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A Learning Scheme for EMG Based Interfaces:
On Task Specificity in Motion Decoding Domain

Minas Liarokapis, Kostas J. Kyriakopoulos, and Panagiotis Artemiadis

Abstract A complete learning scheme for EMG based interfaces is used to
discriminate between different reach to grasp movements in 3D space. The proposed
scheme is able to decode human kinematics, using the myoelectric activity captured
from human upper arm and forearm muscles. Three different task features can be
distinguished: subspace to move towards, object to be grasped and task to be exe-
cuted (with the grasped object). The discrimination between the different reach to
grasp movements is accomplished with a random forest classifier. The classification
decision triggers task-specific motion decoding models that outperform “general”
models, providing better estimation accuracy. The proposed learning scheme takes
advantage of both a classifier and a regressor, that cooperate advantageously in
order to split the space, confronting with task specificity, the nonlinear relationship
between the EMG signals and the motion to be estimated. The proposed scheme
can be used for a series of EMG-based interfaces, ranging from EMG based
teleoperation of robot arm hand systems to muscle computer interfaces and EMG
controlled neuroprosthetic devices.

Keywords ElectroMyoGraphy (EMG) • EMG based interfaces • Learning
scheme • Task specificity

M. Liarokapis (�) • K.J. Kyriakopoulos
National Technical University of Athens, Athina, Greece
e-mail: mliaro@mail.ntua.gr; kkyria@mail.ntua.gr

P. Artemiadis
School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe,
AZ 85287, USA
e-mail: panagiotis.artemiadis@asu.edu

P. Artemiadis (ed.), Neuro-Robotics: From Brain Machine Interfaces
to Rehabilitation Robotics, Trends in Augmentation of Human Performance 2,
DOI 10.1007/978-94-017-8932-5__1, © Springer ScienceCBusiness Media Dordrecht 2014

3

mailto:mliaro@mail.ntua.gr
mailto:kkyria@mail.ntua.gr
mailto:panagiotis.artemiadis@asu.edu


4 M. Liarokapis et al.

1.1 Introduction

Electromyography was first used, for the control of advanced prosthetic devices,
30 years ago [1]. Over the last decades, the field of EMG based interfaces
has received increased attention, as many applications of mainly surface elec-
tromyography (sEMG), have been proposed. Some of those applications are;
EMG based teleoperation [2, 3] in remote or dangerous environments, EMG based
control of advanced prosthetic limbs [4] that help patients regain lost dexterity,
EMG controlled exoskeletons [5] for rehabilitation purposes and muscle computer
interfaces as an alternative means for human computer interaction [6] and [7].
Although EMG based interfaces are very promising and may have a vital role in
human robot/computer interaction applications for the years to come, some of their
disadvantages that have been identified and discussed in many studies in the past are;
the high-dimensionality and complexity of the human musculo-skeletal system and
the non-linear relationship between the human myoelectric activity and the motion
or force to be estimated.

Principal components analysis (PCA) has been used by several studies in the
past, for the investigation of human hand kinematic and/or muscle synergies. In [8]
optical markers were mounted on 23 different points on the human hand and
kinematics were captured during an unconstrained haptic exploration task. PCA
was applied in order to conclude to a set of hand postures, representative of most
naturalistic postures that appear during object manipulation. The studies conducted
by Santello et al. [9] and Todorov et al. [10] identified – capturing the human hand
kinematics with datagloves – a limited number of postural synergies “representing”
most of the variance, for a wide variety of object grasps. In [11] a similar study
was conducted, using a camera-based motion capture system. Regarding muscle
synergies, glove measurements combined with EMG activity were acquired in [12],
from subjects using the American Sign Language (ASL) manual alphabet, revealing
temporal synergies across different muscles, during different hand movements.
Muscle synergies ability to formulate a predictive framework, capable to associate
muscular co-activation patterns derived from EMGs with new static hand postures,
was investigated in [13].

As we have already mentioned one of the main difficulties that researchers
face in the field of EMG based interfaces, is the highly nonlinear relationship
between the human myoelectric activity and human kinematics, as described in
[14]. This difficulty forced the majority of researchers to avoid to decode a
continuous representation of human kinematics, choosing to focus on a discrete
approach, such as the directional control of a robotic wrist [15] or the control of
multifingered robot hands to a series of discrete postures [16, 17] and [18–21]. For
doing so, machine learning techniques and more specifically classification methods
were used. In [16] and [17] classifiers were used to discriminate based on the
human myoelectric activity, between independent human hand’s digit movements
or different hand postures. Castellini et al. [22] used forearm surface EMGs for the
feed-forward control of a hand prosthesis, discriminating between three different
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grip types (power grasp, index precision grip and middle-ring-pinky precision grip),
in real-time. Brochier et al. [23] used the myoelectric activity of two adult macaque
monkeys, to discriminate muscular co-activation patterns associated with different
grasping postures. The latter study was conducted for grasping tasks involving 12
objects of different shapes. Although the discrete EMG based control approach, has
been used in many studies and has led to many interesting applications, the use of
finite postures may cause severe problems such as the lack of motion smoothness. In
fact for most EMG based interfaces (such as the EMG based teleoperation studies),
the execution of everyday life tasks that require decoding of complete trajectories,
is of paramount importance. Thus, a specification for any proposed methodology,
should be to address the issues of continuous and smooth control.

Regarding the continuous EMG based control approach, various techniques have
been used to provide estimates of human kinematics based on human myoelectric
activity. Some of them are; the Hill-based musculoskeletal model, the state-space
model, artificial neural network based models, support vector regression based mod-
els and random forests based models. The Hill-based musculoskeletal model [24]
is the most commonly used model, for continuous EMG based control of robotic
devices, using human motion decoded from EMG signals. Some applications of the
Hill-based model can be found in [14] and [25–28]. However the aforementioned
Hill model based studies, typically focus on few degrees of freedom (DoFs), because
Hill model equations are non-linear and there is a large number of unknown
parameters per muscle. State-space models were used by Artemiadis et al. in [2,29]
and [30]. In [29], a state-space model was used to estimate human arm kinematics
from the myoelectric activity os muscles of the upper-arm and the forearm, while
emphasis was given to the non-stationarity of the EMG signals and the evolution
of signal quality over time (i.e., due to muscle fatigue, sweat etc.). In [2] and
[30] authors proposed a methodology that “maps” muscular activations to human
arm motion, using a state space model and the low dimensional embeddings of
the myoelectric activity (input) and kinematics (output). Artificial neural networks
(ANN) were used in [31] to estimate the continuous motion of the human fingers,
using the myoelectric activity of forearm muscles (only one degree of freedom per
finger was decoded), in [32] to control using EMG signals a robot arm with one
degree of freedom and in [33] to decode from EMG signals human arm motion,
restricting the analyzed movements to single-joint isometric motions.

All the aforementioned studies, addressed the issue of EMG based continuous
human motion estimation, but none of them focused on the full human arm-hand
system coordination. A Support Vector Machines (SVM) based regressor was used
in [3] to decode full arm hand system kinematics. However, only the position and
orientation of the human end-effector (wrist) and one DoF for the human grasp, were
decoded. Such a choice limits method’s applicability to everyday life scenarios,
where independent finger motions are of paramount importance. Finally the latter
method requires smooth and slow movements from the user.

In [34, 35] and [36], we proposed a learning scheme that combines a classifier
with a regressor to perform task-specific EMG-based human motion estimation for
reach to grasp movements. Principal Component Analysis (PCA) was applied to
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extract the low dimensional manifolds of the EMG activity and human motion.
These low dimensional spaces, were used to train different task-specific models,
formulating a regression problem. The scheme was used to discriminate first
the task to be executed and trigger then a task-specific EMG based motion
decoding model, which achieves better estimation results than “general” models.
The estimated output was back projected in the high dimensional space (27 DoFs)
to provide an accurate estimate of the full human arm-hand system motion. A
similar methodology was recently proposed in [37], where classification techniques
were used in order to discriminate between reach to grasp movements towards
objects of different sizes and weights. Recently, we extended the learning scheme
proposed in [36], in order to discriminate also the “task to be executed”, as well as
to perform efficient features selection with random forests [38]. The final scheme
discriminates three different task features: position to move towards, object to be
grasped and task to be executed (with the object). The scheme consists once again
of a classifier combined with a regressor. The classifier uses sEMG to discriminate
between different reach to grasp tasks, in the m-dimensional space (where m is the
number of EMG channels) of myoelectric activations, while the regressor is used to
train models for every possible task. Then based on the classification decision, an
appropriate EMG-based task-specific motion decoding model, can be triggered. The
regression problem is once again formulated using the low-d spaces of the human
EMG signals (input) and the human motion (output). It must be noted that for these
last five studies the classification accuracy constantly increases – as the reach to
grasp movement evolves – providing always an early decision (at the beginning of
reach to grasp movement) of the task to be executed.

In this chapter we formulate a complete learning scheme for EMG based
interfaces, that takes advantage of a classifier which is combined with a regressor.
The classifier and the regressor cooperate advantageously in order to split the task
space and provide better estimation accuracy, with task specific models. The whole
scheme is based on the random forests methodology for classification and regres-
sion. EMG signals are used to discriminate different reach to grasp movements in
3D space. Task specificity is introduced in three different levels, suggesting that
the myoelectric activity differentiates; between reach to grasp movements towards
different subspaces, between reach to grasp movements towards different objects,
as well as between reach to grasp movements towards a specific object placed at a
specific position, but with the intention to perform different tasks while the object is
grasped. The classifier uses the human myoelectric activity, to discriminate between
those different reach to grasp movements in the m-dimensional space of the EMG
signals (m is the number of channels). The regressor is first used to train task-
specific models for all possible tasks, so as for a task-specific model to be triggered,
based on the classification decision. Classification decision is taken at a frequency
of 1 kHz, enabling our scheme to identify the task in real time. The proposed scheme
can provide continuous estimates of the full human arm hand system kinematics (27
DoFs modeled, 7 for the human arm and 20 for the human hand). Those estimates
can be used by a series of EMG based interfaces.
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The rest of the chapter is organized as follows: Sect. 1.2 analyzes the apparatus
and the experiments conducted, Sect. 1.3 focuses on the different methods used
to formulate the proposed EMG-based learning scheme, results for EMG based
classification and task specific EMG based motion estimation are presented in
Sect. 1.4, while Sect. 1.5 concludes the chapter.

1.2 Apparatus and Experiments

1.2.1 Experimental Protocol

Two different types of experiments were conducted for the formulation of the
proposed learning scheme. All experiments were performed by five (4 male,
1 female) healthy subjects 21, 24, 27, 28 and 40 years old. The subjects gave
informed consent of the experimental procedure and the experiments were approved
by the Institutional Review Board of the National Technical University of Athens.
Experiments were performed by all subjects, using their dominant hand (right hand
for all subjects involved).

During experiments the subjects were instructed to perform different reach to
grasp movements in 3D space, to reach and grasp different objects placed at different
positions, in order to execute different tasks with the grasped objects. The object
positions were marked on different shelves of a bookcase, as depicted in Fig. 1.1.

The first type of experiments, involved reach to grasp movements towards
different positions (five different positions depicted in Fig. 1.1) and different objects
(a mug, a rectangular shaped object and a marker) and was used for EMG-based
“subspace discrimination” and “object discrimination”. The second type of experi-
ments, involved reach to grasp movements towards specific positions and objects, in
order to execute two different tasks (two classes), with the same object. A tall glass,
a wine glass, a mug and a mug plate were used for the second type of task discrim-
ination experiments. The first experiments were used for the initial formulation of
the learning framework proposed in [34] and were once again used in [38] together
with the second type of experiments, to discriminate between different tasks and
compute feature variables importance for different positions, objects and tasks.

The tasks executed for the second type of experiments appear in Fig. 1.2. During
the experiments, each subject conducted several trials, for each position, object and
task combination. In order to ensure data quality and avoid fatigue, adequate resting
time of 1 min, was used between consecutive trials.

1.2.2 Motion Data Acquisition

In order to capture efficiently human kinematics – using appropriate motion capture
systems – the kinematic models of the human arm and the human hand must
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Fig. 1.1 A bookcase containing three different objects (a marker, a rectangular-shaped object and
a mug), placed at five different positions, at three different shelves, is depicted. A superimposed
diagram presents the distances between the different object positions. These five positions were
used for both types of experiments

Fig. 1.2 Tasks executed for the second type of experiments. The tall glass tasks were: task 1, side
grasp (to drink from it) and task 2, front grasp (to transpose it). The wine glass tasks were: task 1,
side grasp (to drink from it) and task 2, stem grasp (to drink from it). The mug tasks were: task 1,
handle grasp (to drink from it) and task 2, top grasp (to transpose it). Finally the mug plate tasks
were: task 1, side grasp (to lift and hold it) and task 2, top grasp (to transpose it)
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Fig. 1.3 Kinematic models depicting the degrees of freedom (DoFs) of the human arm and hand

be described. The kinematic model of the human arm, that we use in this study,
consists of three rotational degrees of freedom (DoFs) to model shoulder joint, one
rotational DoF for elbow joint, one rotational DoF for pronation-supination and two
rotational DoFs for wrist flexion/extension and abduction/adduction. The kinematic
model of the human hand consists of 20 rotational DoFs, 4 for each one of the
5 fingers. Regarding fingers we used for the four kinematically identical fingers
(index, middle, ring and pinky) three rotational DoFs to model flexion-extension of
the different joints and one rotational DoF for abduction-adduction. Human thumb
is modeled, using two rotational DoFs for flexion-extension, one rotational DoF for
abduction-adduction and one rotational DoF to describe palm’s mobility that allows
thumb to oppose to other fingers. The kinematic models of the human arm and hand
are presented in Fig. 1.3.

In order to capture the human arm hand system motion in 3D space, extracting
the corresponding joint angles (27 modeled DoFs), we used a dataglove for the
human hand and a magnetic position tracking system for the human arm. The
Isotrak II® (Polhemus Inc.) magnetic motion capture system used, is equipped
with two position tracking sensors and a reference system. The two sensors of
Isotrak II, were placed on the elbow and the wrist respectively, while the reference
system was placed on the user’s shoulder. Having captured the positions of the
human shoulder, elbow and wrist, the inverse kinematics of the human arm can
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Fig. 1.4 Two position tracking sensors of Isotrak II are used to capture user’s shoulder, elbow and
wrist position in 3D space, while a dataglove is used to capture the wrist and fingers joint angles.
The position tracker reference system is placed on the shoulder. The human arm joint values can
be computed through the human arm’s inverse kinematics. q1 and q2 jointly correspond to shoulder
flexion-extension and adduction-abduction, q3 to shoulder internal-external rotation, q4 to elbow
flexion-extension, q5 to pronation-supination and q6 and q7 jointly correspond to wrist flexion-
extension and adduction-abduction

Fig. 1.5 Different motion capture systems, used to capture human arm hand system motion, are
depicted

be computed, following the directions provided in [39]. Alternatively for human
robot interaction applications, a human to robot motion mapping procedure like the
one proposed in [40], can be used. Regarding the human hand, the Cyberglove II®

(Cyberglove Systems), is used to measure the 2 DoFs of the wrist (flexion-extension
and abduction-adduction) and the 20 DoFs of the human fingers. The experimental
setup that was used to track human arm hand system kinematics, is depicted in
Fig. 1.4 and the different motion capture systems are depicted in Fig. 1.5.
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1.2.3 Electrode Positioning and EMG Data Acquisition

In total, we recorded the myoelectric activity of 16 muscles, of the upper arm
(8 muscles) and the forearm (8 flexor and extensor muscles). More specifically
the chosen muscles are: flexor pollicis longus, flexor digitorum superficialis, flexor
carpi ulnaris, flexor carpi radialis, extensor pollicis longus, extensor indicis, extensor
carpi ulnaris, extensor carpi radialis, deltoid anterior, deltoid posterior, deltoid
middle, trapezius, teres major, brachioradialis, biceps brachii and triceps brachii.
The selection of the muscles and the placement of the surface electromyography
electrodes, was based on the related literature [16, 41]. In order to achieve easy,
portable and fast to use training schemes several researchers have chosen to place
the EMG electrodes, in specific regions but in random (not precise) positions [3]. We
believe that the next generation of epidermal electronics [42] will make the electrode
positioning faster and easier, thus we choose to take advantage of the higher signal
to noise ratio, that accurate electrode positioning offers.

EMG signals were acquired and conditioned using an EMG system (Bagnoli-
16®, Delsys Inc.), equipped with single differential surface EMG electrodes (DE-
2.1®, Delsys Inc.). A signal acquisition board (NI-DAQ 6036E®, National Instru-
ments), was used for signal digitization and data acquisition.

1.2.4 EMG and Motion Data Processing

Regarding data processing, EMG signals were band-pass filtered (20–450 Hz),
sampled at 1 kHz, full-wave rectified and low-pass filtered (Butterworth, fourth
order, 8 Hz), while for the position measurements, which were provided by the
position tracking system at the frequency of 30 Hz, an antialiasing finite-impulse-
response filter (low pass, order: 24, cutoff frequency: 100 Hz), was used to resample
them at a frequency of 1 kHz (same as the sampling frequency of the EMG signals).

1.2.5 Muscular Co-activation Patterns Extraction

After data collection, all EMG recordings, were pre-processed and epochs of
data were created. Those epochs included the different reach-to-grasp movements
captured during the experiments. Then, all data were resampled at 100 Hz, where
each sample at the new frequency (100 Hz) was calculated as the mean value of ten
(10) samples of the original frequency (1 kHz). Based on the profiles of the rectified
EMG signals at the new frequency, the onset of muscular activations was defined
comparing the amplitude of each muscle’s myoelectric activation to it’s relaxed
state. Finally, epochs including only muscular activations captured during the actual
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Fig. 1.6 Comparison of a Boxplot and a “Boxplot Zone” visualization of muscular co-activation
patterns across sixteen (16) muscles of the upper arm and the forearm for one subject (Subject 1),
performing reach to grasp movements towards a mug placed at position I

tasks were created, and were used to formulate synergistic profiles, using a novel
statistical representation technique, that we introduced and which we call “Boxplot
Zones”.

A boxplot (alt. box-and-whisker plot) is a method to graphically depict groups of
numerical data, through the following five-number summaries: smallest observation
(sample minimum), lower quartile (Q1), median (Q2), upper quartile (Q3), and
largest observation (sample maximum). Boxplot zones were first defined in [34]
to visualize muscular co-activation patterns and are an equivalent of boxplots,
while more visually informative representation, suitable for the representation of
synergistic profiles. Boxplot zones consist of three different layers. The first layer
includes the median line, connecting the medians of all boxplots. The second layer
includes the box zone (blue zone), connecting the boxes that contain all the values
between the lower and the upper quartile, while the third layer includes the whisker
zone (white zone), connecting the whiskers that mark the largest and the smallest
observation. A direct comparison of a boxplot and a boxplot zone visualization, can
be found in Fig. 1.6.

In Fig. 1.7 we present a “boxplot zones” based visualization of muscular co-
activation patterns of sixteen (16) muscles (of the upper arm and the forearm),
for one subject (Subject 1) executing reach to grasp movements, towards five (5)
different positions in 3D space, to grasp three (3) different objects. The muscular co-
activation patterns presented in Fig. 1.7 in terms of synergistic profiles formulated
with boxplot zones, depict a significant differentiation between the different reach-
to-grasp movements, although the same joints of the arm hand system (human upper
arm joints and human hand finger joints) are involved, but for a different task. More
precisely, if we examine the synergistic profiles (muscular co-activation patterns)
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Fig. 1.7 “Boxplot Zones” visualization of muscular co-activation patterns of sixteen (16) muscles
(of the upper arm and the forearm), for one subject (Subject 1) performing reach to grasp
movements towards, five different positions (PI , PII , PIII , PIV and PV ) in 3D space, to grasp
three different objects (a marker, a rectangle and a mug). The sixteen (16) muscles are reported in
the following order (1–16): deltoid anterior, deltoid middle, deltoid posterior, teres major, trapezius,
biceps brachi, brachioradialis, triceps brachii, flexor pollicis longus, flexor digitorum superficialis,
flexor carpi ulnaris, flexor carpi radialis, extensor pollicis longus, extensor indicis, extensor carpi
ulnaris and extensor carpi radialis

across different subspaces (different positions), we notice that the activity of the
muscles of the upper-arm (EMG channels 1–8) reflects most of the differentiation. In
contrast, if we examine the muscular co-activation patterns across different objects,
placed in the same subspace (a specific position), the activity of the muscles of the
forearm (EMG channels 9–16) reflects most of the differentiation.

In Fig. 1.8 we present a “boxplot-zones” based visualization of muscular co-
activation patterns differentiation, for 16 muscles of the human upper-arm and fore-
arm, for 3 different subjects performing different reach to grasp movements, towards
five (5) different positions in 3D space, to grasp a specific object (rectangular-shaped
object).

As we have already noted there is a significant differentiation between muscular
co-activation patterns associated with different reach to grasp movements. Statistical
significance of muscular co-activation patterns differentiation, can be assessed using
appropriate statistical tests. More precisely the Lilliefors test (adaptation of the
Kolmogorov-Smirnov test) was used to test the null hypothesis that the EMG
data – containing the myoelectric activations – come from a normal distribution.
The test rejects the null hypothesis at the 5 % significance level .p D 0:05/, so the
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Fig. 1.8 “Boxplot Zones” visualization of different muscular co-activation patterns of sixteen
(16) muscles of the upper arm and the forearm, for three (3) different subjects performing reach to
grasp movements towards, the aforementioned five (5) positions in 3D space, to grasp a specific
object (a rectangle)

data are not normally distributed. Thus, we use non parametric tests such as, the
Kruskal-Wallis and the Wilcoxon rank sum test, in order to assess the significance
of muscular co-activation patterns differentiation, for different strategies.

The Kruskal-Wallis compares the medians of the myoelectric activity of the
selected muscles, for different muscular co-activation patterns, and returns the p

value for the null hypothesis that all samples are drawn, from the same population
(or from different populations with the same distribution). The Wilcoxon rank sum
test, performs a two-sided rank sum test of the null hypothesis that data of myo-
electric activations with different muscular co-activation patterns, are independent
samples from identical continuous distributions, with equal medians.

More details regarding the statistical procedures used, the reader can find in
[43]. All tests were performed to check the differentiation of muscular co-activation
patterns for the following three cases:

• For the same reach to grasp movement, between different subjects.
• For reach to grasp movements towards five different positions in 3D space.
• For reach to grasp movements towards three different objects, placed at a specific

position in 3D space.

For all sets, confidence levels were set at 95 %. All tests null hypotheses for all
three cases were rejected, proving that muscular co-activation patterns differentiate,
between different subjects and between different tasks. In Fig. 1.9, we present the
means and the confidence intervals of EMG activity across eight muscles of the
upper arm and eight muscles of the forearm, for a subject performing reach to grasp
movements, towards three (3) different objects. In Fig. 1.10, we present the means
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Fig. 1.10 Means and confidence intervals of EMG activity across eight (8) muscles of the upper
arm and eight (8) flexor and extensor muscles of the forearm, for one subject (Subject 1) performing
reach to grasp movements, towards a marker, placed at five (5) different positions in 3D space

and the confidence intervals of EMG activity across eight muscles of the upper arm
and eight muscles of the forearm for a subject performing reach to grasp movements,
towards a marker, placed at five (5) different positions in 3D space.

Therefore, we conclude that the muscular co-activation patterns vary signifi-
cantly not only between different subjects, but also between different reach-to-grasp
movements of the same subject (towards different subspaces or different objects
placed at specific position), and therefore should be considered and analyzed as
subject-specific and task-specific characteristics.
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1.3 Methods

In this section we present some typical specifications for EMG based interfaces and
we describe the problem formulation and the methods used for discrimination of
different muscular co-activation patterns, associated with different reach to grasp
movements (classification) and EMG based motion estimation (regression).

1.3.1 Classification and Regression Modules

Some specifications that every EMG-based learning scheme should have, are:

• To be able to “decide” on user’s intention (classification part).
• To decode a continuous representation of human motion (regression part).
• To allow its application at a robot control scheme, in real time.
• To be easy and fast to be trained for different users (as musculoskeletal

characteristics may vary significantly across subjects).
• To be able to handle multidimensional spaces and large databases of myoelectric

and motion data.

In this chapter we present an EMG-based learning scheme, using the Random
Forests (RF) technique – which meets the aforementioned specifications – for both
classification and regression. Thus, the classifier and the regressor cooperate advan-
tageously, in order to split the task space and confront the non-linear relationship
between the EMG signals the motion to be estimated, with task specific models
that provide better estimation accuracy than the “general” models (built for all
tasks).

In Fig. 1.11 we present a block diagram of a typical random forests based
classification procedure. Random forests are used for a multiclass classifica-
tion problem, where we need to discriminate between reach to grasp move-
ments, towards different positions, different objects (to be grasped) and different
tasks (to be executed with the object) in 3D space, using human myoelectric
activity (EMG).

In Fig. 1.12 we present the block diagram for a typical random forests based
regression procedure. The task specific models trained are used to estimate for new
EMG data (not previously seen during training) “new” human arm hand system
kinematics.

A complete block diagram of the EMG-based learning scheme proposed, is
depicted in Fig. 1.13. Two main modules appear, the classification module and the
task specific model selection module. Classification module provides decision for
subspace to move towards, object to be grasped and task to be executed (with the
object). Task specific model selection module, examines classification decisions and
triggers a subspace, object and task specific motion decoding model.
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Fig. 1.11 Block diagram of the classification procedure

Fig. 1.12 Block diagram of the regression procedure

1.3.2 Multiclass Classification in the m-Dimensional Space of
Myoelectric Activations (m-Number of EMG Channels)

As we have already noted, synergistic profiles depicted in terms of “boxplot zones”
in Fig. 1.7 denote that there is a significant differentiation of muscular co-activation
patterns for reach to grasp movements towards different positions and different
objects placed at the same position. In order to be able to take advantage of this
differentiation, we choose to discriminate the different reach to grasp movements
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Fig. 1.13 A block diagram of the proposed EMG-based learning scheme is presented. Two main
modules, formulate the “backbone” of the learning scheme, the classification module and the task
specific model selection module. Classification module (based on the classifier) provides decision
for subspace to move towards, object to be grasped and task to be executed with the object. Task
specific model selection module (based on the regressor) examines classification decisions and
triggers a subspace, object and task specific motion decoding model (from all possible models
trained). The task specific motion decoding model efficiently estimates the full human arm hand
system motion (27 joint values), using human myoelectric activity (EMG signals). Finally an
EMG-based interface can take advantage of the proposed scheme and the estimated human motion.
For example a human to robot motion mapping procedure may take as input the estimated human
arm hand system motion, to generate equivalent robot motion, as described in [40]. A possible
application of the proposed learning scheme, is the EMG-based teleoperation of a robot arm hand
system

in the m-dimensional space of the myoelectric activations (where m is the number
of EMG channels), using the EMG signals to “decide” on the task to be performed
(human intention decoding).

In Fig. 1.14 we present a typical classification problem of discriminating based
on the myoelectric activity of 16 muscles of the human arm hand system, two
different strategies for reaching and grasping a specific object placed in two different
positions. Reaching, grasping and return phases are depicted. The top subplot
presents the distance between the two classes in the 16-dimensional space (16 EMG
channels are used). Such a distance, give us a measure of classes separability
(i.e., how easily these classes can be discriminated). The bottom subplot, presents
the evolution of classification decision over time. The accumulation of misclassified
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Fig. 1.14 Comparison of two reach to grasp movements towards a marker placed at position I
(Strategy I) and a marker placed at position II (Strategy II). First subplot presents the distance of
the two strategies in the m-dimensional space (where m = 16 the number of the EMG channels).
The second subplot focuses on the evolution of classification decision per sample, over time

samples is reasonable for those time periods, when the distance between the two
classes is small (i.e. begin and end of experiments, when human end-effector (wrist),
is close to its starting position).

In Fig. 1.15 we present the classification problem of discriminating two different
reach to grasp movements, towards a specific object placed at a specific position,
but in order to execute two different tasks (with the object). Once again, top subplot
presents the distance between the two classes in the 15-dimensional space (15 EMG
channels are used), as well as the reaching, grasping and return phases. Bottom
subplot presents once again the evolution of the classification decision and there
is a similar with Fig. 1.14, accumulation of misclassified samples for the time
periods, that the distance between the two tasks is small (i.e. begin and end of the
experiment).

1.3.2.1 Random Forests Classifier

The Random Forests technique proposed by Tin Kam Ho of Bell Labs [44] and
Leo Breiman [45], can be used for classification creating an ensemble classifier that
consists of many decision trees. The Random Forests classifier’s output, is the class
that is the mode of the individual trees class’s output. Thus, the classifier consists
of a collection of tree structured classifiers fh.x; ‚N /; N D 1; : : :g where f‚N g
are independent identically distributed random vectors. Each decision tree of the
random forest, casts a vote for the most popular class at input x.
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Fig. 1.15 Comparison of two reach to grasp movements, towards Position I to grasp a tall glass
with two different grasps (side grasp and front grasp), to execute two different tasks. First subplot
presents the distance of the two tasks in the m-dimensional space (where m D 15 the number
of the EMG channels). The second subplot focuses on the evolution of classification decision per
sample, over time

The classification procedure for N trees grown is presented in Fig. 1.16. Some
advantages of the random forests technique for classification are:

• Runs efficiently and fast on large databases.
• Provides high accuracy.
• Does not overfit.
• Provides feature variables importance.
• Can handle thousands of input variables without variable deletion.
• Can handle multiclass classification problems.
• Can be used efficiently in multidimensional spaces.

1.4 Features Selection with Random Forests

In the aforementioned classification examples we used the random forests technique
to discriminate, between different reach to grasp movements in the m-dimensional
space of the myoelectric activations, using multiple EMG channels (m is 15 or 16).
Its quite typical for EMG based interfaces, a limited number of EMG channels
to be available (e.g., due to cost or complexity limitations), or EMG electrodes
positioning to be not precise (some EMG channels may be more noisy). Thus,
a fundamental question is: “Is it possible to select which EMG channels are the
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Fig. 1.16 Random forests based classification procedure for N trees grown. OOB stands for out-
of-bag samples

most important? How this features selection can be accomplished?”. With Random
Forests we can perform efficient features selection, using their ability to compute
the importance score of each feature variable and consequently access the relative
importance for all feature variables (e.g., EMG channels).

More precisely random forests use for the construction of each tree, a different
bootstrap sample set from the original data. One-third of the samples are left out of
the bootstrap sample set (out-of-bag samples) and are not used in the construction of
the N th tree. Feature variables importance, is computed as follows; in every grown
tree in the forest, we put down the out-of-bag samples and count the number of votes
cast for the correct class. Then the values of a variable m are randomly permuted in
the out-of-bag samples and these samples are put down the tree. Subtracting the
number of votes casted for the correct class in the m-variable permuted out-of-
bag data from the previously computed number of votes for the correct class in
the untouched out-of-bag data, we get the importance score of a feature variable m

for each tree. The raw importance score for each feature variable m is the average
importance score for all trees of the random forest. The random forests feature
variable importance calculation procedure, is depicted in Fig. 1.17.

In case that we want to reduce the number of EMG channels used (in this study
we have already used 15 and 16 EMG channels), random forests can be initially
run with all the variables (EMG channels) and then run once again with the most
important variables selected during the first run. For example, we can use the
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Fig. 1.17 Diagram of the random forests feature variable importance calculation procedure. OOB
stands for out-of-bag samples

random forests classifier with all 15 EMG channels, compute the feature variables
importance and re-solve the classification problem, using the most “important”
EMG channels. Before doing so, we present the feature variables importance for the
problems of discriminating from EMG signals, reach to grasp movements towards,
different subspaces, different objects and different tasks.

In Fig. 1.18 we present the importance plots of different feature variables
(EMG channels), for two different cases, subspace discrimination and object
discrimination. We can notice that for subspace discrimination, the feature vari-
ables corresponding to upper-arm muscles (first 8 EMG channels) appear to
have increased importance, while for object discrimination the feature variables
corresponding to the forearm muscles (last 8 EMG channels), accumulate most of
the importance.

This latter evidence can also be verified by the fact that for reach to grasp
movements towards different subspaces, the muscular co-activation patterns of the
upper-arm muscles accumulate most of the differentiation, while for reach to grasp
movements towards different objects, the muscular co-activation patterns of the
forearm muscles (responsible for grasping), accumulate most of the differentiation.
More details can be found in [34].

In Fig. 1.19 we present the importance plots for different feature variables
(EMG channels), for task discrimination. Four different barplots are depicted,
that contain the importance scores per variable for different objects placed in
position I. We can notice that the feature variables corresponding to the forearm
muscles (last 8 EMG channels) appear to have once again increased importance
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Fig. 1.18 Importance plots
of feature variables (EMG
channels) – expressed as
mean decrease in accuracy –
for Subject I, for subspace
and object discrimination
respectively. For subspace
discrimination data involving
all objects are used, while for
object discrimination, a
specific position is used
(Pos I). Positions 1–5
correspond to positions Pos I
to Pos V. Objects 1, 2 and 3
correspond to mug, marker
and rectangle respectively

(similarly to object discrimination), since the forearm muscles are responsible for
hand preshaping, in order to grasp and/or manipulate objects.

1.4.1 Task Specific Motion Decoding Models

1.4.1.1 Task Specific EMG Based Motion Decoding Models Based on
Random Forests Regression

The Random Forests technique can also be used for regression, growing trees
depending on a random vector ‚ such that the tree predictor h.x; ‚/ takes on
numerical values (not class labels used for classification). The random forest
predictor, is formed similarly to the classification case, as appeared in Fig. 1.16,
by taking instead of the most popular class, the average over the N trees of the
forest fh.x; ‚N /g.

Some advantages of the random forests regression are the following:

• Are easily implemented and trained.
• Are very fast in terms of time spent for training and prediction.
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Fig. 1.19 Importance plots of feature variables (EMG channels) for task discrimination. Reach to
grasp movements towards all objects placed in Position I were performed, so as to execute two
different tasks per object. A list of the tasks executed can be found in Fig. 1.2

• Can be parallelized.
• Can handle thousands of input variables and run efficiently on large databases

(similarly to classification).
• Are resistant to outliers.
• Have very good generalization properties.
• Can output more information than just class labels (e.g., sample proximities,

visualization of output decision trees etc.).

1.4.1.2 Dimensionality Reduction

In order to formulate the regression problem used in this study, we need the low-
dimensional spaces of the myoelectric activations and the human motion. Thus,
in order to represent our data in low-d spaces, we used the Principal Components
Analysis (PCA), dimensionality reduction method. For the EMG signals recorded, a
4-D space suffices, representing most of the original high-dimensional data variance
(more than 92 %). Regarding the human arm hand system kinematics, a 4-D space
once again suffices to describe adequately the 27-DoF motion of the human arm
hand system, representing most (94 %) of the original data variance. We chose to
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use the PCA as a dimensionality reduction technique – in order to take advantage
of the underlying covariance of our data – representing also the same variability
in a low-d space, without losing important information of the original data.
More details regarding the employment of PCA in EMG based interfaces, can be
found in [2].

1.5 Results

1.5.1 Classifiers Comparison

In order to validate our hypothesis that random forests based classification is
an ideal method for EMG based interfaces, we have applied a wide variety of
classification techniques in our dataset, comparing them with random forests, in
terms of classification accuracy and time required for training.

More precisely, we performed Support Vector Machines (SVM) based classifica-
tion (with a Radial Basis Function (RBF) kernel), we constructed a single hidden-
layer Neural Network (NN) with ten hidden units (trained with the Levenberg-
Marquardt backpropagation algorithm) and we used the k nearest neighbors (kNN)
classifier, for the simplest case where k D 3. Finally random forests were
grown with ten trees for speed. Random Forests outperformed the classification
performance of all other classifiers and performed quite well in terms of speed of
execution. More details regarding the comparison of classification results, can be
found in [34].

The classification success rate (classification accuracy) is defined, as the percent-
age of EMG data points classified to the correct reach to grasp movement. It must
be noted that the classification is done for every acquired EMG data point, thus the
proposed learning scheme is able to decide in real-time the reach to grasp movement
to be performed (for a specific task), and even switch to different tasks online. All
classification results presented in this section, are the average values over the five
rounds, of the five-fold cross-validation method applied.

The training dataset that was used to compare classifiers in terms of speed of
execution, involved Subject 1 data of reach to grasp movements towards different
objects, placed at Position I (Class I) and Position II (Class II). Results are reported
in Table 1.1. All benchmarks were performed using MATLAB (Mathworks) in
a standard PC with Intel(R) Core(TM) I5 CPU 611 @3.33 GHz and 4 GB RAM
(DDR3) memory.

The training dataset that was used to compare classifiers in terms of classification
accuracy, involved Subject 1 data of reach to grasp movements towards two objects
(two classes), placed across three different positions in 3D space. Results are
reported in Table 1.2.
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Table 1.1 Comparison of
classifiers in terms of time
required for training

Classifiers Samples Training time (s)

2 classes of 1,500 0:011

LDA 2 classes of 15,000 0:058

2 classes of 1,500 0:005

QDA 2 classes of 15,000 0:051

2 classes of 1,500 0:014

kNN 2 classes of 15,000 1:65

2 classes of 1,500 1:06

ANN 2 classes of 15,000 16:05

2 classes of 1,500 0:34

SVM 2 classes of 15,000 7:09

2 classes of 1,500 0:06

Random forests 2 classes of 15,000 0:87

Table 1.2 Comparison of
classifiers for discriminating
two different reach to grasp
movements, towards two
objects placed across three
different positions in 3D
space, for Subject 1

Classifiers Positions Mug (%) Rectangle (%)

Pos I 96:75 83.36
LDA Pos III 96:50 90.40

Pos V 91:44 95.00
Pos I 95:34 80.52

QDA Pos III 97:30 91.45
Pos V 92:30 95.60
Pos I 96:33 81.63

kNN Pos III 98:20 94.50
Pos V 96:50 98.68
Pos I 94:67 84.63

ANN Pos III 98:50 94.76
Pos V 94:52 98.87
Pos I 97:46 87.42

SVM Pos III 98:81 94.50
Pos V 98:00 96.50
Pos I 99:67 89.02

Random forests Pos III 100 96.50
Pos V 98:87 99.00

1.5.2 Comparison of Different Decoding Methods

In order to validate our hypothesis that random forests based regression is an ideal
method for EMG based interfaces, we have applied also a wide variety of regression
techniques in our data, comparing them with random forests, in terms of estimation
accuracy and time spent for training. More specifically we performed Multiple
Linear Regression (MLR), we created a State-Space model as described in [2],
we performed SVM regression (with a RBF kernel) and we constructed a single
hidden layer Neural Network with ten hidden units (trained with the Levenberg-
Marquardt backpropagation algorithm). Finally random forests were used as a
regression technique, growing ten (10) decision trees, to increase speed of execution
and computational efficiency.
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Table 1.3 Time spend for
the training procedure across
different methods for a
specific dataset (10,000
samples) that serves as a
benchmark (average values)

Method Time (s)

MLR 0:0054

State space 8:65

ANN 28:83

SVM 27:72

Random forests 5:89

Table 1.4 Comparison of different methods and estimation results, for specific position (Pos III)
and specific object (Marker), for Subject 1. Average values for different validation set splittings

Method Arm joints Hand joints
similarity (%) similarity (%)

MLR 81.60 84.31
State space 82.74 85.10
ANN 85.10 86.92
SVM 86.01 88.90
Random forests 86.93 90.42

The formulated regression problem, was to map the low-d space (4 dimensions)
of the myoelectric activity (EMG signals), to the low-d space (4 dimensions)
of the human motion. The low-d spaces of human myoelectric activations and
human motion were extracted using the PCA method. Then the estimated low-d
human motion was back-projected to the high-d space providing an estimate of
the full human arm hand system kinematics (27 DoFs). As far as the estimation
accuracy is concerned, we compared the methods for different datasets, estimating
human motion for reach to grasp movements, towards different positions, as well as
different objects placed at the same position.

Regarding training time, we chose to compare the different techniques in terms
of time required for training, applying the various methods to a separate dataset, that
serves as a benchmark. In Table 1.3, we can notice that random forests outperform
most other techniques, in terms of speed of execution.

In Table 1.4 we can notice that random forests outperform also the other regres-
sion techniques, such as the Support Vector Machines (SVM) and the Artificial
Neural Networks (ANN), in terms of estimation accuracy. In order to compare
the different regressors a standard PC with an Intel(R) Core(TM) I5 CPU 611
@3.33 GHz, equipped with a 4 GB RAM (DDR3) memory, was once again used.
The benchmark was performed using MATLAB (Mathworks). More information
regarding the regression techniques comparison results, can be found in [35].

1.5.3 Classification Results

In Table 1.5, we present the classification results across different reach to grasp
movements, for a specific position and three different objects (three classes) for all
subjects, using the random forest method.
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Table 1.5 Classification accuracy across different reach to grasp movements towards a specific
position and three different objects (three classes), for all subjects (using random forests)

Objects (Classes)

Positions Mug (%) Marker (%) Rectangle (%)

Pos I 87.82 (˙4.52) 91.15 (˙5.31) 88.82 (˙4.63)
Pos II 84.24 (˙5.99) 90.40 (˙4.52) 91.81 (˙5.41)
Pos III 84.78 (˙5.78) 86.72 (˙5.16) 85.39 (˙4.95)
Pos IV 83.24 (˙6.14) 84.17 (˙6.21) 86.93 (˙4.83)
Pos V 86.55 (˙4.39) 89.32 (˙3.81) 90.74 (˙3.78)

Table 1.6 Classification accuracy across different reach to grasp movements, for a specific object
and five different object positions (five classes), for all subjects (using random forests)

ObjectsPositions
(Classes) Mug (%) Marker (%) Rectangle (%)

Pos I 86.01 (˙4.16) 89.83 (˙4.01) 87.01 (˙6.57)
Pos II 83.76 (˙6.24) 87.95 (˙4.78) 88.43 (˙5.51)
Pos III 89.74 (˙3.41) 87.23 (˙4.92) 90.30 (˙4.01)
Pos IV 91.23 (˙2.39) 90.05 (˙4.86) 90.51 (˙3.92)
Pos V 91.80 (˙3.45) 92.34 (˙2.69) 90.90 (˙3.01)

Table 1.7 Classification accuracy across different reach to grasp movements towards different
positions, for all objects and subjects (using random forests)

Positions

Pos I (%) Pos II (%) Pos III (%) Pos IV (%) Pos V (%)

88.51 86.29 87.91 89.20 91.02

In Table 1.6 we present the classification accuracy across different reach to grasp
movements, for a specific object and five different object positions (five classes), for
all subjects, using the random forest method.

In Table 1.7 we present the classification accuracy of random forest models,
across reach to grasp movements towards five different positions (five classes), for
all objects and subjects, using the random forest method.

In Table 1.8, we present the classification results achieved, using 15 EMG
channels to discriminate between reach to grasp movements, towards specific
position and object combinations (for all objects and positions), to execute two
different tasks per object (two classes). As it can noticed, classification accuracy
is consistently high across different positions, different objects and different tasks.
The latter evidence proves the efficiency of the proposed scheme for various reach
to grasp movements and tasks.

In Table 1.8, we reported some interesting classification results for task discrim-
ination, using a lot of EMG channels (15 EMG channels) which typically may
not be available, due to hardware, cost or other limitations. Thus in this work we
use the random forests technique to compute the feature variables (EMG channels)
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Table 1.8 Classification
accuracy across different
reach to grasp movements,
towards different positions
and objects, to execute two
different tasks (two classes).
Random forests classifier was
used for 15 EMG channels, of
Subject 1 data

Tall glass
Tasks Side grasp (%) Front grasp (%)

Pos I 76.31 (˙7.41) 78.87 (˙4.72)
Pos II 89.77 (˙5.43) 87.88 (˙9.42)
Pos III 84.86 (˙8.27) 85.75 (˙2.38)
Pos IV 89.69 (˙5.61) 86.82 (˙8.06)
Pos V 87.56 (˙8.20) 90.36 (˙4.77)
Wine glass
Tasks Side grasp (%) Stem grasp (%)

Pos I 84.14 (˙4.15) 85.20 (˙4.59)
Pos II 71.23 (˙5.19) 79.72 (˙9.31)
Pos III 66.64 (˙8.15) 77.71 (˙11.47)
Pos IV 87.98 (˙5.21) 89.02 (˙5.81)
Pos V 66.44 (˙8.66) 64.28 (˙7.62)
Mug
Tasks Handle grasp (%) Top grasp (%)

Pos I 89.33 (˙6.66) 90.74 (˙6.78)
Pos II 79.77 (˙6.74) 82.31 (˙7.02)
Pos III 75.98 (˙9.63) 83.52 (˙7.03)
Pos IV 84.91 (˙3.83) 86.99 (˙5.20)
Pos V 77.83 (˙5.79) 77.36 (˙3.95)
Mug plate
Tasks Side-pinch grasp (%) Top grasp (%)

Pos I 84.98 (˙2.52) 81.76 (˙4.99)
Pos II 89.58 (˙6.11) 92.76 (˙4.27)
Pos III 86.73 (˙7.57) 95.58 (˙1.92)
Pos IV 87.16 (˙6.59) 85.64 (˙9.86)
Pos V 91.62 (˙3.08) 90.78 (˙2.98)

importance for each position and object combination and resolve the classification
problems for task discrimination, using the six most important EMG channels.

Results for task discrimination, using the most important EMG channels, are
reported in Table 1.9. We can notice that even for the reduced number of feature
variables (EMG channels), classification accuracy remains consistently high and
the results are equal or better than the initial results (with the 15 EMG channels).

In the aforementioned results, is evident that the classification accuracy and the
overall ability of our scheme to discriminate different reach to grasp movements,
towards different tasks (executed with the same object), depends on:

• The “distance” (in the configuration space) between the final postures of the full
human arm hand system, that correspond to different tasks.

For example the two tasks of the tall glass, mug and mug plate result to completely
different human wrist angles (wrist motion strongly affects forearm muscles). Thus,
for these tasks better classification results can be achieved, in contrast to the wine
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Table 1.9 Classification
accuracy across different
reach to grasp movements,
towards different positions
and objects, to execute two
different tasks (two classes),
for Subject 1. Random forests
were used with the six most
important EMG channels
selected using the features
selection method

Tall glass
Tasks Side grasp (%) Front grasp (%)

Pos I 81.43 (˙2.64) 79.91 (˙7.69)
Pos II 89.79 (˙7.35) 90.79 (˙7.97)
Pos III 82.84 (˙9.12) 88.76 (˙3.34)
Pos IV 89.82 (˙5.89) 87.71 (˙7.97)
Pos V 84.66 (˙9.98) 92.85 (˙4.14)
Wine glass
Tasks Side grasp (%) Stem grasp (%)

Pos I 86.77 (˙3.72) 84.30 (˙3.77)
Pos II 74.50 (˙9.81) 81.20 (˙9.64)
Pos III 72.62 (˙8.66) 79.39 (˙13.56)
Pos IV 86.90 (˙8.40) 87.61 (˙5.95)
Pos V 63.41 (˙6.88) 64.24 (˙9.72)
Mug
Tasks Handle grasp (%) Top grasp (%)

Pos I 87.17 (˙4.67) 87.85 (˙4.59)
Pos II 80.10 (˙7.36) 83.72 (˙5.87)
Pos III 77.90 (˙5.40) 81.43 (˙6.98)
Pos IV 85.35 (˙4.14) 84.98 (˙6.07)
Pos V 81.06 (˙8.29) 78.95 (˙9.57)
Mug plate
Tasks Side-pinch grasp (%) Top grasp (%)

Pos I 84.34 (˙5.57) 83.60 (˙3.44)
Pos II 90.74 (˙4.59) 94.01 (˙3.49)
Pos III 85.55 (˙12.07) 95.61 (˙2.89)
Pos IV 86.74 (˙10.18) 83.79 (˙7.27)
Pos V 91.00 (˙2.23) 92.28 (˙3.03)

glass tasks that involve mainly finger motions and variations of the aperture (less
differentiation of muscular co-activation patterns).

• The position of the object to be grasped, as different positions result to different
classification accuracies for the same object and tasks.

For example for positions I and IV the classifier achieves better classification
accuracy for wine glass and mug, while positions II and V achieves better results
for tall glass and mug plate.

1.5.3.1 Majority Vote Criterion

Given the fact that the classification decision in our scheme is taken at a frequency
of 1 kHz, we can use a sliding window of width N, in order for all the N samples to
be used for the classification decision. Inside this window, we can use the Majority
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Table 1.10 Classification accuracy across different reach to grasp movements of Subject 1,
towards a specific object (Marker) and varying object position, using random forests and random
forests with MVC (in a sliding window of N D 50 samples)

Subject1

Object rectangle Pos I (%) Pos II (%) Pos III (%) Pos IV (%) Pos V (%)

Random forests 87:03 91:61 90:51 86:25 92:61

RF with MVC 100 100 100 100 100

Table 1.11 Estimation
results for a specific object (a
marker) across all five object
positions, for Subject 1, using
a random forests model

Arm Hand
Position similarity (%) similarity (%)

Pos I 83.78 ˙4.01 83.43 ˙13.77
Pos II 88.80 ˙3.98 86.60 ˙15.02
Pos III 86.93 ˙3.95 90.42 ˙10.47
Pos IV 89.47 ˙6.25 83.73 ˙16.12
Pos V 91.53 ˙6.57 89.04 ˙10.09
All 80.19 ˙7.32 81.15 ˙16.24

Vote Criterion (MVC), which classifies all the samples of a set of N samples, in
the class that was the most common between them (the class gathering the most
votes). The use of the majority vote criterion, can improve the classification results
acquired with the proposed methods.

More details regarding the sliding window and the MVC can be found in [34] and
[46]. In Table 1.10, we present improved classification results using the majority
vote criterion in a sliding window of N D 50 samples, for Subject 1 performing
reach to grasp movements, towards a specific object (marker) and varying object
position.

1.5.4 Task Specific Motion Decoding Results

In this section we present the EMG-based motion estimation results, for reach to
grasp movements towards three different objects, placed at five different positions
in 3D space. Highly accurate estimation results are achieved using task-specific ran-
dom forest models, triggered from our scheme, taking into account the classification
decision on the “task” to be executed.

More specifically in Table 1.11 we present estimation results for five subspace
specific models, trained with Subject 1 data, to decode human motion during reach
to grasp movements, towards five different positions to grasp a specific object
(marker). In Table 1.12 we present estimation results for three object specific
models, trained with Subject 1 data, to decode human motion during reach to grasp
movements, towards a specific position (Pos I), to grasp three different objects (a
marker, a rectangle and a mug).



32 M. Liarokapis et al.

Table 1.12 Estimation
results for a specific position
(Pos III) and all three
different objects, for
Subject 1, using a random
forests model

Arm Hand
Object similarity (%) similarity (%)

Marker 86.93 ˙3.95 90.42 ˙10.47
Rectangle 87.76 ˙4.13 82.33 ˙12.31
Mug 89.62 ˙5.13 83.52 ˙13.57
All 83.26 ˙7.2 80.47 ˙11.72

Table 1.13 Estimation
results for specific position
(Pos III) and specific object (a
rectangle), for all subjects
using a random forests model

Arm Hand
Subject similarity (%) similarity (%)

Subject 1 87.76 ˙4.13 82.33 ˙10.47
Subject 2 85.91 ˙6.21 81.59 ˙11.78
Subject 3 89.44 ˙4.30 84.93 ˙14.93
Subject 4 87.32 ˙5.34 85.28 ˙10.16
Subject 5 82.11 ˙7.79 80.54 ˙16.32

In Tables 1.11 and 1.12 we can notice, that the models trained for each position
or object separately, outperformed the “general” models built for all positions (for a
marker) and all objects (placed at specific position, Pos III). With the term “general”
models we mean those models trained for all positions in 3D space or all objects
placed at a specific position (training of “general” models requires a training set
that contains data for all classes of a specific problem).

Finally in Table 1.13 its evident, that the estimation results were usually better
for the human arm (better estimation accuracy for human arm motion was achieved)
than for the case of the human hand (human fingers motion). Such a finding,
supports the applicability of our method, since precisely estimating the position of
the human arm hand system end-effector (wrist), is far more important than fingers
placement.

Similarity between the estimated and the captured human motion is defined as:

S D 100.1 � RMS.qc � qe/=RMS.qc//% (1.1)

where RMS is:

RMS.qc � qe/ D
sPn

iD1 .qc � qe/
2

n
(1.2)

where qc are the captured joint values, qe the estimated joint values and n the
number of samples. In Fig. 1.20 we compare the estimated from the task-specific
model, user’s wrist position, with the user’s wrist position captured using the Isotrak
II motion capture system, during the experiments. The data used are part of a
validation set, not previously seen during training.
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Fig. 1.20 EMG-based human end-effector (wrist) position estimation (using a task-specific
motion decoding model). Straight lines represent the captured values (during the experiments),
while the dashed lines represent the estimated values

1.6 Conclusions

A complete learning scheme for EMG based interfaces, has been proposed. A
regressor and a classifier cooperate advantageously in order to split the task space,
and achieve better motion decoding for reach to grasp movements, using task
specific models. Thus, the proposed scheme is formulated so as to first discriminate
between different reach to grasp movements, providing an appropriate classification
decision and then trigger a task-specific EMG based motion decoding model, that
achieves better motion estimation, than the “general” models. Principal Component
Analysis (PCA) is used to represent in low dimensional manifolds the human myo-
electric activity and the human motion. The regression problem is then formulated
using these low-dimensional embeddings. The estimated output (human motion) can
be back projected in the high dimensional space (27 DoFs), in order to provide an
accurate estimate of the full human arm-hand system motion. The proposed scheme
can be used by a series of EMG-based interfaces and for applications that range
from human computer interaction and human robot interaction, to rehabilitation
robotics and prosthetics. Regarding future research directions, we plan to apply the
proposed scheme for the EMG based teleoperation of the robot arm-hand system
Mitsubishi PA10 DLR/HIT II, taking into account the non-stationary characteristics
of the EMG signals.

References

1. Graupe D, Salahi J, Kohn KH (1982) Multifunctional prosthesis and orthosis control via
microcomputer identification of temporal pattern differences in single-site myoelectric signals.
J Biomed Eng 4(1):17–22

2. Artemiadis PK, Kyriakopoulos KJ (2010) EMG-based control of a robot arm using low-
dimensional embeddings. IEEE Trans Robot 26(2):393–398

3. Vogel J, Castellini C, van der Smagt PP (2011) EMG-based teleoperation and manipulation
with the DLR LWR-III. In: IEEE/RSJ international conference on intelligent robots and
systems (IROS), San Francisco, pp 672–678



34 M. Liarokapis et al.

4. Cipriani C, Zaccone F, Micera S, Carrozza MC (2008) On the shared control of an
EMG-controlled prosthetic hand: analysis of user prosthesis interaction. IEEE Trans Robot
24(1):170–184

5. Lucas L, DiCicco M, Matsuoka Y (2004) An EMG-controlled hand exoskeleton for natural
pinching. J Robot Mech 16(5):482–488

6. Costanza E, Inverso SA, Allen R, Maes P (2007) Intimate interfaces in action: assessing the
usability and subtlety of EMG-based motionless gestures. In: Proceedings of the SIGCHI
conference on human factors in computing systems, ser. CHI ’07, San Jose. ACM, New York,
pp 819–828

7. Saponas TS, Tan DS, Morris D, Balakrishnan R (2008) Demonstrating the feasibility of using
forearm electromyography for muscle-computer interfaces. In: Proceedings of the twenty-sixth
annual SIGCHI conference on human factors in computing systems, ser. CHI ’08, Florence.
ACM, New York, pp 515–524

8. Thakur PH, Bastian AJ, Hsiao SS (2008) Multidigit movement synergies of the human hand in
an unconstrained haptic exploration task. J Neurosci 28(6):1271–1281

9. Santello M, Flanders M, Soechting JF (1998) Postural hand synergies for tool use. J Neurosci
18(23):10105–10115

10. Todorov E, Ghahramani Z (2004) Analysis of the synergies underlying complex hand manipu-
lation. In: Proceedings of the 26th annual international conference of the IEEE engineering in
medicine and biology society, EMBS ’04, San Francisco, Sept 2004, vol 2, pp 4637–4640

11. Mason CR, Gomez JE, Ebner TJ (2001) Hand synergies during reach-to-grasp. AIP J
Neurophys 86(6):2896–2910

12. Klein Breteler MD, Simura KJ, Flanders M (2007) Timing of muscle activation in a hand
movement sequence. Oxf J Cereb Cortex 17:803–815

13. Ajiboye AB, Weir RF (2009) Muscle synergies as a predictive framework for the EMG patterns
of new hand postures. J Neural Eng 6(3):036004

14. Zajac FE (1986) Muscle and tendon: properties, models, scaling and application to biome-
chanics and motor control. In: Bourne JR (ed) CRC critical reviews in biomedical engineering,
vol 19, no 2. CRC, Boca Raton, pp 210–222

15. Fukuda O, Tsuji T, Kaneko M, Otsuka A (2003) A human-assisting manipulator teleoperated
by EMG signals and arm motions. IEEE Trans Robot Autom 19(2):210–222

16. Maier S, van der Smagt P (2008) Surface EMG suffices to classify the motion of each finger
independently. In: Proceedings of the international conference on motion and vibration control
(MOVIC), Munich

17. Bitzer S, van der Smagt P (2006) Learning EMG control of a robotic hand: towards active
prostheses. In: Proceedings 2006 IEEE international conference on robotics and automation
(ICRA), Orlando, May 2006, pp 2819–2823

18. Zhao J, Xie Z, Jiang L, Cai H, Liu H, Hirzinger G (2005) Levenberg-marquardt based
neural network control for a five-fingered prosthetic hand. In: Proceedings of the 2005
IEEE international conference on robotics and automation, ICRA, Barcelona, Apr 2005,
pp 4482–4487

19. Zecca M, Micera S, Carrozza MC, Dario P (2002) Control of multifunctional prosthetic hands
by processing the electromyographic signal. Crit Rev Biomed Eng 30(4–6):459–485

20. Nishikawa D, Yu W, Yokoi H, Kakazu Y (1999) EMG prosthetic hand controller using real-
time learning method. In: IEEE SMC ’99 conference proceedings: 1999 IEEE international
conference on systems, man, and cybernetics, Tokyo, vol 1, pp 153–158

21. Takahashi K, Nakauke T, Hashimoto M (2007) Remarks on hands-free manipulation using
bio-potential signals. In: IEEE international conference on systems, man and cybernetics,
Montreal, Oct 2007, pp 2965–2970

22. Castellini C, Fiorilla AE, Sandini G (2009) Multi-subject/daily-life activity EMG-based control
of mechanical hands. J Neuroeng Rehabil 6:1–11

23. Brochier T, Spinks RL, Umilta MA, Lemon RN (2004) Patterns of muscle activity underlying
object-specific grasp by the macaque monkey. J Neurophysiol 92(3):1770–1782



1 A Learning Scheme for EMG Based Interfaces 35

24. Hill A (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond
Ser B 126(843):136–195

25. Cavallaro E, Rosen J, Perry J, Burns S, Hannaford B (2005) Hill-based model as a myoproces-
sor for a neural controlled powered exoskeleton arm – parameters optimization. In: Proceedings
of the 2005 IEEE international conference on robotics and automation, ICRA, Barcelona, Apr
2005, pp 4525–4530

26. Artemiadis P, Kyriakopoulos K (2005) Teleoperation of a robot manipulator using EMG signals
and a position tracker. In: IEEE/RSJ international conference on intelligent robots and systems
(IROS), Edmonton, Aug 2005, pp 1003–1008

27. Potvin J, Norman R, McGill S (1996) Mechanically corrected EMG for the continuous
estimation of erector spinae muscle loading during repetitive lifting. Eur J Appl Physiol Occup
Physiol 74:119–132

28. Lloyd DG, Besier TF (2003) An emg-driven musculosceletal model to estimate muscle forces
and knee joint movements in vivo. J Biomech 36:765–776

29. Artemiadis P, Kyriakopoulos K (2011) A switching regime model for the EMG-based control
of a robot arm. IEEE Trans Syst Man Cybern B Cybern 41(1):53–63

30. Artemiadis P, Kyriakopoulos K (2007) EMG-based teleoperation of a robot arm using low-
dimensional representation. In: IEEE/RSJ international conference on intelligent robots and
systems, IROS 2007, San Diego, 29 Oct 2007–2 Nov 2007, pp 489–495

31. Smith RJ, Tenore F, Huberdeau D, Etienne-Cummings R, Thakor NV (2008) Continuous
decoding of finger position from surface EMG signals for the control of powered prostheses. In:
30th annual international conference of the IEEE engineering in medicine and biology society,
EMBS, Vancouver, Aug 2008, pp 197–200

32. Ryu W, Han B, Kim J (2008) Continuous position control of 1 dof manipulator using EMG
signals. In: Third international conference on convergence and hybrid information technology,
ICCIT ’08, Busan, vol 1, Nov 2008, pp 870–874

33. Koike Y, Kawato M (1995) Estimation of dynamic joint torques and trajectory formation from
surface electromyography signals using a neural network model. Biol Cybern 73:291–300

34. Liarokapis MV, Artemiadis PK, Katsiaris PT, Kyriakopoulos KJ, Manolakos ES (2012)
Learning human reach-to-grasp strategies: towards EMG-based control of robotic arm-hand
systems. In: IEEE international conference on robotics and automation (ICRA), St. Paul, May
2012, pp 2287–2292

35. Liarokapis MV, Artemiadis PK, Katsiaris PT, Kyriakopoulos KJ (2012) Learning task-specific
models for reach to grasp movements: towards EMG-based teleoperation of robotic arm-
hand systems. In: 4th IEEE RAS EMBS international conference on biomedical robotics and
biomechatronics (BioRob), Rome, June 2012, pp 1287–1292

36. Liarokapis MV, Artemiadis PK, Kyriakopoulos KJ, Manolakos ES (2013) A learning scheme
for reach to grasp movements: on EMG-based interfaces using task specific motion decoding
models. IEEE J Biomed Health Inform 17(5):915–921

37. Fligge N, Urbanek H, van der Smagt P (2012) Relation between object properties and emg
during reaching to grasp. J Electromyogr Kinesiol 23(2):402–410

38. Liarokapis MV, Artemiadis PK, Kyriakopoulos KJ (2013) Task discrimination from myoelec-
tric activity: a learning scheme for EMG-based interfaces. In: IEEE international conference
on rehabilitation robotics (ICORR), Seattle, June 2013, pp 1–6

39. Artemiadis PK, Katsiaris PT, Kyriakopoulos KJ (2010) A biomimetic approach to inverse
kinematics for a redundant robot arm. Auton Robots 29(3–4):293–308

40. Liarokapis MV, Artemiadis PK, Kyriakopoulos KJ (2012) Functional anthropomorphism for
human to robot motion mapping. In: 21st IEEE international symposium on robot and human
interactive communication (RO-MAN), Paris, Sept 2012, pp 31–36

41. Cram JR, Kasman GS, Holtz J (1998) Introduction to surface electromyography. Gaithersburg,
Md., Aspen Publishers.

42. Dae Hyong K et al (2011) Epidermal electronics. Science 333:838–843
43. Sheskin DJ (2007) Handbook of parametric and nonparametric statistical procedures, 4th edn.

Chapman & Hall/CRC, Boca Raton



36 M. Liarokapis et al.

44. Ho TK (1995) Random decision forests. In: Proceedings of the third international conference
on document analysis and recognition, Montréal, Aug 1995, vol 1, pp 278–282

45. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
46. Theodoridis S, Koutroumbas K (2009) Pattern recognition, 4th edn. Academic/Elsevier

Science, Amsterdam/London


	1 A Learning Scheme for EMG Based Interfaces: On Task Specificity in Motion Decoding Domain
	1.1 Introduction
	1.2 Apparatus and Experiments
	1.2.1 Experimental Protocol
	1.2.2 Motion Data Acquisition
	1.2.3 Electrode Positioning and EMG Data Acquisition
	1.2.4 EMG and Motion Data Processing
	1.2.5 Muscular Co-activation Patterns Extraction

	1.3 Methods
	1.3.1 Classification and Regression Modules
	1.3.2 Multiclass Classification in the m-Dimensional Space of Myoelectric Activations (m-Number of EMG Channels)
	1.3.2.1 Random Forests Classifier


	1.4 Features Selection with Random Forests
	1.4.1 Task Specific Motion Decoding Models
	1.4.1.1 Task Specific EMG Based Motion Decoding Models Based on Random Forests Regression
	1.4.1.2 Dimensionality Reduction


	1.5 Results
	1.5.1 Classifiers Comparison
	1.5.2 Comparison of Different Decoding Methods
	1.5.3 Classification Results
	1.5.3.1 Majority Vote Criterion

	1.5.4 Task Specific Motion Decoding Results

	1.6 Conclusions
	References


