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1  Introduction: Redox Maintenance and Regulation  
in Biological Systems

Several biological macromolecules can be reversibly oxidized or reduced and this 
can affect their properties and thus influence their function either positively or nega-
tively. Indeed, this simple fact is the basis of some complex regulatory machinery 
in the cell. The redox environment in the cell needs to be closely buffered and mon-
itored so that the multiplicity of the cell’s biochemistry runs smoothly in an inte-
grated fashion. Over-reduction, leading for example to misfolding of proteins in 
the endoplasmic reticulum (ER), and over-oxidation are both harmful to the cell’s 
physiology (Delic et al. 2012; Higa and Chevet 2012). The redox state of particular 
cysteine thiols in the cell depends upon a number of factors such as their accessi-
bility, specific pKa, nature of surrounding amino acids and not just the thermody-
namics but also the kinetics of possible oxidation/reduction reactions (Dalle-Donne 
et al. 2009; Nagy 2013; Winterbourn and Hampton 2008). Two paradigms, which 
are not mutually exclusive but perhaps also are not equally represented in cells, are 
relevant to the control of thiol-based micro-switches. In the first of these scenarios a 
particular thiol is in thermodynamic equilibrium within its subcellular environment 
and the ratio of oxidized to reduced forms is determined by the local redox potential. 
In the second scenario thermodynamic equilibrium is not assumed and the kinet-
ics of oxidation of a relatively few target protein thiols ‘sense’ oxidative changes 
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in the cell and function as signaling intermediates by relaying information, before 
being enzymatically reduced back to their basal degree of oxidation (Winterbourn 
and Hampton 2008). Many experimental data tend to support the second sce-
nario but do not rule out the first for specific instances. It is often stated that the 
glutathione:glutathione disulfide redox couple (GSH:GSSG) buffers changes in cell 
redox. However, the situation is complex and although oxidative treatments often 
lead to a shift in the degree of total cellular glutathione oxidation, GSSG may be 
largely rapidly removed from the cytosol, for example into the vacuole, thus leav-
ing the local electrochemical cell potential unaltered (Morgan et al. 2013). Thus, 
caution must be exercised in interpreting whole cell GSH:GSSG ratios in terms of 
electrochemical potentials in specific cellular compartments. Nevertheless, having 
stated this, it is a fact of physical chemistry that the redox environment, given the 
above provisos, will influence the oxidation state of accessible thiols. Therefore, it is 
important to consider how the redox environment in cells is maintained.

The redox status of the cell is constituted and buffered by a series of 
redox couples, which are pairs of molecules existing in reduced or oxidized 
states. For example: NADH/NAD+ + H+, NADPH/NADP+ + H+, reduced, 
and oxidized glutathione (GSH/GSSG) and reduced and oxidized ascorbate 
(ascorbate/dehydroascorbate) buffer redox systems in the water-soluble cell com-
partments and reduced and oxidized vitamin E molecules buffer redox changes in 
the lipophilic cell fractions (Foyer and Noctor 2005). These redox buffers can either 
directly react with redox active compounds or act as electron donors or reducing 
equivalents for enzymatic reactions. GSH, for instance, acts as electron donor for glu-
tathione-dependent oxidoreductases (‘glutaredoxins’) and thioredoxins are reduced 
via Thioredoxin Reductases (TrxR) with electrons from NADPH. The redox potential 
(also called the oxidation-reduction potential or midpoint potential) of a redox pair 
represents the tendency of the oxidized form to acquire electrons and be reduced (and 
vice versa) and is defined by the half-cell electrochemical potential (standard redox 
potential) of the couple (E0′ in mV). The redox buffering capacity of a redox couple 
is determined by the pool size. The standard-redox potential is empirically defined 
as the ‘dimension’ for the relative affinity of an electron-acceptor for electrons and is 
normalized against the half-cell potential of the standard reaction: H+ + e− → ½ H2 
(oxidized and reduced forms both at 1 M, 298 K) which is arbitrarily given the value 
0 V under standard conditions. In Biochemistry, most of the molecular species met 
with are not stable under the ‘standard’ conditions, so the reference potential (E0′) for 
a redox couple is usually quoted at pH 7.0 (see also Chap. 4).

In most cells the NADH/NAD+ and NADPH/NADP+ + H+ couples have 
the lowest redox potential (E0′ = −315 mV). The GSH/GSSG couple exhibits 
an E0′ = −240 mV, and the ascorbate/dehydroascorbate couple has a higher half 
cell potential (E0′ = +54 mV) (Schafer and Buettner 2001). The direction of elec-
tron flow is from lower (more reduced) to higher (more oxidized) redox poten-
tial [assuming that such a flow is possible mechanistically and not prohibited for 
kinetic reasons (see Chap. 4)].

The subcellular compartmentalization of the various redox couples and 
their in situ concentrations are important factors which determine local redox 

http://dx.doi.org/10.1007/978-94-017-8953-0_4
http://dx.doi.org/10.1007/978-94-017-8953-0_4


2379 The Cellular ‘Thiolstat’ as an Emerging Potential Target of Some Plant

environments (redox state and buffering capacity) within cells. As defined by 
Schafer and Buettner “The redox environment of a linked set of redox couples as 
found in a biological fluid, organelle, cell, or tissue is the summation of the prod-
ucts of the reduction potential and reducing capacity of the linked redox cou-
ples present” (Schafer and Buettner 2001). When the oxidized and reduced forms 
of a redox couple are not present in a 1:1 ratio, as is usually the case in a cellu-
lar compartment, the redox potential can be calculated using the Nernst equation. 
The relative proportions of oxidized/reduced partners in the NAD(P)H/NAD(P)+ 
and ascorbate/dehydroascorbate couples both determine and reflect the local redox 
potential (Ehc) independently from their overall absolute concentrations, whereas for 
the GSH/GSSG couple, not only the relative proportions of oxidized and reduced 
forms, but also their absolute concentrations must be taken into account. A consid-
eration of the Nernst equation makes it clear why not only the proportions but also 
the concentrations of GSH/GSSG in the pool determine the redox potential (Ehc):

The Nernst equation:

where Ehc = the electrochemical half-cell potential under the prevailing condi-
tions; E0′ = the reference half cell potential (pH = 7); R = the universal Gas 
Constant; T = 298 K or 25 °C; n = the number of electrons exchanged; F = the 
Faraday Constant; and Q is the mass action term.

Simplifying for the constants and converting from ln to log10 the expression 
becomes

For example for the NADP+/NADPH half-reaction couple

at pH 7 and 25 °C.
Thus, irrespective of the absolute concentrations it is sufficient to know the rel-

ative proportions of NADP+ and NADPH present in order to calculate the redox 
potential; whereas for GSH/GSSG:

at pH 7 and 25 °C.
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Note: This form of the equation has the log concentration term for the reductant 
divided by the log concentration term for the oxidant. Another form of the equa-
tion has the log concentration term for the oxidant divided by the log concentration 
term for the reductant and avoids the use of the ‘minus’ before the term

at pH 7 and 25 °C.
Because of the [GSH]2 ‘squared term’ introduced through the law of mass 

action, the relative proportion of GSH:GSSG in the pool is not sufficient to cal-
culate the redox potential (Ehc); the absolute concentrations must be known and 
substituted in the equation. This effect is illustrated in Fig. 1. At this point it is 
pertinent to mention that much work published on GSH reports only changes in 
the relative amounts of GSH:GSSG. A change in the GSH:GSSG ratio documents 
a qualitative shift in the redox status of the system but it does not give information 
as to the degree of redox change or the absolute redox status (Fig. 1).

The GSH concentration in a plant cell is approximately ten times that of NADH 
and NADPH, respectively, and values in the range from 1 to 10 mM are com-
monly measured (Noctor 2006). Because of this high intracellular concentration 
it is generally held that GSH plays an important role as a cellular buffer against 
redox changes. Interestingly, the size of the ascorbate pool in plant cells can also 
be relatively large (~10–100 mM), endowing it with a high buffering capacity, 
but at E0′ = +54 mV it has a much higher standard half-cell potential than the 
NAD(P)+/NAD(P)H and GSH/GSSG redox couples (Schafer and Buettner 2001). 

Ehc = −240 mV+

[(

59.1 mV

2

)

log
[GSSG]

[GSH]2

]

Fig. 1  The redox potential (Ehc) for the GSH:GSSG redox couple at varying degrees of oxida-
tion for five GSH concentrations
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Mutants completely unable to synthesize GSH are usually lethal but the  traditional 
view of the GSH pool as a buffer against redox change has recently been chal-
lenged, at least for yeast (Saccharomyces cerevisiae). Here the major redox buffer 
role in the cytosol was attributed to Trx with only a back-up role proposed for 
GSH, which was, however, essential for Fe-S cluster synthesis, making the gsh1 
deletion lethal. High GSH levels were postulated to be necessary because the pool 
size reduces under oxidative stress—i.e., the excess GSH was postulated to be 
simply necessary to ensure adequate supply for iron metabolism whereas Trx pro-
tected the redox environment (Kumar et al. 2011). In a further publication from 
this group the redox control in other yeast cell compartments was also elaborated 
upon. It was reported that while the cytosol possessed both Trx and GSH path-
ways in full, of which the Trx pathway was dominant, the mitochondrial matrix 
also possessed both pathways but here the GSH pathway had the major role in 
redox control. In both compartments GSH was essential for non-redox functions 
in Fe-S cluster synthesis. Furthermore, it was reported that the endoplasmic retic-
ulum (ER) and mitochondrial intermembrane space (IMS) were sites of intense 
thiol oxidation but lacked thiol-reductase pathways except for GSH (Toledano 
et al. 2013). Furthermore, real-time measurements of the cytosolic redox poten-
tial in yeast using a Grx1-roGFP reporter, which is in thermodynamic equilibrium 
with the GSH/GSSG couple (Meyer and Dick 2010), showed that although under 
oxidative stress conditions the overall cellular glutathione pool became more 
oxidized, the cytosolic redox state was little affected (Morgan et al. 2013). The 
authors suggested that GSSG in the cytosol which was not immediately reduced 
was transported into the yeast vacuole and that the overall cellular GSH:GSSG 
ratio was a poor indicator of the actual cytosolic redox potential which tended to 
be approximately 100 mV lower than would be predicted (ibid.).

In cells a kind of ‘redox flow’ can be envisaged where electrons pass through 
an open ended system along a gradient from lower (more negative) to higher 
(more positive) redox potential, and ‘new’ redox potential is ‘created’ at the bot-
tom end in plant cells by converting solar energy into electron transport along a 
series of electron carriers in the thylakoid membranes in chloroplasts to ferredoxin 
(Fd, E0′ = −430 mV). The enzyme ferredoxin-NADP+ reductase uses reduced Fd 
to reduce NADP+ to NADPH and these molecules are ultimately the sources of 
reducing potential at the beginning of the chain to re-reduce oxidized members of 
downstream redox couples. In animal cells and in non-photosynthetic plant tissues, 
highly reduced substrates, such as carbohydrates, are oxidized by NAD+ to release 
reducing equivalents in the form of NADH. New NAD(P)H must be generated 
as required to keep the central cellular GSH and ascorbate redox buffers replen-
ished. Ultimately, the majority of electrons flow to oxygen, reducing it to water. 
On their journey, however, partial one-electron and two-electron reductions of O2 
can occur and give rise to reactive oxygen species (ROS), such as the superoxide 
radical anion O2

•− and hydrogen peroxide, respectively. Protecting the cell against 
these potentially damaging products of metabolism is very important. Intermediate 
on this ‘electron highway’ are thiol groups and here it must be emphasized that, 
quantitatively, oxidizable thiols in proteins may exceed the contribution of low 
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molecular weight thiols (e.g., GSH) by up to five-fold (Dietz 2005; Konig et al. 
2012). Furthermore, the thiol-disulfide exchange reactions entered into by thiols 
under oxidative conditions are perhaps better viewed as nucleophilic substitutions 
rather than electron transfer reactions, which is why NADPH as a reductant with 
a lower redox potential than thiols does not protect these from oxidation directly, 
but only indirectly by serving as a source of reducing power for enzymes such 
as glutathione reductase (Giles and Jacob 2002; Gruhlke and Slusarenko 2012). 
Conversely, excess GSH can directly protect protein thiols from oxidation (Foyer 
and Noctor 2005; Gruhlke and Slusarenko 2012; Noctor et al. 2011).

In the cell, it is often assumed, although this may not be the case, that redox 
couple partners tend to be in equilibrium between their reduced and oxidized 
forms and the global redox environment. Perhaps paradoxically, the position of the 
equilibrium for a given redox couple both depends upon and helps to determine 
the global cellular redox environment, which includes all thiols of a  particular  
cellular compartment, including protein cysteine residues, free cysteine/cystine, 
and the tripeptide glutathione. The reduction of a disulfide by a thiol resulting in 
a mixed disulfide is known as thiol/disulfide exchange reaction and establishes 
the redox equilibrium of all thiol and disulfide groups (Jocelyn 1972). The nucle-
ophilic exchange occurs best with the thiolate ion (R−S−) rather than the thiol 
group and due to the high pKa of most –SH groups (pKa for free cysteine = 8.3) 
this means that below pH 7.0 the reaction will not proceed ‘unaided’ (Hofmann 
et al. 2002). As pointed out, however, earlier the redox state of a particular 
cysteine thiol depends on its accessibility, the specific pKa, whether there are 
nearby basic amino acids and not just on the thermodynamics but also, very 
importantly, the kinetics of possible oxidation/reduction reactions (Dalle-Donne 
et al. 2009; Nagy 2013; Winterbourn and Hampton 2008). The prevailing opinion 
is perhaps that many protein thiols in the cell are not in thermodynamic equilib-
rium with the global redox environment and that oxidative stress signaling occurs 
predominantly upon the triggering of specific sensor trigger proteins which are 
direct targets for oxidants (Winterbourn and Hampton 2008). Many experimental 
data tend to support this scenario but do not rule out the influence of the thermo-
dynamic equilibrium mechanism for specific instances.

The alternative view assumes a greater role for the global redox environment 
of the subcellular compartments and presumes that this is largely governed by 
the GSH/GSSG redox couple. The cysteine-containing tripeptide glutathione, 
the thiol species with the highest cellular concentration, can act as electron-
donor for different redox reactions either directly (by reduction of different 
oxidants) or in an enzyme-catalyzed manner (e.g., enzymes that reduce protein-
disulfides in a glutathione-dependent manner [glutaredoxins] or reduce perox-
ides using glutathione as electron source [glutathione-peroxidases]) and for the 
regeneration of other redox buffering systems like ascorbate/dehydroascorbate). 
Because of the central redox buffer position that GSH holds, and because 
of the likely equilibrium between GSH and at least some other cellular thi-
ols, one can conceive of a cellular ‘thiolstat’ (Gruhlke and Slusarenko 2012; 
Jacob 2011) in analogy to a ‘rheostat’ as a ‘variable resistor’ or an ‘instrument 
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for controlling and varying within limits the value of resistance in an (electri-
cal) circuit’ (Anon 1968). Thus, on the supposition that there is potentially an 
equilibrium between cellular thiols (glutathione and protein thiols) and other 
redox systems with either higher (e.g., ascorbate or tocopherol) or lower (e.g., 
NAD(P)+/NAD(P)H) redox potentials, glutathione because of its high cellular 
abundance (around 5 mM in animal cells, which is around 500-fold higher than 
the NADPH/thioredoxin system) (Filomeni et al. 2002; Schafer and Buettner 
2001) is often considered to be a central regulon of the redox state in the cell. 
Hence, the ‘thiolstat’ can be defined as the overall redox status, which is in 
equilibrium with the glutathione status in particular and so allows using the 
GSH/GSSG-redox couple as an indicator for all cellular thiols and thus cellular 
redox in general. Viewed simply, the cellular ‘thiolstat’ reflects the proportion of 
oxidized:reduced thiol groups in the cell (Fig. 2).

An excellent example of the thiolstat in action is the observation that seed 
viability can be predicted from knowing the redox potential of the GSH/GSSG 

Fig. 2  Reductant–antioxidant–oxidant interactions in redox homeostasis and signaling in a 
typical plant cell. The flow of electrons through the thermodynamic ‘open system’ from pho-
tosynthetically produced reduction potential (reduced ferredoxin, NADPH) to oxygen along the 
electrochemical potential gradient is illustrated. Asc ascorbate, CAT catalase, CHO carbohydrate, 
DHA dehydroascorbate, DHR dehydroascorbate reductase, e− electron, Fdred/Fdox reduced/
oxidized ferredoxin, GR glutathione reductase, Grx glutaredoxin, Prx peroxiredoxin, SOD 
superoxide dismutase, Srx sulfiredoxin, Trx thioredoxin; KEAP/Nrf2, OxyR, and Y(AP1) are 
transcription factors involved in oxidative stress responses (see text)
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redox couple (Kranner et al. 2006). The authors studied seeds from several plant 
families and species and showed that when under stress conditions, EGSSG/2GSH 
increased to −180 mV that seed germination rate decreased by ~50 % and at a 
potential higher than −160 mV seeds lost viability completely. The authors con-
cluded that EGSSG/2GSH was a universal marker of plant cell viability (ibid.). 
However, the situation is complex and although oxidative treatments often lead 
to a shift in the degree of total cellular glutathione oxidation, GSSG may be 
largely rapidly removed from the cytosol, for example into the vacuole, thus leav-
ing the local electrochemical cell potential relatively unaltered (Morgan et al. 
2013). Thus, caution must be exercised in interpreting whole cell GSH:GSSG 
ratios in terms of electrochemical potentials in specific cellular compartments. 
Nevertheless, having stated this, it is a fact of physical chemistry that the redox 
environment, given the above provisos, will influence the oxidation state of 
accessible thiols.

2  The Redox Switch Concept

Cysteine residues are particularly sensitive to redox changes. The redox cou-
ple cysteine/cystine has a standard half-cell potential of around −220 mV 
(Jocelyn 1967). Since the half-cell potential describes the equilibrium conditions 
of the redox system, this means that at higher reduction potentials the equilib-
rium is shifted to a more oxidized, at lower potentials to a more reduced state. 
Nonetheless, especially for protein-thiols the equilibrium does not exclusively 
depend upon the half-cell potential, but also depends on the pKa of the surround-
ing functional groups, which affect the degree of dissociation of the protein-thiol 
(Nagy 2013).

The translation of changes in the cellular thiol status to changes in the oxi-
dation state of a single protein-thiol has been called a ‘nano-switch’ (Paget and 
Buttner 2003; Schafer and Buettner 2001). Since the catalytic or regulatory func-
tion of proteins is often dependent on the oxidation state of particular cysteine 
residues, a shift of the overall cellular thiolstat can change the position of many 
switches in a single sweep, and not necessarily only regulate a few specific tar-
gets in a conventionally ‘linear’ signaling cascade (Jacob et al. 2006; Jensen et al. 
2009; Jones 2008; Kamata and Hirata 1999; Winterbourn and Hampton 2008).

It was shown empirically in cell cultures that physiological states like prolifera-
tion, differentiation, apoptosis, or necrosis correlated with the calculated cellular 
redox potential using the Nernst equation and the absolute glutathione concentra-
tions (Cai and Jones 1998; Cai et al. 2000; Gruhlke et al. 2010; Hutter et al. 1997; 
Hwang et al. 1992; Jones et al. 1995; Kirlin et al. 1999).

Although these concrete correlations between redox and physiological status 
were shown in animal and human cell lines, the inference that the findings are 
applicable to other cell types, such as fungal, bacterial, or plant cells, seems likely, 
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since the mechanism of influencing protein function by alteration of the thiol sta-
tus is transferable. Indeed, this assumption has been shown to be valid at least for 
seed germination potential by Kranner et al. (2006). Hence, attempts to intention-
ally influence the thiolstat, based on the redox switch concept, need not be lim-
ited to animal systems (e.g., in cancer treatment), but would also represent a valid 
strategy in agricultural plant protection.

The change in a protein’s redox status needs to be transduced into a physiological 
response, i.e., by affecting the cell’s metabolism or altering gene transcription. An 
important point in this respect is how global redox change is translated into specific 
signaling events regulating specific responses. Well-known examples of transcription 
factors which transduce the redox switch into a physiological response are the OxyR 
and SoxS transcription factors from Escherichia coli and members of the mamma-
lian AP1 family (see also Chap. 5). The latter have been well studied for the yeast 
AP-1 homolog (YAP1). A comparison of these two redox switch models is given in 
Choi et al. (2001).

Bacteria have developed a broad range of different redox sensors and resist-
ance mechanisms to adapt to and to defend against oxidative stress conditions 
(Green and Paget 2004). OxyR regulates the response to H2O2 and the SoxRS sys-
tem is important for resistance against redox active natural products with antibi-
otic activity (Chater 2006; Dietrich et al. 2008; Mavrodi et al. 2006). The SoxS 
transcription factor regulates the superoxide response (Demple 1991; Green and 
Paget 2004). Mechanistically the change in redox status is transduced to changes 
in the cysteine residues of the transcription factor that becomes activated and sub-
sequently facilitates the transcription of stress-related and antioxidative enzymes 
in a coordinated way.

How the thiol microswitches in Yap1 are differently regulated by oxidants such 
as H2O2 and diamide is relatively well understood (Azevedo et al. 2003, 2007; 
Delaunay et al. 2000) and specific switching by H2O2 or diamide leads to largely 
oxidant-specific protection responses via the activation of characteristic sets of 
defense genes (Morano et al. 2012; Ouyang et al. 2011). The Yap1 transcription 
factor has N- and C-terminal cysteine rich domains (n-CRD and c-CRD) and a 
nuclear export protein (Crm1) binding domain. In the absence of oxidative stress 
Yap1 in the nucleus is bound by Crm1 and rapidly exported into the oxidative 
stress cytosol. In conjunction with a glutathione peroxidase (Gpx3) and the Yap1-
binding protein, H2O2 leads to an oxidative intramolecular folding of Yap1 involv-
ing both n-CRD and c-CRD domains. The intramolecular folding of Yap1 masks 
the Crm1 binding site and allows Yap1 to accumulate in the nucleus. Thiol rea-
gents such as NEM (N-ethylmaleimide), diamide and others, however, have been 
shown to form adducts to cysteines in the c-CRD and thus block access of Crm1 to 
the Crm1-binding site (Morano et al. 2012). Accumulation of Yap1 in the nucleus 
leads to the transcription of sets of oxidative stress induced genes which can be 
different, depending on whether H2O2 or NEM/diamide activated Yap1. Oxidized 
Yap1 is reduced back to its initial state by the thioredoxin Trx2 (Delaunay et al. 
2000, 2002; Meyer et al. 2009; Wood et al. 2004).

http://dx.doi.org/10.1007/978-94-017-8953-0_5
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3  Examples of How Physiologically Active Secondary 
Metabolites Can Affect the Overall Thiol Status of the 
Cell: Plant Defense Compounds

Many metabolites, e.g., glucose or alanine, are present in all living organisms and 
are thus called ‘primary metabolites’. Some metabolites in contrast have a lim-
ited taxonomic distribution and are often produced in specific organs or at par-
ticular developmental stages; these are called ‘secondary metabolites’. Secondary 
metabolites often accumulate to very large amounts. A variety of natural products 
of so-called ‘secondary metabolism’, especially in plants, play important roles 
in defense against pathogens, predators, and competitors (see Chap. 1). It might 
be mentioned here that organisms other than plants produce secondary metabo-
lites, for example fungi and bacteria, and here crucial roles are often to be found 
in ecological relationships such as competitor suppression. Plants produce a large 
variety of chemically diverse bioactive molecules. Plant defense substances are 
classified into two broad groups as either ‘phytoanticipins’ or ‘phytoalexins’. 
Preformed substances which are present before the plant is attacked, or which are 
produced rapidly and spontaneously from a preformed substrate by simple chemi-
cal or enzymatic modification via a pre-existing enzyme, are called ‘phytoanti-
cipins’ (Van Etten et al. 1994). They build a first line of chemical defense which 
can be likened to a booby trap which, when triggered, has immediate unpleasant 
consequences for any attacker. Allicin from garlic, synthesized when cell damage 
results in the mixing of the preformed alliin substrate with the preformed allii-
nase enzyme, is a good example of a phytoanticipin. The second group of chemi-
cal defense substances, phytoalexins, are synthesized from distant precursors 
after pathogen attack and require de novo gene expression and the production of 
enzymes leading to the installation of new biosynthetic pathways not usually pre-
sent in the unchallenged plant. Thus, in the biological sense, phytoanticipin and 
phytoalexin production can be viewed as components of ‘passive’ and ‘active’ 
defense strategies, respectively (see also Chap. 2) (Mansfield 2000).

The spectrum of organisms that attack plants is broad and from an evolutionary 
point of view it is advantageous to produce defense molecules with a global mode 
of action that is not restricted to a narrow class of organisms attacking the plant. 
Therefore, plant defense substances, far from being ‘magic bullets’, often have 
rather general mechanisms of action. Thus, many destroy the selective permeabil-
ity of membranes by creating channels, e.g., the steroidal glycoside and phytoan-
ticipin α-tomatine from tomato (Lycopersicon esculentum), and the isoflavonoid 
phytoalexins from the Leguminosae. Some defense compounds work by induc-
ing oxidative stress, for example α-tomatine and allicin (Ito et al. 2007). Thus, 
α-tomatine is an example of a defense compound with a dual mode of action. In 
this context cellular redox homoeostasis can be viewed similarly to cell membrane 
integrity, in that both are essential for normal cell function and viability (home-
ostasis) and make good general targets for broadly acting defense compounds 
(Dubreuil-Maurizi and Poinssot 2012; Kerchev et al. 2012).

http://dx.doi.org/10.1007/978-94-017-8953-0_1
http://dx.doi.org/10.1007/978-94-017-8953-0_2
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Theoretical considerations suggest at least four ways in which redox active 
secondary metabolites might affect the cellular redox homoeostasis, none of 
which are mutually exclusive. Indeed quite the opposite is true, and effects might 
be expected to occur concomitantly:

1. Function via direct interaction with redox sensitive proteins

Secondary metabolites might affect cellular redox homeostasis by reacting directly 
with redox sensitive proteins. Since protein thiols make up the largest group of 
thiol compounds in the cell, the direct quantitative effect of ‘titrating out’ protein 
thiol groups on redox homoeostasis cannot be neglected, i.e., protein thiols them-
selves constitute part of the cellular thiolstat machinery. Furthermore, oxidation of 
sensitive regulatory proteins which coordinate cellular oxidative stress adaptations 
will lead to a cascade effect on the redox environment (see Sect. 3.4).

2. Function via GSH:GSSG causing direct redox shift

Secondary metabolites can affect the cellular redox potential by direct oxidation 
of GSH to GSSG. This can occur in a direct chemical manner as is the case with 
some natural compounds containing oxidized sulfur, like allicin (Gruhlke and 
Slusarenko 2012) resulting in intermediate mixed-disulfide adducts but ultimately 
in the formation of GSSG (Fig. 3). Similarly, the reaction of a substance like alli-
cin with other cellular thiol groups, e.g., protein-thiols, affects the glutathione pool 
since glutathione is potentially in equilibrium with other cellular thiol groups via 
the thiol disulfide exchange reaction (TDER) and thus such compounds can oxi-
dize GSH indirectly.

3. Function via GSH-depletion

Besides a direct reaction mechanism, a glutathione S-transferase (GST)-mediated 
reaction with a secondary cassette metabolite, e.g., in the course of detoxification, 
can lead to a depletion of the glutathione pool because glutathione-adducts are 
often exported out of the cell or, in the case of plants and fungi, into the vacu-
ole. Multidrug resistant pumps (ATP-Binding Cassette, ABC-Transporters) often 
play an important role in this form of detoxification (Franco and Cidlowski 2012). 
Depletion of the GSH pool reduces the redox buffering capacity of the cell. As a 
consequence, even minor oxidative stress could then lead to strong influences on 
the thiolstat.

Fig. 3  The reaction of one mol of allicin with in total four mol GSH to yield two mol GSSG
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4. Function via ROS (or RNS) induction

Secondary metabolites can be sources of ROS or RNS which can act as strong oxi-
dants for thiol groups thus shifting the thiolstat to a more oxidized state.

3.1  Throwing a Nano-Switch: Might Allicin Lead to 
Apoptosis by Affecting Tubulin Polymerization?

It has been shown that cytoskeletal disruption can lead into apoptosis in yeast 
(Leadsham and Gourlay 2008). Furthermore, it was shown that allicin destroys 
the tubulin cytoskeleton and this effect is abolished by treatment with reduc-
ing agents such as DTT or β-mercaptoethanol in mouse fibroblasts (Prager-
Khoutorsky et al. 2007). Allicin induces apoptosis in yeast cells by shifting the 
cellular redox state and the concentration of GSH and GSSG. Allicin treatment 
showed both a loss in total glutathione and an increase in GSSG concentration 
(Gruhlke et al. 2010). Induction of apoptosis by allicin was also demonstrated 
in cancer cell lines (Miron et al. 2008). These observations suggest an influ-
ence of allicin on thiol groups of the tubulin protein. It is not yet clear, however,  
whether allicin acts directly by forming mixed disulfides with cysteine thiols in 
tubulin, which it can do in vitro, or indirectly via the oxidation of glutathione, 
hence affecting the thiolstat and leading to cysteine-based mixed disulfide 
formation in tubulin (e.g., S-glutathiolation). Furthermore, tubulin has been 
shown to be an important target of protein-glutathiolation and the  formation 
of mixed disulfides affects the polymerization of the tubulin  monomers  
(Landino et al. 2010).

3.2  Secondary Metabolites Depleting Cellular GSH

Isothiocyanates are well-studied bioactive reactive sulfur species (RSS) widely 
distributed in members of the Brassicaceae. Isothiocyanates are produced 
by myrosinase enzymes from glucosinolates (see also Chap. 10 in this book) 
(Nwachukwu et al. 2012).

Isothiocyanates can react directly with thiol groups to produce a dithiocarba-
mate that cannot be reduced by regenerating enzymes like thioredoxins, glu-
taredoxins, or glutathione reductases; thus, these compounds take glutathione 
out of the pool and consequently affect the cellular thiolstat. The benzoxazinoid 
DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one), a phytoanticipin 
from maize and some other cereals also removes glutathione from the thiolstat 
pool by forming a spirocyclic adduct (Dixon et al. 2012). Furthermore, the authors 
showed that DIMBOA reacted with exposed cysteine thiols in proteins, producing 
adducts that could not be re-reduced with DTT (ibid.).

http://dx.doi.org/10.1007/978-94-017-8953-0_10
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3.3  Secondary Metabolites Inducing ROS

Some redox active natural compounds affect the cellular thiolstat indirectly by 
induction of ROS that in turn leads to oxidation of components in the cell.

There are many instances of ROS induction in cells by natural compounds; 
some organic polysulfanes, for instance, are known to induce ROS, because 
they undergo complex redox reactions with thiol groups, forming products that 
can generate ROS in the presence of glutathione and Fe2+ (see also Chap. 10) 
(Munday et al. 2003; Nwachukwu et al. 2012; Schneider et al. 2011).

Organic polysulfane treatment can lead to the generation of O2
− which can react 

with thiol groups and produce GSSG and glutathione sulfonic acid (Winterbourn 
and Metodiewa 1994). Furthermore, H2O2 can be generated from O2

− by the activ-
ity of superoxide-dismutase and can directly oxidize GSH to GSSG.

Some natural products produce ROS on exposure to light via a photodynamic 
effect, e.g., the accumulation of singlet oxygen (1O2) on light exposure of some 
furanocoumarins in the Apiaceae (Bode and Hansel 2005) or by the sulfur-con-
taining thiophenes (Champagne et al. 1986; Hudson et al. 1993; Nwachukwu et al. 
2012). Although lipophilic redox buffer systems are efficient at scavenging singlet 
oxygen, the latter can react directly with glutathione or, more importantly, can be 
quenched by ascorbate (Devasagayam et al. 1991; Triantaphylides and Havaux 
2009). Nevertheless, dehydroascorbate is recycled by GSH in the Halliwell-
Asada-Cycle, resulting in glutathione oxidation, which could also affect the thiol-
stat. Furthermore, methionine seems to be able to form methionine sulfoxide via a 
photodynamic effect involving 1O2 (Devasagayam et al. 1991; Triantaphylides and 
Havaux 2009).

Thiophenes have been shown to inhibit superoxide dismutases, which lowers 
the effectivity of ROS detoxification mechanisms and thus results in greater accu-
mulation of these reactive species (Nivsarkar et al. 1991). Thus, it is not always 
the natural compound itself which alters the thiol status but sometimes the ROS 
which are produced as result of the natural compound.

3.4  Increasing the Cellular GSH Pool by Activating 
γ-Glutamylcysteine Ligase, the First Enzyme in the 
Biosynthetic Pathway

The examples discussed so far are of natural compounds that shift the thiol status 
to a more oxidized state. The converse, however, is also possible. Thus, some natu-
ral compounds can act to increase the glutathione pool and reinforce the buffer-
ing capacity of the thiolstat, and could therefore be expected to increase resistance 
against oxidative stress and its consequences.

The rate-limiting step in glutathione biosynthesis is the ligation of glutamate 
and cysteine to γ-glutamylcysteine, a reaction catalyzed by the enzyme γ-glutamyl-
cysteine ligase (GSH1, GCL, and GSHA in plants and fungi, animals and bacteria, 

http://dx.doi.org/10.1007/978-94-017-8953-0_10
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respectively), and both transcriptional and posttranscriptional regulation has been 
documented. Activation of γ-glutamyl-cysteine ligase by oxidation of specific 
cysteine thiols has been shown in the model plant Arabidopsis and in mammals such 
as rat and human (Hicks et al. 2007; Huang et al. 1993; Krejsa et al. 2010).

It was shown in oxidatively stressed yeast that GSH1 expression was regu-
lated by the oxidation-sensitive transcription factor Yap1 (see Sect. 2) (Dormer 
et al. 2002). In humans GCL has regulatory (GCSI) and catalytic (GCSh) subu-
nits. The expression of both subunits is controlled by the Antioxidant Response 
Element (ARE) motifs in the promoter sequence interacting with the Nrf1/2 tran-
scription factor. The localization of the Nrf1/2-proteins depends on the Kelch like-
ECH-associated protein 1 (KEAP1). KEAP1 binds to Nrf1/2 and this complex 
is normally associated with the actin cytoskeleton (Kang et al. 2004). Under the 
influence of oxidative stress, the Nrf1/2-KEAP1 complex dissociates and Nrf1/2 
migrates into the nucleus where it can bind to ARE elements in the promoters of 
genes coding for antioxidative enzymes (Fig. 4).

It has been shown that certain plant phenolics, for example naringin (a flavone 
in grapefruit), can stimulate the expression of the genes coding for both the regula-
tory and catalytic subunits of GCL in humans leading to increased glutathione syn-
thesis (Gopinath and Sudhandiran 2012; Moskaug et al. 2005; Surh et al. 2008).

Although allicin has been shown to rapidly deplete cells and blood of glu-
tathione (Gruhlke et al. 2010; Rabinkov et al. 2000) at low concentrations and in 
the long term allicin up-regulates the intracellular glutathione concentration by 
affecting the GCL enzyme, as shown in vascular endothelial cells (Horev-Azaria 
et al. 2009). This effect is tied together with the observation that although allicin 

HS
HS

KEAP1

Cytoskeleton

S

S
NRF1/2

NRF1/2

NRF1/2

GCL

ARE/EpRE

Natural 
compound

posttranslational activation

GSH1 Expression

Fig. 4  Natural products can stimulate glutathione biosynthesis via two avenues. First, by post-
translational activation of regulatory cysteines in GCL, and second, by releasing the Nrf1/2 tran-
scription factor from its actin-bound complex with KEAP1 and its subsequent migration to the 
nucleus where GCL gene expression is stimulated by Nrf1/2 binding to ARE elements in the 
GCL promoter (Moskaug et al. 2005; Surh et al. 2008)
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clearly has oxidative properties, physiologically at low concentrations it works 
as an ‘antioxidant’ by inducing protection mechanisms (Munday et al. 2003). 
Because this process invigorates the ‘antioxidative shield’ of a cell, induction of 
glutathione biosynthesis by natural compounds, e.g., from nutrition, might be of 
great interest for health care (Masella et al. 2005). In this way oxidatively active 
substances can, paradoxically, be useful indirectly as ‘antioxidants’ in a physiolog-
ical sense (see also Chap. 5) (Jung and Kwak 2010).

4  The Biological Consequences of Altering the Thiolstat: 
Targets and Signaling Pathways

4.1  Endogenous Disulfide Formation

Upon shifting the cellular thiolstat and thus the cellular redox environment to a more 
oxidized position, the formation of disulfides will be triggered. Two principle options 
exist. If two thiol groups in the same molecule are positioned such that they can react 
with each other, an internal disulfide bridge can form, whereas in the case that no 
other thiol group in the same molecule is available, the reaction might occur with thiol 
groups in other molecules. Glutathiolation (discussed in Sect. 4.2) is a special case of 
this more general scheme. Overproduction of disulfides in cells leads to the condition 
known as ‘disulfide stress’ (Aslund and Beckwith 1999). A consequence of disulfide 
stress can be further oxidation of protein thiols with serious implications on the cata-
lytic function of enzymes affected. Furthermore, protein-disulfide isomerases (PDIs), 
which catalyze disulfide bond formation between protein cysteines, can be important 
targets of natural compounds. Inhibition of the ER-localized PDIs leads to denaturation 
and misfolding of proteins in the ER. In turn this leads to the ubiquitous ‘unfolded pro-
tein response’ (UPR) which aims to restore normal cell function by stopping mRNA 
translation and activating pathways leading to the production of molecular chaperones 
to restore proper protein folding. If normalization is not achieved rapidly enough, the 
UPR pushes cells into apoptosis (Walter and Ron 2011). It has been shown that the 
natural sesquilactone juniferidin from Ferula malacophylla (Sagitdinova et al. 1978) 
inhibits PDI and induces apoptosis via the UPR (Khan et al. 2011).

4.2  Protein-Glutathiolation as a Consequence  
of a Thiolstat Shift

Under oxidizing conditions, glutathione readily form mixed disulfides with 
protein thiols; this process is called protein-glutathiolation (more precisely: 
protein-S-gluta-thiolation) (Dalle-Donne et al. 2009). A list of proteins found 
to be glutathiolated under oxidative stress conditions is documented in Table 1 
 (modified from Michelet et al. 2006). The extent to which this reaction occurs 

http://dx.doi.org/10.1007/978-94-017-8953-0_5
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Explanatory Box 1: Intracellular Diagnostics

Several chapters of this book discuss intracellular processes, for instance 
in the context of redox modifications and signaling cascades. Interestingly, 
many of these processes are rather subtle and their investigation requires 
sophisticated tools. Some of these cell bioanalytical methods have already 
been discussed in Chap. 3. Here, we will briefly consider some aspects of 
‘intracellular diagnostics’. During this discussion, it is important to bear 
in mind that most cellular events can only be measured reliably in living  

as a result of oxidative stress depends on a number of factors, e.g., the local 
redox potential, the absolute GSH concentration (law of mass action) and the 
pKa of the protein thiol in question (Dalle-Donne et al. 2009). The lower the pKa 
of a particular cysteine, and thus the greater its tendency to dissociate at physi-
ological pH, the higher is usually its reactivity with GSSG to build a disulfide. 
Depending on the redox environment it is also possible for a protein-cystine to 
become glutathiolated by reacting with a molecule of GSH in thiol-disulfide 
exchange reaction (Fig. 5).

Protein glutathiolation is central to the concept of the thiolstat and redox switch-
regulation of cell metabolism. The pi class of human glutathione-S-transferases 
(GST-P) can catalyze this reaction (Tew et al. 2011) and several secondary metabo-
lites stimulate (e.g., isothiocyanates) GST activity via the already mentioned Nrf2/
ARE pathway (Andorfer et al. 2004; Xu et al. 2006). Furthermore, for several 
sulfur-containing garlic metabolites a direct, non-enzyme-catalyzed stimulation of 
protein S-glutathiolation has been documented (Pinto et al. 2006).

Elements of the cytoskeleton are targets for glutathiolation, regulating actin 
polymerization via the proportion of filamentous (F-) to monomeric (G-) actin (Sakai 
et al. 2012; Wang et al. 2001). It has been shown in yeast that the degree of actin 
polymerization correlates with the mitochondrial membrane potential (Δψm). A sim-
ilar situation can be expected in mammalian cells (for an appropriate ‘intracellular 
diagnostics’ of such phenomena see Explanatory Box 1) (Dalle-Donne et al. 2003).

Fig. 5  The redox equilibrium is comparable to an asymmetric balance. In an unstressed cell the 
majority of the glutathione pool is in the reduced GSH form and protein ‘switch’ thiols (PrSH) 
are largely reduced. Upon oxidative stress there is not only direct glutathiolation of protein thiols, 
but the increased GSSG pool leads indirectly also to enhanced glutathiolation of protein thiols 
via a spontaneous enzyme catalyzed TDER. Please note that PrSSPr may be found in addition to 
PrSSG

http://dx.doi.org/10.1007/978-94-017-8953-0_3
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cells, and that fixed or even lysed cells only provide a static picture of real 
events. This picture is often also marred by artifacts due to the fixing, stain-
ing, and lysis techniques, and due to the fact that the normal processes have 
come to a standstill (and decay may have set in) and that cells (or parts 
thereof) become exposed to dioxygen. It is therefore not surprising that 
techniques involving living—or at least intact—cells have recently gained 
considerable prominence. Here, we find some of the most cutting-edge 
techniques of “Live Cell Imaging”. Western blots cannot be performed on 
living or intact cells and I have never heard of chromogenomics. As redox 
active agents often cause disturbance in the intracellular redox balance, 
several fluorescent dyes have been developed which enable researchers to 
stain cells in order to subsequently quantify oxidative stress (OS) in gen-
eral or certain Reactive Oxygen Species in particular. Here, one may con-
sider the OS-sensitive 2′,7′–dichlorofluorescein diacetate (DCFDA), the 
superoxide radical anion-sensitive hydroethidium bromide or the singlet 
oxygen-sensitive meso-tetraphenylporphyrin (H2TTPS). At the same time, 
stains are available to quantify intracellular thiols. A combination of fluo-
rescent staining and microscopy and/or a plate reader can also be employed 
to analyze for disruption of cellular organelles and their function. Dyes 
such as MitoTracker® and ER-Tracker® can be used to stain mitochon-
dria and the Endoplasmatic Reticulum, respectively. In contrast, the 
MitoSOX™ dye (JA-1), does not simply stain the mitochondria but itself 
is redox sensitive and changes fluorescence according to the mitochondrial 
membrane potential ΔΨM. Fluorescent dyes can also be used to visualize 
specific intracellular proteins under the microscope. Here, larger protein 
aggregates, such as tubulin and actin networks, which form the cytoskel-
eton, can be stained by fluorescent dyes attached to specific antibodies 
which recognize and hence attach to these proteins. Smaller aggregates or 
single proteins stained with fluorescent antibodies cannot be spotted indi-
vidually under a simple inverted light microscope as they are too small to 
be seen at the magnification available. However, their presence in the cell 
can be quantified by using such dyes and an appropriate plate reader. At the 
same time, the activity of such enzymes can also be measured using spe-
cific substrates which become fluorescent or change their emission wave-
length or intensity once they are turned over.

These whole-cell-based techniques can be supplemented by a wide 
spectrum of more invasive techniques. For instance, the concentration of 
a specific protein in the cell can also be determined fairly adequately using 
Western Blotting techniques. More recently, methods to measure mRNA lev-
els as indicators of gene expression in the cell, such as real-time PCR, have 
also become available. Indeed, there are many proteomic and genomic meth-
ods now available to map out specific gene expression patterns, protein lev-
els (and changes thereof), posttranslational modifications in proteins (such as 
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sulfenic acid formation), and the activity of certain transcription factors. Such 
techniques are often associated with genomics, proteomics, transcriptomics, 
or redoxomics, and share the desire to analyze the entire cellular network of 
entities or process in one go, and to compare its appearance to similar maps 
of sick or healthy cells, or cells responding to a specific external stimulus, 
such as an administered drug.

In natural products research, these techniques are complemented by 
a range of methods used to validate the intracellular targets of such com-
pounds. Here, we find sophisticated mass spectrometric methods to iden-
tify small modifications on proteins and enzymes, such as the oxidation 
of cysteine residues to sulfenic acids (i.e., to map out the cellular ‘sulfe-
nome’). Chemogenomics based on an extensive depository of yeast mutants 
enables researchers to identify mutants, and hence proteins involved in the 
action of a specific substance. Here, mutants particularly sensitive or resist-
ant to a specific compound direct the researcher to the cellular pathway(s) 
most likely to be involved or affected. Another comparably new method 
worth mentioning in this context is “drug affinity responsive target sta-
bility” (DARTS), which again is particularly suited to identify intracel-
lular targets of redox active substances. Here, the compound in question 
is applied to the cell, which is subsequently lysed and its protein content 
digested by a mixture of powerful proteases. As such proteases cannot 
digest chemically modified proteins, however, the latter survive and can 
be identified as potential targets using a combination of Western blots and 
mass spectrometry.

This list of modern and emerging techniques, of course, is far from com-
plete and still expanding rapidly. It is therefore worthwhile to keep a close 
eye on the progress in this field of intracellular diagnostics. During the next 
decade or two, such emerging methods will ultimately be able to address 
many rather difficult questions in the field and also resolve a number of rid-
dles, puzzles, and apparent contradictions currently challenging the research 
community.

4.3  Effects on Metalloproteins or How to Affect Electron 
Transport and DNA Transcription

Thiol groups are able to bind to Lewis acids, for example to Zn2+ ions. Thus, 
cysteine-coordinated zinc-centers can also act as redox switches (Ilbert et al. 
2006). Zinc coordination is of great importance for catalytic activity and protein 
structure in a variety of proteins and perturbation of zinc coordination can lead 
to inactivation of proteins. Hence, changes in the cellular thiolstat can be trans-
duced into physiological responses via the effect of redox changes on cysteine-
coordinated zinc-clusters.
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So-called ‘zinc-finger’ motifs are well-known zinc-chelating elements and the 
binding of a Zn2+ ion leads to the formation of a ribbon, which allows the pep-
tide chain to interact with nucleic acids. Thus, zinc-fingers are common motifs in 
transcription factors and perturbation of the structure, which depends on the zinc-
center, results in loss of DNA-binding activity. This highlights a further possible 
way in which changes in the cellular thiolstat might be transduced to changes in 
gene expression.

In murine macrophages, for example, it was shown that allicin is able to trigger 
the release of zinc from proteins in a concentration-dependent manner, leading to 
an inhibition of phosphatase activity and subsequently to enhanced ERK1/2 phos-
phorylation (Haase et al. 2012). This example illustrates that metalloproteins can 
also be important ‘transducers’ of changes in the cellular thiolstat.

Metalloproteins with iron-sulfur clusters play important roles in numerous 
electron transfer redox reactions in cells. These proteins complex two to four iron 
atoms via cysteine-sulfur atoms or through complex formation with histidine res-
idues. Changes in such Fe-S clusters resulting from changes in the thiolstat can 
have significant consequences for cell metabolism and this turns Fe-S clusters into 
targets for oxidative stress (Gruhlke and Slusarenko 2012).

5  Redox Activity as the Heart of Antibiotic Activity

Up to now this chapter has dealt with the influence of the thiolstat on eukary-
otic systems and in particular on mammalian cells. Nevertheless, shifting the 
cellular thiolstat can cause cell death in prokaryotes and in non-mammalian 
eukaroytes (e.g., in fungi). The induction of ROS was shown to contribute to 
the antibiotic activity of compounds toward bacteria. Thus, three major classes 
of bactericidal antibiotics, regardless of drug–target interaction, stimulate the 
production of highly deleterious hydroxyl radicals in Gram-negative and Gram-
positive bacteria, which ultimately contribute to cell death (Kohanski et al. 
2007). Elucidating how changing the cellular thiolstat correlates with the antibi-
otic properties of compounds is of great interest for developing antibiotic thera-
pies and in plant protection. Targets of antibiotic compounds are diverse. Thus, 
commercial antibiotics like ampicillin (which targets cell wall biosynthesis of 
bacteria) or kanamycin (which inhibits protein biosynthesis at the 30S riboso-
mal subunit) have specific targets that are necessary for the cells to survive or 
to proliferate. As discussed before, targeting the thiolstat of a cell is a poten-
tial mechanism for antibiotic action which may affect several cellular func-
tions simultaneously (and hence may also avoid the development of resistance). 
Thus, substances that specifically change the cellular redox environment could 
be promising antibiotics.

Interesting examples of bacterially produced antibiotics which are redox active 
are pyocyanin from Pseudomonas aeruginosa and actinorhodin from Streptomyces 
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coelicolor. Both are able to cause oxidative stress in bacteria, presumably via O2
− 

production and cause activation of the O2
−-regulated SOXR-regulon (Dietrich 

et al. 2008). Another interesting example is the phytoanticipin ‘tomatine’ from the 
Solanaceae that was thought to target exclusively the fungal membrane (Roddick 
and Drysdale 1984). However, recent studies imply that tomatine causes  oxidative 
stress, as shown in the fungus Fusarium oxysporum and induces apoptosis via 
changing the cellular redox state in the fungus (Ito et al. 2007).

6  Conclusions and Outlook

As part of this chapter we have described and discussed some examples as to how 
a change in the cellular redox environment, or thiolstat, can be transduced to phys-
iological effects. In mammals and fungi the induction of apoptosis is an important 
consequence of redox perturbation. Some studies with sulfur-containing molecules 
like polysulfanes and allicin in yeast (Candida albicans or Saccharomyces cerevi-
siae) demonstrated that a redox shift is responsible for the fungicidal activity of 
these compounds (Gruhlke et al. 2010; Lemar et al. 2005, 2007).

While the biochemical consequences of shifting the thiolstat (e.g., protein 
S-glutathiolation, effects on Fe-S clusters) are conserved between prokaryotes 
and eukaryotes, the consequences are thought to be different. For example, 
programmed cell death (PCD), one form of which is apoptosis, is held to be 
a solely eukaryotic phenomenon. Indeed, until a few years ago it was widely 
believed that apoptosis occurred only in multicellular eukaryotes. The over-
whelming body of evidence for apoptosis in the unicellular model microorgan-
ism Saccharomyces cereviseae (Baker’s yeast) led to a shift in the paradigm. In 
this sense it is important to take notice of recent reports of PCD in prokaryotes, 
and that this is a possible mechanism for the action of antibiotics (Engelberg-
Kulka et al. 2004). Thus, some typical markers of apoptosis have been observed 
in bacteria (Dwyer et al. 2012; Kohanski et al. 2007, 2010). Nevertheless, how 
far the principle concept of redox dependence of PCD in the sense of Schafer 
and Buettner’s model (2001) can be transferred to bacteria is, to our knowledge, 
not yet known. Since a shift in redox state in general affects a plethora of dif-
ferent cellular targets (in contrast to a concept of ‘one compound-one target’), 
it is likely that the bacterial PCD might also be redox dependent and by this 
provides an avenue for antibiotics to act via redox modification(s) (Schafer and 
Buettner 2001).

Ultimately, a deeper understanding of how natural products can influence the 
thiolstat may allow us a targeted approach for designing new uses as nutriceuticals 
and in plant protection.
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