k1x1, while the opposite can be said for x2. Therefore, the rate of change of x1
with respect to time, dx1

dt , is equal to k2x2 −k1x1. Hence reaction (9.1) can be written
as a system of differential equations:

dx1

dt
= −k1x1 + k2x2 (9.2)

dx2

dt
= k1x1 − k2x2 (9.3)

Note that although data is collected at discrete times, systems are modelled in
continuous-time. There are two fundamental reasons for this. First, biochemical
systems evolve in continuous time. Second, modelling the system in discrete time can
lead to very different parameter values, which in turn can lead to wrong conclusions.
A discrete time model assumes that the system has been sampled fast enough to
capture the whole dynamic. This assumption is often difficult to justify, especially
in a biological process where it can be hard or impossible to isolate all the active
components.

Control theory is concerned with how systems respond to external forcing.
Biological systems also respond to external forcing, so we introduce the concept
of a control variable. For simplicity, assume there is a linear relationship between the
amount of food eaten and the amount of cholesterol produced, i.e. we can ‘control’
the amount of x1 by the amount of food we eat; we will call the energy derived from
food consumption u. With the control variable, the equations become:

dx1

dt
= −k1x1 + k2x2 + k3u (9.4)

dx2

dt
= k1x1 − k2x2 (9.5)

where k3 is the correlation between available energy for hormone biosynthesis and
cholesterol increase. Equations (9.4), (9.5) represent the model under investigation
and contain 3 parameters that need to be estimated.

For the sake of this exercise, we will only use simulated data to represent collected
measurements of the concentrations of x1, x2 and the amount of food consumed
during a 48 h period (measured as energy source for the reaction). The model used
for the simulations follows reasonable biological assumptions and approximates the
real biological system. For details on the model please see the Appendix. We are
interested in estimating a model as close as possible to the original one using the
simulated data only. The time-series data obtained from the simulation are displayed
in Fig. 9.2.
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Fig. 9.2 a Cholesterol concentration; b progesterone concentration; c energy available for the
biochemical process. Data was collected every 5 min over 48 h

The question now is: how do we estimate the parameters in the linear model
described by Eqs. 9.4 and 9.5? A simple solution is to use literature and biological
intuition to try and guess ‘reasonable’ parameters, simulate the system and compare
with the data. For example, using the parameter values k1 = 1, k2 = 2 and k3 = 0.5
and initial condition (1, 0), we obtain an increase in the concentration of progesterone
over time (Fig. 9.3).

It is clear that these parameter values do not capture all dynamics in the real
data. While both concentrations of progesterone increase over time, there is a clear
mismatch between the simulation and the data. Mathematically, there are many ways
to quantify and to make this mismatch precise. A standard approach is the least
squares error, which is the sum of the squared differences between each experimental
datapoint and corresponding simulation. If there are N datapoints, then the least
squares error can be written as

VN =
N∑

k=1

(yk − ŷk)
2 (9.6)
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Fig. 9.3 Simulation of the
linear model for progesterone
biosynthesis, with the system
parameter values set to k1 = 1,
k2 = 2 and k3 = 0.5 and
initial conditions (1, 0). The
simulation (dashed line) is
compared with the target
system data (solid line)
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where yk represents the sequence of experimental datapoints and ŷk is the
corresponding prediction sequence from a given model (ŷk is obtained by first sim-
ulating the continuous-time model and then sampling its response at the same times
as the data; in this case, since the datapoints are evenly spaced, ŷk = ŷ(kT ), where
T = 5 s is the sampling interval).

To minimise the squared error defined by Eq. (9.6), we could change the parame-
ters by hand until reaching a satisfactory solution. However, this method becomes
prohibitively time-consuming for large systems. A more systematic method is to
define an optimisation problem where we seek to minimise the squared error in
Eq. (9.6) given a particular model class. In our example, the model class is that of
two dimensional linear systems. To solve the optimisation problem, we can use the
‘prediction-error method’ (PEM), a technique widely used in SId [7].

PEM usually starts from a random estimate of the parameters and initial condi-
tions of the model (though these can optionally be initialised). For each datapoint,
a prediction is formed from the previous datapoint(s), and the squared error is com-
puted between the predicted data points and the target data. The algorithm then
iterates towards parameters that reduce the squared error, stopping when no further
improvement can be made. For more details about the method used in the minimiza-
tion process, see [7]. The Matlab™ function ‘pem’ returns parameter estimates and
initial conditions, by using the following code:

data = iddata(y, u); (9.7)

m = pem(data, 2); (9.8)

m = dtc(m); (9.9)

where the function iddata inputs the data and the second entry of the pem function
provides the estimated model order. By default, the function pem returns a discrete-
time model, so we use the command dtc to transform the model from discrete to
continuous-time.
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Fig. 9.4 Simulation
of the estimated second order
model for the progesterone
concentration. Fitness = 84 %
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After obtaining a model and simulating it, we can derive a definition of fitness
from the cost function given by

fitness = 100 ∗
(

1 −
∑N

k=1(yk − ŷk)
2

∑N
k=1(yk − y)2

)

(9.10)

where y is the average value of the experimental data (in order to avoid divisions by
zero, a different formula has to be used to estimate the fitness of a constant output).
It is easy to check that a zero model error corresponds to a 100 % fit. The Matlab™
function ‘compare’ can be used to compute the fitness using:

[∼, fit] = compare(data, model); (9.11)

Simulation of the system using the estimated parameters produces the plot in Fig. 9.4.
By default, models estimated by ‘pem’ are in a ‘state-space’ form, which are

matrix forms of Eqs. (9.4), (9.5). To clarify, consider the continuous-time linear
system expressed by the equations:

ẋ = Ax + Bu (9.12)

y = Cx + Du (9.13)

where x are the ‘state variables’, u are the inputs to the system, A and B are matrices
that contain the parameters corresponding to how the states affect each other and how
inputs affect the states, respectively. The measurements are given by y = Cx + Du,
which can be a linear function of the states (via matrix C) and inputs (via matrix D).
In practice, the matrix D is usually 0. In our example, x1 and x2 are our states, food
is the input u, and the matrices are given by
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A =
[−k1 k2

k1 −k2

]

, B =
[

k3
0

]

, C = [
0 1

]
, D = 0

with this definition of C , the output is given by y = x2.
Equations (9.12) and (9.13) describe a Linear Time-Invariant model (LTI): linear

because Ax is a linear combination of the state variables (a1x1 +a2x2 +· · ·+an xn),
i.e. no mixed products xi x j or nonlinear functions, and time-invariant because the
system parameters do not depend on time.

In general, the algorithm pem used in Matlab™ is given by

data = iddata(y, u, T s)

m = pem(data, n)

T s is the sample time of the two time series y and u, and n is the model order, i.e.
dimension of A. If there is no input, simply write data = iddata(y, [], T s).

It is possible to impose additional structure on the model. For instance, in the
cholesterol example if we were to measure x2 instead, then C = [

0 1
]
. We can set

any entries in A, B, C, D, either as fixed relations, or as initial guesses (e.g. if we
have an idea about the value of an entry, then the optimisation process is more likely
to converge faster).

For instance, let us assume that we have some evidence that the correct values for
the matrices A, B, C and D are:

A =
[

1 2
3 4

]

; B =
[

1
2

]

; C = [
0 1

] ; D = 0; (9.14)

We can then set these values as initial guesses for the optimisation problem using
the command:

m = idss(A, B, C, D).

Suppose we would also like a specific structure (for instance C = [
0 1

]
) to be

preserved during the optimisation process. This is done by letting

m.Cs = [
0 1

]
.

Equation (9.9) uses the function dtc to obtain a continuous-time system from a
discrete-time system in (9.8). This can done automatically by specifying that the
sampling time is 0, i.e. m.Ts = 0. Finally, we call the function pem as

m1 = pem(data, m); (9.15)

There is no need to specify the model order here because the model structure m is
already implicitly setting it (from the dimension of the matrix A).
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9.2.2 Model Validation

System identification combines a number of techniques to solve model estimation
problems. If a model is correctly identified, then it can be used to make predictions
by simulating a wide range of conditions. This, in turn, can help improve the under-
standing of the system, and save time and money invested in experimental research.

In the previous section, we went through the estimation process and obtained
a model with a high fit (84 %). This suggested that most of the dynamics of the
system were captured. However, it is possible that the model is not describing
the biochemical reaction properly and instead is spuriously reproducing the data
with the wrong underlying model. This issue is called ‘over-fitting’ (for an example,
[2, p. 7]) and it is one of the most common and relevant problems in mathematical
modelling. A good model needs to be ‘flexible’ to correctly predict new experimental
conditions. Such cross-validation tests can help to rule out spurious close fits to the
data, and distinguish between good and bad models.

Suppose we collect new data using a different input (different amount of food in
this case) and different initial conditions (different initial concentration of cholesterol
and progesterone in the blood). Can the model correctly predict the dynamics of
progesterone biosynthesis in the alternative conditions? A new dataset is in Fig. 9.5.

The simulation using this new input is shown in Fig. 9.6 [in Matlab™ this can be
done using the command ‘lsim(m,u,t)’]. The model describes the data well, corre-
lating well over the range of datasets.

What we have just done is called ‘Model Validation’ and it assesses whether a
model has power or not. In this example, the model showed an acceptable predictive
power. The next section returns to the question of over-fitting and will discuss trade-
offs between precision and over-fitting. In particular, it will discuss the question of
how to improve model prediction.

It is interesting to note that all the modelling we have done only used time-
series data for progesterone, not cholesterol. This is one advantage of linear system
identification: the model can be obtained from input-output data alone, with no
need to measure every single state involved with the output (in our case we have
three states—see Appendix). Once we have a model, only input data (i.e. exogenous
quantities that excite the system in our hypothetical experiment) are needed for
prediction (assuming zero initial conditions).

9.2.3 Hidden States and Model Selection

Consider again our starting example. The single reaction description (9.1) is a simpli-
fication of a more involved biochemical pathway. There is at least one intermediate
state in the chain, which is the steroid hormone ‘pregnenolone’ (see Fig. 9.7). Incor-
porating pregnenolone into the chemical reaction model yields



236 A. Carignano et al.

0 10 20 30 40
−0.5

0

0.5

1

1.5

2

2.5

Time (h)

E
ne

rg
y 

av
ai

la
bl

e 
fo

r
ho

rm
on

e 
bi

os
yn

th
es

is

(a)

0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

1.2

Time (h)

C
on

ce
nt

ra
tio

n

(b)

0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

Time (h)

C
on

ce
nt

ra
tio

n

(c)

Fig. 9.5 Validation dataset: a cholesterol concentration; b progesterone concentration; c food
consumption. Data collected over 48 h

Fig. 9.6 Validation of the
estimated second order model
for the new progesterone
concentration dataset
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Fig. 9.7 Chemical
representation of the
pregnenolone molecule

Fig. 9.8 Simulation
of the estimated third order
model for the progesterone
concentration
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X1
k1−ΩΠ−
k2

X2
k3−ΩΠ−
k4

X3 (9.16)

where X1 represents cholesterol, X2 pregnenolone and X3 progesterone.
Considering the action of pregnenolone, the actual model should be of at least

3 variables (3rd order). We can impose this structured condition on PEM with the
command

m = pem(data, 3);

The new model generates the simulation shown in Fig. 9.8. It is clear that there is
a much better fit between this model and the data than the single reaction 2nd order
model. The new fit is 90 % (compared with 84 % for the 2nd order model). Since
increasing the order improved the fitness, it seems natural to consider adding other
intermediate steps in the chemical process: perhaps the real system is 4th order, with
another hormone somewhere in the chain. If we estimate a 4th model for the data and
simulate it, we obtain an even better fit (92 %; Fig. 9.9). It turns out that a 5th order
model would have an even better performance (94 %), and so on. In fact, increasing
the order of the model can only improve the overall fitness. A higher order system,
however, implies more parameters to estimate, which in turn means more degrees
of freedom. There are clear trade-offs here. How much information does the dataset
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Fig. 9.9 Simulation
of the estimated fourth order
model for the progesterone
concentration
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provide? How many parameters can we justifiably estimate? And when do we stop
fitting the dynamics in the system and start fitting noise?

In the last example, we noticed how increasing the model order helped achieve
a better fit of the data. These extra state variables are called ‘hidden states’ and
represent intermediate steps in the biological process that we have no measurements
of. The ability to infer the presence of intermediate reactions is a very powerful
feature of linear SId. The more hidden states the model has, the more flexibility there
is in the estimation process. However, if we are not careful, a model might end up
with more states than the real system. This is why we need a method to select the
order of the model. This process is called ‘Model Selection’ and it generally uses
an information criterion that takes into account the goodness of fit and penalises
the number of estimated parameters. Higher order models have naturally a better fit
(higher flexibility) but also a bigger number of parameters.

A common approach to quantifying the compromise between goodness of fit
and over-parametrisation are information criteria. The most common information
criterion in the literature is the Akaike Information Criterion (AIC) [1], which is
defined as

AIC = logV N + 2d

N
+ 2(d − logV N )

N
(9.17)

where V N is the value of the cost function [Eq. (9.6)], d is the number of estimated
parameters and N is the number of datapoints in the set. Low values of AIC corre-
spond to a good balance between small values of the cost function and small numbers
of parameters. In practice, we compute the AIC for a range of different model orders
and compare them. The AIC values should decrease every time a higher order model
has a significant fitness improvement. When they stop decreasing, then we might
have reached a good candidate. There will be a point past which additional para-
meters serve only to increase the fit to the data by a small amount, which translates
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Table 9.1 AIC coefficients
corresponding to model of
different orders

Order AIC coefficient Fitness (%)

2 0.13 84
3 −22.64 90
4 −22.55 92
5 −22.38 94

into an increase in the AIC score. This is an example of over-fitting, as discussed in
Sect. 2.1.

Returning once more to the example, by fitting models of different orders we
obtain the AIC coefficients in Table 9.1. This analysis suggests that the best model
order is 3. Adding extra hidden states does not improve the AIC score. This is a
consequence of not being able to significantly improve the fitness after the third
order model.

9.2.4 System Identification for Noisy Measurements

So far we have seen how to estimate and validate a model, based on artificial data.
In real life, however, noise is present at different levels in experimental data and
can make modelling very challenging. Noise can be a consequence of inaccuracies
in the measurement devices, stochastic process variations (intrinsic), environmental
fluctuations (extrinsic), etc. In LTI systems, noise is typically incorporated into the
model as:

ẋ = Ax + Bu + K e (9.18)

y = Cx + Dy + e (9.19)

where the variable e is a random signal, typically assumed to be white (Gaussian)
noise, i.e. e(t) ∼ N (0, Δ 2), where Δ 2 is the variance of the signal.

To take into account noise in the estimation of a model, we use the following
code:

m = idss(A, B, C, D, K ); (9.20)

m2 = pem(data, n). (9.21)

where K is a vector with the same number of columns as the number of states. In a
sense, system identification seeks to distinguish between the true signal and noise.
This feature is extremely relevant in a biological environment, where the observations
are usually subject to different sources of noise.

In this more general setting, PEM is more likely to fail to converge. Noisy signals
and high order models generate hard optimisation problems and cost functions with

http://dx.doi.org/10.1007/978-94-017-9041-3_2
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Fig. 9.10 The blue line represents the cost function; the subject of our minimization. The opti-
mization algorithm works by taking a starting point on the line and then progressing ‘downhill’. If
A or B are used as a starting point, the algorithm will terminate in the closest local minimum (wrong
result). However using C as starting point will result in the correctly optimized solution

several local minima. A local minimum is a value that is the lowest in its neigh-
bourhood, but not necessarily the lowest in the parameter space. Many optimisation
algorithms methods work by moving ‘down hill’, and consequently are prone to get-
ting stuck at local minima. Upon reaching a local minimum, the algorithm stops as
it cannot ‘climb up’ back on top and look for a better minimum (see Fig. 9.10). The
PEM method uses gradient-based optimisation, and so suffers from the drawbacks
just described.

One way to get around local minima is to try several different initial conditions
for PEM and then choose the estimated model with the highest fit (e.g. expectation
maximisation (EM) algorithms [5]). Different starting points for the algorithm might
‘lead’ to paths that avoid local minima (see Fig. 9.10). While this still does not
guarantee a global solution to the problem, it usually improves the performance with
respect to a single PEM run.

9.2.5 A Noisy Signal Example

Let us go back to our main example, this time with a more realistic scenario that
includes noise (however, we use the same input data as before). Our time-series data
could look like Fig. 9.11.

We define the model structure as in Eq. (9.20) and then use PEM to estimate the
best model for orders from 2 to 5. Each model is estimated 20 times using different
initial conditions to avoid local minima. Depending on the fit, the best candidates
are selected for each order. Resulting simulations are shown in Fig. 9.12.



9 Understanding and Predicting Biological Networks 241

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9(a) (b)

Time (h)

F
oo

d 
co

ns
um

pt
io

n 
(K

ca
l)

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (h)

C
on

ce
nt

ra
tio

n

Fig. 9.11 Noisy measurements: a cholesterol concentration; b progesterone concentration; data
collected over 48 h
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Fig. 9.12 Simulations of progesterone concentration using noisy measurements and different model
orders

To validate the models, we use a noisy version of our previous validation set
(Fig. 9.13). The validation process in this case is really important as all the models
are able to closely reproduce the estimation dataset. Simulations of the validation
sets are depicted in Fig. 9.14.
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Fig. 9.13 Noisy measurements for validation data: a cholesterol concentration; b progesterone
concentration; data collected over 48 h
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Fig. 9.14 Simulations of progesterone concentration for the validation dataset with different model
orders

The process of model selection is not an easy task in this case. ‘By eye’, there does
not appear to be a significant improvement between the models, suggesting we should
favour simplicity and opt for the second-order model. Appealing to the quantitative
metrics introduced above, we can use the ‘compare’ command in Matlab™, and
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Table 9.2 Summary of the fitness for estimation and validation dataset and AIC coefficients (cal-
culated for the estimation dataset) for model from the 2nd to the 5th order

Order Fit for the estimation set Fit for the validation set AIC coefficient

2 83.16 62.46 −7.01
3 85.4 69.37 −7.028
4 85.67 69.47 −7.021
5 86.73 70.13 −6.99

calculate the AIC coefficient (see Table 9.2). There is only a small difference between
the AIC coefficients of the 3rd and the 4th order models. Also, an extra state variable
(5th order) does not add any extra information and the best AIC score is achieved
using the 3rd order model. Therefore we are left with the choice of either 2nd order.

At this point, any further conclusions become subjective. One could argue that the
delayed behaviour of progesterone) showed in the two data sets (both progesterone
and cholesterol time series remain flat for the first 2 h despite a non zero input) is not
correctly reproduced in a second order model. This feature is indeed more evident
in the third order model simulation. To correctly conclude the exercise, we should
think about what the most important biological features are (like if all the steps in the
chain must be considered or if other inputs might play a role, etc.). We mentioned the
delay, but perhaps there are other features that the model must be able to simulate.
This is when biological insight comes into play.

The real model used to generate the data was a third-order model, and included
nonlinearities and delays (see appendix). For these reasons, it was not possible to
find the exact parameter values of the original system using a linear model. However,
the obtained models (2nd or 3rd-order models) were reasonably close in terms of
model order and could simulate the main features of the data.

9.2.6 Limitations of System Identification

System identification, when used carefully, can be an extremely powerful technique
to elucidate the dynamics of a system. We would like to conclude this tutorial by
giving some advice and warnings on the limitations of this method. We stress the
fact that a model should be built from the information contained in the data and
in any prior knowledge of the system. It is essential to have very informative data
that covers as many experimental conditions as possible. Next we explain what very
informative data mean.

In the frequency domain, a signal is decomposed into a sum of sine waves each with
a different period. If the frequency is more relevant than others, then stimulating the
system with the corresponding sine wave will produce a larger response. Naturally,
a model will be more reliable at the frequencies that comprise the main components
of the input signal used in the estimation process. Consequently, the reader should be
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careful in choosing the dataset for the estimation process. For example, the response
of a system to a periodic input is likely to provide information only around its specific
period; a model obtained from this data is likely to have a very low predictive power
away from that frequency.

Model selection favours simplicity. If a low order model has a good fit with the
data and can reproduce the qualitative features of the validation set, then the model
estimation process can stop. Increasing the model order should only be done to
achieve a better qualitative simulation. Trying to achieve a perfect fit will likely lead
to over-fitting instead of improvement, and it risks obtaining a model that reproduces
the data but not the real dynamical system.

In previous sections, we introduced the problem of local minima. Noisy signals
or high order models can results in cost functions with several local minima, which
cause optimisation algorithms to struggle to converge to an interesting solution. Also
forcing a structure on the model might have this result.

Finally, most systems in real life are nonlinear. Thus a natural objection to lin-
ear modelling is that it inherently can’t describe aspects of the system. However,
depending on the particular application, linear systems have demonstrated to be very
good approximations of nonlinear systems. In those cases, and given their relatively
simplicity, it makes sense to prefer this class of systems to nonlinear systems if they
can provide good predictions.

9.3 Biological Examples of Successful Application

To conclude this chapter, we will present two examples of successful applications in
the literature of linear system identification. The first is based on the paper ‘Achieving
Stability of Lipopolysaccahride-Induced NF-ΓB Activation’ [3] from the Baltimore
laboratory (California Institute of Technology), and the second is based on the paper
‘Correct Biological Timing in Arabidopsis Requires Multiple Light-Signalling Path-
ways’ [4] from the laboratory (University of Cambridge, UK).

9.3.1 Modelling the NF-κB Signalling Pathway

The NF-ΓB signalling pathway is a key process for gene regulation in inter- and
intracellular signalling, cellular stress responses, cell growth, survival, and apoptosis.
Deciphering its temporal and specificity control is therefore of the utmost importance
for a better understanding of cell physiology. The Baltimore lab has been working on
this pathway for several years and the paper [3] is an example of how mathematical
modelling can be used to speed up the process of experimental science.

In mammals, NF-ΓB is a transcription factor that is involved in multiple regulatory
pathways. It is involved in metabolic processes like inflammatory responses, immune
system development, apoptosis, learning in the brain, and bone development. Aber-
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Fig. 9.15 Feedback of the NF-ΓB signalling pathway [6]

rant NF-ΓB activity has been linked to oncogenesis, tumour progression, and
resistance to chemotherapy. Understanding NF-ΓB activation is therefore very
important in cancer research. A previous study by Baltimore’s lab [6] gives a descrip-
tion of how the IΓB-NF-ΓB signalling module might work. Using a combination of
computational models and experiments, they elucidated the strong negative feed-
back loop involving the protein complex IΓB that allows a fast turn-off of the NF-ΓB
response. IΓB holds NF-ΓB inactive in the cytoplasm until IΓB is degraded by the
IKK complex, which is activated by cell stimulation through TNFΦ expression. NF-
ΓB is then free to translocate into the nucleus where it activates several pathways,
including synthesis of IΓB proteins (IΓBΦ, IΓBγ and IΓBδ) that in turn control
NF-ΓB activation. This feedback is represented in Fig. 9.15.

NF-ΓB shows damped oscillations as a result of this regulation. In [6], the feedback
pathway was represented with the following model:

dx

dt
= S − Φx − γy (9.22)

dy

dt
= Ξ x − ωy (9.23)

where S represents the stimulus (the input). The model structure tells us immediately
that we are describing a feedback system, since both differential equations depend
on both x and y. The strength of the feedback is determined by the parameters Φ, γ,
Ξ and ω. In particular, two parameters determine the damping of the system: large
oscillations (high feedback power) corresponds to low values of Φ and ω, and a quasi
steady state behaviour (high damping) corresponds to high values of Φ and ω. These
parameters were estimated using a combination of known association rates and the
application of system identification to experimental data.
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Fig. 9.16 Feedback system of the TLR-4 pathways to NF-ΓB expression [3]. Figure taken from
[3], with permission

Following this first model, new components of this feedback regulation were
discovered and a more complete description was sought. The starting point of this
new study was that cells stimulated with lipopolysaccharide (LPS) showed non-
oscillatory dynamics with respect to active NF-ΓB. Therefore LPS must be involved
in its regulation.

LPS activates expression of the gene TLR4, which has two downstream pathways,
both of which regulate NF-ΓB. One pathway is MYD88 dependent, and it has been
almost completely described as an activator of IKK synthesis. The other pathway
had not yet been fully understood, but it has the same end result of degrading IΓB in
the TNFΦ-activated pathway and acting through an adaptor called Trif.

Analysis of experimental results showed that the MYD88-dependent pathway
occurs earlier than the independent one. If both pathways are inactive (MYD88
and Trif-null double mutant), there is no NF-ΓB activation, while each single null-
mutation results in NF-ΓB oscillations. The observed NF-ΓB oscillations could be a
result of an interaction between these two pathways.

Covert et al. [3] tested the hypothesis that NF-ΓB oscillations are a result of the
IKK complex being activated at different times in each pathway. Either the two path-
ways share similar kinetics, which prevents them from progressing simultaneously,
or the MYD88-independent pathway requires more steps.

To rule out one of the two possibilities, linear models representing each of the
two pathways were built and added to the previous model of the NF-ΓB-IΓB sig-
nalling module in a feedback loop. The two models were estimated using a first order
structure and empirically determined protein concentration as driving dataset.

The model shown in Fig. 9.16 points out that the kinetics of the two linear models
are indeed very similar (by simple comparison of the coefficients) but that a delay
of about half a hour is required for the Trif pathway to reproduce the data correctly.

Being the minimal model (1st order), some predictions are not confirmed in the
experimental process (for instance, discrepancies in the period for IΓBΦ protein
synthesis). However, the predictive power of the model is quite significant as it
correctly predicts oscillations of IΓBΦ protein level in MYD88-null and Trif-null
mutants, but not in the wild-type. Hence, they tested the hypothesis of a longer
kinetic pathway as cause of the delay in the Trif-dependent signalling. Experimental
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Fig. 9.17 Proposed
pathway of activation of
NF-ΓB through TLR4 control.
Figure taken from [3], with
permission

evidence shows that the MYD88-independent pathway does indeed require protein
synthesis (longer kinetic).

They isolated the components of the Trif pathway, finding the transcription factor
IRF3 and the known protein TNFΦ to be part of the down-regulated cascade (see
Fig. 9.17). It is compelling that a very basic model (1st order linear system with a
delay) can provide information on a complex multi-input system. The underlying
biological system undoubtedly incorporates nonlinear behaviours and hence cannot
be completely represented by a linear model. However, a simple LTI scheme cap-
tures its most important features, the delay in the MYD88-independent pathway.
This shows that additional complexity, in general harder to characterise, is also not
required to explain the interdependence of IΓB and NF-ΓB signals.

9.3.2 Regulation of [Ca2+]cyt by Light and the Circadian Clock
in Arabidopsis

Circadian clocks confer the ability of an organism to align its physiology with the
daily rotation of the planet, which leads to 24 h periodic cycles in light availability
and temperature. This ability is a result of genetic networks that generate autonomous
oscillations and provide rhythmic cues to downstream gene expression and signalling.
Arabidopsis thaliana is a model organism for plant biology because of its relatively
small genome and short lifecycle. The circadian clock of A. thaliana has been stud-
ied closely and many of its features are well understood. A number of essential
clock components have been identified, including CIRCADIAN CLOCK ASSOCI-
ATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB2
EXPRESSION 1 (TOC1) and GIGANTEA (GI), which all play a role in sustaining
circadian oscillations [8]. Both experimental and computational analyses have driven
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progress in uncovering the interactions between clock-associated genes that leads to
robust timekeeping in A. thaliana. Recent computational model of the clock likens
the genetic network to the classical repressilator mechanism, incorporating multiple
negative feedback loops of transcriptional control [11].

In this section, we will describe our previous work that used system identification
to understand how circadian clocks and light signalling pathways contribute to the
regulation of physiology in A. thaliana [4]. The external coincidence hypothesis
proposes that the phase of a circadian regulated gene is the result of a coincidence
between the phase of the main oscillator and the light/dark cycle. On the other hand,
the internal coincidence model proposes that light entrains two different rhythms in
the main oscillator (morning and evening loops) and the relationship between the
two defines the phase of the output.

In order to test the two hypotheses, we sought to understand and quantify the
regulation of the concentration of cytosolic-free Ca2+ ([Ca2+]cyt), an important sig-
nalling ion in cellular organisms. Previous experimental analyses had shown that
[Ca2+]cyt is regulated by both the circadian oscillator and light signalling and that
the phase of circadian [Ca2+]cyt oscillations changes in response to photoperiod
[12]. Moreover, plants lacking CCA1 had no circadian oscillations of [Ca2+]cyt,
despite there being (albeit short-period) oscillations in other clock outputs. As no
other essential biochemical components involved in regulating [Ca2+]cyt had been
identified, we constructed a model of [Ca2+]cyt with two inputs: light and CCA1
expression (Fig. 9.18a). This corresponds to the incorporation of light at two lev-
els, as CCA1 expression is itself regulated by light. Since the signalling pathways
linking the inputs to [Ca2+]cyt were not well understood, several model orders were
compared. Moreover, varying timescales in the regulation by CCA1 and light were
considered by introducing delay parameters, a method that helps reduce model order
as simple delays can account for the internal complexity of each state variable.

Estimation was done using data from a single experiment, where input (CCA1)
and output ([Ca2+]cyt) measurements were collected in 12 h light/12 h dark cycles
(12L/12D) followed by an extended period of constant dark (Fig. 9.18b). This was
a dynamically useful choice of input as it corresponds to a square wave followed
by a step function, and consequently excites all frequencies. Validation was then
conducted on three datasets with different light/dark conditions to assess model per-
formance (Fig. 9.18c–e). A weighted correlation metric was used to determine the
optimal model order in terms of the predictive ability of the model, which sug-
gested a necessary role for a single hidden variable (hereafter referred to as X2).
The selected model successfully predicted the behaviour of the CCA1 null muta-
tion against experimental data, providing further support for the model and the LTI
system identification approach (Fig. 9.19a).

As the purpose of system identification was to elucidate the signalling pathway
leading up to [Ca2+]cyt the next step was to understand the role of X2 in the model.
A mutation in the X2 component was simulated in 16L/8D cycles and compared
with experimental data measuring a variety of genetic mutants in corresponding
conditions. A close match was observed with the PHYTOCHROME A (PHYA)
mutant, phyA-201 (Fig. 9.19c). PHYA is a red light photoreceptor and mediates far
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figure is reproduced from [4]

red light signals to the clock [10]. However, PHYA was not the only candidate for X2.
Blue light seems to be required for the decrease of [Ca2+]cyt at the end of the light
period, as in cycles of red-light and dark, [Ca2+]cyt progressively increases during
each circadian period (Fig. 9.19d), as opposed to the stable oscillations observed in
white light cycles. Simulations of the x2 mutant showed similarities to experimental
data of the blue light receptor mutant ztl-1 (Fig. 9.19e, suggesting that X2 may
represent more than one biochemical component (Fig. 9.19f). We concluded that X2
might represent the circadian regulation of light signalling pathways as it describes
time dependent effects of light input.

To investigate the importance of timing of the inputs, Bode analysis was applied
to the model (Fig. 9.20). In order to use a Bode plot, the input is decomposed into
a sum of sinusoidal signals with different periods. Each of these periodic signals
causes a different response in the output. Each period is then plotted against its
unique response. In this case, it was found that the CCA1 input dominates over the
light signal at almost all frequencies but especially at lower ones (low frequencies
corresponds to long period oscillations). This suggests that light input only modulates
[Ca2+]cyt over faster variations in light availability.

To determine whether rapid light input regulation could be a more general phenom-
enon, the whole rhythmic transcriptome (3,503 genes) of A. thaliana was explored
using LTI models and Bode analysis. Models were estimated using CCA1 or TOC1
and light availability as inputs, and published microarrays as driving data. Validation
was then conducted by evaluating a combination of fitness over multiple datasets
(1,083 models using CCA1 and 460 using TOC1). CCA1 proved to be a more suit-
able driver for the models, with the majority of TOC1-driven models also performing
well with CCA1 as input. We conducted Bode analysis on the resulting models. Mag-
nitude plots that resembled (same or smaller difference in magnitude between the two
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inputs pathways) Fig. 9.20 were classified as being coregulated by light and CCA1.
Light- or clock-dominated regulation was defined for higher magnitude differences.
Our results agree with experimental evidence, showing that genes like LHY, PRR5/7
or GI are coregulated by light and the clock. We compared model classes and the
phase of peak transcript abundance in daily regimes with long photoperiods (16L/8D)
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and short photoperiods (8L/16D). We concluded that clock-dominated transcripts are
associated with morning expression independently of the photoperiod, while light-
dominated and coregulated models have altered peak times and generally peak later
in the day/night.

Using system identification applied to LTI models, and tools from Control theory,
it was possible to understand the timing of the regulation, its frequency response, and
predict biochemical components and their specific roles in mediating daily control
of [Ca2+]cyt. We demonstrated that the observed oscillations of [Ca2+]cyt are a result
of a combination of rapid light signals and circadian inputs. As the two inputs act at
different timescales, and are mediated by a single autonomous oscillator, this case
study supports the external coincidence hypothesis. Moreover, the significant speed
of this system identification technique allowed us to perform genome-scaled analysis
and to give a complete characterisation of the whole rhythmic genome.

9.4 Summary

This chapter explained the main ideas behind SId and and showed how to construct a
model from input/output data. The process of model estimation is the first step of the
machinery. We showed how this can be achieved by minimising a cost function using
an optimisation algorithm. Prior knowledge of the system can be incorporated in the
process by constraining specific structures and/or initial conditions. The optimisation
algorithm is the weak point of this procedure as getting stuck in local minima could
be a major limitation. In order to be reliable, estimated models need to be flexible
and correctly reproduce different datasets. This is addressed in the model validation
procedure. The model is tested with a new input/output set from the same system.
This new performance should be comparable in terms of fitness to the one obtained
with the estimation dataset. Model validation is fundamental to prevent over-fitting,
which can sensibly reduce the model predictive power.

Once models of different orders have been estimated and validated, we need to
select one as our best representation of the system. There are several criteria that
can be used for model selection. We have seen fitness comparison and the Akaike
Information Criteria. We also mentioned how some qualitative biological features
can be used as thresholds. When the models performs approximately equally, then
the simplest model has to be preferred.

Finally, we discussed some of the limitation of SId. Local minima, over-fitting
and nonlinearities are the main drawbacks of using LTI models. The key idea is that
a good model extracts as much information as possible from data. Informative non-
noisy data are more likely to result in reliable models, while sparse and corrupted
signals produce models with limited predictive power and unfit for further analysis.
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9.5 Model Used in Simulations

The dataset of progesterone and cholesterol concentrations introduced in this chapter
were simulated using the following model:

dx1

dt
= −5.3x1(t − 0.05) + 3.1x2(t − 0.05) + 2.7u(t − 0.05) (9.24)

dx2

dt
= 5.3x1(t − 0.05) − 7.9x2(t − 0.05) + 2.7x3(t − 0.05) + 1

5
e−x2(t−0.05)

(9.25)

dx3

dt
= 4.8x2(t − 0.05) − 2.7x3(t − 0.05) (9.26)

This model has 3 states, 2 representing progesterone and cholesterol concentration
and one representing the internal steps of the process. This additional state is a hidden
variable and explains why a 2nd order model description wasn’t enough to describe
the data.

This model is not meant to represent every single detail of the steroidogene-
sis process, but instead to capture some of its interesting features and with enough
dynamic behaviour to illustrate the system identification features. Here, delays repre-
sent either unknown pathways and/or delays in the reaction time, while nonlinearites
describe fast activation processes. The initial conditions used to generate the data
for the noise-free and the noisy estimation in Figs. 9.2 and 9.11 are (10, 1, 1). The
noise was drawn from a random normal distribution with mean 0 and standard devi-
ation 1/10.
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Chapter 10
Model Checking in Biology

Jasmin Fisher and Nir Piterman

Abstract Model checking is a technique to check whether programs and designs
satisfy properties expressed in temporal logic. Such properties characterize sequences
of events. In recent years, model checking has become a familiar tool in software
and hardware industries. One of the main strengths of model checking is its ability
to supply counter examples: in case that the property is not satisfied by the model we
get an execution exhibiting this failure. Counter examples are fundamental in under-
standing, localizing, and eventually fixing, faults. This, together with the relative
ease of use of model checking, led to its adoption. The success of model checking
prompted system biologists to harness it to their needs. In this domain, the main
usage is to have a model representing a certain biological phenomenon and to use
model checking for one of two things. Either prove that the model satisfies a set of
properties, i.e., reproduces a set of biological behaviors. Or to use model checking
to extract interesting behaviors of the model by looking for a counter example to the
property saying that this interesting behavior does not happen. In this chapter we
present the technique of model checking and survey its usage in systems biology.
We take quite a liberal interpretation of what is model checking and consider also
cases where the techniques underlying model checking are used for similar purposes
in systems biology.
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10.1 Introduction

Biological systems are extremely complex reactive systems. They operate as highly
concurrent programs with millions of entities running in parallel and communicating
with each other under various environmental conditions. Understanding how living
systems operate in such harmony and precision, and how this harmony is being
disrupted in disease states, are key questions in biological and medical research. Due
to their enormous complexity, the comprehension and analysis of living systems
is a major challenge. Over the last decade various efforts to tackle this problem
of enormous complexity concentrate on a new approach called Executable Biology
focused on the construction and analysis of executable models describing biological
phenomena (for a review see [19]).

Over the years, these efforts have demonstrated successfully how the use of formal
methods can be beneficial for gaining new biological insights and even directing new
experimental avenues. At the core of these models lies their ability to be analysed
by model checking [15]. In the context of biological models, model checking can be
used in two ways:

1. Testing and comparing hypotheses. Computational models represent hypotheses
about molecular and cellular mechanisms that result in experimental data. Exe-
cutions of these models can be used to check if a possible outcome of these
mechanisms conforms to the data. Due to the nondeterministic nature of these
models, each repeated execution may yield a different possible outcome. There-
fore it is impossible to check by executing these models if all possible outcomes
conform to the data. This, however, can be done by model checking, as model
checking systematically analyzes all of the infinitely many possible outcomes of
a computational model without executing them one by one. If model checking
tells us (a) that all possible outcomes of the computational model agree with the
experimental data, and (b) that all experimental outcomes can be reproduced by
the model, then the model represents a mechanism that explains the experimental
data. If (b) is violated, then the hypothesis that the computational model captures
a mechanism for explaining the data is found to be wrong. In this case, either the
model must be enriched as to produce the additional outcomes that are present
in the data, or completely revised. If (a) is violated, then the situation is more
interesting. In this case, the mechanistic hypothesis represented by the model
may be wrong, and one may attempt to restrict the model as to not produce out-
comes that are not supported by the data. Alternatively, the experimental data may
be incomplete and not exhibit some possible observations that would show up if
more data were collected. Thus, in case (a), model checking can offer suggestions
for additional, targeted experiments that would either confirm or invalidate the
mechanistic hypothesis represented by the computational model (Fig. 10.1).

2. Querying the behaviour of mechanistic models. Once a model has been tested
and compared against hypotheses, it can also be queried by searching for inter-
esting executions. By stating that a certain property holds for all executions, or
by stating that a certain property does not hold for all executions, we can either
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Fig. 10.1 Methodology of using model checking. One possible methodology for using model
checking is by comparing mechanistic models to specifications. A formal model that represents a
hypothetical understanding of the system under study is constructed (model). Results of experiments
are formalized in the form of specifications (observations). Model checking is used to ensure that
the model reproduces the experimental observations. Mismatch with experimental observations
suggests that the model is lacking and should be refined by additional information. Match with
experimental observations could lead to further querying and testing of the model to suggest further
experimental studies

validate or falsify specific predictions about the behaviour of the model. By phras-
ing queries such as which molecular events may lead to specific cell behaviour,
we can also determine what part of the execution allows this kind of events.

In this chapter we give an introduction to model checking and the techniques
underlying it. This is in the hope that practitioners will understand better the tech-
niques and what can be done with them. In particular, recent algorithmic progress
shows that with good understanding of the underlying techniques further types of
analysis can be accomplished using model checking techniques. We also give exam-
ples of instances where model checking was used in biological modeling to demon-
strate a flavor of the results that can be achieved by using model checking. In particu-
lar, in some cases, usage of model checking led to new biological insights, shedding
new light on signalling crosstalk.

10.2 What Is Model Checking?

In this section we introduce the mathematical concepts underlying model checking.
Model checking is a technique that checks whether all the computations of a system
satisfy a property. In order to be able to answer this question we have to create a formal
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model of the system and formally state the property. In this section we introduce
the underlying formal concepts and the formal definition of model checking. We
start by introducing transition systems, which will be used to represent the possible
computations of a model. We then proceed to explain temporal logic and conclude
with an explanation of what is model checking.

10.2.1 Transition Systems

The concept of a transition system is a fundamental concept of computation. Here,
we are going to refer to a transition system representing some machine. However,
in the context of this chapter, the machine is usually a model of some biological
machinery. A transition system has states, which represent snapshots of the status
of the machine, and transitions, which represent the possible change of status of the
machine. For the sake of model checking additional annotations are required and
these are usually put on the states in the form of propositions, which are basic facts
about the world of the machine that could be either true or false in a given state.

A transition system is T = (S, T, S0,P, L) with the following components:

• T is the name of the transition system.
• S is the set of states of T , every state s → S represents a possible snapshot of the

machine. The set S0 is a subset of S of initial states indicating in which states can
the machine start an execution. For the purpose of presentation of model checking
we are going to concentrate on transition systems with a finite number of states.

• T is the set of transitions formally represented as a set of pairs of states, i.e.,
T ∞ S × S. For states s and t , having (s, t) → T means that the machine can
change from state s to state t .

• P is the set of facts that are observable in a state of T . The labeling function L
associates with every state the facts that are true in that state. Formally, L: S ⊂ 2P

is a function that associates with every state the set of propositions that are true in
it. By elimination, all other propositions are false in that state.

Given this notion of a transition system we are now ready to define what are
computations of a transition system. Intuitively, a computation is a sequence of
states that starts in an initial state and proceeds by taking permissible transitions.
More formally, a path π is a sequence s0, s1, . . . such that all transitions are in T ,
i.e., for every i ∩ 0 we have (si , si+1) → T . A path π = s0, s1, . . . is a computation if
in addition s0 is initial, i.e., s0 → S0. We note that paths and computations are infinite.
Thus, we assume that all states have at least one outgoing transition. This is a usual
assumption in model checking as it makes it simpler to avoid many technicalities.
One can reintroduce the concept of finite runs by adding a special finish state with a
self loop and considering runs that end in an infinite sequence of visits to finish as
finite. A computation or a path induces a sequence of labels representing the change
in the status of the different facts about the machine that interest us. Instead of looking
on the sequence s0, s1, . . ., we could look on the sequence of labels L(s0), L(s1), . . .,
where L(si ) is the set of facts that are true in state si (and the rest are false). We call
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the sequence of labels a run and denote it by r = L(s0, s1, . . .). When the run is
induced by a computation we say that it is initialized.

10.2.2 Temporal Logic

We now turn to the definition of a languages to give “interesting” properties about
the transition system. Essentially, we would like to be able to describe qualities of
the transition system or its computations. The ultimate goal (to be visited in the
next subsection) is to check whether a transition system satisfies a given property.
That is, whether the machine described by a transition system has this quality or
not. We distinguish between two languages to describe properties of systems. The
first, called linear temporal logic views a system as the sum of all of its possible
computations. The second, called computation tree logic views the entire transition
system as the embedding of the machine. Here we choose to expose both as each has
its own advantages and both have been used in the context of biological modeling.

We start with linear temporal logic (LTL for short), which was introduced by
Pnueli in the late 1970’s [29]. As it’s name suggests it takes the first approach of
viewing the system as the sum of all its computations. An LTL formula is going to
use the basic facts about states (i.e., labels) and combine them in ways that say things
about sequences. Then, we define when an LTL formula is satisfied by a single run.
Finally, an LTL formula will be satisfied by the transition system if all possible runs
of the transition system satisfy it.

As mentioned an LTL formula can use one of the basic facts in P. It can use one
of the following operators.

• Next, denoted X , a unary operator saying that its operand is true in the next state.
• Until, denoted U , a binary operator saying that its first operand must hold until

its second operand holds.
• Always (or globally), denoted G , a unary operator saying that its operand is true

in all future states (including current).
• Eventually (or finally), denoted F , a unary operator saying that its operand is true

in some future (or current) state.
• In addition, LTL uses the usual Boolean operators not, denoted ¬, conjunction,

denoted ∈, disjunction, denoted ⇐, and implication, denoted ⊂.

Thus, an LTL formula is constructed hierarchically from simpler formulas. For exam-
ple, the formula G (p ⊂ X q) uses the basic facts p and q and says that in all states
of the computation if p holds in a state then q must hold in the next state. Similarly,
G (p ⊂ pU q) says that whenever p holds, it must hold continuously until a later
time when q holds.

We now make the intuition regarding when a formula holds in a computation
formal. For that, we start with a definition of when a formula holds in a specific run
in a specific location. The definition builds truth values according to the hierarchical
structure of the formula. That is, basic facts (propositions) can be deduced from
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the label. Then, the truth of more complicated formulas is constructed from that of
simpler formulas. Consider a run r = l1, l2, . . . over P . That is, every li is a set of
basic facts that are true at time i (and all facts in P − li are false at time i). The
following list defines when an LTL formula ϕ is satisfied in r at time i , denoted
r, i |= ϕ, and when it is not satisfied, denoted r, i �|= ϕ.

• If ϕ is a proposition, then r, i |= ϕ if ϕ → li and r, i �|= ϕ if ϕ /→ li .
• If ϕ is ¬ψ then r, i |= ϕ if r, i �|= ψ and r, i �|= ϕ if r, i |= ψ .
• If ϕ is ψ1 ∈ ψ2 then r, i |= ϕ if r, i |= ψ1 and r, i |= ψ2 and r, i �|= ϕ if either

r, i �|= ψ1 or r, i �|= ψ2.
• If ϕ is ψ1 ⇐ ψ2 then r, i |= ϕ if either r, i |= ψ1 or r, i |= ψ2 and r, i �|= ϕ if

r, i �|= ψ1 and r, i �|= ψ2.
• If ϕ is ψ1 ⊂ ψ2 then r, i |= ϕ if either r, i �|= ψ1 or r, i |= ψ2 and r, i �|= ϕ if

r, i |= ψ1 and r, i �|= ψ2.
• If ϕ is X ψ then r, i |= ϕ if r, i + 1 |= ψ and r, i �|= ϕ if r, i + 1 �|= ψ .
• If ϕ is ψ1U ψ2 then r, i |= ϕ if there is a k ∩ i such that r, k |= ψ2 and for every

i ≺ j < k we have r, j |= ψ1 and r, i �|= ϕ if for every k ∩ i such that r, k |= ψ2
there is i ≺ j < k such that r, j �|= ψ11.

• If ϕ is Gψ then r, i |= ϕ if for every j ∩ i we have r, j |= ψ and r, i �|= ϕ if for
some j ∩ i we have r, j �|= ψ .

• If ϕ is Fψ then r, i |= ϕ if for some j ∩ i we have r, j |= ψ and r, i �|= ϕ if for
all j ∩ i we have r, j �|= ψ .

Finally, a system T satisfies an LTL formula ϕ, denoted T |= ϕ, if for every run
of the system we have r, 0 |= ϕ. Otherwise, the system does not satisfy the formula,
denoted T �|= ϕ.

We turn now to computation tree logic (CTL for short), which was introduced by
Clarke and Emerson [14]. The name of the logic derives from viewing the transition
system as producing a single computation tree, which we do not explain here. Unlike
LTL, CTL is going to take an integrative view of the system. A formula is going to be
either true or false for a state of the system. Like LTL, CTL is going to use the basic
facts about states and combine them to properties about the system. It then combines
information about the system by considering the paths that start in states and state
properties of some or all these paths. A CTL formula is satisfied by the system if all
initial states of the system satisfy it.

As mentioned CTL combines information about paths and about states. A CTL
formula can use one of the basic facts in P . Such basic facts are state formulas. It
can use one of the following operators.

• Boolean operators ∈, ⇐, ¬, ⊂ can be applied to formulas as in LTL.
• The temporal operators next, until, always, and eventually are combined with path

quantification E and A. Thus, CTL includes the unary operators EX , AX , EG ,
AG , EF , and AF that can be applied to simpler formulas. The binary operators
EU and AU combine two formulas. The E quantifier says “there exists a path”
and the A quantifier says “for all paths”. The meaning of the temporal part remains
the same as in LTL. Thus, a formula like AX ψ says that all next states satisfy
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the property ψ . A formula like E(ψ1U ψ2) says that from a given state there is a
path satisfying the property ψ1U ψ2.

For example, the formula AG (p ⊂ EX q) says that every state where the fact p
is true that is reachable from an initial state must have a successor where the fact
q holds. Similarly, AG AF p means that from every possible reachable state every
way to continue we will eventually reach a state where the fact p is true.

We now make this intuition formal. As before, the definition builds truth values
according to the hierarchical construction of the formula. Every state formula defines
a set of states in which it is true. Path formulas are defined just like for LTL except
that for the set of paths that start at a given state. Similar to the case of LTL, we denote
by T , s |= ϕ if a formula is satisfied in state s of T and T , s �|= ϕ otherwise.

• If ϕ is a proposition, then T , s |= ϕ if ϕ → L(s) and T , s �|= ϕ otherwise.
• If ϕ is ¬ψ then T , s |= ϕ if T , s �|= ψ and T , s �|= ϕ if T , s |= ϕ. The

definitions for formulas of the form ψ1 ∈ ψ2 and ψ1 ⇐ ψ2 is similar.
• If ϕ is EX ψ then T , s |= ϕ if there is a successor t of s (i.e., (s, t) → T ) such

that T , t |= ψ and T , s �|= ϕ if for all successors t of s we have T , t �|= ψ .
• If ϕ is E(ψ1U ψ2) then T , s |= ϕ if there is some path π = s0, s1, . . . starting

in s such that for some i we have T , si |= ψ2 and for every 0 ≺ j < i we have
T , s j |= ψ2 and T , s �|= ϕ if for every path π = s0, s1, . . . starting in s and for
every i ∩ 0 if T , si |= ψ2 then there is 0 ≺ j < i such that T , s j �|= ψ1.

• The definitions of other temporal connectives can be completed in a similar way
by combining the path quantification with the definition from LTL.

We say that the transition system T satisfies a CTL state formula ϕ, denoted T |= ϕ

if for every initial state s0 we have T , s0 |= ϕ. Otherwise, T does not satisfy ϕ,
denoted T �|= ϕ.

10.2.3 Model Checking

Model checking is the process of checking whether a formula holds for a specific
transition system. That is, given a transition system T and a formula ϕ (either in
CTL or LTL), to decide if the formula is satisfied by the system, i.e., whetherT |= ϕ.
In the case of LTL if the answer is negative we would like to get a run of the system
that exhibits the failure of the property. That is, produce an initialized run r such that
r, 0 �|= ϕ.

The algorithmic approach towards model checking reduces this problem to a
graph exploration problem. Essentially, we look on the transition system as a graph
(sometimes with additional information) and deduce from analysis of this graph the
correctness of the property. For both LTL and CTL we augment the transition system
with auxiliary information. In the case of CTL the auxiliary information is by adding
additional labels that tell us the truth values of simpler state formulas. In the case
of LTL the algorithm is more complicated and the auxiliary information requires
the addition of extra states and conditions. Here we give a short exposition of the
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addition of labels that supports CTL model checking. A detailed exposition of LTL
model checking is available for example in [2].

The algorithm for model checking CTL involves adding additional labels to the
states of the transition system. Starting with a transition system T = (S, T, S0,

P, L) and a CTL property ϕ we show how to add labels to T . We assume that
T already includes labels that tell us for every subformula of ϕ in which states it
holds. Then, if ϕ is a Boolean combination of simpler operands then it is simple to
deduce the truth of ϕ from the labels on states of T . We simply add the label of ϕ to
the states of T . If ϕ is AX ψ , then by assumption we have already included labels
telling us when ψ is true in states of T . It now suffices to iterate over all states of
T . If a state has a successor not marked by ψ then we do not change the label of
such a state. If a state has all its successors marked by ψ then we add ϕ to the label
of that state. The treatment of EX ψ is similar.

We now turn to the treatment of E(ψ1U ψ2). As before we assume that the labeling
of states includes the value of ψ1 and ψ2. We start by marking with E(ψ1U ψ2) all
states that are marked by ψ2. We then remove from our consideration states that
are not labeled by ψ1. Indeed, such states cannot be labeled by E(ψ1U ψ2). We
then repeatedly go over all states and add the marking E(ψ1U ψ2) to every state
that has some successor marked by E(ψ1U ψ2) (considering only states marked by
ψ1). Once no such states can be found this stage terminates. The description above
sounds inefficient requiring repeated iteration over all the states. However, it can be
implemented efficiently by iterating at most once over all possible transitions.

The treatment of A(ψ1U ψ2) is very similar. As before, we mark with A(ψ1U ψ2)

all states that are marked by ψ2 and remove from consideration all states not marked
by ψ1. Then, the repeated iteration adds the label A(ψ1U ψ2) to states that have all
their successors marked by A(ψ1U ψ2).

The treatment of AFψ and EFψ is a special case of the two cases above, where
we note that we can ignore the role of ψ1. The treatment of EGψ and AGψ is by
considering the equivalences EGψ ≡ ¬AF¬ψ and AGψ ≡ ¬EF¬ψ . We treat
states not labeled by ψ as labeled by ¬ψ .

The algorithm for model checking LTL formulas is similar to the above in the
sense that we create an algorithm that searches for paths in the graph obtained from
the transition system and an additional structure obtained from the LTL formula.

10.3 Usage of Model Checking in Biology

In this section we survey a few modeling efforts that used model checking for analysis.
We choose to highlight results that use the techniques as described above and that,
in our opinion, show how model checking can be beneficial for the analysis of
biological models. In some cases, these studies also led to the discovery of new
biological insights. Obviously, in such a short book chapter it is impossible to survey
all studies using model checking and we apologize to colleagues whose work we
could not review due to lack of space.
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10.3.1 Insights into Temporal Aspects of Signalling Crosstalk
During Cell Fate Determination

Describing mechanistic models in biology in a dynamic and executable language
offers great advantages for representing time and parallelism, which are important
features of biological behaviours. Model checking can be used to ensure the con-
sistency of computational models with biological data on which they are based.
Fisher et al. [20] have previously developed a dynamic computational model describ-
ing the mechanistic understanding of cell fate determination during the earthworm
C. elegans vulval development, which provides an important paradigm for study-
ing animal development. Model checking analysis of this model has provided new
insights into the temporal aspects of the cell fate patterning process and predicted
new modes of interaction between the signalling pathways involved. These biological
insights, which were also validated experimentally, further substantiate the useful-
ness of dynamic computational models to investigate complex biological behaviours.

Fisher et al. [20] have used model checking for two purposes. First, to ascertain
that their mechanistic model reproduces the biological behaviour observed in dif-
ferent mutant backgrounds. For that, they have formalized the experimental results
described in a set of papers and verified that all possible executions satisfy these
behaviours. That is, regardless of the order of interactions from a given set of initial
conditions, different executions always reproduced the experimental observations.
Second, they also used model checking to query the behaviour of the model. By
phrasing queries such as which mutations may lead to a stable or an unstable fate
pattern, they analyzed the behaviour of the model. Once an unstable mutation was
found, they determined what part of the execution allows this kind of mutations
by disallowing different behavioural features of the model and checking when the
instability disappears (see Fig. 10.2).

By using model checking to compare the executable model with existing exper-
imental data, Fisher et al. predicted novel interactions in the signalling network
governing vulval fate specification, in addition to predicting the outcome of pertur-
bations that are difficult to test experimentally. These insights led to suggest a revised
model with at least one additional negative feedback loop indicated by the inhibition
arrow in Fig. 10.3.

Through model checking an executable model representing the crosstalk between
Epidermal growth factor receptor (EGFR) and LIN-12/Notch signalling during
C. elegans vulval development Fisher et al. gained new insights into the usage of these
conserved signalling pathways that control many diverse processes in all animals.
While many modelling efforts use simulations that allow investigating only a few
possible executions, this work had emphasized the power of analyzing all possible
executions using model checking.
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Fig. 10.2 Order of events in stable and unstable fate patterns and experimental validation. The
upper panels show sequence diagrams. Time flows from top to bottom. Two events that appear
on the same vertical line are ordered according to the time flow. The dashed lines synchronize
the different vertical lines. All events that appear above a synchronization line occur before all
events that appear below the synchronization line. The time-order between two events that appear
on parallel vertical lines without a synchronization line is unknown. a Proposed sequence of events
leading to a stable pattern. The left time line starts with a high inductive signal (IS) and the right time
line (b) with a medium IS. b Three diagrams that represent possible sequences of events leading
to different fate patterns. c Experimental validation of the loss of sequential activation in lin-15
mutants, as predicted by the computational model. The pictures visualize cell fate specification in
(c). Elegans with blue and yellow fluorescent proteins (EGL-17::CFP and LIP-1::YFP) expressed
during activation of the inductive and lateral signaling pathways, respectively. The upper and middle
rows show examples of wild-type animals at mid and late L2 stage expressing the EGL-17 marker
in P6.p and the LIP-1 marker in P5.p and P7.p, respectively. The lower row shows examples of a
lin-15 mutant at the late L2 stage showing simultaneous expression of both markers in P5.p and
P7.p. Reproduced from [20]

10.3.2 Symbolic Analysis of Biochemical Networks

The idea to use computation tree logic (CTL) as a query language for biochemical
networks was first introduced by Fages, Schächter and colleagues in 2004. Chabrier-
Rivier et al. were the first to show the potential of using symbolic model-checking
tools to evaluate CTL queries in the context of mammalian cell-cycle control and gene
expression regulation [11, 12]. More recently, the Biochemical Abstract Machine
(BIOCHAM) tool was introduced as an environment to model and analyse bio-
chemical networks using model checking [10]. BIOCHAM is based on a rule-based
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Fig. 10.3 Conceptual model for the signaling events underlying VPC fate specification. Diagram-
matic mechanistic model for the signaling events underlying vulval precursor cell (VPC) fate spec-
ification. Inductive signal (IS), lateral signal (LS), cell fates: primary 1≥, secondary 2≥, tertiary 3≥.
Reproduced from [20]

language that allows the user to write models of biochemical networks and perform
multi-level analysis, and a temporal logic language (CTL or LTL) used to formalize
experimental data. BIOCHAM permits continuous or stochastic simulations, as well
as model validation or revision according to a formal qualitative or quantitative spec-
ification. Consequently, BIOCHAM allows to verify that whenever an interaction or
a molecule is added to the network, the global properties of the system (expressed in
temporal logic) are conserved. In addition, it is possible to automatically search for
parameter values that reproduce the specified behaviour of the system under different
conditions.

The Pathway Logic [18] is tightly related to the symbolic model checking approach
as it is based on rewriting logic in order to model and analyze signal transduction and
biochemical networks, and interpret experimental data. In Pathway Logic, biological
molecules, their states, locations, and their role in molecular or cellular processes
can be modelled at different levels of abstraction. An example of an EGFR pathway
model as a Petri net is shown in Fig. 10.4a. Pathway Logic can be used to browse the
model and ask for subnets or pathways satisfying goals of interest (Fig. 10.4b) [33].

The modelling of biochemical networks with concurrent transition systems is of
a somewhat lower level than with Pathway Logic. Pathway Logic is more expressive
as it can express algebraic properties of the components, such as the associativity of
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Fig. 10.4 Model of EGF stimulation using Pathway Logic. a An impression of the Pathway Logic
Assistant (PLA) rendering of the model as a Petri net. b The subnet of all reactions relevant to
activation of Erk in response to a stimulus by EGF is obtained by making Erk1 (and/or Erk2) a goal
and asking PLA for the subnet. Reproduced from [33]

complexation. This capability can be used to infer the possible reactions of molecules
from their logical structure.

10.3.3 Insights into Signalling Crosstalk During Pancreatic Cancer

Clarke and colleagues applied symbolic model checking to study temporal logic
properties in a model of pancreatic cancer. This is the first in-silico model describ-
ing the crosstalk between six signalling pathways that have genetic alterations in all
pancreatic cancers, with the aim to investigate apoptosis (programmed cell death),
proliferation, and cell-cycle arrest. The signalling network model composed of
the EGF-PI3K-P53, Insulin/IGF-KRAS-ERK, SHH-GLI, HMGB1-NFkB, RBE2F,
WNT-b-Catenin, Notch, TGF b-SMAD, and apoptosis pathway verified temporal
logic properties encoding behaviour related to cell fate, cell cycle, and oscillation of
expression level in key proteins. The model agreed well with experimental observa-
tions as well as suggested several properties to be tested by experimentally.

10.4 Underlying Techniques

In this section we revisit the algorithms for model checking and expose some of the
techniques used to implement those algorithms efficiently. In general, we term these
techniques as graph representation and graph analysis techniques. After exposition
of these techniques we survey some results where these techniques were used for
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analysis of biological models. In this cases, the knowledge of the techniques used
by model-checking tools for the effective analysis of transition systems were used
to effectively analyze biological models.

10.4.1 Symbolic Transition Systems

In Sect. 10.2 we concentrated on the explicit representation of models. That is, every
snapshot of the status of the system was treated individually. While this approach
is very intuitive it has its limitations. Most importantly the size of models that can
be handled. For example, a moderately sized model that represents the status of 30
substances, each represented as either active or inactive, has 230 states, which is
about one Billion. Approaches that call for direct drawing of the possible transitions
of such a model for user inspection are hopeless. But even exploring each one of
these states automatically will incur a significant time delay. Alternative approaches
to represent the states and executions of systems have been developed [7–9]. Such
approaches are generally termed symbolic and they raise the level of representation
from that of single states to that of sets of states.

We explore an alternative symbolic representation of a transition system. A sym-
bolic transition system is T = (V, ρ,Θ) with the following components:

• V is a set of variables, each ranging over a fixed range R(V ). By writing formulas
over the variables in V we can represent sets of states. For example, the formula
v1 > 2 ∈ v2 ≺ 3 represents all the states where the value of v1 is more than 2
and v2 is at most 3. A valuation σ of the system is an assignment of value to each
variable v → V such that σ(v) → R(v). The language used for representing such
formulas depends on the ranges of variables. Here, we assume that all variables
range over the natural numbers or (small) sets of natural numbers. We restrict
attention to formulas constructed by taking the normal arithmetic operations over
natural numbers and variables, comparison between such expressions, and usage
of conjunction, disjunction, and negation to combine such terms to large formulas.
Thus, formulas can represent the set of valuations such that by assigning the value
of the variables into the formula it evaluates to true. In order to represent transitions
we use two copies of the variables. We take a disjoint copy of the variables V and
add primes to them V ∅. The primed variables represent the next values of the
variables. Thus, by writing a formula like v1 = 1 ⊂ v∅

1 = 2 we impose the
restriction that whenever v1 is 1 it changes its value to 2. By writing formulas over
V ≤ V ∅ we can represent changes in the values of variables, or transitions between
states of the model. Thus, a pair of valuations σ and σ ∅ satisfies a formula over
V ≤ V ∅ if by assigning the values in σ to all the variables in V and the values in
σ ∅ to all the variables in V ∅ the formula evaluates to true.

• Accordingly, Θ is a formula over the variables V representing the initial states
and ρ is a formula over V ≤ V ∅ representing the transitions.
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It is simple to convert the symbolic representation to the explicit representation pre-
sented in Sect. 10.2. Given a symbolic transition system T = (V, ρ,Θ) and a set
of formulas ϕ1, . . . , ϕn representing the basic propositions about the model we can
construct the explicit transition system T = (S, T, S0,P, L), where S is the set of
possible assignments to variables in V , i.e., all the valuations of T , S0 is the set of
states/valuations satisfying the formula Θ , T is the set of pairs of states/valuations
satisfying the formula ρ. Finally, the propositions P are {ϕ1, . . . , ϕn} and L asso-
ciates with a valuation σ all the propositions that hold true in that valuation.

It seems that we have made a meaningless change of notation. However, the truth
could not be further. Now, we have a way of easily representing sets of states as
formulas. Furthermore, by manipulating such formulas we can manipulate sets of
states. For example, taking two sets of states represented by formulas φ1 and φ2
the formula representing their intersection is φ1 ∈ φ2 and the formula representing
their union is φ1 ⇐ φ2. We can check set equivalence by testing formula equivalence
and check whether the set of states represented by a formula is empty by checking
whether the formula is satisfiable. By introducing quantification over variables we
also can compute the set of successor states of a given set. That is, if φ represents a
set of states and ρ is the transition relation over variables V ≤ V ∅ then the following
formula represent the set of states that can be reached from φ in one application of ρ:

unprime(⊆V .φ ∈ ρ)

That is, the formula φ ∈ ρ represents the pairs of valuations (σ, σ ∅) such that σ

satisfies φ and σ ∅ is a successor of σ as (σ, σ ∅) satisfies ρ. Then, ⊆V .φ ∈ ρ throws
away the variables in V leaving a formula over V ∅ that characterizes valuations over
V ∅ such that there is some value for the variables in V such that φ ∈ ρ holds for the
pair. Exactly the states that are successors of states in φ. Finally, we have to translate
every reference in ⊆V .φ ∈ ρ to a variable in V ∅ to refer to the same variable in V .
This is the role of the unprime. It follows that we have a symbolic way to represent
the application of the transition to a set of states. We denote this in short as nextρ(φ).
Similarly, prevρ(φ) ≡ ⊆V ∅.(ρ ∈ prime(φ)), computes the set of predecessors of φ.
The prime operator changes references to V to references to V ∅ resulting in a formula
that characterizes all the valuations over V ∅ that satisfy φ. Then, adding ρ ensures
that we characterize pairs satisfying the transition such that the second satisfies the
formula φ. Throwing away the variables in V ∅ we get the desired formula.

Now we need two additional tools. Suppose that all variables in V range over
finite domains. Then, a variable v ranging over {1, . . . , n} can be represented by
log(n) Boolean variables. It follows that we can think about formulas over Boolean
variables and in order to use the symbolic approach we need an efficient way to
store, manipulate, and evaluate formulas over Boolean variables. Boolean Decision
Diagrams (BDDs for short) [8] do exactly that. They are a canonical representation
of Boolean formulas making comparison between such formulas very simple. Oper-
ations such as conjunction, disjunction, and negation can be implemented efficiently.
Finally, existential quantification is done by translating it to disjunction.
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The second tool is satisfiability solving. If variables range over finite domains we
can translate them to Boolean variables as above and we need a solver for proposi-
tional formulas [7]. If variables range over infinite domains we need a theorem prover
[31] or an SMT solver [23]. We are now in position to use the symbolic representation
for analysis.

10.4.2 Symbolic Model Checking

The algorithms in Sect. 10.2 consisted of annotating states by additional markings
corresponding to the CTL formulas holding in them. Here we use formulas to rep-
resent the same.

Suppose that we have computed a formula representing the set of states satisfying a
CTL formula ψ . This is straight forward for propositions as they are already formulas
representing sets of states. Consider a formula of the form ϕ = EX ψ . Then,
prev(ψ) is the formula representing the set of states satisfying ϕ. The set of states
satisfying a formula of the form ϕ = AX ψ is represented by ¬prev(¬ψ). We have
already explained how to handle Boolean connectives and we turn now to the until
operator. For a formula E(ψ1U ψ2) we do the following inductive process. We start
with φ0 = ψ2, and then compute φi+1 = φi ⇐(ψ1∈prev(φi )). We then compare φi+1
to φi . If they are equivalent, the process has terminated and we have computed the
formula representing the set of states satisfying E(ψ1U ψ2), otherwise, we proceed
with another step. Similarly, A(ψ1U ψ2) is computed by iterating over φ0 = ψ2 and
φi+1 = φi ⇐ (ψ1 ∈ ¬prev(¬φi ) ∈ prev(true)). The need in adding prev(true) is
to avoid adding states satisfying ψ1 that have no successors at all, which obviously
do not satisfy A(ψ1U ψ2).

It turns out that in practice, symbolic model checking, in many cases, outper-
forms explicit model checking. These techniques combined with BDD representa-
tions allowed model checking of hardware designs to scale to systems composed of
10120 states and more [9].

10.4.3 Path Representation

In recent years efficient satisfiability solvers and SMT solvers have been developed
[17, 27, 28]. These tools enabled a different approach to model checking. This
approach creates a formula representing a set of executions of the model. By asking
whether this formula is satisfiable we can search for paths of a certain length. Further-
more, by combining the formula representing executions with additional constraints
on the states participating in such executions we can search for executions satisfying
given conditions. For example, one could be looking for executions reaching a certain
state or set of states. Alternatively, one could search for paths satisfying a sequence
of conditions or evolving according to a certain pattern.
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Consider a system T = (V, ρ,Θ). In order to represent executions of T of
length n we create n copies of V . That is, V0, . . . , Vn−1 are all copies of the variables
in V each numbered with the location in the execution. A valuation to the variables
in V0, . . . , Vn−1 is now a representation of n states of the system. We now create a
formula representing executions of length n by translating Θ to Θ0, which refers to
the first copy V0 instead of V and translating ρ to ρi, j , which refers to Vi instead of
V and to Vj instead of V ∅. Thus, the formula Pi ≡ Θ0 ∈ ∧n−2

i=0 ρi,i+1 is a formula
over the variables V0, . . . , Vn−1. A satisfying assignment to the Pi is a sequence of
states such that the first satisfies Θ (through Θ0) and every pair of adjacent states
satisfies ρ (through ρi,i+1). The formula Li ≡ Θ0 ∈ ∧n−2

i=0 ρi,i+1 ∈ ⎪n−1
i=0 ρn−1,i is

satisfiable if there exists a looping execution of length at most n.

10.4.4 Biological Model Analysis

We now survey results that take advantage of the techniques underlying model
checking to improve analysis of biological models. Both apply to the analysis of dis-
crete models that extend Boolean networks; Qualitative Networks (QNs, for short)
[32] and Gene Regulatory Networks (GRNs, for short) [34]. We give a short infor-
mal introduction to these formalisms and explain how model checking techniques
are used to analyze them.

We give a short exposition of QNs and how they give rise to transition systems. A
model in Qualitative Networks includes variables that represent the concentration of
proteins as a discrete value in a (small) fixed range. Changes in variable values are
gradual allowing them to increase or decrease by at most 1 in every step of the system.
Mathematically, a QN Q includes two components (V, T ): The set V = {v1, . . . , vn}
is a set of variables each ranging over a finite range D(vi ) = { j, . . . , k} ∞ N, e.g.,
{0, 1, 2, 3}. The set T = {T1, . . . , Tn} include target functions for all variables. A
state of Q is an assignment s : V ⊂ N such that for every i we have s(vi ) → D(vi ).
Let S denote the set of all possible states of the QN. Each target function Ti → T
associates the target value of variable vi for every state of the system. Formally,
Ti : S ⊂ D(vi ). Intuitively, in state s → S, variable vi will change to get to the
value Ti (s), however will do so in increments/decrements of 1. It follows that a QN
Q gives rise to a transition system TQ = (S,Δ, S,P, L), where the components
of TQ are as follows.

• S is the set of states as explained above and all states are initial.
• Δ is the set of transitions that associates with state s the successor s∅ such that for

every variable vi → V we have

s∅(vi ) =

⎜



s(vi ) + 1 If T (s) > s(vi ) and s(vi ) + 1 → D(vi )

s(vi ) − 1 If T (s) < s(vi ) and s(vi ) − 1 → D(vi )

s(vi ) Otherwise
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• The set of propositions P is vi = j for vi → V and j → D(vi ).
• The labeling L associates with a state s the propositions vi = s(vi ) for every

vi → V .

Thus, the transition system updates all the variables in the system by allowing them
to pursue their target by a change of at most 1. The basic facts labeling each state of
the model are the values of the different variables.

One of the most interesting questions regarding qualitative networks has been that
of stabilization. A network is called stabilizing if there is a unique state s such that
Δ(s, s) and for every other state t it is impossible to get from t to itself by application
of Δ. That is, for every t1, . . . , tn such that Δ(ti , ti+1) for every 1 ≺ i < n we have
t1 �= tn . The question of stabilization can be answered by computing the set of
states that are visited along arbitrarily long paths. If that set has the size 1, then
the network is stabilizing. This observation suggests the following algorithm for
checking stabilization. Let R0 = S and for i ∩ 0 let Ri+1 = Δ(Ri ) = {s | ⊆t →
Ri s.t. Δ(t, s)}. It is clear that Ri+1 ∞ Ri . It follows that if a state appears on a cycle
inTQ , it remains in Ri for all i . It is equally easy to see that if a state s is not on a cycle
in TQ then for some i it does not appear in Ri . Then, by repeatedly computing Ri for
increasing values of i one can find a set Ri such that Ri = Ri+1. It follows that this
set Ri includes exactly the set of states that appear on cycles in TQ . Unfortunately,
the straight forward computation of Ri has been elusive. In [32], it was suggested
to iteratively compute Ri by abstracting parts of the system. This abstraction lead
to a considerable increase in capacity of networks that can be analyzed compared
with the naïve approach. In [16], it was suggested that instead of constructing an
exact representation of the set Ri , it would be enough to consider subsets of Ri for
which the range of each variable is a contiguous range of values. For example, in
a system with two variables v1 and v2 ranging over {0, . . . , 4} the set that includes
the two points (0, 1) and (1, 0) would be represented by the set of states in which
0 ≺ v1 ≺ 1 and 0 ≺ v2 ≺ 1. Then, the set Ri+1 is the best set of this form that
captures the transition of Q. The results in [16] show that this abstraction technique
scales to an order of magnitude larger models than those that could previously be
handled. This technique has been made available through the tool BMA [5].

We now turn to survey the usage of model checking in the analysis of GRNs. The
transition structure of GRNs and QNs are very similar. The main difference is that in
the context of GRNs the target functions are defined in terms of so called parameters.
Somewhat simplifying presentation, the parameters are the actual value of the target
function per each possible value of the inputs. For example, consider a system with
variables v1, v2, and v3 all ranging over {0, 1, 2}. If v1 is affected by v2 and v3 then the
parameters are essentially the values written in the 3×3 table for all possible options
for the values of v2 and v3. An entry in the table is the value of the target function of
v1 when v2 and v3 are in the appropriate values matching this table entry. One of the
interesting usages of model checking in the context of GRNs is to try to narrow down
the space of possible values of parameters. In this context, a GRN is given without
concrete knowledge of the parameters but with additional dynamic behaviors that
are exhibited in experimental results. These dynamic behaviors should be translated
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to temporal logic specifications that talk about the changes in variable values over
time. Then, model checking can be used to check which parameter values allow the
network to reproduce this behavior. We note that in this context, model checking is
used dually to the way it was described above. Thus, instead of requiring that all
behaviors for a given parameter value reproduce the specification we require that for
an admissible parameter value there be a behavior reproducing the specification.

Technically, in order to enable this check, one has to augment the transition system
with variables that represent the parameter values. The transition system encodes the
fact that parameter values do not change over an execution and that the changes in
the values of “core” GRN variables depend on the values of the parameter variables.
Then, a model checking query can create a representation of the set of possible
parameter values that allow a particular behavior. This set can be narrowed down
by considering multiple dynamic behaviors. See, for example, recent work on such
usage of Model Checking in the context of GRNs [3, 4, 6].

10.5 Probabilistic Model Checking

So far the formalism we used to represent models has been transition systems.
Transition systems can represent possible transitions and possible executions, how-
ever, they have no quantitative information regarding the prevalence of these tran-
sitions. In order to include such information in our models we have to use richer
formalisms that include such information. In this section we give a short exposition
of continuous time Markov chains (CTMCs). These are models that have discrete
states and cannot represent continuous changes in values of variables. However, they
do capture probabilities in change from state to state and include also a representation
of continuous time. The algorithms involved in the analysis of Markov chains are
significantly more complex and we do not review them here. The interested reader
is referred to [2, 25, 26].

10.5.1 Markov Chains and Their Analysis

We extend the concept of a transition system to that of a continuous-time Markov
chain (CTMC). For that, we replace the transitions with probabilistic transitions.
CTMCs are usually defined via higher level languages that resemble the symbolic
representation of transition system. We try to keep the discussion as general as
possible and avoid relating to such formalisms. We then introduce the temporal logic
continuous stochastic logic (CSL) that is used to express properties of CTMCs.

A CTMC is T = (S, T, s0,P, L), where S and L are as in transition systems.
The set of transitions T : S × S ⊂ R

+ associates with every pair of states (s, t) a
non-negative real number T (s, t) corresponding to the rate of transition from state s
to state t . There is one initial state s0 → S. The transition T (s, t) = r > 0 implies that
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it is possible to change from state s to state t . The change occurs within t time units
with probability 1−e−r ·t . If multiple transitions from s are possible, i.e., T (s, t) > 0
and R(s, t ∅) > 0 for t �= t ∅, then there is a race between the transition to t and the
transition to t ∅. The exit rate from state s is the sum of positive rates leaving state s,
that is T (s) = ∑

t T (s, t). The probability that some transition occurs within t time
units is 1 − e−T (s)·t and the probability to end up in state t ∅∅ is R(s, t ∅∅)/T (s). One
interesting features of probabilistic systems is that an experiment that has positive
probability and is tried often enough will eventually succeed. Accordingly, if a state
of the CTMC is revisited often enough every one of its successors will be visited
often enough. This leads to the steady state behavior of a CTMC. In the long run,
some of the states of the CTMC will be transient: the amount of time spent in them
will be 0, and some recurrent: the amount of time spent in them will be greater than
0. Accordingly, the value R∃(s, t) is the probability of having started in state s to
be in state t in the long run.

We are now ready to define CSL, a version of temporal logic that is used to
specify properties of CTMCs [1]. CSL extends CTL by adjusting it to continuous
time and replacing path quantification by probabilistic quantification. As before CSL
combines the basic facts with Boolean operators and special temporal operators.

• The temporal operators X and U are nested within probabilistic path quantifica-
tion [·]◦∇p, where ◦∇→ {>,∩,<,≺} and p → [0, 1]. FurthermoreU is extended by
allowing to state an interval I in which the second formula is expected to happen.
Thus, [X φ]>0.5 means that the measure of paths that satisfy φ in the next state is
more than 0.5. Similarly, [φ1U [5,7]φ2]≺0.2 means that the measure of paths that
satisfy that φ1 holds until φ2 holds sometime between 5 and 7 time units from now
is at most 0.2.

• The steady-state operator S(·)◦∇p states that in the long run the probability to be
in states that satisfy the subformula must satisfy the probability condition.

As before we make this intuition more formal. Every formula defines a set of
states in which it is true. Just like CTL and LTL we denote by T , s |= ϕ if formula
ϕ is satisfied in state s of T and T , s �|= ϕ otherwise.

• For propositions and Boolean operators the definitions is just as before.
• If ϕ is [Xψ]◦∇p then T , s |= ϕ if probT (π, ϕ) ◦∇ p. That is, if the probability of

the set of paths that start in s and in the next state visit states that satisfy ψ satisfies
the comparison with p.

• If ϕ is [ψ1U ψ2]◦∇p thenT , s |= ϕ if probT (π, ϕ) ◦∇ p. That is, if the probability
of the set of paths that start in s and satisfy ψ1U ψ2 such that ψ2 is visited in the
interval I satisfies the comparison with p.

• If ϕ is S[ψ]◦∇p then T , s |= ϕ if
∑

T ,s∅|=ψ R∃(s, s∅) ◦∇ p. That is, if starting in s
the long term probability of visiting states that satisfy ψ satisfies the comparison
with p.



274 J. Fisher and N. Piterman

10.5.2 Biological Modeling with Markov Chains

Using CTMCs encoding of molecular networks is very direct. A typical model
includes a certain set of species of molecules. A state of a model represents the
number of molecules of each species (or the concentration level) and transitions
correspond to interactions between substances [30].

More formally, a molecular model is defined over a set of substances V . For each
substance v → V one defines the number of levels l(v) of v, implicitly deciding
whether v represents molecules explicitly or their concentration level (cf. [13, 22]).
Furthermore, the model includes molecular interactions and their rates. For exam-
ple, phosphorylation would correspond to one molecular species changing to another
(non-activated to activated). Similarly, binding of two molecules would correspond
to the number of the two simple forms decreasing and the number of the bound sub-
stance increasing. Unbinding would be treated dually. So in a state v, each molecular
interaction would correspond to a transition that changes the numbers of substances in
v according to one interaction taking place. The rate with which the interaction takes
place would then depend on the number of possible molecular interactions. Thus, if
an interaction is a change from one molecular type to another, its rate is a product
of the rate of a single such interaction with the number of instances of the source
type in v. If an interaction is a binding, its rate is a product of the number of possible
pairs of molecules and thus is a product of the rate of a single such interactions with
the number of instances of the first source and the number of instances of the second
source. The disadvantage of this approach is that it leads to huge models with many
possible transitions enabled from each state. This is especially true if molecules are
modeled individually and not through concentration levels. This severely limits the
size of models that can be analyzed by model checking. Still, the extensive analysis
enabled by model checking makes it useful to analyze even models of bounded size.

One example of an application of such an analysis is the model by Heath et al. [22]
of the Mitogen-activated protein kinase (MAPK). In this chapter a CTMC model of
the Fibroblast growth factor (FGF) signalling pathway is constructed. Due to the
scalability issue mentioned above the model is analyzed with very low number of
copies of each molecules. The model is analyzed with questions such as: What is the
probability that a certain species is bound to another species at a given time t? What
is the expected number of times that a molecule binds before degrading? The exact
analysis of these questions sheds light on the roles of different molecules within
the pathway. A similar (in terms of the technology involved) study of the MAPK
pathway is available in [24].

Another example is the model of gp130/JAK/STAT signalling pathway using the
concentration level approach [21]. Here, probabilistic model checking is used to
ensure that the model is of sufficient quality. For example, model checking identifies
that one of the substances can “run out” in the system and lead to no further molecular
interactions being possible. This highlights the important role of this substance and
the need in further modeling of the production of this substance. Then, analysis
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similar to that described above shows that a full phosphorylation of some of the
substances is achieved with high probability.

10.6 Lessons Learned

To summarize, we highlight the main issues that we believe are important for the
development of this approach:

• Model checking is a powerful technique for the analysis of programs. Over the last
decade model checking has been successfully used for the analysis of biological
models, providing novel insights into various cellular mechanisms and behaviors.

• Many tools providing implementations of model checking are experimental and
academic in nature. This implies that users require certain expertise in underlying
techniques and formalisms in order to use model checking. The development of
more reliable and user-friendly tools, as well as approaches that facilitate the cre-
ation of models, could further encourage users with little to no formal background
to use these tools for biological modeling and analysis.

• Biological models are somewhat different from software and hardware programs.
This calls for the formal methods community to develop dedicated techniques
and algorithms that are particularly tailored for the analysis of biological models,
leading to improved capacity and efficiency when analyzing biological models.

• Model checking cannot stand on its own as a sole technique of analysis. It is
crucial to combine multiple forms of analysis of the same model. One of the major
obstacles to combine multiple forms of analysis is the lack of standardization in
modeling languages. While SBML provides a standard for mathematical biological
models, a similar language that supports further types of models is missing. Such a
language could provide a cross-tool foundation for sharing and distributing models
enabling analysis by multiple approaches.

10.7 Glossary

• Reactive Systems: A system that consists of parallel processes, where each process
may change state in reaction to another process changing state. Biological systems
are highly reactive (e.g., cells constantly send and receive signals and operate under
various conditions simultaneously).

• Formal methods: A collection of methods that relate to formal logic to analyze
computer systems and prove properties (written in formal logic) about such sys-
tems.

• Model checking: A technique for proving that systems have certain properties
described in temporal logic. In case of proof failure, in most cases, the technique
provides a counter example—an execution that violates the requirement.
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• Nondeterministic system: A system that may have several possible reactions to
the same stimulus. In biological systems, for example, we can observe various
patterns of cell fate under the same genotype. Hence, nondeterministic models
capture the diverse behavior often observed in biological systems by allowing
different choices of execution, without assigning priorities or probabilities to each
choice.

• Property/Requirement/Specification: A formal sentence describing some aspect
of a program or system.

• Transition system: A computational model for a system. A state of a transition
system describes the status of the world (restricted to the point of interest of the
model/system under study). Transitions, which are connections between states
describe, the possible changes to the world.

• Temporal logic: A specific formalism for describing properties of systems. Tem-
poral logic describes possible evolutions of systems over time. Generally classified
to linear time or branching time according to their view of a computation. In the
linear time view a computation is a sequence of the states of the system. Nonde-
terministic systems have multiple possible computations. In the branching time
view a computation is a tree like structure encompassing all possible options of
the system. A nondeterministic system has one computation that resembles a tree.
Linear temporal logic (LTL) and Computation Tree Logic (CTL) are examples of
a linear time and a branching time logic often used in verification of computer
systems.

• Logic operators: The combinators of simple logic formulas to more complicated
ones. For example, an “and” operator combines two Boolean operands. Binary
operators and unary operators operate on two or one operands respectively. In
the context of temporal logic we distinguish between Boolean operators, which
combine the truth values of formulas at a given point in time (e.g., “and”, “or”,
or “not”), and Temporal operators, which combine the truth values of formulas in
different time points.

• Boolean networks: Computational models that describe a biological system by
referring to its components as either “active” or “inactive”. Usually, each com-
ponent relates to a certain protein. Components change their values according to
positive and negative influences from other components.

• Petri nets: Computational models that describe the state of the world by associating
a number of “tokens” with designated “places”. “Transitions” prescribe how tokens
can move from place to place leading to a general change of conformation of the
system.

• Graph representation: Representing a transition system in the form of a mathemat-
ical graph. Nodes of the graph correspond to the states of the system and (directed)
edges of the graph correspond to transitions of the system.

• Graph analysis: Applying algorithms on the graph representation of the system.
• Symbolic model checking: Applying the model checking technique by combining

reasoning over sets of states instead of reasoning over individual states. Using such
techniques model checking can scale to systems with a huge number of states that
cannot be enumerated.
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• prime operator: In a symbolic representation of a transition system this is our way
of saying that a variable relates to the next time point and not the current one.

• Boolean Decision Diagrams (BDDs): A specific technique for storing sets of states
through relating to them as Boolean functions.

• Satisfiability solver: A tool that solves the question of whether a Boolean formula
is satisfiable. A Boolean formula is a way of stating constraints over the values
of Boolean variables. The formula is then satisfiable if there is a was to assign
Boolean values to variables so that the formula evaluates to true.

• SMT solver: A tool that solves the question of whether a formula that combines
Boolean parts and additional (theories) parts is satisfiable.

• Qualitative networks: An extension of Boolean Networks that allows more values
to represent the possible status of each component and allows a more flexible way
of describing how the values of components change over time. The changes in the
values of variables are defined through so called target functions, which describe
the value that the component aspires to get to. The value of the component then
changes gradually until it attains this target.

• Fixed point: a value in a computation that does not change when applying to it
some operation. This is used many times to describes states of a system that does
not change anymore. Also, in algorithms that compute a set of states by applying
a certain operation to them a fixpoint is a set of states that the operation does not
change.

• Stabilization: One of the main properties checked for Boolean networks and Quali-
tative networks. Essentially, this is a property of the system which indicates that the
system has exactly one fixpoint. That is, there is a unique stabilization state such
that regardless of the starting values of the components in the network, after a long
enough execution the stabilization state is reached and never changed anymore.

• Continuous time Markov chains (CTMCs): A computational model combining
discrete state transitions with continuous time and probabilities. As in general
transition systems, the state of the world is described via a “state”, however, there
is a probability distribution over the time that the system stays in the same state
and in case of change to which state the system changes.
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Abstract Accurate predictions of the behavior of biological systems can be achieved
through multiple iterations of modeling and experimentation. In this chapter, we
present the central ideas for the design of informative experiments in systems biology.
We start by formalizing the task, and proceed by introducing the required tools
to process data subject to uncertainty. We analyze design approaches which are
Bayesian and information-theoretic in nature. A particular emphasis is placed on
implicit and explicit assumptions of the available techniques. Two main design goals
are here compared: reducing uncertainty and challenging existing belief. Finally, we
discuss the limitations of the presented approaches to provide general guidelines for
predictive modeling.
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11.1 Introduction

Biological systems are understandable at different scales and levels of detail [34].
Given appropriate data, mechanisms of interests can be modeled to perform accurate
predictions [25]. A central question for experimentalists and modelers is:

Which experiment should be selected to best answer a scientific question?

For prediction, data quality matters more than quantity. Experimental design aims
at selecting informative protocols for controlled experiments. Computational design
entertains the idea that computers can help to maximize the task-relevant information
gathered by the modeler through the measured data. The overall process of design
typically involves multiple aspects, including those imposed by policy constraints
and resource availability.

This chapter focuses on the task of experimental design from the theoretical and
the computational point of view. To render the chapter self-contained, we start by
providing a minimal set of preliminary notions. Expert readers may skip to the subse-
quent sections, which provide an overview of the fundamental principles. We proceed
by describing the main set of goals and their interpretation. Assumptions, relations,
and limitations of the approaches are discussed in the final section. Here, we focus on
what is particularly relevant for systems biological applications. For concreteness,
we introduce examples from the domain of cell signaling and biochemical network
dynamics. This chapter is not an exhaustive dictionary of design techniques, but
rather a comprehensive walk-through relating assumptions, goals, and limitations.

11.2 Preliminary Notions

Basic requirements for experimental design are:

• hypothesis class M: the set of testable hypotheses;
• experiment set S: the set of feasible experiments;
• inference method: the formal procedure employed to derive conclusions from the

experimental observations.

Given a scientific question, hypotheses are formally expressed in terms of equations.
In systems biology, equations are combined into systems that capture the essential
behavior of components and interactions. Since the studied phenomena are typically
time-varying, their models incorporate dynamic aspects to better predict the observed
behaviors. Firstly, it is important to specify the model scope, that is the domain in
which the model can be appropriately employed to perform predictions. Limitations
might be experimental: for instance due to scarcity of resources, or because of the
intrinsic inability to directly inspect the inner workings of the studied system. The
experiment set conditions the choice of the hypothesis class, and vice versa. In
principle, hypotheses and expected evidence should match the central prediction task,
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which must be given a priori. Given the experimental data, conclusions are derived
on the basis of the accumulated evidence. Some hypotheses are retained, others
are discarded. Importantly, conclusions must include an estimate of the uncertainty
associated with the selection of the hypotheses.

Example Modeling DNA-Damage Mechanisms due to Irradiation.
Let us consider the following process: the DNA-damage response pathway in
mammalian cells. For illustration, let us take a model of p53/Mdm2 oscillations
in response to ionizing radiation. The hypothesis class consists of two systems
of equations. The two mechanisms model alternative hypotheses regarding the
behavior of an oscillatory reaction network [17, 41]. Kinetic rate constants
and other parameters are assumed to be known (with negligible uncertainty)
from previous experiments. In this case, let us consider an experiment set con-
taining two feasible experiments: high- and low-frequency gamma-irradiation
of the cells. As damage is repaired, oscillations are counted as a function of
irradiation time. Which experiment should be selected to maximally discrim-
inate between the two putative mechanisms? Despite the complexity of the
studied mechanisms, the design process is straightforward: there exist only
two hypotheses (with known parameters) and only two experiments. In prac-
tice, real scenarios will involve large numbers of hypotheses, many possible
experiments, as well as significant uncertainty with respect to rate constants
and other parameters [14].

11.2.1 Modeling of Dynamical Systems

In its broadest interpretation, the formal process of modeling coincides with the
hypothetico-deductive approach to science [37]. In practice, specific phenomena are
modeled depending on the task. This is why it is not obvious to select the appropriate
features of a phenomenon. The desired type of testable prediction induces different
choices, which are ideally aligned with the aim of the modeling exercise.

Biological systems are time-varying processes. Hence, biological models typi-
cally involve time-varying entities. In systems biology, the emphasis is on variations
due to mutual interactions between components. Predominantly due to (frequent)
data scarcity, modeling might require the incorporation of previous knowledge from
domain expertise and published results. Hypotheses are complex and require strong
evidence for testing: armed with prior knowledge, the modeler may significantly
improve predictions. Axiomatic assumptions and first principles are conveniently
incorporated already in the definition of the model variables, for instance as state-
space models [52].

Let us consider a state space X. The state space describes all possible unique
configurations of a process. The state x(t) ∈ X is a variable which denotes the
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instantaneous configuration of the studied process at time t . States could represent,
for instance, the concentrations of several metabolites in a specific compartment of
the cell, as well as more abstract entities such as stages of a cell cycle [54].

11.2.1.1 Process Model

Firstly, we take causality as essentially axiomatic.

Main Assumption 1 Causality.

The future behavior of the studied phenomena can be described solely as the function of
their current and past states.

This assumption excludes anticipatory effects and is in contrast, for instance, to
batch image processing. Difference and differential equations constitute the classi-
cal formalism for modeling the behavior of dynamical causal processes. In the case of
biochemical network analysis, such models well predict a large set of complex chem-
ical interactions, including synthesis, binding, dissociation, degradation, allosteric
activation, inhibition, and phosphorylation [17, 52]. More generally, these models
can be employed to characterize the time-evolution of symbolic representations. All
interactions between state components are captured by the system of equations. By
doing so, the process dynamics is implicitly defined by the governing equations. The
state variable is updated over time, generating trajectories which start with the initial
conditions.

A classical example of state-space dynamical system is given by Ordinary Differ-
ential Equations (ODEs). This model class is widely used in systems biology [25].
In particular, the application of ODEs rests founded upon the established theory for
deterministic modeling of biochemical reactions. Given the initial conditions, the
dynamical system S evolves as

dx(t)

dt
= f (x(t), u(t), t, θ), (11.1)

where f is a function of

• x(t): current state;
• u(t): time-varying external input to the system;
• t : time;
• θ : parameter vector out of parameter space Θ .

In this particular example, the system is deterministic, memoryless (it satisfies the
Markov property), and it evolves in a continuous state space. More generally, models
may exhibit delays, memory, infinite-dimensional state spaces, stochastic behavior,
and discreteness (in time or state space). Differential equations have been applied
with success to a variety of applications. Yet they are not the only available modeling
tool. Aside from practical limitations, there exist cases in which abstract and phe-
nomenological representations might be appropriate as well. Regardless of whether
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precise mechanisms are required or not, experimental design invariably aims at pre-
dictive modeling of the observable quantities. In practice, modeling might translate
into finding estimates for f or θ ; in some other cases, the modeler might be inter-
ested in predicting only the future evolution of the state given the data. In system
identification, hypotheses M ∈ M consist of specified functional forms f as well as
their parameters θ , that is M = ( f, θ).

Example Activator-Inhibitor.
Let the state variable consist of two elements: x(t) = [R(t), X (t)] ∈ R

2+
(concentrations are non-negative quantities by definition). The elements R(t)
and X (t) denote the concentration (for instance, in nM) of two time-varying
macromolecules in a well-stirred and spatially homogeneous system at ther-
modynamic equilibrium [17]. There is a protein E in the system, which exists
also in its phosphorylated form E p. The macromolecule R is produced with a
signal strength S, and R stimulates its own production by phosphorylating E .
E p stimulates the production of X , which in turn promotes the degradation of
R. Precisely, the system equations takes the form:

d
dt

[
R(t)
X (t)

⎪

=
[

k0 E p(t) + k1S − k2 X (t)R(t)
k3 E p(t) − k4 X (t)

⎪

f



⎜
⎜
⎜
⎜


[
R(t)
X (t)

⎪

, ET , ·,
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k1
k2
k3
k4











⎟
⎟
⎟
⎟
⎛

(11.2)

where the dynamics of E p follows a Goldbeter-Koshland function [17]. Note
the absence of time-dependence in this case: the system exhibits oscillations
due to the interplay between R and X through E and E p. If all parameters
but one are known (e.g., k4) the experimental design procedure could aim at
optimizing the time points schedule. Ideally, this ensures that the time points
are informative enough to obtain a good parameter estimate (for instance, by
sampling above a certain frequency).

11.2.1.2 Measurement Model

Experiments are performed by the observer, often assuming negligible interference
of the measurement apparatus to the behavior of the process.

Main Assumption 2 Non-interference.
The measurement apparatus has a negligible effect on the behavior of the studied phenom-
enon (it does not change the state of the system).



286 A. G. Busetto et al.

This assumption is in contrast to cases in which quantum-mechanical effects cannot
be neglected. Experimental observations can then be described in the data space D,
independently from the rest. The time-dependent readout variable y(t) ∈ Y denotes
the instantaneous measurement at time t . In terms of equations, the measurement
model can be specified as follows:

yε(t) = hε(x(t), u(t), t, η, ξ), (11.3)

where hε is a (generally nonlinear) function of state, input, time,

• η are the tunable variables of the experimental protocol;
• ξ(t) denotes the measurement noise, whose distribution is Ξt .

The variable ε ∈ S denotes the choice of the experiment from the experiment set.
Time series data are then acquired in the batch dataset

Dε = {(ti , yε(ti ))}n
i=1 (11.4)

where n is the sample size. In principle, the noise distribution might be arbitrary: it
could depend upon the state of the process, as well as on the input (for instance, in
the case of stochastic interventions).

Example Measuring the Activator-Inhibitor.
Let us consider the activator-inhibitor process described in Eq. (11.2). The
measurement process depends on the selection of the experiment, which is
here denoted by the variable ε ∈ S. For a fixed ε, assume that the concentra-
tions of macromolecules R and X are not directly measurable, but the sum
of their concentrations is. Thus, y(t) ∈ R = Y. The time-discrete measure-
ment process introduces additive white Gaussian noise: for every time point
ti , the noise terms ξti are identically distributed and statistically independent
from each other. The experiment variable could, for instance, control the pa-
rameters η (that is, mean μ and variance σ 2) of the normal noise distribution
Ξt = N (ξ |μ, σ 2). The measurement function h, which is time- and input-
invariant, is linear with respect to both states and noise:

yε(ti ) = R(t) + X (t) + ξti = hε

⎝[
R(t)
X (t)

⎪

, ·, ·,
⎞
μ, σ 2

⎠T
, ξti

⎨

. (11.5)

Assume, as in the previous example, that the goal is the estimation of the
unknown kinetic rate k5 [see Eq. (11.2)]. In this scenario, the experiments
indexed by ε with known μ and small variance better reduce the uncertainty.



11 Computational Design of Informative Experiments in Systems Biology 287

11.2.2 Modeling Uncertainty

Uncertainty arises through measurement noise, data scarcity, as well as from the
impossibility of direct inspection of the inner workings of a system. It is possible to
distinguish at least two types of uncertainty.

• Aleatory variability:
due to the irreducible non-deterministic behavior of the process.

• Epistemic indeterminacy:
due to the incomplete knowledge of the observer about the process.

The former depends only on the process, while the latter depends solely on the ob-
server and on the available measurement apparatus. We assume that lack of complete
knowledge has no effect on the behavior of the process, apart from the indirect effects
induced by the selection of future interventions (such as inputs).

Main Assumption 3 Epistemic Separability.
Excluding interventions, epistemic uncertainty does not effect the behavior of the observed
process.

Yet the future behavior may be influenced by interventions selected on the basis of the
current belief state of the observer. Degrees of plausibility for alternative hypotheses
can be quantified in terms of belief states. The modeler may take advantage of this
fact to design experiments in which, for instance, u(t) is a function of the residual
uncertainty.

Belief states represent uncertain yet justified states of instantaneous knowledge.
The belief states of an epistemic agent (that is, the modeler) are time-varying and
depend upon the availability of new observations. As soon as new data are avail-
able, belief states can be updated to incorporate the additional evidence. Cox’s theo-
rem demonstrates that probability theory generalizes “common logic” (specifically,
Aristotelian-Boolean logic) under uncertainty [19, 26]. Under weak assumptions,
it can be shown that probabilities are the unique representations available to the
modeler [20]. Informally, probability theory satisfies the following three desiderata:
degrees of plausibility should [20]

1. be representable by real numbers;
2. agree with “common sense” (that is with basic Aristotelian syllogisms);
3. be consistent (epistemic agents with the same information must agree).

In this chapter, we subscribe to Cox’s axioms of probability and to their interpretation
as belief states for an epistemic agent. This framework is widely accepted, yet not
the only possible choice, and Cox’s assumptions are not undisputed.

Probabilities can be seen as frequencies of random, repeatable events but also
as quantified uncertainties. They represent “risks” (that is, uncertainty about the
occurrence of events specified within a stochastic model), as well as justified beliefs
about hypotheses (models, parameters, etc.). As well as considering belief states for
discrete sets, we also wish to consider the continuous case (which is typically the
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case for the parameter space Θ). This goal is achieved by extending our discussion
to probability densities.

Example Uncertainty in Transcription.
Control of transcription is a fundamental regulation mechanism in biology. The
modeler considers the hypothesis class consisting of two candidate models
of genetic regulation. The models describe mutually exclusive biochemical
mechanisms [52]. Let us consider the following feasible set of experiments:
concentration readouts of RNA-polymerase and of its binding frequency (to a
certain promoter region). Each model consists of a set of Stochastic Differential
Equations (SDEs), whose kinetic parameters are poorly known. The stochastic
nature of the process is reflected in the aleatory uncertainty associated with the
dynamics of the macromolecular concentrations. The hypothesis class consists
of the two models: each model consists of the given system of equations, for
all possible values which may be assigned to its parameters. Uncertainty about
which set of SDEs should be selected, and with which specific parameters, is
essentially epistemic (both before and after data acquisition); it only depends
on the belief state of the observer, This is a case of model selection: the design
aims at minimizing, for instance, the epistemic uncertainty associated with the
selection of the “correct” model (that is, the most predictive model given the
data).

11.2.2.1 Bayesian Inference

Bayes’ theorem is the application of the product rule between conditional probabili-
ties1:

p(M = M |D = D) = p(D = D|M = M)p(M = M)

p(D = D)
, (11.6)

where

• the hypotheses are represented by the random variable M whose sample space is
the hypothesis class M and

• the data are represented by the instance of the random variable D whose data
space is D.

Bayes’s theorem relates three fundamental quantities:

• prior p(M):
the belief state for hypothesis M before the observation of the data;

1 For simplicity, we simplify the notation p(X = x) to p(x) when possible. In these cases, X
denotes the random variable and x an element of the respective sample space Ω .
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• posterior p(M |D):
the belief state for M updated after the observation of the data D;

• likelihood p(D|M):
the probability of measuring the data D generated from hypothesis M .

The remaining term p(D) is the evidence. The evidence is a normalizing constant
which can be calculated from prior and likelihood as

p(D) =
⎩

M∈M
p(D|M)p(M). (11.7)

Performing the normalization is in many cases a computational bottleneck: it involves
non-trivial sums (or high-dimensional integrals).

In the Bayesian setting, the process of updating belief states when experimental
evidence arrives constitutes the inference method. The posterior coincides with the
obtained conclusions: it is determined by the likelihood and by the prior. The former
term describes the relation between hypotheses and evidence. The latter term con-
tains all information available a priori. To avoid prejudice, no presumed evidence is
incorporated. To avoid bias, no arbitrary selection of the data is allowed.

Main Assumption 4 Objectivity.
Conclusions are derived based on all available evidence (and without presumed evidence).

During design, objectivity is a central step of simulated inference: experiments are
evaluated according to the predicted outcomes of simulated datasets. Objectivity is
so important, that it can be taken as a principle more than an assumption.

Example Bayesian Estimation of Synthesis Rate.
A simple motif of simultaneous synthesis and degradation can be obtained by
combining basic rate laws:

d X (t)

dt
= k1 M(t)
⎫ ⎬⎭ ︸
synthesis

− k2 X (t)
⎫ ⎬⎭ ︸

degradation

(11.8)

where M(t) is the concentration of mRNA encoding protein X , while X (t)
denotes the protein concentration, with given initial condition X (t) = 0. The
function form of the ODE (that is, the governing function of the model) is
known, yet the parameters are partially unknown. The degradation rate k2 is
known (in arbitrary units), while the prior distribution of the synthesis rate k1
is exponential:

p(k1) =
⎢

λe−λk1 , k1 ≥ 0,

0, k1 < 0.
(11.9)
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for a given λ (for concreteness, say λ = 1). As an input, M(t) is directly con-
trollable by the experimentalist. Let us consider a design scenario aiming at the
minimization of a measure of uncertainty (for instance, variance) of the poste-
rior distribution for k1. The posterior distribution is given by the (normalized)
product between the prior (in this case exponential) and the likelihood of the
data. The likelihood function is defined by the measurement model through the
distribution of the noise. The process is fully deterministic. As a consequence,
there does not exist aleatory uncertainty for the elements of the hypothesis
class. All uncertainty is epistemic and concerns solely the kinetic constant
rates.

11.2.3 Measuring Information

Probability and information theory are deeply related [18, 26]. The former offers
the framework to quantify uncertainty for individual hypotheses. The latter is based
on the former and considers overall properties of belief states. The concept of self-
information is the fundamental link between these frameworks. Informally, the self-
information of an event corresponds to the “degree of surprise” associated with the
particular outcome [18]. Events are specific observations of a random variable X .
Formally, the self-information of the event E ⊆ Ω is mathematically defined as2

h(E) = − log2




⎩

xe∈E

p(xe)



⎛ (11.10)

where X is a random variable whose sample space is Ω (with xe of non-zero proba-
bility). Qualitatively, it is possible to note the following:

• events with high probability exhibit rather low self-information;
• events with low probability exhibit very high self-information.

Since both epistemic and aleatory uncertainties are modeled by probabilistic belief
states, self-information measures the overall “surprise” of the observer for a particular
readout (that is, due to the stochastic behavior of the process, as well as to the belief
state of the observer).

2 The choice of the logarithm depends on the (arbitrary) unit measure of information. We take the
logarithm in base 2, and thus measure information in bits.
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Example Self-information of a Bistable Gene Network.
Bistability is a feature often associated with systems exhibiting autocatalysis
or positive feedback [30]. Let us consider a bistable synthetic single-gene au-
tocatalytic network in Escherichia coli [6]. The process consists of a simple
regulator and of a transcriptional repressor. A minimalist model for the process
could be given by a system with two states (arbitrarily denoted as A and B). The
two states correspond to the combined instantaneous concentration of repres-
sor and RNA polymerase in a single cell. Transitions between the two states
are memoryless and stochastic. The system has known initial condition A.
Unknown perturbations (for instance, uncontrollable external environmental
stimuli) push the system back and forth from A to B. For the sake of simplicity,
we assume that measuring the state exhibits negligible errors (that is, the esti-
mation process is dominated by aleatory uncertainty). On the basis of previous
experiments, the experimentalist knows that, state A is going to be measured
with probability 0.9 despite the unknown perturbations. The self-information
of the hypothetical readout A is thus approximately 0.15 [bits]. Measuring A is
thus not very surprising. Conversely, observing B would yield approximately
3.32 [bits]. Indeed, high surprise is experienced after supposedly improbable
events. When the event “the readout is A” is almost certain (that is, with prob-
ability close to 1), its self-information is almost zero. Observing B, in contrast,
would yield very high self-information (a significantly improbable event has
been observed). Different results are expected when the system exhibits equal
chances of being in state A or B. In such case, the self-information of the
events would have been the same: exactly 1 [bit], like tossing a fair coin.

11.2.3.1 Entropy as Uncertainty

When a sender transmits the value of a random variable to a receiver through a
noiseless channel, the average amount of communicated information is the entropy

H[p] = Ep{h(x)} = −
⎩

x∈Ω

p(x) log2 p(x), (11.11)

that is the expected self-information over all possible outcomes.3 A similar definition
exists in the case of continuous random variables, for which the differential entropy
is H[p] = − ∫

Ω
p(x) log p(x)dx . This limit is obtained partitioning the sample

space into bins of progressively smaller width and by omitting the diverging term. In
the case of biological experimentation, the outcomes are the measurement readouts.

3 Note that lim p→0 p log p = 0.
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Informally, the noiseless coding theorem states that the lower bound on the number
of bits needed to transmit the state of a random variable is (asymptotically) given by
the entropy [48]. This result is based, among other things, upon the assumption of a
stationary source. The fundamental assumptions of classical information theory are
formalized by the Shannon-Khinchin axioms [33]. Their discussion goes beyond the
scope of this chapter, but it is important to highlight their interpretation to understand
the analogy between communication and biological experimentation. In design, the
source is the “state of nature”. Messages (that is, data) are sent through the noisy
channel, which is the measurement apparatus. The receiver reconstructs the message
(that is, the model) from the data. In brief, informative experiments correspond to
channels with high bandwidth [13, 14].

Entropy is hence a functional of the belief state (in general, of a distribution).
Peaked distributions yield low entropy, that we interpret as states of low uncertainty:
very few hypotheses are considered to be plausible. As a measure of uncertainty,
entropy is very general: it is consistent with other measures such as variance. For
instance, in the case of a Gaussian distribution with mean μ and variance σ 2, differ-
ential entropy is given by

H[p]N (μ,σ ) = log(2πeσ 2)/2. (11.12)

Since entropy is a measure of uncertainty, its reduction constitutes an admissible
design goal. Indeed, entropy measures the expected depth of the shortest decision tree
to identify the “correct model” given the data in the noiseless case. For illustration,
let us consider this noiseless scenario. Let the hypothesis class consist of four equally
plausible models. The modeler has to determine the correct model among the four
solely on the basis of “yes/no” questions answered by an oracle (the oracle has
complete knowledge). Let us identify the four models by their indexes ranging from
1 to 4. The modeler could, for instance, ask the following questions: is the index of
the correct model smaller than or equal to 2? In case of positive answer, the effective
hypothesis class would be restricted to models 1 and 2. In the next experiment,
the modeler could ask directly whether model 1 is the correct model. In both cases,
the correct model would be determined by the answer of the oracle. Similarly, if the
oracle says that the index in not smaller or equal than 2, it would be worth asking
whether it is 3. With these 2 conditional questions ((1, 2) Vs (3, 4) followed either by
(1) Vs (2) or by (3) Vs (4)), all plausible hypotheses are considered. Knowing that
the correct model has index smaller than 3 makes some questions redundant (it would
be wasteful to ask if the model index is 4). This redundancy does not only exist due
to assuming noise free measurements. In fact, probabilistic redundancy would also
apply in the case of noisy oracles (whose yes/no questions cannot be fully trusted). In
general, one might consider non-uniform plausibility for the possible models. In this
case, how to avoid redundant questions? Some questions might be more informative
than others (that is, able to yield a higher number of expected bits, which correspond
to fewer plausible hypotheses). In principle, optimal questions are the ones which
sequentially split the hypothesis class into sets of equal size (weighted according to
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their cumulative probabilities). Then, what is the minimum number of such questions
to determine the model? The entropy of the distribution over the hypotheses.

Example Entropy of a Bistable Gene Network.
Considering the bistable gene circuit of the previous example, it is possible
to quantify the uncertainty of the experimentalist with respect to the state
readouts. In the initial case in which p(A) = 0.9, the entropy amounts to
approximately 0.47 [bits]. The entropy is maximal when p(A) = p(B) = 1,
since the readouts are maximally indeterminate (1 [bit]). In contrast, when
p(A) is almost certain, the entropy tends to zero, since an overwhelmingly
small p(B) suppresses the (otherwise high) self-information of the event. For
concreteness, let us consider the case in which entropy measures the uncertainty
about the state of a dynamical system. The experimentalist aims at reducing
the stochastic behavior of the bistable system to study other properties (so
far not captured by the model). How could this be done? For instance this
goal is achieved by introducing a forcing input as an intervention (that is, by
controlling the state through u(t)). Such a necessary step implements controlled
laboratory conditions on a cell population. A set of interventions ε ∈ S is then
selected to minimize the aleatory state entropy.

Relative entropy is another fundamental information-theoretic quantity [38, 39].
Informally, it measures how many bits of information are (asymptotically) wasted
when a sender communicates through a noiseless channel with the “wrong coding”.
In this context, the coding is optimal when it achieves the highest bit-rate with respect
to the probability p over the symbols generated by the source. Instead of using the
optimal coding for p, coding is optimized for q. Already its functional form

R[p||q] =
⎩

x

p(x) log2
p(x)

q(x)
(11.13)

makes apparent its strict relation to entropy. Intuitively, it measures the following:
how many bits are lost when q approximates p? Relative entropy is particularly
useful to evaluate approximations of probability distributions. At the same time, it
can be used to measure the information gain between prior and posterior for given
data [3].

11.2.3.2 Prior Knowledge

As we have seen, Bayesian inference requires priors. As long as experiments are
independent, previous posteriors are the priors for further updates.



294 A. G. Busetto et al.

Main Assumption 5 Experimental Independence.
Measurement outcomes of separate experiments are conditionally independent from each
other.

This condition simplifies the calculation of Bayes’ theorem. But there are cases in
which this assumption is not satisfied. For instance, it might be difficult to guarantee
independence when the same batch of cells is exposed to iterations of treatment and
measurement. If initial conditions can be controlled and memory effects discounted,
datasets D(1)

ε and D(2)
ε are assumed to be independent. The scenario induces the

following decomposition of Eq. (11.6):

p(M |D(2)
ε , D(1)

ε ) = p(D(2)
ε |M)

p(D(2)
ε )

p(D(1)
ε |M)

p(D(1)
ε )

prior for D(1)
ε

⎭ ︸⎫ ⎬
p(M)

⎫ ⎬⎭ ︸

prior for D(2)
ε

. (11.14)

The recursive nature of (conditionally independent) Bayesian inference makes it
particularly convenient to perform incremental updates as soon as new data become
available. This iterative information gain is a key feature of inference when uncer-
tainty cannot be neglected. Just deriving point estimates would be insufficient, since
such a description implies the loss of all residual uncertainty. In systems biology,
this scenario is the norm, not the exception [43]. Consequently, a form of uncertainty
propagation is necessary to perform a logically consistent analysis.

Example Two Experiments to Model a Multifunctional Enzyme.
Consider the case in which an enzyme catalyzes two reactions. A structural bio-
chemical network is available in terms of ODEs. All kinetic constant rates are
assumed to be known, except those of the two reactions (respectively denoted
by k1 and k2). Assuming compatible experimental configurations and identical
initial conditions, it is possible to separately obtain k1 from a first dataset D(1)

ε

and k2 from D(2)
ε . Estimation results could be improved by simultaneously in-

ferring k1 and k2. This design requires the calculation of p(k1, k2|D(1)
ε , D(2)

ε )

instead of p(k1|D(1)
ε ) and p(k2|D(2)

ε ).

So far we discussed cases in which priors are directly incorporated. We turn now to
another important question: what can be done when prior probabilities are not avail-
able? Assigning zero priors to arbitrary hypotheses would impose zero posteriors
as well. Irrespectively of any subsequent observations of the data some hypothe-
ses would be unjustly excluded. No evidence would be able to modify the belief:
the relative entropy between a non-zero posterior and a zero prior is infinite (it di-
verges). Cromwell’s rule states that this issue should be avoided by assigning 0 and
1 prior probabilities exclusively for statements that are logically true or false (such
as mathematical propositions) [40].
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Yet there exist cases in which probabilistic reasoning has to be performed only
on the basis of limited information. Transferring the available data from similar
experiments might be challenging or practically unattainable (due to differences in
experimental conditions, strains, etc.). Even worse, there might not be such data
available to the modeler. What should be done in these cases? This is a delicate issue
which deserves attention.

When the hypothesis class consists of a finite set of models, one may consider an
external principle to assign epistemic probabilities. A common example is the princi-
ple of indifference [32]. Informally, the principle of indifference states that, given that
only insufficient reasons exist to distinguish hypotheses, hypotheses should be con-
sidered equally plausible. Because probabilities are normalized to one, one obtains
the uniform distribution over a finite hypothesis class. But what if the hypothesis class
is not finite? Similarly, non-informative priors aim at exercising as little influence as
possible on the posterior distribution. In the case of continuous parameter values with
unbounded domains, such prior distributions may not be correctly normalized: they
are called improper. Aside from difficulties due to normalization, the modeler has
to be careful with difficulties arising from transformations of probability densities
subject to nonlinear changes of variables [7, 8].

What can be said when only incomplete information is available? The principle
of maximum entropy proposes a solution to this question [27, 28]. Degrees of belief
are assigned according to the following rule: select among all constraint solutions the
one which exhibits the largest entropy. Candidate distributions must be consistent
with the available testable information T . In equations, when applied to priors it
corresponds to

select p∗(M) = arg max
p consistent with T

H[p]. (11.15)

Apart from setting priors, the principle may also be invoked for model specifica-
tion [27]. Despite its arguable limitations, the principle of maximum entropy is not
only mathematically satisfactory, but also epistemologically convincing [26]. It is
consistent with the objectivity requirements. Informally, it states that no additional
information should be presumed (that is, select the least committed and yet consistent
belief). Non-maximum-entropy priors implicitly presume information which is not
available, and consequently they support unjustified belief states. Testable informa-
tion consist of any formal description which is amenable to statistical verification,
such as known mean, variance, etc. Several well-known densities can be derived
from maximum entropy considerations [8]: uniform (given finite support), exponen-
tial (given mean and non-negative support), Gaussian (given mean and variance),
Laplace (given mean and expected variance), and famously Gibbs (given expected
energy).
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Example Maximum Entropy Prior for Auto-regulation.
Prokaryotic auto-regulation is a mechanism which can be modeled by a sto-
chastic discrete dynamical system [52]. In brief, dimers of a protein repress
their own transcription by binding to a regulatory region through a mechanism
of auto-regulation. For the sake of simplicity, let us assume that the functional
form f of the dynamical system is known exactly. Moreover, incomplete prior
information for the parameters is available. Prior distributions are known ex-
plicitly (as posteriors from previous experiments) for all parameters except for
kr : the rate constant of binding to the regulatory region. Nonetheless, some
testable information is available also for k1. First, the constant is known to
be non-negative (by construction). Furthermore, its expected value is γ (for
instance, as found in the literature). On the one hand, a uniform distribution
on the non-negative domain would yield an improper prior (because of lack of
normalization) and would discard the available knowledge of γ . On the other
hand, an arbitrary distribution would presume additional information which
is is not available (making it unjustified). The principle of maximum entropy
yields instead the exponential distribution, as in Eq. (11.9) with γ = 1/λ for kr .

11.3 Design Principles

Three general desiderata may be imposed on the design process: the designer has to

1. incorporate incomplete knowledge available a priori;
2. estimate costs and constraints associated with experimental procedures;
3. specify design goals.

The first desideratum is met by the application of Bayesian inference (or by other
inference techniques) [15]. The second one is provided by external sources (domain
knowledge, financing, other constraints). The experimental aim has to be explicitly
stated by the scientist.

11.3.1 Goals

In essence, there exist at least two main design goals:

• reducing uncertainty [12],
• challenging existing belief (or theories) [13, 14, 21, 37].

Their difference is not only semantic: the goals correspond to different score functions
for optimization. If epistemic uncertainty is measured in information-theoretic terms,
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the former corresponds to minimizing (in expectation) the entropy of the posterior.
The latter corresponds to maximizing (in expectation) the information gain, that is the
relative entropy between posterior and prior. The information gain implicitly assumes
that the posterior should be taken as the absolute reference to evaluate the quality
of the prior. Entropy and information gain are functionals of the posterior, which
depends on the data Dε generated through ε. Respectively, the formal definitions of
the score functions are as follows.

Entropy minimization:
select optimal experiment ε∗ which minimizes the expected entropy:

ε∗ = arg min
ε∈S EDε

⎡
⎣⎤

⎣⎦
H[

posterior
⎭ ︸⎫ ⎬
p(M |Dε)]

⎫ ⎬⎭ ︸
entropy


⎣

⎣
. (11.16)

Information gain maximization:
select optimal experiment ε∗ which maximizes the expected information gain:

ε∗ = arg max
ε∈S

EDε

⎡
⎣⎤

⎣⎦
R[

posterior
⎭ ︸⎫ ⎬
p(M |Dε) ||

prior
⎭ ︸⎫ ⎬
p(M)]

⎫ ⎬⎭ ︸
information gain


⎣

⎣
. (11.17)

In both cases, the expectation is taken over the evidence p(Dε), which is obtained
from priors and (simulated) likelihoods, as in Eq. (11.7).

The goals coincide when the prior is uniform (since it has no effect on the poste-
riors). In this case, in fact, the following identities hold

arg min E {R[p(M |Dε)||p(M)]} = arg max E

⎢
⎩

M

p(M |Dε) log2
p(M |Dε)

p(M)

}

= arg min E
{−H [p(M |Dε)] − log2 |M|} = arg max E {H [p(M |Dε)]} ,

(11.18)

where |M| denotes the cardinality of the hypothesis class. Furthermore, it is im-
portant to point out that maximizing the expected information gain is equivalent to
maximizing the mutual information between models and data. Mutual information
is a fundamental measure of statistical dependency [18]:

I[X, Y ] = R[p(X, Y )||p(X)p(Y )]. (11.19)

Finally, one has the following equivalence

arg max E {R[p(M |Dε)||p(M)]} = arg max I[M, Dε]. (11.20)
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11.3.1.1 Requirements

The design requirements are as follows.

• Definition of hypotheses:

– hypothesis class M (containing the process models);
– priors over the functional forms f , parameters θ , the initial conditions.

• Definition of experiments:

– set of experiments S: it may consist of a joint set of measurable time points
{ti }s

i=1, measurable components of the state space (their selection corresponds
to the tuning of h), as well as input interventions u(t) [13];

– likelihoods (that is, the measurement model);
– cost of each experiment.

• Choice of the design goal.

Example Design Scenarios for Modeling Tryptophan Biosynthesis.
There exist multiple alternative mechanistic models of tryptophan biosynthesis
in bacteria [46, 53]. Let us assume that the hypothesis class consists of two
functional forms f1 and f2. They define alternative nonlinear system of ODEs
(which could be of different complexity). The prior for the first hypothesis is
0.7 (hence, for the second it is 0.3). We denote this distribution as the pair
(0.7, 0.3). The state space for the process model is defined by dimensionless
concentrations of mRNA, enzyme, and tryptophan. Both initial conditions and
parameters are partially unknown. Priors over parameters and initial conditions
are given by the posteriors of previous compatible experiments. Subscribing to
the principle of maximum entropy, exponential distributions are assigned when
the expected value is known (since kinetic rate constant and concentrations are
positive by definition), and uniform priors when a plausible range of values
is given. Feasible experiments in S measure relative concentrations of mRNA
and tryptophan at a fixed number of time points. The design question is: if
the number of time points is limited to 5, should the experimentalist measure
every second (ε1) or every minute (ε2)? The goal is to challenge existing prior
belief. Thus, the expected information gain is the score function to maximize.
For instance, ε1 could be preferable if it tends to reverse the order of prior
probabilities more frequently than ε2 does. Indeed, with a (0.7, 0.3) prior, the
information gain for the posterior (0.2, 0.8) (for fixed D) is approximately
0.77 [bits], which is much larger than that obtained for the posterior (0.8, 0.2):
approximately 0.04 [bits]. The effect of the prior is apparent in this case; the
entropy of (0.2, 0.8) and (0.8, 0.2) is exactly the same.

In practice, design goals are constrained by resource availability. Otherwise, one
would just measure as much as possible. The optimization formulations should take
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this resource constraint into account; but how to relate costs c(ε) to benefits? The
Pareto-efficient solutions are given by the production-possibility frontier, that is the
set of experiments which dominate the others either in term of cost saving or of infor-
mation [23]. In the design context, production corresponds to information gain (or
uncertainty reduction) and possibility to the experiment costs. In practice, one typi-
cally asks directly one of the following questions. Given a certain maximal cost cmax,
which experiment yields the best results? This question would impose the cost con-
straint on the selection of the feasible experiments on the minimization/maximization
goals of Eqs. (11.16, 11.17). Alternatively, one could ask: given this expected goal
(in bits), which experiment minimizes the costs?

11.3.2 Calculation

The two main computational bottlenecks are belief update and optimization [14].
The former refers to the calculation of the posterior on the basis of prior distribution
and of the uncertainty propagated through the system dynamics. The latter consists of
the computational process to find the optimal solution (maximization of information
gain or uncertainty reduction).

How to calculate the posterior p(M |D) [9]? Firstly, one has to propagate the
uncertainty from one sample to another. Then, one has to update the propagated
belief to incorporate new information [11]. For general dynamics, uncertainty prop-
agation consists of calculating the solution of the Kolmogorov forward equation of
the system [35] in the time interval [ti , ti+1). In the case of SDEs with a given f , it
corresponds to calculating the solution of the Fokker-Planck equation [45]

∂pt

∂t
= ∇ · [ f pt ]⎫ ⎬⎭ ︸

drift

+ ΔΨ pt⎫ ⎬⎭ ︸
diffusion

, (11.21)

which describes the time evolution of the time-varying distribution pt = p(x |Dε).
In the equation, ∇· denotes the divergence, Δ is the Laplace operator with the dif-
fusion tensor Ψ , while [ f p] denotes the point-wise multiplication of pt and the
vector field f = f (x(t), u(t), t, θ). Generalized state-space propagation incorpo-
rates initial epistemic uncertainty of both initial conditions and parameter values into
Eq. (11.21) [22]. On the right-hand side of the equation, the two terms denote drift
(governed by the deterministic components) and diffusion (expressing the stochastic
contributions). For deterministic systems described in terms of ODEs, as in Eq. (11.1),
the diffusion term is absent: the propagated uncertainty is strictly epistemic. When
the hypothesis class contains multiple functions, uncertainty propagation must be
performed for each individual dynamical system and then normalized [14]. This
significantly contributes to the computational challenge of the problem: closed-form
solutions for the time-integrated trajectories rarely exist, and their numerical approxi-
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mations are resource-demanding. Analogous procedures hold for dynamical systems
whose state space and time are discrete.

After propagation, the update of the belief state is performed according to
Eq. (11.6). This step typically involves the implicit calculation of the evidence for
normalization. A large variety of techniques are available to jointly perform propa-
gation and update [8, 9, 26]. Established techniques include Markov Chain Monte
Carlo (MCMC) [24] and Kalman filtering [31]. Due to the hardness of the task, a
number of approximations are available to the designer. Simulated inference may be
achieved through variational approximations [8] or approximate Bayesian computa-
tion [51].

The quality of the overall optimization depends on the calculation of the updated
solutions. Each evaluation of the score function involves the generation of hypothet-
ical datasets and possibly the simulation of the respective updates. Depending on the
goal and on the experiment set, the optimization might be in itself tractable (in the
case of convex or submodular score function [36]) or very difficult (in the general
case). There exist cases in which the designer can take advantage of the regularities
of the score function [13, 36].

11.4 Discussion

We have seen assumptions, steps, and goals of computational design in systems
biology. The framework that we have described is best understood from the Bayesian
point of view, by employing probabilistic descriptions of justified belief states. As
for other computational processes, design methods can be evaluated according to
their correctness, efficiency, and simplicity of implementation. Here we highlight
theoretical and computational aspects which deserve particular attention. Following
are a list potential challenges and respective solutions for effective design.

• Theoretical issuesx:

– The choice of the inference mechanism is essential. The two main options
available to the modeler are the Bayesian [15] and the classical frameworks [1].
It is worth noting that no unique Bayesian or classical viewpoint exist. More-
over, there has been much controversy about merits and limitations of each
framework [8].

Bayesian approaches render the incorporation of prior information straightfor-
ward [14, 21]. Solutions consist of probability distributions over all hypothe-
ses. This property is particularly appropriate for cases in which substantial
uncertainty is expected to persist, as in biology [5]. The main limitation of
this framework is its computational complexity: satisfactory approximations
of posterior distributions might be unattainable.
Classical approaches are well established and sometimes able to offer com-
putational shortcuts [4]. However, the incorporation of domain knowledge
might be non-trivial: priors are often implicit.
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– Which prior should be taken?
Objective priors require minimal assumptions. However, many uninformative
prior are improper (and hence pathological) [8]. In principle, the Solomonoff-
Levin distribution offers a general solution: it specifies the universal prior
which is defined over the set of computable functions [49, 50]. At present, its
applicability remains the subject of active research [44]. In practice, the two
main principles available to the modeler are: indifference and maximum en-
tropy. As a consequence, Gibbs, Gaussian and uniform densities are frequent
choices.
Subjective priors are necessary when incorporating data from previous experi-
ments. It often happens that (for mathematical or computational convenience)
posterior distributions are specified in terms of “simple” forms such as cate-
gorical distributions or as members of the exponential family [8]. When only
selected statistics of the distributions are available to the reader, subjective
priors may be reconstructed from the available testable information according
to the principle of maximum entropy.

– There exist a variety of possible design goals. Information theoretic approaches
exhibit multiple benefits: they are general, rest on a well-founded theory, and
enable the quantification of uncertainty on an absolute scale. Recent develop-
ments in information-theoretic model validation exhibit the potential to design
experiments aimed at maximizing reliable information [10, 16].

Uncertainty reduction minimizes the epistemic uncertainty associated with
the system.
The goal of challenging existing belief entertains the idea that information
gains should be measured with respect to previous belief states [3]. As shown
before, these two main goals coincide when prior information is unavailable.

• Computational issues:

– Particularly in the case of nonlinear dynamics, uncertainty propagation consti-
tutes the dominant computational bottleneck. In practice, each evaluation of the
score function might require the solution of the propagation task. Propagation
can be directly combined with updates, taking advantage of the recursive nature
of Bayes’ rule. Numerical solutions must be obtained through simulation when
analytic solutions are not available (this is certainly the typical case in systems bi-
ological applications) [42]. It is important to note that parameter estimation and
model selection by themselves are extremely demanding computational tasks;
their discussion goes beyond the scope of this chapter (nonetheless the modeler
should be aware of the impact of reliable estimation in the design process).

Exact solutions are rarely available. Kalman filters are commonly used for
linear systems of ODEs.
If the belief state can be assumed to be unimodal, local linearization and Un-
scented Kalman filters offer excellent approximations [29]. Powerful sparse
techniques are available as well [47].
Strongly nonlinear models constitute the norm in systems biology. Nonlinear-
ities might induce multimodal belief states. Sequential Monte Carlo methods
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are excellent to propagate general distributions, yet substantially resource de-
manding [11, 24]. Even checking their convergence might be non-trivial [11].

– Optimization is typically performed by taking advantage of some regularities
of the score function, or by following established heuristics [2].

Entropy and mutual information may be submodular when conditional in-
dependence is satisfied [13, 36]. These cases are not only computationally
tractable, but also efficiently solvable in practical applications [13].
General nonlinear optimization is required when arbitrary interventions are
applicable to the systems (for instance, as inputs u(t)). Very few general
guarantees are available in the nonlinear case [2].

Systems biology is generally associated with large-scale data collection. Nonethe-
less, data quality matters: experimental design is an enabling technology for predictive
modeling. In this chapter, we adopted a Bayesian information-theoretic viewpoint on
experimental design. Computational design has the potential to assist human intu-
ition in a key point: suggesting biologically interesting questions. We anticipate that
the field of computational systems biology will move toward progressive automation
of hypothesis generation and testing. In this context, design will play a crucial role
to close the loop between modeling and experimentation.

11.5 Lessons Learned

• The analysis of many biological systems requires careful experimental planning
due to limited time and financial resources.

• Methods for experimental design, in combination with mathematical models, pro-
vide means to assess the usefulness of potential (practically feasible) experiments.
Such methods can be employed to reduce the experimental costs, since uninfor-
mative experiments are systematically avoided.

• Two common goals of experimental design are: uncertainty reduction and infor-
mation gain maximization. In general, these goals may not be compatible; they
do, however, coincide when all hypotheses are equally plausible a priori.

• Uncertainty propagation constitutes a significant computational bottleneck for the
design of informative experiments aimed at dynamic modeling. However, careful
assumptions on the distribution of the noise and Monte Carlo approaches may en-
able the construction of appropriate design schemes with acceptable computational
costs.

11.6 Conclusions

The amount of biological data produced by high-throughput methods in biology
has substantially increased in recent years. However, for many biological systems
(e.g., signaling pathways) obtaining high-quality data involves a resource-intensive
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process. Experimental design, in combination with computational methods for
system identification, constitutes an important tool to reduce costs. This chapter
primarily focuses on Bayesian approaches to experimental design; such framework
relies on solid theory and established applications. The Bayesian point of view may
prove particularly useful for the type of problems considered in systems biology:
it is generally applicable, it is compatible with information theory, and there exist
effective numerical approximation schemes which are already available to the de-
signer. The discussed techniques exhibit the potential to accelerate the discovery of
key principles and mechanisms of biological systems.
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Chapter 12
Predicting Phenotype from Genotype Through
Reconstruction and Integrative Modeling
of Metabolic and Regulatory Networks

Sriram Chandrasekaran

Abstract A central challenge in systems biology is the identification of molecular
interactions that regulate organismal phenotype, and to predict phenotypic changes
that arise from these interacting networks. The reconstruction of gene networks pro-
vides a mechanistic basis for understanding the genotype-phenotype relationship,
and enables the simulation of cellular behavior resulting from genetic and environ-
mental perturbations. Currently, there is a critical need for new methods that rapidly
transform high-throughput genomics, transcriptomics and metabolomics data into
such predictive network models for metabolic engineering and synthetic biology.
This chapter describes tools and technologies that address these key challenges,
with a focus on the algorithms, PROM and ASTRIX, which perform complemen-
tary functions in mapping and modeling gene networks. The Analyzing Subsets of
Transcriptional Regulators Influencing eXpression (ASTRIX) approach builds Tran-
scriptional Regulatory Networks from gene expression data while the Probabilistic
Regulation of Metabolism (PROM) algorithm integrates disparate gene networks
(metabolic and regulatory networks) together in an automated fashion. Some basic
principles of reconstructing and modeling these networks are discussed, followed by
a detailed description of these algorithms. Understanding how the networks func-
tion together in a cell will pave the way for synthetic biology and has wide-ranging
applications in biotechnology, drug discovery and diagnostics.
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The genotype and the growth environment significantly influence the behavior and
phenotype of an organism. Yet the mechanism of how a simple genetic change
or environmental perturbation alters the behavior of an organism at the molecular
level, and subsequently its phenotype, is still not completely clear. Systems biology
aims to understand cellular behavior by identifying its molecular components and
the interactions between them, and seeks to predict phenotypic changes that arise
from these interacting networks. Systems biology primarily focuses on the entire
system of interacting components (‘networks’) and predicts the emergent properties
of these networks [22, 35, 41]. These ‘cellular networks’ are usually a group of
genes or proteins that interact with each other and perform similar functions [4]. For
example, the metabolic network carries out various bio-chemical reactions in each
cell and the regulatory network controls these biochemical processes among others.
Cellular behavior is determined by the differential activity of these networks; hence
reconstructing and simulating these networks enables one to understand and better
predict the response of a cell to an external perturbation. Figures 12.1 and 12.2 gives
an overview of these different networks.

12.1 Reconstruction and Simulation of Metabolic Networks

Metabolism plays a central role in the functioning of an organism and is arguably
the best understood cellular process. Yet, the size and complexity of the metabolic
network poses a great challenge in modeling and simulating its behavior. Further, the
lack of adequate data often limits our ability to test and analyze metabolism at the
genome-scale using more traditional simulation methods such as reaction kinetics
(modeled as a system of differential equations), where the mechanisms of reactions
and their regulation is modeled individually and in detail.

Constraint-based modeling allows us to overcome such problems, because the
only requirement is knowledge of the stoichiometry (the network topology) of the sys-
tem in order to be able to fairly accurately simulate the potential metabolic behavior
of an organism [45, 55]. By assuming steady-state kinetics, the system of differential
equations required to model the system are simplified to a system of linear equations
in constraint-based analysis. This technique thus requires much fewer parameters
and can be applied to a wide variety of systems.

The biochemical network models built this way represent explicitly the mech-
anistic relationships between genes, proteins, and the chemical inter-conversion of
metabolites within a biological system. Such genome-scale biochemical network
models have been successfully completed for a variety of organisms including the
prokaryote E. coli [53], eukaryotes such as S. cerevisiae [34, 51], and humans [21].
The reconstruction process has been greatly accelerated by the availability of online
databases such as Kyoto Encyclopedia for Genes and Genomes [38] (KEGG) and
SEED [32]. See Feist et al. [27] for a detailed description of the process of recon-
structing, curating and validating these biochemical network models.
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Fig. 12.1 Graphical abstract: Generation and integration of high-throughput data to reverse-
engineer cellular networks

In combination with physico-chemical constraints such as enzyme capacity,
reaction stoichiometry, and thermodynamics, it is possible to determine the pos-
sible configurations in the metabolic network that correspond to physiologically
meaningful states [54, 55]. Over the years, a number of methodologies have been
developed to simulate the network, and these methods have enabled genome-scale
analysis of microbial metabolism for various applications, from drug discovery to
metabolic engineering, and modeling of microbial community behavior [28, 45].
The most prominent amongst them is flux balance analysis (FBA) [40]. FBA iden-
tifies the optimal flux pattern of a network that would allow the system to achieve
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Fig. 12.2 Metabolic and regulatory networks: Metabolism is at the heart of every cellular process,
from energy production to producing precursors for processes like growth and cell division.
Metabolic networks comprises of an array of enzymes that are involved in converting food into
substrates for biosynthesis, or breakdown for energy production. Even a simple bacteria like E.
coli has more than 2,000 biochemical reactions [53] that are involved in these processes. By sim-
ulating metabolic networks, one can predict an organism’s phenotype such as growth rate and
metabolic adjustments under diverse environmental conditions [6]. Transcriptional regulatory net-
works (TRNs, lower panel) are a specific kind of regulatory processes in a cell that are involved in
controlling the expression of various genes in response to genetic and environmental changes. Mod-
eling TRNs would hence enable the prediction of gene expression changes under various conditions
[9, 14]

a particular objective, typically the maximization of an organism’s growth rate or
biomass production (Fig. 12.3).

Mathematically, FBA is framed as a linear programming problem:

maximize Z = c jν j (the cellular objective)
subject to:

∑

j
Si j · v j = 0 →i (stoichiometric constraints)

νL
j ∞ ν j ∞ νU

j → j (Thermodynamic constraints)

where i is the set of metabolites, j the set of reactions in the network, Si j is the
stoichiometric matrix, c j is a vector that specifies which flux is being optimized
(typically this is used for the maximization of growth) and v j is the flux through
reaction j. In genome-scale metabolic models of microbial systems, a biomass pro-
ducing reaction is usually defined and used as the objective function. This reaction
explicitly incorporates the chemical composition of the cell in terms of its macro-
molecules, nucleotide, amino acid, lipid and sugar content. These compounds are
synthesized through an array of reactions that connect the input nutrients like glucose
to the biomass components. Upper and lower bounds are placed on the individual
fluxes based on thermodynamic considerations if they are available. For irreversible
reactions, the lower bound νL is set to be zero. Specific bounds, based on enzyme
capacity measurements or thermodynamic considerations can be imposed on reac-
tions; in the absence of any information these rates are generally left unconstrained
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Fig. 12.3 Constraint based analysis: A metabolic network is represented as a system of linear
equations, represented in the form of a matrix (the Stoichiometric matrix). In the figure, A, B, C
and D are metabolites involved in Reactions Rxn1, Rxn2 and Rxn3, catalyzed by enzymes Enz1,
Enz2 and Enz3. This system is underdetermined, i.e., fewer equations than the number of variables.
Therefore, we apply several constraints (depicted by a ‘flux cone’) to simulate various properties of
the system. The reaction occurrence is limited by three primary constraints: reaction substrate and
enzyme availability, mass and charge conservation, and thermodynamics. See text for more details
on the constraints

i.e., νU = ⊂, and νL = −⊂ for reversible reactions. To avoid unbounded solutions,
i.e. Z reaching infinity, the input flux, typically the influx of glucose or other nutrients
needs to be fixed to a specific value, and all fluxes should be viewed as relative to
the input flux.

Changes to a metabolic network in vivo can arise not only due to perturbations
to metabolic enzymes, but also due to transcription factors and other regulatory
genes that control cellular metabolism. A major limitation of FBA is that it does not
incorporate the effect of transcriptional regulation. Transcriptional regulation plays
a central role in controlling metabolism and a key challenge in obtaining accurate
predictions from biochemical networks is the integration of the gene regulatory net-
work with the corresponding metabolic network [15, 17, 18]. The PROM algorithm
addresses this issue and builds an integrated regulatory-metabolic network model.
Before explaining how PROM works, we will first discuss how regulatory networks
are reconstructed and modeled.

12.2 Reconstructing Transcriptional Regulatory Networks

Reverse engineering transcriptional regulatory networks, also known as regulatory
network inference, involves the identification of functional modules or networks,
which are a group of genes that regulate each other and perform similar functions
[4]. Reconstructing the regulatory network enables one to understand the underlying
molecular processes that cause phenotypic changes and better predict the response of
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a cell to an external perturbation. Further, this would help us identify key hub genes
that drive these networks and this knowledge plays a key role in drug discovery and
synthetic biology.

There are hundreds of methods that build Transcriptional Regulatory Networks
(TRNs), from binding [1, 31, 44, 60], gene expression data [9, 26, 47] or through
integration of various data types [9, 49]. See [2, 4, 59] for a review of these various
approaches. A commonly used approach has been to use omics technologies such as
Microarrays and RNA sequencing, which provide a snapshot of the transcriptional
activity of the cell [4]. Large repositories of gene expression data are currently avail-
able (GEO [23], M3D [25] and ArrayExpress [11]) enabling the rapid construction of
genome-scale models of TRNs. Most of the expression-based ‘reverse-engineering’
methods primarily rely on the guilt-by-association principle—they try to identify
functional relationships between genes by searching for similar expression patterns
across diverse experimental conditions. The underlying assumption is that genes
that have similar pattern of expression are generally co-regulated. For identifying
transcriptional regulatory interactions, these patterns of co-expression are observed
between all the transcription factors (TFs) and non-TFs in a cell. A gene is pre-
dicted to be regulated by a TF if they share a significant similarity in their expression
patterns. This ‘similarity’ of expression is easy to understand but usually hard to
measure. A suite of methods that use different metrics ranging from correlation and
mutual-information to least-angle regression have been developed to infer similar-
ity in expression, with each one having its own advantages and limitations. See
[4, 8, 47, 48] for a review of these inference algorithms.

12.3 Inferring TRNs Using ASTRIX

Analyzing Subsets of Transcriptional Regulators Influencing eXpression (ASTRIX)
combines two well-known inference algorithms that use disparate principles—
ARACNE (Mutual information) and LARS (Regression)—to infer TRNs. Briefly
the novelty of ASTRIX is that it not only infers interactions between TFs and target
genes, but also creates a predictive model of the network which can be used to pre-
dict expression in new conditions. Also, unlike most approaches that infer networks
for all the TFs and target genes, ASTRIX takes into account the limitation of the
provided data set and infers a network structure only for a subset of genes that could
be modeled well with the provided expression data.

ARACNE is a mutual-information based method for identifying transcriptional
interactions between genes using gene expression data. Like correlation, mutual
information is a metric that detects statistical dependence between two variables, but
unlike correlation, it does not assume linearity, continuity, or other specific properties
of the dependence. Information-theoretic approaches are comparatively effective
for studying large networks where putative gene-gene interactions are learned from
a relatively small amount of expression data [12]. ARACNE predicts a gene and
transcription factor to interact if the mutual information between the expression
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Fig. 12.4 The ASTRIX approach for reverse engineering transcriptional regulatory networks
(TRN): Each step (numbered) is explained in the text

levels of the gene and its potential regulator is above a set threshold. ARACNE has
been shown to accurately reconstruct the regulatory network of c-Myc in B-cells
[5] and has recently been used to reconstruct the TRN responsible for epithelial
to mesenchymal transformation in Gliomas [13]. One of the main novelties of the
ARACNE algorithm is that it uses the Data Processing Inequality (DPI) technique
to eliminate the majority of indirect interactions inferred by co-expression methods.

Least Angle Regression (LARS) is a regression algorithm used for inferring rela-
tionships between a dependent variable (response, in our case gene expression) and
one or more independent variables (predictors, TFs), and also for prediction and
forecasting the state of the response variable. LARS is a model selection algorithm,
similar to, but a less greedy version of the traditional forward selection method. It
selects a parsimonious set of predictors from a large collection of possible covariates
for the prediction of a response variable [24].

ASTRIX combines LARS and ARACNE, and uses genome-scale gene expression
data to infer a transcriptional regulatory network model capable of making quanti-
tative predictions about the expression levels of genes given the expression values
of the transcription factors [14]. The ASTRIX algorithm works as follows: we first
compile a large set of microarray data for the particular system of interest. Ideally, the
data should measure the transcriptome of the system under various perturbations and
environmental conditions (step 1 in Fig. 12.4). Generally, any reverse engineering
method requires the availability of a large set of gene-expression data that profiles
a broad range of cellular states and associated gene-expression levels [5, 25]. This
is necessary because genetic interactions are best inferred when the genes explore a
substantial dynamical range [5, 26]. In simple organisms, a wide range of states can
be sampled by large-scale gene knockouts or environmental constraints. On the other
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hand, these data might not be easily available for more complex cellular systems and
the network inference algorithm has to utilize the naturally occurring phenotypic
variations to reverse engineer the cellular network [5]. For each gene in the system,
a “skeletal” network is inferred around the target gene using ARACNE [50] (step 2),
and DPI is used to eliminate indirect interactions. A stringent mutual information
threshold is chosen (p-value < 10−6) so that only strong interactions are retained
(step 3). This serves to identify key regulators that share a high degree of mutual
information with the target gene of interest. We then use the transcription factors
or regulators predicted for each gene by ARACNE and fit a regression model using
LARS [24] (steps 4 and 5). This would take the form:

[Target Gene] = α[TF1] + β[TF2] + · · · + σ

where α, β, and σ are constants inferred by LARS based on gene expression data. The
accuracy of the model inferred by LARS can be determined by measuring the Root
Mean Square Deviation (RMSD) of the model prediction with the actual expression.
All data used in this procedure are normalized before network inference to have row
variances of 1. Thus, for a given influence of a transcription factor on a given target
gene, one can uniformly interpret the magnitude of the coefficients α, β, and σ, and
use their magnitude to rank the individual interactions [9]. Also, since RMSD has
the same units as variance, we get a clear interpretation of the amount of variance of
the gene explained by the model. This process is repeated for all of the genes in the
dataset or a subset of interest (step 6).

As mentioned earlier there are many advantages of using ASTRIX over using
ARACNE or LARS alone. While ARACNE gives only the topology of the network,
ASTRIX gives both the topology and also predicts if each interaction is activating
or inhibitory. Most importantly, ASTRIX only selects the subset of TF—gene rela-
tionships that can accurately predict the target gene’s expression quantitatively in the
training set, and only these interactions are moved forward to the test set for valida-
tion. Recent analyses have shown that by using a combination of different approaches,
like mutual information and regression, is more effective at inferring networks than
the individual methods used alone [47]. One could thus expand our framework by
using other method types like Bayesian networks [29] and Random Forests [36] to
infer interactions. Further, combination with other data types like binding, sequence
and TF knockout data, if available, will lead to more comprehensive and predictive
models of transcriptional regulation [49].

12.4 Application: Inferring the Honeybee Brain TRN for Social
Behavior Using ASTRIX

The natural behavior repertoire of the honeybee (Apis mellifera) is perhaps the best
studied of any non-human animal [67]. They exhibit complex social behaviors like
aggression, nursing, foraging and spatio-temporal learning, which are influenced
by both genetic and environmental factors [14, 57]. Further, these behaviors are
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Fig. 12.5 Overview of the approach used to build a TRN model for the honeybee brain. a Brain
expression from different bee brain behavior states were collected. b A network model was built
using ASTRIX, and c the network model was then used to predict expression in new conditions and
identified key regulators of specific behavior processes. The network wheel in the center displays the
inferred TRN model. The middle circle has the TFs and the outer circle has the 2,176 target genes.
Darkly shaded edges are interactions between TFs and target genes involved in specific behaviors
like aggression, foraging or maturation (indicated by the bees). ASTRIX identified TFs unique to
each behavior and global regulators that controlled multiple behaviors

dynamic and associated with multiple levels of cognitive and molecular processing
[58]. Given its dynamical nature, it’s not known if behavior is influenced by the kind
of Transcriptional Regulatory Networks (TRNs) known to regulate other phenotypes
like development [20, 42, 52]. We hypothesized that behaviorally related brain gene
expression could be used to reconstruct the type of transcriptional regulatory net-
works (TRNs) that operates for other phenotypes.

To enable comprehensive network inference, the bees were sampled in one of 48
different states defined by behavior, genotype, and environment. Nearly all genes
expressed in the bee brain were differentially expressed in at least one of the 48
states; this broad survey captured natural variation across most of the transcriptome,
even without experimental genetic perturbation. We then constructed a regulatory
network for the honeybee brain that identifies key regulators that control the genes
that are responsible for the phenotypic changes (Fig. 12.5).

The ASTRIX algorithm was then used to infer a predictive transcriptional regu-
latory network model for the honeybee brain using this data from 2,000 microarrays
involving 48 different behavior states. ASTRIX accurately predicted the expression
of 2176 genes involved in these behaviors with an average correlation of 0.87 in test
conditions based on the expression of transcription factors. It identified transcrip-
tion factors that are central actors in regulating behavior in the honeybee brain, and
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our results suggest a remarkably close relationship between brain transcriptome and
behavior. One can draw a picture where a core module of transcription factors is
responsible for various phenotypic changes.

ASTRIX’s ability to predict expression even in new phenotypes suggests a rela-
tively complete and accurate reconstruction of the transcriptional regulatory network
underlying these changes. Accurate prediction of quantitative behavior is the ulti-
mate test of our understanding of a given system, and will enable re-engineering of
cellular circuits. Our ability to model a surprisingly high percentage of the transcrip-
tome, without information on physical interactions or brain subregion localization—
implies that the relationship between brain gene expression and behavior is both
stronger and more predictable than previously imagined. A more detailed analysis
and description of the study can be found in [14].

12.5 Integration of Regulatory and Metabolic Networks
Using PROM

Till now we have discussed methods to infer and model TRNs. A forefront chal-
lenge in modeling organisms today is to build integrated models of regulation and
metabolism. Predicting the effect of transcriptional perturbations on the metabolic
network can lead to accurate predictions on how genetic mutations and perturba-
tions are translated into flux responses at the metabolic level. Further, it can assist
in the engineering of genetically modified organisms for synthetic biology and drug
discovery [56]. Studying the molecular networks that distinguish a normal cell from
diseased one may lead to the identification of critical metabolic biomarkers for cancer
and other diseases [65]. Although gene and protein expression have been extensively
profiled in human diseases, little is known about the global metabolomic changes
that occur due to these perturbations. Profiling such metabolic alterations can lead
to the discovery of metabolic markers [65].

12.6 Challenges of Integrated Regulatory-Metabolic Network
Modeling

From our description of the ways to reconstruct and model the metabolic and reg-
ulatory networks, it is clear that the two network types have very different ways of
being modeled. While the TRNs are simulated based on statistical associations, the
metabolic networks are modeled based on a detailed biochemistry based mechanistic
framework and constrained by thermodynamics, mass and energy balance (Fig. 12.6).
So it has been a difficult challenge integrating different modeling paradigms.

Many methods solve this problem of network integration indirectly, by using gene
expression data, which is the output of transcriptional regulation, with the metabolic
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Fig. 12.6 Overview of Integrated modeling: The figure highlights the way in which the metabolic
and regulatory networks can be represented in silico and integrated together. (GPR—Gene-Protein-
Reaction)

Fig. 12.7 Overview of RFBA: The deletion of a TF results in alteration in expression of its target
genes. These are then mapped onto the corresponding reactions in the metabolic network. If the
target gene is determined to be OFF, the fluxes through the reactions are turned off and the optimal
flux state (curved line) and the growth rate is determined using FBA. Note that in RFBA, genes and
fluxes can only have two states (ON/OFF)

network [7, 16, 37, 63]. While these are very effective, they do not explicitly account
for transcriptional regulation and cannot simulate perturbation to transcription fac-
tors. The first successful integration of these network models was by the algorithm
RFBA [17, 18]. The RFBA approach and its variants [19, 64] simplify regulation
to an ON-OFF process, instead of the complex quantitative models that are used to
model TRNs. Figure 12.7 describes the RFBA model. Briefly, the states of genes
in the metabolic model are determined by transcription factors using manually con-
structed regulatory rules. For example the state of a metabolic gene might be given
by A = TF1 AND TF2, which means that both TF1 and TF2 should be in ON state
for gene A to be active.

Although these Boolean logic based interactions are easy to understand, usually
regulatory interactions are more complex than a binary process where genes and
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reaction fluxes can only have two states in the population—ON or OFF. As these are
built by manual curation of literature, given the large number of interactions, it is
extremely difficult and time-consuming to manually write Boolean rules and identify
significant interactions at the genome scale using RFBA. Due to these reasons there
have been very few such integrated models available in literature [17, 30, 33].

12.7 Probabilistic Integrative Modeling Using PROM

To overcome these drawbacks, we developed the PROM approach that addresses
these issues. PROM, enables direct integration of the transcriptional and metabolic
networks for modeling and overcomes the need for manually writing the Boolean
rules by automatically quantifying the interactions from high throughput data—
thereby greatly increasing the capacity to generate genome-scale integrated models.
The model framework, based on constraint-based analysis, is designed to circumvent
the need for kinetic parameters for metabolic modeling, and most importantly does
not assume direct correlation between enzyme activity and mRNA expression.

PROM’s novelty lies in the introduction of probabilities to represent gene states
and gene-transcription factor interactions. PROM can algorithmically quantify these
interactions based on microarray data. For example, the probability of gene A being
ON when the regulating transcription factor B is OFF is given by P(A = 1|B = 0);
similarly P(A = 1|B = 1) gives the probability of A being ON when B is ON. The
relationship between TF and target gene is then quantified using microarray data. So,
if we estimate that in 80 % of the samples we find the gene to be ON, and 20 % of
the samples it is OFF or not expressed, then the probability associated with a gene
being ON is 0.8. Once this interaction information has been defined, one can model
the effect of perturbations to the regulatory network on the metabolic network

using PROM (Fig. 12.8).
To model the effect of a TF knockout at the genome scale, the states of all its

regulatory target genes are determined. These probabilities are then used to constrain
the fluxes through the reactions controlled by the target genes.

lb∩ = P × lb∈; ub∩ = P × ub∈

ub∈ and lb∈ are the maximum and minimum fluxes through a reaction and these are
determined for each reaction using Flux Variability Analysis [46] on the unregulated
metabolic model, and P is the probability defined previously. To account for other
factors that may affect enzyme activity such as translational, post-translational and
metabolite interactions, these constraints are used as cues to determine the most
likely flux through a particular enzyme. Unlike thermodynamic or environmental
constraints that cannot be violated, the regulatory constraints are ‘soft’ constraints,
so the system can exceed these constraints to maximize growth, but with a penalty.
The magnitude of this penalty factor (κ) determines the strength of the transcriptional
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Fig. 12.8 Overview of the process used to integrate the metabolic and regulatory network using
PROM. The Transcription factor (TF) states are determined based on environmental conditions; the
state of TF is then used to determine the ON/OFF state of the target genes based on probabilities
estimated from microarray data. The probabilities are then used to constrain the fluxes through the
metabolic network. The optimal metabolic state (curved line) that satisfies both the thermodynamic
and regulatory constraints is determined. In PROM, the constraints based on gene expression are
used as cues to obtain the optimal flux state. Note that unlike RFBA, where genes and fluxes can
only have two discrete states (ON/OFF), PROM can have a more continuous restriction of flux
levels. Further, PROM’s automated inference of interactions and probabilistic formalism enables
it to create comprehensive models. lb∩, ub∩ are constraints based on transcriptional regulation, α, β

are positive constants which represent deviation from those constraints (determined by the solver)
and κ is the penalty factor

constraints, with higher values implying stronger effect of regulation. Following this
procedure, we arrive at an optimal model, which satisfies most or all of the regulatory
constraints (Fig. 12.8).

The construction of an integrated metabolic-regulatory network using PROM
requires the following: (1) the reconstructed genome scale metabolic network (2)
regulatory network structure, consisting of transcription factors (TF) and their targets;
(3) gene expression data. PROM then overlays these regulatory interactions on top
of the metabolic network, which as mentioned earlier is now available for a large
number of organisms. PROM utilizes the Gene-Protein-Reaction (GPR) relationships
present in the metabolic network models to connect the regulatory targets (obtained
from literature, or from databases like RegulonDB, Yeastract [61, 66] or inferred
using network inference approaches like ASTRIX) to the corresponding metabolic
reactions. The GPRs takes into account the presence of isozymes or multi-gene, multi-
subunit complexes that may be involved in each metabolic reaction. We can then test
the performance of the integrated model by simulating growth phenotypes under
different environmental conditions. Figure 12.9 compares the integrated network
models from PROM and RFBA for E. coli.
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Fig. 12.9 Comparison between PROM and RFBA. Using PROM, integrated regulatory-metabolic
networks for the model organism Escherichia coli was constructed and we predicted the growth
phenotypes of 15 TF knockouts in 125 different growth conditions with 85 % accuracy. Note that
PROM based on automated inference is as accurate as the manually curated RFBA model

12.8 Application: Constructing an Integrated Network Model
for Tuberculosis Using PROM

After validating the approach, PROM was used to build the first genome-scale
integrated metabolic-regulatory model for Mycobacterium tuberculosis, a critically
important human pathogen PROM was specifically designed to be applied to less-
studied systems like M. tuberculosis; by integrating various high throughput data,
PROM can help us understand the system in a more holistic manner. The regulatory
data for M. tuberculosis was compiled by Balazsi et al. [3] and gene expression data
consists of 437 whole-genome microarrays of M. tuberculosis measuring the effects
of 75 different drugs [10].

We systematically knocked out all the TFs in M. tuberculosis that regulate
metabolic genes, and their knockout phenotypes were predicted using PROM. Com-
parison with gene knockout data [62] revealed that PROM predicted the phenotypes
with an accuracy of 95 %. PROM also identified key genes that regulate vital steps
in metabolism, which could lead to the prediction of better drug targets for therapy.
Indeed, out of the 11 predicted essential genes by PROM, 7 of them were drug targets,
which is highly significant (p-value −0.01). Despite the lack of complete biological
knowledge about M. tuberculosis, PROM was still able to predict the phenotypes
with relatively high accuracy.

PROM represents the first automated integration of a genome scale TRN with a
biochemically detailed metabolic network, bridging two important classes of systems
biology models that are rarely combined quantitatively [15]. Several challenges will
need to be addressed to build integrated regulatory-metabolic models for systems in
higher organisms. While our models have shown great accuracy to date for simple
organisms, we have not yet demonstrated their success in human systems, where the



12 Predicting Phenotype from Genotype 321

complexity of regulation encompasses not only the effect of transcription factors,
but also the effect of non-coding RNAs, epigenetic effects, post-translational modi-
fications, and alternative splicing. With the development of methods that incorporate
other network types, like signaling [17, 43] and a range of other cellular processes
[39], one can envision transitioning these models to higher systems. Further, with
the advent of automated approaches for metabolic network reconstruction [32], inte-
grated network models could be constructed rapidly for a wide array of sequenced
organisms.

12.9 Conclusion

Despite recent advances in computation, new algorithms are needed to integrate var-
ious data sources, and to assemble a holistic view of the cell. The new approaches
discussed here address this issue and have diverse applications for understanding
microbial biochemistry, drug discovery and disease progression. ASTRIX can iden-
tify key hub genes that drive networks, which could aid in synthetic biology, and also
for finding drug targets against both microbes and cancer cells. Further, predicting
the effect of transcriptional perturbation on the metabolic network using PROM can
lead to more effective metabolic engineering of microbes and the identification of
critical metabolic biomarkers for cancer and other diseases.

12.10 Lessons Learnt

Reconstructing and integrative modeling of metabolic and regulatory networks
allows one to better understand the genotype to phenotype relationship, and paves
the way for metabolic engineering and synthetic biology. Emerging tools and algo-
rithms that integrate diverse high throughput data and build genome-scale models
of these networks were discussed. The ASTRIX algorithm [14] allows the reverse-
engineering of regulatory network models from high throughput data. ASTRIX iden-
tifies key hub genes that control cellular networks, and these network models can
quantitatively predict gene expression changes in new conditions. The PROM algo-
rithm is an ideal tool for constructing genome-scale regulatory-metabolic network
models in an automated fashion [15]. Using PROM, the first integrated genome scale
model for the pathogen, M. tuberculosis, was constructed. Furthermore, PROM can
detect drug targets and metabolic flux changes, and predict gene knockout pheno-
types and growth rates quantitatively.
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Symmetric, 75, 78–80, 82, 84–93, 95, 96
Synchronization, 160, 164
Synchrony, 99
Synthesis, 184, 188–190
Synthetic accessibility, 212, 223
System, 227–235, 237–239, 243–248, 251
System identification, 227–229, 235, 239,
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T
Taylor series, 14, 15, 18–20
Temporal logic, 258, 259
Thermodynamic constraint, 318, 319
Tikhonov’s theorem, 181, 194, 200–202, 209
Time delay, 267
Time scale separation, 181–183, 190, 193–

195, 198, 199, 201
Topological analysis, 212, 223
Topology, 48, 60, 212, 220
Tracking controller, 103, 110, 111, 116, 117
Transcription, 8, 16, 288, 296
Transcription factor (TF), 189, 190
Transcriptional network, 104
Transcriptional regulatory network (TRN),
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Transcriptional repression, 49, 53, 54
Transfer function, 109
Transition, 258–262
Transition system, 258, 259, 261
Trif, 246, 247

Tryptophan biosynthesis, 18, 298
Tunable, 104, 109, 110, 113, 116, 117
Turbulence, 213

U
Unary operator, 259, 260
Unimodal, 21, 301
Unprime, 268
Uptake rate, 212

V
Vertex, 186, 215

Z
Zames-Falb multiplier, 103, 105, 108, 111,

117
Zero deficiency theorem, 68
Zipf law, 213
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