Chapter 3
Basic Electromagnetic Theory with Special
Attention to Lightning Electromagnetics

The goal of this chapter is not to provide a reference for the theory of electricity and
magnetism. The study of the physics and effects of lightning flashes entail certain
elements of electricity and magnetism that are used to describe various interactions.
Some of the equations of electromagnetic theory that will be used either directly or
indirectly in the book are presented here. For a complete treatment of the subject the
reader is referred to Refs. [1] and [2].

3.1 Electric Field Generated by a Point Charge

Consider a point charge located at point O. Let us denote by P the point of observation
where we would like to study the effect of the electric charge (Fig. 3.1). The electric
charge gives rise to an electric field in space, and the direction and magnitude of
this electric field change from one point to another. According to Coulomb’s law, the
electric field (measured in volts per meter) produced at P by a point charge
¢ (whose magnitude is measured in Coulombs) located at O is
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(3.1)

where a, is a unit vector directed toward OP. If the charge is positive, then
this electric field is directed away from point O. In the preceding equation, the
parameter g, is called the permittivity of free space. Its value is 8.85 x 107 '?
Farads/m (F/m).
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Fig. 3.1 A point charge a,
is located at point p_7
O. The electric field
produced by the point
charge at point P is directed
toward unit vector a,
(Figure created by author)

O

3.2 Electric Potential of Point Charge
Consider a point charge at point O. The potential of point P due to the presence of
the point charge is
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(3.2)

This is the amount of work that must be done (or the energy necessary) to bring
a point charge of 1 C from infinity (where the potential is zero) to point P.
The potential is measured in volts. Thus, the work necessary (measured in Joules)
to bring a charge ¢, from infinity to point P is

9
 daeyr’ (33)

At the same time, if the charge ¢, is moved from point P to infinity, then the
amount of energy released is also equal to the value given by Eq. 3.3. This shows
that when we transfer a charge Q across a potential difference of V, the energy
released (or the work that needs to be done, depending on the direction of move-
ment of the charge) is equal to QV.

3.3 Gauss’s Law

According to Gauss’s law, the flux of an electric field coming from a closed volume
is related to the total charge located inside that closed volume. Let E be the electric
field at any point on a closed surface and ds a small area vector (the direction of the
vector is the outward normal to the surface; Fig. 3.2). Then the flux of the electric

field coming from the closed volume is given by § E.ds. The ‘s’ sign on the integral

shows that it is a surface integral, and the circle shows that it is performed around
the closed surface. Gauss’s law states that this is equal to

$E.ds = Q (3.4)
s €0
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where Q is the total charge located inside the closed volume. Now let us apply this
equation to calculate the electric field in the vicinity of a long charged line or
a channel. Let us assume that the charge per unit length of the channel is p. Since
the channel is very long, the electric field lines by symmetry are radial to the
channel. Now consider a closed surface in the form of a cylinder having radius
r (Fig. 3.3). Applying Gauss’s law to this cylinder one can write directly that

/
2arlE =2 (3.5)
€0

Note that since the field lines are radial, the flux coming from the edges of the
cylinder is zero (at the edges, E. ds = 0). Thus, the radius r at which the electric field
is equal to E is given by

P
= : 3.6
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Fig. 3.2 Geometry Closed
pertinent to definition volume
of Gauss’s law. The white /

patch is a small surface area

on the closed surface.

The outward normal to the

surface area is dS, and E

is the electric field vector

at the location of the

elementary area

(Figure created by author)

Fig. 3.3 Geometry
pertinent to application of i
Gauss’s law to a long < Charged line
charged line or channel. The or channel
closed volume is composed
of the cylindrical surface
together with the two

circular surfaces covering Closed
the tv&fo ends.. Smc.e the l«— Gaussian
electric field is radial, all the /

surface

flux of the electric field
passes through the
cylindrical surface
(Figure created by author)




32 3 Basic Electromagnetic Theory with Special Attention to Lightning. . .

Fig. 3.4 The electric field on the surface of a perfect conductor is always perpendicular to the
conductor. The local electric field is proportional to the local surface charge density, o, and is
given by o/ey. The local charge density is proportional to the curvature of the surface. The surface
charge and, hence, the electric field is large at sharp points on the conductor. The electric charge
resides always on the surface of the conductor, and the electric field is zero inside a closed
conductor. For the same reason the electric field inside a cavity of the conductor is also zero.
This is the origin of the Faraday cage principle (Figure created by author)

3.4 Electric Field Inside and on Surface
of Perfect Conductor

On the surface of a perfect conductor the electric field is always perpendicular to the
surface. The component of the electric field parallel to the surface is zero (Sect. 3.16).
This can be understood as follows. If there is an electric field parallel to the surface of
a good conductor, free charges in the conductor will displace along the conductor and
create an electric field opposite to that of the applied electric field. The displacement
of the charge continues until the two electric fields cancel each other, making the
electric field parallel to the surface zero. For the same reason the electric field inside a
perfect conductor is also zero. That is, the potential at any point of the conductor is
the same. This also explains why the electric charge of a charged conductor resides on
the surface of the conductor. These facts can be used together with Gauss’s law to
show that the electric field inside the cavity of a perfect conductor is zero irrespective
of the amount of charge that resides on the surface. This is the origin of the Faraday
cage principle of lightning protection. Some of these points are illustrated in Fig. 3.4.

3.5 Electric Field of a Point Charge Over
a Perfect Conductor

Now consider a point charge located over a perfectly conducting plane of zero
potential. In problems dealing with electrostatics or slowly changing fields, the Earth’s
surface can be treated as a perfect conductor. For all practical purposes we can also
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treat the potential of the ground as zero. Now, the presence of charge ¢ (assumed to be
positive) repels any positive charge from points directly below the ground while
attracting negative charge into that region. This gives rise to a charge distribution
(induced) on the surface of the ground (recall that charges reside on the surface of a
conductor). The electric field at any point above the ground is the sum of the electric
field produced by the electric charge ¢ and this induced charge. Moreover, as
discussed earlier, the electric field at the ground plane is perpendicular to it because
it is a good conductor. The field configuration of a point charge over a perfectly
conducting ground plane is shown in Fig. 3.5a. Note that without affecting the field
distribution, one can replace the conducting plane by placing a negative charge of the
same magnitude at the mirror point (Fig. 3.5b). That is, the effect of the induced
negative charge on the ground can be represented by a negative charge, equal in
magnitude to the positive charge, located at the mirror point of the charge. Now
consider a point charge ¢ located at height 4 above a perfectly conducting ground
plane of potential zero (see Fig. 3.5¢). The electric field at point P located above the
ground plane consists of two components, one from the real charge (positive) and the
other from the image charge (negative). The component from the real charge is

q
E, ~ A, (3.7)

dreors

where a,, is a unit vector directed toward r, (see Fig. 3.5c). Separating the electric
field components into vertical and horizontal directions we obtain

E.=—1sing, 3.8

Aregr? o (3:8)

E,.,=— T cos 0. (3.9)
: dmegr?

Similarly, the electric field due to the image charge is

q
;i =——>a 3.10
dreor? ’ ( )
Separating this into z and x components we obtain

En=——1"sne, (3.11)

’ 4regr?
E.=—-—1coso,. (3.12)
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The total x and z components are the sum of these components. These are given by

E. 9 sin 0, — Lz sin 6;, (3.13)

X )
Aregr? dreors
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D Perfectly conducting ground plane

Fig. 3.5 (a) Field configuration of a point charge located over a perfectly conducting ground
plane. (b) One can replace the perfect conductor with a charge of opposite polarity located at the
image point without changing the field configuration above the conducting plane. (¢) Geometry
relevant to calculation of electric field from point charge located at height /& over perfectly
conducting ground plane. The perfectly conducting plane is replaced by a charge of equal
magnitude but of opposite polarity located at the mirror image point (Panels a and b from
Wikipedia (http://en.wikipedia.org/wiki/Electric_charge), Panel ¢ created by author)

E, =

q q
- 0, — 0;. 3.14
4regr? cos dreor? cosei ( )

One can see directly at ground level, where r, =r; and 6, = 6;, the x component,
i.e., the component parallel to the surface, goes to zero. The vertical electric field on
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the surface of the ground at a horizontal distance D from the point charge is
(see Fig. 3.5¢ for the geometry)

qh

R (3.15)
260 (D? + 12)*?

Ez,ground = -

3.6 Ampere’s Law and the Magnetic Field
due to a Long Conductor

Ampere’s law relates the line integral of the B-field or the H-field around a closed
path to the electric current / passing through the closed path (Fig. 3.6):

?{Bodl:ﬂol. (3.16)
!

In the above equation the letter ‘/” on the integral sign denotes that it is a line integral
and the circle indicates that it is performed around a closed path. Applying this to a long
current-carrying conductor and using the facts that the magnetic field forms closed
loops around the conductor and the magnetic field has the same magnitude along any
of these loops, one obtains the B-field at a radial distance r from the conductor as

27rB(t) = puol (1), (3.17)

B(r) = ”;;(:) (3.18)

Circular
symmetric loop

of radius r A

A
Any arbitrary I o ,
loop threaded readed by the

by the current current k

Fig. 3.6 Geometry relevant to definition of Ampere’s law, which says that the line integral of the
B-field around the loop is equal to yo/, where / is the current passing through the loop. The law is
valid irrespective of the orientation of the loop or the point of intersection of the loop and the wire
(Figure created by author)
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Fig. 3.7 Geometry relevant to definition of magnetic field produced by a current element
according to Biot-Savart’s law. In the diagram, dl is an elementary current element (or a small
piece of the conductor carrying a current). The direction of the vector dl is the same as the direction
of the positive current flow (Figure created by author)

3.7 Magnetic Field Produced by Current Element

Consider a current element d/ through which a current [ is flowing (Fig. 3.7).
The current element can be represented by a vector dl with magnitude ¢/ and
direction specified by the direction of current flow. According to Biot-Savart’s
law, the B-field produced by this current element at point P is given by

dl x a,

B = - S22
Kol 4mlRP

(3.19)

where a, is a unit vector in the direction of OP (Fig. 3.7). Note that the direction of
the magnetic field is perpendicular to both the current element dl and the vector
joining the current element and the point of observation (i.e., a,.). The magnitude of
the magnetic field is proportional to the current in the current element, and its
strength decreases with 1/R%.

The magnetic field produced by a conductor of any shape can be calculated by
dividing the conductor into elementary sections and summing up the contribution to
the B-field from each element using the preceding equation.

3.8 Faraday’s Law and the Voltage Induced in a Loop
in the Vicinity of a Current-Carrying Conductor

The essence of Faraday’s law is that it defines and quantifies the natural law that a
changing magnetic field gives rise to an electric field. Consider a closed path in a
region where there is a changing magnetic field. According to Faraday’s law, the
E-field, E, generated by this changing magnetic field is such that

dy
Eedl = ——, 3.20
fEoa— - (3.20)
1



3.8 Faraday’s Law and the Voltage Induced in a Loop in the Vicinity. .. 37

where the left-hand side is the line integral of the electric field taken along the
closed path and the right-hand side is equal to the negative rate of change of
magnetic flux y passing through the closed path. The magnetic flux passing through
the closed path can be calculated as

y/:/Bods, (3.21)

N

where the surface integral is carried out over a surface bounded by the closed path
(Fig. 3.8a). The positive direction of ds can be decided as follows. Place a right
handed screw inside the closed path and rotate it in a circular direction in which the
line integral is performed. If the screw moves out of the surface then the positive
direction of ds is the outward normal to the surface. If the direction of motion of the
screw is into the surface the positive direction of ds is the inward normal to the
surface. Since the electromotive force, emf, generated around the closed path under
consideration is given by the line integral of the E-field along that path, we can write

emf = —d—w. (3.22)

Let us consider a square loop located in the vicinity of a current-carrying
conductor, as shown in Fig. 3.8b. The magnetic field produced by this conductor
at a radial distance r from the conductor is given by

a b
A I(I)
Surface ds &l >
N g O
»d
el r :
Closed path . loop
¢— Current carrying

conductors

Fig. 3.8 (a) The definition of a surface bounded by a closed path. The white patch is a small area
element on the surface. The magnitude of the vector ds is equal to the area of the element and the
direction of the vector is decided by the right hand screw rule (see the text). (b) Geometry relevant
to application of Faraday’s law in case of a conducting loop located in vicinity of current-carrying
conductor (Figure created by author)
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B() = %(:) (3.23)

Now, let us divide the square loop into small elementary rectangular sections, as
shown in Fig. 3.8b. The flux through the small rectangular element located at
distance r is

1(t)po
dy = Idr. 3.24
v 2zr ! ( )

The total flux is obtained by integrating this result from distance ry to r,. The
result is

I

I(t)uyl dr
= —— 3.25
W / Y- (3.25)

This reduces to

(ol , 12
=——"In—. 3.26
v=—p, I (3.26)

Thus, the rate of change of magnetic flux through the loop is

dv _ dl) pol 7>

. 3.27
dt — dr 2 r (3:27)
The induced emf in the loop according to Faraday’s law is
dl(t) pol . ra
=——=""In—. 3.28
emf dt 2r n r ( )

Note that the emf is proportional to the rate of change of the current passing
through the conductor.

3.9 Force Between Two Current-Carrying Conductors

Consider a conductor carrying a current / located in a magnetic field B (Fig. 3.9a).
Consider a small element dl on this conductor. The element is represented by a
vector, with a magnitude d/ and the positive direction the same as that of the
direction of positive current flow. The force acting on the element dl due to the
magnetic field is given by
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dF = Idl x B. (3.29)

This can be expanded as

dF = BIdlsin 6. (3.30)

Now consider a situation where two parallel current-carrying conductors are sepa-
rated by a distance a (Fig. 3.9b). We represent the current in the two conductors as /;(¢)
and I5(). Assuming that the radii of the conductors are much smaller than the separation
a, the magnetic field generated by conductor 1 at the location of conductor 2 is

B(1) :*%g). (3.31)

Since this magnetic field is perpendicular to conductor 2 (i.e. sin@=1 in
equation 3.30), the force per unit length (in N/m) on conductor 2 due to the current
in conductor 1 is (using Eq. 3.30)

F(i) = (M>12(I). (3.32)

2na

The same force also acts on conductor 1. If the two currents are equal [say /(7)],
then the force between the two conductors is

Ho \ 2
F(t) = (=—I7(1). .
(1) = (22) (1) (3.33)
a I(1) b Current carrying
T conductors
o /\
B
y AL Loa
magnetic > <
field F() F()
Current carrying
conductor
“—
a

Fig. 3.9 (a) Current-carrying conductor located in magnetic field. (b) Two parallel current-carrying
conductors separated by a distance a (Figure created by author)
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If a transient current flows along the conductors, the change in momentum of the
conductors (i.e., the relative movement due to the force) is given by the impulse, S,
due to the force. This is given by

o0

27m / (1) (3.34)

0

oo
In lightning research, the parameter / Iz(t)dt is called the action integral.
0

3.10 Electric Fields Generated by a Tripolar Thundercloud

Consider a tripolar cloud with three charge centers. The heights of the charge
centers are hy, h,, and h3. The amount of charge in the respective charge centers
is ¢, O, and —Q, respectively. In the literature, the charge center closest to the
ground and located close to the base of the cloud is called the positive charge
pocket. The charge center in the middle, which carries a negative charge, is called
the negative charge center. The charge center at the top is called the positive charge
center. The geometry is depicted in Fig. 3.10. The z-axis is directed out of the
conducting plane (or the ground plane), as shown in the figure. In presenting
the results of the calculations we treat the electric field directed along the positive
z-direction (i.e., a vector directed away from the ground surface) as positive. This is
called the physics sign convention. The opposite sign convention, where the electric
field directed into the ground is assumed to be positive, is called the atmospheric
sign convention. The vertical electric fields at ground level generated by individual

A O+o

o-0

Fig. 3.10 Idealized tripolar

cloud with three charge hy
centers located over ground.

The amount of charge in the
respective charge centers

are denoted by ¢, O, and h
— Q. In the calculations 1 z
the positive direction of T
the electric field is in the P

z-direction (Figure created Ground - >
by author) d

A O +q
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charges at a point of observation located at a horizontal distance d from the axis of
the charge centers are given by

q h
Ey=— 373 (3.35)
20 (12 + )
h
E, = 2Q 2 7 (3.36)
0 (1 + )
h
Es= _27?8 T (3.37)
0 (h3+d*)
The total vertical electric field E at distance d is then given by
E=E +E,+E;. (3.38)

Figure 3.11 depicts the electric field at a point of observation as a function of the
distance to the thundercloud. In the calculations, we assume Q = 100 C, h; =4 km,
h, =6 km, and &3 =9 km. Results are shown for three values of g equal to 0, 5, and
10 C to show the effect of the positive charge pocket. This diagram also shows how
the electric field at ground level varies as the thundercloud approaches a point

30

-

3

N
o

Electric field, kV/m
)

-40 -20 0 20 40
Distance from the point of observation, km

Fig. 3.11 Electric field at point P (Fig. 3.10) located at surface of ground as function of distance
d to tripolar thundercloud (distance to vertical axis where charges are located). In the calculation,
0 =100 C. Results are shown for three values of ¢: (1) 0, (2) 5 C, and (3) 10 C. In the calculation,
hy=4km, h, =6 km, and /3 =9 km. In the presentation the electric field produced by a negative
charge in the cloud is assumed to be positive. If the charge ¢ is significantly larger than the
preceding values, the electric field at 0 km could also become negative (Figure created by author)
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of observation, passes over it, and then recedes from the point of observation.
Note also how the polarity of the electric field changes as a thundercloud
approaches the point of observation.

3.11 Electric Field Change Due to Cloud Flash

Let us consider a tripolar cloud. The heights of the charge centers are A, 4, and A3.
The amount of charge in the respective charge centers before a cloud lightning flash
is g, O, and — Q, respectively. The cloud lightning flash leads to the neutralization
of the AQ charge from the negative and positive charge centers (Fig. 3.12).
Let Q' =0 — AQ. The electric field at ground level at a horizontal distance
d from the cloud just before the lightning flash is

q h 0 hy 0 hs
Ei= 2760 (12 4 ) + 2me0 (12 - 2)2 270 (32 4 2)2 (339)
(1 + ) (1 + &) (1 + &)
After the lightning flash the field reduces to
q h o' hy o' hs
Er = C2mey (12 1 2\3? +277:5' 2 N3 2mey (12 4 232 (3:40)
(ki +d?) 0 (h+d) 0 (5 +d)
The field change AFE caused by the cloud lightning flash is
AE =E; —E;. (3.41)
a
O+Q
Oo-0
O +q
P P
B — - }hiln\h. I, I,

d d

Fig. 3.12 Charges in a thundercloud (a) before and (b) after a cloud lightning flash. Note that the
cloud flash neutralizes a charge of magnitude AQ. The parameters used to define the heights of the
charge centers are given in Fig. 3.10 (Figure created by author)
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Fig. 3.13 Electric field 10
change at ground level
produced by cloud flash 4
depicted as function of
distance d to thundercloud £ 0
(Fig. 3.12). In the 2z
calculation, Q =100 C and <
the charge neutralized by 2 ]
the cloud flash AQ = 10 C; 8
h,=6 kmand h3=9 km ; -10
(Figure created by author) ©
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After substitution from the preceding expressions we obtain

Q-0 hy n ©Q-0) hs

AE = — 220 (h% N d2)3/2 2reo (h% 4 d2)3/2~

(3.42)

Figure 3.13 depicts this field change as a function of the horizontal distance from
the thundercloud. In the calculation, it is assumed that AQ =10 C, h; =4 km,
h, =6 km, and h; =9 km. Note the change in polarity of the field changes with
distance.

3.12 Electric Field Change Due to Ground Flash

Let us consider a tripolar cloud. As before, the heights of the charge centers are /1y, &,
and /3. The amount of charge in the respective charge centers before a ground
lightning flash is taken to be ¢, O, and — Q, respectively. In the calculation,
we assume that the ground lightning flash leads to the complete neutralization of
the positive charge pocket and a transfer of — Ag to ground from the negative charge
center (Fig. 3.14). The total charge, — AQ, removed from the negative charge center
is equal to — Ag —gq. Let Q' =0 — AQ. Thus, the charge in the negative charge
center after the ground flash is equal to — Q. The electric field at ground level at a
horizontal distance d from the cloud just before the lightning flash is

g hy n Q hy 0 hs
27en (hf+d2)3/2 27en (h§+d2)3/2 2men (h§+d2)3/2-

E: = (3.43)
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a b
O+0 O+0
o-0 O-(0-AQ)
O+q
P P
d d

Fig. 3.14 Charges in thundercloud (a) before and (b) after ground lightning flash. Note that a
charge of — AQ is removed from the negative charge center and part of this negative charge is used
to neutralize the charge ¢ of positive charge pocket. The rest of the charge (— AQ+g¢) is
transferred to the ground. The parameters used to define the heights of the charge centers are
given in Fig. 3.10 (Figure created by author)

After the lightning flash the electric field at the same point is

/

271'8() (h%+d2)3/2 271'80 (h% +d2)3/2'

E; (3.44)

Thus, the field change at the point of observation caused by the ground flash is
AE = Ef — E;. (3.45)
After substitution of the respective parameters we obtain

q hy (0-0) hy

H e e e e

(3.46)

Figure 3.15 depicts the electric field change generated by a ground flash. In the
calculation, it is assumed that AQ=10 C, h; =4 km, h,=6, and h3;=9 km.
Note that, unlike the field change due to a cloud flash, the polarity of the field
change remains the same with distance.

3.13 Electric Field Change Caused by Stepped Leader

For simplicity let us consider a bipolar cloud with negative and positive charge
centers at heights 4, and /3, with charges — Q and +Q, respectively. At time =0
a stepped leader starts moving down from the negative charge center. We do not
specify here how the negative charges are removed from the charge center and
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Fig. 3.15 Electric field 0
change at ground level

produced by ground flash i

depicted as function of
distance d to thundercloud.
In the calculation, it is
assumed that Q = 100 C and
the total charge removed
from the negative charge
center is —10 C. Part of this
charge is used to neutralize
the positive charge pocket
(g =15 C) and the rest is
transported to the ground. -30
In the calculation, h; = 4

km, i, =6 km, and i3 =9

km (Figure created by

author)
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transferred to the leader channel (this point will be discussed in a subsequent chapter).
Let us assume that the charge on the leader channel is uniform. Let us denote the
magnitude of this uniform linear charge density by A. Other charge distributions could
also be assumed, but the procedure for calculation is the same. We also assume that
the leader channel moves down at a uniform speed equal to v. Just before the creation
of the leader the electric field at a horizontal distance d from the thundercloud is

0 hy 0 h3

E; = +2m30 (h% +d2)3/2 _27[80 (h% +d2)3/2'

(3.47)

At time ¢ after the generation of the leader, the physical situation is depicted in
Fig. 3.16a. During this time the leader travels a distance of vt. To calculate the
electric field caused by the leader, let us divide the leader channel into elementary
sections. Consider an element dz located at height z from ground level (Fig. 3.16b).
The charge on this element is Adz. The electric field produced by this charge
element at a point located at ground level at a horizontal distance d is (note that
the charge on the leader channel is negative)

Adz z

E = 2t 2+

(3.48)

The total field produced by the leader can be obtained by integrating this from
hy — vt to h,. That is,

hy

E = / MZ—Z”. (3.49)
27778()(22 + dz) /

hy—vt
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a
O+0 O+0
0O-0 O —(0-t)
vt
P P
_— > —_—  »
d d
before the creation of leader after the creation of leader
b

Fig. 3.16 (a) Idealized physical situation at time ¢ after creation of leader. The leader initiates
from the negative charge center and travels straight to ground at speed v. At time ¢ it had traveled a
distance vt. For ease of analysis only the main charge centers are considered in the calculation. (b)
Geometry relevant to calculation of electric field produced by downward moving stepped leader.
In the figure dz is an element of the stepped leader channel located at a distance r from the point of
observation P. The length of the leader channel at time ¢ is v¢. The tip of the leader channel is
located at a height of #, — vt (Figure created by author)

This reduces to

A 1 1
= — (3.50)
270N Sy =i 4 B+
The total vertical electric field at the point of observation at time ¢ is
— vt h h
E = @=4) 2 Q g, (3.51)

2rey (h%+d2)3/2_2ﬂ€0 (h§+d2)3/2
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Thus, the field changes caused by the leader and other charges at time ¢ are
AE =E,—E;. (3.52)

Substituting for different components we obtain

Avt hy A 1 1

AE =~ 2reg (12 o4 42)\3/? + 2meg 2 2 2 2 (3.53)
(i +d%) \/(hz—vl‘) +d \/h2+d
This can also be written as
vt hy A 1 1
AE = — 3 7+ —
2o (o gay 1) 25 () — (f@)P 1 \Jofa)? 41

(3.54)

Figure 3.17 depicts the field change caused by the stepped leader as a function of
time at different horizontal distances. In the calculation it is assumed that
2=0.001 C/m, v=10° m/s, and i, =6 km. Note how the polarity of the field
change varies with distance.
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Fig. 3.17 Electric field change at ground level caused by stepped leader as function of time at
different horizontal distances (Fig. 3.16b). In the calculation, the speed of propagation of the leader
is v=10° m/s, and the linear charge density on the leader channel is 0.001 C/m. The height of
origin of the leader is 6 km (Figure created by author)
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3.14 Electric Field Change Caused by Leader Return
Stroke Combination

The electric field at the point of observation at any time during the progress of the
leader, i.e., t < hy/v, is given by Eq. 3.51. The electric field at the point of observa-
tion when the leader reaches ground, i.e., t = hy/v, is

Ep o = (Q — Ahy) ha 0 h3
t=hy/v — -

2 2meg (h% +d2)3/2 2meg (h% —|—d2)3/2

A 1
+ med |17 (3.55)
e (ha/d)* + 1
Thus, the total field change caused by the leader is
Ah h A 1
(AE)leader = - Ire 2d3 22 3/2 + 2rend - 5 (356)
o ((ho/ay +1) 0 (hafd)} + 1

The return stroke removes the charge on the leader channel, and therefore, after
the return stroke the electric field at the point of observation is

(Q — ) hy Y hs
2meg (24 a?)*? 2meo (24 a?)’

Eiopypy = (3.57)

Thus the field change caused by the return stroke (i.e., Eisp, /v — Ei—p, /) 18

(AE), o = G PR — (3.58)

return T
Zﬂgod (hz/d)2 +1
The total field change caused by the leader return stroke combination is

Al hy

(AE) eader + (AE )ret 1T 3 3
Zﬂ d 2 /2
€0 (( 12/0) 1)

(3.59)

This is simply the electric field caused by the removal of charge of magni-
tude — Ah, from the negative charge center.
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Figure 3.18 depicts both the leader field change and the return stroke field
change as a function of time at various distances. In the calculation, it is assumed
that 1 =0.001 C/m and A, = 6 km. Note that in the case of the return stroke only the
field change is depicted, assuming that it takes place instantaneously in the time
scale of the leader.

3.15 Time-Varying Electromagnetic Fields

In the presence of time-varying currents, electrical charges, electric fields, and
magnetic fields, the laws of electricity can be summarized by Maxwell’s equations.
They are as follows.

Integral form Point form
' 60.1 =-2 60.1
7{ Eedl =— / 9By (3.60.1a) CurlE = — & (3.60.1b)
ot

! K

3.60.2 —J4+ 3.60.2b
?{H.dl:H/a_Dds ( a) CurlH = J + ( )

ot

! K
f Deds = / . (3.60.3a) DivD=p, (3.60.3b)
7{ Beds=0 (3.60.4a) DivB=0 (3.60.4b)

The other two equations of importance are

J=0oE ‘ (3.60.5) divy = — % ‘ (3.60.6)

Equation 3.60.5 defines the relationship between the current density and the
electric field through the conductivity ¢ of the medium. Equation 3.60.6 is the
continuity equation based on the fact that electric charges are conserved.

In the preceding equations, / indicates a line integral and / indicates a surface

I s
integral. The closed loop around the integral sign, i.e., ¢, indicates that the integral
is performed around a closed path or over a closed surface. Note also that in
isotropic media £ = D /gy and B = u,H. The electric and magnetic fields (E and B)
can be calculated using time-varying scalar and vector potentials as defined by
(Fig. 3.19):

! /pv(r’t_g)dv, (3.61)

dreg r
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e P

Fig. 3.19 Geometry relevant to definition of scalar and vector potential of time-varying charge
and current distributions. In the diagram, p(r) and J(f) are the time-varying charge and current
densities; P is the point of observation where the potentials are needed (Figure created by author)

A= @/Mdv. (3.62)

T Agx r

In the preceding equations, ¢ and A are the time-varying scalar and vector
potentials and p(f) and J(¢) are the time-varying charge and current densities.
The quantity ¢ — (r/c) is called the retarded time. The electric and magnetic fields
can be calculated from these potentials using the relationships

E = —gradg — aggr) : (3.63)

B = curl(A). (3.64)

These laws must be complemented by the Lorentz force law, which specifies the
force on a charge particle ¢ in the presence of electric E and magnetic fields B as

F=¢E — gqv xB. (3.63)

In this equation the first term gives the force on a charged particle due to an
electric field, while the second term gives the force of the charged particle caused
by a magnetic field. In this equation, v is the velocity of the charged particle.

3.16 Relaxation Time of a Conducting Medium

Consider a conducting medium or a conductor in an electric field. A conductor
contains free electrons and under the influence of the electric field these electrons
start moving in the conductor and accumulate at the edges of the conductor. This
accumulation of electrons at the edges of the conductor give rise to an electric field
that is opposite to that of the applied field. The flow and accumulation of electrons
at the edges continue until the two electric fields cancel each other and the electric
field inside the conductor is zero. This process of relaxation (or removal) of the
electric field takes some time, and this time depends on the conductivity and the
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dielectric constant of the conducting medium. The same happens if electrical
charges are placed inside a conducting medium. These charges create an electric
field in the conducting medium and the free electrons move in the conducting
medium so as to remove this electric field. The effect is the displacement of the
electric charge placed inside the conducting medium to the outer surface of the
conductor. Again, this removal of the charge from inside to the outer surface of the
conducting medium takes some time, and this time again depends on the conduc-
tivity and the dielectric constant of the conducting medium.

Consider an isotropic and homogeneous conductor with a relative dielectric
constant €, and conductivity o. Assume that at time equal to zero an excess charge
is placed inside the conductor with charge density p,(r, 0). This charge generates an
electric field inside the conductor, generating a current that redistributes this charge
and displaces it to the surface of the conductor (recall that electric charges may
accumulate on the surface of conductors) and causing the electric field inside the
conductor to go to zero. Let us evaluate how fast this process takes place.

From the equation of charge conservation we have

divI(r.1) = —W, (3.66)

where p,(r, t) is the charge density at any time inside the conductor. Substituting for
J in the preceding equation from J = cE(r, f) we obtain

op,(rt
odivE(r, 1) = — 2P0 (3.67)
ot
We also know from Gauss’s law that
. py(r,1)
divE(r, 1) = . 3.68
E(r.r) =20 (3.68)
Substituting this into the previous equation we obtain
€o€r Op,(r,1)
(rt) = —— —=—. 3.69
pulryt) = = P (3.69)
The solution of Eq. 3.69 is
py(r,1) = p,(r,0)e /e, (3.70)

The preceding expression for the variation in charge density inside a conductor
shows that the charge inside the conductor decreases exponentially in time.
The quantity €,¢,/0 is called the relaxation time of the conductor. In the same
way, if we create an electric field inside a conductor, it decreases to zero
exponentially with a time constant equal to the relaxation time. Recall that in
Sect. 3.4 it was stated that the electric field on the surface of a conductor is
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perpendicular to the surface of the conductor. If a conductor with finite conduc-
tivity is placed in an electric field, it takes the relaxation time for the charges on
the conductor to redistribute on the surface in such a way that the electric field
becomes perpendicular at every point on the surface. In a perfect conductor the
conductivity is infinite, and thus the relaxation time is zero. In this case the
redistribution of the charges takes place instantaneously, and all the field com-
ponents parallel to the conductor vanish instantaneously. This process of relaxa-
tion is of importance in understanding, among other processes, the response of the
upper atmosphere, which is a conducting medium, to the electric fields generated
by lightning flashes.

3.17 Electromagnetic Fields of a Dipole

The electromagnetic fields of a short electric dipole are used frequently in
calculating the electromagnetic fields of different processes in a lightning flash.
Here we present the electromagnetic fields of a short electric dipole in the frequency
domain; the corresponding time domain fields are given in the next section.

Let the dipole length be /, and let it be directed in the positive z-direction with its
center at the origin (Fig. 3.20). The current in the dipole is given by

I =1Ipe". (3.71)

Fig. 3.20 Geometry

relevant to calculationof /e
electric and magnetic fields T,
from electric dipole of
length dl located at height

h from ground plane

(Figure created by author) X
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The electric and magnetic fields at any point in space generated by the short
dipole can be calculated using scalar and vector potentials. When > [ and 4>/,
where r is the distance to the point of observation and A is the wavelength, the
electric and magnetic fields are given by

Iole/®'e=IPr 1 1
E =——-—1— o|l—+—|, 3.72
27 coSP 2 + Jjor3 (3:72)

Ilee " Tjw 1 1

EQ—WSIHQ E—F?—FW B (373)

pololei e i 1
B(/, —Tsmﬁ ;+r—2 . (374)
p=w/c. (3.73)

The directions of the electric fields in spherical coordinates are indicated in
Fig. 3.20. Field components that vary inversely with distance are called radiation
fields. When the distance to the point of observation is very large, only the radiation
fields contribute to the total fields. The other field components attenuate rapidly
with distance because they change as 1//* and 1/°. Thus, the electric and magnetic
fields at a point located far from the dipole are given by

Iole™e P Tiw
Egrag=——"" 0|—I|, 3.76
frrad 4reg s c2r ( )
1 Joiol—ibr ;
Byrad = % sin@[jg] (3.77)
v 1

Note that the ratio Eg;.4/B,raa 15 €qual to ¢, the speed of light in free space
(observe that =1 [Ho€0)-

3.18 Electromagnetic Fields of a Dipole Over a Perfectly
Conducting Ground Plane

Let us now consider a dipole located over a perfectly conducting ground plane.
The geometry is shown in Fig. 3.21. The electric field at any point over the
conducting plane can be calculated by replacing the dipole with an image dipole.
The vertical electric field at ground level (note that the horizontal electric field is
zero over the surface of a perfectly conducting ground) at a horizontal distance
d from the axis of the dipole is then given by

cr o ocor? jor?

Iole/@=Pr) 1 1 Lole/ @ =P Tijo 1 1
E, = s+t——=| ———F5-——cosp .
TEY Cr jaor

S — 1 2 R

(3.78)
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relevant to calculation

of electric fields from
electric dipole of length dl
located over perfectly
conducting ground plane
(Figure created by author)

Fig. 3.21 Geometry
dl I

> ground plane

This can be written as

+ (1 —3sin’gp) ! +L(1—3sin2¢)]. (3.79)

Tole/ @ =Pr) [ cos g jw
27y cr cr?r  jord

E, =

The magnetic field, which is in the azimuthal direction, is given by

’uololej(mtf/}r)

I 1
By cos @ [jw + ’—2] . (3.80)

2 cr

When the distance to the point of observation is large, only the radiation fields
will contribute to the total field. Thus, the total fields at distances far from the dipole
are pure radiation and are given by

Lolel @ =P") [ cos2gjw
E, g =— 3.81
»rad 2men cr ( )
ﬂololej(wf—/ff) jw
Bpiag=—"77" —. 3.82
o =PI 12 (382)

If d>h, then r~d and cosp~1, and when d/A=r/A, the radiation fields
reduce to

Tole/ @ =P [ jg
Eyirig=——7——|]|, 3.83
orad 2rey  |c2d (383)

MOIOlej(mtf/}d) ]Cl)
Byrag=———m |—|. 3.84
grad 2 cd (3:84)
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3.19 Electromagnetic Fields of a Current Element in Time
Domain Over a Perfectly Conducting Ground Plane

Consider a short current element located over a perfectly conducting ground plane.
The current flowing in the current element is given by I(¢). The current transports
charge from one end of the channel element to the other. The fields generated by the
current element are identical to that produced by a short dipole in the time domain.
Using Fourier transformation of the equations given earlier, the field components
can be written directly as

2reg | 3r dt

E\(1) ——L{COSZ(pM (1—3sin’p) 1= o ’/C) (1 — 3sin’p) /[ z—r/c)d7‘|
(3.85)

-rjol. G30)

dz |cosq dl(t —r/c cos

2z cr dt r2

When the distance to the point of observation is large, only the radiation fields
contribute to the total field. Thus, the total fields at distances far from the dipole are
pure radiation fields. If d > h then r = d, cos ¢ ~ 1 and the field components reduce
to

_dz [ 1 dl(t—d]c)
Ev,rad(’) - - 271'80 |:(,2d dt :| (387)
uodz | 1 dI(t —d/c
B(//,rad(t) = 377 |:Cd ( dl / ) . (388)

Figure 3.22 depicts field components generated by a small current element at
different distances assuming that the current in the short channel is a ramp function
given by I,t. In the calculation, the length of the dipole is assumed to be 1 m,
I,,=30kA/s, and for simplicity the dipole is assumed to be located at ground level,
i.e., cos ¢ = 0. Note that as the distance to the point of observation from the source
increases, the field becomes increasingly more similar to a step function, which is
the radiation field associated with the source.

3.20 Electromagnetic Field of a Return Stroke

The electric and magnetic fields generated by a return stroke can be calculated
easily by dividing the return stroke channel into a large number of elementary
channel sections and treating each section as a short dipole. The geometry relevant
to the derivation is given in Fig. 3.23. The total electric field can be calculated by
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Fig. 3.22 Electric field at surface of perfectly conducting ground generated by small current
element located at different distances from point of observation. In the calculation, a current
element 1 m in length is assumed to be located at ground level. The current in the current element
is a ramp function /,t, where ¢ is the time and /,, = 30 kA/s (Figure created by author). Note that in
each diagram the electric field starts at zero

Return stroke channel

Fig. 3.23 Geometry H dZI ¢
relevant to derivation

of equations pertinent to
electric and magnetic fields
produced by return stroke.
In the diagram, H is the
height of the return stroke
channel and dz is a channel
element located at height 4

z on this channel — > ground plane
(Figure created by author) d
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summing the contribution from each dipole. Let us represent the current at height
z in the return stroke channel by /(z, t). Then the vertical electric field at a horizontal
distance d from the lightning channel is given by

H . t
/2£|:cos (ﬂdl(tr/c)+(13sm2tp)‘,(t_r/c)+ri3(1_3Sin2(p)/1(z_’,/c)dz}’
0

cr dt cr? .
0
(3.89)
i d di( / )
uodz [ cosq dI(t —r/c COS(p
/ 27[[ p 2 r/c)} (3.90)
0

In the preceding equations, H is the height of the return stroke channel. When the
distance to the point of observation is large, only the radiation fields (i.e., terms
varying inversely with distance) remains. When d > H, it is justified to assume that
cos @~ 1 and r ~d. Under these conditions, the radiation field terms become

1 /H di(t—r/c)dz

E,y aalt) = : 3.91
aa () 2meoctd dr ( )
0
1 i r/e)d
(t—rj/c)dz
B, a(t) = 3.92
porad (1) 2regcid / dt (392)
0

Note that the electric field is directed into the ground (the negative sign). The
two components of the radiation field satisfy the condition

E, rad(t) = By rad(1). (3.93)

This shows that at large distances, where the radiation field is dominant, both the
electric and magnetic fields have the same temporal variation, and the ratio of their
amplitudes is equal to the speed of light.
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