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  Summary   

 Much of the research on the thermal dissipation of excess absorbed light, measured as non-
photochemical quenching (NPQ) of chlorophyll fl uorescence, has been focused on a major, 
rapidly induced and rapidly reversible component of fl uorescence quenching termed energy- 
dependent quenching, feedback de- excitation, or qE. A breakthrough in this fi eld came with 
the discovery of the involvement of the photosystem II subunit S (PsbS) protein, a thylakoid 
membrane protein required for qE induction and relaxation. In this chapter, we discuss the 
history of how PsbS was fi rst identifi ed as a photosystem II subunit, the genetic characteriza-
tion that defi ned its important role in qE, and the biochemical work describing how PsbS 
might regulate photosynthetic light harvesting. We emphasize how mutants affecting PsbS 
(i.e.,  npq4)  have been invaluable tools in defi ning structural and spectroscopic changes asso-
ciated with qE, and how these mutants have contributed to our current understanding of the 
physiological role of the thermal dissipation process accompanied by non-photochemical 
fl uorescence quenching.  

      I Introduction 

 Energy-dependent fl uorescence quenching 
or feedback de-excitation (qE) is the fast-
est component of the non- photochemical 
quenching (NPQ) of chlorophyll fl uores-
cence, inducing and relaxing within seconds 
to minutes, and used as a measure of thermal 
dissipation of singlet- excited chlorophyll  a , 
the primary mechanism by which plants cope 
with excess energy in fl uctuating light condi-

tions (Murchie and Niyogi  2011 ; Jahns and 
Holzwarth  2012 ; Ruban et al.  2012 ). Thermal 
dissipation of excess absorbed light is thought 
to limit the production of reactive oxygen 
species by decreasing the lifetime of singlet-
excited chlorophyll (Chl)  a  and reducing the 
excitation pressure on  photosystem (PS) II 
(Niyogi  1999 ). The signal that activates ther-
mal dissipation (measured as qE) is a low 
lumen pH, which occurs when the trans-thy-
lakoid proton gradient is formed faster than 
it is dissipated by ATP synthase (Kanazawa 
and Kramer  2002 ; Takizawa et al.  2008 ). In 
this way, thermal dissipation (measured as 
qE) acts as a feedback mechanism, switch-
ing the PS II antenna to a quenching state in 
response to the (excess) light perceived. 

 There are at least three requirements for 
the activation of thermal dissipation (qE) in 
vascular plants. The fi rst is, as stated above, 
the trans-thylakoid pH gradient formed in the 
light (Wraight and Crofts  1970 ). By prevent-
ing formation of, or removing, the pH gradi-
ent, using uncouplers, the qE component of 
NPQ can be abolished (Briantais et al.  1979 ). 
Conversely, using chemicals (Takizawa et al. 
 2008 ; Johnson and Ruban  2011 ), or decreas-
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ing CO 2  fi xation (Schreiber et al.  1986 ; 
Fichtner et al.  1993 ), in order to increase the 
pH gradient can increase qE. There is also 
evidence that qE can be modulated in vivo by 
fi ne-tuning the pH gradient via cyclic electron 
transport (Heber and Walker  1992 ; Miyake 
et al.  2005 ) or changes to the conductivity of 
ATP synthase (Kanazawa and Kramer  2002 ; 
Avenson et al.  2004 ). The chemical dicy-
clohexylcarbodiimide (DCCD) that binds 
to protonatable residues in  hydrophobic 
environments was also shown to inhibit qE 
(Ruban et al.  1992b ). It was later shown that 
the light-harvesting complex (LHC) proteins 
to which DCCD binds are CP26 and CP29, 
suggesting that the low pH can be sensed 
through lumen-exposed residues, and impli-
cating the latter two proteins in qE (Walters 
et al.  1994 ; Pesaresi et al.  1997 ). 

 The second requirement for qE in vivo is 
the xanthophyll (VAZ) cycle, in particular the 
conversion of the carotenoid violaxanthin (V) 
to antheraxanthin (A) and zeaxanthin (Z) 
(Demmig-Adams  1990 ; Niyogi  1999 ). V is 
converted to Z through the action of V de-
epoxidase (VDE), a lumenal enzyme of the 
lipocalin family of proteins (Yamamoto et al. 
 1999 ). The fi rst evidence for the role of the 
VAZ cycle in qE came from the correlation 
between Z levels and the amount of quenching 
upon exposure of leaves to high light (Demmig 
et al.  1987 ). This relationship was confi rmed 
by the identifi cation of mutants affecting VDE 
( npq1 ) and Z epoxidase ( npq2 ) that also 
affected NPQ (Niyogi et al.  1998 ) .  Despite 
years of study, the exact role of Z in qE remains 
controversial, owing largely to the lack of con-
sensus on the molecular mechanism of qE 
(Holt et al.  2004 ; Jahns and Holzwarth  2012 ; 
Ruban et al.  2012 ). A direct role in qE has 
been proposed for Z through either an energy 
transfer (   Owens  1994 ; Frank et al.  2000 ; Ma 
et al.  2003 ) or charge- transfer (Holt et al.  2005 ; 
Ahn et al.  2008 ; Avenson et al.  2008 ,  2009 ) 
mechanism from Chl to Z (see also Walla and 
Fleming, Chap.   9    ). Recently, it has also been 
shown that this function is not specifi c to Z, as 
accumulation of lutein can partially compen-
sate for the qE defect in  npq1  (Li et al.  2009 ). 
Alternatively, an indirect role for Z in qE has 

been put forward, in which Z acts as an allo-
steric regulator, controlling the sensitivity of 
qE to the pH gradient and/or conformational 
changes within the LHCs where qE occurs 
(Crouchman et al.  2006 ; Johnson et al.  2008 , 
 2012 ; Ruban et al.  2012 ). These roles for Z are 
not necessarily mutually exclusive, and mod-
els have been put forth to explain Z involve-
ment in NPQ by different roles depending on 
site and type of quenching (Jahns and 
Holzwarth  2012 ). 

 The third requirement for qE in plants, 
and the focus of this chapter, is the thylakoid 
membrane protein PS II subunit S (PsbS). 
While this protein has been the topic of a 
great deal of research over the last 15 years, 
a surprisingly large amount of uncertainty 
remains regarding its location within the thy-
lakoid membrane, what other protein(s) it 
interacts with, and the biochemical mecha-
nism by which it is involved in NPQ. In this 
chapter, we will describe experiments and 
proposed models leading to our current 
understanding of PsbS-dependent qE and 
discuss what questions remain.  

   II Discovery of PsbS 
and Involvement in qE 

   A Initial Discovery 
as a Photosystem II Subunit 

 The PsbS protein was initially identified 
as a component of PS II-enriched 
Berthold-Babcock-Yocum (BBY) prepa-
rations (Ghanotakis and Yocum  1986 ) and 
by co- immunoprecipitation (Co-IP) with 
the oxygen- evolving complex subunits 
PsbO and PsbP (Ljungberg et al.  1984 , 
 1986 ). While these results initially sug-
gested that PsbS might be a component of 
the oxygen- evolving complex, subsequent 
experiments showed that isolated PS II 
core complexes depleted in PsbS did not 
lose any oxygen-evolving ability 
(Ghanotakis et al.  1987 ). Sequencing of 
the  psbS  cDNA revealed that it encoded a 
protein with similarity to LHC proteins 
(Kim et al.  1992 ; Wedel et al.  1992 ). PsbS 
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is unique, however, as it contains four 
rather than the typical three transmem-
brane helices (Fig.  13.1 ). The similarity 
between the first/third and second/fourth 
helices suggested that PsbS likely arose 
through duplication of a two- helix LHC 
protein (Kim et al.  1992 ). Analysis of 
extant LHC protein sequences indicates 
that PsbS and typical light-harvesting pro-
teins arose via independent duplication 
events (Engelken et al.  2010 ).

      B Involvement in qE Revealed 
Through a Genetic Screen 

 More than 15 years after the initial discov-
ery of the PsbS protein, a functional role for 
PsbS in NPQ (and thus presumably thermal 
dissipation) was fi rst established through 
a genetic approach. Using video imaging 
of chlorophyll fl uorescence to screen for 
qE- defi cient mutants, the  npq4  mutant was 
isolated (Li et al.  2000 ). Unlike the previ-
ously characterized  npq1  and  npq2  mutants, 
 npq4  plants contained a normal xanthophyll 
(VAZ) cycle, yet lacked qE (Fig.  13.2 ) and 

ΔA 535  (Li et al.  2000 ; Peterson and Havir 
 2000 ), a spectroscopic signature correlated 
to qE (Ruban et al.  1993 ). The  npq4  muta-
tion was mapped to the gene encoding PsbS, 
and this protein was demonstrated to be 
necessary for qE in plants (Li et al.  2000 ). 
It was also shown that, despite a complete 
lack of PsbS protein in the  npq4-1  allele, all 
other PS II subunits accumulated to normal 
levels, and other  photosynthetic properties 
were  unaffected. Later, rice PsbS knockout 
mutants (Zulfugarov et al.  2007 ; Ishida et al. 
 2011 ; Kasajima et al.  2011 ) and  Populus  PsbS 
RNAi lines (Fig.  13.3 ) were shown to have a 
similar phenotype as  npq4 , confi rming that 
the function of the protein is conserved.

    Since the discovery that PsbS is essential 
for qE (and presumably thermal dissipation 
of excess energy) in plants, the  npq4  mutant 
has been a crucial tool for exploring possible 
mechanisms involved in qE. While  npq1  
mutants have also been used as qE-defi cient 
controls, the role of Z as an antioxidant 
(Havaux et al.  2007 ), and the trace amounts 
of Z remaining in the  npq1  mutant compli-
cates the interpretation of results. Likewise, 
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  Fig. 13.1    Proposed topology of PsbS in the thylakoid membrane. Two glutamate residues shown to be involved 
in sensing of lumen pH are marked by  squares.        
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the use of pH uncouplers to prevent qE may 
also have other effects on the cell. Because 
PsbS has thus far been implicated solely in 
NPQ, and specifi cally qE, with no other 
effect on light harvesting or photosynthesis, 
the  npq4  mutant is an ideal control for stud-
ies examining the spectroscopic and struc-
tural changes associated with qE.   

   III Biochemical Function of PsbS 

   A Does PsbS Bind Pigments? 

 The similarity between PsbS and other 
 members of the LHC superfamily suggested 
a role of PsbS as a pigment-binding protein. 
On the other hand, many of the amino acids 
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that coordinate chlorophylls, and that are 
conserved in most LHC proteins, are absent 
in PsbS (Dominici et al.  2002 ). Early stud-
ies, in which PsbS was isolated from solubi-
lized BBY membranes, indicated that the 
protein bound fi ve chlorophyll molecules 
(Funk et al.  1994 ,  1995b ). Unlike other 
LHCs, however, PsbS accumulated in etio-
lated tissues (Funk et al.  1995a ) and chloro-
phyll-defi cient mutants of barley (Dominici 
et al.  2002 ), indicating that the protein is 
stable in the absence of chlorophyll. 
Subsequently, two research groups purifi ed 
PsbS from thylakoids by the same method as 
above, as well as using other techniques, and 
were unable to observe any chlorophyll 
binding for PsbS (Aspinall- O’Dea et al. 
 2002 ; Dominici et al.  2002 ). In addition, 
while all other recombinant LHCs require 
pigments in order to fold in vitro, recombi-
nant PsbS protein does not exhibit such a 
requirement (Dominici et al.  2002 ; Wilk 
et al.  2013 ). Binding of Z to purifi ed PsbS 
in vitro was suggested to cause a red shift in 
the pigments’s absorbance, similar to the 
ΔA 535  signature observed in vivo (Aspinall-
O’Dea et al.  2002 ). This result has been 
questioned, however, as the signal attributed 
to PsbS-xanthophyll interaction was shown 
to be the result of Z  aggregation (Bonente 
et al.  2008 ), and PsbS reconstituted into 
liposomes along with or without Z did not 
show any differences (Wilk et al.  2013 ). 
Interestingly, mutagenesis of the glutamate-
arginine ion pairs, modeled as Z ligands in 
PsbS (Haripal et al.  2006 ), resulted in a com-
plete loss of PsbS function without affecting 
protein stability and accumulation (   Schultes 
and Peterson  2007 ). There is thus no fi rm 
evidence that PsbS is a “typical” pigment-
binding protein, although it is possible that 
PsbS somehow interacts with at least carot-
enoid molecules to fulfi ll its function.  

   B Insights into How PsbS 
Functions in qE 

 The amount of PsbS protein present modu-
lates a plant’s maximal qE level. This effect 
was hypothesized based on the semi- 
dominant nature of  npq4  heterozygous 

plants obtained from the backcross to wild 
type; the heterozygotes had an intermediate 
level of qE relative to the parental strains (Li 
et al.  2000 ). In subsequent work the PsbS 
mRNA and protein levels were shown to 
correlate to the amount of qE in  npq4  het-
erozygotes, wild type and homozygous  npq4  
plants (Li et al.  2002a ). The dosage effect 
(the amount of PsbS protein determining the 
amount of qE) was further confi rmed by 
transforming wild-type plants with an addi-
tional copy of the  psbS  gene and showing 
that these plants accumulated more protein 
and were able to reach NPQ values approxi-
mately twice as high as wild type (Li et al. 
 2002b ; Fig.  13.2 ). These results suggested 
that differences in qE capacity observed 
among plant species and in response to high 
light (Demmig- Adams and Adams  1992 ; 
see also Demmig- Adams et al., Chap.   24    ) 
might result from changes in PsbS expres-
sion. While this has been shown to be the 
case in certain situations (Demmig-Adams 
et al.  2006 ), it is not always the case as dis-
cussed below. 

   1 PsbS as a Lumen pH Sensor 

 The presence of several conserved acidic 
residues on each of the two lumen-exposed 
loops of PsbS (Li et al.  2000 ) suggested that 
the protein may be capable of sensing lume-
nal pH. It has been demonstrated that, just as 
CP26 and CP29, PsbS is also able to bind 
DCCD (Dominici et al.  2002 ), consistent 
with the hypothesis that protonatable amino 
acid residues occur in PsbS. Two glutamate 
residues, one on each lumen- exposed loop of 
PsbS, were identifi ed by site-directed muta-
genesis as being critical for qE function 
in vivo (Li et al.  2002c ,  2004 ). Mutation of 
either one of these residues (E122Q or 
E226Q) reduced qE capacity to approxi-
mately one-third of the control level, while a 
double point mutant expressed wild-type 
levels of protein but lacked all qE (Fig.  13.2 ). 
Finally, DCCD- binding by PsbS was com-
pletely abolished in the E122Q/E226Q dou-
ble mutant, suggesting that the latter two 
residues are solely responsible for the pH-
sensing capability of PsbS (Li et al.  2004 ).  
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   2 Interactions with Other Photosynthetic 
Complexes 

 Interactions between PsbS and other thy-
lakoid proteins have not been resolved 
completely. As mentioned in the previous 
section, PsbS was originally found to be 
associated with the oxygen-evolving com-
plex (Ljungberg et al.  1984 ,  1986 ). Co-IP 
experiments in various crop species, using 
antibodies raised against PsbS, resulted in 
the appearance of a band at approximately 
42 kDa (Bergantino et al.  2003 ). This band 
was determined to be a PsbS dimer based 
on migration in the gel and the lack of sig-
nal when blotted with other PS II subunits 
of similar sizes. Since formation of this 
band was pH dependent, it was concluded 
that PsbS is present as a homodimer in the 
dark, and that low pH induces monomeriza-
tion in the light (Bergantino et al.  2003 ). It 
would thus be interesting to explore whether 
or not mutation of the pH-sensing gluta-
mates affects monomer-to-dimer transition. 
Co-IP was also used to show interaction 
between PsbS and several photosynthetic 
 complexes, including not only LHCII com-
ponents and CP29 but also, surprisingly, 
several PS I, cytochrome  b   6   f , and ATPase 
subunits (Teardo et al.  2007 ). More recently, 
a direct interaction between PsbS and LHCII 
was demonstrated when both proteins were 
reconstituted into proteo- liposomes (Wilk 
et al.  2013 ). Cross-linking experiments per-
formed in several laboratories have failed to 
provide informative results.  

   3 Bypassing the Need for PsbS in qE 

 Treatment of thylakoids with chemicals has 
been a traditional way of investigating NPQ, 
and revisiting several of those experiments 
with mutants has proven informative. A par-
ticularly interesting example is the use of 
diaminodurene (DAD), shown in the 1970s 
to cause a higher than normal ΔpH by facili-
tating artifi cial electron transport around PS I 
(Wraight and Crofts  1970 ; Hauska and Prince 
 1974 ). Recently, the effects of DAD on iso-
lated chloroplasts from wild type and  npq  
mutants were compared (Johnson and Ruban 

 2011 ; Johnson et al.  2012 ). Surprisingly, 
while control thylakoids behaved as expected, 
DAD was able to induce qE to an equal and 
signifi cantly higher level in both wild type 
and  npq4  (Johnson and Ruban  2011 ). Similar 
results were demonstrated for  lut2 npq1  
mutants lacking the xanthophylls involved in 
qE (Johnson et al.  2012 ). The authors used 
these results to suggest that the role of PsbS 
and xanthophylls in qE is to modulate the 
pKa of lumen-exposed residues involved in 
qE and allow qE at a physiologically relevant 
lumen pH in vivo (Johnson and Ruban  2011 ; 
Johnson et al.  2012 ; Ruban et al.  2012 ).    

   IV Does PsbS Affect the 
Organization of Photosynthetic 
Complexes? 

 More recently, it has been proposed that 
the conformational change occurring as a 
result of PsbS protonation may affect the 
organization of complexes within the grana 
membrane. It was shown that the amount of 
PsbS protein affected Mg 2+ -induced thyla-
koid restacking, possibly by altering interac-
tions between PS II and LHCII complexes 
(Kiss et al.  2008 ). This effect on thylakoid 
restacking did not depend on the capability 
of PsbS to function in qE, but rather solely 
on PsbS protein level as demonstrated using 
mutants in the pH-sensing glutamate resi-
dues. Evidence for a role in membrane orga-
nization also came from sucrose-gradient 
fractionation of  Arabidopsis  thylakoids and 
the observation that a band (called band 4), 
containing CP29, CP24 and LHCII trimers, 
was present in dark-acclimated samples but 
disassociated upon high light treatment in 
wild type (Betterle et al.  2009 ). In the  npq4  
mutant, band 4 remained even after high light 
treatment and, even more strikingly, disso-
ciation of this complex was reduced in the 
single glutamate mutants by approximately 
50 %. The latter authors concluded that, while 
dissociation of band 4 was not suffi cient for 
qE, it is possible that this complex stabi-
lizes an unquenched light- harvesting state. 
They also noted that PsbS is likely to have 
other roles besides  allowing the dissociation 
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of band 4, as knockouts of CP24 constitu-
tively lacked band 4, yet contained discon-
nected unquenched LHCs and were able to 
activate NPQ upon exposure to high light 
(Kovacs et al.  2006 ;    Betterle et al.  2009 ). 

 Electron microscopy has also been used 
to investigate the location of PsbS and how 
it affects grana organization. Using single 
particle analysis of cryo-images, Nield 
et al. ( 2000 ) determined that the electron 
density of PS II-LHCII super-complexes 
does not allow for the presence of a pro-
tein containing a fourth transmembrane 
helix, such as PsbS, and that PsbS is more 
likely associated with LHCII-rich regions 
of the membrane. NPQ was also correlated 
to structural changes in thylakoid proper-
ties and grana organization using freeze 
fracture and thin- section electron micros-
copy, and from these results it was sug-
gested that NPQ requires the dissociation 
and aggregation of LHCII (Johnson et al. 
 2011a ,  b ). Subsequent work used the  npq4  
mutant and PsbS-overexpressing lines to 
show that PsbS is able to increase fl uid-
ity of the membrane and reduce ordering 
of PS II complexes (Kereïche et al.  2010 ; 
Goral et al.  2012 ). That PsbS affected the 
fl uidity of the membrane was supported by 
fl uorescence recovery after photobleaching 
(FRAP) experiments, a technique that uses 
a strong laser pulse to bleach a region of the 
thylakoid membrane, and then follows the 
kinetics of recovery of chlorophyll fl uores-
cence (Goral et al.  2012 ). Using FRAP it 
was shown that in the  npq4  mutant, PS II 
complexes had a reduced mobility within 
the thylakoid membrane, whereas mobility 
increased in PsbS-overexpressing lines. 

 A drawback to most of the techniques 
used to analyze grana organization is that 
they are rarely performed on intact leaves, 
but rather on isolated chloroplasts or grana 
membranes. The time it takes to prepare the 
samples is also important given how rap-
idly qE relaxes. Care must be taken when 
interpreting results particularly from experi-
ments using detergent-solubilized mem-
branes, since it is unclear what effect various 
detergents have on interactions between 
complexes and proteins or on extracting 

specifi c proteins from the membrane. For 
instance, in sucrose gradients PsbS has 
been found either solely as a monomer 
(Nield et al.  2000 ), or in an aggregated form 
(Caffari et al.  2009 ), depending on which 
isomer of dodecyl maltoside was used to 
solubilize BBY membranes.  

   V Using Spectroscopic 
Measurements to Understand 
the Mechanism of qE 

   A Multiple Models of NPQ 

 Spectroscopy is another frequently used tool 
used to investigate qE. As mentioned previ-
ously, qE has been correlated with specifi c 
spectroscopic changes, such as the ΔA 535  
absorbance change (Ruban et al.  1993 ). A 
dosage-dependent effect of PsbS after illumi-
nation with high light has been demonstrated 
by measuring chlorophyll fl uorescence life-
times of wild type,  npq4  and PsbS overexpres-
sors (Li et al.  2002a ,  b ). While most current 
research indicates that quenching occurs in 
the LHCs associated with PS II (LHCII), 
there is some evidence that PS II reaction 
centers can also form quenching complexes 
during photoinhibitory stress (Huner et al. 
 2006 ). Higher plants have six LHCII pro-
teins associated with PS II (Lhcb1-6), with 
Lhcb1-3 forming the major trimeric antenna 
while Lhcb4-6 exist as monomers (Peter and 
Thornber  1991 ; Jansson  1999 ). The observa-
tion that isolated LHCII trimers form aggre-
gates in vitro with spectroscopic features that 
have been correlated with qE in vivo (Ruban 
et al.  1992a ; Phillip et al.  1996 ) has led to 
the proposal of the LHCII aggregation model 
(Horton et al.  2008 ; Ruban et al.  2012 ). In 
this four-state model, aggregation of LHCII 
trimers is controlled cooperatively by PsbS 
protonation and Z formation, which presum-
ably allow for more rapid formation of the 
quenching state. 

 Another model put forth, and in many 
ways complementary to the aggregation 
model, proposes the presence of two distinct 
quenching sites, Q1 and Q2 (Holzwarth et al. 
 2009 ; Jahns and Holzwarth  2012 ). This 
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model is based on spectroscopic measure-
ments and global target analysis on mutants 
with varying amounts of PsbS as well as the 
 npq1  mutant (Holzwarth et al.  2009 ). Based 
on this analysis the authors suggested that 
detached LHCs can aggregate and lead to the 
formation of Q1, and that this quenching site 
may in fact be formed upon dissociation of 
band 4, as described above. The formation of 
a far-red spectral component assigned to Q1 
has been seen during qE formation in both 
aggregated LHCII (Ruban and Horton  1992 ; 
Miloslavina et al.  2008 ) and intact leaves 
(Lambrev et al.  2010 ). Z was shown to 
enhance this effect, but to not be required, 
again suggesting an allosteric role (Johnson 
and Ruban  2009 ). The Q2 site in the model 
by Holzwarth et al. ( 2009 ) remains associ-
ated with PS II and is Z-dependent, but pre-
sumably does not require PsbS. More kinetic 
information will be required to determine 
whether or not the quenching at this site is, in 
fact, qE-like, or if it might fi t better with one 
of the slower components of NPQ.  

   B The Molecular Mechanism 

 The molecular mechanism responsible for 
qE (and presumably thermal dissipation of 
excess absorbed light) is more contentious. 
One proposed mechanism involves an aggre-
gation-dependent conformational change 
affecting a lutein located in the L1 site of tri-
meric LHCII, which positions this lutein 
molecule as a quencher of Chl through an 
energy transfer mechanism (Ruban et al. 
 2007 ; however, see Demmig- Adams et al., 
Chap.   24    , for relationships between NPQ in 
nature and foliar zeaxanthin versus lutein 
levels). Alternatively, it has been suggested 
that the same conformational change results 
in quenching through a Chl-Chl charge 
transfer mechanism (Miloslavina et al.  2008 ; 
Müller et al.  2010 ). In contrast to these sce-
narios, where Z plays a strictly allosteric 
role, mechanisms for qE based on direct 
involvement of Z either through energy or 
electron transfer from Chl to Z have been 
proposed (Demmig-Adams  1990 ; Frank 
et al.  1994 ; Dreuw et al.  2003 ; Holt et al. 
 2004 ). Evidence supporting a carotenoid 

charge-transfer mechanism came from 
observations of the formation of Z radical 
cation formed under qE conditions in iso-
lated thylakoids but absent in thylakoids of 
 npq4  (Holt et al.  2005 ). While this signal 
was observed in Lhcb4-6 in vitro (Ahn et al. 
 2008 ; Avenson et al.  2008 ,  2009 ), no evi-
dence of any radical cation could be found in 
isolated LHCII trimers (Avenson et al.  2009 ). 

 Excitonic coupling between the S1 state of 
carotenoids and Chl has been observed to be 
correlated with the amount of quenching and 
the formation of the red- shifted band in iso-
lated LHCs (Bode et al.  2009 ; Liao et al. 
 2010a ,  b ) and in vivo (Bode et al.  2009 ). This 
has led to the proposal that, when electronic 
coupling between the two molecules is suffi -
cient, energy can be trapped in this short-lived 
state, and further increases in coupling can 
lead to the charge transfer state (Bode et al. 
 2009 ; Liao et al.  2012 ; see also Walla and 
Fleming, Chap.   9    ). Recently, Wilk et al. ( 2013 ) 
reconstituted LHCII along with PsbS and Z in 
liposomes and showed that the amount of 
chlorophyll fl uorescence quenching observed 
in these samples was higher relative to lipo-
somes containing LHCII in the absence of 
PsbS or Z, and the authors were able to corre-
late this quenching with the electronic cou-
pling measured by two- photon excitation. 
Importantly, these experiments were per-
formed at LHCII concentrations low enough 
to avoid aggregation quenching. It remains to 
be seen whether this phenomenon is specifi c 
to LHCII or if the minor complexes are also 
able to interact with PsbS and Z to form this 
quenching state, and whether the Z cation rad-
ical can be observed in these liposomes.   

   VI Physiological Function 
of qE and PsbS 

   A qE Is Important Under 
Fluctuating Light Conditions 

 Despite some remaining uncertainty regard-
ing how PsbS functions at a biochemical 
level, the  npq4  mutant has been invaluable 
in studies aimed at defi ning the physiologi-
cal function of qE in plants. One important 
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 question in the fi eld is what effect qE has on 
plant growth and fi tness. Using a variety of 
lines containing various amounts of PsbS, 
and therefore qE, this question can be 
addressed directly. There is at least one 
report suggesting that under continuous high 
light,  npq4  plants were inhibited in growth 
relative to wild type (Graßes et al.  2002 ), 
while others have reported that growth was 
similar to wild type (Havaux and Niyogi 
 1999 ; Külheim et al.  2002 ). Experimental 
variation, such as a difference in the age of 
plants transferred to high light, may account 
for this discrepancy. For instance, it has 
been shown that young but not mature leaves 
of  npq1  mutants are able to acclimate to 
high light via other mechanisms, such as 
increasing the amount of tocopherols 
(Havaux et al.  2007 ). 

 When plants are grown in fl uctuating light 
environments, a more obvious PsbS- 
dependent growth and fi tness phenotype was 
observed (Külheim et al.  2002 ; Frenkel et al. 
 2009 ; Krah and Logan  2010 ). One explana-
tion for the more dramatic difference seen 
under fl uctuating versus constant light is that 
qE might be important to reduce the excita-
tion pressure on PS II and prevent photoinhi-
bition during rapid changes in light intensity. 
This explanation is supported by experi-
ments showing that exposure of low light-
grown plants to higher light intensities 
resulted in greater excitation pressure in 
 npq4  mutants than in wild type (Li et al. 
 2002b ; Johnson and Ruban  2010 ), but lower 
excitation pressure in PsbS-overexpressing 
lines than in wild type (Li et al.  2002b ).  

   B PsbS Prevents Photoinhibition 

 Using the  npq4  mutant, qE was shown to 
prevent high light-induced photoinhibition 
measured as a persistent decrease in vari-
able fl uorescence (Graßes et al.  2002 ; Li 
et al.  2002b ; Takahashi et al.  2009 ; for a dis-
cussion on photoinhibition, see Adams 
et al., Chap.   23    ). While such a role for qE 
had previously been demonstrated in  npq1  
plants (Havaux and Niyogi  1999 ; Havaux 
et al.  2000 ), the additional function of Z in 

the prevention of lipid peroxidation makes 
it diffi cult to isolate the qE-dependent 
effects (Havaux et al.  2007 ). How qE pro-
tects PS II from photoinhibition remains 
unresolved, due to confl icting results from 
leaves treated with a chloroplast protein 
translation inhibitor and exposed to high 
light. Graßes et al. ( 2002 ) reported that the 
increased photoinhibition observed in  npq4  
was not attributable to increased degrada-
tion of D1 protein, but rather to a downregu-
lation of PS II activity by another 
mechanism(s). In another study, Takahashi 
et al. ( 2009 ) compared wild type to  npq4  
and found that the amount of photoinhibi-
tion was the same in the absence and pres-
ence of the inhibitor, leading to the 
conclusion that the additional photoinhibi-
tion in qE-defi cient plants is caused by a 
lower rate of de novo chloroplast protein 
synthesis. Most recently, Roach and Krieger- 
Liszkay ( 2012 ) repeated the latter experi-
ment and found that the difference may 
depend on the light intensity used for high 
light treatment. It should also be noted that 
the three groups all used a different inhibitor 
in their experiments. A more extensive 
investigation of the effect of a lack of qE 
(and presumably thermal dissipation) on 
photoinhibition using a combination of light 
intensities and chemical inhibitors will be 
important in future work. 

 Several groups have previously observed 
that the amount of photoinhibition cannot be 
entirely explained by damaged PS II and 
have proposed that other slowly relaxing 
NPQ pathways could be responsible (Walters 
and Horton  1993 ; Adams et al.  2006 ; see also 
Adams et al., Chap.   23    , and Demmig-Adams 
et al. Chap.   24    ). The results, mentioned 
above, might suggest that, in some situations, 
the rapidly reversible form of thermal dissi-
pation indicated by qE may protect plants as 
well as prevent an activation of slowly relax-
ing NPQ pathways that might decrease pho-
tosynthesis in fl uctuating light. An increase 
in another form of quenching with slower 
kinetics could explain the decreased photo-
chemical effi ciency and the small, yet 
 signifi cantly higher, amount of NPQ that is 
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observed in  npq4  compared to wild type after 
high light treatment. Alternatively, the 
remaining NPQ in high-light-exposed  npq4  
plants may have the same mechanism as qE, 
but form more slowly in the absence of PsbS 
(Johnson and Ruban  2010 ; see also Demmig-
Adams et al., Chap.   24    ). 

 The observation that overexpression of 
PsbS can lead to increased levels of qE in 
 Arabidopsis  and prevent photoinhibition 
raises several questions. What is the opti-
mal amount of qE (and NPQ)? Why do 
some plants not maximize their qE capacity 
and does this imply that there are draw-
backs of having too much qE (see also 
Demmig- Adams       et al.  2013  for a discussion 
of trade- offs)? And fi nally, can altered lev-
els of PsbS be used to optimize crop 
productivity? 

   1 Natural Systems Control qE 
Through PsbS 

 It has been observed that different species 
are capable of different levels of qE depend-
ing largely on whether they were grown in 
full sun or in the shade (Demmig-Adams 
and Adams  1994 ; see also Demmig-Adams 
et al., Chap.   24    ). Variations in qE capacity 
that depend on growth light conditions have 
also been documented within a species, and 
it has been shown that shade or low-light-
grown plants had less rapidly reversible 
NPQ and higher levels of photoinhibition 
when compared to sun or high-light- grown 
plants (Demmig-Adams et al.  1998 ; Mishra 
et al.  2012 ; see also Demmig- Adams et al., 
Chap.   24    ). With the discovery that PsbS is 
critical for rapidly reversible thermal dissi-
pation (qE), this analysis was extended to 
show that the amount of PsbS could be 
altered depending on growth conditions and 
affect the capacity of qE (Demmig-Adams 
and Adams  2006 ; Demmig-Adams et al. 
 2006 ). Quantitative trait locus (QTL) map-
ping identifi ed PsbS expression level as a 
determinant of qE capacity in rice cultivars 
(Kasajima et al.  2011 ). 

 However, it should be emphasized that 
PsbS may not be the only factor contributing 

to the qE and that plants may adapt in 
other ways. For example, comparison of 
 Arabidopsis  ecotypes that exhibited different 
levels of qE revealed equal levels of PsbS 
(Jung and Niyogi  2009 ), despite the earlier 
observations of a PsbS dosage effect on qE 
(Li et al.  2002a ,  b ). QTL mapping with two 
of the ecotypes suggested that the genes 
responsible had not been identifi ed previ-
ously by genetic approaches using induced 
mutants (Jung and Niyogi  2009 ). Moreover, 
when qE levels were compared in a set of 
 Arabidopsis  ecotypes, grown under lab and 
fi eld conditions, there was no correlation 
between PsbS and qE levels, and in the fi eld 
most lines had qE levels similar to a PsbS-
overexpressing line (Mishra et al.  2012 ). It 
cannot be excluded that possible differences 
in electron transport capacity among eco-
types contributed to different qE levels. 
Nevertheless, it appears that qE level is 
determined not only by a plant’s genetic 
makeup but can also be adjusted dynami-
cally based on environmental conditions, 
and that factors other than PsbS level may 
affect qE level  

   2 Too Much of a Good Thing 

 If qE protects leaves from photoinhibition, 
why do plants often not increase their expres-
sion levels of PsbS to the point that saturates 
qE? PsbS-overexpressing lines indeed had 
larger rosettes than wild-type plants when 
grown under a light regime with a single 
daily sunfl eck, suggesting that increasing 
qE capacity is benefi cial under such condi-
tions (Logan et al.  2008 ). However, the latter 
conditions are unlikely to be representa-
tive of the more common conditions – with 
frequent, rapid fl uctuations in light inten-
sity – plants experience in nature. Field 
experiments with PsbS- overexpressing lines 
grown alongside wild- type plants revealed 
no signifi cant difference in seed production 
between the two groups (Frenkel et al.  2009 ). 
It has thus been proposed that NPQ capacity 
is optimized in nature and refl ects a balance 
between the gains from an increased protec-
tion from photoinhibition versus potential 
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losses to photosynthesis that might occur 
during the induction of NPQ. This possibil-
ity was examined by measuring photosyn-
thetic assimilation in transgenic rice with 
varying levels of PsbS, and it was shown that 
PsbS-overexpressing lines had lower assimi-
lation rates when measured during fl uctuat-
ing illumination (Hubbart et al.  2012 ). The 
possible interplay between NPQ and other 
stress responses has also led to the sugges-
tion that, when a plant contains more PsbS 
than necessary, other stress response path-
ways could become compromised (Frenkel 
et al.  2009 ). In particular, both herbivores 
(Johansson Jänkänpää et al.  2013 ) and patho-
gens (Göhre et al.  2012 ) appear to be able to 
discriminate between plants with different 
PsbS levels, perhaps due to changes in gene 
expression and chloroplast metabolism as a 
consequence of increased ROS production 
in plants lacking PsbS (Roach and Krieger-
Liszkay  2012 ; see also Demmig- Adams et al. 
 2013 ). Finally, it has also been reported that 
overexpression of PsbS can inhibit cyclic 
electron fl ow and lead to photoinhibition 
of PS I (Roach and Krieger- Liszkay  2012 ). 
This last result is particularly interesting in 
view of potential interactions between PsbS 
and PS I subunits (Teardo et al.  2007 ) (see 
above). Further research will be necessary to 
clarify both positive and negative potential 
effects of PsbS overexpression.    

   VII Evolutionary Aspects of PsbS 

 From an evolutionary perspective, it appears 
as though PsbS-mediated capacity to rapidly 
modulate NPQ arose before, or at the latest 
around, the time when plants started to 
inhabit the terrestrial ecosystem. This latter 
ability is likely to have been a crucial inno-
vation, as it appears to be widely conserved 
in land plants. Genes encoding PsbS have 
been found in the genomes of sequenced 
green algae, strongly suggesting that PsbS 
evolved in the common ancestor of green 
algae and plants (Koziol et al.  2007 ; see also 
Morosinotto and Bassi, other Chap.   14    ). 
However, there is presently no experimental 

evidence for PsbS-dependent NPQ in any 
green alga (Bonente et al.  2008 ; Niyogi and 
Truong  2013 ). Instead, green algae, such as 
 Chlamydomonas reinhardtii , use a different 
LHC-related protein, called LHCSR, for qE 
(Peers et al.  2009 ; see also Morosinotto and 
Bassi, Chap.   14    ). Both LHCSR- and PsbS- 
dependent qE have been shown conclusively 
to co-exist in the moss  Physcomitrella pat-
ens  (Alboresi et al.  2010 ; Gerotto et al. 
 2012 ), but LHCSR was presumably subse-
quently lost during the early evolution of 
vascular plants, leaving only PsbS- dependent 
qE (Niyogi and Truong  2013 ). In the moss, 
the induction kinetics of PsbS- dependent qE 
appear to be faster than the LHCSR-
dependent qE, which might explain why 
LHCSR was lost while PsbS was retained 
(Gerotto et al.  2012 ). 

 Although PsbS is not the only mechanism 
plants possess to modify NPQ capacity, the 
rapid kinetics of PsbS-dependent qE make 
the latter an attractive component of plant 
defense against photo-oxidative stress, and 
natural selection has presumably maintained 
this trait in all vascular plant lineages inves-
tigated so far. Since the capacity of the PsbS-
mediated system is not constant, PsbS level, 
and hence qE capacity, may be under selec-
tion by the plant’s natural environment. 
Enhanced PsbS levels clearly enhance qE 
capacity in  Arabidopsis  that, however, pos-
sesses only the relatively low maximal qE 
capacity typically seen in rapidly growing 
annual species compared with other species 
(especially evergreens) adapted to more 
extreme environments (see also Demmig- 
Adams et al., Chap.   24    ). The level of PsbS in 
a plant is, of course, selected by evolution to 
maximize fi tness, and less-than-maximal 
PsbS might be explained by compromised 
defense against biotic attack, losses to photo-
synthetic effi ciency during the induction or 
relaxation of NPQ, or something else.  

   VIII Conclusions 

 Several important questions remain to be 
answered concerning the role of PsbS in 
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qE. Plants with varying amounts of PsbS, 
in several species beyond  Arabidopsis  
and rice, will be needed to elucidate all 
aspects of the effect of PsbS-dependent 
NPQ on plant fitness and productivity. 
Furthermore, sequencing the genomes 
and characterizing more species between 
 Chlamydomonas reinhardtii  and vascular 
plants may help understand what drove 
the switch from LHCSR-dependent to 
PsbS-dependent qE, and what function 
PsbS has where it does not appear to be 
involved in NPQ. 

 Confl icting reports on pigment binding, 
localization, and interaction with other com-
ponents have led to many different proposals 
over the years as to how PsbS might be 
involved in the mechanism of qE. Despite 
these different views, consensus is forming 
around the idea that, (1) a conformational 
change within PsbS occurs upon protonation, 
which (2) promotes dissociation of a subset 
of LHCs from the PS II core, and (3) leads to 
the formation of the qE quenching site. The 
connection between each of these steps, how-
ever, remains poorly defi ned. The location of 
PsbS within the grana membrane and/or PS 
II super- complex is an important piece of 
information that remains elusive despite sev-
eral attempts by many labs. In order to help 
defi ne the molecular trigger for qE, it would 
also be useful to have a structure of PsbS and, 
if possible, determine what changes occur in 
the protein upon protonation. Advances in 
X-ray crystallography and solid-state nuclear 
magnetic resonance techniques could lead to 
exciting results in this area.     
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