
Chapter 3

Basic Electromagnetic Theory with Special

Attention to Lightning Electromagnetics

The goal of this chapter is not to provide a reference for the theory of electricity and

magnetism. The study of the physics and effects of lightning flashes entail certain

elements of electricity and magnetism that are used to describe various interactions.

Some of the equations of electromagnetic theory that will be used either directly or

indirectly in the book are presented here. For a complete treatment of the subject the

reader is referred to Refs. [1] and [2].

3.1 Electric Field Generated by a Point Charge

Consider a point charge located at point O. Let us denote by P the point of observation

where we would like to study the effect of the electric charge (Fig. 3.1). The electric

charge gives rise to an electric field in space, and the direction and magnitude of

this electric field change from one point to another. According to Coulomb’s law, the

electric field (measured in volts per meter) produced at P by a point charge

q (whose magnitude is measured in Coulombs) located at O is

E ¼ q

4πε0r2
ar, ð3:1Þ

where ar is a unit vector directed toward OP. If the charge is positive, then

this electric field is directed away from point O. In the preceding equation, the

parameter ε0 is called the permittivity of free space. Its value is 8.85� 10�12

Farads/m (F/m).
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3.2 Electric Potential of Point Charge

Consider a point charge at point O. The potential of point P due to the presence of

the point charge is

V ¼ q

4πε0r
: ð3:2Þ

This is the amount of work that must be done (or the energy necessary) to bring

a point charge of 1 C from infinity (where the potential is zero) to point P.

The potential is measured in volts. Thus, the work necessary (measured in Joules)

to bring a charge q1 from infinity to point P is

W ¼ qq1
4πε0r

: ð3:3Þ

At the same time, if the charge q1 is moved from point P to infinity, then the

amount of energy released is also equal to the value given by Eq. 3.3. This shows

that when we transfer a charge Q across a potential difference of V, the energy

released (or the work that needs to be done, depending on the direction of move-

ment of the charge) is equal to QV.

3.3 Gauss’s Law

According to Gauss’s law, the flux of an electric field coming from a closed volume

is related to the total charge located inside that closed volume. Let E be the electric

field at any point on a closed surface and ds a small area vector (the direction of the

vector is the outward normal to the surface; Fig. 3.2). Then the flux of the electric

field coming from the closed volume is given by∮
s
E:ds. The ‘s’ sign on the integral

shows that it is a surface integral, and the circle shows that it is performed around

the closed surface. Gauss’s law states that this is equal to

∮
s
E:ds ¼ Q

ε0
, ð3:4Þ

O

P

r

arFig. 3.1 A point charge

is located at point

O. The electric field

produced by the point

charge at point P is directed

toward unit vector ar
(Figure created by author)
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where Q is the total charge located inside the closed volume. Now let us apply this

equation to calculate the electric field in the vicinity of a long charged line or

a channel. Let us assume that the charge per unit length of the channel is ρ. Since
the channel is very long, the electric field lines by symmetry are radial to the

channel. Now consider a closed surface in the form of a cylinder having radius

r (Fig. 3.3). Applying Gauss’s law to this cylinder one can write directly that

2πrlE ¼ ρl

ε0
: ð3:5Þ

Note that since the field lines are radial, the flux coming from the edges of the

cylinder is zero (at the edges, E. ds¼ 0). Thus, the radius r at which the electric field
is equal to E is given by

r ¼ ρ

2πε0E
: ð3:6Þ

Charged line
or channel

r
Closed

Gaussian
surface

l

Fig. 3.3 Geometry

pertinent to application of

Gauss’s law to a long

charged line or channel. The

closed volume is composed

of the cylindrical surface

together with the two

circular surfaces covering

the two ends. Since the

electric field is radial, all the

flux of the electric field

passes through the

cylindrical surface

(Figure created by author)
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Closed
volume

Fig. 3.2 Geometry

pertinent to definition

of Gauss’s law. The white
patch is a small surface area

on the closed surface.

The outward normal to the

surface area is dS, and E

is the electric field vector

at the location of the

elementary area

(Figure created by author)
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3.4 Electric Field Inside and on Surface

of Perfect Conductor

On the surface of a perfect conductor the electric field is always perpendicular to the

surface. The component of the electric field parallel to the surface is zero (Sect. 3.16).

This can be understood as follows. If there is an electric field parallel to the surface of

a good conductor, free charges in the conductor will displace along the conductor and

create an electric field opposite to that of the applied electric field. The displacement

of the charge continues until the two electric fields cancel each other, making the

electric field parallel to the surface zero. For the same reason the electric field inside a

perfect conductor is also zero. That is, the potential at any point of the conductor is

the same. This also explains why the electric charge of a charged conductor resides on

the surface of the conductor. These facts can be used together with Gauss’s law to

show that the electric field inside the cavity of a perfect conductor is zero irrespective

of the amount of charge that resides on the surface. This is the origin of the Faraday

cage principle of lightning protection. Some of these points are illustrated in Fig. 3.4.

3.5 Electric Field of a Point Charge Over

a Perfect Conductor

Now consider a point charge located over a perfectly conducting plane of zero

potential. In problems dealingwith electrostatics or slowly changing fields, the Earth’s

surface can be treated as a perfect conductor. For all practical purposes we can also

E = E =s
e0

s
e0

Fig. 3.4 The electric field on the surface of a perfect conductor is always perpendicular to the

conductor. The local electric field is proportional to the local surface charge density, σ, and is

given by σ/ε0. The local charge density is proportional to the curvature of the surface. The surface
charge and, hence, the electric field is large at sharp points on the conductor. The electric charge

resides always on the surface of the conductor, and the electric field is zero inside a closed

conductor. For the same reason the electric field inside a cavity of the conductor is also zero.

This is the origin of the Faraday cage principle (Figure created by author)
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treat the potential of the ground as zero. Now, the presence of charge q (assumed to be

positive) repels any positive charge from points directly below the ground while

attracting negative charge into that region. This gives rise to a charge distribution

(induced) on the surface of the ground (recall that charges reside on the surface of a

conductor). The electric field at any point above the ground is the sum of the electric

field produced by the electric charge q and this induced charge. Moreover, as

discussed earlier, the electric field at the ground plane is perpendicular to it because

it is a good conductor. The field configuration of a point charge over a perfectly

conducting ground plane is shown in Fig. 3.5a. Note that without affecting the field

distribution, one can replace the conducting plane by placing a negative charge of the

same magnitude at the mirror point (Fig. 3.5b). That is, the effect of the induced

negative charge on the ground can be represented by a negative charge, equal in

magnitude to the positive charge, located at the mirror point of the charge. Now

consider a point charge q located at height h above a perfectly conducting ground

plane of potential zero (see Fig. 3.5c). The electric field at point P located above the

ground plane consists of two components, one from the real charge (positive) and the

other from the image charge (negative). The component from the real charge is

Er ¼ q

4πε0r2r
arr, ð3:7Þ

where arr is a unit vector directed toward rr (see Fig. 3.5c). Separating the electric

field components into vertical and horizontal directions we obtain

Erx ¼ q

4πε0r2r
sin θr, ð3:8Þ

Erz ¼ � q

4πε0r2r
cos θr: ð3:9Þ

Similarly, the electric field due to the image charge is

Ei ¼ q

4πε0r2i
ari: ð3:10Þ

Separating this into z and x components we obtain

Eix ¼ � q

4πε0r2i
sin θi, ð3:11Þ

Eiz ¼ � q

4πε0r2i
cos θi: ð3:12Þ

The total x and z components are the sum of these components. These are given by

Ex ¼ q

4πε0r2r
sin θr � q

4πε0r2i
sin θi, ð3:13Þ
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Ez ¼ � q

4πε0r2r
cos θr � q

4πε0r2i
cos θi: ð3:14Þ

One can see directly at ground level, where rr¼ ri and θr¼ θi, the x component,

i.e., the component parallel to the surface, goes to zero. The vertical electric field on

a
b

c P

P1

x

z

D

h

qr

rr

ri

qi

Perfectly conducting ground plane

Fig. 3.5 (a) Field configuration of a point charge located over a perfectly conducting ground

plane. (b) One can replace the perfect conductor with a charge of opposite polarity located at the

image point without changing the field configuration above the conducting plane. (c) Geometry

relevant to calculation of electric field from point charge located at height h over perfectly

conducting ground plane. The perfectly conducting plane is replaced by a charge of equal

magnitude but of opposite polarity located at the mirror image point (Panels a and b from

Wikipedia (http://en.wikipedia.org/wiki/Electric_charge), Panel c created by author)
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the surface of the ground at a horizontal distance D from the point charge is

(see Fig. 3.5c for the geometry)

Ez, ground ¼ � qh

2πε0 D2 þ h2
� �3=2 : ð3:15Þ

3.6 Ampere’s Law and the Magnetic Field

due to a Long Conductor

Ampere’s law relates the line integral of the B-field or the H-field around a closed

path to the electric current I passing through the closed path (Fig. 3.6):

I
l

B � dl ¼ μ0I: ð3:16Þ

In the above equation the letter ‘l’ on the integral sign denotes that it is a line integral
and the circle indicates that it is performed around a closed path. Applying this to a long

current-carrying conductor and using the facts that the magnetic field forms closed

loops around the conductor and the magnetic field has the same magnitude along any

of these loops, one obtains the B-field at a radial distance r from the conductor as

2πrB tð Þ ¼ μ0I tð Þ, ð3:17Þ

B tð Þ ¼ μ0I tð Þ
2πr

: ð3:18Þ

Circular
symmetric loop
of radius r
threaded by the
current

Any arbitrary
loop threaded
by the current

I I

Fig. 3.6 Geometry relevant to definition of Ampere’s law, which says that the line integral of the

B-field around the loop is equal to μ0I, where I is the current passing through the loop. The law is

valid irrespective of the orientation of the loop or the point of intersection of the loop and the wire

(Figure created by author)
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3.7 Magnetic Field Produced by Current Element

Consider a current element dl through which a current I is flowing (Fig. 3.7).

The current element can be represented by a vector dl with magnitude dl and
direction specified by the direction of current flow. According to Biot-Savart’s

law, the B-field produced by this current element at point P is given by

dB ¼ μoI �
dl� ar

4π Rj j2 , ð3:19Þ

where ar is a unit vector in the direction of OP (Fig. 3.7). Note that the direction of

the magnetic field is perpendicular to both the current element dl and the vector

joining the current element and the point of observation (i.e., ar). The magnitude of

the magnetic field is proportional to the current in the current element, and its

strength decreases with 1/R2.

The magnetic field produced by a conductor of any shape can be calculated by

dividing the conductor into elementary sections and summing up the contribution to

the B-field from each element using the preceding equation.

3.8 Faraday’s Law and the Voltage Induced in a Loop

in the Vicinity of a Current-Carrying Conductor

The essence of Faraday’s law is that it defines and quantifies the natural law that a

changing magnetic field gives rise to an electric field. Consider a closed path in a

region where there is a changing magnetic field. According to Faraday’s law, the

E-field, E, generated by this changing magnetic field is such that

I
l

E � dl ¼ � dψ

dt
, ð3:20Þ

ar

I

dl

P

r

O

Fig. 3.7 Geometry relevant to definition of magnetic field produced by a current element

according to Biot-Savart’s law. In the diagram, dl is an elementary current element (or a small

piece of the conductor carrying a current). The direction of the vector dl is the same as the direction

of the positive current flow (Figure created by author)
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where the left-hand side is the line integral of the electric field taken along the

closed path and the right-hand side is equal to the negative rate of change of

magnetic flux ψ passing through the closed path. The magnetic flux passing through

the closed path can be calculated as

ψ ¼
Z
s

B � ds, ð3:21Þ

where the surface integral is carried out over a surface bounded by the closed path

(Fig. 3.8a). The positive direction of ds can be decided as follows. Place a right

handed screw inside the closed path and rotate it in a circular direction in which the

line integral is performed. If the screw moves out of the surface then the positive

direction of ds is the outward normal to the surface. If the direction of motion of the

screw is into the surface the positive direction of ds is the inward normal to the

surface. Since the electromotive force, emf, generated around the closed path under

consideration is given by the line integral of the E-field along that path, we can write

emf ¼ � dψ

dt
: ð3:22Þ

Let us consider a square loop located in the vicinity of a current-carrying

conductor, as shown in Fig. 3.8b. The magnetic field produced by this conductor

at a radial distance r from the conductor is given by

a b

Fig. 3.8 (a) The definition of a surface bounded by a closed path. The white patch is a small area

element on the surface. The magnitude of the vector ds is equal to the area of the element and the

direction of the vector is decided by the right hand screw rule (see the text). (b) Geometry relevant

to application of Faraday’s law in case of a conducting loop located in vicinity of current-carrying

conductor (Figure created by author)

3.8 Faraday’s Law and the Voltage Induced in a Loop in the Vicinity. . . 37



B tð Þ ¼ μ0I tð Þ
2πr

: ð3:23Þ

Now, let us divide the square loop into small elementary rectangular sections, as

shown in Fig. 3.8b. The flux through the small rectangular element located at

distance r is

dψ ¼ I tð Þμ0
2πr

ldr: ð3:24Þ

The total flux is obtained by integrating this result from distance r1 to r2. The
result is

ψ ¼
Zr2
r1

I tð Þμ0l
2π

dr

r
: ð3:25Þ

This reduces to

ψ ¼ I tð Þμ0l
2π

ln
r2
r1
: ð3:26Þ

Thus, the rate of change of magnetic flux through the loop is

dψ

dt
¼ dI tð Þ

dt

μ0l

2π
ln
r2
r1
: ð3:27Þ

The induced emf in the loop according to Faraday’s law is

emf ¼ � dI tð Þ
dt

μ0l

2π
ln
r2
r1
: ð3:28Þ

Note that the emf is proportional to the rate of change of the current passing

through the conductor.

3.9 Force Between Two Current-Carrying Conductors

Consider a conductor carrying a current I located in a magnetic field B (Fig. 3.9a).

Consider a small element dl on this conductor. The element is represented by a

vector, with a magnitude dl and the positive direction the same as that of the

direction of positive current flow. The force acting on the element dl due to the

magnetic field is given by
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dF ¼ Idl� B: ð3:29Þ

This can be expanded as

dF ¼ BIdl sin θ: ð3:30Þ

Now consider a situation where two parallel current-carrying conductors are sepa-

rated by a distance a (Fig. 3.9b).We represent the current in the two conductors as I1(t)
and I2(t). Assuming that the radii of the conductors aremuch smaller than the separation

a, the magnetic field generated by conductor 1 at the location of conductor 2 is

B tð Þ ¼ μ0I1 tð Þ
2πa

: ð3:31Þ

Since this magnetic field is perpendicular to conductor 2 (i.e. sin θ¼ 1 in

equation 3.30), the force per unit length (in N/m) on conductor 2 due to the current

in conductor 1 is (using Eq. 3.30)

F tð Þ ¼ μ0I1 tð Þ
2πa

� �
I2 tð Þ: ð3:32Þ

The same force also acts on conductor 1. If the two currents are equal [say I(t)],
then the force between the two conductors is

F tð Þ ¼ μ0
2πa

� �
I2 tð Þ: ð3:33Þ

I

B

magnetic
field

a b

Current carrying
conductor

( )I t

( )t

q

Fig. 3.9 (a) Current-carrying conductor located in magnetic field. (b) Two parallel current-carrying

conductors separated by a distance a (Figure created by author)
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If a transient current flows along the conductors, the change in momentum of the

conductors (i.e., the relative movement due to the force) is given by the impulse, S,
due to the force. This is given by

S ¼ μ0
2πa

� �Z1

0

I2 tð Þdt: ð3:34Þ

In lightning research, the parameter

Z1

0

I2 tð Þdt is called the action integral.

3.10 Electric Fields Generated by a Tripolar Thundercloud

Consider a tripolar cloud with three charge centers. The heights of the charge

centers are h1, h2, and h3. The amount of charge in the respective charge centers

is q, Q, and –Q, respectively. In the literature, the charge center closest to the

ground and located close to the base of the cloud is called the positive charge
pocket. The charge center in the middle, which carries a negative charge, is called

the negative charge center. The charge center at the top is called the positive charge
center. The geometry is depicted in Fig. 3.10. The z-axis is directed out of the

conducting plane (or the ground plane), as shown in the figure. In presenting

the results of the calculations we treat the electric field directed along the positive

z-direction (i.e., a vector directed away from the ground surface) as positive. This is

called the physics sign convention. The opposite sign convention, where the electric
field directed into the ground is assumed to be positive, is called the atmospheric
sign convention. The vertical electric fields at ground level generated by individual

+Q

−Q

+q

d

h1

h2

h3

P
Ground

z

Fig. 3.10 Idealized tripolar

cloud with three charge

centers located over ground.

The amount of charge in the

respective charge centers

are denoted by q, Q, and
�Q. In the calculations

the positive direction of

the electric field is in the

z-direction (Figure created

by author)
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charges at a point of observation located at a horizontal distance d from the axis of

the charge centers are given by

E1 ¼ � q

2πε0

h1

h21 þ d2
� �3=2 , ð3:35Þ

E2 ¼ Q

2πε0

h2

h22 þ d2
� �3=2 , ð3:36Þ

E3 ¼ � Q

2πε0

h3

h23 þ d2
� �3=2 : ð3:37Þ

The total vertical electric field E at distance d is then given by

E ¼ E1 þ E2 þ E3: ð3:38Þ

Figure 3.11 depicts the electric field at a point of observation as a function of the

distance to the thundercloud. In the calculations, we assume Q¼ 100 C, h1¼ 4 km,

h2¼ 6 km, and h3¼ 9 km. Results are shown for three values of q equal to 0, 5, and
10 C to show the effect of the positive charge pocket. This diagram also shows how

the electric field at ground level varies as the thundercloud approaches a point
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Fig. 3.11 Electric field at point P (Fig. 3.10) located at surface of ground as function of distance

d to tripolar thundercloud (distance to vertical axis where charges are located). In the calculation,

Q¼ 100 C. Results are shown for three values of q: (1) 0, (2) 5 C, and (3) 10 C. In the calculation,
h1¼ 4 km, h2¼ 6 km, and h3¼ 9 km. In the presentation the electric field produced by a negative

charge in the cloud is assumed to be positive. If the charge q is significantly larger than the

preceding values, the electric field at 0 km could also become negative (Figure created by author)
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of observation, passes over it, and then recedes from the point of observation.

Note also how the polarity of the electric field changes as a thundercloud

approaches the point of observation.

3.11 Electric Field Change Due to Cloud Flash

Let us consider a tripolar cloud. The heights of the charge centers are h1, h2, and h3.
The amount of charge in the respective charge centers before a cloud lightning flash

is q, Q, and �Q, respectively. The cloud lightning flash leads to the neutralization

of the ΔQ charge from the negative and positive charge centers (Fig. 3.12).

Let Q 0 ¼Q�ΔQ. The electric field at ground level at a horizontal distance

d from the cloud just before the lightning flash is

Ei ¼ � q

2πε0

h1

h21 þ d2
� �3=2 þ Q

2πε0

h2

h22 þ d2
� �3=2 � Q

2πε0

h3

h23 þ d2
� �3=2 : ð3:39Þ

After the lightning flash the field reduces to

Ef ¼ � q

2πε0

h1

h21 þ d2
� �3=2 þ Q0

2πε0

h2

h22 þ d2
� �3=2 � Q0

2πε0

h3

h23 þ d2
� �3=2 : ð3:40Þ

The field change ΔE caused by the cloud lightning flash is

ΔE ¼ Ef � Ei: ð3:41Þ

+Q +(Q−ΔQ)

−(Q−ΔQ)

+q

−Q

+q

d

P

a b

d

P

Fig. 3.12 Charges in a thundercloud (a) before and (b) after a cloud lightning flash. Note that the

cloud flash neutralizes a charge of magnitude ΔQ. The parameters used to define the heights of the

charge centers are given in Fig. 3.10 (Figure created by author)
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After substitution from the preceding expressions we obtain

ΔE ¼ � Q� Q0ð Þ
2πε0

h2

h22 þ d2
� �3=2 þ Q� Q0ð Þ

2πε0

h3

h23 þ d2
� �3=2 : ð3:42Þ

Figure 3.13 depicts this field change as a function of the horizontal distance from

the thundercloud. In the calculation, it is assumed that ΔQ¼ 10 C, h1¼ 4 km,

h2¼ 6 km, and h3¼ 9 km. Note the change in polarity of the field changes with

distance.

3.12 Electric Field Change Due to Ground Flash

Let us consider a tripolar cloud. As before, the heights of the charge centers are h1, h2,
and h3. The amount of charge in the respective charge centers before a ground

lightning flash is taken to be q, Q, and �Q, respectively. In the calculation,

we assume that the ground lightning flash leads to the complete neutralization of

the positive charge pocket and a transfer of�Δq to ground from the negative charge

center (Fig. 3.14). The total charge, �ΔQ, removed from the negative charge center

is equal to �Δq� q. Let Q 0 ¼Q�ΔQ. Thus, the charge in the negative charge

center after the ground flash is equal to �Q 0. The electric field at ground level at a

horizontal distance d from the cloud just before the lightning flash is

Ei ¼ � q

2πε0

h1

h21 þ d2
� �3=2 þ Q

2πε0

h2

h22 þ d2
� �3=2 � Q

2πε0

h3

h23 þ d2
� �3=2 : ð3:43Þ
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Fig. 3.13 Electric field

change at ground level

produced by cloud flash

depicted as function of

distance d to thundercloud

(Fig. 3.12). In the

calculation, Q ¼ 100 C and

the charge neutralized by

the cloud flash ΔQ¼ 10 C;

h2¼ 6 km and h3¼ 9 km

(Figure created by author)
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After the lightning flash the electric field at the same point is

Ef ¼ þ Q
0

2πε0

h2

h22 þ d2
� �3=2 � Q

2πε0

h3

h23 þ d2
� �3=2 : ð3:44Þ

Thus, the field change at the point of observation caused by the ground flash is

ΔE ¼ Ef � Ei: ð3:45Þ

After substitution of the respective parameters we obtain

ΔE ¼ q

2πε0

h1

h21 þ d2
� �3=2 � Q� Q0ð Þ

2πε0

h2

h22 þ d2
� �3=2 : ð3:46Þ

Figure 3.15 depicts the electric field change generated by a ground flash. In the

calculation, it is assumed that ΔQ¼ 10 C, h1¼ 4 km, h2¼ 6 , and h3¼ 9 km.

Note that, unlike the field change due to a cloud flash, the polarity of the field

change remains the same with distance.

3.13 Electric Field Change Caused by Stepped Leader

For simplicity let us consider a bipolar cloud with negative and positive charge

centers at heights h2 and h3, with charges �Q and +Q, respectively. At time t¼ 0

a stepped leader starts moving down from the negative charge center. We do not

specify here how the negative charges are removed from the charge center and

d

P

d

P

+Q +Q

−Q

+q

−(Q−ΔQ)

a b

Fig. 3.14 Charges in thundercloud (a) before and (b) after ground lightning flash. Note that a

charge of�ΔQ is removed from the negative charge center and part of this negative charge is used

to neutralize the charge q of positive charge pocket. The rest of the charge (�ΔQ + q) is

transferred to the ground. The parameters used to define the heights of the charge centers are

given in Fig. 3.10 (Figure created by author)
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transferred to the leader channel (this point will be discussed in a subsequent chapter).

Let us assume that the charge on the leader channel is uniform. Let us denote the

magnitude of this uniform linear charge density by λ. Other charge distributions could
also be assumed, but the procedure for calculation is the same. We also assume that

the leader channel moves down at a uniform speed equal to v. Just before the creation
of the leader the electric field at a horizontal distance d from the thundercloud is

Ei ¼ þ Q

2πε0

h2

h22 þ d2
� �3=2 � Q

2πε0

h3

h23 þ d2
� �3=2 : ð3:47Þ

At time t after the generation of the leader, the physical situation is depicted in

Fig. 3.16a. During this time the leader travels a distance of vt. To calculate the

electric field caused by the leader, let us divide the leader channel into elementary

sections. Consider an element dz located at height z from ground level (Fig. 3.16b).

The charge on this element is λdz. The electric field produced by this charge

element at a point located at ground level at a horizontal distance d is (note that

the charge on the leader channel is negative)

dE ¼ λdz

2πε0

z

z2 þ d2
� �3=2 : ð3:48Þ

The total field produced by the leader can be obtained by integrating this from

h2� vt to h2. That is,

El ¼
Zh2

h2�vt

λdz

2πε0

z

z2 þ d2
� �3=2 : ð3:49Þ
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Fig. 3.15 Electric field

change at ground level

produced by ground flash

depicted as function of

distance d to thundercloud.

In the calculation, it is

assumed thatQ¼ 100 C and

the total charge removed

from the negative charge

center is �10 C. Part of this

charge is used to neutralize

the positive charge pocket

(q¼ 5 C) and the rest is

transported to the ground.

In the calculation, h1¼ 4

km, h2¼ 6 km, and h3¼ 9

km (Figure created by

author)
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This reduces to

El ¼ λ

2πε0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � vtð Þ2 þ d2

q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h22 þ d2

q
2
64

3
75: ð3:50Þ

The total vertical electric field at the point of observation at time t is

Et ¼ þ Q� λvtð Þ
2πε0

h2

h22 þ d2
� �3=2 � Q

2πε0

h3

h23 þ d2
� �3=2 þ El: ð3:51Þ

d

P

d

P

vt

+Q +Q

−Q −(Q−lvt)

d

P

dz

h2

2h vt−

r

−(Q−lvt)

+Q

a

b

before the creation of leader after the creation of leader

Fig. 3.16 (a) Idealized physical situation at time t after creation of leader. The leader initiates

from the negative charge center and travels straight to ground at speed v. At time t it had traveled a
distance vt. For ease of analysis only the main charge centers are considered in the calculation. (b)

Geometry relevant to calculation of electric field produced by downward moving stepped leader.

In the figure dz is an element of the stepped leader channel located at a distance r from the point of

observation P. The length of the leader channel at time t is vt. The tip of the leader channel is

located at a height of h2� vt (Figure created by author)
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Thus, the field changes caused by the leader and other charges at time t are

ΔE ¼ Et � Ei: ð3:52Þ

Substituting for different components we obtain

ΔE ¼ � λvt

2πε0

h2

h22 þ d2
� �3=2 þ λ

2πε0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � vtð Þ2 þ d2

q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h22 þ d2

q
2
64

3
75: ð3:53Þ

This can also be written as

ΔE ¼ � λvt

2πε0d
3

h2

h2=dð Þ2 þ 1
� �3=2

þ λ

2πε0d

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2=dð Þ � vt=dð Þð Þ2 þ 1

q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2=dð Þ2 þ 1

q
2
64

3
75:

ð3:54Þ

Figure 3.17 depicts the field change caused by the stepped leader as a function of

time at different horizontal distances. In the calculation it is assumed that

λ¼ 0.001 C/m, v¼ 106 m/s, and h2¼ 6 km. Note how the polarity of the field

change varies with distance.
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Fig. 3.17 Electric field change at ground level caused by stepped leader as function of time at

different horizontal distances (Fig. 3.16b). In the calculation, the speed of propagation of the leader

is v¼ 106 m/s, and the linear charge density on the leader channel is 0.001 C/m. The height of

origin of the leader is 6 km (Figure created by author)
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3.14 Electric Field Change Caused by Leader Return

Stroke Combination

The electric field at the point of observation at any time during the progress of the

leader, i.e., t< h2/v, is given by Eq. 3.51. The electric field at the point of observa-

tion when the leader reaches ground, i.e., t¼ h2/v, is

Et¼h2=v ¼
Q� λh2ð Þ
2πε0

h2

h22 þ d2
� �3=2 � Q

2πε0

h3

h23 þ d2
� �3=2

þ λ

2πε0d
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2=dð Þ2 þ 1

q
2
64

3
75: ð3:55Þ

Thus, the total field change caused by the leader is

ΔEð Þleader ¼ � λh2
2πε0d

3

h2

h2=dð Þ2 þ 1
� �3=2

þ λ

2πε0d
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2=dð Þ2 þ 1

q
2
64

3
75: ð3:56Þ

The return stroke removes the charge on the leader channel, and therefore, after

the return stroke the electric field at the point of observation is

Et>h2=v ¼
Q� λh2ð Þ
2πε0

h2

h22 þ d2
� �3=2 � Q

2πε0

h3

h23 þ d2
� �3=2 : ð3:57Þ

Thus the field change caused by the return stroke (i.e., Et>h2=v � Et¼h2=v) is

ΔEð Þreturn ¼ � λ

2πε0d
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2=dð Þ2 þ 1

q
2
64

3
75: ð3:58Þ

The total field change caused by the leader return stroke combination is

ΔEð Þleader þ ΔEð Þreturn ¼ � λh2
2πε0d

3

h2

h2=dð Þ2 þ 1
� �3=2

: ð3:59Þ

This is simply the electric field caused by the removal of charge of magni-

tude � λh2 from the negative charge center.
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Figure 3.18 depicts both the leader field change and the return stroke field

change as a function of time at various distances. In the calculation, it is assumed

that λ¼ 0.001 C/m and h2¼ 6 km. Note that in the case of the return stroke only the

field change is depicted, assuming that it takes place instantaneously in the time

scale of the leader.

3.15 Time-Varying Electromagnetic Fields

In the presence of time-varying currents, electrical charges, electric fields, and

magnetic fields, the laws of electricity can be summarized by Maxwell’s equations.

They are as follows.

Integral form Point formI
l

E � dl ¼ �
Z
s

∂B
∂t

ds
(3.60.1a) CurlE ¼ � ∂B

∂t
(3.60.1b)

I
l

H � dl ¼ Iþ
Z
s

∂D
∂t

ds
(3.60.2a) CurlH ¼ Jþ ∂D

∂t
(3.60.2b)

I
s

D � ds ¼
Z
v

ρv
(3.60.3a) DivD¼ ρv (3.60.3b)

I
s

B � ds ¼ 0
(3.60.4a) DivB¼ 0 (3.60.4b)

The other two equations of importance are

J¼ σE (3.60.5) divJ ¼ � ∂ρv
∂t

(3.60.6)

Equation 3.60.5 defines the relationship between the current density and the

electric field through the conductivity σ of the medium. Equation 3.60.6 is the

continuity equation based on the fact that electric charges are conserved.

In the preceding equations,

Z
l

indicates a line integral and

Z
s

indicates a surface

integral. The closed loop around the integral sign, i.e.,
H
, indicates that the integral

is performed around a closed path or over a closed surface. Note also that in

isotropic media E ¼ D=ε0 and B ¼ μ0H. The electric and magnetic fields (E and B)
can be calculated using time-varying scalar and vector potentials as defined by

(Fig. 3.19):

ϕ ¼ 1

4πε0

Z
ρv r, t� r

c

� �
r

dv, ð3:61Þ
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A ¼ μ0
4π

Z
J r, t� r

c

� �
r

dv: ð3:62Þ

In the preceding equations, ϕ and A are the time-varying scalar and vector

potentials and ρ(t) and J(t) are the time-varying charge and current densities.

The quantity t� (r/c) is called the retarded time. The electric and magnetic fields

can be calculated from these potentials using the relationships

E ¼ �gradϕ� ∂A tð Þ
∂t

, ð3:63Þ
B ¼ curl Að Þ: ð3:64Þ

These laws must be complemented by the Lorentz force law, which specifies the

force on a charge particle q in the presence of electric E and magnetic fields B as

F ¼ qE� qv� B: ð3:65Þ

In this equation the first term gives the force on a charged particle due to an

electric field, while the second term gives the force of the charged particle caused

by a magnetic field. In this equation, v is the velocity of the charged particle.

3.16 Relaxation Time of a Conducting Medium

Consider a conducting medium or a conductor in an electric field. A conductor

contains free electrons and under the influence of the electric field these electrons

start moving in the conductor and accumulate at the edges of the conductor. This

accumulation of electrons at the edges of the conductor give rise to an electric field

that is opposite to that of the applied field. The flow and accumulation of electrons

at the edges continue until the two electric fields cancel each other and the electric

field inside the conductor is zero. This process of relaxation (or removal) of the

electric field takes some time, and this time depends on the conductivity and the

r
P

dv

J(t)

r(t)

Fig. 3.19 Geometry relevant to definition of scalar and vector potential of time-varying charge

and current distributions. In the diagram, ρ(t) and J(t) are the time-varying charge and current

densities; P is the point of observation where the potentials are needed (Figure created by author)
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dielectric constant of the conducting medium. The same happens if electrical

charges are placed inside a conducting medium. These charges create an electric

field in the conducting medium and the free electrons move in the conducting

medium so as to remove this electric field. The effect is the displacement of the

electric charge placed inside the conducting medium to the outer surface of the

conductor. Again, this removal of the charge from inside to the outer surface of the

conducting medium takes some time, and this time again depends on the conduc-

tivity and the dielectric constant of the conducting medium.

Consider an isotropic and homogeneous conductor with a relative dielectric

constant εr and conductivity σ. Assume that at time equal to zero an excess charge

is placed inside the conductor with charge density ρv(r, 0). This charge generates an
electric field inside the conductor, generating a current that redistributes this charge

and displaces it to the surface of the conductor (recall that electric charges may

accumulate on the surface of conductors) and causing the electric field inside the

conductor to go to zero. Let us evaluate how fast this process takes place.

From the equation of charge conservation we have

divJ r; tð Þ ¼ �∂ρv r; tð Þ
∂t

, ð3:66Þ

where ρv(r, t) is the charge density at any time inside the conductor. Substituting for

J in the preceding equation from J¼ σE(r, t) we obtain

σdivE r; tð Þ ¼ �∂ρv r; tð Þ
∂t

: ð3:67Þ

We also know from Gauss’s law that

divE r; tð Þ ¼ ρv r; tð Þ
εoεr

: ð3:68Þ

Substituting this into the previous equation we obtain

ρv r; tð Þ ¼ � εoεr
σ

∂ρv r; tð Þ
∂t

: ð3:69Þ

The solution of Eq. 3.69 is

ρv r; tð Þ ¼ ρv r; 0ð Þe�σt=εoεr : ð3:70Þ

The preceding expression for the variation in charge density inside a conductor

shows that the charge inside the conductor decreases exponentially in time.

The quantity εoεr/σ is called the relaxation time of the conductor. In the same

way, if we create an electric field inside a conductor, it decreases to zero

exponentially with a time constant equal to the relaxation time. Recall that in

Sect. 3.4 it was stated that the electric field on the surface of a conductor is
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perpendicular to the surface of the conductor. If a conductor with finite conduc-

tivity is placed in an electric field, it takes the relaxation time for the charges on

the conductor to redistribute on the surface in such a way that the electric field

becomes perpendicular at every point on the surface. In a perfect conductor the

conductivity is infinite, and thus the relaxation time is zero. In this case the

redistribution of the charges takes place instantaneously, and all the field com-

ponents parallel to the conductor vanish instantaneously. This process of relaxa-

tion is of importance in understanding, among other processes, the response of the

upper atmosphere, which is a conducting medium, to the electric fields generated

by lightning flashes.

3.17 Electromagnetic Fields of a Dipole

The electromagnetic fields of a short electric dipole are used frequently in

calculating the electromagnetic fields of different processes in a lightning flash.

Here we present the electromagnetic fields of a short electric dipole in the frequency

domain; the corresponding time domain fields are given in the next section.

Let the dipole length be l, and let it be directed in the positive z-direction with its
center at the origin (Fig. 3.20). The current in the dipole is given by

I ¼ I0e
jω t: ð3:71Þ

z

r

Bf

x

y

Er

Eq

dl
q

f

Fig. 3.20 Geometry

relevant to calculation of

electric and magnetic fields

from electric dipole of

length dl located at height

h from ground plane

(Figure created by author)
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The electric and magnetic fields at any point in space generated by the short

dipole can be calculated using scalar and vector potentials. When r� l and λ� l,
where r is the distance to the point of observation and λ is the wavelength, the

electric and magnetic fields are given by

Er ¼ I0le
jωte�jβr

2πε0
cos θ

1

cr2
þ 1

jωr3

	 

, ð3:72Þ

Eθ ¼ I0le
jωte�jβr

4πε0
sin θ

jω

c2r
þ 1

cr2
þ 1

jωr3

	 

, ð3:73Þ

Bφ ¼ μ0I0le
jωte�jβr

4π
sin θ

jω

cr
þ 1

r2

	 

, ð3:74Þ

β ¼ ω=c: ð3:75Þ

The directions of the electric fields in spherical coordinates are indicated in

Fig. 3.20. Field components that vary inversely with distance are called radiation
fields. When the distance to the point of observation is very large, only the radiation

fields contribute to the total fields. The other field components attenuate rapidly

with distance because they change as 1/r2 and 1/r3. Thus, the electric and magnetic

fields at a point located far from the dipole are given by

Eθ, rad ¼ I0le
jωte�jβr

4πε0
sin θ

jω

c2r

	 

, ð3:76Þ

Bφ, rad ¼ μ0I0le
jωte�jβr

4π
sin θ

jω

cr

	 

: ð3:77Þ

Note that the ratio Eθ,rad/Bφ,rad is equal to c, the speed of light in free space

(observe that c2¼ 1/μ0ε0).

3.18 Electromagnetic Fields of a Dipole Over a Perfectly

Conducting Ground Plane

Let us now consider a dipole located over a perfectly conducting ground plane.

The geometry is shown in Fig. 3.21. The electric field at any point over the

conducting plane can be calculated by replacing the dipole with an image dipole.

The vertical electric field at ground level (note that the horizontal electric field is

zero over the surface of a perfectly conducting ground) at a horizontal distance

d from the axis of the dipole is then given by

Ev ¼ I0le
j ωt�βrð Þ

πε0
sin 2φ

1

cr2
þ 1

jωr3

	 

� I0le

j ωt�βrð Þ

2πε0
cos 2φ

jω

c2r
þ 1

cr2
þ 1

jωr3

	 

:

ð3:78Þ

54 3 Basic Electromagnetic Theory with Special Attention to Lightning. . .



This can be written as

Ev ¼ � I0le
j ωt�βrð Þ

2πε0

cos 2φ jω

c2r
þ 1� 3 sin 2φ
� � 1

cr2
þ 1

jωr3
1� 3 sin 2φ
� �	 


: ð3:79Þ

The magnetic field, which is in the azimuthal direction, is given by

Bϕ ¼ μ0I0le
j ωt�βrð Þ

2π
cosφ

jω

cr
þ 1

r2

	 

: ð3:80Þ

When the distance to the point of observation is large, only the radiation fields

will contribute to the total field. Thus, the total fields at distances far from the dipole

are pure radiation and are given by

Ev, rad ¼ � I0le
j ωt�βrð Þ

2πε0

cos 2φ jω

c2r

	 

, ð3:81Þ

Bϕ, rad ¼ μ0I0le
j ωt�βrð Þ

2π
cosφ

jω

cr

	 

: ð3:82Þ

If d� h, then r� d and cosφ� 1, and when d/λ� r/λ, the radiation fields

reduce to

Ev, rad ¼ � I0le
j ωt�βdð Þ

2πε0

jω

c2d

	 

, ð3:83Þ

Bϕ, rad ¼ μ0I0le
j ωt�βdð Þ

2π

jω

cd

	 

: ð3:84Þ
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q
Fig. 3.21 Geometry

relevant to calculation

of electric fields from

electric dipole of length dl
located over perfectly

conducting ground plane

(Figure created by author)
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3.19 Electromagnetic Fields of a Current Element in Time

Domain Over a Perfectly Conducting Ground Plane

Consider a short current element located over a perfectly conducting ground plane.

The current flowing in the current element is given by I(t). The current transports

charge from one end of the channel element to the other. The fields generated by the

current element are identical to that produced by a short dipole in the time domain.

Using Fourier transformation of the equations given earlier, the field components

can be written directly as

Ev tð Þ ¼ � l

2πε0

cos 2φ

c2r

dI t� r=cð Þ
dt

þ 1� 3 sin 2φ
� � I t� r=cð Þ

cr2
þ 1

r3
1� 3 sin 2φ
� �Z t

0

I z� r=cð Þdz
2
4

3
5,

ð3:85Þ

Bφ tð Þ ¼ μ0dz

2π

cosφ

cr

dI t� r=cð Þ
dt

þ cosφ

r2
I t� r=cð Þ

	 

: ð3:86Þ

When the distance to the point of observation is large, only the radiation fields

contribute to the total field. Thus, the total fields at distances far from the dipole are

pure radiation fields. If d� h then r� d, cosφ� 1 and the field components reduce

to

Ev, rad tð Þ ¼ � dz

2πε0

1

c2d

dI t� d=cð Þ
dt

	 

: ð3:87Þ

Bφ, rad tð Þ ¼ μ0dz

2π

1

cd

dI t� d=cð Þ
dt

	 

: ð3:88Þ

Figure 3.22 depicts field components generated by a small current element at

different distances assuming that the current in the short channel is a ramp function

given by Ipt. In the calculation, the length of the dipole is assumed to be 1 m,

Ip¼ 30 kA/s, and for simplicity the dipole is assumed to be located at ground level,

i.e., cosφ¼ 0. Note that as the distance to the point of observation from the source

increases, the field becomes increasingly more similar to a step function, which is

the radiation field associated with the source.

3.20 Electromagnetic Field of a Return Stroke

The electric and magnetic fields generated by a return stroke can be calculated

easily by dividing the return stroke channel into a large number of elementary

channel sections and treating each section as a short dipole. The geometry relevant

to the derivation is given in Fig. 3.23. The total electric field can be calculated by
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q
Fig. 3.23 Geometry

relevant to derivation

of equations pertinent to

electric and magnetic fields

produced by return stroke.

In the diagram, H is the

height of the return stroke

channel and dz is a channel
element located at height

z on this channel

(Figure created by author)
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Fig. 3.22 Electric field at surface of perfectly conducting ground generated by small current

element located at different distances from point of observation. In the calculation, a current

element 1 m in length is assumed to be located at ground level. The current in the current element

is a ramp function Ipt, where t is the time and Ip¼ 30 kA/s (Figure created by author). Note that in

each diagram the electric field starts at zero
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summing the contribution from each dipole. Let us represent the current at height

z in the return stroke channel by I(z, t). Then the vertical electric field at a horizontal
distance d from the lightning channel is given by

Ev tð Þ ¼ �
ZH

0

dz

2πε0

cos 2φ

c2r

dI t� r=cð Þ
dt

þ 1� 3 sin 2φð Þ
cr2

I t� r=cð Þ þ 1

r3
1� 3 sin 2φ
� �Z t

0

I z� r=cð Þdz
2
4

3
5,

ð3:89Þ

Bφ tð Þ ¼
ZH

0

μ0dz

2π

cosφ

cr

dI t� r=cð Þ
dt

þ cosφ

r2
I t� r=cð Þ

	 

: ð3:90Þ

In the preceding equations,H is the height of the return stroke channel. When the

distance to the point of observation is large, only the radiation fields (i.e., terms

varying inversely with distance) remains. When d�H, it is justified to assume that

cosφ� 1 and r� d. Under these conditions, the radiation field terms become

Ev, rad tð Þ ¼ � 1

2πε0c2d

ZH

0

dI t� r=cð Þdz
dt

, ð3:91Þ

Bφ, rad tð Þ ¼ 1

2πε0c3d

ZH

0

dI t� r=cð Þdz
dt

: ð3:92Þ

Note that the electric field is directed into the ground (the negative sign). The

two components of the radiation field satisfy the condition

Ev, rad tð Þ ¼ cBφ, rad tð Þ: ð3:93Þ

This shows that at large distances, where the radiation field is dominant, both the

electric and magnetic fields have the same temporal variation, and the ratio of their

amplitudes is equal to the speed of light.
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