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Development of the Quantified Human
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Abstract A Sense-Assess-Augment (SAA) framework – originally outlined by
Galster and Johnson (Sense-assess-augment: a taxonomy for human effectiveness.
Technical report. United States Air Force Research Laboratory, Wright-Patterson
Air Force Base, 2013) and based loosely on the adaptive system framework of
Feigh et al. (Hum Fact 54(6):1008–1024, 2012) – is presented for approaching aug-
mentation of human performance. While the SAA framework has broad application
across all three elements of human-computer interaction, including the machine,
the human-machine interface, and the human operator, here we focus on its role
for human performance augmentation. SAA begins with the human, sensing their
physical, physiological, and psychological state. Sensing is the most mature piece of
the SAA paradigm, because it leverages the considerable commercial investments
in wearable sensors for athletics, healthcare, and human productivity. As a result,
sensors exist or are in development that can measure a wide range of physiological
parameters, such as brain activity, eye movement, skin temperature, and increasingly
biological performance markers, such as blood glucose levels and molecules like
orexin that indicate the onset of fatigue. Assessment involves aggregation of data
from multiple sensors, algorithmic processing of the data, and correlation of the
results to behaviors and actions of interest. The challenge is to empirically make
sense of the data in relation to baselines that vary between and within individuals,
and the needs of a task at hand that is shared by both human and machine and
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that may occur both in real time and across the human lifetime. Finally, based
on the assessment, appropriate augmentation is delivered, which can take many
forms, including redistribution of tasks from man to machine, changes in the
operating environment, influences from external hardware, or even the growing use
of “electroceuticals” – the use of electric stimulation to augment performance. The
SAA framework provides a way of approaching human performance augmentation
that is consistent with and leverages the emerging understanding of how humans
can interact effectively with autonomous systems in an entirely new socio-technical
dynamic.

7.1 Introduction

In 1961, President Kennedy issued a call to Congress and the Nation to put a
man on the moon by the end of the decade. So started a decade of incredible
advancements commensurate with the “space race”—catapulting computer science
and engineering into a central developmental role. The previous decade, John
McCarthy had coined the term “artificial intelligence” paving the way for the
promise of robots, intelligent machines and other kinds of autonomous systems that
would drastically reduce workload and the eliminate drudgery. Optimism abounded
as nascent scientific and engineering fields were driven to the design of systems
capable of transforming society as we knew it.

The pace of fulfillment on that promise has been astounding, though it has not
unfolded as expected. In a mere five decades, computers and robots have become
a fixture in everyday life. From robotic vacuum cleaners to wearable computers to
the wholesale revamping of how we do our work, the push for smaller, faster, and
more intelligent machines has been a success beyond expectation. What’s missing
is the concurrent reduction in human workload. The effect has been dubbed the
“autonomy paradox”, where the very systems designed to reduce the need for
human operators require more manpower to support them. For example, unmanned
aircraft carry cameras aloft without a crew, yet require multiple shifts of operators,
maintainers and intelligence analysts on the ground to extract useful data. Current
estimates for one particular system, the MQ-1/9, show that with nearly 20,000 h
of full-motion video being collected each month, analysis personnel outnumber
aircrew by 8 to 1 [1].

In recent decades, advancements in the human and biological sciences have been
as rapid and transformative as the information and computer sciences. The Human
Genome Project has provided a wealth of information that is already changing the
way we think about medical care delivery and human performance. And the new
White House BRAIN Initiative [2] brings with it the potential for breakthroughs
in neuroscience, biology and computational science—much as President Kennedy’s
space challenge did for computer science and engineering.

One could view the ongoing interaction and intersection of these transformative
areas as the basis for increased speculation around the art-of-the-possible with
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respect to human performance augmentation (HPA). Below, we present a framework
for HPA that borrows heavily from ongoing revolutions spanning mobile health
(mHealth) to quantified self (QS) movements.

In this chapter, we discuss a Sense-Assess-Augment (SAA) framework for
reviving the role of the human in the development of autonomous, interdependent
systems. This will require research and development at each of the touch points:
the machine, the human-machine interface, and the human operator. Artificial
intelligence and autonomy is where much of the work on the machine is ongoing
and much progress is being made. There is tremendous need and opportunity to
improve the human side of the equation, and although we will discuss all three
pieces of human-computer interaction (HCI), we shall devote most of our focus to
human augmentation.

In order to understand the role of the human in future autonomous systems, it
is important to draw a distinction between automation and autonomy. Automated
processes are now common, particularly in areas like manufacturing, and involve
execution and control of a narrowly defined set of tasks without human intervention.
Automation is used when the parameters are well-defined and the environment is
highly structured. In contrast, autonomous systems can perform tasks in an unstruc-
tured environment. Such a system is marked by two attributes: self-sufficiency—the
ability to take care of itself—and self-directedness—the ability to act without
outside control. Most technological developments today, including “unmanned”
air systems, would still be more classified as automation rather than autonomy.
For systems to become more autonomous, that is, more self-governing, they will
require some type of basal reasoning capability. Reasoning is critical in order to
deal with the main sources of brittleness in our systems today: dynamic, complex
requirements and environments.

Reasoning, however, does not mean the machine acts alone. The question is not
“what can machines do without us?” but “what can machines do with us?” Consider
that it was not until the 1990s that the “I” in HCI switched from “interface” to
“interaction [3].” It is only recently that adaptive computing based on the executive,
affective, and conative state of the user has risen in prominence.

Unfortunately, as Aryeh Finegold noted in 1984, “One of the big problems is the
tendency for the machine to dominate the human [4].” Sadly, despite our progress
in fields such as artificial intelligence and autonomy over the last several decades,
this is still true. This is due in large part to what we call the “leftover” principle
of interface design, where the goal is to automate as much work as possible as
the human adapts to whatever is leftover. This produces a rigid interaction lacking
both in transparency and a bi-directional understanding of intent. The point is
that the design parameters for an interdependent (not dependent) human-machine
system look very different than a machine designed to maximize autonomy. Johnson
et al. proposed [5] that interdependent systems should possess mutual awareness
(context), consideration (adjustability) and the capability to support (reciprocation).
This means we must design systems such that a machine not only provides support
for others’ dependence on it but can also deal with its own dependence on others.
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7.2 Historical Context and Overview
of the Sense-Assess-Augment Model

In 1948, Claude Shannon published his seminal work on information theory [6],
describing an ideal communications system where all information sources have a
source rate, and the channel through which the source’s data travels has a capacity,
both of which can be measured. Information can be transmitted only if the source
rate does not exceed the channel’s maximum capacity, now known as the Shannon
limit. This had important implications with the advent of radar, one of the first
exquisite pairings of man and machine, where in order to get the system to work at
optimal levels, the operator had to be trained in how to discriminate the appropriate
signal from an incredibly noisy background. By 1954, signal detection theory was
being formally applied to the study of perception and recognition [7].

Shannon’s work heralded the start of what psychologists now refer to as the
cognitive revolution, spurring the idea that information processing could be used
to describe the human as a system consisting of interacting subsystems, each of
which operated with various capabilities and capacities. This was a time when
the study of human performance was becoming increasingly interdisciplinary [8],
with significant influences from the fields of psychology, linguistics, and computer
science. As Proctor and Vu [9] put it: “Given the close relation of the information-
processing approach to computers and artificial intelligence, and given the view that
both humans and machines can be conceived of as being types of symbol manipula-
tors, it seems only natural that the information-processing approach has provided a
primary basis for understanding and analyzing human-computer interaction (HCI).”
This not only allows for a common lexicon between those studying both humans
and machines, but breaks the human-computer interaction into machine and human
subsystems which can be analyzed either separately or together.

World War II also heralded a time of immense improvement in aircraft design,
accompanied by a feverish rollout of new aircraft models. In that race to production,
human factors issues were often overlooked. As an example, there were several
known aviation mishaps, where pilots confused landing gear knobs with flaps. This
is what spurred the innovative work of Lieutenant Colonel Paul Fitts. In 1954, he
published what became known as Fitts’ Law [10], a quantitative model relating the
speed-accuracy trade-off associated with pointing, whereby targets that are smaller
and/or further away require more time to acquire.

T D a C b log2.1 C D=W/ (7.1)

With T equal to the average time required to complete the movement and D
(distance) over W (width of target) as a proxy for accuracy; a and b are device
dependent constants.

Fitts’ law showed a linear relationship between task difficulty and movement
time that has proved to be remarkably robust. Although there have been minor
modifications since then, the mathematical relationship applies under a variety of
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conditions, with different limbs, and holds true even without overt motor movements
[11]. More fundamentally, it advanced Shannon’s work by providing the first
empirical determination of the information capacity of the human motor system
[12]. Providing a mathematically valid description of human performance was not
only revolutionary for its time, it continues to be relevant and advantageous today.

Despite the cognitive revolution, much of the human sciences have remained
rooted in empirical versus theory-driven studies. Indeed, as critical as the devel-
opment and application of information theory has been, it has largely remained
more descriptive than explanatory [13]. MacKenzie [14] stated that “despite being
robust and highly replicable, Fitts’ law remains an analogy waiting for a theory.” In
many ways, the real fruits of the cognitive revolution have yet to be picked. What
distinguishes an engineering discipline is an objective feedback control mechanism.
What’s needed now is to “close the loop,” where the physical and mental states of
the operator are fed back into the machine, making the human a more seamless part
of the overall system.

James Watson, in his explanation of the goals of behaviorism, says, “Its theoret-
ical goal is the prediction and control of behavior [15].” Without that, as Donald
Kennedy so aptly put it, neuro-imaging is akin to post-modern phrenology [16]. As
Proctor and Vu stated in their review of Human Factors research progress, “One
implication of an emphasis on paradigm shifts is that past research is of little rele-
vance because it is from ‘old’ paradigms. This view is reinforced within human fac-
tors because the field deals with new, increasingly sophisticated technologies” [17].

What we propose in this chapter is a framework that reconciles the behaviorists’
demand for objective data with the cognitive desire to understand mental processes
directly. If one hopes to design human performance with the same precision as a
circuit (or in concert with a circuit), a more quantitative, data-driven approach to
human augmentation is needed.

With this in mind, we present the sense-assess-augment (SAA) framework [18],
which is based loosely on the adaptive system framework originally proposed by
Feigh et al. [19]. It begins with the human, sensing their physical, physiological,
and psychological state. Sensing is the most mature piece of the paradigm, thanks
to considerable commercial investment in athletics, healthcare, and productivity.
Sensors exist or are in development that can measure a huge range of parameters,
such as brain activity, eye movement, skin temperature, and biological performance
markers, such as blood glucose levels or molecules like orexin that indicate the onset
of fatigue. Assessment involves the interpretation of data from multiple, individual
sensors and merging it into actionable information. The challenge is to empirically
make sense of the data in relation to individual baselines and the needs of the task at
hand. Ideally, this is a task shared by both human and machine and happens both in
real time and across a lifetime. Finally, based on the assessment, the appropriate
augmentation is delivered. Augmentation can take many forms, including the
redistribution of tasks from man to machine, just in time or chronic uptake of drugs,
external hardware, environmental changes, or even genetic engineering. We will
discuss each of these pieces in more detail below.
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Fig. 7.1 Sense-assess-augment framework (From Galster and Johnson [18])

Each piece of the framework is critical to the design and deployment of human
augmentation. Sensing without assessment is frustrating. It is, in fact, one of the
most common complaints of consumers trying to make sense of the athletic, health,
and productivity data they are collecting. Awash in a flood of data, many ask: what
does the data mean and how do I alter my performance accordingly?

Augmentation without the sensing and assessment components is not only
potentially dangerous, but breeds distrust among the public and policy-makers.
For example, the Air Force pilots responsible for the friendly-fire deaths of
Canadian troops in Afghanistan in 2003 implicated “go pills” as the cause of the
accident. Although the official investigation found no contribution of the drug to the
outcome, the public and media [20] were not persuaded. Physiological monitoring
and assessment might have provided objective proof whether the cause was poor
judgment by the pilot, a side effect of a widely used drug, or a combination of the
two that stemmed from individual susceptibility.

Absent the framework described above, the sensing and augmentation commu-
nities have largely worked independently, and the assessment piece has lacked a
research leader to make significant progress to bridge them. As we will discuss
in detail, if there is one lesson learned from the decades of attempting to deliver
the many promises of human performance augmentation, it is the necessity and
interdependence of the three steps (Fig. 7.1).

7.2.1 Sense

In their article “Beyond Asimov: The Three Laws of Responsible Robotics [21],”
Woods and Murphy proposed alternatives to Asimov’s classic laws of robotics,
stating “The capability to respond appropriately—responsiveness—may be more
important to human-robot interaction than the capability of autonomy.” An unfor-
tunate case in point is the 2010 drone attack that killed 23 Afghan civilians. The
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primary cause of the accident cited by Air Force and Army officials was information
overload [22]. In addition to keeping track of video from the drone, operators were
also engaged in “dozens of instant-message and radio exchanges with intelligence
analysts and troops on the ground.” They failed to mentally account for the children
that were part of the civilian assembly.

This is but one illustration that stems from a lack of shared perception between
human and machine. There is not only a need, but now the opportunity, to push
beyond simple measurements of human experimental feedback, such as filling out
surveys or asking people, “Was your workload diminished or not?” Despite unprece-
dented technological advances, our ability to assess an individual’s or team’s
physical, psychological, and physiological readiness is startlingly unsophisticated.
We are blind, for example, to any number of problems that plague human operators:

• When boredom or data overload lead to prolonged lapses of attention
• When emotional resilience hits its breaking point
• When exhaustion or hunger degrade cognitive abilities

The emerging field of neuroergonomics aims to remedy this by decoding the
functioning of a healthy brain at work [23]. The work is highly interdisciplinary,
drawing from human factors, ergonomics, neuroscience, and machine learning to
develop adaptive interfaces that sense and respond to changes in an individual’s
executive function, an umbrella term that refers to cognitive processes such as
planning, working memory, task switching, initiative, and others. These studies are
important because, as founder Parasuraman [24] explains, more traditional cognitive
science and neuroscience work “often fails to capture the complexity and dynamics
of behavior as it occurs naturally in everyday settings. In other cases, the tasks used
in laboratory studies may have little or no relation to those confronting people in
everyday life.”

Another important milestone in personal sensing came in 2007, when two editors
at Wired Magazine noticed that trends in life logging, personal genomics, location
tracking, and biometrics were starting to converge. Gary Wolf, one of the founders
of what became known as Quantified Self, stated “These new tools were being
developed for many different reasons, but all of them had something in common:
they added a computational dimension to ordinary existence.” Today nearly anyone
can record a half dozen physiological data streams in his quest to become fitter
or healthier, including a log of alpha rhythms to diagnose sleep quality. For an
elite athlete or corporate executive, the sky is the limit in terms of quantified
physiological parameters. This made the development of unobtrusive, wearable,
and robust sensors a commercial industry, enabling performance tracking at the
individual level at a cost that would have been unfathomable just a decade ago.

The combination of neuroergonomics and individual tracking allows us to finally
escape the tyranny of the “average user” which has dominated HCI philosophies.
As discussed earlier, many protocols originate from Fitts and others, who examined
the most complicated pairing of man and machine at that time—the airplane cockpit.
The idea of an average user worked for pilots who simply had to distinguish between
one knob or another on a panel and the time-accuracy trade-offs did not vary
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significantly across the population of users, given the right training. It was also
fine for distinguishing the utility of a keyboard versus a mouse. The same cannot
be said for today’s information saturated, multi-tasking knowledge worker. There’s
huge variability in executive function between individuals, as well as differences
that alter performance hour to hour, and from day to day. Thus, the complexity
and the number of parameters that must now be optimized together fundamentally
changes how we need to approach HCI.

Topol describes how individual tracking is already leading to massive changes
in the approach to healthcare in his book The Creative Destruction of Medicine
[25]. An example of particular relevance to HCI and the SAA model is blood
glucose monitoring. Until a few years ago, the only way for diabetics to monitor
their glucose levels in their day to day life was with finger sticks, using a device
to lance one of the fingers to produce a drop of blood which must then be smeared
onto a test-stick and read by a small device. This procedure is usually performed
four times a day, is inconvenient, somewhat painful, but more importantly, still runs
the risk of missing large spikes or drops due to food intake, exercise, or incorrect
insulin dosages. Today, continuous glucose monitoring is possible with a sensor that
samples glucose levels from the interstitial fluid just beneath the skin using a small,
indwelling 27 gauge needle. The device still has its downsides, such as cost and
the need to calibrate readings with finger sticks every 12 h. However, the sensor
is robust enough that wearers can exercise and shower as normal. Topol describes
additional sensors in development, noting “contact lenses can be embedded with
particles that change color as the blood sugar rises or falls or the glucose level can
be assessed through tears. Another imaginative solution has been dubbed a “digital
tattoo” in which nanoparticles are injected to the blood that bind glucose, and emit
a fluorescent signal that is quantified by a reader on a smart phone.”

The challenge for HCI is to become equally imaginative in what to sense and
how to sense it. The artificial intelligence and HCI communities have continued
to focus on how the human can better access and utilize computer technology,
without mention of how sensing of the human condition and capabilities might
also augment the machine. For example, Sandberg writes, “What is new is the
growing interest in creating intimate links between the external systems and the
human user through better interaction. The software becomes less an external
tool and more of a mediating ‘exoself.’ This can be achieved through mediation,
embedding the human within an augmenting ‘shell’ such as wearable computers or
virtual reality, or through smart environments in which objects are given extended
capabilities [26].”

We now have the sensors and digital infrastructure to “remotely and continuously
monitor each heart beat, moment-to-moment blood pressure readings, the rate and
depth of breathing, body temperature, oxygen concentration in the blood, glucose,
brain waves, activity, mood—all the things that make us tick [27].” And in response,
we can imagine a machine that uses this information to asses the cognitive and affec-
tive state of its user and dynamically alter its level of automation and complexity in
response. This is not a new idea—the field of human/brain-computer interface has
sought such an adaptive interface since man became so dependent on his machine
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counterpart. But most of instruments used to examine mental workload today, such
as electroencephalography (EEG), electrocorticography (ECoG), functional near-
infrared spectroscopy (fNIRS), and functional magnetic resonance imagery (fMRI),
were designed for laboratory use where issues of wearability, comfort, portability,
and robustness are not an issue. In their review, Pickup et al. note [28], “The notion
[of mental workload] has found widespread acceptance as of value in assessing the
impact of new tasks, in comparing the effects of different or job interface designs
and in understanding the consequences of different levels of automation.” This
highlights that much of the prior HCI work focused on initial design considerations
rather than true adaptability.

Beyond simple user experience however, these instruments miss the more
common and frequent sources of performance decrement, such as lack of sleep, low
blood glucose, emotional distress, sickness, etc. Nor does it account for the growing
source of information through mobile and social media. A recent survey [29] found
that 75 % of workers access social media on the job from their personal mobile
devices at least once a day (and 60 % access it multiple times a day). Without the
ability to pinpoint the source of increased mental workload in real time, the proper
augmentation strategy may not be implemented.

Biomarkers are essential to this endeavor. In addition to the readouts from EEG
for example, peripheral measures largely associated with the autonomic nervous
system have proven to be salient as well [30]. Biomarkers can mean different things:
blood oxygen levels, eye movements, perspiration levels, posture, or any number of
molecular metabolites.

Molecular monitoring has been aided significantly by the development of flexi-
ble, dissolvable electronics. Advances in electronics and microfluidics have led to
the development of miniaturized “lab-on-a-chip” devices and unobtrusive wearable
psychophysiologic sensors that can support the rapidly emerging need to instrument
the user and monitor physical and mental states. This monitoring, when fed back
into the machine system, can provide a “check engine light” for the operator as well
as drive adaptive autonomy based on the real-time needs of the operator to improve
overall sociotechnical team mission performance. Recent scientific studies have
elucidated several molecular targets of opportunity. For example, the neuropeptide
orexin A (hypocretin) has been implicated in arousal/alertness. Deficiency of orexin
A results in narcolepsy, while other studies [31] suggest orexin is the central switch
between sleep/wake states. Previously, monitoring this peptide in patients required
a sample of cerebrospinal fluid—an impractical obstacle to widespread adoption.
However, recent advances in biofunctionalized sensors have increased sensitivity
for orexin detection over 3 orders of magnitude (pM levels) allowing for peptide
detection in saliva—a more preferable biomatrix for sampling.

Another molecular target of opportunity is neuropeptide Y (NPY). This 36 amino
acid peptide has been implicated in learning and memory and is produced by the
hypothalamus. In one study [32], animals whose behavior was extremely disrupted
by induced stress displayed significant down regulation of NPY in the brain,
compared with animals whose behavior was minimally or partially disrupted and
with unexposed controls. One-hour post-exposure treatment with NPY significantly
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reduced prevalence rates of extreme disruption and reduced trauma-cue freezing
responses, compared with controls. Although most studies on NPY have been
performed with rodents, there is accumulating data [33] from the genetic to the
physiological to implicate NPY as a potential ‘resilience-to-stress’ factor in humans
as well.

Diabetics are not the only ones who need to be concerned with blood glucose
levels. Previous studies have not only shown decreased cognitive performance with
low blood glucose, but that increasing blood glucose can partially compensate for
decreases in procedural memory due to sleep deprivation [34], a condition that is
increasingly common among workers across industries.

As mentioned, one of the biggest challenges is developing sensors that do
not themselves impinge on human performance. Current “wet electrode” EEG
monitoring, for example, is cumbersome enough to preclude its use except in the
most extreme necessities where lapses in performance could mean loss of life (e.g.
Flight traffic controllers). Arguably, the future of human performance monitoring
may benefit most from advances in materials science, such as recent work [35]
utilizing flexible, dissolvable, and unobtrusive electronics. Transient electronics,
made of biocompatible metals and encased in silk, are meant to be implanted into
the body, do their work for days, weeks, or even months, and then safely dissolve
and resorb in the body.

In addition to measuring the human directly, we must also sense the environment
to discover the right correlates to understand degraded executive function in context.
Lighting, noise levels, and temperature can all impact cognitive function, and
perhaps just as importantly, offer some the easiest of potential solutions.

7.2.2 Assess

Man’s ability to understand is often outstripped by his ability to measure. Assess-
ment of the context of the psychophysiologic and performance data represents a
key underdeveloped area in many systems in need of future research. Knowledge of
context and changes in context allow human team members to disambiguate under-
constrained data that can have different meanings in different settings. Machine
reasoning to understand sensor data related to environmental, system, task planning,
and user physical and cognitive state will allow the system to share some level
of perception with the human operator in the proper context. Fundamentally,
assessment addresses three questions: who should augment, under what conditions,
and how can we quantify the effects?

To better understand the challenge of assessment, consider the landmark work
of Yerkes and Dodson [36], who in 1908 proposed a relationship between adverse
reinforcement and discrimination learning in rats. What became known as the
Yerkes-Dodson Law, popularized decades later in a review by Hebb [37], resembles
an inverted, U-shaped curve, as shown below. The Hebbian version proposes that
at low arousal, people are lethargic and perform badly. As arousal increases,
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Fig. 7.2 Hebbian version of the Yerkes-Dodson law

performance also increases, but only to a point, after which increasing arousal
actually decreases performance. Arousal in this context has often been equated with
stress (Fig. 7.2).

Thus one might assume that, given the variety and robustness of sensors today,
it should be straightforward to assess from physiological data when a user is
experiencing less than optimal arousal in an operational setting and thus enhance
the human or adjust the computer interface accordingly to maximize performance.
However, there have been many criticisms of the Yerkes-Dodson Law, much of
it relating to the misinterpretation [38] of the original work. For example, many
modern references use terms such as arousal, stress, and performance, terms that
were never used in the original paper and remain vague and un-quantified today.
Nor was the original work, which was performed using rats, intended to extend to
the relationship between stress and performance in humans. Even those experiments
performed with rats produced notable exceptions to the expected curvilinear
response. For example, as Easterbrook [39] describes in his paper on cue-utilization
theory, “On some tasks, reduction in the range of cue utilization under high stress
conditions improves performance. In these tasks, irrelevant cues are excluded and
strong emotionality is motivating. In other tasks, proficiency demands the use of a
wider range of cues, and strong emotionality is disorganizing. There seems to be an
optimal range of cue utilization for each task.” Thus, Easterbrook goes on to explain,
tasks can be considered complex if it involves attention to multiple cues and simple
if it involves focused attention to a single cue. This may constitute Easterbrook’s
definition of difficulty, but it is by no means widely accepted.

The problem extends throughout the human performance community, as well
as medicine. In a now famous article, Ioannidis [40] suggested that much of what
medical researchers conclude in their studies is misleading, exaggerated, or flat-out
wrong. His conclusions are in keeping with the issues of the Yerkes-Dodson Law
as well: (1) the smaller the studies, the less likely the research findings are to be
true; (2) the smaller the effect, the less likely the research findings are to be true;
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(3) the greater the financial and other interests, the less likely the research findings
are to be true; (4) the hotter a scientific field (with more scientific teams involved),
the less likely the research findings are to be true.

The appeal of the Yerkes-Dodson Law lies in its appeal to our intuition. We have
all encountered cases where arousal, in the form of a cup of coffee or an impending
deadline, allowed us to focus and perform better than we might have otherwise.
Likewise, we have all experienced stress, in form of a cold or an overflowing
email inbox, that appeared to degrade performance. What’s missing from many
of the studies today is the ability to determine the context of stress or arousal,
and the patterns that link that context to individual performance. This is critical
for determining whether augmentation is needed and the predicted improvement
in performance based on the augmentation selected. Such an approach requires, at
least initially, the fusion of much more sensory data from both the individual and the
environment, than most research currently includes. As Tapscott and Williams warn
[41], “When the devices we use to capture and process data are sparsely distributed
and intermittently connected, we get an incomplete, and often outdated, snapshot of
the real world.”

The most common approach to pattern recognition is based on models, such
as Markov models or neural networks, which provide some general knowledge of
the system they are observing. However, both these approaches require large sets
of training data in order to produce accurate results. For example, a study might
monitor EEG channels combined with heart rate data as a participant is put through
scenarios that are believed to represent low and high mental workload tasks. The
training data establishes classification criteria for the two states. As the individual
is then tested with real tasks, one sees attribution of low and high mental workload,
typically with accuracy in the 80–85 % range. An issue manifests when baselining
takes so long that the test subject enters a high stress, disengaged mental state before
the experimental portion even begins. Thus, data which are supposed to indicate
stress are already one or two standard deviations above baseline and thus little
variation is seen in assessed response.

All of this data, however, is taken in a laboratory setting with very controlled
parameters and tasks. If the characteristics of the data being analyzed deviate
significantly from the training model, then previously learned data sets must be
relearned along with the new data set. This means that without retraining, a model
that relies on select EEG channels to produce impressive accuracy rates for a
vigilance task, for example, often does not work well when applied to a different
task in a different setting. This becomes even more problematic when you consider
that the average worker engages in several tasks as part of his work, each of which
may rely on a distinct assessment or augmentation. One task may require intense
vigilance while another may require a mix of creativity, abstract thinking, and the
ability to forecast. Today, a study that focuses on assessment of vigilance will be of
little consequence to an assessment of creativity.

The answer then is not to collect less data, at least initially. The goal is to collect
as much data as possible to discover the relevant performance patterns for each
individual. This will likely require a data-driven algorithm that requires no a priori
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knowledge of the underlying system and can operate without a closed data set.
The algorithm would be capable of learning and would include some or all of the
following features:

1. Would not need to be tuned based on expected features in a data stream.
2. Able to learn and recognize patterns in an unlabeled data stream.
3. Works online—the process of learning and recognition would occur simultane-

ously without an offline training phase.
4. Quickly converges to recognize data patterns after only a few occurrences.
5. Finds patterns in nonlinear, nondeterministic, and non-Markovian systems.
6. Interpretable structure and produces an interpretable model.
7. Hierarchical pattern detection for the determination of context.

Such a system is particularly important when trying to merge sensor data across
multiple time scales. Many parameters can be measured on an hourly or daily
basis, but the trends that indicate the source of aberrations may not be apparent
for months. For example, Sky Christopherson, a former Olympic cyclist turned
technology CEO, started having health problems despite a lifetime of fitness and
healthy eating. Because of his familiarly with personal tracking as an elite athlete,
he started collecting a range of biomarkers and environmental data to discover where
he could make significant, positive contributions to his health, including sleep,
diet, stress, exercise, and traditional physiological measures such blood pressure.
One of the most significant causes of stress was related to sleep quality, and only
after collecting data for nearly 9 months did he notice trends that varied with the
season. His assessment was that the real issue was room temperature that varied with
outdoor temperature, so he installed a water-filled cushion on his bed that actively
regulated body temperature year round. Although he implemented other changes,
the effects were profound. He not only reversed his health issues, but in the process
set a world cycling record at the age of 35—a feat previously thought biologically
impossible due to declining testosterone levels [42].

It would also be desirable to add a predictive function to the learning algorithm.
The simplest method for predicting the next state is based on the probabil-
ity calculated by the number of times each state has been outputted from the
system. Lacking a model for the underlying system itself, this approach might
in fact be the only reasonable method of prediction. Future activities include
enabling hierarchical and orthogonal learners to detect patterns of patterns, detecting
spatial patterns within the model, determining similarity measurements between
patterns, and incorporating visualizations of the model to assist human decision-
makers in the post-processing step to identify meaningful and more nuanced
patterns.

Performance assessments would ideally be quantified relative to an individual
baseline collected over time. As we saw with the confusion around the Yerkes-
Dodson Law, to say simply classify someone as tired or stressed provides little
correlation to performance. But if it were possible to know, for example, when
a someone’s critical thinking ability decreased by 25 %, a better decision as to
how and when to address the symptom of fatigue could be made. Nor should these
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assessments occur only at the tactical level. Supervisors and leaders are just as likely,
if not more so, to be suffering from lack of sleep and exercise, poor nutrition, and
information overload that can impair decision-making.

Initially, such a system might sound too complex to be manageable, much less
design. However, Kurzweil’s view of complexity in his book, How to Create a Mind,
is undoubtedly relevant. He points out:

We might ask, is a forest complex? The answer depends on the perspective you choose to
take. You could note that there are many thousands of trees in the forest and that each one
is different. You could then go on to note that each tree has thousands of branches and that
each branch is completely different. Then you could proceed to describe the convoluted
vagaries of a single branch. Your conclusion might be that the forest has a complexity
beyond our wildest imagination. But such an approach would literally be a failure to see
the forest for the trees. Certainly there is a great deal of fractal variation among trees and
branches, but to correctly understand the principles of a forest you would do better to start
by identifying the distinct patterns of redundancy with stochastic (that is, random) variation
that are found there. It would be fair to say that the concept of a forest is simpler than the
concept of a tree. [43]

Of course, there are challenges to such an approach as well. As the volume of
raw data from various sensors increases, the problem of finding underlying sources
within the information becomes more difficult and time consuming. Increasing the
spatial resolution increases the number of data channels. Increasing the temporal
resolution increases the sampling rate. Such a system would likely require long peri-
ods of data collection and analysis, along with input directly from the user, before it
was capable of reliably recommending appropriate augmentation strategies.

This suggests that assessment not only needs to happen outside the laboratory,
but likely outside the workplace as well. Just as “digital natives” expect to be
tethered to their computing devices, those who grow up, literally, with assessment
tools will find it just as normal to incorporate sensors both on and off the job to
enhance performance. The growing Quantified Self movement indicates this change
is already underway. This means that although assessments based primarily on self-
learning algorithms will take longer to refine, the end result should be operationally
robust for users who begin using them long before entering the workforce. A
combination of model-based and self-learning algorithms may make sense in the
interim.

So far, we’ve looked at assessment of a user’s physical and cognitive states as
they perform tasks, but assessment must also predict the best augmentation strategy
and timing, as well as an evaluation of its performance enhancement. Determining
returns on investment for augmentation might initially come from population studies
of augmentation methods, which are then refined over time as a user implements
them. But as Topol describes, there are radical variations in terms of effectiveness,
even with vigorously tested substances such as commercial drugs. Part of the prob-
lem is a tendency to treat the signal, not the underlying cause (if it’s even known).
As an example, he discusses the cost-benefit analysis of prescribing statin drugs like
Lipitor which lower blood cholesterol and which therefore presumably prevent heart
disease [44], “So almost all patients will have a great blood test result with Lipitor.
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But only 1 out of 100 without prior heart disease but at risk for developing such
a condition will actually benefit. It therefore seems that the predominant benefit is
cosmetic, normalizing an out-of-range blood test, at the risk of engendering side
effects.” It’s not that Lipitor, the most widely prescribed drug in the world, isn’t
effective at lowering blood cholesterol. It’s that lowering blood cholesterol doesn’t
lower the risk of heart disease in most of the population, despite the fact that
the correlation exists precisely because of large population studies. Since nearly
all measures that we can conceive of today are surrogate measures, the role of
assessment is not only to recommend augmentation, but to determine its efficacy.

Perhaps one of the biggest returns on investment for assessment comes from
harnessing the power of feedback loops. Some of the most intractable health
problems—obesity, diabetes, smoking—have shown progress with biofeedback,
with improvement outcomes typically in the range of 10 % [45]. In real terms, that
means an obese 40-year-old man would spare himself 3 years of hypertension and
nearly 2 years of diabetes by losing 10 % of his weight. Reducing traffic speeds by
10 % from 40 to 35 mph would cut fatal injuries by about half.

What has prevented biofeedback from becoming a mainstay of HCI or other
systems is the ability to effortlessly collect and track personalized data. Thus,
the assessment tools we have been discussing can now deliver information not
in the raw-data form in which it was captured, but in a context that makes it
emotionally resonant because it quantifies the consequence of not changing. This
is why assessment cannot be the domain of the machine alone, and the currency
must be information, not data. The goal is to have shared perception and to make
joint decisions about augmentation strategies and timing.

7.2.3 Augment

The rising role of technology in our lives has led to a deep dependency, but not
always a harmonious one. From “crackberry” addictions to “digital sabbaticals”,
there is a kind of begrudging “you can’t live with it and you can’t live without it”
attitude that pervades the relationship between man and machine. The Air Force’s
Technology Horizons report warns, “Although humans today remain more capable
than machines for many tasks, natural human capacities are becoming increasingly
mismatched to the enormous data volumes, processing capabilities, and decision
speeds that technologies offer or demand; closer human-machine coupling and
augmentation of human performance will become possible and essential [46].”

One of the greatest difficulties in developing more adaptive human-computer
interactions is that they must accommodate a broad set of tasks, environments, and
users. Unlike the pilots in Fitts’ experiments, computer users today vary consider-
ably in their cognitive and physical capabilities. This is why future adaptations and
augmentations must happen at the individual level, though this is not without its own
set of challenges. We define augmentation in a functional sense as enhancing human
performance above baseline levels and/or boosting performance to baseline levels
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after a decrement. Although augmentation strategies may include modifications to
the operator, the human-machine interface, or the machine itself, it is important to
understand that the desired end result is always focused on improved task outcomes
or human performance.

The options for augmentation, once an assessment has determined it is necessary,
are extensive. Augmentation may come from increased use of autonomous systems,
interfaces for more intuitive and close coupling of humans and automated systems,
and direct augmentation of humans via drugs or implants to improve memory,
alertness, cognition, or visual/aural acuity. Important considerations when choosing
among those options are: (1) machine versus human enhancement, (2) task specific
versus lifetime enhancement of the user, and (3) potential trade-off considerations.

(1) Machine versus human augmentation: Most augmentation strategies being
considered or deployed today focus on the man-machine interface. For example, in
high workload or stressful situations, tasks may move from manual to autonomous
control, less critical information may be removed from the display to help the user
focus, or the employment of multi-sensory signals to avoid visual overload.

Virtual partners or assistants are another option to machine augmentation. An
early example was Microsoft’s Clippy, the paperclip that offered advice and access
to help topics if you appeared confused. The problem was that Clippy had very
limited assessment or interaction with the user and frequently became an annoyance.
Advances in the ability to understand natural language and assessment technologies
make modern versions more appealing. For example, IBM’s supercomputer named
Watson, famous for beating the best human contestants at the game Jeopardy!, is
now being used as an important diagnostician and consultant to physicians. Watson
can help manage the flood of data coming into a patient’s electronic record while
simultaneously scanning for recent and relevant publications in the literature that
might alert a doctor to new therapies or trends. According to Sloan-Kettering, one
of the first hospitals to use Watson, it would take at least 160 h of reading a week
just to keep up with new medical knowledge as it’s published, let alone consider its
relevance or apply it practically. In tests, Watson’s successful diagnosis rate for lung
cancer is 90 %, compared to 50 % for human doctors [47]. It is not just the access to
medical literature that’s important, but also the computer’s lack of cognitive bias in
assessing it. It’s estimated that one-third of hospital errors are due to misdiagnosis,
one of which is anchoring bias, the human tendency to over-rely on the first pieces
of information offered when making decisions [48].

On the human side, pharmaceuticals can be used to repair decrements in cog-
nitive function, such as from sleep deprivation or prolonged vigilance, or increase
natural capacities. For example, Modafinil and similar alertness or vigilance support
pharmaceuticals have been studied extensively by the Army to support aviation
operations. Although Modafinil has demonstrated utility in several DoD operational
contexts, research now implies that may also offer benefit to sleep-deprived
senior decision-makers, with research showing improved planning among their test
subjects [49]. More recently, a study of sleep-deprived physicians found the drug
improved their cognitive flexibility while reducing impulsive behavior [50].
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Interestingly, Modafinil has also been shown to enhance working memory,
especially at harder task difficulties for lower-performing subjects [51]. The mode
of action is not yet understood, but part of what seems to happen is that Modafinil
enhances adaptive response inhibition, making the subjects evaluate a problem more
thoroughly before responding, thereby improving performance accuracy [52].

There are many challenges to the use of pharmaceuticals for performance
enhancement. Many, of course, have undesirable side effects. More importantly,
the current system for the development and approval of pharmaceuticals is geared
towards treatment of disease, not augmentation of otherwise healthy individuals.
This means that nearly all drugs for enhancement purposes are being prescribed by
doctors for “off label” usage. Since drug companies can’t market non-therapeutic
benefits, tests are rarely run to prove effectiveness and safety of the product in
individuals. In order for pharmaceuticals to play a more large-scale role in HCI
strategies, current Federal Drug Administration regulatory schemes would need
to be reformed. Fortunately, there are many augmentation alternatives outside of
pharmaceuticals.

(2) Task specific versus lifetime augmentation: Task specific augmentation often
focuses on adaptive interfaces that modulate the speed, amount, and visualization of
information. On the human side, techniques such as noninvasive brain stimulation
have shown to be effective at improving performance across a wide variety of tasks,
presumably by either raising neuronal membrane and force action potential in the
case of transcranial magnetic stimulation or altering neuron excitability in a region
in the case of transcranial direct current stimulation [53].

Long term augmentation strategies are increasingly being investigated, primarily
changes in diet and nutrition. The quantity and quality of dietary choices and
distribution of nutrients throughout the day greatly impact muscle performance,
body composition, cognitive performance, and feelings of energy or exhaustion. In
addition, there is a rapidly expanding body of research showing an ever-increasing
linkage between commensal (native gut) bacterial and overall human phenotype,
from increased obesity to cognitive metabolites and immune responses [54].

Not surprisingly, effective metabolism is key to both physical and cognitive
performance. A wide range of non-pharmaceutical substances are currently under
investigation for their ability to enhance cognitive performance through regular
ingestion over the long term. Among these are several where the mechanism of
action is largely metabolic, such as leucine, creatine, and coenzyme Q10. Recently
researchers at MIT and elsewhere have shown substantial cognitive benefits by the
use of a newly developed magnesium compound, magnesium-L-threonate (MgT). In
animal studies it has been demonstrated that increasing brain magnesium enhances
synaptic plasticity in the hippocampus and leads to elevated learning abilities,
working memory, and short- and long-term memory [55].

Another promising metabolic target is ketone bodies. Under normal conditions,
the brain is totally dependent upon the metabolism of glucose to supply its metabolic
energy. However, during starvation, the body normally produces ketone bodies that
can then supply the majority of brain energy needs. Not only can ketone bodies



198 M.O. Stone et al.

replace glucose as the major energy substrate for the brain, the metabolism of
ketones instead of glucose, increases the energy contained in the major cellular
energy transmitter adenosine triphosphate (ATP [56]). The increased metabolic
energy contained in ketone bodies (as opposed to glucose) was recently exploited
in a DARPA-funded project (with NIH and Oxford) where a ketone ester was
developed that can be administered as a food and which can improve cognitive and
physical performance in animals and improve physical performance in humans. An
experiment conducted at Oxford University with 22 elite British rowers showed
remarkable improvements in performance including 10 season’s best, 6 personal
best, and 1 world’s record an hour after ingestion of the ketone ester. Additionally, in
animal studies, substantial improvements in cognitive performance have been seen
and human studies are currently underway (personal communication by K. Clarke
during DARPA presentation of research results, July 2012).

Another potential target for long term enhancement resides in the microbiome.
The enteric nervous system, a collection of neurons in the gut often called “The
Second Brain” in the popular press, contains some 100 million neurons, more than
either the spinal cord or peripheral nervous system. Approximately 90 % of the
nerve fibers in the primary visceral nerve (the vagus) carry information from gut
to brain, not the other way around. Recent evidence supports the view that triggers
and signals from the gut affect our emotions, decision-making, response to stress,
immune response, and learning and memory.

The enteric microbiome of non-human organisms living in the human gut is
thought to impact cognitive performance and emotional resilience. A recent study
showed that mice receiving Lactobacillus rhamnosus were less anxious, performed
better on tests for learning and memory, and had lower cortisol levels after stressful
situations [57]. Supplemented mice also had atypical mRNA levels for 2 GABA
receptors involved in decision-making and learning/memory. Severing the vagus
nerve attenuated the effect, implying that commensal bacteria in the gut can have a
direct effect on neurotransmitter receptors in the central nervous system in normal,
healthy animals.

Nor is the effect limited to animal studies. Oral ingestion of probiotics, which
often include L. rhamnosus, have also been effective in reducing psychological
distress in otherwise normal, healthy humans, while antibiotic use may disturb the
microbiome flora population distribution for a poorly understood length of time.
In a clinical trial, volunteers participated in a double-blind, placebo-controlled,
randomized group study with probiotics administered for 30 days and assessed with
the Hopkins Symptom Checklist (HSCL-90), the Hospital Anxiety and Depression
Scale (HADS), the Perceived Stress Scale, the Coping Checklist (CCL) and 24 h
urinary free cortisol (UFC). Results indicate probiotic administration significantly
alleviated psychological distress in volunteers, particularly as measured by the
HSCL-90 scale [58].

(3) Potential trade-offs: Augmentation is unlikely to serve as a one-size-fits-all
solution, and it’s clear that trade-offs may be a consideration with certain cognitive
enhancement strategies. For example, genetically engineered mice with extra copies
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of the NR2B gene have improved memories and learn faster, but they are also more
susceptible to addiction and feel pain longer than normal mice [59]. In a documented
case of a human with naturally and profoundly enhanced memory, the man was able
to remember vast amounts of text on a single reading, even in a unfamiliar, foreign
language, but was almost entirely unable to grasp metaphors, as his mind was so
fixated on particulars [60]. This anecdotal evidence is in line with computer models
that show that memory is actually optimized by slight imperfections, as they allow
one to see connections between different but related events [61].

The New York Times also ran a series of essays by students who were otherwise
considered healthy but began illicitly taking prescription medications such as
Adderall and Ritalin to maintain their edge at competitive schools. These drugs are
psychostimulants intended for treatment of attention deficit hyperactivity disorder
(ADHD) and narcolepsy, but the essays reveal that those without the condition find
benefits too. Students reported the drug provided an almost tunnel-vision like focus,
reducing fatigue while reportedly [62] increasing reading comprehension, interest,
and memory. But many also found the drugs deliver some unpleasant side effects,
especially as they are often abused, such as anxiety, depression, sluggishness, and
social withdrawal.

The difficulty is that in most cases, the neural mechanisms underlying cognitive
enhancement, particularly in healthy individuals, is poorly understood. With psy-
chostimulants, for example, it was only in 2012 that low-level, cognition-enhancing
doses were shown to exert regionally-restricted actions, elevating extracellular
catecholamine levels and enhancing neuronal signal processing preferentially within
the prefrontal cortex [63]. Little data is available on how effective these neuro-
enhancing agents are for non-ADHD users or on long-term side effects. This
mismatch between the demand for cognitive enhancers and funded studies on their
use may stem from a historical tendency to regulate rather than educate when
it comes to human enhancement. The ability to understand the genetic basis for
the varying effectiveness of augmentations is improving with technologies such as
genome-wide association studies, which have been used to predict drug response
based on individual genetic variations [64].

One potential solution to mitigating these trade-offs is to think about augmenta-
tion cocktails that make smaller changes across a spectrum of abilities, with the hope
the cumulative effect is greater than the sum of its parts. As neuroscience unravels
how the brain generates behaviors and integrates multiple kinds of information,
such as memories, sensory information, and decisions, more targeted augmentation
strategies can be developed. Optogenetics [65], a technique that allows researchers
to selectively express or silence neurons in a temporally precise fashion using pulses
of light, offers a bit of both. Not only is the technique being used to systematically
explore how neural circuits contribute to cognition and behavior, but it has also been
used in live animal studies to directly control behaviors such as reward seeking [66].
Nearly all of these options, however, are relatively long-term before they can be
integrated into commercial workspaces. In the meantime, we must be aware that
trade-offs may exist and they may not be known prior to use. In this regard, the
assessment part of the paradigm becomes even more important.
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7.3 Future Perspectives

Aristotle once said, “Those who know, do. Those who understand, teach.” Had
Aristotle lived during the computer age, he might have concluded his final statement
with the word “simulate” instead. At the Dartmouth Conference of 1956, where
artificial intelligence (AI) was essentially born, it was proposed [67] “Every aspect
of learning or any other feature of intelligence can in principle be so precisely
described that a machine can be made to simulate it.” Indeed, the driving assumption
of artificial intelligence is that when we have created a machine that can pass the
Turing Test with flying colors, we will have laid bare the underpinnings that make
the human mind possible. And while significant progress has been made in the
creation of machines capable of performing like humans and sometimes better, it
is fair to say that a coherent theory of the mind, particularly one that links the
underlying biology with behavior, has lagged far behind.

Thus when Newell, one of the founding fathers of AI, grew frustrated with the
progress of cognitive science in 1980 (and again in 1990), his proposed solution
was shaped by the governing principles of AI. Anderson and Lebiere [68] describe
Newell’s thoughts on the matter as thus, “He would point to such things as the
‘schools’ of thought, the changes in fashion, the dominance of controversies, and
the cyclical nature of theories. One of the problems he saw was that the field had
become too focused on specific issues and had lost sight of the big picture needed
to understand the human mind.” In response, Newell made two contributions that
would ultimately drive the field of computational cognition. First, he proposed a set
of functional criteria for the evaluation of cognitive theories that forced researchers
to break out of what Newell feared was a kind of theoretical myopia, where models
explained their own results but made little sense in the greater context of what was
already understood or observed. One can debate whether Newell’s criteria are the
right ones (and many have), but the result has been the development of increasingly
sophisticated cognitive architectures that combine psychological, and more recently
neuroscientific [69], knowledge with developments from artificial intelligence to
produce a powerful general-purpose engine of cognition.

Newell’s second major contribution was his four bands of cognition—the
biological, the cognitive, the rational, and the social—that delineate the outcomes
of cognition based on the speed at which they typically occur [70]. Each successive
band captures the human experience at roughly 3 orders of magnitude greater
than the previous (see Table 7.1). Newell thought the cognitive band was most
relevant to a theory of cognitive architecture. Given the immaturity of neuroscience
or even biology at the time, Newell can hardly be blamed for focusing on the
more observable (and programmable) aspects of cognition, but it has had important
consequences, namely the instantiation of symbolism as the primary basis of
cognitive architectures. In 1980, he stated “symbolic behavior (and essentially
rational behavior) becomes relatively independent of the underlying technology.
Applied to the human organism, this produces a physical basis for the apparent
irrelevance of the neural level to intelligent behavior [71].” And although more
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Table 7.1 Newell’s time
scales of human action

Scale (s) Time units System World (theory)

107 Months Social band
106 Weeks
105 Days
104 Hours Task Rational band
103 10 min
102 Minutes
101 10 s Unit task Cognitive band
100 1 s Operations
10�1 100 ms Deliberate act
10�2 10 ms Neural circuit Biological band
10�3 1 ms Neuron
10�4 100 �s Organelle

recent architectures have penetrated into Newell’s biological band, as Anderson
explains, “the approach in cognitive psychology has largely been not to actually
model the biological processes but rather to describe them at some level of
abstraction. This level is called the subsymbolic level [72].” To use an analogy to
computer systems, the assumption has been that to understand intelligent thought,
we need to focus on the software, not the hardware that performs the calculations.

The comparison between biological and information systems turns out to be
quite useful for examining concepts such as constraints, tradeoffs, and layered
architectures. However, it must be noted that the delineation between hardware
and software in computer systems is quite obvious, whereas in biological systems
(including the brain), chemistry is involved at every level. In either case, Doyle
and Csete effectively argue that “robust yet fragile” control systems are the key
to understanding such complex systems [73]. They point out, “This enormous,
hidden, cryptic complexity, driven by robustness, is both the greatest initial obstacle
in using advanced information and control technologies as metaphors for biology
and also ultimately, the key to important insights and theories.” Thus, in order
to fully capitalize on complexity, one must develop (1) a thorough understanding
of the protocols that drive interaction between layers and modules, and (2) an
understanding of robustness trade-offs which drive complexity.

This first point calls into question whether Newell’s bands of the cognition,
based on temporal duration, are the right hierarchy for architecture evaluation. The
fact that existing architectures such as ACT-R and SOAR work as well as they
do suggests the symbolic layer of cognition was likely the right starting point.
Although researchers are successfully transcending multiple timescales as they
model more complex tasks [74], this does not mean that a time-based hierarchy
is the most productive one. For example, Sun 75et al. [75] have proposed four
layers—physiological, componential, psychological, and social/cultural. At first
glance, these appear remarkably similar to Newell’s, but in this case are based on
phenomena that occur rather than their duration (Table 7.2).
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Table 7.2 Hierarchy of levels from [75]

Level Object of analysis Type of analysis Computational model

1 Inter-agent processes Social/cultural Collections of agents
2 Agents Psychological Individual agents
3 Intra-agent processes Componential Modular construction of agents
4 substrates physiological Biological realization of modules

What is important is that these levels interact with and constrain one another
in such a way that they cannot be studied solely in isolation. We do not presume
that Sun’s or anyone else’s hierarchical layers necessarily offer the correct level
of detail, however we agree with Sun et al. that “The capability, at least in
principle, to map collective phenomenological properties all the way down to
neural properties (or other detailed level descriptions) is an essential aspect of an
effective theory of cognition in a sociocultural context. In contrast, the ability of
a high-level theory to accurately model high-level phenomena is a necessary but
not sufficient condition for effectiveness.” It is not clear how an architecture based
on Newell’s time-based bands can achieve this. Moreover, if Doyle and Csete are
correct that biology is optimized for robustness instead of efficiency, this suggests
that a focus on the protocols that connect layers and provide “constraints that
de-constrain” may be a better approach. Alderson and Doyle clarify, “In protocol-
based architecture (PBA), the protocols (rules of interaction that persist) are more
fundamental than the modules (which obey protocols and can change and diversify).
PBAs facilitate coherent and global adaptation to variations in both components and
the environments on a vast range of time scales despite implementation mechanisms
that are largely decentralized and asynchronous [76].”

This point is particularly important for human performance augmentation, since
it suggests hard theoretical limits to optimization. We think the SAA framework
presented in this chapter will provide essential information for exploring and
perhaps elucidating those limits. We argue this idea must be at the heart of good
HCI, since we desire to understand not just how an individual human thinks, but
how well they perform at any particular point in time. Further, we need cognitive
models that allow us to simulate the effect of various augmentation strategies
before implementing them. Alderson and Doyle conclude that managing or perhaps
preventing the “robust yet fragile” complexity spiral is a key challenge, stating
“Indeed, the emergence of complexity can often be seen as a spiral of new challenges
and opportunities that organisms and/or technologies exploit, but which also lead to
new fragilities, often from novel perturbations.” We propose it is impossible to fully
address this issue for the purposes of human performance augmentation without
simulating more fully the biological body in which the mind resides, particularly
the neurotransmitters and metabolites that play a key role in regulating cognition.
We think the SAA framework combined with new mathematics and applications of
control theory offer much hope in this regard.
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