
Chapter 12

Propagation Effects Caused by Finitely

Conducting Ground on Lightning Return

Stroke Electromagnetic Fields

12.1 Introduction

Consider a radio antenna located over ground and transmitting at a given frequency.

If the ground is perfectly conducting, the amplitude of the radio wave generated by

the antenna decreases inversely with distance as one moves away from the antenna,

i.e., the signal decreases as 1/r, where r is the distance from the antenna to the

point of observation. However, if the conductivity of the ground is finite, then the

amplitude of the radio wave decreases much more rapidly than the inverse distance.

The higher the frequency of the wave, the higher the rate of decrease of the radio

signal with distance. This attenuation of the radio signal or the electromagnetic

wave by finitely conducting ground is called propagation effects. Attenuation of the
electromagnetic wave results from the absorption of energy from the electro-

magnetic field by the finitely conducting ground. The higher the frequency of the

electromagnetic field, the higher the amount of energy absorbed by the ground.

Let us analyze this a bit further. Consider an electromagnetic field generated by a

radio antenna tuned to a given frequency. If the ground is perfectly conducting, at

any given point on the ground the electric field is perpendicular to the ground

surface and the magnetic field is in the azimuthal direction (Fig. 12.1a). The

direction of energy flow or the Poynting vector (i.e., E�H) of the electromagnetic

field at that point is directed parallel to the ground. Now consider the electromag-

netic field of a radio antenna located over finitely conducting ground. In this case,

the magnetic field has the same direction as before, but the electric field is inclined

to the surface of the ground (Fig. 12.1b). That is, there is a component of the electric

field parallel to the ground. This component is called the horizontal electric field.
The Poynting vector in this case is directed towards the ground (a component of

which is directed into the ground), indicating that energy is absorbed from

the electromagnetic field by the ground. With increasing frequency or with decreas-

ing ground conductivity the angle between the vertical and the direction of the
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electric field increases, i.e., the horizontal electric field increases. Thus, the energy

absorbed by the ground increases with increasing frequency and with decreasing

conductivity.

In the case of lightning-generated electromagnetic fields, which contain all the

frequencies by differing amounts, the higher frequencies are selectively attenuated

by ground, and as a result the fast or rapid features of the electromagnetic field

disappear as the distance of propagation increases. The effect of this selective

attenuation of higher frequencies is to increase the rise time and decrease the

amplitude of the electromagnetic field (Sect. 12.3). Interestingly, in the case of

lightning generated electric fields the Poynting vector rotates with time having a

direction towards the ground at short times and becoming more and more parallel to

ground with increasing time.

Knowledge concerning the characteristics of electromagnetic fields generated by

lightning flashes is of importance in evaluating the interaction of these electromag-

netic fields with electrical networks and in the remote sensing of lightning current

parameters from the measured fields. However, as described previously, electro-

magnetic fields generated by lightning change their character as they propagate

over the ground surface because of selective attenuation of high-frequency signals

by finitely conducting ground. Thus, the peak and rise time of lightning-generated

electric fields and electric field time derivatives measured at a given distance from

the lightning channel may deviate more or less from the values that would be

present over perfectly conducting ground depending on the distance of propagation

and the conductivity of the ground.

In this chapter a simple procedure to evaluate propagation effects on electro-

magnetic fields generated by lightning return strokes is described.

a b

Fig. 12.1 (a) The electric field vector E over perfectly conducting ground is perpendicular to the

ground surface, and the Poynting vector P [which is equal to 1
μ0

E� Bð Þ] is parallel to the surface.

The magnetic field B is azimuthal and goes into the plane. (b) Over finitely conducting ground the

electric field vector is inclined to the ground surface (the magnetic field has the same direction),

and the Poynting vector is directed towards the ground ( a component of which is directed into the

ground). Thus, in the case of finitely conducting ground, energy is absorbed by the ground from the

electromagnetic field (Figure created by author)
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12.2 Theory

In Chap. 3 we derived an expression for an electromagnetic field generated by a

Hertzian dipole located above a perfectly conducting ground. This electric field is

given by

dez jω; ρð Þ ¼ I jωð Þdz
2π εo

2� 3 sin 2θ

jωR3

�
þ 2� 3 sin 2θ

cR2
þ jω

sin 2θ

c2R

�
e�jωR=c: ð12:1Þ

See Fig. 12.2 for the relevant geometry. Now, when the ground is finitely

conducting with a conductivity denoted by σ, a correction term must be introduced

into the preceding equation. This correction term is a function of the height of the

dipole, its frequency, the distance to the point of observation, and the ground

conductivity. With this correction term the corresponding electric field over finitely

conducting ground is given by

dez jω; ρð Þ ¼ I jωð Þdz
2π εo

2� 3 sin 2θ

jωR3

�
þ 2� 3 sin 2θ

cR2
þ jω

sin 2θ

c2R

�
e�jωR=c þ S z; ρ;ω; σð Þ:

ð12:2Þ

An expression for this correction term was derived by Sommerfeld in 1906 [1]

and is given in terms of an infinite integral that contains oscillating terms in the

integrand. This oscillating nature of the integrand demands significant computa-

tional power in the numerical calculation of these integrals. Several scientists,

notably Norton [2] and Bannister [3], attempted to derive an analytical function

that can approximate Sommerfeld’s integral. The results of these studies showed

that for a very good approximation the function S can be written as

S ¼ I jωð Þdz
2π εo

jω sin 2θ

c2R

1

2
Rv þ 1ð Þ þ 1� Rvð Þa z; ρ; jω; σð Þ � 2f ge�jωR=c: ð12:3Þ

P
r

Fig. 12.2 Geometry relevant to parameters in field expressions of dipole. A dipole of length dz is
located at height z above the ground plane. The distance to the point of observation P from the

dipole is R, and the horizontal distance to the point of observation from the dipole is ρ
(Figure created by author)
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Substituting this into Eq. 12.2 gives the vertical electric field at ground level at

point P due to a dipole located at height z as

dez jω; ρð Þ ¼ I jωð Þdz
2π εo

2� 3 sin 2θ

jωR3

�
þ 2� 3 sin 2θ

cR2
þ jω

sin 2θ

c2R
f z; ρ; jω; σð Þ

�
e�jωR=c:

ð12:4Þ

In the preceding equations,

f z; ρ; jω; σð Þ ¼ 1

2
Rv þ 1ð Þ þ 1� Rvð Þa z; ρ; jω; σð Þf g, ð12:5Þ

Rv ¼ cos θ � Δ1

cos θ þ Δ1

ð12:6Þ

Δ1 ¼ ko
k1

1 � k2o
k21

sin 2θ

� �1=2

, ð12:7aÞ

k0 ¼ ω2μ0ε0 ð12:7bÞ
k1 ¼ �jωμ0ðσ þ jωε0εrÞ ð12:7cÞ

cos θ ¼ z=R ð12:7dÞ

η ¼ � jωR

2c sin 2θ
cos θ þ Δ1½ �2, ð12:8Þ

a z; ρ; jω; σð Þ ¼ 1� j πηð Þ1=2 e�η erfc jη1=2
� �

: ð12:9Þ

In these equations, erfc stands for the complementary error function. The

function a(z, ρ, jω, σ) is the attenuation function corresponding to a dipole at height

z over homogeneous and finitely conducting ground of surface impedanceΔ1. In the

above equation εr is the relative dielectric constant of the soil, ε0 is the relative

permittivity of free space and μ0 is the magnetic permeability of free space. These

expressions can be calculated numerically with little difficulty. Note also that when

the dipole is at ground level, i.e., z¼ 0, f(z, ρ, jω, σ) reduces to a.
Now, the lightning channel can be divided into a large number of elementary

channel sections, each of which can be treated as an elementary dipole. Therefore,

the total electric field generated by the return stroke can be obtained by summing

the contribution from each dipole, taking into account the time delays. Hence, the

total electric field due to a lightning return stroke over finitely conducting ground at

a horizontal distance ρ can be written as

ez jω; ρð Þ ¼
ðH

0

I jωð Þ
2π εo

2� 3 sin 2θ

jωR3

�
þ 2� 3 sin 2θ

cR2
þ jω

sin 2θ

c2R
f z; ρ; jω; σð Þ

�
e�jωR=cdz:

ð12:10Þ

If the spatial and temporal variations in the return stroke current is known, then

I( jω) can be obtained through Fourier transformation.
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Numerical evaluation of the integral in Eq. 12.10 gives the vertical electric

field in the frequency domain (i.e., the electric field corresponding to a given

frequency ω), and the time domain electric field can be obtained through inverse

Fourier transformation. However, this calculation still involves a significant amount

of numerical computation. To simplify the calculations further, Cooray and

Lundquist [4] simplified this equation using the following arguments. As far as

the propagation effects are concerned, the section of the electromagnetic field that is

of interest is the part occurring within the first few microseconds. If the speed of

propagation of the return stroke front is approximately 108 m/s, then the length of

the channel that contributes to the radiation field during this time would be no larger

than a few hundred meters. Thus, in the preceding equation, the attenuation

function f(z, ρ, jω, σ) can be replaced by f(0, ρ, jω, σ), the attenuation function

corresponding to a dipole located at ground level. The result is

ez jω; ρð Þ ¼
ðH

0

I jωð Þ
2π εo

2� 3 sin 2θ

jωR3

�
þ 2� 3 sin 2θ

cR2
þ jω

sin 2θ

c2R
a ρ; jω; σð Þ

�
e�jωR=cdz:

ð12:11Þ

Note that f(0, ρ, jω, σ) is equal to a(ρ, jω, σ). This equation can be inverse Fourier
transformed directly into the time domain, giving the result

Ez t; ρð Þ ¼ Ez, s t; ρð Þ þ Ez, i t; ρð Þ þ
ðt

0

Ez, r t� τ, ρð ÞA ρ; τ; σð Þdτ, ð12:12Þ

where A(ρ, τ, σ) is the inverse Fourier transformation of a(ρ, jω, σ). In this equation,
Ez,s(t, ρ), Ez,i(t, ρ), and Ez,r(t, ρ) are the static, induction, and radiation field compo-

nents, respectively, of the electric fields generated by the return stroke over

perfectly conducting ground. These field components are given by

Ez, s t; ρð Þ ¼
ðH

0

dz

2πεo

2� 3 sin 2θ

R3

� ðt

0

i z, τ � R=cð Þdτ
9=
;, ð12:13Þ

Ez, i t; ρð Þ ¼
ðH

0

dz

2πεo

2� 3 sin 2θ

cR2
i z, t� R=cð Þ, ð12:14Þ

Ez, r t; ρð Þ ¼
ðH

0

dz

2πεo

sin 2θ

c2R

∂i z, t� R=cð Þ
∂t

: ð12:15Þ

According to the preceding equations, only the radiation field term is disturbed

by propagation effects while the static and induction terms remain intact. In cases
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where the distance to the point of observation is so large that it is only the radiation

field that is of interest, Eq. 12.12 reduces to

Ez t; ρð Þ ¼
ðt

0

Ez, r t� τ, ρð ÞA ρ; τ; σð Þdτ: ð12:16Þ

As mentioned previously, in Eq. 12.16, A(ρ, t, σ) is the inverse Fourier

transformation of a(ρ, jω, σ). To use Eq. 12.16, the function A(ρ, t, σ) must be

obtained for each conductivity and distance of interest by inverse Fourier transfor-

mation of a(ρ, jω, σ). On the other hand, Wait [5] derived an analytical approxima-

tion for A(ρ, t, σ) that can be used in Eq. 12.16 to further reduce the computational

time. The analytical approximation to A(ρ, t, σ) derived by Wait is given by

A ρ; t; σð Þ ¼ d

dt
1� exp � t2

4ζ2

� �
þ 2β εr þ 1ð ÞQ t=2ζð Þ

t

� �
, ð12:17Þ

with

Q xð Þ ¼ x2 1� x2
� �

exp �x2
� �

, ð12:18Þ
β ¼ 1=μoσ c

2, ð12:19Þ
ζ2 ¼ ρ=2μoσc

3: ð12:20Þ

The third term inside the brackets of Eq. 12.17 takes account approximately of

the displacement current in the ground. In many cases of practical interest, this term

can be neglected, and the attenuation function in those cases is given by

A ρ; t; σð Þ ¼ d

dt
1� exp � t2

4ζ2

� �� �
: ð12:21Þ

Note that if the preceding expression is used in Eq. 12.16 to calculate the

propagation effects, then the predicted propagation effects depend only on the

parameter ρ/σ.
To illustrate the propagation effects, assume that the radiation field over per-

fectly conducting ground can be represented by a step function. Then the radiation

field at different distances and conductivities are given by

Ez t; ρð Þ ¼ 1� exp � t2

4ζ2

� �
: ð12:22Þ

The results corresponding to 50-km, 100-km, and 200-km propagation over

finitely conducting ground of 0.001 S/m are depicted in Fig. 12.3a. Observe how

the rise time of the step increases with increasing distance. Note that in this figure
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the inverse distance reduction in the radiation field with distance is removed to

illustrate the effects of propagation. In other words, if there were no propagation

effects, then all the waveforms would resemble step functions with unit amplitude.

The frequency spectrum corresponding to each waveform is shown in Fig. 12.3b.

Note how the propagation effects remove the high frequencies from the signal and

as a result the rise time of the signal increases.

Equation 12.12 can be used to calculate the propagation effects if the distance to

the point of observation is larger than approximately 1 km. If the distance is less

than that, then Eq. 12.10 must be used to obtain accurate results. However, even

at these distances Eq. 12.12 can still generate reasonable results if the conductivity

of the ground is higher than approximately 0.01 S/m. If the distance to the point

of observation is less than approximately 200 m, then it is necessary to solve

Sommerfeld’s integrals to obtain accurate results. Even at these distances

Eq. 12.10 can still provide a reasonable estimation of propagation effects. However,

it is important to point out that at points of observation in the vicinity of the channel,

the propagation effects modify only the electric field derivative. The propagation

effects on the electric field signature itself are not very significant. Thus, if the

propagation effects are needed only for the electric field, then the simplified

equations presented earlier can be used to estimate them, even at distances close

to the lightning channel.
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Fig. 12.3 (a) Effects of propagation on electric radiation field step as it propagates over various

distances along finitely conducting ground. Observe that the field amplitude is normalized by

removal of the inverse distance dependence of the radiation field. (1) Perfect conductor. (2) 50-km

propagation over ground of 0.001 S/m conductivity. (3) 100-km propagation over ground of

0.001 S/m conductivity. (4) 200-km propagation over ground of 0.001 S/m conductivity. Note

how the rise time of the step (which is zero over perfectly conducting ground) increases with

increasing distance of propagation (Figure created by author). (b) Spectrum of electric fields

shown in Fig. 12.3b. Note how the higher frequencies are attenuated with respect to lower

frequencies as the signal propagates along finitely conducting ground (Figure created by the

author)
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12.3 Illustration of Propagation Effects

As explained earlier, propagation effects are caused by the selective attenuation of

the higher frequencies in the electromagnetic field by finitely conducting ground.

Thus, the fast features of lightning return stroke electromagnetic fields, such as the

rise time, are more sensitive to propagation effects than the slow variations, such as

the duration of the electromagnetic field. For the same reason, the electric field

derivative is more sensitive to propagation effects than the electric field itself. For

example, Fig. 12.4 shows how the electric field in the vicinity of the channel is

modified by propagation effects. Observe that propagation effects do not modify the

electric field (or the modifications are insignificant) in the vicinity of the channel.

0 0.1 0.2 0.3 0.4 0.5

Time, μs

0 0.4 0.8 1.2 1.6

Time, μs

0.0x100

4.0x104

8.0x104

1.2x105

1.6x105

0.0x100

5.0x103

1.0x104

1.5x104

2.0x104

2.5x104

V
/m

V
/m

0 0.4 0.8 1.2 1.6

Time, μs

0.0x100

1.0x103

2.0x103

3.0x103

4.0x103

V
/m

0 1 2 3 54

Time, μs

0.0x100

2.0x102

4.0x102

6.0x102

V
/m

a b

c d

Fig. 12.4 Vertical electric field at ground level at (a) 10 m, (b) 50 m, (c) 200 m, and (d) 1000 m

from lightning channel. Solid line: field obtained from Sommerfeld’s equation; short-dash line
(blue): Bannister approximation; long-dash line (red): Norton approximation. The conductivity of

the ground is 0.001 S/m, and the relative dielectric constant is 5. Note that the equations of

Bannister and Norton represent good approximations to Sommerfeld’s exact integrals (Adapted

from Cooray [6])
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On the other hand, Fig. 12.5 shows how the derivative of the electric field within

approximately 1 km from the channel is modified by propagation effects. Note that

propagation effects can significantly modify the peak amplitude of the electric field

derivative. It is of interest to note that even very close to the return stroke channel

the main contribution to the electric field derivative comes from the radiation field.

In the radiation fields the electric field derivative and the magnetic field derivative

have the same time signature, and they are related through the equation dE/
dt¼ c dB/dt, where c is the speed of light. Thus, the amount of attenuation of the

peak of the magnetic field derivative is the same as the amount of attenuation of the

electric field derivative. Figure 12.6 shows the how the peak amplitude of the

magnetic field derivative decreases with distance over finitely conducting ground.
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Fig. 12.5 Time derivative of vertical electric field at ground level at (a) 10 m, (b) 50 m, (c) 200 m,

and (d) 1000 m from lightning channel. Solid line: time derivative of electric field over finitely

conducting ground calculated using Sommerfeld’s integrals; dotted line: time derivative of electric

field over perfectly conducting ground. The conductivity of the ground is 0.001 S/m, and the

relative dielectric constant is 5 (Adapted from Cooray [6])
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For the reason described earlier, the data in Fig. 12.6 can also be used to obtain the

attenuation of the electric field derivative at different distances and conductivities.

Figure 12.7 shows the long-distance propagation effects on the first return stroke

radiation field, obtained using the model introduced by Nucci et al. [8] (Chap. 10),

as it propagates over distances of 100 and 200 km over ground of 0.001 S/m

conductivity. For reference, the radiation field that would be present over perfectly

conducting ground is also shown in the figure. Observe how the rise time of the

radiation field increases and its amplitude decreases with increasing distance.

Observe also that at these distances the zero crossing time of the radiation field is

not affected much by the propagation effects. Note again that in this figure the

inverse distance reduction in the radiation field with distance is removed to illus-

trate the effects of propagation. In other words, if there were no propagation effects,

all the waveforms would resemble a waveform over perfectly conducting ground.

The data shown so far are based on a theoretical calculation of propagation

effects. In 1997, Cooray et al. [9] conducted an experiment in Denmark to study

propagation effects experimentally. In the experiment, the electric fields from
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Fig. 12.6 Peak amplitude of magnetic field time derivative multiplied by speed of light in free

space as function of distance for several conductivities. The results are shown for perfectly

conducting ground: σ ¼ 0.01 S/m, σ ¼ 0.001 S/m, σ ¼ .0005 S/m, σ ¼ 0.0002 S/m,

σ ¼ 0.0001 S/m. Note that the peak amplitude at a given distance decreases as the conductivity

decreases from infinity (perfect conductivity) to 0.0001 S/m. Since the derivative of the electric

field is related to the derivative of the magnetic field through the equation dE/dt¼ c dB/dt
for distances larger than approximately a few tens of meters, where c is the speed of light, the

results can be used to estimate the attenuation of dE/dt over finitely conducting ground (Adapted

from [7])
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lightning return strokes striking the sea were measured simultaneously at two

stations, one located on the coast and the other situated 250 km inland. The

propagation path of the electromagnetic fields from the strike point to the coastal

station was over salt water, with the exception of the last 10–50 m. Since salt water

is a good conductor, the propagation effects experienced by the radiation fields

measured at the coastal station were negligible. Thus, the radiation field measured

at the coastal station can be assumed to represent the electric radiation field that

would be present over perfectly conducting ground. Figure 12.8 shows the electric

radiation fields measured at the two stations and the radiation field calculated using

Eq. 12.12, assuming the radiation field measured at the coastal station represented

the one over perfectly conducting ground. Since the distance to the lightning flashes

was more than 50 km from the coastal station, the measured portion of the field was

pure radiation. Thus, only the third term in Eq. 12.12 is needed in the analysis. Note

how the peak amplitude decreases and the rise time increases with propagation

effects. The results also demonstrate that Eqs. 12.12 and 12.16, based on the

simplified approximations, can be used with reasonable accuracy to calculate

propagation effects.
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Fig. 12.7 Effect of long-distance propagation of radiation field of lightning return stroke as

simulated by model of Nucci et al. [8]. (1) Perfect conductor. (2) 100-km propagation over ground

of 0.001 S/m conductivity. (3) 200-km propagation over ground of 0.001 S/m conductivity. Note

that the rise time of the radiation field increases and the peak amplitude of the radiation field

decreases as the signal propagates over finitely conducting ground. Note that in the diagram the

inverse distance dependence of the peak amplitude of the radiation field is removed to illustrate the

effects of propagation. In other words, if the ground were perfectly conducting, then all the

waveforms would have identical wave shapes and amplitudes. Note also that the zero crossing

time of the radiation field is not modified significantly by propagation effects (Figure created by

author)
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Fig. 12.8 Electric field measured at two stations, one a coastal station (thick solid line, marked 1),

the other an inland station (distorted line, marked 2). The calculation based on theory as outlined in

this chapter is shown by the thin solid line (marked 3). Note how the predictions based on theory

agree with experimental data, indicating that Eq. 12.12 or 12.16 can be used to calculate

propagation effects (Adapted from Cooray et al. [9])
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