
Chapter 12
Robotic Assistance for Cerebellar Reaching

David I. Grow, Amy J. Bastian, and Allison M. Okamura

Abstract Robotic instruments allow precise measurements and interventions to
understand and treat human motor deficits. These same tools may be used to design
model-based and patient-specific robotic assistance and rehabilitation paradigms.
This approach could lead to an increased understanding of the brain and improved
patient outcomes. We illustrate this paradigm with two studies in which generic
and patient-specific models are used to provide reaching assistance with a robotic
exoskeleton, the KINARM. These studies involve patients with cerebellar ataxia
who make reaching movements that are irregularly curved, over- or undershoot
targets, and are more variable than those of healthy people. Two assistive methods
are explored. In the first, a patient-specific change in arm dynamics predicted to
assist each patient is utilized. The results suggest this approach may improve the
reaching of some cerebellar patients and not for others. The second method employs
force channels, which improved reaching movements for all patients. However,
neither method showed evidence of motor learning; i.e. there was no maintenance
of improved movement after the assistive forces were removed.
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12.1 Introduction

Damage to the cerebellum results in ataxia, or a lack or coordination of volitional
movements [1, 3, 13, 28, 33]. Point-to-point movements are often composed of
an initial movement that under or overshoots the target (dysmetria), followed by
a series of erroneous attempts at correction (intention tremor) [5]. In addition,
cerebellar patients have difficulty adapting to changes in environment dynamics
[8, 10, 19, 20, 24, 31]. People with ataxia almost always have normal strength.
Cerebellar ataxia is difficult to treat; there are no medications that reliably reduce
ataxia, making physical therapy and exercise the primary intervention. There is
a need to understand the mechanisms of ataxia more completely to drive the
development of rational physical therapy-based rehabilitation strategies. In this
chapter, we present two methods for robotic assistance of cerebellar reaching
(dynamic augmentation and force channels), and report their impact on the reaches
of cerebellar patients, both during and after assistance.

12.1.1 Rehabilitation Robotics

The field of rehabilitation robotics involves the use of automatically controlled
mechanisms to provide therapy and assistance to humans with disabilities [35]. As
an alternative to human-only therapy, these devices permit: (1) consistent therapy
without tiring; (2) precise measurements of behavior to quantify motor deficits and
recovery; and (3) implementation of therapy paradigms not possible by a human
therapist [20,30,31,35]. A wide variety of rehabilitation robots have been developed.
One way to categorize these devices is by the way in which they physically connect
to the user. One class are manipulandums – robots for upper-extremity therapy that
connect to the user through a handle. An example of such a device that has been
used extensively for clinical applications is the InMotion Arm Robot (originally
called the MIT Manus). This device has undergone 20 years of development and
has been used in research studies involving patients with stroke, cerebral palsy, and
other neurological conditions [2, 12, 17].

Another class of rehabilitation robotic devices are exoskeletons, which couple
to the user through multiple contact areas. An example of this type of device is
the Lokomat by Hocoma, which is a lower-body exoskeleton and treadmill for gait
therapy [36]. This device measures the user’s gait and automatically augments the
user’s stride to provide individualized training.

Ideally, a rehabilitation robot would be able to provide many different forms of
mechanical input, such as assisting, resisting, perturbing, and stretching, based on
the subject’s real-time response.
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12.1.2 Robot-Assisted Rehabilitation Approaches

A robotic device can be programmed to apply forces that assist or resist the
movements of the user. Assistive devices have been developed to extend the strength
and dexterity of injured or diseased users as they walk, grasp objects, and perform
other activities of daily living. Resistive devices, on the other hand, are used
to retrain patients or minimize the undesired consequences of unintended motor
activity.

Some common assisting methods include (1) passive motion, in which the robot
moves the subject through a desired pattern, (2) active assistance, in which a subject-
initiated movement is subsequently guided by the robot, (3) active constraint, or
force channel, which allows subject motion only towards a target, and (4) mirror
image, in which the less impaired arm motion is measured and used to guide motion
of the more impaired arm [18].

Resistance to motion is achieved by a control law that increases forces opposing
the subject’s desired motion with speed and/or proximity to the target, such as a
linear damping field [32]. Related to resistance training, feedback distortion can
also be used in isometric and isotonic conditions to alter a subject’s perception
of therapeutic exercises [7]. Other work has exploited the after-effect of training
forces (i.e. adaptation) that magnify original errors [11, 25]. With the capability to
record motions and forces automatically, robotic systems can provide objective data
to quantify how specific deficits change during training [35], as well as identify the
mechanism of the deficit [20, 31].

12.1.3 Robot-Assisted Study of Neurological Impairments

Robots have also been used to study neurological impairments. Scheidt and
Stoeckmann used a robot joystick to show that cerebral stroke subjects could use
normal strategies based on error history to adapt movement, though not as efficiently
as controls [27]. Patton et al. found that error-enhancing robot therapy improves
reaching in stroke subjects more than control strategies that assist movement [25]. In
contrast, subjects with cerebellar ataxia have been shown to be slowed or unable to
adapt arm movements to novel forces, suggesting a deficient internal model of limb
dynamics [20]. Interestingly, cerebellar subjects could correct on-line errors using
feedback mechanisms, but could not adapt feedforward control mechanisms from
trial to trial [31]. Subjects with Huntington’s disease showed the reverse pattern,
demonstrating that control mechanisms have distinct neural bases. Robotic devices
can also be used to estimate human arm dynamics, as in [23].
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12.2 Methods

The feasibility of uncovering cerebellar function and discovering a model of ataxia
is bolstered by the availability of high-fidelity robotic exoskeletons. The field of
robotics provides powerful tools for understanding the function of the cerebellum
and other brain areas because it allows us to quantify and affect mechanical features
of movement in a way not possible by direct human observation and manipulation.
Here, we describe the robotic exoskeleton used in our experiments, our patient
population, and two experiments (dynamic augmentation and force channels) that
provide assistance to enhance cerebellar reaching.

12.2.1 KINARM Robot Motor and Controller Performance
Characterization

In order to rigorously examine hypotheses about the function of the cerebellum,
we require knowledge of actual limb dynamics and precise measurements of
user reaching performance. Our studies used the KINARM robotic exoskeleton
(Fig. 12.1, BKIN Technologies, Kingston, ON). The KINARM is an adjustable
exoskeleton that permits bimanual shoulder and elbow rotation in the horizontal
plane. This device has been used to acquire behavioral data during reaching [29]. In
[15], a kinematic and dynamic model of the human arm and robot were developed
and populated with parameter values obtained through direct measurement, system
identification, and use of anthropometric tables. This provides a relationship
between motor effort and movement.

CHAIR & ARM
EXOSKELETON

VISUAL

a b c

DISPLAY

MOTORS

VISUAL
DISPLAYARM TRAYS

Fig. 12.1 The KINARM robot (a) used in this study has a two-degree-of-freedom planar
exoskeleton for each arm (only right arm shown for clarity). The user sits in a chair (b) that is
positioned so that the user’s hand location and targets are visible on a horizontal display. The
seat height, linkage lengths, and arm tray positions are adjusted for each user (c). Special care is
taken to ensure that the rotational axes of the human shoulder and elbow are coincident with the
corresponding joints of the KINARM. An advantage of the exoskeletal nature of the robot is that
robot linkage and human arm kinematic parameters are determined simultaneously
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The motors of the KINARM are controlled in an open-loop fashion. In order to
understand the limits of the system’s performance, we characterized the ability of
motor controllers to follow a desired torque trajectory. Accurate calibration of motor
gains is critical for accurate rendering of dynamic forces. For example, consider
attempting to render arm inertia (mass matrix with non-negative scalars a, b, and c)
while the shoulder and elbow motors have the non-unity gains �1 and �2. This torque
scaling results in a corresponding scaling of the mass matrix:

�
�1act

�2act

�
D

�
�1a �1b

�2b �2c

� � R�1R�2

�
: (12.1)

If �1 ¤ �2, then the mass matrix is no longer symmetric – in essence, it no longer
corresponds to any physically realistic inertia. In such a case, there would be no
symmetry between the interaction torques of connected joints. A one-dimensional
analog is a mass that feels heavier when moved forward than when moved backward.

12.2.1.1 Static Performance

To calibrate the static motor gains, the peak motor torque for each link was measured
using a single-axis, hand-held digital force gauge (SHIMPO model FGV-50XY,
Japan). The sensor was mounted tangentially to the robot link and coupled via a
fitting that could not transmit substantial torque to the linkage. Thus, the reaction
torque is the measured force multiplied by the moment arm. The torque trajectory
was repeated four times at five different amplitudes for each motor.

12.2.1.2 Single-Joint Dynamic Performance

Next, the motor controller’s performance while commanding velocity- or
acceleration-dependent loads (viscosity/inertia) was characterized. The velocity, P� ,
and acceleration, R� , signals are derived from a high-resolution encoder signal that
is discretely differentiated. The process of differentiation scales the high-frequency
(noise) content of a signal. To mitigate this effect, a running-average digital filter
was used. This window must be larger to filter the acceleration signal compared to
velocity.

The actual output torques were measured using an ATI Mini40 force/torque
sensor (ATI Industrial Automation, Inc., Apex, NC; SI-20-1 calibration) mounted
as before while the robot forearm was manipulated manually to follow a roughly
sinusoidal position trajectory. The accuracy of the rendering was assessed by
comparing the torques and kinematics using ordinary-least-squares regression [16].
If the desired coefficients for friction and inertia are fb and I , the appropriate torque
command �com is given by (12.2). Even when rendering only inertial or viscous
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forces, the robot’s inherent inertia and friction contribute to the force/acceleration
relationship. As such, objective function (12.3) was used in all cases.

�com D fb
P� C I R� (12.2)

2
6664

�.t1/

�.t2/

�.t3/
:::

3
7775 D

2
6664

�.t1/ P�.t1/

�.t2/ P�.t2/

�.t3/ P�.t3/
:::

:::

3
7775

�
fb

I

�
(12.3)

12.2.1.3 Multi-joint Dynamic Performance

In the first experiment, the KINARM is used to render the change in arm inertia
predicted to help each patient. With active use of the robot, the mass matrix is
composed of:

M� D Mhuman arm C Mrobot linkage C Mrendered: (12.4)

Excessive noise or delay of the acceleration signal may result in poor rendering or
instability. To reduce the noise and delay of the acceleration signal, two 2g 3-axis
accelerometers (Crossbow Technology, Inc., San Jose, CA) were incorporated into
each arm. Though substantially reduced, the residual noise presents an increasing
challenge to system performance as the magnitude of the rendered inertia increases.
Predicting whether some amount of rendered inertia will be achievable is a
formidable problem because it depends on the robot setup and the patient’s size,
muscle tone, movement pattern, etc. As such, the rendered inertia must be gradually
increased (� ! 1 in (12.5)) while the onset of noise or instability is monitored. It
can be shown that any value of 0 < � < 1 results in a qualitatively similar change to
the total inertia ellipse – the eigenvectors, which determine the ellipse orientation,
remain unchanged.

Mrendered D �

�
�a �b

�b �c

�
(12.5)

12.2.2 Human Subjects

Patients with damage to the cerebellum but no signs of sensory loss or extracere-
bellar damage were recruited. The severity of each patient’s cerebellar impairment
was determined using the International Cooperative Ataxia Rating Scale (ICARS)
[34]. Table 12.1 lists cerebellar subjects ordered by the ICARS kinetic functions
subscore, which assesses voluntary limb movements. Scores range from 0 (normal)
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Table 12.1 Subject characteristics

Subject Sex
Dominant
hand

Age
(years) Height (m) Weight (kg) Diagnosisa

Limb
score

Cerebellar 1 M R 75 1.63 77 Stroke 13/52
Cerebellar 2 F R 52 1.58 51 Stroke 15/52
Cerebellar 3 F R 20 1.68 64 Trauma 18/52
Cerebellar 4 F R 65 1.68 61 Sporadic 18/52
Cerebellar 5 M L 37 1.78 123 SCA8 20/52
Cerebellar 6 M R 56 1.80 90 SCA6,8 23/52
Cerebellar 7 M L 57 1.70 96 ADCA 25/52
Cerebellar 8 F R 69 1.70 68 Sporadic 23/52
aSpinocerebellar ataxia (SCA) diagnoses are described in [4]

to 52 (severe). Subject diagnosis is based on medical history, family history, and a
neurological examination. The cause of ataxia may be abrupt damage to cerebellar
tissue (stroke or trauma), genetic diseases (ADCA, SCA6, and SCA8), or unknown
(sporadic) [4]. All subjects gave informed consent to the protocols approved by the
Johns Hopkins Medical Institutions Review Board.

12.2.3 Methods of Robot Assistance

The anisotropic nature of arm inertia and other dynamic effects necessitate a
non-trivial calculation of the muscle activity needed to reach rapidly in a given
direction. It has been hypothesized that the cerebellum plays a key role in planning
such movements and that damage to the cerebellum results in a degradation of
the ability of the motor control system to plan these movements, accounting for
the characteristic misdirection of observed arm movements [5, 6, 21, 22, 26]. The
first assistive method explores this possibility in the attempt to derive an optimal,
patient-specific assistance method. The second method applies a simple and generic
method for assistance. As mentioned in Sect. 12.1, the cerebellum is thought to
play a key role in accounting for (adapting to) changes in the dynamics. As
such, subsequent to practicing with both of these assistive methods, additional null
trials were incorporated into the experimental protocols to search for evidence of
adaptation.

12.2.3.1 Assistance Method 1: Dynamics Augmentation

Phase 1: Identifying Optimal Augmentation

In [15], the KINARM robot was used to record the movements of cerebellar patients
(Cerebellar 1–8, Table 12.1) performing a targeted reaching task. This task focused
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on early movement because the role of the cerebellum is most observable during
early movement. Subjects made center-out movements through 1 cm diameter
targets at a 3 cm radius within a 350–650 ms window. Offline analysis of this data
and the arm dynamic model were used to test various hypotheses proposed in the
literature about the role of the cerebellum, all of which assume that the cerebellum
functions as an internal model of limb dynamics for planning movements. It follows
that damage to the cerebellum results in movements that do not properly account
for arm dynamics. If this error is known, the potential exists for predicting reaching
errors during early movement (before movement feedback is available).

During early movement, arm dynamics can be approximated as (12.6) [14, 15].
The parameters a, b, c, and d are all non-negative scalars, the first three relating to
mass properties and the last relating to centripetal and Coriolis forces.

�
�1

�2

�
D

�
a b

b c

� � R�1R�2

�
C

�
0 �2d �d

d 0 0

� 2
4

P�2
1P�1
P�2P�2
2

3
5 (12.6)

Knowledge of each patient’s arm dynamics allows inverse dynamic calculations
to identify torque trajectories to each target. Because of the movements start from
rest and are rapid, the magnitude of the acceleration greatly exceeds that of the
velocity for the movements recorded. As such, the trajectories are insensitive to
variations in d and so the computer simulations searched for a perturbation over
the reduced set, fa; b; cg, that when used in forward dynamic simulations with the
torque trajectories, optimally reduced reaching errors. Perturbations of this type are
equivalent to reshaping and reorienting the arm inertia ellipse [9]. Though no change
to arm dynamics was found that fully removed errors, patient-specific perturbations
were found that resulted in a reduction in root-mean-squared directional reaching
errors of 41 % averaged over 7 cerebellar patients.

Phase 2: Applying Prescribed Augmentation

A subset of these patients were available to return to perform a follow-up experiment
to apply the dynamic augmentations predicted to most improve reaches. The
KINARM robot was controlled to effectively reshape and/or increase or decrease
the arm inertia. Three particular subjects were selected because distinct optimal
perturbations were predicted and their ataxia severities spanned those of the group.
These perturbations are summarized in Table 12.2 (columns 2–5). It follows
that the opposite perturbation (i.e. f�a; �b; �cg vs. f��a; ��b; ��cg) would
significantly hinder reaching performance, which could be a resistive approach to
neurorehabilitation (see Sect. 12.1.2).

The task in this phase was nearly identical except that the center-out movements
were to, not through, targets at a 10 cm, not 3 cm, radius. The more distant spacing
of these targets compared to those in the Phase 1 task was chosen to permit
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Table 12.2 A perturbation predicted to help patients was applied during a reaching task. The
predicted optimal change in arm inertia, characterized by ellipse eccentricity, size, and orientation,
for each subject is summarized along with the extent to which reaching performance is predicted
to improve. The effect of applying the opposite perturbation (e.g. to reduce mass rather than add)
was also explored with the goal of resisting rather than assisting movement. The full perturbation
could not always be applied for stability reasons. During practice trials, conservatively safe values
of � (12.5) for each patient and for both the perturbation expected to help and hinder performance
were determined and are also listed, �help and �hinder , respectively

� eccentricity � size � orientation Predicted error
Subject (%) (%) (deg) reduction (%) �help �hinder

Cerebellar 1 �34 �61 1 37.5 0.8 0.8
Cerebellar 5 �14 �47 5 62.5 1.0 0.75
Cerebellar 6 �39 �99 2 62.9 0.3 0.3

investigation of the method’s effect on movement both before and after peripheral
feedback can be used. Another subtle difference compared to the preliminary studies
is that four, rather than eight, targets were used to obtain a greater number of reaches
to each target.

At the beginning of each trial, the subject moved to a center position (shoulder
at 35ı, elbow at 90ı). After a slight delay, one of four targets appeared randomly,
to which subjects were directed to move within a 200–550 ms time window. Trials
were divided into five blocks (Fig. 12.2). Movement duration feedback was given
to the subjects in the form of color coding: the target turned blue if reached late,
red if early, or green if on time. At the end of each trial, the actual hand path taken
was shown to subjects. All trials were analyzed, whether or not the timing criteria
were met.

To ensure that the robot would remain stable throughout the experiment, the
magnitude of the inertia perturbation, �, was gradually increased towards the desired
magnitude while patients practiced the target reaching movements until the onset of
instability was detected. This detection was done using digital scopes that report the
joint accelerations and motor commands where the onset of instability was evident
well before it was perceptible to the subject, resulting in a conservative limit. For
the patients tested, the level of perturbation rendered varied from � D 30–100 %
(12.5). Force levels and dynamic perturbations are given in Table 12.2, columns 6
and 7.

Reaching performance was measured using lateral deviation �err of the finger at
150 ms (12.7), where the finger location and target vectors are p and t, respectively
(Fig. 12.3). It is computed as:

�err D
����p.150/ � p.150/ � t

ktk2
t

���� : (12.7)
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TARGETS

INERTIA ELLIPSE

EXOSKELETON
ROBOT

P+ N2 N3N1 P-

null block 1

40

perturbation
predicted to help

40

perturbation
opposite to P+

40

null block 2

20

null block 3

20

Fig. 12.2 Horizontal reaching task with augmented arm inertia. During the null blocks
fN1; N2; N3g, the robot is passive as the patient moves to one of four targets, the blocks containing
40, 20, and 20 trials, respectively. During the first perturbation block P C, the robot augments arm
inertia in a manner predicted to help as the subject makes a total of 40 reaches to 4 targets. The
second perturbation block P � is identical except the robot augments arm inertia with the opposite
sign

t

p

target

finger
position

derr

Fig. 12.3 Depiction of error
metric: lateral deviation of the
finger position from the target
path (12.7)

12.2.3.2 Assistance Method 2: Force Channel Rendering

This potential reaching assistance method applies force channels designed to
improve reaching performance by enforcing the coordination needed to follow a
straight path. Furthermore, these channels are used in an attempt to elicit use-
dependent learning, or improvements in both the straightness of the path (lateral
error) and the ability to stop at the target (overshoot error) subsequent to channel
reaching.

Six cerebellar patients performed this experiment (Cerebellar 2 and 4–8 in
Table 12.1). Because it has been reported that use-dependent learning is stronger
when the non-dominant arm is trained, that arm was tested whenever possible. The
one exception was the case of Cerebellar 6, whose non-dominant arm had a reduced
range of motion. Also, Cerebellar 5 was available to have both arms tested.
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t

p

ξ
target

finger
position

Fig. 12.4 The KINARM
robot is used to render force
channels that assist a user in
moving in a straight direction
to targets. The force
generated is perpendicular to
and scales linearly with
deviation from the desired
path (12.8)

Force channels were rendered by the KINARM to provide a simple form
of assistance during reaching. These channels act as virtual walls to constrain
movement by applying a forces perpendicular to the desired direction of movement.
The forces are smooth and allow the subject to maintain complete control over the
speed of movement. Figure 12.4 illustrates the relationship between finger position,
target location, and the spring-like force generated. Given the positions of the
finger, p, and target, t, the channel force with stiffness kc in Cartesian space is
given by:

� D p � t

ktk2
t � p

f D kc �: (12.8)

As before, subjects were directed to make point-to-point movements. At the
beginning of each trial, the subject moved to a center position (shoulder at 35ı,
elbow at 90ı). After a slight delay, a target appeared in one of four radial targets,
again 10 cm away and to be reached within a 200–550 ms window with as straight
a movement as possible. Using the same color-coding as in the augmentation
experiment and by showing a trace of the actual movement path after each reach,
subjects were given feedback after each reach about timing and movement accuracy,
respectively. Spatial feedback was given after each reach. All trials were analyzed,
whether or not the timing criteria were met. Two experimental protocols were used
to address questions about reaching direction, prolonged training, and generalization
of learning. The organization of each protocol and the differences between them are
given in Fig. 12.5.

Reaching performance during null and force-channel blocks was measured using
four metrics:

M1: Path length is computed by integrating changes in finger position over the
duration of movement:

patherr D
X

n

kp.n/ � p.n � 1/k : (12.9)
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TARGETS

FORCE CHANNELS

EXOSKELETON
ROBOT

N1

null block

C1

constant
channel

fading
channel

C2

constant
channel

constant
channel

N2

null block

N3

null block

N1

null block

C N3

constant
channel

null block

Protocol A

Protocol B

160 4018 40 40 18 40

160 120 40

Fig. 12.5 Horizontal reaching task with force channels. One of four targets with 1 cm diameter
appear in pseudo-random order at 10 cm from start position. In Protocol A there are seven blocks
with f160; 58; 40; 58; 40g trials each. Three null (robot passive) blocks fN1; N2; N3g are separated
by force channel (robot active) blocks. During the first channel block C1, the robot generates a force
channel and the subject makes 40 reaches only to the 12:00 target followed by 18 more reaches
while the channel is gradually removed. The second channel block C2 is identical except that the
force channel remains at full strength for 58 reaches. During these channel blocks assistance is only
provided for the 12:00 direction. By looking at other directions during null trial blocks, evidence
of learning generalization is sought. In Protocol B there are three blocks with f160; 120; 80g trials
each. Two null blocks are separated by a channel block where force channels are rendered to each
of the four targets. Another difference from Protocol A is the extended length of the training blocks
to investigate whether learning would arise from prolonged training

M2: Maximum lateral deviation throughout the trial is computed by:

�err D arg max
n

����p.n/ � p.n/ � t
j t j2 t

���� : (12.10)

M3: Lateral deviation at 150 ms is computed as described previously (12.7).
M4: Overshoot is computed by finding the finger position at the first velocity zero

crossing, p.n0/, and computing the displacement of this point from the target
(Fig. 12.6):

�err D
����t � arg max

n�n0

kp.n/k
���� : (12.11)

Differences in performance between null and channel trial blocks were checked
for statistical significance using a Kruskal-Wallis non-parametric test. This test
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target

finger
position

p
herr

t

Fig. 12.6 Depiction of the
overshoot error metric: the
distance between the target
and the point of maximum
excursion (12.11). We only
consider the portion of
movement until the first
zero-crossing

is well suited to these data because the variability of the error metrics tends to
change significantly during channel trials, violating the sphericity assumption of
the Analysis of Variance (ANOVA).

12.3 Results

12.3.1 Motor and Controller Performance Characterization

12.3.1.1 Static Performance

For each commanded torque amplitude and for each motor, four torque measure-
ments were taken and averaged. Linear regression of this data yields a calibration
coefficient for each motor (Fig. 12.7). Each slope is inverted to determine the appro-
priate gain to apply to the motor torque command (e.g. a slope of 0.95 prescribes
a 1.05 gain). Fortunately, the motor gains are all within 10 % of unity. This degree
of miscalibration does appear to vary in time, but can be accounted for by scaling
commanded torques accordingly in software. The appropriate adjustments in motor
gains were determined from the open-loop, near-static conditions shown in Fig. 12.7
by taking the inverse of the slopes.

12.3.1.2 Single-Joint Dynamic Performance

Even after calibration, the open-loop torque controller may not be linear under
non-static conditions. From Fig. 12.8, it is clear that the open-loop performance is
inaccurate if the frequency content exceeds 7 Hz.

In the case of a perfect sinusoidal position trajectory, the velocity and accelera-
tion signals are scaled versions of the position with phase shifts of 90ı and 180ı,
respectively. Because inertial forces are rendered by simply scaling the acceleration
signal, the same delay persists. Thus, this delay makes rendered inertial forces
behave increasingly like viscosity. The overall delay in the system is appreciable and
in fact, when attempting to render inertia, a least-squares regression of the resulting
forces are identifies increases in both inertia and damping. A smaller filter (and thus
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Fig. 12.7 Measured vs. commanded torque trajectories were recorded as sinusoidal torque
trajectories were commanded to each of the four motors (From this data, calibration factors were
determined)
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Fig. 12.8 The ratio of angular acceleration to commanded torque Tyu at the elbow joint is plotted
as a function of angular frequency. Note the near unity gain for low frequencies and degraded
(non-unity gain) at higher frequencies
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Fig. 12.9 The ability of the robot to render viscous and inertial torques is investigated. In (a),
virtual inertia is added by the robot increasing and decreasing the base inertia in steps of 0.01 kg-
m2. In (b), an undesired effect on the forearm viscosity while rendering inertia is shown. In (c), an
undesired effect on the forearm inertia while rendering viscosity is shown. In (d), virtual viscosity
is added by the robot increasing and decreasing the base viscosity in steps of 0.03 N-m-s/rad

smaller delay) applied to the velocity signal results in forces that are identified as
being nearly pure viscosity of the target magnitude, the identified inertia remaining
relatively constant across rendered viscosity magnitudes (Fig. 12.9). In Fig. 12.10,
the raw data used for regression are shown. The individual data points in each of
the sub-figures are of no particular significance – they are specific to the manual
perturbations applied. However, the covariance of the points is significant. If the
dynamics consist of inertia only, an angular acceleration vs. torque point cloud will
have a nonzero slope that corresponds to the inertia and the angular velocity vs.
torque point cloud will have a zero slope. The opposite is true if the dynamics consist
only of viscosity. If both inertia and viscosity are present, both clouds will have a
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Fig. 12.10 The elbow joint of the robot is manipulated manually while various dynamic effects
are rendered. The collected data are used for dynamic parameter identification. Representative data
is shown to conceptually illustrate the process of regression: (a) baseline condition (robot passive),
robot adds (b) or subtracts (c) viscosity, and robot adds (d) or subtracts (e) inertia

Table 12.3 Inertia values about shoulder and elbow joints at baseline and as measured during the
rendering of reduced inertia compared to that desired change in inertia

Joint Baseline (kg-m2) Desired change (kg-m2) Measured change (kg-m2)

Left Shoulder 0.1313 �0:0500 �0:0377

Elbow 0.0387 �0:0150 �0:0068

Right Shoulder 0.1313 �0:0520 �0:0377

Elbow 0.0387 �0:0142 �0:0068

nonzero slope. This procedure was duplicated with the other arm, and then at the
shoulder of each arm. The results of rendering reduced inertia at each of the four
joints are summarized in Table 12.3.

12.3.1.3 Multi-joint Dynamic Performance

As in the one-dimensional case, inertia rendering fidelity is affected by filter delay.
The measured versus commanded torques while rendering various simple dynamic
perturbations are shown in Fig. 12.11.

12.3.2 Assistance Method 1: Dynamics Augmentation Results

Data collected from the patients are included in several figures that follow. The hand
paths and errors are shown for each of the five trial blocks. Because reach direction
is the movement feature of interest, lateral deviations at 150 ms are shown both as
block averages and for individual reaches. The individual data for Cerebellar 5, who
has moderate ataxia, is shown in Fig. 12.12. It is evident that the patient benefited
from the prescribed perturbation in effect (reduced lateral deviations). Similarly, the
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Fig. 12.11 Measured acceleration vs. commanded torque trajectories. During passive pertur-
bations (row 1, shoulder and row 3, elbow), the acceleration and the torque measured via a
force/torque sensor are linearly dependent. During active perturbations (row 2, shoulder and row
4, elbow), the motor command can be seen to lag the acceleration. This delay is more profound for
rapid (row 4) movements

opposite perturbation resulted in degraded movement performance. The results for
Cerebellar 1 (mild ataxia) and 6 (severe ataxia) are not as consistent across direction,
but show a similar trend [15].

12.3.3 Assistance Method 2: Force Channel Results

The data were analyzed according to each of the four error metrics (M1 � M4) and
differences in performance were checked for statistical significance. Representative
recorded movements and performance measurements for subjects tested under
Protocol A and Protocol B are included in Figs. 12.13 and 12.14, respectively.
Summaries of the results including statistical test outcomes are given in Figs. 12.15
and 12.16.

During channel blocks, performance was significantly improved (Table 12.4).
Error metrics M2 and M3 decreased in all four directions in both Protocols A and
B. Significant improvement in overshoot error was observed in the 12:00 and 6:00
directions under Protocol A. We also found a significant improvement in path length
for the 12:00 target under Protocol A (Table 12.4).
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Fig. 12.12 Cerebellar Subject 5 makes targeted reaching movements to four targets while the
robot provides Assistance Method 1. The task is divided into five blocks. The first, third, and fifth
are null blocks where the robot is passive. During the second block, the robot affects arm dynamics
in a manner predicted to help. During the fourth block, the opposite change in dynamics is made,
which we expect to hinder performance. Hand paths and errors are color coded by direction
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Cerebellar Subject 5, Protocol A
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Fig. 12.13 Cerebellar Subject 5 makes targeted reaching movements to four targets while the
robot provides assistance Method 2, Protocol A. The task is divided into seven blocks. The first,
fourth, and seventh are null blocks where the robot is passive and subjects move to each of the four
targets. During the second, fifth, and sixth blocks, the robot renders a force channel that assists
the patient in moving in a straight path to the 12:00 target only. During the third block, the force
channel begins at full strength and is reduced linearly to zero strength over the course of the block.
Reaching performance is measured using the error metrics described in Sect. 12.2.3.2. Hand paths
and errors are color coded by direction

Learning would be evidenced by residual improvements in performance after
the removal of force channels. However, whether the force channel was removed
gradually (Protocol A, B3 ! B4) or abruptly (Protocol A, B6 ! B7 or Protocol B,
B2 ! B3) no learning was identified (Table 12.5).

We also looked for generalization by comparing performance in the non-trained
directions (2:00, 10:00, and 6:00) after a block of channel trials. We found no
evidence of generalization according to any of the error metrics (Table 12.6).
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Cerebellar Subject 4, Protocol B
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Fig. 12.14 Cerebellar Subject 4 makes targeted reaching movements to four targets while the
robot provides assistance Method 2, Protocol B. The task is divided into three blocks. The first and
third are null blocks where the robot is passive. During the second block, the robot renders a force
channel that assists the patient in moving in a straight path to the target. Reaching performance is
measured using the error metrics described in Sect. 12.2.3.2. Hand paths and errors are color coded
by direction

12.4 Discussion

12.4.1 Motor and Controller Performance Characterization

The fidelity of dynamic forces rendered by the KINARM was characterized in
detail. For this particular robot, the ability to render inertia was somewhat limited,
although the performance is linear up to approximately 7 Hz. Performance was
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Fig. 12.15 Summary of force channel results under assistance Method 2, Protocol A. Three patient
data sets are averaged. Four metrics are used to measure performance – maximum lateral deviation
from the straight path (first row), lateral deviation at 150 ms from the straight path (second row),
path length (third row), and overshoot (fourth row). The only direction in which statistically
significant changes in performance were observed is the 12:00 direction. Hand paths and errors
are color coded by direction

increased with the addition of accelerometers and tuned digital filters. We designed
controllers and instrumentation, and validated the ability of the robot to render
desired acceleration-dependent forces. The quality of the dynamic forces rendered
was sufficient, and, when necessary, the magnitude of dynamics perturbations were
reduced in scale to ensure patient safety and controller stability. Robot friction
parameters were identified, but were found to contribute insignificantly to the overall
dynamics.
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Fig. 12.16 Summary of force channel results under assistance Method 2, Protocol B. Four patient
data sets are averaged. Four metrics are used to measure performance – maximum lateral deviation
from the straight path (first row), lateral deviation at 150 ms from the straight path (second row),
path length (third row), and overshoot (fourth row). Hand paths and errors are color coded by
direction

12.4.2 Assistance Method 1: Dynamics Augmentation

Patient-specific changes in arm dynamics predicted to assist in making straight
reaching movements were tested in this study. The results suggest this dynamics
augmentation approach may improve the reaching of some cerebellar patients and
not others. There was no evidence of motor learning.

The mildly impaired patient, Cerebellar 1, demonstrated near-control-like reach-
ing performance in all five blocks. Even during B2 and B4 when substantial
perturbations were applied, the patient performed nearly as well as control subjects.
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Table 12.4 Nonparametric test p-values are listed for various metrics and reaching directions (p-
values less than 0.05 are printed in boldface). In this test, errors during the null blocks are compared
to errors during channel blocks (fB1; B4; B7g vs. fB2; B3; B5; B6g under Protocol A and fB1; B3g
vs. B2 under Protocol B). Significant improvements in performance were observed as patients
reached in force channels

Protocol A
fB1; B4; B7g vs. fB2; B3; B5; B6g
Direction M1 (path length) M2 (max lateral dev) M3 (dev at 150 ms) M4 overshoot

12:00 0.2752 0.0495 0.0495 0.5127
Protocol B
fB1; B3g vs. B2

Direction M1 M2 M3 M4

2:00 0.2482 0.0209 0.0209 0.3865
12:00 0.0433 0.0209 0.0209 0.0209
10:00 0.0833 0.0209 0.0209 0.1489
6:00 0.1489 0.0209 0.0209 0.0433

Table 12.5 Nonparametric test p-values are listed for various metrics and reaching directions. In
this test, errors during the null blocks are compared to each other (fB1; B4; B7g under Protocol A
and fB1; B3g under Protocol B). No evidence of use-dependent learning was observed

Protocol A
B1 vs. B4 vs. B7

Direction M1 (path length) M2 (max lateral dev) M3 (dev at 150 ms) M4 overshoot

12:00 0.9565 0.7326 0.7326 0.9565
Protocol B
B1 vs. B3

Direction M1 M2 M3 M4

2:00 0.3865 0.3865 0.3865 0.7728
12:00 0.1489 0.3865 1 0.7728
10:00 1 0.5637 0.5637 0.7728
6:00 0.1489 0.7728 1 1

Table 12.6 Nonparametric test p-values for various metrics and reaching directions. In this test,
errors to the non-trained reaching directions during the null blocks fB1; B4; B7g under Protocol A
are compared to each other. Generalization of use-dependent learning was not observed

Protocol A
B1 vs. B4 vs. B7

Direction M1 (path length) M2 (max lateral dev) M3 (dev at 150 ms) M4 overshoot

2:00 0.5866 0.8752 0.9565 0.9565
10:00 0.7326 0.9565 0.4298 0.8371
6:00 0.7326 0.9565 0.6703 0.9565
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This indicates that some capacity for motor adaptation remains for this subject and
a potentially substantial subset of the patient population. This contradicts one of our
key assumptions made during the computer simulations used to find the optimal per-
turbation: in accordance with the many studies which have shown impaired motor
adaptation among cerebellar patients, the simulations assumed cerebellar patients
repeat the same pattern of muscle activity during early movement. Violations of this
assumption would result in a perturbation that will not remain optimal over time.
Real-time optimization of this perturbation might result in further improvement for
patients capable of motor adaptation.

For the moderately impaired patient, Cerebellar 5, performance improved with
the P C perturbation and degraded with the P � perturbation, as predicted (lateral
deviation decreased 16 % with P C and increased 19 % with P �). These results
suggest that this model-based approach may be useful, at least for some subset of
patients. However, more experiments must be done to better understand the efficacy
of this approach.

With the severely impaired patient, Cerebellar 6, no clear pattern was observed.
Though this method can only address the repeated misdirection, or bias, in reaching,
ataxia results in both misdirected and highly variable movements. This subject’s
movements were particularly variable and it is possible that the robot’s effect on
reaching dynamics does not exceed some critical, noise-dependent threshold. We
also suspect that this patient’s shoulder injury may obscure these results.

12.4.3 Assistance Method 2: Force Channel

In this second study, the robot was used to render force channels to constrain arm
movements during reaching. This study also explored how the ordering of null
(robot passive) and channel (robot active) trial blocks affected motor learning. The
force channels resulted in significant improvements in reaching performance in the
directions both parallel and orthogonal to the force channel. There was no evidence
that reaching practice in these channels results in improved reaching performance
after the channels were removed.

It may be seen as a trivial observation that force channels had a significant
effect of decreasing lateral deviation – this is precisely the function of the channel.
However, the presence of force channels also had an effect on overshoot in the 12:00
and 6:00 directions. In other words, patients not only made straighter movements,
but in two of the four directions, demonstrated improvement in the direction
orthogonal to the channels. This is analogous to the observation that cerebellar
subjects are less impaired when making single-jointed movements [5], in that the
channels simplify motor control requirements.

Our failure to observe learning is consistent with many other cerebellar studies.
Indeed, a common theme in cerebellar studies is that error-based or use-dependent
learning mechanisms are difficult to elicit. We found that the gradual removal of the
force channel did not produce a measured effect.
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12.5 Conclusions

The first assistance method explored here utilizes the KINARM exoskeleton to apply
the optimal augmentation in dynamics for specific cerebellar patients. In essence,
the goal is to “add back in” the aspects of limb control that have been lost for each
cerebellar subject. It appears that this targeted, assistive approach may work for
some patients. This work could be extended by improving the fidelity and range of
dynamic perturbations that the robot can stably render. This could possibly increase
the number of patients and the degree to which each is assisted by this method.

This approach could lead to a “soft” rehabilitation strategy in which wearable
devices are used to change effective limb dynamics in a manner that exactly counters
the original movement deficit, thus providing patient-specific, unconstrained robotic
assistance or training for movement control. An approach like this would be
especially useful as correcting faulty cerebellar patient movements through motor
learning has proven elusive [10, 19, 20, 31]. These results inspire the design of new
assistance strategies for patients with cerebellar damage using patient-specific aug-
mentations to arm dynamics. Critically, such an approach could improve reaching
performance without knowing the patient’s intended direction of movement a priori.

The motor behavior does, at least for some cerebellar patients, change in
the presence of an altered dynamic environment. One approach to account for
this is to apply a prescribed perturbation, measure performance, recalculate the
optimal perturbation, and iterate. Faster simulation and optimization may enable
this approach in future work.

The second assistive method uses force channels and explores task designs
that might elicit use-dependent learning with cerebellar patients. The KINARM
is able to stably render stiff force channels that significantly improve reaching
performance. However, reaching performance returned to baseline after the channels
were removed. We also were not able to detect generalization of learning – practice
in a force channel had no effect of subsequent reaching behavior in other directions.

The design of effective training protocols for cerebellar subjects is certainly
a challenge given the reality of their loss of brain function. However, much
redundancy does exist in the human motor control system and other learning
mechanisms might be engaged through clever task design. The importance of
informed task design is critical given the logistical difficulty in recruiting patients
with a very specific condition. In parallel to these efforts, wearable devices could
be designed to implement assistive strategies to improve patients’ quality of life by
assisting them with activities of daily living.

These studies demonstrate the use of robotic instruments for precise measure-
ments and interventions to understand and treat human motor deficits. In particular,
the capacity to affect the dynamics of the human arm in an arbitrary manner allowed
for a direct test of a popular hypothesis about cerebellar function and is something
that could not be practically achieved with any other instrument. The approach
of designing model-based and patient-specific robotic assistance and rehabilitation
paradigms could lead to an increased understanding of the brain and improved
patient outcomes.
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