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    Abstract  

  Infl ammation in the central nervous system (CNS) is associated with 
epilepsy and is characterized by the increased levels of a complex set of 
soluble molecules and their receptors in epileptogenic foci with profound 
neuromodulatory effects. These molecules activate receptor-mediated 
pathways in glia and neurons that contribute to hyperexcitability in neural 
networks that underlie seizure generation. As a consequence, exciting new 
opportunities now exist for novel therapies targeting the various compo-
nents of the immune system and the associated infl ammatory mediators, 
especially the IL-1β system. This review summarizes recent fi ndings that 
increased our understanding of the role of infl ammation in reducing seizure 
threshold, contributing to seizure generation, and participating in epilepto-
genesis. We will discuss preclinical studies supporting the hypothesis that 
pharmacological inhibition of specifi c proinfl ammatory signalings may be 
useful to treat drug-resistant seizures in human epilepsy, and possibly 
delay or arrest epileptogenesis.  
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 14      Does Brain Infl ammation 
Mediate Pathological Outcomes 
in Epilepsy? 

           Karen     S.     Wilcox      and     Annamaria     Vezzani    

14.1         Introduction 

    The state-of-the-art knowledge acquired in the 
last decade of experimental and clinical work 
indicates that cytokines and related molecules are 
increased in brain tissue after epileptogenic inju-
ries or during seizures. In the experimental setting, 
these molecules, endowed with proinfl ammatory 
properties, contribute signifi cantly to the generation 
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and maintenance of a hyperexcitable neuronal 
network, thus decreasing seizure threshold 
(Fig.  14.1 ) and making the occurrence of a 
seizure more likely.

   A key question that basic science has been 
addressing is how these proinfl ammatory mole-
cules affect neuronal and glial functions. Answers 
to this question will increase our knowledge of 
the complex mechanistic aspects of hyperex-
citability following infl ammation and will be 
instrumental in highlighting novel targets for 

developing drugs and therapies that raise seizure 
threshold, prevent seizure generation after an 
inciting event, and inhibit their recurrence in 
chronic epilepsy. 

14.1.1     Infl ammatory Molecules 
as Neuromodulators 

 The presence of molecules with proinfl ammatory 
properties in brain specimens obtained from 

  Fig. 14.1     Schematic representation of the pathophysiologic 
outcomes of innate immunity activation in epilepsy . 
Activation of innate immune signaling occurs in epilepsy 
also in the absence of infection, thus triggering the so-called 
“sterile” infl ammatory cascade ( a ). Endogenous mole-
cules (damage associated molecular patterns, DAMPs) 
such as IL-1β and the High Mobility Group Box 1 ( HMGB1 ) 
protein are released by neurons and glia following epilep-
togenic inciting events, or during recurrent seizures. The 
activation of their cognate receptors (IL-1R type 1 and 
TLR4, respectively) upregulated in astrocytes triggers 
the NFkB-dependent infammatory genes cascade, thus 

inducing various molecules with  proinfl ammatory  and 
 neuromodulatory  properties. The signaling activation in 
neurons increases excitability by provoking acquired 
channelopathies involving voltage-gated channels ( HCN1 ) 
or AMPA and GABA-A receptor complexes ( b ), as well 
as by rapid activation of Src kinase inducing the phos-
phorylation of the NR2B subunit of the NMDA receptor 
thereby promoting neuronal Ca 2+  infl ux ( c ). This chain of 
event contributes to the generation and establishment 
of an hyperexcitable neuronal network by direct receptor-
mediated neuronal effects or indirectly by inducing 
astrocytes and BBB dysfunctions       
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patients with epilepsy has been described as 
“brain infl ammation” (Table  14.1 ). However, there 
is emerging evidence that these molecules have 
neuromodulatory functions that activate signaling 
in neurons and glia that are different from those 
induced by the same molecules in leukocytes in 
the frame of a classical infl ammatory response to 
infection. During infection, proinfl ammatory 
cytokines and related molecules are released 
during innate immunity activation by immuno-
competent cells following “pathogen associated 
molecular patterns” (PAMPs) activation of toll-
like receptors (TLRs) or nucleotide- binding 
oligomerization domain (NOD-like) receptors. 
Cytokine release activates infl ammatory programs 
for pathogen removal and the subsequent induc-
tion of homoeostatic tissue repair mechanisms. 
Notably, in humans affected by various forms 
of pharmacoresistant epilepsy of differing etiolo-

gies (e.g. Rasmussen’s (RE) and limbic encepha-
litis (LE), malformations of cortical development, 
and mesial temporal lobe epilepsy (mTLE)) 
increased infl ammatory mediators are measured 
in epileptogenic foci in the absence of an identifi -
able active infectious process. However, it is also 
important to note that CNS infection, which is a 
common cause of TLE, can also result in a cytokine 
storm that affects excitability. In this context, evi-
dence of HHV6 infected astrocytes and neurons 
has been reported in about 2/3 of patients with 
mTLE [ 108 ]. Moreover, recent work has shown 
the presence of Human Papilloma virus in human 
focal cortical dysplasia type II which might be 
responsible for focal epileptogenic malformations 
during fetal brain development in association 
with enhanced mTORC1 signaling [ 18 ].

   The so-called  sterile infl ammation  in the brain 
can be induced when TLRs are activated by endog-
enous molecules released by injured brain cells, 
named “danger signals” or “damage- associated 
molecular patterns” (DAMPs). In particular, the 
activation of TLR4, which can also be activated 
by gram-negative bacteria, is induced by the 
ubiquitous nuclear protein High Mobility Group 
Box 1 (HMGB1) which is released, upon its 
cytoplasmatic translocation, by neurons and glial 
cells. In concert with IL-1β released by glia, 
thereafter activating IL-1 receptor type 1 (IL- 1R1), 
HMGB1 induces the transcriptional up- regulation 
of various infl ammatory genes, therefore promoting 
the generation of the brain infl ammatory cascade 
in glia and endothelial cells of the BBB (Fig.  14.1 ). 
In the context of malformations of cortical devel-
opment, the infl ammatory cascade is also induced 
in aberrant neuronal cells [ 3 ]. The activation of 
the IL-1R1/TLR4 signaling in neurons, which 
overexpress these receptors in pathologic condi-
tions, in concert with pathways induced by other 
cytokines such as TNF-α, IL-6, the complement 
system and some prostaglandins, alters neuronal 
excitability by modifying either glutamate or 
GABA receptor subunit composition, or traffi cking 
of receptors, or the function of voltage-gated ion 
channels via rapid onset post-translational mech-
anisms [ 118 ,  123 ]. Furthermore, initiation of the 
JAK/STAT and other signaling pathways through 
these mechanisms can also result in activation of 

   Table 14.1    Infl ammatory mediators in human epilepsies 
and experimental models   

  Clinical evidence  
 Infl ammatory mediators are overexpressed in 
epileptogenic foci in human pharmacoresistant epilepsy 
of differing etiologies (e.g. RE, LE, MCD, mTLE) 
  Microglia and astrocytes are main sources of 
infl ammatory mediators in brain tissue; neurons and 
endothelial cells of the blood brain barrier (BBB) also 
contribute to the generation of brain infl ammation 
  Leukocyte extravasation in brain depends on the 
etiology of epilepsy 
  BBB damage is often detected together with brain 
infl ammation 
  Experimental evidence  
  Recurrent seizures and epileptogenic brain injuries 
induce infl ammatory mediators in astrocytes, microglia, 
neurons, and microvessels in brain areas involved in 
seizure onset and generalization 
  This phenomenon is long lasting and may exceed the 
initial precipitating event by days or weeks depending 
on the epilepsy model. It is inadequately controlled by 
anti-infl ammatory mechanisms 
  In models of epileptogenesis, infl ammation initiates 
before the development of epilepsy 
  Specifi c anti-infl ammatory treatments reduce acute 
and chronic seizures and delay their time of onset 
  Transgenic mice with perturbed cytokine signaling 
show altered seizure susceptibility 
  Proinfl ammatory insults decrease seizure threshold 
( acutely  and  long-term ) 
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glial cells, inducing a cascade of events that 
alters their structure and function in a variety of 
ways that can also contribute to aberrant excit-
ability [ 99 ]. 

 In animal models, pharmacological interven-
tion to block or activate specifi c infl ammatory 
pathways induced in human epilepsy brain 
specimens has shown that: (i) cytokines such as 
IL-1β, TNF-α, and IL-6, and danger signals such 
as HMGB1 and S100β, contribute to seizures in a 
receptor-dependent manner; (ii) the complement 
system contributes to seizure generation and cell 
loss; and (iii) PGE2 contributes to cell loss by 
activating EP2 receptors in neurons (Table  14.2 ). 
This set of evidence is corroborated by the assess-
ment of susceptibility to seizures and cell loss 
in transgenic mouse models with impaired or 
overexpressed infl ammatory signalings [ 118 ].

14.1.2        IL-1β, HMGB1 and the NMDA 
and GABA Receptors 

 IL-1β and HMGB1 both potentiate NMDA recep-
tor function in cultured hippocampal neurons 
using post-translational mechanisms mediated by 
activation of IL-1R1 and TLR4, respectively [ 8 , 
 53 ,  121 ]. In particular, these cytokines enhance 
NMDA-mediated Ca 2+  influx by activating 
Src kinases-dependent NR2B phosphorylation 
(Fig.  14.2 ). This signaling has been demonstrated 

to underlie the proictogenic and proneurotoxic 
properties of these cytokines [ 7 ,  8 ,  40 ,  121 ].

   This rapid onset (within 2 min) mechanism is 
reminiscent of that induced by IL-1β in hypotha-
lamic neurons, which underlies the initial rise in 
body temperature induced by this cytokine [ 23 , 
 91 ,  105 ], and it involves MyD88-dependent and 
ceramide-mediated activation of Src kinases. 
IL-1β also down-regulates AMPA receptor expres-
sion and their phosphorylation state in a Ca 2+ - 
and NMDA-dependent manner in hippocampal 
neurons [ 53 ]. Recent evidence shows that HMGB1 
effects on neuronal excitability may also include 
a physical, receptor unrelated, interaction with 
presynaptic NMDA receptors resulting in enhanced 
Ca 2+ -dependent glutamate release from presynaptic 
terminals evoked upon NMDAR stimulation [ 80 ]. 
Notably, HMGB1 per se can also induce glutamate 
release from hippocampal gliosome preparations 
implying that this molecule may increase 
gliotransmission [ 81 ]. While the effect of IL-1β 
and HMGB1 on NMDA-induced Ca 2+ -infl ux in 
neuronal cell soma and dendrites mediates cell 
loss and increases seizures [ 7 ,  8 ,  121 ], whether 
the effect of HMGB1 on presynaptic or glial 
glutamate release results in pathologic outcomes 
has not been yet investigated. 

 Excitatory actions of IL-1β have been reported 
in hippocampal slices or cultured pyramidal 
neurons where the cytokine reduces synaptically- 
mediated GABA inhibition in CA3 hippocampal 
region via still unidentifi ed kinases [ 123 ,  129 ], 
and increases CA1 neurons excitability by reducing 
NMDA-induced outward current. This latter action 
involves activation of cytoplasmatic P38 MAPK 
phosphorylating large-conductance Ca 2+ -depen-
dent K channels [ 131 ].  

14.1.3     Cytokines, Synaptic 
Transmission/Plasticity 
and Seizures 

 Cytokine receptors are expressed by the same 
resident CNS cells that express their cognate 
cytokines, namely neurons, microglia, and astro-
cytes. Binding of ligands to these receptors set 

   Table 14.2    Antagonism of IL-1R1/TLR4 in rodent 
models of seizures   

  Seizure reduction in rodents exposed to an acute 
challenge  
 Kainic acid (lesional model), bicuculline and febrile 
seizures (non lesional models) [ 28 ,  87 ,  114 ,  119 ] 
  Status epilepticus [ 24 ,  64 ] 
  Electrical rapid kindling [ 88 ,  5 ,  6 ] 
  Chronic recurrent seizures reduced in  
  mTLE mouse model [ 66 ,  67 ] 
  SWD in GAERS & WAG/Rij (absence seizures 
models) [ 1 ,  49 ] 
  Other infl ammatory signaling contributing to seizures 
are mediated by  
  TNF-α, IL-6, COX-2 & complement system 
( reviewed in  [ 50 ,  115 ,  3 ]) 
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into motion a variety of signaling pathways that 
activate glial cells and can also lead to enhanced 
excitability of neurons. 

  IL-1β . In the hippocampus, IL-1β was reported 
to induce rapid changes in synaptic transmission, 
and to inhibit LTP via activation of MAPK and 
PKC [ 12 ,  75 ,  84 ,  96 ]. Fast neuronal actions of 
IL-1β were described in the preoptic/anterior 
hypothalamic neurons involving A-type K +  cur-
rents and the consequent reduced synaptic release 
of GABA [ 105 ]. 

  TNF-α . Work by Stellwagen et al. demon-
strated that TNF-α released by astrocytes binds to 
the TNF-α receptors (TNFR) on neurons and 
induces an increase in AMPA-type glutamate 
receptors and a concomitant decrease of GABA A  
receptors at synapses [ 102 ]. Specifi cally, TNF-α 
has been shown to increase traffi cking of GluR2- 
lacking AMPA receptors to synaptic membranes 
in both hippocampal and motor neurons [ 11 ,  55 , 
 56 ,  102 ,  103 ,  126 ]. In hippocampal neurons, 
this traffi cking has been shown to depend on 
the PI3K–Akt pathway [ 102 ]. GluR2-lacking 
receptors are permeable to Ca 2+  and activation of 
these receptors could dramatically alter synaptic 
strengths at these synapses or contribute to exci-
totoxicity. While TNFR knock out mice do not 
appear to have impaired long term potentiation 
(LTP) or long term depression (LTD), synaptic 

scaling may be modulated by TNF-α [ 101 ,  103 ]. 
While it is currently unclear what role TNF-α 
signaling may be playing in receptor traffi cking 
in epilepsy, recent work using the Theiler’s 
Murine Encephalomyelitis Virus (TMEV) model 
of TLE has demonstrated that there is over a 120- 
fold increase in whole brain TNF-α mRNA soon 
after infection in C57Bl/6 mice [ 47 ]. This dramatic 
increase in TNF-α expression is associated with 
acute seizures and changes in mEPSC amplitudes 
and decay times in hippocampal brain slices 
prepared from animals acutely infected with 
TMEV [ 57 ,  98 ,  104 ]. In addition, TNFR1 knock-
out mice are much less likely to exhibit seizures 
during the acute infection period. Taken together, 
the evidence suggests an important role of 
TNF-α in modulating excitatory circuits and 
excessive amounts of TNF-α may contribute to 
seizure activity. Accordingly, a proictogenic role 
of TNF-α mediated by TNFR1, and an opposite 
anti-ictogenic role of this cytokine mediated by 
TNFR2 have been reported in chemoconvulsant 
models of seizures [ 7 – 9 ,  124 ]. Molecular and 
functional interactions between TNFR and the 
glutamatergic system in the hippocampus appear 
to be implicated in the effect of this cytokine in 
seizure susceptibility [ 8 ]. 

 In addition to modifying synaptic transmission, 
TNF-α is also known to stimulate the release of 

  Fig. 14.2     Presynaptic and postsynaptic effects of HMGB1 
on glutamatergic transmission . HMGB1 protein evokes 
( 3 H)D-aspartate and glutamate release from re-sealed glial 
( gliosomes ) and neuronal ( synaptosomes ) subcellular 
particles isolated from the mouse hippocampus ( a ). This 
protein per se augments the calcium-independent neurotrans-
mitter outfl ow from gliosomes, but not from synaptosomes, 
in a concentration-dependent manner. This outfl ow is 

likely mediated by reversal of glutamate transporter (GLAST) 
since it is blocked by DL-threo-b-benzyloxyaspartate 
(TBOA) [ 81 ]. HMGB1 augments the NMDA-induced 
( 3 H)D-aspartate calcium-dependent release from synapto-
somes ( b ). This enhancing effect is mediated by increased 
intracellular calcium via the MK-801 sensitive channel. 
This HMGB1- NMDA receptor interaction involves the 
NR2B subunit [ 80 ]       

 

14 Does Brain Infl ammation Mediate Pathological Outcomes in Epilepsy?



174

glutamate from microglia [ 17 ,  107 ] and astrocytes 
[ 92 ,  93 ], and these additional sources of extracel-
lular glutamate likely contribute to excitoxicity 
in injured brain regions. Activation of TNFR in 
cultured microglia results in an increased expres-
sion of glutaminase, which converts glutamine to 
glutamate. This excess intracellular glutamate is 
then released through connexin 36 hemi-channels 
and can be blocked by the gap junction inhibitor, 
carbenoxolone [ 107 ]. It is thought that this mech-
anism can contribute to neuronal cell death that 
often accompanies chronic or prolonged tissue 
infl ammation. 

  IL-6 . Recent work has demonstrated that IL-6, 
another cytokine that is increased in response 
to epileptogenic insults, decreases GABA and 
glycine- mediated inhibitory synaptic currents 
following bath application to spinal cord slices 
[ 46 ]. Such changes in synaptic neurotransmitter 
receptor function can result in tipping the balance 
of excitation and inhibition towards hyperexcit-
ability. Binding of IL-6 to its receptor results in 
the activation of the JAK/STAT pathway and this 
pathway is known to regulate the expression of 
many different receptor gated ion channel subunits 
[ 60 ] and underlies NMDA-dependent LTD in the 
hippocampus [ 72 ]. Therefore, changes in IL-6 
expression levels could dramatically infl uence 
excitability of neural circuits responsible for 
seizure generation. Recent work with the TMEV 
mouse model of TLE, demonstrated that IL-6 
mRNA expression increases signifi cantly during 
the acute infection period and this increase 
parallels the onset of seizures in this model. 
Furthermore, IL-6 receptor knockout mice have a 
reduced incidence of seizures following TMEV 
infection, suggesting that this cytokine, which 
is largely expressed in this animal model by 
infi ltrating macrophages, contributes to lowering 
seizure thresholds [ 21 ,  47 ]. Finally, treatment 
of TMEV infected mice with either minocycline 
or wogonin, were both found to dramatically 
reduce concomitantly the number of infi ltrating 
macrophages in the brain and seizure incidence 
[ 21 ]. These results suggest that IL-6 may be an 
important regulator, possibly through the JAK/
STAT pathway, of synaptic plasticity and seizure 
activity.  

14.1.4     Cytokines and Voltage-Gated 
Ion Channels 

 While cytokines have been extensively studied in 
neuropathic pain and in epilepsy, very few studies 
have examined the effects of the prominent 
cytokines on voltage gated ion channels (see 
[ 122 ]). Nevertheless, the limited available litera-
ture demonstrates that cytokines can modulate a 
variety of voltage gated ion channels through 
multiple mechanisms [ 95 ]. For example, TNF-α 
has been shown to increase expression of TTX 
resistant sodium channels in isolated dorsal root 
ganglion cells, increase Ca 2+  currents in cultured 
hippocampal neurons and decrease inwardly 
rectifying K +  currents in cultured cortical astro-
cytes [ 35 ,  44 ,  48 ]. IL-1β has been shown to 
decrease Ca 2+  currents in cultured hippocampal 
and cortical neurons [ 83 ,  84 ,  132 ,  133 ] as well 
as Na +  and K +  currents in dissociated retinal 
ganglion cells [ 26 ]. 

 The effect of cytokines on ion channel function 
is an area where clearly further work is necessary 
so as to inform hypotheses about the full range of 
activity of cytokines in epilepsy, particularly in 
view of the plethora of differing effects on neuro-
nal functions that cytokines may have depending 
on their concentration, timing of tissue exposure, 
the type of neuronal cells expressing the relevant 
receptors, and the concomitant presence of other 
neuromodulatory molecules.  

14.1.5     Prostaglandins, Synaptic 
Plasticity and Seizure Activity 

 Arachidonic acid (AA) is converted to prostanoids 
via activity of the enzyme cyclooxygenase (COX). 
COX-2 is constitutively active at low levels in the 
hippocampus, its expression rapidly increases as 
a consequence of neural activity, and is necessary 
for some forms of synaptic plasticity, such as LTP 
in the dentate gyrus [ 42 ]. Prostaglandin E2 (PGE2), 
one of the most common of the prostanoids to be 
formed in the hippocampus, binds to the G-protein 
coupled EP2 receptor on neurons, activates cAMP 
and mediates synaptic plasticity via the cAMP–
protein kinase A (PKA)–cAMP-responsive 
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element binding protein (CREB) pathway [ 42 ,  116 ]. 
Following status epilepticus (SE), COX-2 expres-
sion is increased in the hippocampus and prosta-
glandins, including PGE2, are also subsequently 
increased and hypothesized to be involved in 
mediating neurodegeneration that occurs in 
multiple brain regions following SE. This neuro-
toxic effect may be due to excessive stimulation 
of EP2 receptors expressed by microglia and the 
consequent activation of an alternative pathway, 
the cAMP-Epac signaling pathway promoting 
upregulation of various infl ammatory mediators 
and oxidative stress [ 42 ]. Whereas pharmacological 
inhibition of COX-2 can be neuroprotective 
following CNS insults, this approach has not 
yielded great success in preventing the development 
of epilepsy following SE although disease- modi-
fying effects have been reported [ 45 ,  51 ,  61 ,  85 ]. 
Depending on the drug used to inhibit COX-2 
and the trigger of SE, adverse events have also 
been described in epileptic rats [ 39 ,  85 ]. Therefore, 
the search is on for drugs that can selectively 
interfere with downstream pathways of COX-2 
in an effort to mitigate the detrimental infl amma-
tory actions that can occur in the CNS following 
SE. Recently, Jiang et al. evaluated the ability of 
a novel small molecule and brain permeable EP2 
antagonist, TG6-10-1, to confer neuroprotection 
and prevent the development of epilepsy in mice 
treated with pilocarpine [ 43 ]. Encouragingly, 
there was signifi cant neuroprotection and decreased 
mortality following SE in the treated mice. However, 
there were no differences with vehicle-treated 
mice in spontaneous seizure frequency, suggesting 
that epileptogenesis was not interrupted with this 
treatment [ 43 ]. This suggests that adjunctive 
therapy with an EP2 antagonist may be important 
for attaining neuroprotection in patients experi-
encing SE, but additional approaches will be 
necessary to prevent the development of epilepsy. 
In this context, a recent study reported that 
co-treatment with IL-1 receptor antagonist 
(IL-1Ra, anakinra) and a COX-2 inhibitor given 
at the time of SE induction were required to 
reduce both cell loss and epileptogenesis in rats 
[ 52 ]. Similarly, combined treatment with IL-1Ra 
and VX-765, an inhibitor of IL-1β biosynthesis, 
given systemically to rats after 3 h of uninterrupted 

SE, afforded signifi cant neuroprotection although 
not inhibiting epilepsy development [ 74 ]. This 
evidence highlights the need of both early 
intervention and combined anti-infl ammatory 
treatments for optimizing benefi cial clinical 
outcomes. 

 Another strategy to be investigated is a 
combination of specifi c antiinfl ammatory 
drugs with classical antiepileptic drugs (AED) 
targeting complementary mechanisms. Indeed, 
some AEDs afford neuroprotection or decrease 
the severity of spontaneous seizures induced in 
SE models [ 71 ].  

14.1.6     TLR4 and Neuronal 
Excitability 

 Out of 11 members of the TLRs family, TLR4 is 
the most extensively studied in CNS for its 
involvement in increasing brain excitability and 
cell loss, and for reducing neurogenesis. 

 Rat cortical application of lipopolysaccharide 
(LPS), a PAMP component of gram-negative 
bacteria wall and prototypical activator of TLR4, 
has been reported to rapidly increase the excit-
ability of local neurons as assessed by measuring 
amplitudes of sensory evoked fi eld potentials 
following rat forepaw stimulation and sponta-
neous activity [ 90 ]. A ten-fold higher LPS 
concentration could evoke epileptiform activity 
which was prevented by pre-application of IL-1Ra, 
implicating a role of IL-1β released from LPS-
activated microglia [ 90 ]. 

 We recently discovered that intracerebral LPS 
application reduces hyperpolarization-activated 
ion channel (HCN1) protein in hippocampal 
tissue, an effect associated with a reduction in Ih 
current as assessed in whole-cell patch recording 
of CA1 pyramidal neurons. This effect is long- 
lasting but reversible upon resolution of both 
microglia activation and induction of proinfl am-
matory cytokines in these cells. The activation of 
IL-1R1/TLR4 signaling is responsible for this 
effect since it was precluded in TLR4 or IL-1R1 
knock-out mice, and by pharmacological block-
ade of these receptors with selective antagonists 
(Bernard et al., 2013, personal communication). 
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 The reported LTP and LTD impairment induced 
by TLR4 stimulation is compatible with neuro-
logical dysfunction and cognitive defi cits induced 
by early life exposure to LPS which are associ-
ated with specifi c and persistent changes in 
NMDA receptor subunits expression in the cortex 
and hippocampus, predicting modifi cations in 
CNS excitability (for review see [ 89 ,  127 ]).  

14.1.7     Infl ammation-Induced 
Functional Changes 
in Astrocytes 

 Reactive astrogliosis occurs as a consequence of 
cytokine activation of the IL-1R/TLR and JAK/
STAT pathway and other signaling pathways 
following CNS insults such as traumatic brain 
injury (TBI), SE, and infection [ 99 ]. Astrogliosis 
is a graded process and is characterized by hyper-
trophy of primary processes, dramatic increases 
in the expression of intermediate fi lament proteins 
such as glial fi brillary acidic protein (GFAP), a 
decrease and cell redistribution in glutamine 
synthetase [ 20 ,  29 ,  78 ,  125 ], an increase in 
expression of adenosine kinase, and, in some 
cases, a disruption in domain organization of 
glial processes [ 76 ,  99 ]. There is also a dramatic 
increase in gap junction coupling between astro-
cytes in animal models [ 106 ] and resected human 
tissue [ 19 ,  32 ,  70 ], and a number of specifi c sub-
units of kainate receptors (KAR) were recently 
found to be expressed in reactive astrocytes 
following chemoconvulsant- induced SE in 
rodents [ 112 ]. There are, therefore, a multitude of 
changes in astrocytes following seizure-inducing 
insults and these changes may have a dramatic 
impact on the circuit dynamics underlying 
seizure generation    [ 25 ,  36 ]. 

 As astrocytes are intricately involved in regu-
lating neuronal activity at the tri-partite synapse 
(review [ 2 ]), some of the changes in glial function 
that are observed in rodent models and human 
epilepsy could easily lead to hyperexcitability in 
neural circuits and contribute to seizure genera-
tion. For example, decreases in the endogenous 
anticonvulsant adenosine as a consequence of 
increased expression of adenosine kinase can lead 

to hyperexcitability and seizure activity [ 4 ,  15 ] 
and, while early after SE, glutamate uptake by 
astrocytes seems to be functioning well [ 106 ], 
there are numerous reports of cytokine-mediated 
decreases in glutamate transporter function in 
epilepsy and other disorders which could readily 
lead to excess excitation and cell death in vulner-
able neurons [ 62 ,  68 ,  86 ,  94 ]. Reactive astrocytes 
have also been reported to have a decrease in the 
inward rectifi er potassium channel (K IR ), namely 
Kv4.1, a critical ion channel that aids in the 
buffering of extracellular potassium concen-
trations, and this altered expression may be 
mediated by IL-1β [ 134 ]. Electrophysiological 
recordings in acute brain slices obtained from 
surgical specimens of patients with mTLE, have 
revealed a reduced K IR  conductance in reactive 
astrocytes [ 38 ]. However, we recently demon-
strated that K IR  mediated currents were not 
altered in astrocytes during the latent period up to 
2 weeks following SE in the KA-treated rat [ 106 ], 
and this is consistent with a recent report demon-
strating that initial decreases in Kv4.1 mRNA 
and protein return to control levels by day 7 after 
SE [ 134 ]. Therefore, reactive astrocyte function 
may change over time as epilepsy develops. 

 While many of the observed changes in astrocytes 
that occur as a consequence of infl ammation may 
actively contribute to network hyperexcitability, 
other components of reactive astrogliosis, such as 
increased gap junctional coupling, or increased 
neurotrophins may be critical compensatory 
mechanisms following injury, and may act to 
dampen excitability and protect neurons [ 36 ]. 
Thus, simply blocking the infl ammatory response 
in glial cells may be too global an approach for 
disease modifi cation during epileptogenesis, 
while targeting specifi c processes, such as 
maintaining K IR  function, might prove to be a 
more useful approach.  

14.1.8     Cytokines Effects on BBB: 
Consequences for Neuronal 
Excitability 

 Evidence obtained using in vitro models of the 
BBB [ 31 ,  130 ] or epilepsy models [ 58 ,  77 ,  111 ,  116 ] 
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demonstrated that cytokines and prostaglandins 
compromise the permeability properties of the 
BBB, and that such alteration in brain vessels is a 
common feature of drug-resistant epileptogenic 
foci in humans and experimental models. In 
particular, there is evidence of the presence of 
IL-1β in perivascular glia and astrocytic endfeet 
impinging on brain vessels in epilepsy tissue 
where the BBB is altered, as shown by the paren-
chymal extravasation of serum macromolecules 
such as albumin and IgG. One mechanism of 
BBB damage induced by cytokines involves 
breakdown of tight-junction proteins in brain 
vessels [ 58 ,  59 ,  69 ,  73 ] induced by activation of 
Src kinases. This evidence highlights that key 
molecular pathways activated by cytokines in 
epilepsy result in different outcomes depending 
on the target cell population (expressing the 
relevant receptors), i.e. BBB permeability func-
tion is compromised in vessels, hyperexcitability 
is induced in neurons, and astrocyte function is 
greatly modifi ed. 

 BBB damage leads to albumin extravasation 
which induces TGF-β signaling in astrocytes by 
activating the TGF-β receptor type 2 [ 33 ]. This 
signaling mediates transcriptional up-regulation 
of IL-1β and other infl ammatory genes in astrocytes 
[ 16 ,  34 ] while glutamate transporter and Kir4.1 
channels are down-regulated. These pathologic 
changes have been shown to establish a hyperex-
citable milieu in surrounding neurons due to 
increased extracellular K +  and glutamate [ 97 ] which 
decreases seizure threshold and may induce per 
se epileptiform activity [ 22 ,  34 ].  

14.1.9     Leukocytes, Autoantibodies 
and Neuronal Excitability 

 There is evidence of adaptive immunity activation 
in rare disorders such as Rasmussen’s encephali-
tis (RE), viral and limbic encephalitis and neuro-
logic or systemic autoimmune disorders. These 
conditions are often associated with seizures and 
epilepsy development. In RE brain tissue, cytotoxic 
CD8 +  T lymphocytes have been demonstrated in 
close apposition to neurons and astrocytes, then 
provoking their apoptosis by releasing granzyme 

B [ 10 ,  79 ]. The presence of these cells, and more 
in general CD3 +  leuckocytes, appears to be much 
less prominent in more common forms of epi-
lepsy. For example, in focal cortical dysplasia 
(FCD) type 2, scattered lymphocytes have been 
described in brain tissue while this phenomenon 
occurs at a minor extent in FCD type 1, and is 
almost undetectable in mTLE [ 41 ,  65 ,  110 ]. 
Others have detected leukocytes in brain paren-
chyma surrounding brain vessels also in mTLE 
[ 30 ,  128 ]. In animal models of epilepsy the role 
of these cells is still uncertain since they were 
reported to mediate anti- epileptogenic and 
neuroprotective effects in KA-treated rats [ 128 ] 
whereas they contribute to the pathology in pilo-
carpine-treated mice [ 30 ]. Notably, in this latter 
instance the effects of leukocytes may be ascribed 
to the peculiar mechanisms mediating seizures 
caused by pilocarpine and which are not shared 
by other chemoconvulsants [ 64 ,  109 ,  117 ]. 

 A recent randomized clinical study using 
tacrolimus, which impedes T cell proliferation 
and activation, in recent onset RE patients showed 
delayed deterioration of neurological defi cits but 
the treatment did not ameliorate drug resistant 
seizures [ 13 ]. However, case reports have shown 
decreased seizure frequency in one RE patient 
treated with natalizumab, a blocker of T cell 
entry into the CNS [ 14 ] and in a patient with mul-
tiple sclerosis and refractory epilepsy [ 101 ]. The 
authors discussed that interpretation of data was 
limited by an additional coadministration of 
varying antiepileptic medications. 

 In limbic encephalitis and autoimmune 
disorders, circulating autoantibodies against 
various neuronal proteins have been detected (for 
review, see [ 120 ]). These antibodies recognizing 
membrane neuronal proteins may have a patho-
logic role, in addition to their diagnostic value. In 
particular, antibodies against NR1/NR2 subunits 
obtained from serum of affected patients can 
increase extracellular hippocampal glutamate 
levels when intracerebrally infused in rats. 
Increased sensitivity to AMPA receptor-mediated 
neuronal excitability and GABAergic dysfunc-
tion have also been reported [ 63 ]. Antibodies 
directed against voltage-gated K +  channel complex 
increase excitability of hippocampal CA3 pyramidal 
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cells by reducing channel function at mossy 
fi ber-CA3 synapses [ 54 ]. AMPA receptor antibod-
ies alter synaptic receptor location and number 
by reducing those receptors containing the 
GLUR2 subunit, therefore increasing the relative 
abundance of Ca 2+ -permeable receptors [ 53 ].   

14.2     Conclusions 

 While understanding of the role of the innate 
immune system and the associated molecules 
with infl ammatory properties in epilepsy and 
seizure threshold changes has advanced tremen-
dously over the last decade, there are still a 
number of questions that yet remain open and 
require further investigation. For example, it is 
not yet clear which molecules and infl ammatory 
pathways activated following epileptogenic brain 
insults will make the most appropriate targets for 
intervening to prevent seizure occurrence and/or 
the process of epileptogenesis. The complex 
network changes that occur in a number of cell 
types in the CNS, including neurons, microglia 
and astrocytes, in response to increases in a myriad 
of neuromodulatory and infl ammatory molecules 
such as IL-1β, TNF-α, IL-6 and interferon-γ to 
name but a few, are diffi cult to decipher. Moreover, 
it has still to be determined which are the master 
regulators of the infl ammatory cascade, and 
when and how to prevent the induction of brain 
infl ammation or rather promote its resolution by 
implementing the effects of the endogenous 
antiinfl ammatory molecules, which are defective 
in epilepsy [ 82 ,  87 ]. 

 Nevertheless, the increasing recognition that 
the innate immune system is tightly coupled to 
epileptogenesis and seizure threshold changes is 
encouraging as it opens up many potential novel 
molecular targets for therapeutics. Most AEDs 
are mainly antiseizure, symptomatic drugs that 
target neuronal proteins such as sodium channels 
or glutamate receptors. Their adverse effects on 
cognition and induction of sedation, coupled 
with the knowledge that nearly 30 % of patients 
with epilepsy do not have their seizures adequately 
controlled with current AEDs, suggest that targeting 
the neuromodulatory infl ammatory pathways is a 
promising novel strategy with disease- modifying 

potential. Considering that prolonged administra-
tion in epilepsy is likely to be required, and the 
constraints imposed by the BBB, both the effi -
cacy and the safety of drugs that preclude or 
reverse the over-activation of specifi c innate 
immune mechanisms should be carefully con-
sidered. Importantly, some of these antiinfl am-
matory drugs are already in clinical use showing 
therapeutic effects in peripheral infl ammatory 
conditions [ 27 ,  37 ,  113 ]. These drugs might be 
considered to complement the symptomatic 
treatment provided by available AEDs for resolving 
the infl ammatory processes in the brain, therefore 
raising seizure threshold and decreasing the like-
lihood of seizure recurrence. In this context, a 
phase 2 clinical study with VX765 has given 
promising results in adult patients with drug 
resistant partial onset seizures (  http://clinicaltrials.
gov/ct2/show/NCT01048255    ;   www.epilepsy.
com/fi les/Pipeline2012/6-7    ).     
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