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 This book is a tribute to Phil Schwartzkroin, who, in addition to over four 
decades of committed original research into fundamental mechanisms of 
epilepsy, has been a consummate editor, contributing to archival knowledge 
as well as the synthesis of new information. Phil served as editor-in-chief of 
 Epilepsia , the journal of the International League against Epilepsy (ILAE), 
editor of the  Encyclopedia of Basic Epilepsy Research  [1], and editor of 
defi nitive textbooks on animal models of epilepsy [2, 3], brain development 
and epilepsy [4, 5], and brain plasticity and epilepsy [6]. This book is a fi tting 
acknowledgment of Phil Schwartzkroin’s career achievements, as an edited 
volume that addresses many of the most pressing research issues concerning 
neuronal mechanisms underlying epilepsy that were, and continue to be, 
his passion. 

 Epilepsy is among the most common serious neurological diseases. 
According to a study by the World Health Organization, epilepsy accounts for 
1% of the global burden of disease [7]. This is equivalent to breast cancer in 
women and lung cancer in men. Among primary disorders of the brain, 
epilepsy ranks with depression and other affective disorders, Alzheimer’s 
disease and other dementias, and substance abuse [7]. Public attention on 
epilepsy, however, and the resultant amount of resources devoted to research 
on epilepsy, is but a small fraction of that for these other medical conditions. 
The fact that epilepsy has been a stigmatized disease in most cultures since 
antiquity might be one reason why it has remained in the shadows, but 
interest in epilepsy also suffers because it is a complicated multifactorial 
condition with such diverse manifestations that clinical research alone to 
elucidate comprehensive underlying fundamental neuronal mechanisms is 
essentially not possible. 

    Historical Perspective 

 Epilepsy is an ancient disease, being both common and easy to recognize in 
antiquity. There is a long history about epilepsy being attributed to many 
prevailing causes, but it was not until the late nineteenth and early twentieth 
century that modern concepts of epilepsy as a disease of the brain attributed 
to excessive neuronal activity was fi rst formulated. Before then, both the 
clinical phenomenology and some of the brain pathology associated with 
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 epilepsy were described, but the advent of electrophysiological recordings 
from the human brain by Berger and colleagues initiated a new way of studying 
the disease [8]. It quickly became apparent that during seizures there was a 
dramatic change in the electroencephalogram (EEG) and that in many patients 
there was also an alteration in the EEG even between seizures when they 
were behaviorally “normal” [9, 10]. The interictal EEG could show “spikes” 
(fast, sharp transients) or spike and slow wave discharges. As the fi eld of 
basic neurophysiology began to develop around that time, investigators 
were able to demonstrate, predominantly in animal models of seizures, that 
some neurons in the cortex fi red abnormally during seizures and also during 
the interictal EEG spikes. From the early 1950s through the early 1970s, single 
unit studies predominantly were carried out in animal models of either acutely 
provoked seizures in neocortex [11–13] or hippocampus [14, 15]. Although 
most of our current concepts about the origin and spread of seizures were 
developed from this work, opportunities to investigate functional mechanisms 
at the cellular and subcellular level were limited. 

 In the early 1970s, remarkable methodological advances occurred in the 
capacity to understand fundamental physiological and pharmacological pro-
perties of mammalian brain function: the development of the brain slice and 
dissociated cell culture. At that time, Per Andersen in Oslo devised the ability 
to maintain a slice of mammalian hippocampus in a dish for many hours and 
to record from the cells with extracellular and intracellular microelectrodes 
[16]. Within a year or two, Phil was working in Anderson’s laboratory to 
extend his studies on the mechanisms responsible for epileptic seizures and 
along the way to investigate many other important physiological functions of 
mammalian cortical neurons. He brought this preparation back to Stanford to 
collaborate with David Prince and others, and eventually in his own labora-
tory he continued to make signifi cant contributions to our understanding of 
mechanisms underlying the development and spread of epileptic seizures. 

 Over the ensuing four decades, much has been learned about the electro-
physiological substrates of epileptic seizure activity from studies with sim-
plifi ed slice preparations and from additional studies utilizing cell cultures of 
mammalian neocortex and hippocampus. However, two main conceptual 
problems persisted: the recognition that seizures artifi cially provoked in an in 
vitro preparation, or even those induced in a normal animal brain, are not 
epilepsy, and the mechanisms by which a normal brain can become chronically 
epileptic were not understood. 

 A person with epilepsy has an enduring epileptogenic abnormality 
responsible for the generation of spontaneous seizures, which continues to be 
present during the interictal state [17].   Although models of chronic focal 
epilepsy were created in rats and primates in the 1950s and 1960s with 
topical application of metals such as cobalt, iron, and alumina [2], scars were 
produced by these metals and made microelectrode recordings at the site of 
application – the area of most interest – diffi cult. In the 1970s, kindling became 
a popular animal model to study mechanisms of chronic epilepsy at the 
cellular level [18]; however, kindling is a model of secondary epileptogenesis 
and, as usually performed, kindling results in stimulation-induced seizures, 
not spontaneously generated seizures. Intensive investigations into mechanisms 
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of chronic epilepsy were facilitated by the introduction of the status epilepticus 
models of mesial temporal lobe epilepsy (MTLE) with hippocampal sclerosis, 
the most common, and most pharmacoresistant, form of human epilepsy [19]. 
Status epilepticus induced by kainic acid, pilocarpine, or electrical stimulation 
causes a pattern of hippocampal cell loss and neuronal reorganization 
resembling human hippocampal sclerosis, and eventual spontaneous limbic 
seizures [20–22]. Opportunities for invasive studies of MTLE in the epilepsy 
surgery setting made parallel reiterative multidisciplinary animal/human 
investigations possible [23]. Epileptogenesis, the process by which a normal 
brain is converted to one that is capable of generating spontaneous seizures, 
is of increasing interest to epileptologists and, as yet, can only be pursued in 
animal models. It is now understood that these enduring changes occur in 
many brain networks, not just in the areas in which the seizures appear to 
originate, but also in areas into which seizures propagate, and even in more 
remote brain regions [24]. 

 Epilepsy is a diverse disease, and the extent to which research results 
obtained from animal models of a few types of epilepsy, such as MTLE, 
apply to other types of epilepsy remains to be determined. Future research 
will require the use of a wide variety of animal models of human epilepsy, 
such as post-traumatic epilepsy, febrile convulsions, neonatal hypoxia, 
infantile spasms, and genetically engineered models of genetic epilepsies and 
genetic diseases associated with epilepsy, such as tuberous sclerosis [25, 26]. 
Creation and validation of experimental animal models of the diverse forms 
of human epilepsy are now a high priority in order to search for targets not 
only for antiseizure interventions, but also for antiepileptogenic interventions 
that can prevent or cure epilepsy [25, 26]. Phil continued to contribute impor-
tantly to resolving many of these questions in his later work. The following 
are brief discussions of the questions he chose for this volume, intended to 
stimulate the fi eld of epilepsy research today:  

    The Role of Animal Models 

 The ideal approach to the study of human epilepsy is to investigate patients 
with epilepsy; however, ethical concerns, technical constraints, and cost 
dictate that most of the critical questions concerning fundamental neuronal 
mechanisms of epilepsy still need to be resolved with experimental animal 
models. Although attempts are being made to create models of entire epilepsy 
syndromes and diseases, epilepsy can also be broken down into its compo-
nent parts, e.g., epileptogenesis, ictogenesis, seizure maintenance, seizure 
termination, postictal disturbances, and interictal disturbances, each of which 
may be modeled individually [27]. 

  Is there more to learn about human epilepsy by studying acute seizures in 
animals?  Acute seizures in a normal brain are not the same as chronic 
epilepsy. The pathophysiological and anatomical substrates of the enduring 
epileptogenic abnormalities underlying different types of human epilepsy 
need to be elucidated. Does this mean that we have already learned all we can 
from studying acute seizures? 
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  Do people with acquired epilepsy have a genetic susceptibility?  Although 
an increasing number of epilepsy genes are being identifi ed as responsible for 
single-gene epilepsy conditions, these diseases are rare [28]. The genetic 
bases of inherited diseases  associated with  epilepsy, such as tuberous sclerosis, 
are being elucidated. Both of these directions provide opportunities to create 
animal models of specifi c epilepsy syndromes and diseases, using genetic 
engineering. More importantly, however, it is now apparent that most genetic 
epilepsies, formally referred to as idiopathic epilepsies, can result from 
multiple different genetic mutations, and these represent susceptibility genes 
rather than epilepsy genes. The distinction between genetic and acquired 
epilepsies is not absolute, just as the distinction in the 1989 classifi cation of 
the epilepsies between idiopathic and symptomatic disorders is a false dicho-
tomy [29]. It is likely that some acquired disturbances are necessary for the 
manifestation of epilepsies primarily due to genetic abnormalities, and that 
genetic predispositions, susceptibility genes, infl uence the manifestation of 
epilepsies with acquired etiologies. Consequently, just as realization that 
acute seizures induced into a normal animal brain is not the same as epilepsy 
caused by an enduring epileptogenic abnormality was a paradigm shift, it 
must now also be realized that artifi cial introduction of an enduring epilepto-
genic abnormality into a normal animal brain is not the same as introduction 
of this abnormality into a brain genetically predisposed to generate specifi c 
types of epileptic abnormalities. In order to create more appropriate animal 
models of human epilepsy, more information is needed regarding specifi c 
susceptibility genes. 

  How relevant are animal models to human epileptic phenomena and how 
can they be validated?  There are many different types of human epilepsy 
[30], and it is unreasonable to assume that any animal model will completely 
reproduce all aspects of a human epilepsy disease or syndrome. Rather, models 
will likely reproduce component parts of human epilepsies, and studies need 
to be designed to take advantage of the likely similarities while accounting 
for the differences between any given animal model and the type of human 
epilepsy that is being modeled. For the rare epilepsies caused by a single gene 
mutation, these mutations can be introduced into animals to investigate the 
pathophysiological consequences of their abnormal protein products, even if 
the phenotype does not resemble the human condition. Reiterative patient   /
animal investigations utilize clinical data to identify relevant questions make 
use of relevant animal models to pursue investigations that are not ethically 
or fi nancially feasible in patients, and then validate results in the clinical 
population. This has been a valuable paradigm, particularly where invasive 
EEG recordings can be carried out in an epilepsy surgery setting and tissue is 
then available for analysis. 

  Comorbidity : Patients with epilepsy have a high incidence of comorbid 
conditions that can contribute signifi cantly to disability. Many disturbances, 
such as depression, anxiety, attention defi cit hyperactivity disorder, and 
autism, have a bidirectional relationship with epilepsy, suggesting shared 
mechanisms [31]. Because these conditions can precede epilepsy, it is not 
clear which condition is the comorbid one. Animal models of these  conditions 
in association with epilepsy are necessary to begin investigations into funda-
mental neuronal mechanisms of epilepsy comorbidity.  
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    Epileptic Activity 

 Questions persist concerning how to model and investigate the various types 
of epileptiform activity encountered in patients. In this book, experts in the 
fi eld address several of the most pressing questions: 

  Human focal epilepsy is not focal; how can studies in animal models 
recreate the epileptic network necessary for the manifestation of human 
epilepsy?  There probably is no such thing as a single discretely localized 
epileptic focus in chronic human epilepsy. Epilepsy manifests as a result of 
disturbances in distributed networks. The ILAE states: “ Focal epileptic 
seizures are conceptualized as originating within networks limited to one 
hemisphere. They may be discretely localized or more widely distributed. 
Focal seizures may originate in subcortical structures. For each seizure type, 
ictal onset is consistent from one seizure to another, with preferential propa-
gation patterns that can involve the contralateral hemisphere. In some cases, 
however, there is more than one network, and more than one seizure type, but 
each individual seizure type has a consistent site of onset ” [30]. 

  What is generalized epilepsy?  The distinction between generalized and 
focal epilepsies in the 1989 ILAE classifi cation of the epilepsies is a false 
dichotomy [28]. No epilepsy condition, or epileptic seizure, is truly genera-
lized. The ILAE states: “ Generalized epileptic seizures are conceptualized as 
originating at some point within, and rapidly engaging, bilaterally distri-
buted networks. Such bilateral networks can include cortical and subcortical 
structures, but do not necessarily include the entire cortex. Although indi-
vidual seizure onsets can appear localized, location and lateralization are 
not consistent from one seizure to another. Generalized seizures can be 
asymmetric ” [30]. 

  What are interictal EEG spikes and what is their signifi cance?  Some 
interictal EEG spikes may represent exactly the same underlying neuronal 
mechanisms as an ictal event, as, for instance, is the case with typical absence 
seizures; the so-called interictal events are too brief to be associated with 
obvious clinical behavior. In this situation, even with focal seizures, careful 
investigations can demonstrate behavioral disturbances during the so-called 
interictal spike [32]. Similarly, generalized paroxysmal fast activity (GPFA) 
without behavioral correlates, which can be seen in some patients with severe 
epilepsy, most likely represents the same underlying mechanisms as some 
low-voltage fast ictal discharges. These, therefore, are fragments of seizures 
and the terms “interictal spike” or “interictal GPFA” would be oxymorons. 
There are, however, different types of interictal spikes and not all represent 
fragments of ictal events. Some may, in fact, refl ect seizure-suppressing 
mechanisms [33]. 

  What are the limitations of studying epileptic phenomena in slice prepara-
tions?  Epileptic seizures are defi ned clinically as behavioral events with an 
electrographic correlate [17]. Electrographic changes that occur in the slice 
preparation, therefore, cannot be called epileptic seizures, although they may 
reproduce certain neuronal events similar to those which would underlie 
behavioral seizures in the intact animal. Disturbances related to ictogenesis at 
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the molecular, cellular, and perhaps microcircuit levels can be studied in slice 
preparation; however, disconnections from important infl uences of distant 
brain areas make it diffi cult to draw defi nitive conclusions concerning seizure 
generation at the level of whole-brain networks. 

  How is epilepsy mediated by non-neuronal infl uences?  Not all epilepto-
genic, or homeostatic, mechanisms involve neurons. Glia play an important 
role in modulating neuronal activity, and other non-neuronal infl uences, such 
as hormonal changes, infl ammatory and immune-mediated processes, and 
external toxic substances need to be considered.  

    Synaptic Plasticity 

 Concepts of epileptogenesis derived from an understanding of the develop-
ment of human MTLE with hippocampal sclerosis, and reproduced in the 
animal laboratory, indicate that an initial epileptogenic insult causes cell loss, 
which is then followed by synaptic reorganization of surviving neuronal 
elements. Aberrant excitatory and inhibitory connections ultimately lead to 
epileptiform hypersynchronization. Epileptogenesis can occur in experimental 
animals, however, in the absence of obvious cell loss or synaptic reorganization, 
for instance with classical amygdala kindling, and epilepsy also occurs in 
patients who have no evidence of cell loss. Cell loss and synaptic reorganization 
may not, therefore, be a universal mechanism essential for epileptogenesis. 

  Changes during epileptogenesis can be protective : Neuronal plasticity 
occurring in response to injury can be responsible for the development of 
epilepsy, but homeostatic plastic changes also occur, resulting in protective 
seizure-suppressing infl uences. Investigations to identify pathophysiologic 
disturbances following an epileptogenic insult must clearly distinguish 
epileptogenic from homeostatic protective processes. These homeostatic 
changes could also be responsible for the appearance of interictal behavioral 
disturbances. 

  What is the signifi cance of cell death in acquired epileptogenesis?  Cell 
death is clearly not necessary for all forms of epilepsy, but when it occurs, it 
can be a cause of the epilepsy, or an affect of epileptic seizures. 

  Inhibition is not necessarily decreased in human epilepsy, and increased 
inhibition may be necessary for hypersynchronization : The old concept that 
epilepsy is due to an increase in excitation and a decrease in inhibition is 
clearly an oversimplifi cation. In MTLE with hippocampal sclerosis and 
animal models of this condition, there is an increase in inhibition as well as 
in excitation [27]. Whereas some increased inhibition may have a protective 
effect, inhibition is also necessary for hypersynchronization, which is a 
component of most epileptic seizures. It is the types and location of aberrant 
excitatory and inhibitory synaptic reorganization that determine the epilepto-
genic process. 

  Features of epilepsy in the pediatric population differ considerably from 
those in patients with more mature brains : Synaptic plasticity leading to epi-
leptogenesis is different in the developing brain than in the mature brain, and 
epileptic seizures can alter the synaptic plasticity necessary for normal brain 
development [4]. 
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  Research on patients with epilepsy is revealing increasing numbers of 
genetic aberrations, as well as disturbances in important protein products 
such as ion channels and neurotransmitter receptors; how do these defects 
explain the development and maintenance of epileptic phenomena?  Plastic 
changes underlying epileptogenesis involve alterations in expression of genes 
whose protein products are ion channels, neurotransmitter receptors, and 
other membrane and intracellular structures that determine excitability. The 
location of these changes on the cell, and their infl uence on neuronal inter-
connections, also determine propensity for hypersynchronization. Although 
characterization of epileptogenic disturbances at the molecular and cellular 
levels do not reveal how epilepsy arises at the systems level, this research can 
help to identify novel targets for antiseizure and antiepileptogenic drugs 
designed to prevent and cure epilepsy, as well as control ictal events.  

    Conclusions 

 The enduring legacy of Phil Schwartzkroin is impossible to summarize here, 
but refl ected well by the discussions in this volume, written by his colleagues, 
who have watched his contributions evolve over time. These discussions 
show how complex epilepsy is, that there is much to do to resolve the 
questions that are associated with epilepsy, and the approaches that have 
allowed us to make the most advances; using the best neuroscience and 
clinical epileptology together – an approach Phil mastered, and would want 
us all to continue.  
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    Philip A. Schwartzkroin recently retired after an outstanding, infl uential 
career in neuroscience and epilepsy research. He infl uenced the work of many 
neuroscientists either by the techniques he developed or his pioneering dis-
coveries of neuronal mechanisms underlying excitability and microcircuitry 
in health and disease. He personally touched the lives of all those with whom 
he collaborated and mentored. This volume is dedicated to Phil by many of 
the numerous colleagues and trainees who respect him both personally and 
scientifi cally. As one might expect from Phil’s ‘hands-on’ approach to his 
work, Phil had a direct infl uence editing the volume and designing its unusual 
format, in which key questions in epilepsy research are addressed from both 
basic science and clinical perspectives. Phil’s goal for this volume was to 
allow experts in the fi eld the opportunity to address critical questions in ways 
that would stimulate a broad readership. Instead of leaving readers with the 
sense that they have all the answers, his goal was to encourage them to think 
about how to address the important questions in epilepsy research today. 

  Pref ace   
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 Phil began neuroscience research in high school. Through a summer 
fellowship from the National Science Foundation he investigated mouse 
behavior at the Jackson Laboratories, where he continued working during 
several subsequent summer breaks from college. Phil was a National Merit 
Scholar and graduated  magna cum laude  with highest honors in Psychology 
from Harvard University. As an undergraduate, Phil investigated neocortical 
sensory processing in the laboratory of Charles Gross. Even in this early 
stage of his career Phil was exceptional, publishing articles as fi rst author 
while still in high school and college. 

 After graduating from Harvard, Phil moved to Stanford University where 
he earned a Ph.D. in Neurological Sciences, working in the laboratory of Kao 
Liang Chow, who had trained with Karl Lashley. Chow served as a role model 
for Phil, because he was a basic scientist in a clinical department and focused 
on understanding the relationship between brain structure and function in 
health and disease. In the coming years, Phil would also serve as a role model 
in much the same way – for Phil’s own trainees. 

 Phil’s dissertation addressed the effects of vestibular stimulation on single 
cells in cat visual cortex and superior colliculus. Following his dissertation, 
Phil started to address questions related to epilepsy, which became the major 
research focus of his career. He started as an Epilepsy Foundation trainee 
with David Prince for one year before becoming a postdoctoral fellow in Per 
Anderson’s laboratory at the University of Oslo in Norway. Phil returned to 
the Department of Neurology at Stanford one year later and brought with him 
a brain slice recording chamber, which had recently been developed. The 
experiments Phil conducted using brain slices, put him at the forefront of 
controversy, because there was skepticism that brain slices would be a useful 
experi mental preparation. Nevertheless, he perservered and played a critical 
role in the ultimate acceptance of the approach. He also was a pioneer; he was 
the fi rst in the USA (after Yamamoto in Japan) to develop the slice prepara-
tion for intracellular recording. He demonstrated the utility of brain slices for 
studying normal synaptic transmission and synaptic plasticity – and was the 
fi rst to demonstrate long-term potentiation in the slice preparation. He showed 
how brain slices could be used to study epileptiform activity, paving the way 
for decades of epilepsy research based on the slice preparation. 

 In 1975, Phil was appointed Assistant Professor of Neurology at Stanford, 
where he was fi rst in the world to carry out intracellular studies in slices of 
surgically resected human epileptic neocortex and hippocampus. He began 
what would become a standard structural and functional approach in his 
laboratory, and characterized numerous cell types in the hippocampus with 
correlative cellular electrophysiology and intracellular staining techniques. 
His initial studies began with CA1 pyramidal cells and were followed by 
some of the most diffi cult recordings at that time, of GABAergic interneurons. 

 Phil moved to the Department of Neurological Surgery at the University of 
Washington in 1978, where he continued to use brain slices to make funda-
mental discoveries in hippocampal anatomy and physiology. For example, he 
pioneered the use of the slice preparation for studying brain development. 
With that approach, he was fi rst to demonstrate depolarizing IPSPs in imma-
ture hippocampus. He also was at the forefront of the most challenging 
 electrophysiological techniques, such as the use of simultaneous intracellular 
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recording from two monosynaptically-coupled neurons. Phil was also a 
leader in applying the slice preparation to questions related to animal models 
of epilepsy. His laboratory was one of the fi rst to characterize, using both 
morphology and electrophysiology, transgenic mouse models of epilepsy. 
Some of this work, such as the studies of the Kv1.1 knockout mouse, were 
major advances in epilepsy research. In addition, Phil addressed other areas 
of epilepsy research, including cortical dysplasia. He was an early contributor 
to studies on the basic mechanisms of the ketogenic diet, and was fi rst to 
demonstrate that furosemide, a chloride co-transporter antagonist, was anti-
epileptic. During this time Phil’s productivity was exceptional. For example, 
over a one-year period in 1988 he was senior author of 14 research articles, six 
of which appeared in  The Journal of Neuroscience . Phil earned many awards, 
including fellowships from the Guggenheim and Klingenstein Foundations, 
two Jacob Javits Awards from the NIH, and he was one of the fi rst recipients 
of the American Epilepsy Society/Milken Family Medical Foundation Research 
Award. In 2001, Phil moved to the Department of Neurological Surgery at the 
University of California at Davis where he held the Bronte Endowed Chair in 
Epilepsy Research. He became an emeritus professor in 2013. 

 In addition to his outstanding contributions to research, Phil was a dedicated 
member of the epilepsy research community. He served on NIH study sections 
and on scientifi c advisory boards for the Epilepsy Foundation and Citizens 
United for Research in Epilepsy. He led some of the fi rst efforts to address trans-
lation, organizing seven workshops and six books that brought together basic 
and clinical epilepsy researchers. These workshops, and the books that resulted 
from them, remain some of the most infl uential in the fi eld. He served as one of 
the fi rst chairs of Investigators’ Workshops for the American Epilepsy Society 
and was the fi rst basic scientist president of the American Epilepsy Society. He 
chaired the International League Against Epilepsy (ILAE) Commission on 
Neurobiology and organized an ILAE Workshop on the Neurobiology of 
Epilepsy. After these accomplishments, Phil served as co-editor-in-chief of 
 Epilepsia , where he strengthened the impact and reputation of the journal. 

 In addition to his achievements in research and service to the epilepsy 
research community, Phil trained many students and postdoctoral fellows. 
Many of these individuals ultimately became independent neuroscientists 
themselves, including numerous leaders in epilepsy research today. Phil 
provided his trainees with a great degree of independence. But when help was 
needed, he was an effi cient, “hands-on” trouble-shooter who quickly solved 
technical pro blems. Phil trained largely by example. He demonstrated a 
strong work ethic and began days in the lab at an extremely early hour. During 
meetings in his offi ce, Phil demonstrated impressive collegiality with col-
leagues, both near and far, often phoning them in the middle of conversations 
if he wanted to address a question. He could pick up the phone and call almost 
anyone in the fi eld, often the original source of information on a given topic. 
Phil’s trainees benefi ted greatly from exposure to some of these investigators 
when they visited the laboratory or attended meetings organized by Phil. 
Despite his considerable accomplishments, Phil was modest and easy to 
work with, characteristics that helped shape the laboratory environment into 
one that was truly enjoyable. Writing was an area where Phil’s training 
method was more direct, but just as constructive. Phil routinely transformed 
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manuscripts – often long-hand – with extensive editorial remarks that illus-
trated how to clearly convey ideas. Remarkably, Phil could do so rapidly and 
effectively, which left trainees wondering if they could ever master scientifi c 
writing and editing as well. In addition, he made it clear that excellent scien-
tifi c writing was extremely important. 

 On May 3–5, 2013 a workshop entitled “Issues in Clinical Epileptology: 
A View from the Bench” was held in honor of Phil. The workshop was sup-
ported by several organizations, including the American Epilepsy Society and 
CURE. It was not possible for all of Phil’s colleagues and trainees to attend, 
but the group that was able to come considered it an excellent meeting – as 
well as a great opportunity to honor Phil (see review by C. Stafstrom, Epilepsy 
Curr., 2013). In considering the type of book that would complement this 
‘festschrift,’ Phil provided a great deal of input, as mentioned above. His 
contribution to this volume shows that – despite his retirement – his infl uence 
will be present for years to come.

    

    Issues in Clinical Epileptology: A view from the Bench. A Festschrift in 
Honor of Philip Schwartzkroin. Pajaro Dunes Resort, Watsonville, California. 
May 3–5, 2013. First row: Paul Buckmaster, Jong Rho, Jurgen Wenzel, Phil 
Schwartzkroin, Gerry Chase, Helen Scharfman, Laura Reece, Jean-Claude 
Lacaille, Mike Haglund, Scott Baraban. Second row: Mareike Wenzel, 
Catherine Woolley, Carol Robbins, Alan Mueller, Dennis Kunkel, Dennis 
Turner. Third row: Elsa Rosignol, Daryl Hochman, Robert Fisher. Fourth 
row: Sloka Iyengar, Jerome (Pete) Engel Jr., James Trimmer, Carl Stafstrom, 
Damir Janigro, Robert Hunt. Fifth row: Aristea Galanopoulou, Tracy Dixon- 
Salazar, Solomon (Nico) Moshé, David Prince, Massimo Avoli, Jeffrey 
Noebels, Robert Wong, Michael Gutnick, Leena Knight. Back row: Satoshi 
Fujita, Aylin Reid, Charles Behr, Ben Strowbridge, Robert Berman.  

    Orangeburg ,  NY ,  USA          Helen     E.     Scharfman, Ph.D.   
   Stanford ,  CA ,  USA       Paul     S.     Buckmaster, Ph.D.      
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   Part I 

   Seizures, Epileptiform Activities, 
and Regional Localization        



3H.E. Scharfman and P.S. Buckmaster (eds.), Issues in Clinical Epileptology: A View from the Bench, 
Advances in Experimental Medicine and Biology 813, DOI 10.1007/978-94-017-8914-1_1,
© Springer Science+Business Media Dordrecht 2014

    Abstract  

  The International League Against Epilepsy (ILAE) defi ned a seizure as “a 
transient occurrence of signs and/or symptoms due to abnormal excessive 
or synchronous neuronal activity in the brain.” This defi nition has been 
used since the era of Hughlings Jackson, and does not take into account 
subsequent advances made in epilepsy and neuroscience research. The 
clinical diagnosis of a seizure is empirical, based upon constellations of 
certain signs and symptoms, while simultaneously ruling out a list of 
potential imitators of seizures. Seizures should be delimited in time, but 
the borders of ictal (during a seizure), interictal (between seizures) and 
postictal (after a seizure) often are indistinct. EEG recording is potentially 
very helpful for confi rmation, classifi cation and localization. About a half-
dozen common EEG patterns are encountered during seizures. Clinicians 
rely on researchers to answer such questions as why seizures start, spread 
and stop, whether seizures involve increased synchrony, the extent to 
which extra-cortical structures are involved, and how to identify the sei-
zure network and at what points interventions are likely to be helpful. 
Basic scientists have different challenges in use of the word ‘seizure,’ such 
as distinguishing seizures from normal behavior, which would seem easy 
but can be very diffi cult because some rodents have EEG activity during 
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normal behavior that resembles spike-wave discharge or bursts of rhythmic 
spiking. It is also important to defi ne when a seizure begins and stops so 
that seizures can be quantifi ed accurately for pre- clinical studies. When 
asking what causes seizures, the transition to a seizure and differentiating 
the pre-ictal, ictal and post-ictal state is also important because what 
occurs before a seizure could be causal and may warrant further investiga-
tion for that reason. These and other issues are discussed by three epilepsy 
researchers with clinical and basic science expertise.  

  Keywords  

  Convulsion   •   Convulsive   •   Electroencephalogram   •   Epilepsy   •   Epileptic   • 
  Focal seizure   •   Epileptiform   •   Seizure-like   •   Spike-wave discharge   •   Theta   • 
  Sharp wave   •   Behavioral arrest   •   Interictal spike   •   Ictal   •   Pre-ictal   •   Transition 
to seizure  

1.1          Introduction 

    Seizures are common and important neurological 
symptoms that may require treatment. Seizures 
can signal underlying disease. In addition, many 
research laboratories study mechanisms of sei-
zures. Therefore, a commonly accepted defi nition 
of “seizure” is needed for both clinical and research 
purposes. Some events may obviously be seizures, 
but others might comprise imitators of seizures 
[ 62 ], epileptiform non-seizure events, or variants 
of normal laboratory animal behavior. 

1.1.1     Clinical Perspective 

1.1.1.1     Defi nition of a Seizure 
 Webster says that a defi nition should capture the 
“essence” of an entity. What then is the essence 
of a seizure? Table  1.1  highlights defi nitions 
from various authorities, dating back to Johns 
Hughlings Jackson in 1870 [ 58 ].

   Terms that recur in the various defi nitions 
include excessive, disorderly discharge, syn-
chronous, self-limited, abnormal, paroxysmal, 
neurons, central nervous system (CNS) and 
cortex. Corresponding symptoms are listed as 
alteration or loss of consciousness, involuntary 
movements, sensory, psychic or autonomic dis-
turbances and other clinical manifestations. 
These terms cover a lot of territory. Delineating 

the possible clinical manifestations of seizures 
is beyond the scope of this chapter, but an over-
view may be found in [ 73 ]. In 2005, a task force 
of the International League Against Epilepsy 
[ 37 ] provided a parsimonious defi nition of a 
seizure as “a transient occurrence of signs 
and symptoms due to abnormal or synchronous 
neuronal activity in the brain.” 

 In clinical practice, a clinician rarely sees 
the abnormal electrical discharge, with the 
exception of successful video-EEG monitoring, 
so this discharge is inferred on the basis of a 
typical constellation of clinical symptoms. 
Application of the defi nition also requires rul-
ing out other conditions. For example, abnor-
mal and synchronous fi ring of thalamic neurons 
in a patient with Parkinson’s disease [ 17 ] repre-
sents a transient symptom correlated to tremor, 
but it is not a seizure. Therefore, a defi nition of 
seizures must include an implied qualifi er: “and 
not due to other known conditions producing a 
similar picture.” 

 Some writers use the modifying term “epilep-
tic seizures” to distinguish them from common 
usage of terms such as heart seizures, psycho-
genic seizures or other non-epileptic paroxysmal 
events. However, not all seizures imply epilepsy, 
particularly for single seizures with low likeli-
hood of recurrence or for provoked seizures. 
Hence, the phrase “epileptic seizures” tends to be 
either misleading or redundant. 

R.S. Fisher et al.



5

 The seizure defi nition of excessive neuronal 
discharges derived from Hughlings Jackson’s 
time, is 144 years old, when awareness of brain 
electrical activity was new. This mindset has led 
generations of clinicians and researchers to think 
of a seizure as an electrical disorder. Abnormal 
electrical discharges are just one manifestation of 
seizures, not necessarily more important than 
metabolic, blood fl ow, receptor, gene activation, 
network connectivity and many other changes 
that are intrinsic to seizures. A contemporary 
defi nition of seizures would likely be less electro- 
centric and focus more on excessive and sus-
tained activation of specifi c brain networks. The 
research community should be challenged to 
invent a better defi nition for seizures.  

1.1.1.2     EEG Manifestations of Seizures 
 Clinicians rely heavily on electroencephalo-
graphic patterns to identify, classify, quantify and 
localize seizures [ 7 ]. Figure  1.1  illustrates com-
mon epileptiform EEG patterns. The term epilep-
tiform is used to connote EEG patterns believed 
to be associated with a relatively high risk for 
having seizures. Gloor [ 43 ] defi ned spikes as 

potentials that stand above the background, 
have a “pointy” shape, duration between 30 and 
70–80 ms, asymmetric rise and fall, and followed 
by a slow wave. The potential should have a sen-
sible fi eld, meaning that it should be refl ected in 
physically adjacent electrodes and perhaps in 
synaptically linked regions such as the contralat-
eral hemisphere. “Sharp waves” have durations 
of 70–200 ms. The distinction between spikes 
and sharp waves is arbitrary in the clinical arena 
and is discussed further below (see also [ 28 ]).

   Spikes may be focal or apparently generalized 
across widespread regions of brain bilaterally. 
Rhythmic recurrence of spikes followed by slow 
waves is referred to as spike-waves. Focal spikes 
tend to be associated with focal seizures with or 
without secondary generalization. In contrast, 
generalized spikes tend to be associated with sei-
zures that are nonfocal at their onset. Generalized 
spike-waves are associated with absence (previ-
ously called petit mal) seizures. 

 The right panel of Fig.  1.1  illustrates the 
onset of a focal seizure in the top four channels, 
which are in the left temporal region. The local 
rhythm can be seen evolving in amplitude, 

   Table 1.1    Prior Defi nitions of Seizure   

 References  Defi nitions – Note that several say “epilepsy” in place of “seizure” 

 Jackson [ 58 ]  Epilepsy is a symptom… an occasional, an excessive and a disorderly discharge 
of nerve tissue (in the highest centers) 

 Penfi eld and Jasper [ 75 ]  An epileptic seizure is a state produced by an abnormal excessive neural discharge 
within the central nervous system 

 Aird et al. [ 3 ]  Epilepsy may be defi ned as a paroxysmal disturbance of central nervous system 
(CNS) function, which is recurrent, stereotyped in character, and associated with 
excessive neuronal discharge that is synchronous and self-limited 

 Engel [ 34 ]  Epileptic seizures are the clinical manifestations (symptoms and signs) of 
excessive and/or hypersynchronous, usually self-limited, abnormal activity of 
neurons in the cerebral cortex… An epileptic seizure may consist of impaired 
higher mental function or altered consciousness, involuntary movements or 
cessation of movement, sensory or psychic experiences, or autonomic disturbances 

 Hauser and Hesdorffer [ 53 ]  A seizure can be defi ned as a paroxysmal disorder of the central nervous system 
characterized by abnormal cerebral neuronal discharge with or without loss of 
consciousness 

 Hopkins et al. [ 55 ]  An epileptic seizure is a clinical manifestation presumed to result from an 
abnormal and excessive discharge of a set of neurons in the brain. The clinical 
manifestation consists of sudden and transitory abnormal phenomena, which may 
include alterations of consciousness, motor, sensory, autonomic, or psychic events, 
perceived by the patient or an observer 

 Adams et al. [ 2 ]  Epilepsy may be defi ned as an intermittent derangement of the nervous system due 
presumably to a sudden, excessive, disorderly discharge of cerebral neurons 
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 frequency and degree of sharpness. Other 
 channels also refl ect the seizure activity, but it is 
best formed and earliest in the top four chan-
nels. Where the potential becomes sharp, there 
is a phase reversal (down in one channel and up 
in the next channel) between the top and the sec-
ond from the top channel. Polarity conventions 
of the EEG indicate that the electrode common 
to both these channels is the site of maximum 
negativity compared to neighbors on either side. 
Active (discharging) seizure foci are extracellu-
larly negative, since positive ions fl ow from the 
extracellular space into the neuron during exci-
tation. Therefore, the phase reversal of a spike 
or seizure onset can be used to approximately 
localize the region of seizure origin. 

 The EEG recorded from the human scalp at 
the start of the seizure can take at least fi ve differ-
ent forms, as illustrated in Fig.  1.2 . One pattern is 
rhythmically evolving frequencies in the theta 
(4–7/s), delta (0–3/s) or alpha (8–12/s) bands. 

The rhythmical activity can have varying degrees 
of sharpness, but spikes and sharp waves are not 
required to be part of the rhythmical pattern of a 
focal seizure. An evolution of frequency and 
amplitude over time is needed to distinguish a 
seizure from many other normal and abnormal 
rhythmical events encountered in the EEG. The 
second pattern of seizure origin is rhythmical 
spiking. This may be most commonly seen with 
seizures in hippocampus and neighboring struc-
tures. Spike-wave patterns typically occur during 
generalized absence seizures, but presence of 
spike-waves cannot be equated with absence epi-
lepsy. Spike-waves also can appear focally dur-
ing focal seizures or during the course of 
generalized tonic-clonic seizures. Neocortical 
seizures often manifest with an electrodecre-
mental pattern, referring to a general fl attening 
of brain rhythms at the start of a seizure. 
Electrodecremental patterns are commonly seen 
with tonic, atonic and sometimes tonic-clonic 

  Fig. 1.1    Common epileptiform EEG patterns. Common patterns are shown for individuals with focal spikes, generalized 
spikes, spike-waves, and a seizure with focal onset (From Fisher, unpublished)       
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seizures [ 35 ]. The apparent disappearance of 
EEG activity is a consequence of the typical 1–70 
Hz bandpass fi lter used to review EEG. In fact, a 
very low frequency potential heralds the start of 
such seizures [ 57 ,  92 ] but is largely fi ltered out 
by the low frequency fi lters commonly utilized 
during scalp EEG revision. Careful examination 
of the electrodecremental region shows presence 
of low voltage, high frequency activity [ 29 ,  38 ]. 
Considerable study has demonstrated importance 
of frequencies in the beta (13–30 Hz), gamma 
range (30–100 Hz), ripple (100–250 Hz) and fast 
ripple (250–1000 Hz) range. Activity in the fast 
ripple or higher ranges is sometimes referred to as 
high- frequency oscillations (HFO’s) [ 32 ,  98 ,  100 ]. 
HFO’s can be useful markers for the region of 
seizure onset. Epilepsy surgery is more successful 
when regions generating high frequencies are 
resected [ 41 ]. The fi fth electrographic pattern of 
a seizure onset is no change in the scalp EEG. 
The presumption here is one of sampling 
error. Two-thirds of cortex is enfolded in sulci 
and dipole discharges in sulci do not always 
project to scalp EEG electrodes. Seizures can 
originate in mesial temporal, orbitofrontal or 
inter- hemispheric regions far from scalp elec-
trodes. Negative EEG fi ndings therefore do not 
rule out underlying focal seizures. The EEG 

must be correlated with the clinical  picture. Of 
note here is that seizures that begin in the 
brainstem in experimental animals often lead 
to con vulsions before the forebrain EEG shows 
any change from normal [ 42 ] (personal observa-
tions, HES).

1.1.1.3        Ambiguities in EEG 
Manifestations of Seizures 

 Electroencephalographers sometimes disagree 
about whether a particular pattern is epilepti-
form and representative of associated seizures. 
Figure  1.3  shows an evolving event over the right 
mid-temporal region lasting for about 5 s. The 
EEG technician noted no clinical signs. Such 
events might be considered too brief to represent 
a seizure: duration of at least 10 s has occasion-
ally been applied operationally [ 1 ], but there is no 
offi cial minimum time to defi ne a seizure. In ani-
mal research, 2–3 s is often used as a minimum 
time for an electrographic seizure but the length 
of time that is suffi cient to defi ne a seizure is 
extremely variable [ 26 ,  31 ]. However, discharges 
accompanied by clinical seizures qualify as elec-
trographic seizures regardless of their duration. 
In the extreme, a single generalized spike associ-
ated with a myoclonic jerk could be considered to 
be a very brief seizure.

  Fig. 1.2    Common EEG patterns at the start of seizures in patients with epilepsy (From Fisher, unpublished)       
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   Epileptiform EEG activity has been categorized 
as ictal, meaning during a seizure, postictal, mean-
ing after a seizure and interictal, meaning between 
seizures. While ingrained in common usage, these 
terms may be more confusing than helpful [ 36 ]. 
What sense does it make to designate an interictal 
spike in cases where there have not been two 
 seizures? Where does the behavioral and EEG pat-
tern of an ictal event merge into the postictal behav-
ioral confusion and EEG slowing? Is postictal 
slowing always a consequence of the seizure [ 33 ]? 
Delineations between ictal and postictal may not be 
obvious. Are periodic lateralized epileptiform dis-
charges (PLEDs, Fig.  1.4 ) interictal, ictal or either 
depending upon circumstances [ 76 ]? When is a 
burst of generalized spike-waves interictal and 
when is it ictal? Behavioral manifestations, such as 
unresponsiveness and automatisms, tend to occur 
in direct proportion to the duration of spike-wave 
discharges [ 77 ]. Whether a person is noted to have 
clinical signs such as limited responsiveness 
depends upon how carefully they are tested. 
Meticulous studies [ 4 ] show that responsive latency 
and task accuracy declines even during a period of 
so- called interictal spikes. Research in animals 

suggests the same is true for rodents [ 54 ], although 
the assumptions in these studies – that blocking 
interictal spikes improves behavior and therefore 
interictal spikes cause behavioral impairment – 
may not be true. Instead, blocking interictal spikes 
may only be helpful because of a reduction of other 
brain abnormalities, not necessarily the spikes  per 
se . Clinically, interictal spikes tend to correspond 
to the zone of origin of a seizure, but not always. 
Figure  1.5  illustrates interictal spikes from the right 
temporal region and electrographic seizure onset 
from the left temporal region in the same patient.

1.1.1.4        Clinical Conclusions 
 The commonly employed defi nition of a seizure as 
a transient occurrence of signs and symptoms due 
to abnormal or synchronous neuronal activity in 
the brain is almost a century and a half old, and it 
does not capture the essential nature of seizures as 
depicted by modern neuroscience. Seizures are 
diagnosed clinically, taking into account numerous 
entities that can imitate seizures, such as syncope, 
transient ischemic attacks, sleep disorders, confu-
sional migraine, tremor, dystonia, fl uctuating delir-
ium and  psychological episodes. The scalp EEG is 

  Fig. 1.3    Is this a seizure? Rhythmical brief epileptiform activity, illustrating the ambiguity involved in deciding 
whether an EEG event corresponds to interictal activity or a seizure (From Fisher, unpublished)       
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a helpful adjunct to diagnosis of seizure disorders, 
but it is not clear that an EEG pattern should be 
intrinsic to a defi nition of seizures. There is no uni-
fying form; instead at least fi ve different EEG 
 patterns can accompany seizures. EEG correlates 
of high risk for seizures are categorized as ictal 
 (during a seizure), postictal (after seizure) or inter-
ictal (between seizures). These distinctions often 
are unclear and arbitrary, in that the interictal-ictal 
boundaries are blurred for many seizures. Even so-
called interictal spikes can affect behavior. 

 We need a better understanding of what con-
stitutes the pathophysiological and behavioral 
essence of a seizure. Numerous questions arise 
for basic researchers. Need a seizure always 
involve an excessive discharge and increased 
synchrony? Have neurons been given excessive 
primacy in seizures over glia? Do seizures emerge 
only in cortex or can they develop in subcortical 
structures as well? Does it make sense to talk 
about where seizures start, given the involvement 
of widespread networks? What brain networks 
are involved in seizures of different types and 

which behaviors correlate with seizures in these 
networks? These questions will only be answered 
with a collaboration between basic researchers 
and clinicians.    

1.2      Defi ning Seizure Correlates 
with Intracranial Electrodes 
in Patients 

 The advent of intracranial recordings (with grid 
and strip electrode arrays) and intracerebral 
recordings (with depth electrodes) during pre- 
surgical evaluation in patients with partial 
 epilepsies resistant to pharmacological treatment 
changed our view of the electrographic correlate 
of a seizure. During pre-surgical intracranial 
monitoring, seizures are recorded with electrodes 
positioned close to the generators of ictal epilepti-
form discharges. In particular, depth stereo- EEG 
electrode implants aim at the epileptogenic area. 
This is done by accurately planning electrode 
insertion on the basis of the analysis of the 

  Fig. 1.4    Periodic lateralized epileptiform discharges 
(PLEDs) – are they ictal or interictal? PLEDs over the left 
central (C3) region are shown. Some electroencephalog-

raphers consider this pattern to be interictal and others 
ictal, while still others believe it depends upon particular 
circumstances (From Fisher, unpublished)       
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sequence of localizing clinical features observed 
during seizures recorded by video monitoring 
with scalp EEG performed as part of the pre- 
surgical examination [ 23 ,  85 ]. Intracerebral 
recordings are fi nalized to identify the cortical 
networks activated during a seizure that should be 
surgically removed to cure the patient. The areas 
involved in seizure generation are defi ned as the 
seizure-onset zone and the epileptogenic zone, 
which includes the regions of onset and propaga-
tion of the ictal epileptiform discharge. Intracranial 
recordings contribute to outline a larger area, 
defi ned as irritative zone, that generates abnormal 
interictal events/potentials, but is not directly 
recruited during a seizure discharges. 

 A large number of pre-surgical studies focused 
on the functional interactions between the epilep-
togenic and the irritative zones have been reported 
in the last 20 years. These studies demonstrate 
that (i) the irritative area is not coincident and 
it is usually larger than the epileptogenic/sei-
zure onset zone, (ii) interictal discharges do not 
show a coherent relationship with seizure dis-
charges, in terms of location and activation pat-
terns, (iii) the rate of interictal discharges can 
either increase or decrease just ahead of a seizure 
and (iv) in most cases the electrographic pattern 
of seizure onset is completely different from 
the activity recorded during interictal discharges 
(for review see [ 28 ,  29 ]; Fig.  1.6 ).

  Fig. 1.5    Interictal-ictal disparity with spikes in the right 
hemisphere and seizures on the left. Interictal-ictal dispar-
ity in the same patient as Fig.  1.5 , with interictal spikes 

over the right temporal region, but seizure onset from the 
left temporal region. Note different time scales for each 
segment (From Fisher, unpublished)       
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  Fig. 1.6    Recordings with intracerebral stereo-EEG 
 electrodes in a patient with focal epilepsy secondary to 
focal cortical dysplasia.  Far left : The position of the 
recording electrodes is illustrated.  Left : Interictal dis-
charges recorded with intracerebral stereo-EEG elec-
trodes in a patient with focal epilepsy secondary to focal 

cortical dysplasia.  Right : Seizure onset is marked by the 
 arrow . The  slow spikes  that precede the ictal low-voltage 
fast activity are different in location and morphology from 
the interictal spikes (Courtesy of Francione, Tassi and 
LoRusso of  Claudio Munari  Epilepsy Surgery Center, 
Niguarda Hospital, Milano)       

   Intracranial pre-surgical studies revealed that the 
most consistent pattern observed at the onset of a 
seizure is characterized by fast activity of low 
amplitude in the  beta - gamma  range ([ 5 ,  38 ,  48 ]; for 
review see [ 29 ]) that can be preceded by large 

amplitude spike potentials. The latter events have 
often be defi ned as pre-ictal spikes, but their consis-
tent and reproducible occurrence at the very onset 
of a seizure include them by defi nition as integral 
part of a seizure. Experimental studies in animal 
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models and in human post-surgical tissue and 
 intracranial stereo-EEG observations demonstrated 
that these (pre)ictal population spikes are distinct 
from interictal potentials [ 21 ,  44 ,  56 ] and are possi-
bly generated by network mechanisms that are dif-
ferent from those sustaining interictal potentials. 

 More recent studies demonstrated that the 
low-voltage pattern associated to the initiation of 
a seizure correlates with the abolition and possi-
bly the desynchronization of background activity. 
The substitution of background activity with low- 
voltage fast activity is the intracranial correlate of 
the  electrodecremental pattern defi ned as EEG 
“fl attening”, a phenomenon that is commonly 
pursued to localize the seizure onset area on the 
scalp EEG (as discussed above). Low-voltage 
fast activity is also associated with the appearance 

of large amplitude, very slow potentials lasting 
several seconds that can be identifi ed on intracra-
nial recordings when low EEG frequencies are not 
fi ltered out [ 9 ,  57 ]. These three intracranial elec-
trographic features (fast activity, EEG fl attening 
and very slow potentials) have been proposed as 
biomarkers of seizure-genesis in the epileptogenic 
zone [ 45 ], since a retrospective evaluation 
demonstrated that their location on stereo-EEG 
recordings coincides with the area that has been 
surgically removed to cure the patient (Fig.  1.7 ).

   The above-mentioned triad of electrographic 
elements defi nes seizure networks and the epilep-
togenic zone in the majority of patients selected for 
stereo-EEG recordings with intracerebral elec-
trodes. The type of epilepsy referred to surgery 
could be the reason for the homogeneity of seizure 

  Fig. 1.7    Intracerebral recording of a focal seizure with 
stereo-EEG electrodes (as shown in the  upper right inset ) 
in a patient with cryptogenic focal epilepsy during pre-
surgical evaluation. Multi-contact electrodes are identi-
fi ed by  letters . The EEG marked by an  asterisk  is expanded 

at the  bottom . When the seizure begins ( seizure onset, 
arrow ) there is a reduction of background activity, appear-
ance of fast activity, and subsequently there is a very slow 
potential (From Gnatkovsky, Francione, Tassi and de 
Curtis, unpublished)       
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pattern reported in the literature. Most of the 
patients selected for pre-surgical studies, indeed, 
have pharmacoresistant epilepsies due to either 
focal cortical dysplasia, low-grade epileptogenic 
tumors (such as gangliogliomas or dysembryoge-
netic lesions), or mesial temporal lobe epilepsy 
with hippocampal sclerosis. Seizures in these types 
of epilepsy may present with similar EEG features. 
In mesial temporal lobe epilepsy, seizures that initi-
ate with a hypersynchronous spiking pattern have 
been reported [ 8 ,  93 ]. Fast activity consistently fol-
lows the hypersynchronous discharge, suggesting 
that this pattern represents a variant of the low-volt-
age fast activity pattern. 

 Seizure onset patterns different from low- voltage 
fast activity have been described during intracranial 
EEG monitoring, for instance in tuberous sclerosis 
and in cortical malformations such as polymicrogy-
ria [ 16 ,  51 ,  70 ,  79 ]. Whether such patterns are the 
expression of the epileptogenic network specifi cally 
caused by the type of lesion or are due to the fail-
ure to implant electrodes precisely in the epilepto-
genic area, is an open question. Moreover, variable 
seizure onset patterns have been detected with intra-
cranial and extra-cerebral electrode arrays, such as 
grid and strips, positioned on the cortical surface in 
the subdural space. The localizing value of subdural 

electrodes has been questioned (e.g., [ 47 ,  90 ]) and, 
therefore, their ability to defi ne sources and features 
of ictal patterns is assumed to be less precise than 
depth electrodes. 

 Another crucial issue that emerged from intra-
cranial recording studies and can be confi rmed by 
retrospective analysis of earlier reports on seizure 
patterns, is the demonstration that focal seizures 
are characterized by a clear sequence of events 
that starts with a fast activity pattern and ends 
with highly synchronous, large amplitude burst-
ing. The striking novel fi nding in this context is 
the observation that seizures do not initiate with 
the explosion of sustained, large amplitude, syn-
chronous potentials, as commonly assumed, but 
feature low amplitude activity and background 
activity desynchronization that in several occa-
sions last several tenths of seconds. In between 
seizure onset and seizure termination, a transition 
from fast, possibly desynchronized activity [ 59 , 
 82 ] into an irregular spiking pattern (referred to 
as “tonic” in several reports) is observed. During 
the latter phase synchrony of activity builds up 
and progressively promotes clustering of highly 
synchronous discharges separated by periods of 
post-burst depression (Fig.  1.8 ). The late-seizure 
bursting (sometimes defi ned as “clonic phase”) 

  Fig. 1.8    Seizures recorded in guinea pig entorhinal cor-
tex. The  upper trace  was recorded in the  in vitro  isolated 
guinea pig brain after systemic application of 50 μM bicu-
culline. In the  lower panel  a seizure is shown, which was 

recorded  in vivo  3 months after injection of kainic acid in 
the hippocampus. Both seizures are characterized by fast 
activity at the onset followed by irregular fi ring and late 
periodic bursting (From DeCurtis, unpublished)       
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precedes seizure  termination. Interestingly, if 
seizure onset is restricted to a spatially limited 
region, seizure termination characterized by syn-
chronous periodic bursting is usually more diffuse 
and shows the tendency to involve the entire 
epileptogenic zone. The mechanism for such a 
widening of the epileptogenic network during the 
late seizure is still unclear. A synchronizing infl u-
ence mediated by the involvement of subcortical 
structures can be proposed. After the end of a 
focal seizure, post-ictal depression is evident and 
can be measured as a reduction of background 
activity in comparison to the pre-ictal condition. 
These fi ndings can be reproduced in animal 
models, as discussed in the next section.

   In summary, direct evaluation of seizure- 
generator networks with intracerebral electrodes 
in focal human epilepsies demonstrates that spe-
cifi c electrographic patterns with a quite repro-
ducible temporal progression defi ne a seizure 
(typically a focal seizure). De-synchronization of 
background activity and the appearance of fast 
low-voltage rhythms characterize seizure initia-
tion and excessive synchronization correlate with 
termination of the seizure [ 59 ]. Post-ictal depres-
sion is typical of focal seizures and should always 
be verifi ed to identify a seizure.  

1.3      Seizures, Seizure-Like Events 
and Afterdischarges 
in Animal Models 

 Based on the intracranial human fi ndings 
observed in focal epilepsies during pre-surgical 
monitoring, it is mandatory to re-defi ne the 
term “seizure” in experimental studies of animal 
models. We will fi rst address  in vivo  studies per-
formed on animal models of seizures or epilepsy, 
and then discuss  in vitro  studies carried out on 
preparations featuring complete or partial preser-
vation of brain networks. 

 Diverse seizure patterns have been illustrated 
with  in vivo  intrecerebral recordings in animal 
models of epilepsy obtained with different meth-
ods and protocols. In several studies, seizure-like 
patterns were defi ned only with EEG, i.e., with-
out the aid of video monitoring. This approach is 

problematic, because the correspondence of EEG 
patterns with behavioral symptoms should be 
verifi ed when seizure events are described. 
The possibility that the reported EEG potentials 
are interictal events or even physiological pat-
terns, if not artifacts, should be carefully consid-
ered (see Sect.  1.4 , below). Incidentally, the lack 
of a  precise defi nition of a normal EEG in differ-
ent animal species is a serious limitation to the 
 evaluation of pathological patterns in animal 
models of seizures and epilepsy. These consider-
ations further support the concept that epileptic 
 phenotypes in animal models should always be 
carefully analyzed with the aid of video-EEG 
monitoring, to correlate possible seizure patterns 
to behavioral/motor changes. 

 Behavioral seizure correlates are not easy to 
identify in animals, even when careful electro- 
behavioral evaluation of the video-EEG is per-
formed, because focal seizures may present with 
minor symptoms that have little, if any, motor 
sign. This is a major limitation for seizure identifi -
cation in animal models: we can only be sure of 
seizures that correlate with enhanced or decreased 
motor signs, since other critical non-motor symp-
toms are diffi cult to detect. Seizures generated in 
the hippocampus in animal models (and in patients 
as well), for instance, can occur during immobility 
([ 8 ,  15 ,  80 ]; see Sect.  1.4 , below) and are indistin-
guishable from normal pauses in behavior unless 
intracerebral EEG recordings are performed in 
parallel to video monitoring. In this respect, human 
EEG studies on the defi nition of electro-clinical 
seizure patterns are more standardized and detailed 
than animal reports. The precise electro-clinical 
correlation of symptoms during seizures per-
formed in humans demonstrates the fi ner scientifi c 
development of clinical epileptology in compari-
son to experimental epileptology, and sets an 
example to improve phenotyping in animal mod-
els of epilepsy. 

  In vivo  recording of seizures and characteriza-
tion of seizure patterns have been performed in a 
relatively small number of studies that describe 
animal models of epilepsy, largely on temporal 
lobe epilepsy models developed in rats and mice. 
Other models in which video-EEG electro- 
behavioral characterization of focal seizures was 
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analyzed in detail include post-traumatic  epilepsy 
models [ 25 ,  65 ,  66 ], models of perinatal anoxia-
ischemia [ 61 ] and infantile spasms [ 81 ]. These 
reports confi rmed that EEG correlates of seizures 
are largely characterized by fast activity at onset, 
followed by irregular spiking; and periodic 
 bursting that develops with time during seizures 
(and usually represents the last pattern before 
 seizure termination: [ 8 ,  15 ,  46 ,  95 ]). Post- ictal 
depression ensues and is infrequently character-
ized in these models. 

 Other electrographic potentials that suppos-
edly represent the expression of an epileptic brain 
have been reported and quantifi ed to support the 
characterization of epilepsy models. The behav-
ioral correlates of these pathological patterns are 
often not described (and may not be possible to 
identify), and in some reports the claim is made 
that a specifi c pattern that does not respond to the 
criteria defi ned above is regarded as seizure. It is 
frequently assumed that epileptiform discharges 
that last longer than 2–3 s can be considered as 
ictal, as mentioned above [ 26 ,  31 ]. The criterion 
of duration to discriminate between an interictal 
and ictal discharge is quite subjective and could 
be misleading when applied to focal epilepsies. 
Since a consensus on this issue is still missing, 
more stringent criteria to defi ne a seizure are 
required and should be identifi ed. 

 Seizure patterns comparable to those described 
 in vivo  in animals (and in human focal epilepsies) 
can be reproduced in preparations of the entire 
brain or portions of brain tissue maintained  in vitro  
in isolation. Obviously, the absence of the periph-
eral limbs that expresses motor symptoms pre-
vents any defi nition of seizure in these experimental 
conditions. Therefore, the identifi cation of interic-
tal and seizure-like patterns on  in vitro  prepara-
tions relies exclusively by electrophysiological 
recordings, and the identifi cation of stringent crite-
ria for seizure defi nition is quite critical. 

 Seizure-like events characterized by fast 
activity at onset, followed by irregular spiking 
and terminating with periodic bursting dis-
charges are induced by diverse pharmacological 
manipulations in adult whole guinea pig brain 
preparation ([ 44 ,  89 ]; Fig.  1.8 ), in neonatal en-
bloc preparation of cortical areas/systems, such 

as the  in toto  hippocampal-parahippocampal 
structures [ 30 ,  64 ] and in complex tissue slices, 
in which connectivity between cortical struc-
tures is preserved, such as enthorinal-hippocam-
pal slices ([ 6 ,  60 ]; Fig.  1.8 ). 

 In several studies performed on slice 
 preparations, prolonged epileptiform events are 
described, which are characterized either by 
repeated spikes or by large paroxysmal depolar-
izing shifts followed by a depolarizing plateau 
potential on which decrementing discharges 
occur (see [ 28 ]). These types of discharges are 
often defi ned as seizure-like, even though their 
identifi cation as seizures is questionable: similar 
events, indeed, are never observed during sponta-
neous seizures recorded  in vivo , but can be gener-
ated by repeated stimulations, as afterdischarges 
induced by the kindling procedure. In slice stud-
ies, the measurement of the duration of “afterdis-
charges” is usually reported as a criterion to 
distinguish between interictal and ictal events. 
This assumption is based on the idea that the 
mechanisms that generate interictal and ictal 
events are similar and differ only by the duration 
and persistence of repetitive spiking or bursting 
activity. However, this conclusion may not be 
correct, based on recent fi ndings demonstrating 
that seizure-like events in complex preparations 
are initiated with a prominent activation of inhib-
itory networks, whereas this may not be true for 
interictal spikes. The analysis of seizure-like dis-
charges in neocortical and hippocampal slices 
exposed to different pro-epileptic conditions 
demonstrate that GABAergic networks are active 
at the very onset of a seizure [ 30 ,  39 ,  40 ,  67 ,  99 ]. 
These fi ndings were confi rmed in the  in vitro  iso-
lated whole guinea pig brain [ 29 ,  44 ]. In this 
preparation, pre-ictal (ictal) spikes and fast activ-
ity that characterize seizure onset correlate with 
activation of GABAergic interneurons and with a 
cessation of neuronal fi ring in principal excit-
atory cells that last several seconds. In this model, 
the progression of seizure activity characterized 
by the transition to the irregular spiking and 
 periodic bursting phases was sustained by ecto-
pic fi ring of principal cells driven by changes in 
extracellular potassium induced by inhibitory 
network activation at seizure onset [ 88 ]. 
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 In conclusion, the defi nition of seizure-like 
events in  in vitro  preparation should be reconsid-
ered and should rely on the reproduction of sei-
zure patterns observed in humans and in chronic 
animal models of epilepsy. This “reverse transla-
tional” approach might help to focus future  in 
vitro  studies on the mechanisms of seizure gen-
eration that more reliably reproduce human focal 
epilepsy.  

1.4        Defi ning Seizures in Basic 
Epilepsy Research: Potential 
Problems Specifi c to Rats 
and Mice 

 Defi ning seizures in humans requires consider-
ation of several issues, as discussed above. In 
basic epilepsy research, conducted mainly in 
rodents (rat or mouse), there are other issues that 
are important. In order to quantify seizures for 
preclinical studies, one would want to be precise 
about seizure onset and seizure termination. 
However, not only are seizures hard to defi ne, but 
the exact time of their onset and termination are 
also problematic. Other issues are also relevant: if 
there are brief pauses between seizures, when is 
the pause suffi cient to defi ne the events as two 
separate seizures? Post-ictal depression is often 
followed by a series of afterdischarges or spikes 
that become more and more frequent – when does the 
repetitive spiking become frequent enough to be 
called the onset of the next seizure? This issue is not 
only important in establishing seizure frequency, 
but it also is important when defi ning status epi-
lepticus (SE). When examined at high temporal 
resolution, there are often pauses between seizures 
during SE. Does this mean it is not SE? If there 
are no convulsions (non- convulsive SE) how does 
one determine what is and what is not SE? Similar 
to humans, defi ning a seizure in rodents is not as 
easy as one might think. 

1.4.1     Behavioral State 

 There are several behaviors that make up the vast 
majority of the lifespan in rats and mice: explora-

tion, sleep, grooming, eating and drinking. In 
addition, there is a state called “quiet immobil-
ity,” “awake rest” or “behavioral arrest” where 
rodents stop moving, their eyes are open, and 
they stare blankly into space. Typically the 
 animal is standing at the time, and has just walked 
across the cage or explored its surroundings. 
Unlike humans, this behavioral state can be pro-
longed (over 10 s). It presents problems for the 
epilepsy researcher because it appears similar 
to an absence seizure. Therefore, understand-
ing the normal behavioral states of rodents, and 
their EEG correlates, is important for epilepsy 
researchers using these species. 

1.4.1.1    Hippocampal EEG Associated 
with Exploration: Theta Rhythm 

 Associated with exploration, behavioral arrest, 
and sleep in rodents are distinct EEG rhythms 
that can be recorded with chronic electrodes 
implanted in hippocampus [ 14 ]. As shown in 
Fig.  1.9a  and originally described by Green and 
Arduini [ 50 ], EEG oscillations at theta frequency 
(commonly called theta rhythm) are recorded in 
hippocampus when an animal explores. Theta 
oscillations vary in frequency but are typically 
6–10 Hz in rats and mice [ 12 ,  50 ,  91 ].

   In animal models of epilepsy, theta rhythm is 
interesting because epileptic animals are less 
likely to exhibit seizure activity during explor-
atory behavior, when theta oscillations occur in 
hippocampus [ 69 ]. This “anticonvulsant” nature 
of exploration and theta rhythm in hippocampus 
has been attributed to many potential mecha-
nisms but has not been defi ned conclusively [ 22 ]. 
It is useful to record theta oscillations  in vivo  
because large theta rhythm is found in hippocampus 
but it is much smaller or not observed elsewhere. 
Therefore, theta oscillations can be used to 
confi rm the recording is in hippocampus. Theta 
oscillations are also useful to record because 
their amplitude can be used to defi ne the specifi c 
layer within hippocampus where the recording 
electrode is located. For example, if a stimu-
lating electrode is used to evoke fi eld EPSPs in 
area CA1 from the Schaffer collateral input, 
the fi eld EPSP should be recorded in the layer 
where theta is relatively small, stratum radiatum. 
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In contrast, where theta is larger, the adjacent 
 stratum lacunosum- moleculare, the fi eld EPSP 
evoked by the same stimulus would be small or 
have a positive polarity. Because the entorhinal 
cortex is a source of theta rhythm (the other major 
source originates in the septum; [ 12 ]), theta 
 oscillations are very large in stratum lacunosum-
moleculare and the outer two-thirds of the molec-
ular layer of the dentate gyrus, were the entorinal 
cortical projection (the perforant path) to hippo-
campus terminates.  

1.4.1.2    Hippocampal EEG Associated 
with Behavioral Arrest: Sharp 
Wave-Ripples 

 The hippocampal EEG shown in Fig.  1.9b  is 
taken from a rat that explored and then paused – 
entering a period of behavioral arrest. As 
described by Buzsaki originally [ 10 ,  11 ], the hip-
pocampal EEG changes dramatically when an 
animal stops exploring and pauses in a frozen 
stance, with eyes still open. Theta oscillations 

decrease and the EEG becomes irregular. In addi-
tion, sharp waves (SPWs) occur intermittently. 
SPWs are ~100 msec duration spikes that refl ect 
synchronous fi ring in a subset of area CA3 
 neurons, which in turn activate area CA1 apical 
dendrites by the Schaffer collateral axons and the 
dentate gyrus, most likely by backprojecting 
axons of CA3 pyramidal cells. Therefore, SPWs 
can be recorded in many locations within hippo-
campus [ 10 ,  11 ]. 

 The term SPW is important to discuss in the 
context of epilepsy, because it is sometimes used 
interchangeably with the term interictal spikes 
(IIS). Hippocampal SPWs are distinct from inter-
ictal spikes because hippocampal SPWs occur 
without seizures, i.e., they are not interictal 
(between ictal events). Hippocampal SPWs are 
recorded only in hippocampus- if one moves a 
recording electrode just outside the hippo-
campus, SPWs are not observed (Pearce and 
Scharfman, unpublished). IIS in an epileptic 
rodent can be typically recorded from multiple 

  Fig. 1.9    EEG characteristics in the normal adult rat. 
( a ) Using 8 electrodes (shown in d), awake behaving rats 
were recorded in their home cage. During exploration, 
hippocampal electrodes exhibited theta oscillations. 
The area outlined by the  box  is expanded at the  bottom . 
( b ) During a spontaneous arrest of behavior, sharp waves 
( arrows ) occurred regularly in the hippocampal EEG. 
( c ) During sleep, the hippocampal EEG became active. 
( d ) The recording arrangement included 4 epidural 

 electrodes and 2 twisted bipolar electrodes in the dorsal 
hippocampus, one in each hemisphere.  Grd  ground;  Ref  
reference. ( e ) A summary of a-c is shown. In three 
behavioral states there are large differences in the hip-
pocampal EEG with sharp waves ( arrows ) in behavioral 
arrest and sleep. ( f ) During sharp waves, fi ltering in the 
ripple band (100–200 Hz) shows that a ripple occurs at 
the same time as the sharp wave (From LaFrancois and 
Scharfman, unpublished)       
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cortical electrodes simultaneously at many sites 
in the brain. However, SPWs can be generated by 
circuits outside hippocampus, i.e., other types of 
SPWs besides those generated in area CA3. For 
example, SPWs are generated in entorhinal 
cortex and piriform cortex [ 68 ]. Notably, the 
underlying mechanisms for an IIS may or may 
not be the same mechanisms for a SPW, although 
they do seem related. For example, GABAergic 
mechanisms may trigger IIS (as discussed in the 
previous section); GABAergic network oscilla-
tions ( ripples) are also involved in SPWs. The 
classic view of the IIS is that it is generated by a 
giant paroxysmal depolarization shift (see pre-
vious section); a synchronous depolarization in 
pyramidal cells also drives SPWs. Regardless, if 
SPWs and IIS are terms that are used synony-
mously, there may be differences in the underly-
ing cellular processes/mechanisms that are 
overlooked, so it is important to consider the 
terms carefully. 

 When recording electrodes are positioned 
near the CA1 pyramidal cell layer, fast oscilla-
tions called ripples [ 84 ] can be detected at about 
the same time as the SPW (Fig.  1.9f ). Therefore, 
the term “SPW-R” (sharp wave-ripple) is now 
used instead of the original term, sharp wave. 
Ripples in the hippocampal EEG correspond to 
synchronous oscillations of pyramidal cells that 
are caused by rhythmic IPSPs that are initiated by 
action potentials in a subset of hippocampal 
GABAergic interneurons that innervate pyrami-
dal cell somata and initial axon segments. As syn-
chronous release of GABA from these 
peri-somatic targeting interneurons hyperpolar-
ize pyramidal cell somata that are in close prox-
imity, chloride ions enter the pyramidal cells in a 
repetitive manner and cause a series of extracel-
lular positivities. The positivities wax and wane 
as the pyramidal cell IPSPs start and stop, lead-
ing to an oscillation [ 19 ].  

1.4.1.3    The Hippocampal EEG Becomes 
Active During Sleep 

 The hippocampal EEG becomes extremely 
active during sleep in the rodent, and is irregular, 
called large irregular activity (LIA: Fig.  1.9c ). 
The increase in the hippocampal EEG is often 

simplifi ed as a type of disinhibitory state that 
coincides with a ‘switch’ from sensitivity to sen-
sory input to a state where intrinsic circuitry is 
active [ 52 ]. A similar idea has been proposed for 
piriform cortex during slow-wave sleep; odor 
input is reduced in favor of processing between 
piriform cortex and other forebrain sites [ 97 ]. 
For the  epileptologist, it is important to recog-
nize that comparing the hippocampal EEG 
between animals without considering the behav-
ioral state may make one animal seem normal (if 
it is exploring) compared to seizure like activity 
in the other if it is asleep (Fig.  1.9 ). Compressing 
the EEG can make this more diffi cult; for exam-
ple, if the EEG is compressed it is hard to distin-
guish a noisy baseline from theta oscillations, so 
the EEG may look inactive when an animal is 
exploring. For these reasons, expansion and 
compression of the EEG should be varied during 
examination of the EEG for seizures. In addi-
tion, the type of electrode and recording system 
should stay the same for any given set of 
experiments.  

1.4.1.4    When Normal Activity Appears 
To Be Epileptic 

 One of the implications of the discussion above 
for epilepsy research is the possibility that nor-
mal EEG activity may be mistaken for seizures. 
For example, an investigator may think that the 
animal is freezing because it is having a seizure, 
but actually exhibiting normal behavioral arrest. 
This interpretation is based on the limbic seizure 
stage scale of Racine, who based the scale on 
behaviors of rats during electrical stimulation 
of the amygdala during kindling. He suggested 
that there was initially a period of immobility 
with small mouth or face movements with small 
mouth or head movements, and called this a stage 
1 or 2 in his scale of limbic seizure severity [ 78 ]. 
The only problem with this idea is that it can be 
confused with behavioral arrest. 

 During behavioral arrest, investigators could 
interpret the irregular activity and repetitive 
SPW-Rs to be a seizure (Fig.  1.9 ). Likewise, the 
transition from behavioral arrest back to explo-
ration may seem like the termination of a sei-
zure, particularly when the EEG is compressed 
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(Fig.  1.9 ). In light of these potential problems, 
describing stage 1 seizures without a hippo-
campal electrode is problematic. An animal that 
suddenly stops and appears unresponsive could 
be interpreted to have a stage 1 seizure when it 
actually is pausing between episodes of 
exploration. 

 Another problem arises in studies of seizure 
frequency evaluated over time. For example, 
studies of epileptogenesis often record animals 
over weeks. There is typically no consideration 
of behavioral state when the results are quanti-
fi ed. If there is less exploration because an ani-
mal is sleeping more, EEG power in the theta 
band may decrease. EEG power in high fre-
quency bands may increase if there are more 
SPW-Rs because the animal is pausing more, or 
sleeping more.   

1.4.2     Spike-Wave Discharge 

 In many strains of rats, the state of behavioral 
arrest is accompanied by spike-wave discharge 
in thalamocortical networks [ 20 ,  27 ,  96 ]. 
These  discharges have been noted in almost 
every strain of rat, such as Long-Evans [ 83 ], 

where approximately 90 % of female rats 
exhibited spike-wave discharges spontaneously 
by 4 months of age. In Wistar rats,    Gralewicz 
[ 49 ] reported that 73 % of male rats showed 
spike-wave discharges by 6 months of age and 
93 % of males at 24 months of age. Kelly [ 63 ] 
reported spike-wave discharges in female 
Fischer 344 rats at 4 and 20 months of age. In 
rats that are genetic models of absence epilepsy 
(GAERS, Wag Rij) spike-wave discharges are a 
characteristic of the strain, and used to gain 
insight into mechanisms of absence epilepsy 
[ 20 ,  27 ]. Numerous genetic models of absence 
epilepsy also exist based on spontaneous muta-
tions in mice ( e.g., lethargic ; [ 18 ,  74 ]). As 
shown in Fig.  1.10 , spike-wave discharges 
accompany behavioral arrest in naïve Sprague- 
Dawley rats. These discharges vary according 
to the sex, age, environment and other factors 
[ 13 ] but are not always observed [ 96 ], making 
control recordings critical to any study of rats 
in an animal model of epilepsy.

   These observations raise several questions: 
are spike-wave discharges in rodents normal? 
It has been suggested that they could serve 
important purposes related to sensory process-
ing [ 71 ,  86 ,  94 ] or aging and excitability [ 71 ]. 

  Fig. 1.10    Spike-wave discharges recorded from the 
normal adult hippocampus of the rat. ( a)  A recording 
from an adult Sprague-Dawley rat shows typical EEG 
activity during exploration and behavioral arrest. In 
behavioral arrest, there were spike-wave discharges. 

Animals were monitored during the recordings to be 
sure that artifacts related to grooming or chewing did 
not occur during spike-wave discharges. ( b ) Recordings 
in    a  are expanded (From Pearce and Scharfman, unpub-
lished; see also [ 101 ])       
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If this is true in rodents, is human spike-wave 
discharge normal too? One possibility is that 
spike-wave discharges and behavioral arrest 
were present in early stages of evolution and 
then reduced because behavioral arrests (with-
out complete attention) would be dangerous 
in the presence of predators – vigilance would 
be advantageous. In humans, the spike-wave 
 discharges that do arise may be vestiges of 
rodent circuitry that have not completely been 
removed by evolution. Photic stimulation can 
trigger spike-wave discharges in humans [ 24 , 
 87 ], and may be a method to trigger these ‘ves-
tigial’ oscillations. 

 Another implication of the observations in rats 
in Fig.  1.10  is relevant to the detection of seizures 
in hippocampal electrodes in rodent studies of 
epilepsy. In Fig.  1.10 , the hippocampal electrode 
appears to show rhythmic spiking when spike- 
wave discharges occur in the frontal and occipi-
tal leads. The rhythmic spiking in hippocampus 
could be volume conducted from thalamus, or it 
could refl ect hippocampal neural activity. In light 
of the fact that the frontal cortical lead shows 
spike-wave oscillations, one would know that 
volume conduction in the hippocampal lead is 
a possibility. However, if there were only an 
 electrode in hippocampus, which is a common 
recording arrangement in epilepsy research, the 
rhythmic activity in hippocampal electrodes 
might be interpreted to be a seizure generated 
in hippocampus. Because it is accompanied by 
a frozen, ‘absence’ behavior, it could be con-
cluded that there was a Racine stage 1 seizure. 
Importantly, some of the normal rodents with 
spike wave discharges also have head nodding or 
mastications, which could make an investigator 
more convinced of seizure activity – because 
these movements were also noted by Racine 
in his classifi cation of stage 1–2 behaviors. 
Importantly, most of the spike-wave discharges 
occur at approximately 7–9 Hz and are stable 
(in  frequency) within a spike-wave episode or 
across episodes (Fig.  1.10 ; [ 13 ,  20 ,  27 ,  96 ]). 
Therefore, rhythms at this frequency (e.g., theta 
rhythm) that occur in hippocampus can be a 
signal to investigators to interpret their EEG data 
cautiously.      
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    Abstract 

 In vitro preparations provide an exceptionally rapid, fl exible, and accessible 
approach to long-standing problems in epilepsy research including icto-
genesis, epileptogenesis, and drug resistance. Acute slices suffer from a 
reduction in network connectivity that has traditionally been compensated 
through the application of acute convulsants. The utility and limitations of 
this approach have become clear over time and are discussed here. Other 
approaches such as organotypic slice preparations demonstrate the full 
spectrum of spontaneous epileptic activity and more closely mimic human 
responses to anticonvulsants, including the development of drug resistance. 
Newly developed transgenic and vector expression systems for fl uorophores, 
optogenetics, and orphan receptors are being coupled with advances in 
imaging and image analysis. These developments have created the capacity 
to rapidly explore many new avenues of epilepsy research such as vascular, 
astrocytic and mitochondrial contributions to epileptogenesis. Rigorous 
study design as well as close collaboration with in vivo  laboratories and 
clinical investigators will accelerate the translation of the exciting discoveries 
that will be revealed by these new techniques.  
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 2      What Is the Clinical Relevance 
of  In Vitro  Epileptiform Activity? 

           Uwe     Heinemann      and     Kevin     J.     Staley    

2.1         Current Challenges 

 From the standpoint of translation, experimental 
epilepsy research is confronted with two major 
problems: the fi rst is the discovery of mecha-
nisms underlying drug resistance in epilepsy and 
development of new agents that would be useful 
in seizure control in pharmacoresistant patients. 
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The second is discovering the signaling cascades 
that lead from an initial brain injury to epilepsy 
later in life, and conversely, discovering signaling 
cascades that would prevent this process, that 
is commonly referred to as epileptogenesis. It is 
important to note that epileptogenesis occurs 
in only a small percentage of patients who have 
suffered brain injuries. For example a recent 
prognostic study reported that only 8.2 % of 
patients developed epilepsy after stroke [ 46 ]. 
Thus it is important to identify biomarkers that 
predict which patients will develop epilepsy. It is 
also important to analyze how these biomarkers 
illuminate or participate in the process of epilep-
togenesis. Research into this issue will provide 
opportunities to identify mechanisms which 
protect the brain against seizures. To keep these 
and other research projects in epileptogenesis 
from being “lost in translation”, a number of 
general guidelines should be kept in mind:
    (i)    Spectrum: Carefully consider the disease and 

the entire range of observations during the 
disease in probing for their potential role. 
This applies, for example, to the observation 
that astrocyte activation often precedes 
epilepsy in many animal models. This raises 
the possibility that one component of acquired 
epileptogenesis may involve the infl uence of 
astrocytes on synaptic and cellular properties 
of neurons, microglia, NG2 cells and vascular 
cells. Thus it may be useful to test whether 
prevention of astrocyte activation has an 
antiepileptogenic effect.   

   (ii)    Statistics: matching the experiment to the 
disease. When experimental groups are too 
small relative to the variance of the param-
eters that will be studied, the chance of 
falsely positive results increases. Many of 
our current animal models of acquired epi-
lepsy have been developed to ensure that a 
large percentage of animals develop epi-
lepsy. This hinders development of useful 
biomarkers, because their predictive value 
depends on the incidence of the disorder. 
The incidence of epilepsy after brain injury 
is much lower in humans, so the predictive 
value of a biomarker needs to be tested in 
an experimental population with a similar 

incidence. Finally, animals that do not develop 
epilepsy after brain injury are useful for 
more than service as controls – we may be 
overlooking antiepileptogenic characteristics 
and processes that may provide additional 
prognostic, mechanistic, and therapeutic 
insights into epileptogenesis after brain injury.   

   (iii)    Heterogeneity: To maximize the chance that 
results will extrapolate to humans, preclini-
cal studies should include more than one 
species and take intra and interspecies inho-
mogeneity into account. Most animal stud-
ies including in vitro studies are done on 
animals which are rather young and come 
from genetically homogenous breeding 
stocks. Hence the genetic inhomogeneity of 
human species is not taken into account. 
A second source of inhomogeneity is the 
injury itself. Common human brain injury 
mechanisms include trauma, infection, and 
both global and focal hypoxic- ischemic 
insults. The severity and anatomical location 
of each of these injuries varies profoundly 
from patient to patient. Understanding which 
circuit elements are altered after both exper-
imental and clinical brain injury will be a 
necessary step in evaluating the risk and rate 
of subsequent epileptogenesis.   

   (iv)    Comorbidity: multiple hits are often a critical 
factor in human disease, but this is usually 
not considered in experimental work. One 
approach to correcting this oversight could 
entail choosing the right animals for study. 
An example would be using stroke models 
of epileptogenesis in rodent models of 
chronic hypertension or type 2 diabetes.   

   (v)    Communication between basic and clinical 
epileptologists: “Losses in translation” often 
arise from the different perspectives of 
experimentalists and clinicians, combined 
with the barriers to free communication 
between these groups. Ideally, interactions 
between clinical and basic investigators 
should be suffi ciently close that experimen-
talists can contribute to clinical study focus 
and design. This requires a centralized infra-
structure to provide close scientifi c collabo-
ration as well as institutional mechanisms 
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for patient access, patient monitoring, 
access to biostatistical resources, and guid-
ance for approved use of patients in research. 
Perhaps the greatest institutional challenge 
is provision of protected time for interactions 
between clinical and basic researchers.   

   (vi)    Pipeline repair: The interruption of classical 
translational pipelines also leads to losses in 
translation. Because drug resistant epilepsy 
is relatively rare, most of the pharmaceutical 
industry has lost interest in drug develop-
ment for this type of epilepsy. Filling this 
gap, including toxicological and pharmaco-
kinetic studies in preclinical and clinical 
populations, will require the training of 
clinician scientists who are equipped for 
drug development in an academic environ-
ment. This will require new ways of fi nanc-
ing such research, as well as developing 
processes to provide academic credit for 
the type of applied research that is essential 
for the later stages of drug development 
involving toxicology, compounding, and 
pharmacokinetics.    

2.2       How Can In Vitro Research 
Help Meet These Challenges? 

 The advantages of in vitro models have long been 
recognized in epilepsy research, starting with the 
pioneering work of P. Schwartzkroin [ 77 ]. These 
advantages include speed, convenience, low cost, 
the availability of a wide variety of genetically 
modifi ed animals from which slices can be pre-
pared, and electrophysiological, pharmacologi-
cal, and optical accessibility. In vitro models 
make it possible to understand pathophysiology 
at a high level of electrophysiological, molecular 
and cell biological resolution. 

 In vitro models have a number of drawbacks. 
In vitro preparations usually have no blood brain 
barrier, and there is no circulation. Rather, drugs 
are applied in an aqueous solution, and reach 
their targets by routes that are more relevant to 
CSF administration than oral or intravenous 
routes. Brain slice preparation induces massive 
damage to afferent and efferent circuitries, which 

is a particularly signifi cant problem in the inves-
tigation of network-level phenomena such as sei-
zures. Experiments are done at non-physiological 
oxygen and glucose concentrations. Many of the 
preparations are based on tissue from perinatal 
animals. For example, organotypic slice cultures, 
or the intact (whole) in vitro hippocampus prepa-
ration are best prepared before the 8th postnatal 
day (P8). Although acute brain slice preparations 
can be obtained from animals at any age, there 
is only a relatively brief period of time when 
the slice is physiologically stable. This time limit 
can restrict the types of experimental manipu-
lations that can be performed in vitro, such as 
those involving viral or expression of exogenous 
proteins. 

 Some scientists and clinicians argue that 
in vitro models are too far removed from human 
epilepsy, and therefore one should focus on 
in vivo models. However, in vivo models have the 
dual problems of complexity and access, such that 
it is diffi cult to identify the pathogenic mecha-
nisms in suffi cient detail to initiate pharmacologi-
cal or genetic interference. Moreover, studying 
acquired epileptogenesis in vivo involves brain 
injury. Therefore the “3R” strategies of replace-
ment, reduction and refi nement (3Rs) in research 
using animals are relevant. 1  “Replacement” refers 
to the use of other preparations, such as induced 
pluripotent stem cells derived from patient fi bro-
blasts. “Refi nement” refers to alteration of the 
experiment to focus the experiment to minimize 
pain and maximize information return. For exam-
ple, many conditions leading to epilepsy are asso-
ciated with activation of astrocytes. Addressing 
this question specifi cally might involve replacing 
a status epilepticus model with a model in which 
astrocytes are primarily activated [ 50 ,  66 ]. This 
will – if some investigators are correct – still 
cause epilepsy but presumably with less damage 
to the brain. “Reduction” refers to minimization 
of the number of animals used. Preparation of 
multiple brain slices per animal can make possi-
ble multiple independent tests of the hypothesis 
for each experimental subject. Using the reactive 
astrocyte hypothesis as an example, many of the 

1   http://www.nc3rs.org.uk/ 
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consequences of astrocyte activation can also be 
studied in vitro. Some questions may not be fea-
sibly studied in vivo – for example disturbance 
of potassium homeostasis [ 42 ] and/or glutamate 
homeostasis [ 29 ] may not be detectable with 
currently available in vivo methods. Focusing 
on the 3 Rs can have benefi cial consequences – 
for example, markers of astrocyte activation 
might prove to be a biomarker predictive of 
epileptogenesis. 

 In the end it is important to recognize “in vivo 
veritas,” i.e., in vitro studies should be comple-
mented by in vivo studies. For example, in vitro 
studies can be used to rapidly screen drug librar-
ies or target proteins and RNA, and slower, more 
costly, but more relevant in vivo studies can be 
used to study the most promising lead com-
pounds. Indeed in vitro studies often underesti-
mate potential side effects. In vivo experiments 
can determine whether translational relevance is 
hampered by the unwanted side effects of a given 
intervention, by toxic effects on organs other than 
the brain, by long-term loss of effi cacy due to 
development of tolerance, or ineffectiveness due 
to interference with attention or sleep states of an 
animal and a patient. 

 If in vivo studies are used to complement 
in vitro work, it is important to optimize the 
in vivo protocols for maximal translational 
relevance. One improvement in the translational 
effi cacy of in vivo studies could be achieved by 
completely phenotyping animals undergoing 
epileptogenesis and experimental therapeutic 
studies. A critical aspect of thorough and unbiased 
phenotyping of mice or rats includes continuous 
seizure surveillance using video EEG monitoring 
[ 71 ]. Wherever possible, experimental approaches 
should be employed that are based on clinical 
observations. 

 One chance to strengthen epilepsy research is 
also to take advantage of pathophysiological dis-
coveries in other disciplines. For example the 
abnormalities observed in patients with 
Alzheimer’s disease may not only be relevant for 
neurodegenerative disease but also for epilepsy 
because many patients with Alzheimer’s disease 
may also develop a symptomatic form of epi-
lepsy [ 88 ]. Mitochondrial disorders are not only 

observed in certain forms of Parkinson’s disease 
[ 13 ] but also in epilepsy [ 48 ]. Elements of the 
infl ammatory response are observed in many 
brain injuries (for example after trauma, stroke 
and status epilepticus) which may contribute to 
epileptogenesis [ 44 ,  89 ]. If useful discoveries and 
approaches in other areas of applied neurosci-
ence are exploited, the translational gap may be 
more readily overcome.  

2.3     Lessons Learned: In Vitro 
Techniques for Epilepsy 
Research 

 Ictogenesis: The utility of in vitro preparations for 
epilepsy research was fi rst suggested by a study in 
which seizure like events were induced by lower-
ing of extracellular Cl −  concentration in the per-
fusate of acute hippocampal slices [ 93 ]. It was 
therefore surprising that GABA A  receptor antago-
nists induced only short interictal- like discharges 
in the hippocampal slice preparation, because the 
hippocampus was presumed to be the most epi-
leptogenic region [ 77 ]. Similar fi ndings were 
observed in cortical slice preparations. These data 
suggested that GABA A  receptor blockade was not 
a suffi cient condition for seizure induction 
in vitro, and that other conditions were necessary 
for ictogenesis, i.e. the induction of seizure-like 
events. The fi rst seizure-like events recorded 
in vitro were generated by conditions that accom-
pany seizures in vivo, such as low concentrations 
of extracellular Mg 2+  [ 90 ] or Ca 2+  [ 43 ] or elevated 
concentrations of extracellular K +  [ 87 ]. While low 
Ca 2+  and high K +  induced seizure-like events in 
hippocampal subregions, low Mg 2+  and applica-
tion of 4-aminopyridine, a potassium channels 
blocker, initiated seizure-like events more reliably 
in cortical structures than in hippocampal slices 
[ 60 ], unless juvenile tissue was used [ 31 ]. These 
studies suggested that the hippocampus is not as 
seizure prone as originally thought from the 
pathological studies of patients with epilepsy, or 
that seizure generation involves distributed 
circuits that are lost after slicing- induced deaffe-
rentation. In light of this, it is interesting to 
note that seizures in patients with temporal lobe 
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epilepsy often originate outside the hippocampus, 
for example in the amygdala and the entorhinal 
cortex [ 81 ]. These cortical structures are now con-
sidered to be more seizure prone than the hippo-
campus or other cortical areas. The ionic 
manipulations that were used to study ictogenesis 
also provided early insights as to why and where 
(cortex vs. hippocampus) Mg administration acts 
to antagonize eclamptic seizures [ 24 ]. 

 The next surprising fi nding from in vitro 
studies of epilepsy was that seizure induction 
was more easily accomplished in control slices 
than in slices obtained from animals with epi-
lepsy and from specimens of patients with drug 
resistant epilepsy [ 30 ,  98 ]. This suggests either 
that ictogenic processes are active only tran-
siently in epilepsy, or that epilepsy also entails 
protective mechanisms that are more robustly 
preserved in vitro compared to ictogenic mecha-
nisms. Understanding such protective mecha-
nisms could lead to new antiepileptogenic 
strategies. A related insight from recordings of 
tissue from patients with epilepsy was that the 
transections that accompany slice preparation 
may be more functionally important in chroni-
cally epileptic tissue than normal tissue. One 
interpretation is that a fundamental and wide-
spread alteration in connectivity occurs in the 
chronically epileptic brain. On the other hand, 
many patients with refractory epilepsy know that 
following a seizure there is usually a seizure- free 
interval, sometimes of considerable duration. 
Here, translation is bidirectional: Clinical ques-
tions can be “translated” into an experimental 
approach and experimental observations suggest 
new possibilities for interfering with epilepsy 
and epileptogenesis.  

2.4     In Vitro Models: The “Nuts 
and Bolts” 

 Among the in vitro preparations available for 
studying ictogenesis, perhaps the most versatile 
is the slice preparation. Slices can be obtained 
from any mammalian species including humans 
following neurosurgical interventions. Slices can 
also be obtained from animals that are epileptic 

as a result of trauma, tumors, status epilepticus, 
infl ammation, etc. However, slices have circuits 
that have been reduced in size by transection of 
processes, and therefore more intact preparations 
are sometimes required to gain insight into epi-
lepsy. There are two acute preparations that 
address the connectivity issue: one is the isolated, 
intact hippocampus (also referred to as the whole 
or in toto hippocampal preparation [ 61 ]). The 
other is the intact isolated brain preparation [ 19 ]. 
The fi rst preparation is only feasible if animals 
are used at young ages, and the second prepara-
tion is feasible only if guinea pigs are used 
(unless one uses non-mammalian species). Also, 
in these preparations, many aspects of epilepsy 
cannot be readily studied. A preparation that can 
be used for long-term observations is the organo-
typic slice culture, in which many different 
aspects of epileptogenesis can be studied “in a 
dish.” Slice cultures represent a model of brain 
trauma by virtue of the trauma involved in slice 
preparation, and also of developmentally increased 
seizure susceptibility because as mentioned 
above, organotypic slices are most reliably pre-
pared from animals in the fi rst postnatal week. In 
the following section we will discuss each of 
these preparations in more detail, and discuss 
some translational aspects of this research. 

2.4.1     Acute In Vitro Brain Slices 

2.4.1.1     Interictal Activity and Seizures 
 Interictal activity refers to paroxysmal epileptic 
discharges that are much more brief and occur 
more much more frequently than seizures. Most 
epileptiform events in acute slices have these 
two characteristics. Currently, it is not known 
whether interictal epileptiform activity is pro-
convulsive or epileptogenic. Because EEGs are 
not performed routinely in brain injured patients, 
it is not known whether interictal spikes precede 
seizures after brain injury. In acute in vitro prep-
arations, brief recurrent epileptiform events can 
be readily induced by ionic and pharmacological 
manipulations. Thus many experimentalists have 
argued that these interictal-like events observed 
in vitro embody the essential features of ictogenesis. 
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Indeed preictal spikes often precede seizures in 
humans, and in in vivo models of epilepsy. 
During the in vivo spikes, depolarization shifts 
of the membrane potential occur that are very 
similar to the membrane potential changes 
recorded in vitro [ 45 ,  78 ]. On the other hand, 
questions have been raised about the translational 
relevance of activity that is induced by acute 
proconvulsant pharmacological or ionic manipu-
lations in vitro [ 94 ]. 

 One example is the interictal-like activity 
induced by low Mg induced in adult rat hippo-
campal slices. The pharmacological relevance of 
this activity is modest, because anticonvulsants 
have limited effects on this activity. Thus this 
activity cannot be used in drug screening, and 
pathophysiological studies based on this activity 
must be interpreted with caution. In fact, seizure- 
like events were induced when the GABA B  ago-
nist baclofen was added to the perfusate 
containing low Mg [ 83 ]. One interpretation of the 
combined effect of baclofen and low Mg is that 
interictal activity was preventing ictogenesis. 
Another interpretation is that low Mg induces a 
state similar to Periodic Lateralize Epileptiform 
Discharges (PLEDs) rather than interictal spikes, 
and that seizures can only be observed by reduc-
ing the severity of the ictogenic conditions, for 
example by reducing probability of glutamate 
release through activation of presynaptic GABA B  
receptors with baclofen. Similar results are 
obtained when elevated K, which induces sponta-
neous epileptiform burst discharges in adult hip-
pocampal slices, is combined with strontium, 
which reduces the rate of glutamate release [ 84 ]. 

 Consistent with these observations of the 
interaction between manipulations that alter 
excitability, induction of recurrent epileptiform 
burst discharges by tetanic stimulation makes it 
more diffi cult to induce seizure-like activity 
using elevated K +  [ 59 ]. Barbarosie and Avoli [ 7 ] 
observed that in the presence of the convulsant 
4AP, seizure activity could be initiated following 
transection between CA1 and entorhinal cortex. 

 These experiments and many others per-
formed over the last two decades, emphasize that 
the sum of multiple manipulations in vitro are not 
predictable and are often diffi cult to interpret 

with respect to human epilepsy. A particularly 
problematic correlate is that in slices exposed to 
convulsant conditions, anticonvulsants, even at 
anesthetic concentrations, while blocking seizure- 
like events [ 14 ,  57 ,  99 ], rarely inhibit the interictal-
like epileptiform activity induced by convulsants 
in acute in vitro preparations [ 94 ]. This is an 
important area for future optimization, and is 
discussed in more detail in the section on 
organotypic slices.  

2.4.1.2     Age, Area, and Astrocytes 
 Slice preparations can be used to determine age 
dependence of seizure susceptibility, and to 
compare different regions of the brain with 
respect to epileptogenesis. Thus, susceptibility 
to low Mg or low Ca is much higher in tissue 
from young animals [ 31 ] and treatment with 
ictogenic agents often results in spreading 
depression [ 38 ]. There are many potential devel-
opmental mechanisms to explain these data, 
including circuit development and or the matura-
tion of astrocytes. At the time when Hablitz and 
colleagues reported their fi ndings, it had not yet 
been established that astrocytic properties differ 
in epileptic vs. control animals [ 29 ,  40 ]. It also 
was not known that activation of astrocytes can 
be achieved by many perturbations that are con-
sidered minor, such as opening of the blood 
brain barrier, or exposure to albumin. Conditions 
leading to chronic astrocyte activation can also 
acutely reduce seizure threshold. Brain injuries 
are often accompanied by spreading depression 
episodes, which in cases of disturbed neurovas-
cular coupling can cause neuronal damage and 
may therefore exacerbate brain injury in isch-
emic and hemorrhagic stroke. Spreading depres-
sion may also be relevant to epilepsy associated 
with Alzheimer disease [ 22 ,  55 ,  92 ]. 

 The regional variation of seizure susceptibility 
can also be investigated with acute brain slices. 
Seizures never seem to originate from basal gan-
glia and cerebellum, perhaps because information 
is relayed by activation of inhibitory cells through 
disinhibition of target cells. This brings up the fact 
that all brain activity involves both excitation and 
inhibition of both inhibitory neurons and princi-
pal cells. Thus pharmacoresistance could involve 
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failure of GABAergic agents (which may exacerbate 
inhibition of interneurons) or Na channel blocking 
agents (which may reduce GABA release from 
strongly inhibited interneurons). Of course there 
are many other possible explanations for pharma-
coresistance, such as alterations in the expression 
of Na channels.  

2.4.1.3     Channelopathies 
 A good example of a genetic channelopathy that 
has been benefi ted from the in vitro approach is 
the murine Nav1.1 knockout model of epilepsy. 
These mice exhibit a pattern of seizure activity 
that is similar to the clinical syndrome with a 
similar defect in Na channels, Dravet syndrome 
[ 74 ]. One hypothesis for the generation of sei-
zures in these animals is that they arise from pref-
erential expression of Nav1.1 channels in 
interneurons which – if defective – would result 
in strongly reduced excitability of interneurons 
and GABA release [ 95 ]. The result could be a 
pharmacoresistant epilepsy. 

 Defects in ion channels have long been impli-
cated in the epileptiform discharges induced in 
vitro by low extracellular calcium concentrations 
[ 36 ,  52 ]. This idea was based on observations 
from baboons where seizures induced by strobo-
scopic stimulation were associated with decreases 
in extracellular Ca concentration to less than 
0.2 mM, and where seizures were accompanied 
by increases in potassium concentration to near 
10 mM [ 69 ]. Mimicking this condition did not 
induce seizure-like events in human or animal 
cortical structures in vitro. An exception was area 
CA1 in rat and mouse hippocampus, where the 
packing density of neurons is higher, promoting 
ephaptic interactions that are thought to be 
enhanced by lowered extracellular calcium. On 
the other hand, cation channels [ 37 ] and more 
recently certain TRP channels are activated by 
decreasing either Ca or Mg concentration [ 91 ]; 
this is not only important for spreading depolar-
ization [ 80 ] but possibly also for generation of 
seizures and cell death [ 62 ]. The regulation of 
these excitatory channels by Ca and the activity- 
dependent decrease in extracellular Ca suggests a 
new mechanism for seizure spread and for modi-
fying seizure generalization. 

 Similarly recent work has identifi ed KCNQ 
channels as potential targets for the treatment of 
seizures. The fi rst drug introduced for treatment 
is retigabine which affects KCNQ2,3 and 5 chan-
nels but not KCNQ 1 channels (KCNQ1 is 
expressed in the heart; [ 96 ]). The distribution of 
KCNQ channels in principal cells and in inter-
neurons varies, with KCNQ5 channels being 
expressed on GABAergic cells as well as principal 
cells [ 97 ], which can explain the fi nding that 
retigabine can reduce GABAergic inhibition, 
which may limit its use as an antiseizure medica-
tion. More recently however, agents were identi-
fi ed which only affect KCNQ2 [ 12 ]. These are 
preferentially expressed on glutamatergic cells 
therefore are more suitable as antiseizure drugs. 
Thus slices prepared from transgenic animal 
models can make possible the rapid testing of 
potential anticonvulsant effects; however, side 
effects are better assessed in vivo.  

2.4.1.4    Evoked Seizure-Like Events 
In Vitro as a Model of Status 
Epilepticus 

 In vitro models of ictogenesis such as the high K 
model, the low Mg model, and the 4-AP model 
are characterized by epileptiform activity that 
recurs at short intervals without intervening 
physiological activity. Clinically this pattern of 
activity is similar to status epilepticus, which is 
defi ned as either a seizure lasting for more than a 
specifi ed time period or seizures that recur with-
out an intervening period of normal conscious-
ness. There are serious clinical implications of 
the defi nition, because after 30 min, status epi-
lepticus can become pharmacoresistant (Kapur 
and MacDonald). Moreover, prolonged experi-
mental status epilepticus can cause considerable 
neuronal death [ 33 ]. The lack of agreement 
regarding the duration of seizure activity neces-
sary for status epilepticus is related to our lack of 
knowledge regarding the time course of the dam-
age to neurons. 

 In vitro, it turns out that shortly after their ini-
tiation, exposure to low Mg, 4-AP, high K and 
low Ca induce seizure like events that all respond 
well to standard AEDs. However, if the activity 
persists for some time, then seizure like events 
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gradually shorten, and ultimately short recurrent 
discharges occur, which are also unresponsive to 
standard AEDs [ 15 ,  23 ]. The analysis of such 
events indicates that the transition from long 
seizure- like events to short discharges is proba-
bly due to reduced GABAergic transmission. A 
variety of pre and postsynaptic processes may 
underlie this loss of effi cacy, such as internaliza-
tion of GABA receptors, consumption of GABA 
for synthesis of ATP, and alteration of the anionic 
transmembrane gradients that subserve GABAA 
receptor-mediated inhibition. The reduction in 
GABAergic function explains why GABAergic 
agents that prolong the GABAergic signaling 
lose effi cacy during the course of prolonged sei-
zures. However, in some cases, agents that 
directly activate GABA receptors are still effec-
tive [ 67 ]. In other situations GABAergic agents 
are either minimally ineffective or exacerbate 
epileptiform activity, a situation that can be 
improved by agents that improve the transmem-
brane anionic gradient [ 26 ,  27 ]. This improve-
ment has also been observed in human case 
studies [ 47 ] and is being investigated in human 
trials. In some circumstances these additional 
processes that are dependent on the duration of 
seizure activity prior to drug application have 
provided the key to resolving seemingly contra-
dictory results [ 1 ,  27 ,  28 ]. 

 Neurons are depolarized during prolonged 
seizures, and so are their mitochondria. Brian 
Meldrum’s experimental neuropathological stud-
ies of status epilepticus in the baboon focused 
attention on mitochondrial changes accompany-
ing ictal neuronal cell death [ 33 ]. Subsequent 
studies have provided evidence that at least part 
of the neuronal damage arising during status epi-
letpicus seems to be due to mitochondrial depo-
larization and increased production of free 
radicals [ 17 ,  54 ]. This suggests that some neuro-
protection can also be achieved by free radical 
scavenging [ 54 ,  76 ]. This is an area that can be 
profi tably studied in vitro, where microscopic 
imaging during epileptiform activity is more fea-
sible than in vivo. Barbiturates and other anes-
thetics used to terminate status epilepticus are 
typically titrated to a burst suppression pattern 
that is very reminiscent of the periodic population 

discharges that are observed in acute brain slice 
preparations exposed to convulsants with anes-
thetic concentrations of barbiturates [ 23 ]. Indeed, 
recurrent epileptiform discharges cause consider-
able cell loss due to mitochondrial depolarization 
and increased free radical production sensitive to 
neuroprotection by free radical scavengers such 
as tocopherol. Other anticonvulsant and neuro-
protective strategies such as cooling of patients’ 
brain by a few degrees or anticonvulsants which 
do not involve GABAergic signaling should con-
tinue to be investigated [ 75 ]. It will important to 
advance these early results in vitro and then 
translate the results of these experimental fi nd-
ings into good clinical studies.  

2.4.1.5    Increased Seizure Threshold 
of Epileptic Tissue In Vitro 

 As mentioned above it is often diffi cult to induce 
seizure like events in tissue from animals with 
epilepsy acquired after drug-induced status epi-
lepticus. This may refl ect an endogenous anticon-
vulsant effect. It has not yet been described for 
kindled animals, and it depends on the number of 
seizures an animal has experienced [ 98 ]. In 
chronically epileptic human tissue resected for 
seizure control, it is even more diffi cult to evoke 
seizure like events [ 30 ,  39 ]. In resected hippo-
campal tissue, seizure-like events can often be 
induced by elevating potassium concentration in 
the dentate gyrus and subiculum [ 30 ]. In neocor-
tex 4-AP can be employed but it works in only a 
subset of patient specimens [ 5 ]. We have also 
been able to induce seizure activity with high 
potassium combined with bicuculline. These 
observations raise important questions as to the 
mechanisms underlying relative seizure resis-
tance in epileptic tissue. 

 Kindling is most effective when a critical 
interval is included between kindling stimuli. It 
was fi rst suggested that this may relate to upregu-
lation of opoid receptors [ 73 ]. Later it was shown 
that a single repetitive stimulation of the perfo-
rant path from the entorhinal cortex to the dentate 
gyrus could upregulate the GABA synthesizing 
enzyme GAD with subsequent co-release of 
GABA and glutamate form mossy fi ber terminals 
which leads to an elevated seizure threshold [ 35 ]. 
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These effects seemed to be transient and fade 
away with time. Additional evidence for endoge-
nous antiepileptic processes come from slices 
prepared from kainate treated and also from pilo-
carpine treated animals, where the convulsant 
4-AP was ineffective. This effect was due to up- 
regulation of the enzyme adenosine deaminase 
acting on RNA (ADAR2). This causes mRNA 
editing of AMPA type glutamate receptors as 
well as Kv1 potassium channels that lose some of 
their sensitivity to 4-AP [ 82 ]. An additional 
mechanism involves arachidonic acid which is 
directly blocking K channels [ 11 ] and in addition 
can be metabolized to a number of intrinsic con-
vulsant or proconvulsant derivatives [ 44 ]. 
Activity dependent editing of alpha 3 subunits of 
glycine receptors has also been described. This 
editing leads to an increased affi nity for gylcine 
and some of its agonists [ 63 ]. Although such pro-
cesses may decrease seizure susceptibility, we 
need to keep in mind that there is not suffi cient 
circuitry in a slice for seizure generation. Thus 
we may need to pay more attention to network 
preservation when studying network phenomena 
such as seizures and epilepsy in vitro. 
Nevertheless, hypothesis driven searches for 
other anti-ictogenic mechanisms that are active in 
epileptic tissue comprise a promising route for 
discovering new treatments of pharmacoresistant 
epilepsies.  

2.4.1.6    Analysis of Proepileptogenic 
Factors 

 Another translational opportunity for epilepsy 
research is the in vitro study of mechanisms of 
epileptogenesis. Trauma and stroke research led 
to the important discovery that neuronal circuits 
reorganize following a brain lesion, and this had 
important implications for the study of epilepsy. 
For example, the observation of mossy fi ber 
sprouting, that is sprouting of dentate granule cell 
axons back into the input layer of the dentate 
gyrus, has been a central model of the recurrent 
positive feedback that is a necessary component 
of any sustained network activity, including sei-
zures [ 56 ,  65 ]. However, some investigators now 
wonder whether this neurocentric approach to the 
understanding of epilepsy may have been too 

narrow. Many conditions which lead to epilepsy 
are associated with an open blood brain barrier 
[ 72 ,  86 ]. The immediate effects of blood brain 
barrier disturbances include vasogenic edema 
due to extravasation of albumin and other serum 
proteins into the brain interstitial space. This 
increases intracranial pressure, potentially reduc-
ing microperfusion. Opening of the blood brain 
barrier also increases extracellular potassium and 
reduces extracellular Ca and Mg concentrations, 
because these are lower in serum than in the brain 
interstitial space [ 79 ]. Activity-dependent 
increases in blood fl ow might not occur under 
these conditions. Thus if seizures emerge, rela-
tive metabolic deprivation may ensue. Seizures 
and metabolic deprivation lead to cell swelling, 
i.e. cytotoxic edema [ 21 ]. When the blood brain 
barrier is opened, albumin is absorbed into peri-
vascular macrophages and astrocytes, perhaps 
refl ecting an attempt to reduce the extracellular 
colloid pressure. This process is associated with 
activation of TGFß receptors and subsequent 
activation of astrocytes, including increased 
expression of GFAP [ 40 ] and down regulation of 
K IR  channels. This results in depolarization of 
astrocytes and changes in the expression of con-
nexins, resulting in reduced astrocytic electrical 
coupling [ 16 ]. Both effects lead to enhanced 
accumulation of extracellular potassium and per-
haps glutamate in the extracellular space. Under 
these conditions, seizure threshold is strongly 
reduced and when seizures develop they rapidly 
progress to spreading depression [ 55 ]. 
Preliminary evidence suggests also that these 
alterations in astrocyte properties may be associ-
ated with increased release of chemokines and 
cytokines and potentially also with release of 
gliotransmitters. Importantly these alterations 
precede appearance of seizures and if stopped 
may prevent later epileptogenesis. Probing for an 
open blood brain barrier may be an important 
biomarker for epileptogenesis following trauma, 
stroke and encephalitis and some form of tumors. 
However, not all tumors are associated with an 
open blood brain barrier and criteria that take into 
account constraints on the role of the open blood 
brain barrier in epileptogenesis have still to be 
evaluated.   
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2.4.2     Isolated Hippocampus 
and Isolated Brain 

 The isolated intact hippocampus has recently 
received considerable attention because a num-
ber of questions can be addressed that are of 
potential clinical relevance. One is the induction 
of a mirror focus by using the two hippocampi 
interconnected by commissural fi bers [ 49 ]. 
Induction of seizure-like events in one hippocam-
pus induced a seizure focus in the contralateral 
hippocampus without any additional pharmaco-
logical treatment. This is potentially important as 
it could explain why in some cases seizures do 
not stop when one hippocampus is removed. On 
the other hand this is an acute fi nding that may be 
more closely related to mechanisms underlying 
rapid kindling than the development of mirror 
foci in chronic epilepsy. The fi nding is limited to 
young age, as maintenance of the intact hippo-
campus beyond postnatal day 10 is presently not 
possible. For such studies in older age it may be 
more feasible to use preparations from turtles or 
birds. Another aspect of studies in juvenile intact 
hippocampus is that the evoked seizure like 
events seem to be resistant to clinically employed 
drugs [ 70 ], perhaps refl ecting immature ion 
transport mechanisms [ 27 ]. This may therefore 
be a preparation in which new agents can be 
tested which specifi cally address seizures in 
babies and young infants. 

 Another intact in vitro preparation is the intact 
guinea pig isolated brain preparation [ 19 ]. It per-
mits studies on long range interactions within the 
brain during seizure like events and indicates that 
seizure generation is based on multisite interac-
tion in wide spread neuronal circuits. However it 
is apparently diffi cult to induce epilepsy in guinea 
pigs and the intact brain is diffi cult to prepare 
from aged animals.  

2.4.3     Use of Human Tissue In Vitro 

 About 30 % of patients with epilepsy do not 
become seizure free with presently available 
drugs. Thus there remains a pressing need for 
models of pharmacoresistance that are correlated 

with data from patients. At present, human tissue 
resected during epilepsy surgery is primarily 
used for diagnostic purposes. In past years how-
ever the neuropathology fi eld has opened itself to 
molecular biology aspects concerning expression 
of peptides, transmitter receptors, ion channels, 
gene regulation and epigenetics [ 18 ]. Human tis-
sue samples can to some extent also be used for 
determination of changes in interneuronal con-
nectivity and in probing for alterations in astro-
cyte properties [ 20 ]. Moreover in human tissue 
spontaneous events may be detected that might 
resemble interictal spikes and fast ripple activity 
[ 51 ]. This may permit the study of mechanisms 
of fast ripple activity in human tissue. Interestingly 
slices prepared from human specimens often 
have a relatively long survival time. This might 
permit development of slice cultures from human 
tissue. 

 It is notoriously diffi cult to induce seizure like 
events in human tissue. As discussed above, this 
is probably due to upregulation of anti- ictogenic 
mechanisms, in addition to the effects of partial 
network disassembly. Endogenous protective 
mechanisms are of interest because studies of 
these mechanisms could lead to identifi cation of 
novel anticonvulsant and antiepileptogenic thera-
pies. However it is still possible to induce seizure 
like events in the hippocampus or temporal neo-
cortex of TLE patients, and in the cortex of 
patients with developmental disorders. In the hip-
pocampus the most effective method to induce 
seizures is elevation of potassium concentration. 
In temporal neocortex seizure-like events can be 
induced in a subset of preparations by 4-AP, or 
4-AP combined with elevated potassium concen-
tration. In our hands the best method for induc-
tion of seizure like events in temporal neocortex 
slices is the use of potassium elevation combined 
with application of bicuculline (unpublished 
observation). In studies of epileptiform activity 
induced by elevated potassium in the hippocam-
pus it was noted that the slices do not respond to 
CBZ if they come from patients with pharmaco-
resistant epilepsy but do respond if they come 
from patients which are not resistant to AEDs 
such as tumor patients [ 41 ]. It is noteworthy that in 
some instances one slice from a pharmacoresistant 
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patient may not respond to AEDs while the other 
does. This heterogeneity offers itself for studies 
on mechanisms underlying pharmacoresistance. 
Obviously if one is able to induce seizure like 
events in slices from pharmacoresistant patients 
this opens the possibility to test for agents which 
might alleviate the epilepsy in drug resistant 
patients. One argument against this strategy is 
that the obtained material is too heterogenous 
and that in many centers the incidence of epi-
lepsy surgery is too low to permit for rapid infor-
mation. However monkey studies are often 
indeed based on many repeated measures in the 
same subject. The amount of human tissue avail-
able is often large and would permit to study 
effects of a multitude of agents on the same 
patient material if logistics can be surmounted. 
For example in analogy to multi center clinical 
studies, it might be possible to set up multicenter 
studies on resected material, although this might 
require new funding mechanisms.  

2.4.4     Slice Cultures as a Model 
of Traumatic Epilepsy 

2.4.4.1    Ictogenesis 
 There are a number of different techniques for 
preparing organotypic slice cultures from cortex 
or hippocampus. Their properties depend on the 
way they are fi xed to the substrate material, on 
the age at preparation and on the media used for 
maintenance in culture [ 6 ,  85 ]. Most studies 
related to epileptogenesis are done on organo-
typic hippocampal slice cultures. Cortical organ-
otypic cultures and hippocampal cultures 
maintained with B27 artifi cial media often dis-
play spontaneous seizures [ 2 ,  10 ] which can be 
recorded also while the cultures are in the incuba-
tor by different techniques such as MEAs or 
implanted electrodes. In this preparation, epilep-
togenesis proceeds at a rapid but predictable time 
course [ 25 ]. Interictal activity precedes the onset 
of ictal activity by several days. Status epilepti-
cus commencing shortly after the appearance of 
spontaneous seizures is observable for hours to 
days [ 2 ]. Seizure-induced neuronal death is read-
ily apparent, peaks during status epilepticus [ 54 ], 

and can be prevented by standard anticonvulsants 
such as phenytoin [ 9 ]. The incidence of epilepsy 
is nearly 100 % in slice cultures from rats and 
mice, and in fact a current challenge is develop-
ing a culture system with a lower incidence of 
epilepsy that might make a better predictor of 
biomarkers and therapeutic agents for human 
epileptogenesis. 

 Some investigators prefer to induce seizure 
like events by lowering Mg thereby activating 
NMDA receptors, or application of bicuculline 
thereby reducing inhibition. Application of 4-AP 
leads to strongly enhanced transmitter release 
due to the strong expression of 4-AP sensitive 
Kv1.4 and 1.5 as well as some Kv3 channels on 
presynaptic terminals. Seizure like events are 
usually characterized by some initial clonic like 
discharges, followed by a tonic like and thereaf-
ter clonic like period followed by a postictal 
depression and the recurrence of interictal dis-
charges. During seizure like events, ionic changes 
occur which mimic those observed during sei-
zures in intact animals. If seizures recur with a 
high incidence they can convert into late recur-
rent discharges which are characterized by 
shorter events with synchronous intracellular 
depolarizations. Thus slice cultures offer them-
selves for studies on ictogenesis and factors 
which facilitate ictogenesis such as reorganiza-
tion of the neuronal networks under study. 
Epileptogenesis can also be studied. For example 
typical epileptic circuitry with recurrent axon 
collaterals, back projection from CA1 to CA3 or 
DG can be observed [ 34 ,  56 ]. Slice cultures can 
be maintained for up to 8 weeks and therefore 
offer themselves also for long term observations. 
A drawback is that it is rather diffi cult to make 
slice cultures from hippocampal tissue beyond 
postnatal day 16. There are reports that slice cul-
tures can be made after this date but the chances 
that these can be maintained for more than 
2 weeks are rather slim and therefore very labor 
intensive [ 58 ].  

2.4.4.2    Pharmacosensitive vs. 
Parmacoresistance 

 Depending on duration of culturing and maintenance 
conditions, evoked seizures can be sensitive to 
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AEDs or insensitive. In the same slice culture 
both conditions can coexist: thus while 4-AP and 
low Mg induced seizure like events in some con-
ditions are pharmacoresistant the seizure like 
events induced by repetitive stimulation are not 
[ 3 ,  4 ]. Therefore slice cultures can be used as a 
model of pharmacoresistant seizures and drugs 
can be tested which might be useful for the treat-
ment of epilepsies in patients whose seizures 
cannot be satisfactorily controlled by present 
medication. 

 Spontaneously epileptic slice cultures that are 
not exposed to convulsants respond to anticon-
vulsants with suppression of ictal but not interic-
tal activities, as is the case clinically [ 9 ]. 
Interestingly, dependent on culture conditions 
these cultures become resistant to anticonvul-
sants after 1–3 weeks of exposure, with recrudes-
cence of seizure activity at anticonvulsant 
concentrations that completely suppress seizure 
activity in naïve slices of the same age [ 3 ,  9 ]. 
Thus the organotypic slice culture is a promising 
tool for the investigation of the phenomenology 
and pathophysiology of pharmacoresistance.  

2.4.4.3    Mechanisms of Ictogenic 
Cell Death  

 Slice cultures offer themselves also for studies on 
ictogenic cell death. A number of methods are 
available to monitor cell death. These include the 
measurements of LDH in the supernatant and 
also of propidium iodide staining and ethidium 
bromide staining [ 9 ,  54 ]. Of course it is also pos-
sible to test for programmed cell death. One 
approach is to perform experiments with reduced 
oxygen supply in slice cultures that are generat-
ing stimulation-induced seizure like events. 
These events develop into spreading depolariza-
tion which when oxygen tensions falls to near 
zero cause cumulative cell death, a situation 
which is similarly observed also in slices from 
animals which experienced a stroke [ 68 ]. On the 
other hand with normoxic or hyperoxic perfusion 
it can be shown that seizure like events are asso-
ciated with increased free radical production and 
eventually damage of mitochondria leading to 
disturbances in the coupling of neuronal and 
metabolic activity causing cell death because of 

lack of suffi cient ATP supply. Buffering ROS by 
different means can be shown to be highly 
neuroprotective. 

 Another approach to studying cell death in 
spontaneously epileptic slice cultures is to assay 
release of lactate dehydrogenase (LDH) into the 
culture media, which is changed twice weekly [ 9 , 
 32 ]. This is a simple procedure that while not lin-
early related to cell death, provides a rapid and 
reliable means to assay cell death in higher- 
throughput experiments in which toxicity of 
screened agents and prevention of ictal cell death 
are important endpoints. More detailed studies of 
ictal cell death employ either exogenous markers 
such as propidium iodide, or endogenously 
expressed fl uorescent markers of caspase activa-
tion. These studies provide a means to follow cell 
death over time, and to ask important questions 
as to the activities and features that precede or 
predict death in identifi ed neurons.  

2.4.4.4    Slice Cultures: A Model 
of Post-traumatic Epilepsy 

 When slice cultures are prepared a large number 
of connectivities are severed leading to some 
extent to retrograde degeneration but also to 
transformation of a three dimensional organiza-
tion into a two dimensional organization. Thus 
the slice culture can be considered to comprise 
a model of (pediatric) traumatic brain injury. 
When spontaneous seizures emerge in these cul-
tures they can be used for long term monitoring 
of drug effects thus facilitating detection of 
changes in effi cacy of a given drug. This includes 
also detection of toxic side effects with nervous 
tissue [ 8 ,  9 ].  

2.4.4.5    Long Term Monitoring of Anti 
Epileptogenic Effects 

 Slice cultures can also be used to study antiepi-
leptogenic strategies. One example is neovascu-
larisation. The density of blood vessels in human 
and chronic epileptic rodent tissue is often 
remarkably increased [ 72 ]. This makes it possi-
ble to address the question as to whether neofor-
mation of blood vessels can be altered [ 64 ]. 
Surprisingly slice cultures present with many 
blood vessels which are usually equipped with a 
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tight blood brain barrier [ 53 ]. Most of these ves-
sels remain intact unless there is infection in the 
tissue. Therefore slice cultures can be used to 
determine effects of microglial activation on ves-
sel density, and also whether factors that prevent 
revascularization have neurotoxic effects that 
might interfere with epileptogenesis. 

 Slice cultures permit study of signaling 
 cascades and of factors that may serve as antiepi-
leptogenic factors [ 8 ]. These can be neuroprotec-
tive agents, for example blockers of signaling 
cascades such as the TGFß activated pathways or 
the mTOR pathways, and agents that interfere 
with neuronal survival or growth factors. At pres-
ent most of these strategies are not yet ready for 
transfer into clinical trials, but this area is a prom-
ising area for further in vitro and in vivo study. 
Slice cultures are most useful to study drugs 
whose effects require time to produce  anti- seizure 
or anti-epileptogenic effects. Most drug testing 
assays used in vivo or in vitro test for very acute 
effects although many treatments in psychiatry 
and epiletogenesis take time to take full effi cacy.  

2.4.4.6    Use of Transgenic Models 
of Epileptic Encephalopathies 

 Many transgenic mice display seizures. Murine 
models have been developed for several human 
mutations that cause severe childhood epileptic 
encephalopathies. In many instances the trans-
genic models do not live long enough for research 
on the precise pathogenic cascade. However slice 
cultures can be prepared from ages ranging from 
fetal tissue to P16–18. Preparing slice cultures 
from such animals offers the possibility to look 
into the precise pathophysiological cascade and 
to defi ne intervention points by which the epi-
leptogenesis can be prevented. For these stud-
ies, the development of chronic slice cultures 
that do not become epileptic except in the pres-
ence of the targeted gene defect would be very 
useful. However, in the absence of such a slice 
preparation, the organotypic slice can still be of 
exceptional utility. For example, slice cultures 
prepared from transgenic animals expressing 
cell-type- specifi c fl uorophores that are activated 
by particular ions, neurotransmitters, or second 

messengers, or by cell-type-specifi c expression 
of light-sensitive rhodopsins can be studied with 
targeted path scanning multiphoton microscopy 
and activity-dependent fl uorophores. This pro-
vides the means to precisely interrogate critical 
network elements that are active during ictogen-
esis and epileptogenesis.    

2.5     Some Conclusions 

 The above discussion is not intended to be a 
thorough review of epileptogenesis. We tried to 
illustrate some of the successes and challenges 
of in vitro preparations for translational research. 
In vitro preparations offer a large number of 
research possibilities to address clinical ques-
tions and therapeutic options, including long 
term observations in slice cultures, detailed cel-
lular analysis, imaging and optogenetic studies, 
and expression of orphan receptors that permit 
activation and silencing of select populations. 
Expression and suppression of specifi c RNA 
and proteins can be achieved semi-acutely or 
chronically. All these technologies can now be 
employed for studies on ictogenesis, epilepto-
genesis and aspects of disease such as signaling 
cascades, development of pharmacoresistance, 
and neuroprotection. Exploiting the multiple 
technical possibilities for translational research 
will be substantially enhanced by improved 
contact between clinicians and scientists. This 
would culminate in clinical research executed 
through coordinated multicenter trials where 
promising, robust preclinical observations could 
be readily transformed into clinical proof of 
principle studies.     
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    Abstract  

  Investigations of interictal epileptiform spikes and seizures have played a 
central role in the study of epilepsy. The background EEG activity, how-
ever, has received less attention. In this chapter we discuss the characteris-
tic features of the background activity of the brain when individuals are at 
rest and awake (resting wake) and during sleep. The characteristic rhythms 
of the background EEG are presented, and the presence of  1/f    β   behavior of 
the EEG power spectral density is discussed and its possible origin and 
functional signifi cance. The interictal EEG fi ndings of focal epilepsy and 
the impact of interictal epileptiform spikes on cognition are also 
discussed.  
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3.1         Introduction 

    The electrical activity of mammalian brain, defi ned 
by the electroencephalogram (EEG), has long been 
a focus of scientifi c and clinical brain research [ 16 ]. 
The mechanisms underlying various EEG changes 
associated with brain  maturation, behavioral states, 

cognition, motor function, and  neurological  disease 
represent fundamental discoveries of neuroscience. 
Epilepsy in particular has benefi ted from EEG 
investigations [ 15 ]. A disorder characterized by 
unprovoked recurrent seizures, epilepsy has many 
underlying pathological causes but is unifi ed by the 
common clinical expression of seizures and the 
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associated pathological brain electrical activity. 
Not long after the discovery of the human EEG [ 7 ], 
Berger also reported that epileptic seizures had an 
abnormal EEG signature, and that between the sei-
zures (interictal) there were also transient epilepti-
form abnormalities not seen in controls (translated 
in [ 8 ]). Thereafter, the signifi cance of interictal epi-
leptiform spikes (IIS) and abnormal transient 
 oscillatory network activity in the development of 
epilepsy (epileptogenesis), seizure generation 
(ictogenesis), and associated functional impair-
ments (e.g., cognition, memory, and reaction times) 
have been active areas of research.  

3.2     Physiological Electrical 
Activity in the Normal 
Mammalian Brain 

 Since the fi rst observation of the occipital alpha 
rhythm [ 7 ] (translated in [ 8 ]) the interest in brain 
oscillations and their physiological and pathologi-
cal correlates has occupied a central position in 
human neuroscience. Historically clinical and 
basic research focused on specifi c oscillations that 
are prominent in the EEG intermittently, for exam-
ple the occipital alpha rhythm (α; 8–12 Hz) 
recorded at rest with eyes closed, beta (β; 12–30 Hz) 
and gamma frequency activity (γ; 30–50 Hz) dur-
ing mental and motor tasks, theta frequency 

 oscillations (θ; 4–8 Hz) during memory tasks or 
sleep, and delta frequency activity (δ; 0.5–4 Hz) 
that characterizes slow wave sleep. Similarly, the 
EEG activity in traditional frequency bands (δ, θ, 
α, β, γ) became the focus of EEG research and 
intensively studied in brain maturation [ 50 ], nor-
mal function, and disease states. However, it is 
widely recognized that the brain generates activi-
ties well outside these classic EEG bands. In fact, 
the high amplitude EEG activity below δ (<0.5 Hz) 
including direct current (DC) changes were some 
of the earliest electrical activities recorded [ 2 ]. 

 While EEG research has largely focused on 
narrow band EEG oscillations (δ, θ, α, β, γ) it is 
well recognized that there is a broad spectrum of 
on-going, arrhythmic, background activity that 
does not contain a dominant characteristic 
 oscillation, but rather is composed of intermixed 
 spectral frequencies [ 17 ,  34 ]. It is out of this 
arrhythmic background that the traditional EEG 
oscillations discussed above, e.g. the posterior 
dominant alpha rhythm, may be evoked or spon-
taneously emerge (Fig.  3.1 ). More recently, this 
broad spectrum of on-going background activity 
has been a focus of attention [ 17 ,  34 ,  43 ].

   This composition of background electrical 
activity in mammalian brain generally follows 
power-law behavior, i.e. the spectral power scales 
with frequency as  1/f    β   where β is called a scaling 
exponent (Fig.  3.2 ). This  1/f    β    (“one-over-f”)  

  Fig. 3.1    Interictal Background Activity from human hip-
pocampus recorded with intracranial depth electrode. 
There is an ongoing background activity followed by a 
paroxysmal gamma frequency oscillation ( bold arrows ), 
and an interictal epileptiform spike (IIS,  arrow ). The 
wavelet transform (1–600 Hz, Morlet basis) spectrogram 

of raw intracranial EEG shows the background theta 
activity, and the emergent low amplitude gamma oscilla-
tion preceding the IIS. The scale bar is normalized units 
standard deviations from background. Time base is 
100 msec per division (Courtesy of Liankun Ren, M.D. 
unpublished)       
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spectrum with lower frequency activities exhibit-
ing higher amplitudes than faster frequencies is 
characterized by the scaling exponent β that can 
be obtained by plotting log power vs. log frequency 
(log(Power) v.s. −β log(f)) and ranges over 0 < β < 4 
[ 31 ,  34 ,  52 ,  80 ]. The spectral peaks embedded in 
the 1/ f   β  represent ongoing  persistent oscillations 
or organized emergent oscillations that arise out of 
the ongoing EEG background, such as the tradi-
tional EEG rhythms of the human EEG (Fig.  3.2 ).

   The arrhythmic background activity has more 
recently received attention within the context of 
the advancing understanding of complex systems. 
It is recognized that  1/f    β   behavior in complex sys-
tems can be a signature of a self-organized sys-
tem with scale-free dynamics [ 31 ,  34 ,  55 ]. It turns 
out that  1/f    β   patterns are ubiquitous in nature, 
from the statistics of earthquakes to stock market 
dynamics [ 4 ]. The origin of  1/f    β   behavior in EEG 
and local fi eld potential (LFP) recordings remains 
unclear [ 9 ,  10 ,  34 ], but perhaps one of the most 
intriguing ideas is that it results from hierarchal 

nesting of brain activity [ 19 ,  34 ,  73 ] whereby 
lower frequency activity modulates higher fre-
quency activity [ 34 ]. The modulation of gamma 
oscillations by theta oscillations is a classic 
example [ 6 ,  14 ,  18 ]. At the cellular level, multi-
unit activity is correlated with EEG gamma power 
and phase-locked to the negative-going phase of 
the delta frequency activity [ 79 ]. Synchronization 
between neuronal assemblies also occurs within 
arrhythmic brain activity [ 25 ,  45 ,  70 ]. 

  Maturation of EEG:  The continuous matura-
tion of EEG activity through young adulthood 
refl ects brain development, e.g. myelination, 
and  organization [ 50 ]. In premature infants 
(24–27 weeks), the EEG is discontinuous and 
may alternate between periods containing bursts 
of high amplitude slow (0.1–1 Hz) activity and 
intermixed faster rhythms (8–14 Hz). From these 
earliest electrical rhythms in the infant brain 
there are long periods of  continuous development 
through late childhood (~12 y.o) when the poste-
rior dominant alpha rhythm reaches ~10 Hz [ 50 ].  

  Fig. 3.2    Power spectral density (PSD) from 5 min of 
human hippocampus during sleep recorded with intracra-
nial EEG (0.05–10,000 Hz, sampled at 32 kHz) using 
micro- and clinical macro-electrodes. The wide bandwidth 
recording exhibits 1/ f   β  behavior with different scaling 
regions characterized by different scaling exponents β = 1 

and 2. The inset shows an expansion of the PSD in the 
0.05–40 Hz range and spectral peaks from a low delta fre-
quency oscillation (~0.75 Hz) and a theta-alpha frequency 
oscillation (7.45 Hz). The characteristic 0.75 Hz oscilla-
tion is persistent throughout the 5 min and modulates the 
7.45 Hz intermittent oscillation (Unpublished Data)       
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3.3     Electrical Activity 
of the Sleeping Brain 

 There exists substantial evidence for the physio-
logical importance of sleep and in particular the 
requirement of sleep for normal memory [ 24 ]. To 
better understand how memory benefi ts from 
sleep, it would be helpful to fi rst describe briefl y 
the EEG during the two main types of sleep – 
rapid eye movement (REM) and non-REM 
sleep – and then how the neurophysiology of 
sleep might support aspects of memory forma-
tion. Since patients with epilepsy often report 
defi cits in sleep and impairment in memory, sub-
sequent sections describe electrophysiological 
disturbances in the epileptic brain and their likely 
functional implications for cognition. 

  EEG of REM sleep:  During REM or desyn-
chronized sleep, arising from a background of 
low-voltage, mixed frequency EEG, are sponta-
neous synchronous bursts of neuronal activity 
generated by the pontine tegmentum that spread 
to the lateral geniculate nucleus and visual corti-
ces in the occipital lobe that are termed “PGO 
waves”. Conspicuous in the EEG of rats and cats 
and less in humans, PGO waves coincide with 
rapid eye movements and can become phase- 
locked with theta oscillations. In rodents, theta 
oscillations occur with largest amplitude in the 
hippocampal CA1 area driven by inputs from 
septum, entorhinal cortex, and CA3. In addition 
to REM sleep, hippocampal theta can also be 
observed during awake behaviors in rodents. 
Theta also occurs in humans during wakefulness, 
but is more apparent in neocortical areas and less 
coherent in hippocampal areas. 

  EEG of non-REM sleep:  Non-REM sleep is 
characterized by high-voltage slow wave activity 
that includes slow oscillations <1 Hz and delta 
activity. The slow oscillation persists in isolated 
neocortical tissue and is abolished if thalamocor-
tical cells are deafferented from cortical inputs, 
suggesting slow oscillations are generated largely 
within neocortex [ 60 ,  71 ]. In scalp EEG, the alter-
nating sequence of surface positive (depth nega-
tive) and negative (depth positive) waves 
correspond with periods of neuronal membrane 

depolarization and hyperpolarization respectively. 
Periods of membrane depolarization occur within 
excitatory and inhibitory cells that  produces 
 sustained neuronal fi ring commonly referred to as 
“UP-states”, whereas periods of membrane 
hyperpolarization are accompanied by neuronal 
silence denoted as “DOWN-states”. The mecha-
nisms generating slow oscillations are not yet 
clear, although evidence to date suggests UP-states 
could arise from widespread summation of cal-
cium- and persistent sodium inward current-
mediated excitatory postsynaptic potentials in 
cortical cells, while neuronal disfacilitation asso-
ciated with DOWN-states could be due to cal-
cium- and sodium-dependent potassium currents, 
inactivation of persistent sodium currents, and 
possibly GABA-mediated inhibition. 

 Slow oscillations strongly modulate two other 
transient oscillations that occur during non-REM 
sleep – spindles and sharp wave-ripple complexes 
– and is another classic example of frequency nest-
ing. Spindle waves are beta frequency oscillations 
that wax and wane between 10 and 16 Hz and last 
0.5–2 s that characterize stage 2 of NREM sleep. 
Spindles arise from interactions between GABA-
containing neurons in the thalamic reticular 
nucleus as well as thalamocortical cells that facili-
tate the synchrony and spread of spindles through-
out neocortex. Human studies have identifi ed two 
types of spindles designated slow and fast; how-
ever, whether these two types of spindles arise 
from different neuronal mechanisms or refl ect the 
modulation of a common spindle generator is not 
known. Slow (10–12 Hz) spindles occur primarily 
over frontal cortical areas and more frequently 
during slow wave sleep than stage 2 sleep, and fast 
(13–15 Hz) spindles appear broadly over central 
and parietal cortices and are often coincident with 
increased hippocampal activity. 

 In hippocampus during non-REM sleep, 
 spontaneous extra-hippocampal impulses drive 
neuronal fi ring in CA3 that projects forward via 
Schaffer collaterals onto dendritic processes of 
CA1 pyramidal cells and some types of interneu-
rons. This briefl y irregular (30–120 milliseconds in 
duration), increase in neuronal fi ring registers in 
the depth EEG as a large amplitude sharp wave 
with maximum negativity in stratum lucidum, 
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 stratum radiatum, and inner third of stratum molec-
ulare corresponding to input layers of CA3, CA1 
and dentate gyrus respectively. In CA1, a similarly 
brief high-frequency oscillation (HFO; 80–200 Hz) 
termed “ripple” arises from synchronous fi ring 
between pyramidal cells and basket cells that is 
largest in amplitude in stratum pyramidale and 
superimposed on the sharp wave. During wide-
spread neuronal depolarization  associated with the 
slow oscillation UP-state, hippocampal ripples can 
co-occur with neocortical fast spindles to form 
spindle-ripple events with ripples that temporally 
coincide with the troughs of spindle waves [ 64 ]. 

  Concept of memory function and putative 
 neuronal mechanisms:  Memory function gener-
ally involves processes of encoding, consolida-
tion, and retrieval. In the awake brain, encoding 
occurs when perception of the stimuli produces a 
new, yet unstable, memory trace. During subse-
quent sleep, the labile memory trace becomes 
more stable and eventually integrated into brain 
networks supporting long-term storage of knowl-
edge in a process termed “consolidation”. During 
retrieval, the stored memory is accessed and 
recalled. A number of theories have been pro-
posed on how sleep supports memory consolida-
tion with some more than others supported by 
compelling data from animal and human studies 
(for extensive review, see [ 56 ]). Central to current 
theories (e.g., “active system consolidation”) is 
the concept of reactivation that involves a sleep- 
related replay of neuronal fi ring patterns corre-
sponding to the neuronal fi ring patterns that 
occurred while encoding, i.e., during prior wake-
fulness, as well as specifi c roles for different 
types of sleep in memory consolidation. 

 Considerable research has focused on identi-
fying the neuronal mechanisms that provide 
sleep-related benefi ts on memory formation. 
Current models emphasize precisely coordinated 
neuronal activity between neocortex and hippo-
campus for hippocampal-dependent memories 
[ 26 ]. During non-REM sleep, neocortical slow 
oscillation UP-states provide a temporal window 
for increased ripple activity and associated 
increase in neuronal fi ring that could refl ect 
 reactivation of hippocampal memories. The coin-
cidence of hippocampal ripples with neocortical 

fast spindles (spindle-ripple events) is thought to 
promote the transfer and ultimately storage of the 
hippocampal memory to neocortex [ 64 ], which is 
refl ected presumably by long-term functional and 
structural changes that strengthen synaptic trans-
mission (e.g., long-term potentiation). In addi-
tion, evidence suggests REM sleep PGO- and 
theta-related neuronal activity could also be 
involved with synaptic modifi cations with theta 
possibly playing a role in synaptic downscaling, 
which extends the “synaptic homeostasis” 
hypothesis that links the regulation of sleep with 
mechanisms of synaptic plasticity [ 72 ]. 

  Human single neuron correlates of sleep and 
memory:  Microelectrode unit recordings during 
natural sleep in humans are few, but available data 
indicate hippocampal neuronal fi ring increases dur-
ing non-REM sleep and declines during REM sleep 
[ 57 ,  65 – 67 ]. Furthermore, the propensity for burst 
discharge is highest during non-REM sleep com-
pared to awake and REM sleep episodes. These 
results are similar to the rates and pattern of hip-
pocampal pyramidal cell fi ring during non-REM 
and REM sleep in rodents [ 64 ], and are generally 
consistent with levels of hippocampal activity that 
could be involved with reactivation described in the 
preceding paragraphs. Work using the same micro-
electrode recordings from single neurons in humans 
has primarily focused on memory and navigation. 
These studies have led to the discovery of place 
cells in the human mesial temporal lobe underlying 
spatial navigation [ 26 ], which resembles the loca-
tion-specifi c fi ring patterns of some pyramidal cells 
in non-primate hippocampus described in the sec-
tions that follow. In addition, studies in humans 
have found evidence for neurons that encode 
 category specifi c images [ 40 ,  41 ].  

3.4     Abnormal Electrical Activity 
in the Epileptic Brain 

 In addition to sleep and wake behavioral states of 
normal brain, epileptic brain is characterized by 
interictal state (between seizures), ictal state 
 (seizures), and post-ictal states (after the seizure). 
It should be noted that while seizures are gener-
ally limited to a minute or so, the post-ictal state 
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as determined by subtle EEG or cognitive and 
physical changes can be prolonged [ 30 ]. In addi-
tion to the interictal and post-ictal state, there is 
emerging evidence for a pre-ictal state that is 
associated with increase in probability of seizure 
occurrence [ 22 ,  28 ,  47 ]. 

  Interictal Epileptiform Discharges:  Interictal 
EEG spikes (IIS) are brief, sharply contoured 
voltage fl uctuations of less than 200 msec that 
are a signature of epileptic brain. The intracel-
lular correlate of IIS is the paroxysmal depolar-
izing shift [ 3 ] seen in the neuronal membrane 
potential and is associated paroxysmal burst of 
neuronal population fi ring, but also involves a 
more complex interaction of inhibitory and 
excitatory neurons [ 3 ]. Depth electrode record-
ings during overnight polysomnographic sleep 
studies show that in patients with temporal lobe 
epilepsy (TLE), the highest rates of IIS regu-
larly occur during non-REM stage 3, and in 
some cases stages 1 and 2, sleep compared to 
waking and REM sleep [ 42 ,  59 ]. In addition, 
the spatial distribution of IIS is often broader 
during non-REM sleep than waking or REM 
sleep, i.e., IIS appear at electrode recording 
sites within and remote from where seizures 
begin [ 59 ]. 

 At the level of single neurons, patient studies 
have not consistently found differences in interic-
tal fi ring rates and bursting inside versus outside 
the seizure onset zone (SOZ) during awake epi-
sodes [ 20 ,  21 ]. However, during non-REM and 
REM sleep compared to wakefulness, interictal 
fi ring rates, bursting, and synchrony of discharges 
are signifi cantly higher in mesial temporal lobe 
(MTL) ipsilateral to the SOZ than contralateral 
MTL [ 65 – 67 ]. These results provide evidence for 
sleep-related facilitation of interictal neuronal 
hyperexcitability within the SOZ of patients with 
temporal lobe epilepsy. 

  Pathological HFO:  In the epileptic brain, 
 transient abnormally synchronous discharges of 
principal cells can summate in the extracellular 
space that give rise to a burst of population spikes 
commonly termed pathological HFO or pHFO 
[ 12 ,  13 ]. Chronic animal models of epilepsy 
and studies in patients with epilepsy indicate 
 hippocampal and neocortical pHFOs are strongly 

associated with brain areas capable of generating 
spontaneous seizures [ 29 ]. With respect to the 
wake-sleep cycle, recordings in epileptic rats and 
patients show the highest rates of hippocampal 
pHFOs occur during non-REM sleep compared to 
awake and REM sleep, while equivalent rates can 
be found during the latter two desynchronized EEG 
states [ 65 – 67 ]. By contrast, ripples are highest dur-
ing non-REM sleep, while rates are lower during 
wakefulness and lowest in REM sleep, which is 
consistent with their occurrence in the normal 
 non-primate hippocampus [ 65 – 67 ]. 

  Pathological Synchrony:  Synchronization of 
neuronal assemblies is thought to underlie nor-
mal brain functions such as perception, learning, 
and cognition. Alterations in neuronal synchrony 
are thought to underlie the clinical  manifestations 
of many neurological diseases. Hypersynchrony 
of pathological neuronal assemblies as the gen-
erator of epileptiform activity has been a central 
theme of epileptic brain electrophysiology [ 53 ]. 
Jasper and Penfi eld speculated that the local 
high amplitude interictal epileptiform activity 
recorded directly from human cortex during sur-
gery was generated by a burst of hypersyn-
chronous neuronal activity [ 53 ]. Interestingly, 
however, many seizures appear to begin with an 
apparent “asynchronous state” – low amplitude 
LFP activity that evolves into a hypersynchro-
nous state with high amplitude rhythmic activity 
[ 53 ]. Multiple studies have reported increased 
local synchrony, i.e. hypersynchrony, within epi-
leptic brain using a range of quantitative mea-
sures of synchrony, including spectral coherence 
[ 74 ], magnitude squared coherence [ 81 ], and 
mean phase coherence [ 61 ]. In addition, investi-
gations of LFP synchrony during spontaneous 
human seizures have consistently demonstrated 
a decrease in local LFP synchrony at seizure 
onset compared to baseline [ 48 ,  62 ,  78 ]. 

 Analysis of long records of interictal iEEG 
from patients with focal epilepsy and control sub-
jects with intractable facial pain found that the 
spatial distribution of LFP synchronization fell 
rapidly with the distance between electrodes [ 77 ]. 
Consistent with the hypothesis that the  generators 
of normal and pathological HFOs are more spa-
tially localized than lower frequency oscillations, 
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the synchrony fall off is frequency dependent [ 44 ]. 
Synchrony in the epileptic brain, however, was 
shown to be markedly reduced in electrodes bridg-
ing connections between the SOZ and surround-
ing brain (Fig.  3.3 ). In effect, the SOZ is 
functionally disconnected and isolated from sur-
rounding brain regions [ 77 ].

    Focal EEG Slowing:  In addition to the IIS and 
pHFO that have been widely investigated, focal 
slowing on the EEG is common in the region of 

epileptic brain. Focal delta frequency slowing 
was initially described in patients with focal 
structural abnormalities, such as tumors and 
strokes [ 33 ,  76 ], but is also common in TLE [ 11 ]. 
When the slowing occurs as intermittent oscilla-
tions of monomorphic delta activity in the tem-
poral lobe region it is termed, temporal 
intermittent rhythmic delta activity and is a sig-
nature of focal epilepsy [ 58 ,  68 ]. Focal delta fre-
quency slowing has also recently been shown to 

  Fig. 3.3    Data and from 2 patients, one with intractable 
facial pain ( black ) and other with focal epilepsy ( gray ). 
Data from the patient with intractable facial pain and no 
history of seizures serves as a control recording for 
quantitative comparison. ( A ) ( a ) Sample signals from 
two electrodes of the control brain recording. ( b ) The 
correlation magnitudes ( solid lines ) and mean phase 
coherence ( dashed lines ) of the signal pairs in ( a ) and 
( c ). Both the correlation and mean phase coherence 
(MPC) show signifi cant temporal variability over the 
course of 60 s, with values primarily ranging from (0.2–
0.7) ( c ) Sample signals from two electrodes in epileptic 
cortex outside the seizure onset zone. ( d ) A sample lay-
out of the bipolar reference pair measurement. The dis-

tance  d  between one corresponding pair of electrodes 1 
and 3 is equal to the distance between the other pair, 
electrodes 2 and 4, and this is the distance referenced in 
our bipolar measurements. ( B ) ( a ) Sample interictal 
iEEG signals from Patient 1 with epilepsy from both 
inside the seizure onset zone (SOZ), shown in  gray , and 
near signals outside the SOZ ( black ).  Dashed line  marks 
signifi cant phase lag between inside and outside the 
SOZ. ( b ) Spatial layout of the intracranial electrodes for 
Patients 1 and A with the SOZ electrodes (9, 10 and 13) 
of Patient 1 shown in red. ( c ) Sample signals from the 
control Patient A. The spatial numbering is as shown in 
( b ). For clarifi cation, signals are offset vertically 
(Reproduced from Ref. [ 77 ])       

Ch.9

Ch.10

0.8

0.6

0.4

0.2

| C
or

re
la

ti
on

 | 
an

d 
M

P
C

0

0 10 20 30
seconds

40 50 60

Ch.11

Ch.13
(b)

Ch.15

Ch.13

Ch.14

Ch.15

Ch.17

Ch.19

Ch.20

Ch.21

0 0.2 0.4 0.6
Time (sec)

0.8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21

1

d d

d

A
a

a

c

b

b

c

B

3 4

2

22 23 24

1

 

3 What Is the Importance of Abnormal “Background” Activity in Seizure Generation?



50

be more common than IIS following febrile sta-
tus epilepticus [ 51 ]. 

  Hypsarrhythmia:  Hypsarrhythmia is the an 
EEG pattern characterized by disorganized high- 
amplitude spikes and spike- and/or sharp-slow 
wave discharges and commonly observed in 
infants with West syndrome (Infantile spasms, 
Hypsarrhythmia, and Developmental regression) 
(Fig.  3.4 ). Hypsarrhythmia is modulated by the 
sleep-wake cycle. During non-REM sleep, there 
is a tendency for runs of these high-amplitude 
discharges to become grouped or clustered with 
a period consistent with non-REM slow wave 
activity that typically is then followed by epi-
sodes of EEG attenuation [ 32 ]. By contrast, dur-
ing REM sleep, there is a signifi cant reduction 
and in some cases disappearance of hypsar-
rhythmia that reappears toward the end of the 
REM sleep episode, and if awakening then 
hypsarrhythmia continues often with clinical 
manifestations.

3.5        IIS Impact on Cognition 

 While epilepsy in general could have detrimental 
effects on sleep, sleep-related epileptiform activ-
ity in particular could contribute to cognitive 
impairment [ 27 ,  39 ]. Epileptic encephalopathies 
refer to conditions in some patients with epi-
lepsy who have neurological deterioration asso-
ciated with frequency or severity of seizures 
and/or interictal epileptiform discharges and not 
due to the original cause or etiology [ 49 ]. 
Hypsarrhythmia in West syndrome and Electrical 
Status Epilepticus During Sleep associated with 
continuous spike-wave of sleep and Landau- 
Kleffner syndrome refl ect interictal EEG patterns 
that predominate during non-REM sleep that 
could support abnormal activity-dependent syn-
aptic plasticity which in turn produce cognitive 
impairments. Improved control of seizures and 
interictal EEG in these patients is often associ-
ated with improved cognitive performance that 
suggests ictal and interictal discharges contribute 
to these defi cits [ 35 ]. Indeed, studies in adults 
and children show IIS can be associated with 
brief episodes of impaired cognitive functioning 

referred to as “transient cognitive impairment” 
[ 1 ]. The functional disruption coincides with the 
location were the IIS occur, e.g., verbal memory 
task impairment with left-side IIS, spatial task 
impairment with right-sided interictal epilepti-
form discharges (IEDs). Other studies observed 
IIS in occipital cortices disrupted visual stimuli 
presented in the contralateral visual fi eld [ 63 ]. 
Work using pilocarpine-treated epileptic rats 
showed that in a hippocampal-dependent mem-
ory task, hippocampal IIS occurring during mem-
ory retrieval, but not encoding or maintenance, 
reduced performance [ 37 ,  38 ]. Similar results 
were observed in presurgical patients during a 
short-term memory task [ 38 ]. In this study, when 
depth electrode-recorded hippocampal IIS con-
tralateral to SOZ or bilateral occurred during 
memory retrieval or maintenance, performance 
was lower. Recent evidence implicates brain net-
work activity underlying memory processing in 
suppression of the IEDs, however, which raises 
an important confound of the interplay between 
cognitive processing on IIS [ 46 ]. 

 How IIS disrupt memory processes is not 
known, but studies in epileptic rats show hippo-
campal IIS are associated with a decrease in 
CA1 cell fi ring [ 82 ]. Moreover, a signifi cant 
reduction in fi ring was found after compared to 
before the IIS in interneurons, but not CA1 pyra-
midal cells that preferentially discharge when 
the rat is a specifi c location in the environment 
(“place cell”). A separate study of CA3 cell fi r-
ing found signifi cantly lower fi ring rates in inter-
neurons and pyramidal cells before and after IIS 
compare to rates during random episodes [ 82 ]. 
These data indicate that neuronal fi ring sur-
rounding and particularly after IIS could refl ect 
episodes associated with reduced activity-depen-
dent synaptic plasticity. By contrast, spontane-
ous pHFOs refl ect brief episodes of increased 
neuronal discharges that are two-fold greater or 
more than the level of activity that occurs during 
spontaneous hippocampal ripples. Unlike ripples 
that involves interneuron- mediated regulation of 
pyramidal cell fi ring, it appears that the effects 
of interneurons are diminished during pHFOs. 
The abnormally high spatial and temporal 
 coincidence of discharges could contribute to 
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 pathological synaptic plasticity that is functionally 
disruptive to memory consolidation. One study 
of resective sclerotic hippocampal tissue, which 
is often associated with pHFOs and hyperexcit-
ability in patients with drug- resistant temporal 
lobe epilepsy, found signifi cantly lower levels of 
long-term potentiation and its synaptic counter-
part long-term depression in sclerotic compared 
to non-sclerotic tissue [ 5 ]. These data suggest 
morphological alterations associated with hip-
pocampal sclerosis and persistent abnormal 
interictal activity contribute to diminished 
capacity for physiological activity- dependent 
synaptic plasticity. 

 Disruptions in sleep and sleep-related 
 oscillatory activity could interfere with aspects 
of memory formation. Patients with epilepsy are 
two times more likely to complain of sleep dis-
turbances, chiefl y excessive daytime sleepiness 
and insomnia that can have a negative infl uence 
on quality of life measures [ 23 ,  54 ]. Studies indi-
cate seizures, comorbidity (e.g., sleep apnea), 

and anti-seizure drugs can cause disruptions in 
the amount and architecture of sleep. During 
nights with nocturnal seizures, patients often 
have a greater number of nighttime stage-shifts 
or awakenings, increased amounts of non-REM 
stage 1 sleep, and reduced amounts of non-REM 
stage 3 sleep and REM sleep [ 72 ]. Daytime sei-
zures, which themselves could prevent or inter-
fere with learning, also reduce the amount of 
REM sleep during the subsequent night [ 72 ]. 
Furthermore, older types of anti-seizure drugs, 
such as barbiturates and benzodiazepines, can 
reduce the amount of REM sleep and in some 
cases stage 3 non- REM sleep. Newer drugs 
have no effect or can even increase the amount 
of REM sleep, although some reduce amounts of 
non-REM sleep (e.g., Gabapentin, Lamotrigine). 
Loss of slow wave- rich non-REM sleep or REM 
sleep in terms of absolute amounts and relative 
to when daytime learning occurs could negate 
the time-dependent benefi ts of sleep on memory 
formation.  

  Fig. 3.4    The pattern of hypsarrhythmia is a specifi c EEG 
pattern associated with West Syndrome. First described in 
detail by Gibbs (66) the pattern consists of high voltage, 
disorganized EEG with multifocal and generalized epilep-
tiform spikes and sharp waves. The characteristic pattern, 
often described as disorganized or chaotic, is unique in 
that the normal pattern of spatial synchrony over multiple 
brain regions is absent. The EEG tracing from each chan-

nel (e.g. Fp1 and F7) appear independent of each other 
despite the anatomical proximity. This is distinct from 
normal brain activity where there is widespread synchro-
nous activity over multiple brain regions. In the hypsar-
rhythmia pattern the periods of generalized synchrony are 
due to generalized epileptiform discharges. The epilepti-
form spikes fl uctuate in time and space, and are various 
focal, multifocal, and generalized       
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3.6     Conclusions 

  Is the “background” activity important?  The 
answer to this question is clearly yes. There is 
good evidence that the background EEG activity 
contains important information about brain func-
tion and dysfunction in human epilepsy. While 
the diagnostic importance of IIS and seizures is 
clear, there is also evidence that the background 
EEG during sleep and wake is important prog-
nostic tool. In addition, investigations of LFP 
synchrony and neuronal assemblies are providing 
mechanistic insights about brain function, cogni-
tion, and epilepsy related comorbidities. 

  Is interictal background really “normal”?  In 
some epilepsy cases there are clear EEG back-
ground abnormalities. In West syndrome, Electrical 
Status Epilepticus in Slow-wave Sleep and other 
epileptic encephalopathies the EEG background is 
markedly abnormal. Whether there are more subtle 
abnormalities in the background in primary gener-
alized epilepsy is an area of active study, but often 
the EEG on visual review appears normal. In focal 
epilepsy there may be focal slowing in the region 
of epileptic brain. In drug resistant epilepsy there 
are abnormalities in LFP synchrony that are pres-
ent even in the absence of IIS. 

 Our cognition and behavior rely upon 
precisely- timed interactions among neurons 
forming brain networks by coordinated activity of 
anatomically distributed neuronal networks medi-
ated via rhythmic brain oscillations [ 75 ]. Research 
into the common cognitive [ 27 ] and behavioral 
[ 36 ,  69 ] comorbidities of epilepsy is only begin-
ning to emerge. As our understanding of the cel-
lular mechanisms of cognition and behavior 
advance the impact on understanding the impact 
on epilepsy comorbidities should be signifi cant.     

  Acknowledgements   We are honored to have the oppor-
tunity to participate in this book celebrating Philip 
Schwartzkroin’s many contributions to epilepsy research. 

   Other Acknowledgements    This research was supported 
by NIH R01-NS071048 (RS) and NIH R01-NS63039 (GW).   

   References 

    1.   Aarts JH, Binnie CD, Smit AM, Wilkins AJ (1984) 
Selective cognitive impairment during focal and 
generalized epileptiform EEG activity. Brain 107(Pt 
1):293–308  

    2.    Aladjalova NA (1957) Infra-slow rhythmic oscillation 
of the steady potential of the cerebral cortex. Nature 
4567:957–959  

     3.    Ayala GF, Dichter M, Gumnit RJ, Matsumoto H, 
Spencer WA (1973) Genesis of epileptic interictal 
spikes. New knowledge of cortical feedback systems 
suggests a neurophysiological explanation of brief 
paroxysms. Brain Res 52:1–17  

    4.    Bak P (1996) How nature works: the science of self-
organized criticality. Nature 383(6603):772–773  

    5.    Beck H, Goussakov IV, Lie A, Helmstaedter C, Elger 
CE (2000) Synaptic plasticity in the human dentate 
gyrus. J Neurosci 20(18):7080–7086  

    6.    Belluscio MA, Mizuseki K, Schmidt R, Kempter R, 
Buzsáki G (2012) Cross-frequency phase–phase cou-
pling between theta and gamma oscillations in the 
hippocampus. J Neurosci 32(2):423–435  

     7.    Berger H (1929) Über das elektrenkephalogramm des 
menschen. I Mitteilung. Arch Psychiatr Nervenkr 
87:527–570  

     8.    Berger H, Gloor P (1969) Hans berger on the electro-
encephalogram of man: the fourteen original reports 
on the human electroencephalogram. Elsevier 
Publishing Company, Amsterdam  

    9.    Bédard C, Kröger H, Destexhe A (2006) Does the 1/f 
frequency scaling of brain signals refl ect self-
organized critical states? Phys Rev Lett 97(11):
118102  

    10.    Bédard C, Rodrigues S, Roy N, Contreras D, Destexhe 
A (2010) Evidence for frequency-dependent extra-
cellular impedance from the transfer function 
between extracellular and intracellular potentials: 
intracellular-LFP transfer function. J Comput Neurosci 
29(3):389–403  

    11.    Blume WT, Borghesi JL, Lemieux JF (1993) Interictal 
indices of temporal seizure origin. Ann Neurol 
34(5):703–709  

    12.    Bragin A, Engel JJ Jr, Wilson CL, Fried I, Buzsaki G 
(1999) High-frequency oscillations in human brain. 
Hippocampus 9(2):137–142  

    13.    Bragin A, Engel J Jr, Wilson CL, Fried I, Mathern 
GW (1999) Hippocampal and entorhinal cortex high-
frequency oscillations (100–500 hz) in human epileptic 
brain and in kainic acid–treated rats with chronic 
seizures. Epilepsia 40(2):127–137  

    14.    Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, 
Buzsaki G (1995) Gamma (40–100 Hz) oscillation in 
the hippocampus of the behaving rat. J Neurosci 
15(1 Pt 1):47–60  

R.J. Staba and G.A. Worrell



53

    15.    Brazier MA (1960) The EEG, in epilepsy. A historical 
note. Epilepsia 1:328–336  

    16.    Brazier MA (1961) A history of the electrical activity 
of the brain: the fi rst half-century. Pitman Medical 
Publishing Co. Ltd, London  

     17.    Buzsaki G (2009) Rhythms of the brain. Oxford 
University Press, London  

    18.    Canolty RT, Edwards E, Dalal SS, Soltani M, 
Nagarajan SS, Kirsch HE et al (2006) High gamma 
power is phase-locked to theta oscillations in human 
neocortex. Science 313(5793):1626–1628  

    19.    Canolty RT, Knight RT (2010) The functional role of 
cross-frequency coupling. Trends Cogn Sci 14(11):
506–515  

    20.    Colder BW, Frysinger RC, Wilson CL, Harper RM, 
Engel J Jr (1996) ecreased neuronal burst discharge 
near site of seizure onset in epileptic human temporal 
lobes. Epilepsia 37(2):113–121  

    21.    Colder BW, Wilson CL, Frysinger RC, Harper RM, 
Engel J Jr (1996) Interspike intervals during interictal 
periods in human temporal lobe epilepsy. Brain Res 
719(1–2):96–103  

    22.    Cook MJ, O’Brien TJ, Berkovic SF, Murphy M, 
Morokoff A, Fabinyi G et al (2013) Prediction of 
seizure likelihood with a long-term, implanted 
seizure advisory system in patients with drug-
resistant epilepsy: a fi rst-in-man study. Lancet Neurol 
12(6):563–571  

    23.    de Weerd A, de Haas S, Otte A, Trenité DK, van Erp 
G, Cohen A et al (2004) Subjective sleep disturbance 
in patients with partial epilepsy: a questionnaire-
based study on prevalence and impact on quality of 
life. Epilepsia 45(11):1397–1404  

    24.    Diekelmann S, Born J (2010) The memory function of 
sleep. Nat Rev Neurosci 11(2):114–126  

    25.    Eckhorn R (1994) Oscillatory and non-oscillatory 
synchronizations in the visual cortex and their possi-
ble roles in associations of visual features. Prog Brain 
Res 102:405–426  

     26.    Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, 
Isham EA, Newman EL, Fried I (2003) Cellular net-
works underlying human spatial navigation. Nature 
425(6954):184–188  

     27.    Elger CE, Helmstaedter C, Kurthen M (2004) Chronic 
epilepsy and cognition. Lancet Neurol 3(11):
663–672  

    28.    Elger CE, Mormann F (2013) Seizure prediction and 
documentation-two important problems. Lancet 
Neurol 12(6):531–532  

    29.    Engel J (2011) Biomarkers in epilepsy: introduction. 
Biomark Med 5(5):537–544  

    30.    Fisher RS, Engel JJ (2010) Defi nition of the postictal 
state: when does it start and end? Epilepsy Behav 
19(2):100–104  

     31.    Freeman WJ, Holmes MD, Burke BC, Vanhatalo S 
(2003) Spatial spectra of scalp EEG and EMG 
from awake humans. Clin Neurophysiol 114(6):
1053–1068  

    32.    Gibbs FA, Gibbs EL (1941) Atlas of electroencepha-
lography. Lew A. Cummings Co., Cambridge, MA  

    33.    Gloor P, Ball G, Schaul N (1977) Brain lesions that 
produce delta waves in the EEG. Neurology 27(4):
326–329  

          34.    He BJ, Zempel JM, Snyder AZ, Raichle ME (2010) 
The temporal structures and functional signifi cance of 
scale-free brain activity. Neuron 66(3):353–369  

    35.    Holmes GL, Lenck-Santini PP (2006) Role of interictal 
epileptiform abnormalities in cognitive impairment. 
Epilepsy Behav 8(3):504–515  

    36.    Kanner AM (2011) Anxiety disorders in epilepsy: the 
forgotten psychiatric comorbidity. Epilepsy Curr 
11(3):90–91  

    37.    Kleen JK, Scott RC, Holmes GL, Lenck-Santini PP 
(2010) Hippocampal interictal spikes disrupt cogni-
tion in rats. Ann Neurol 67(2):250–257  

     38.    Kleen JK, Scott RC, Holmes GL, Roberts DW, Rundle 
MM, Testorf M et al (2013) Hippocampal interictal 
epileptiform activity disrupts cognition in humans. 
Neurology 81(1):18–24  

    39.   Kleen JK et al (2012) Cognitive and behavioral co-
morbidities of epilepsy. In: Jasper’s basic mechanisms 
of the epilepsies. National Center for Biotechnology 
Information (US)  

    40.    Kreiman G, Koch C, Fried I (2000) Category-specifi c 
visual responses of single neurons in the human 
medial temporal lobe. Nat Neurosci 3(9):946–953  

    41.    Kreiman G, Koch C, Fried I (2000) Imagery neurons 
in the human brain. Nature 408(6810):357–361  

    42.    Lieb JP, Joseph JP, Engel J Jr, Walker J, Crandall PH 
(1980) Sleep state and seizure foci related to depth 
spike activity in patients with temporal lobe epilepsy. 
Electroencephalogr Clin Neurophysiol 49(5–6):
538–557  

    43.    Linkenkaer-Hansen K, Nikouline VV, Palva JM, 
Ilmoniemi RJ (2001) Long-range temporal correla-
tions and scaling behavior in human brain oscilla-
tions. J Neurosci 21(4):1370–1377  

    44.    Logothetis NK, Kayser C, Oeltermann A (2007) In 
vivo measurement of cortical impedance spectrum in 
monkeys: Implications for signal propagation. Neuron 
55(5):809–823  

    45.    Manning JR, Jacobs J, Fried I, Kahana MJ (2009) 
Broadband shifts in local fi eld potential power spectra 
are correlated with single-neuron spiking in humans. 
J Neurosci 29(43):13613–13620  

    46.    Matsumoto JY, Stead M, Kucewicz MT, Matsumoto 
AJ, Peters PA, Brinkmann BH et al (2013) Network 
oscillations modulate interictal epileptiform spike rate 
during human memory. Brain 136(Pt 8):2444–2456  

    47.    Mormann F, Andrzejak RG, Elger CE, Lehnertz K 
(2007) Seizure prediction: the long and winding road. 
Brain 130(Pt 2):314–333  

    48.    Mormann F, Lehnertz K, David P, Elger CE (2000) 
Mean phase coherence as a measure for phase 
synchronization and its application to the EEG of 
epilepsy patients. Physica D: Nonlinear Phenom 
144(3):358–369  

    49.    Nabbout R, Dulac O (2003) Epileptic encephalo-
pathies: a brief overview. J Clin Neurophysiol 20(6):
393–397  

3 What Is the Importance of Abnormal “Background” Activity in Seizure Generation?



54

      50.    Neidermeyer E, Da Silva FL (2005) Electroence-
phalography: basic principals, clinical applications, 
and related fi elds. Lippincott and Wilkins, Philadelphia  

    51.    Nordli DR, Moshé SL, Shinnar S, Hesdorffer DC, 
Sogawa Y, Pellock JM et al (2012) Acute EEG 
fi ndings in children with febrile status epilepticus 
results of the FEBSTAT study. Neurology 79(22):
2180–2186  

    52.    Parish LM, Worrell GA, Cranstoun SD, Stead SM, 
Pennell P, Litt B (2004) Long-range temporal correla-
tions in epileptogenic and non-epileptogenic human 
hippocampus. Neuroscience 125(4):1069–1076  

      53.    Penfi eld J (1954) Epilepsy and the functional anatomy 
of the human brain. Little Brown, Boston  

    54.    Piperidou C, Karlovasitou A, Triantafyllou N, 
Terzoudi A, Constantinidis T, Vadikolias K et al 
(2008) Infl uence of sleep disturbance on quality of 
life of patients with epilepsy. Seizure 17(7):588–594  

    55.    Plenz D, Thiagarajan TC (2007) The organizing prin-
ciples of neuronal avalanches: cell assemblies in the 
cortex? Trends Neurosci 30(3):101–110  

    56.    Rasch B, Born J (2013) About sleep’s role in memory. 
Physiol Rev 93(2):681–766  

    57.    Ravagnati L, Halgren E, Babb TL, Crandall PH 
(1979) Activity of human hippocampal formation and 
amygdala neurons during sleep. Sleep 2(2):161–173  

    58.    Reiher J, Beaudry M, Leduc CP (1989) Temporal 
intermittent rhythmic delta activity (TIRDA) in the 
diagnosis of complex partial epilepsy: sensitivity, 
specifi city and predictive value. Can J Neurol Sci 
16(4):398–401  

     59.    Sammaritano M, Gigli GL, Gotman J (1991) Interictal 
spiking during wakefulness and sleep and the local-
ization of foci in temporal lobe epilepsy. Neurology 
41(2 (Pt 1)):290–297  

    60.    Sanchez-Vives MV, McCormick DA (2000) Cellular 
and network mechanisms of rhythmic recurrent activ-
ity in neocortex. Nat Neurosci 3(10):1027–1034  

    61.    Schevon CA, Cappell J, Emerson R, Isler J, Grieve P, 
Goodman R et al (2007) Cortical abnormalities in epi-
lepsy revealed by local EEG synchrony. Neuroimage 
35(1):140–148  

    62.    Schindler K, Leung H, Elger CE, Lehnertz K (2007) 
Assessing seizure dynamics by analysing the correla-
tion structure of multichannel intracranial EEG. Brain 
130(Pt 1):65–77  

    63.    Shewmon DA, Erwin RJ (1988) Focal spike-induced 
cerebral dysfunction is related to the after-coming 
slow wave. Ann Neurol 23(2):131–137  

      64.    Siapas AG, Wilson MA (1998) Coordinated inte-
ractions between hippocampal ripples and cortical 
spindles during slow-wave sleep. Neuron 21(5):
1123–1128  

       65.    Staba RJ, Wilson CL, Bragin A, Fried I, Engel J 
(2002) Quantitative analysis of high-frequency oscil-
lations (80–500 hz) recorded in human epileptic hip-
pocampus and entorhinal cortex. J Neurophysiol 
88(4):1743–1752  

   66.    Staba RJ, Wilson CL, Bragin A, Fried I, Engel J Jr 
(2002) Sleep states differentiate single neuron acti-
vity recorded from human epileptic hippocampus, 
entorhinal cortex, and subiculum. J Neurosci 
22(13):5694–5704  

       67.    Staba RJ, Wilson CL, Fried I, Engel J Jr (2002) Single 
neuron burst fi ring in the human hippocampus during 
sleep. Hippocampus 12(6):724–734  

    68.    Tao JX, Chen XJ, Baldwin M, Yung I, Rose S, Frim D 
et al (2011) Interictal regional delta slowing is an 
EEG marker of epileptic network in temporal lobe 
epilepsy. Epilepsia 52(3):467–476  

    69.    Téllez-Zenteno JF, Dhar R, Hernandez-Ronquillo L, 
Wiebe S (2007) Long-term outcomes in epilepsy 
surgery: antiepileptic drugs, mortality, cognitive and 
psychosocial aspects. Brain 130(Pt 2):334–345  

    70.    Thivierge JP, Cisek P (2008) Nonperiodic synchroni-
zation in heterogeneous networks of spiking neurons. 
J Neurosci 28(32):7968–7978  

    71.    Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, 
Steriade M (2000) Origin of slow cortical oscillations 
in deafferented cortical slabs. Cereb Cortex 10(12):
1185–1199  

      72.    Tononi G, Cirelli C (2003) Sleep and synaptic homeo-
stasis: a hypothesis. Brain Res Bull 62(2):143–150  

    73.    Tort AB, Komorowski R, Eichenbaum H, Kopell N 
(2010) Measuring phase-amplitude coupling between 
neuronal oscillations of different frequencies. 
J Neurophysiol 104(2):1195–1210  

    74.    Towle VL, Carder RK, Khorasani L, Lindberg D 
(1999) Electrocorticographic coherence patterns. 
J Clin Neurophysiol 16(6):528–547  

    75.    Uhlhaas PJ, Singer W (2010) Abnormal neural oscil-
lations and synchrony in schizophrenia. Nat Rev 
Neurosci 11(2):100–113  

    76.    Walter G (1936) The location of cerebral tumors by 
electroencephalography. Lancet 2:305–308  

      77.    Warren CP, Hu S, Stead M, Brinkmann BH, Bower 
MR, Worrell GA (2010) Synchrony in normal and 
focal epileptic brain: the seizure onset zone is function-
ally disconnected. J Neurophysiol 104(6):3530–3539  

    78.    Wendling F, Bartolomei F, Bellanger JJ, Bourien J, 
Chauvel P (2003) Epileptic fast intracerebral EEG 
activity: evidence for spatial decorrelation at seizure 
onset. Brain 126(Pt 6):1449–1459  

    79.    Whittingstall K, Logothetis NK (2009) Frequency-
band coupling in surface EEG refl ects spiking activity 
in monkey visual cortex. Neuron 64(2):281–289  

    80.    Worrell GA, Cranstoun SD, Echauz J, Litt B (2002) 
Evidence for self-organized criticality in human epi-
leptic hippocampus. Neuroreport 13(16):2017–2021  

    81.    Zaveri HP, Pincus SM, Goncharova II, Duckrow RB, 
Spencer DD, Spencer SS (2009) Localization-related 
epilepsy exhibits signifi cant connectivity away from 
the seizure-onset area. Neuroreport 20(9):891–895  

     82.    Zhou JL, Lenck-Santini PP, Zhao Q, Holmes GL 
(2007) Effect of interictal spikes on single-cell fi ring 
patterns in the hippocampus. Epilepsia 48(4):720–731      

R.J. Staba and G.A. Worrell



55H.E. Scharfman and P.S. Buckmaster (eds.), Issues in Clinical Epileptology: A View from the Bench, 
Advances in Experimental Medicine and Biology 813, DOI 10.1007/978-94-017-8914-1_4,
© Springer Science+Business Media Dordrecht 2014

    Abstract  

  The seizure focus is the site in the brain from which the seizure originated 
and is most likely equivalent to the epileptogenic zone, defi ned as the area 
of cerebral cortex indispensable for the generation of clinical seizures. 
The boundaries of this region cannot be defi ned at present by any diagnostic 
test. Imaging and EEG recording can defi ne regions of functional defi cit 
during the interictal period, regions that generate interictal spikes, regions 
responsible for the ictal symptoms, regions from which the seizure is 
triggered, and regions of structural damage. However, these regions defi ne the 
epileptogenic zone only when they are spatially concordant. The frequent 
discrepancies suggest the essential involvement of synaptically connected 
regions, that is a distributive focus, in the origination of most seizures. 
Here we review supporting evidence from animal studies and studies of 
persons undergoing surgical resection for medically-intractable epilepsy. 
We conclude that very few of the common seizures are truly local, but 
rather depend on nodal interactions that permit spontaneous network 
excitability and behavioral expression. Recognition of the distributive 
focus underlying most seizures has motivated many surgical programs to 
upgrade their intracranial studies to capture activity in as much of the 
network as possible.  
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4.1     Seizure Focus: Relation 
to Focal Neocortical 
Abnormalities 

 The seizure focus is usually defi ned as the site 
in the brain from which the seizure originated or, 
in the case of focal seizure discharge, the totality of 
the tissue involved. Localizing the site of seizure 
onset is critical to the understanding of seizure 
mechanisms and to the probability of “curing” 
the epilepsy through surgical resection. The goal 
of resective surgery is to remove or disconnect 
the epileptogenic zone, defi ned as the area of 
cortex indispensable for the generation of clinical 
seizures [ 33 ]. Should the epileptogenic zone 
then be considered equivalent to the seizure focus? 
Most likely yes, but unfortunately the boundaries 
of this region cannot be defi ned at present by any 
diagnostic test. Instead, imaging and EEG 
recording methods defi ne cortical regions related 
to, but not necessarily contiguous with, the 
epileptogenic zone. These regions include the 
symptomatogenic region (the region that when 
activated by epileptiform discharge produces the 
ictal symptoms), the irritative region (the region(s) 
that generate(s) interictal spikes), the ictal onset 
region (the region from which the seizure is 
triggered), the region of functional defi cit (the 
region that is functionally abnormal during the 
interictal period), and the epileptogenic lesion 
(structural damage that may be causally related 
to the seizures). When these regions are spatially 
concordant, they defi ne the location of the epilep-
togenic zone (or focus). Frequently, however, 
there are discrepancies. This fi nding suggests the 
essential involvement of synaptically intercon-
nected regions in the origination of most seizures. 
In these instances, the epileptogenic zone may be 
composed of the pacemaker or ictal onset region 
and one or more relay areas required to produce 
the ictal symptoms [ 13 ,  37 ,  44 ]. These are qualities 
more often attributed to generalized seizures. If not 
only generalized seizures but even the generation 
of many focal seizures requires activity within a 
spatially distributed network, then our concept of 
a seizure focus requires some reassessment. 

 The focus is related to, but is not synonymous 
with, the ictal onset region. Normal brain function 

requires the correct balance between excitatory 
and inhibitory processes at every moment in time, 
and any disruption in this balance that favors 
excitation over inhibition promotes synchronous 
discharge of principal neurons. Thus seizures can 
be evoked in normal brain under conditions that 
promote such disruption. In focal epilepsy, the 
excitatory/inhibitory balance is disrupted chroni-
cally in some region or regions of the cerebral 
cortex, such that synchronous discharges arise 
under appropriate conditions. If these discharges 
are suffi cient to provoke clinical symptoms, the 
region of chronic imbalance may be regarded as 
the ictal onset region. The ictal onset region is 
normally silent, but infrequently generates 
synchronous action potentials that can evoke 
afterdischarges. Its location can be approximated 
by EEG recording or SPECT imaging, but cannot 
be precisely defi ned. A great deal of research on 
animal models of epilepsy in the last 40 years has 
identifi ed numerous abnormalities that under 
certain conditions can support the generation of 
episodic afterdischarges. Pathologic mechanisms 
found to promote hyperexcitability and seizure 
generation in animal models include loss or dys-
function of inhibitory neurons [ 1 ,  5 ,  21 ], creation 
or expansion of recurrent excitatory circuits [ 26 ], 
dysfunctional Na +  and/or K +  channels [ 12 ,  14 ,  31 ], 
enhanced intrinsic bursting [ 34 ,  35 ,  43 ], abnormal 
expression of HCN channels [ 29 ,  32 ], and altered 
glial regulation of extracellular fl uid composition 
[ 9 ,  15 ,  39 ]. Typically, the process of epileptogen-
esis causes multiple functional and usually also 
anatomical changes in some region of brain that 
then becomes a locus for ictal onset. The relative 
importance of the various changes reported is 
unclear and is currently an area of active investi-
gation. It is also possible that a single abnormality 
might trigger episodic seizure discharge when 
the ictal onset region is stimulated strongly 
enough or stimulated at an appropriate frequency. 
Synchronous fi ring of principal neurons in the 
ictal onset region provokes afterdischarge in the 
epileptogenic zone. The epileptogenic zone may 
be larger or smaller than the ictal onset region. 
It may include more than one potential ictal 
onset region differentiated by threshold. The most 
readily activated region will normally trigger all 
the seizures, but regions of higher threshold may 
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become evident if the low threshold region is 
resected or inhibited selectively. Conversely, 
resection of the entire epileptogenic zone would 
eliminate any clinical seizures even if a residual 
ictal onset region remains intact. 

 The epileptogenic zone or focus may also be 
distinguished from any structural lesion detected 
by MRI or histopathology, as well as from the 
symptomatogenic zone. Not all cortical lesions 
detected in a patient or animal having epileptic 
seizures are themselves epileptogenic. Additional 
testing is necessary to determine which, if any, is 
essential for the generation of seizures, and this is 
not often done. Furthermore, the epileptogenic 
zone may be larger or smaller than the anatomic 
lesion. When the epileptogenic zone includes only 
part of an anatomic lesion, the remaining lesion 
may not be capable of generating a seizure or 
may be capable only when driven by the portion 
of the lesion having a lower afterdischarge 
threshold. The epileptogenic zone may also extend 
beyond the anatomic lesions. For example, seizures 
may arise not because of the lesion itself, but 
rather from changes in surrounding cortical tissue 
induced by the lesion. In particular, tumors and 
vascular malformations induce foci of this type. 
Alternatively, MRI and even histopathology may 
not be sensitive enough to detect epileptogenic 
microlesions that extend some distance from the 
visible lesion. 

 Clinical symptoms will arise from the epilep-
togenic zone only if that zone includes a region 
of “eloquent cortex,” that is, cortex related to a 
specifi c function. Most of the human cortex is 
 symptomatically silent, implying that seizures 
arise from activation of an epileptogenic zone 
primarily when epileptiform discharge propagates 
to a region of eloquent cortex with suffi cient 
strength to elicit clinical symptoms. Thus cortical 
lesions and ictal symptomatology may, but usually 
do not, defi ne the seizure focus. 

 To this point, the discussion of seizure focus 
has been limited to simple (or elementary) par-
tial seizures, defi ned as seizures that originate 
from a limited region of the cerebral cortex 
and do not impair consciousness. The seizure 
may be provoked by hyperactivity that occurs 
spontaneously within a highly localized region 
or may require activation of a distributed 

network. The concept of a distributive onset 
for many simple partial seizures links cir-
cuitry and mechanisms of these seizures with 
other seizure types suggested to arise from 
network activity.  

4.2     Focus of Complex Partial 
Seizures 

 Complex partial seizures, like simple or elementary 
partial seizures, originate from a limited region 
of the cerebral cortex (which includes the limbic 
system), but cause an impairment of consciousness. 
These seizures typically involve the temporal 
lobe, but some persons with epilepsy experience 
extratemporal complex partial seizures. Although 
attempts to associate epilepsy with a pathological 
substrate date from antiquity, Bouchet and 
Cazauvieilh [ 10 ] were the fi rst to describe a 
“ palpable induration of the temporal lobes” in a 
group of persons with epilepsy. Hughlings 
Jackson [ 18 ] later stimulated decades of searching 
for a single pathologic source when he replaced 
the term “psychomotor epilepsy” with temporal 
lobe epilepsy in the case of Dr. Z who died after 
having experienced seizures for many years. 
At autopsy, Hughlings Jackson suspected a 
lesion in the “taste regions of Ferrier,” and 
softening of the left uncinate gyrus was indeed 
discovered. Thus a mechanistic approach to 
ascribing epileptogenic causality to “the organ of 
the mind” was born. 

 Even earlier, Sommer [ 36 ] had concluded that 
hippocampal pathology (neuronal loss and glio-
sis; hippocampal sclerosis) is an important etio-
logical factor in the subsequent development of 
seizures. The relationship between hippocampal 
damage and complex partial seizures has been 
debated ever since. To what extent does hippo-
campal pathology lead to epileptic attacks and to 
what extent do repeated seizures occurring over a 
period of years result in this pathology [ 25 ]? 
Finally, with the development of EEG, parox-
ysmal changes were found in the temporal 
cortex of patients with psychomotor seizures and 
Jasper et al. [ 20 ] used the term “temporal lobe 
epilepsy” to defi ne these regional electrographic 
abnormalities. 
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 Interictal spikes in the temporal region prompted 
some groups to resect portions of the temporal 
lobe in patients with medically- intractable 
complex partial seizures. Epileptogenic causality 
of hippocampal sclerosis remained controversial, 
however, until Margerison and Corsellis [ 22 ] 
combined EEG, clinical, and autopsy fi ndings in 
patients institutionalized for epilepsy, and found 
hippocampal sclerosis in 30 of 34 patients in 
whom premortem EEG had revealed anterior 
temporal spikes. The uniformity of neuronal cell 
loss and gliosis, particularly in hippocampal area 
CA1, in about 70 % of patients who were sub-
jected to temporal lobectomy because depth elec-
trode recordings had indicated medial temporal 
ictal onset and the 75 % control of seizures in those 
patients appeared to corroborate the growing 
sense that hippocampal sclerosis was the cause of 
temporal lobe epilepsy. In the mid-1980s to the 
early 1990s, MRI revolutionized the diagnosis 
of epilepsy, and unilateral hippocampal atrophy 
associated with interictal or ictal onset from one 
temporal lobe replaced most intracranial studies in 
diagnosing medial temporal lobe epilepsy. As MRI 
began to reveal an assortment of pathologies 
associated with suspected focal epileptogenesis, 
most, if not all, cases of temporal lobe epilepsy 
were ascribed to well-defi ned substrate patholo-
gies of mesial temporal sclerosis, neoplasms, 
vascular lesions, developmental abnormalities, or 
gliosis from trauma, infl ammation, etc. These 
fi ndings coupled with the intrinsic excitability of 
the sclerotic hippocampus seen in depth electrode 
studies and human slice electrophysiology led 
many in the fi eld to anticipate increasingly better 
surgical outcomes over time. However, surgical 
outcomes have not changed dramatically. In fact, 
several clinical and research observations have 
emphasized that epileptogenesis and ictal behavior 
is very likely a network phenomenon of aberrant 
nodes (review: [ 42 ]). 

 Resection of the anterior temporal lobe on the 
side of seizure onset, particularly removal of the 
hippocampus and amygdala, usually leads to 
cessation or at least reduction in frequency of 
temporal complex partial seizures. It is therefore 
often assumed that the epileptogenic zone must 

be confi ned to these regions. Indeed hippocampal 
area CA3, the entorhinal cortex, and especially the 
basolateral amygdala exhibit a low threshold for 
seizure initiation when challenged with electrical 
stimulation or certain chemoconvulsants [ 6 ,  23 ,  45 ]. 
However, the anterior temporal lobe is a rather 
large block of tissue that includes distinct, but 
interconnected, brain regions. The epileptogenic 
zone has not been localized precisely and indeed 
a single point of onset may not exist. Seizure 
onset may arise from multiple sites within the 
temporal lobe [ 37 ,  38 ]. Wherever the onset, the 
remaining limbic regions are recruited rapidly, 
resulting in the same behavior regardless. 
Surgical outcomes also argue for a network as 
epileptogenic zone, rather than a localized focus. 
Bitemporal lobe epilepsy, proved by intracranial 
study, can be cured 50–60 % of the time by 
removal of only the more dysfunctional temporal 
lobe, indicating that the spontaneous ictal events 
in the contralateral lobe depended on network 
activation. In unilateral temporal lobe epilepsy, 
seizures are well-controlled after anterior tempo-
ral lobectomy in 75 % of patients, but control 
drops to 50 % when patients are followed for 
10 years and falls even lower if antiseizure drugs 
are not administered. These results suggest that 
the entire epileptogenic zone is not being resected 
at least half the time. When one hippocampus is 
clearly responsible for ictal onset, a restricted mesial 
temporal resection (hippocampus + amygdala) 
yields poorer control (50–60 %) than a standard 
anterior temporal lobectomy. Also, in the most 
clearly lateralized cases, resection may stop the 
typical complex partial seizure, but the aura 
(sensation related to the ictal onset region) persists 
15–20 % of the time. Finally, with the exception 
of some tumors and vascular lesions, patients 
almost always demonstrate distributed cognitive 
defi cits on neuropsychological testing, again 
indicative of diseased network not a single dis-
eased region. 

 Seizure onset may arise from multiple sites 
within the temporal lobe in animal models of 
epilepsy as well [ 7 ,  11 ]. In the kindling model, 
electrical stimulation of many sites within the 
limbic system evokes the same seizure type, 
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suggesting that activation of the network  per se  is 
more important than the precise point at which 
the network is activated [ 16 ]. In the kainic acid 
model, seizures can originate from either the 
amygdala or hippocampus at different times in 
the same rat [ 30 ]. These and other observations 
led to the proposal of a distributive focus for 
temporal complex partial seizures, which includes 
the hippocampus, amygdala, entorhinal cortex, 
anterior and midline thalamic nuclei, and pyriform 
cortex [ 8 ]. This hypothesis is further supported 
by fi ndings that, in animal models of epilepsy, 
neurons in all these regions exhibit functional 
changes expected to promote excitability, creating 
potential ictal onset regions. In addition, these 
same brain regions are sites of tissue damage. 
Although hippocampal sclerosis is the character-
istic form of histopathologic damage demonstrable 
in most patients who have undergone anterior 
temporal lobectomy, neuronal loss, atrophy, and 
gliosis have also been reported in the amygdala, 
entorhinal cortex, and thalamus [ 3 ,  28 ,  46 ]. 
Similarly widespread damage to the limbic system 
is found in commonly used animal models 
[ 27 ,  40 ]. Pyriform cortex, which is not regularly 
examined in human tissue specimens, is typically 
also damaged in animals. Pro- epileptogenic 
changes documented in animal models include 
degeneration of inhibitory neurons with subsequent 
axon sprouting by surviving inhibitory neurons, 
formation of recurrent excitatory connections by 
principal neurons, enhanced synaptically-evoked 
and intrinsic bursting, and altered expression and 
function of diverse ion channels and neurotrans-
mitter receptors. In animals induced to become 
epileptic by provoking status epilepticus these 
changes clearly arise as a consequence of acute 
seizures. One or more of these changes may also 
precede the development of epilepsy in genetic 
models and in models of post-traumatic epilepsy. 
Regardless of how they were brought about, 
however, they all probably contribute to the 
spontaneous seizures, changes in circuit function 
perhaps being required for the origination of the 
seizures and histopathologic changes perhaps 
enhancing their frequency and intensity [ 17 ,  47 ]. 
The existence of a distributed pathological sub-

strate implies that seizures can arise at multiple 
points in the limbic circuit and that a certain 
minimum percentage of the circuit must be acti-
vated for the electrical activity to alter perception 
or behavior. 

 If temporal complex partial seizures can origi-
nate from any of several limbic regions, some of 
which lie outside the tissue normally resected 
for medically-intractable seizures, the distribu-
tive focus may explain, in part, the somewhat 
consistent percentage of temporal lobe surgeries 
(~30 %) that fail to achieve adequate seizure 
control [ 41 ]. Conversely, the success of many 
such surgeries may be attributable not so much 
to eliminating the seizure focus, but rather to 
removing enough of the limbic circuitry that 
synchronous fi ring in the remaining seizure onset 
regions fails to activate an epileptogenic zone.  

4.3     Focus of Primary 
Generalized Seizures 

 Primary generalized seizures appear to begin 
simultaneously in both cerebral hemispheres 
when recorded by scalp EEG, but are probably 
driven, at least in part, by hyperactivity of sub-
cortical structures. Simultaneous activation of 
both cerebral hemispheres causes behavioral and 
perceptual signs and symptoms to be manifested 
bilaterally and there is always some impairment 
of consciousness. Although primary generalized 
seizures are not generally thought of as arising 
from a distinct focus or epileptogenic zone, the 
concept of a distributive focus appears applicable. 
This is perhaps best illustrated by the mechanisms 
underlying absence seizures. The spike-wave 
discharges of absence seizures require circuit 
interactions between the thalamus and neocortex 
[ 2 ,  19 ,  24 ]. Interruption of this circuit, such as by 
cutting the reciprocal pathways that connect 
the two regions or by inactivating either region 
alone, abolishes the seizures. Neocortex supplies 
the excitatory drive that is organized into ictal 
discharge by bursting thalamic relay neurons. 
Thus thalamus and neocortex together can be 
said to constitute an epileptogenic zone with 
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excitatory thalamic nuclei serving as the ictal 
onset region. Increasing evidence suggests the 
involvement of subcortical ictal onset regions in 
other forms of generalized epilepsy as well [ 4 ].  

4.4     Conclusion 

 Evolution in the thinking about concordance or 
non-concordance of the seizure-related cortical 
regions, has revealed discrepancies between the 
pathology and physiology of seizures. Defi nition 
of the epileptogenic zone remains complex and 
elusive, and the outcomes of surgical approaches 
have plateaued. Increasing evidence suggests 
that epileptogenesis is distributed among multi-
ple foci, usurping known anatomical and func-
tional networks. Very few of the most common 
seizures may be truly local. Rather, they appear 
to depend on nodal interactions that permit spon-
taneous network excitability and behavioral 
expression. The epilepsy community has not yet 
succeeded in creating a new paradigm that com-
bines the critical derangements of electrophysi-

ology, pathology, metabolism, genetics, and 
network communication. New approaches must 
include better correlation of human data with 
animal models, wherein the hyperexcitable net-
works can be more intensively studied and 
manipulated. 

 Given the diffi culty of defi ning the epilepto-
genic zone, many surgical programs have 
upgraded their intracranial studies to improve 
analysis of the distributed network. The Yale pro-
gram, for example, has utilized advanced  imaging 
and navigation systems to increase the number of 
electrode contacts per patient from <100 in 1991 
to 200–250 in 2006 and to even greater numbers 
since then. Utilization of these electrode arrays 
has demonstrated many examples of distributive 
foci, such as those shown in Fig.  4.1 . In these 
instances, the foci are located in functional net-
works revealed by fMRI – the cognitive control 
network between lateral parietal and frontal lobes 
(Fig.  4.1a ) and a portion of what has been labeled 
the “default network,” observed reproducibly 
when subjects are at rest and not engaged in a 
task (Fig.  4.1b ). Determinations of regional 

  Fig. 4.1    Microelectrode array recordings from two surgi-
cal patients. ( a ) Reconstructed MRI/CT scan performed 
after intracranial electrode implantation. Electrode loca-
tions are indicated, along with the portion of the EEG 
recording associated with each electrode. The 28 year old 
right-handed female, whose MRI scan was normal, was 
found to have simultaneous ictal onset in the inferior 
parietal and inferior lateral frontal cortices without 
involvement of the intervening brain. These regions are 
the precise cortical areas activated in fMRI cognitive tasks 
and designated the cognitive network. Seizure control 

was effected by resection of both ictal onset regions. 
( b ) Similar superposition of MRI/CT scan, electrode 
locations, and EEG recording in a second patient. 
The 30 year old right-handed male, whose MRI scan was 
also normal, was found to have independent ictal onset in 
the posterior, medial frontal, and media parietal lobes, 
with the medial frontal cortex initiating the same behav-
ioral seizure more frequently. Initial treatment with a 
neurostimulator little affected the behavioral seizures. 
Subsequent resection of the medial frontal node alone was 
suffi cient to control the seizures       
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extracellular glutamate concentration and meta-
bolic/energetic studies that utilize 7 T MRS have 
further supported the concept of a distributive 
focus. At present, unless patients have a clear 
tumor or cavernoma on MRI or concordance of 
all data (electrophysiology, mesial temporal scle-
rosis on MRI, and neuropsychological studies) 
indicating unilateral temporal lobe epilepsy, 
intracranial studies are always performed and 
directed by anatomic MRI, dynamic imaging 
(FMR, ictal SPECT, MRS), AVEEG, and seizure 
semiology for distributed electrode placement. 
It is only by this persistent adaptation of newly 
developed technology that we can hope to 
one day understand and properly treat human 
epilepsy.
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Abstract

What defines the spatial and temporal boundaries of seizure activity in 
brain networks? To fully answer this question a precise and quantitative 
definition of seizures is needed, which unfortunately remains elusive. 
Nevertheless, it is possible to ask under conditions where clearly divergent 
patterns of activity occur in large-scale brain networks whether certain 
activity patterns are part of the seizure while others are not. Here we 
examine brain network activity during focal limbic seizures, including 
diverse regions such as the hippocampus, subcortical arousal systems and 
fronto-parietal association cortex. Based on work from patients and from 
animal models we describe a characteristic pattern of intense increases in 
neuronal firing, cerebral blood flow, cerebral blood volume, blood oxygen 
level dependent functional magnetic resonance imaging (BOLD fMRI) 
signals and cerebral metabolic rate of oxygen consumption in the hippo-
campus during focal limbic seizures. Similar increases are seen in certain 
closely linked subcortical structures such as the lateral septal nuclei and 
anterior  hypothalamus, which contain inhibitory neurons. In marked con-
trast, decreases in all of these parameters are seen in the subcortical arousal 
systems of the upper brainstem and intralaminar thalamus, as well as in 
the fronto-parietal association cortex. We propose that the seizure proper 
can be defined as regions showing intense increases, while those areas 
showing opposite changes are inhibited by the seizure network and consti-
tute long-range network consequences beyond the seizure itself. 
Importantly, the fronto-parietal cortex shows sleep-like slow wave activity 
and depressed metabolism under these conditions, associated with 
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impaired consciousness. Understanding which brain networks are directly 
involved in seizures versus which sustain secondary consequences can 
provide new insights into the mechanisms of brain dysfunction in epilepsy, 
hopefully leading to innovative treatment approaches.

Keywords

Epilepsy • Consciousness • Slow waves • Cortex • Thalamus • Sleep  
• Hippocampus • Pedunculopontine tegmental nucleus • Acetylcholine  
• Brainstem • Arousal

5.1  Introduction

Seizures are usually defined as an abnormal pat-
tern of neuronal activity which includes exces-
sive synchrony and high frequency firing of 
neurons. As in most definitions, the obvious cases 
are easy to recognize. However, in reality there 
are no distinct boundaries for precisely when 
neuronal activity become sufficiently synchro-
nous or intense to be considered a seizure. The 
situation is complicated further by the fact that 
seizures occur in neuronal networks, which have 
both local and long-range effects. Network 
interactions give rise to abnormal activity in local 
circuits, but in some cases can also influence 
remote brain regions. Are these remote network 
changes part of the seizure proper, or are they 
“side effects” caused by the seizure but not 
directly involved in the seizure network? To 
answer this question it is necessary to identify 
characteristic features that are seen in seizure 
activity, and to then determine if these same fea-
tures are present in the remote network regions. 
If similar characteristic features are present, then 
the remote regions are likely to be involved in 
propagation of the seizure itself. If the activity 
in the remote regions differs drastically from 
seizure activity, and instead resembles other 
well-known patterns of non-seizure brain activity 
(such as coma or sleep), then the activity in the 
remote region could be considered outside the 
seizure network, although influenced by it.

Temporal lobe seizures provide a concrete 
example of these local and long-range network 
phenomena. Locally, temporal lobe seizures 

produce high frequency rhythmic discharges.  
At the same time remote regions of the fronto-
parietal association cortex exhibit 1–3 Hz slow 
wave activity resembling coma, sleep or encepha-
lopathy [1–3]. Is this slow wave activity part of 
the seizure, or is it a distinct state of brain activity 
caused by the seizure? Here we will examine the 
detailed characteristics of these remote changes 
in neocortical networks during focal limbic seizures 
in both patients and in animal models, and also 
potential mechanisms for these phenomena. We 
conclude that these remote effects on neocortical 
networks are best considered outside the seizure 
network but strongly influenced by it. Analogous to 
post-ictal depression, which is closely related to and 
caused by the seizure itself but occurs at a different 
time, neocortical slow wave activity is closely 
related to and caused by focal limbic seizures but 
occurs in a different space.

5.2  Clinical Data

Intracranial recordings from patients with tempo-
ral lobe epilepsy show characteristic low voltage 
fast activity evolving into rhythmic polyspike-and- 
wave discharges in the medial temporal lobe 
limbic circuits, often extending into the lateral 
temporal cortex (Fig. 5.1c). Simultaneously, 
remote regions of the frontal and parietal associa-
tion cortex often show 1–3 Hz slow wave activity 
(Fig. 5.1d). This ictal neocortical slow wave 
activity has been interpreted as a propagation 
pattern in temporal lobe epilepsy [1]. However, 
several features of the fronto-parietal slow wave 
activity make it likely that this is a distinct, 
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remote network effect rather than simply seizure 
propagation, as we discuss below.

Recent work with multiunit recordings in 
human intracranial EEG has raised new questions 
about the definition of seizure activity vs. associ-
ated changes in surrounding regions. Schevon and 
colleagues showed that high frequency firing of 
neurons is highly localized in human seizures [4]. 
Accompanying local field potential changes 
measured by conventional intracranial EEG 
extend over a greater region, but may represent 
mainly synaptic activity without major changes in 
local firing of neurons [4]. Whether recording 
neuronal firing or local field potentials, at least 
these changes in the vicinity of seizure onset show 

high frequency poly-spike activity characteristic 
of seizure physiology. In contrast, the slow wave 
activity occurring in distant fronto-parietal regions 
during temporal lobe seizures occur at a very 
different frequency (1–3 Hz) from ictal temporal 
lobe polyspike discharges (broad band >8 Hz) 
(Fig. 5.1c, d) [2, 3]. Seizure activity on intracranial 
EEG can be defined as high frequency discharges. 
Although scalp EEG often exhibits rhythmic theta 
or delta- frequency slow waves during local sei-
zures [5] direct recording of seizure activity with 
intracranial electrodes inevitably shows high 
frequency discharges in these same regions. 
Therefore, when only slow wave activity is seen 
in a region without high frequency discharges on 

Fig. 5.1 Local and long-range network effects in 
temporal lobe complex partial seizures. (a, b) Group 
analysis of SPECT ictal-interictal difference imaging 
during temporal lobe seizures. CBF increases (red) are 
present in the temporal lobe (a) and in the medial thala-
mus (b). Decreases (green) are seen in the lateral fronto-
parietal association cortex (a) and in the interhemispheric 
frontoparietal regions (b). (c, d) Intracranial EEG 
recordings from a patient during a temporal lobe seizure. 
High frequency polyspike-and-wave seizure activity is 

seen in the temporal lobe (c). The orbital and medial  
frontal cortex (and other regions, EEG not shown) do not 
show polyspike activity, but instead large-amplitude, 
irregular slow rhythms resembling coma or sleep (d). 
Vertical lines in (c) and (d) denote 1-s intervals. Note 
that the EEG and SPECT data were from similar patients, 
but were not simultaneous, and are shown together here 
for illustrative purposes only ((a, b) Modified from 
Blumenfeld et al. [2] with permission. (c, d) Modified 
from Englot et al. [3] with permission)
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intracranial EEG, this likely does not represent 
seizures. As we discuss in the next section, 
detailed physiological studies from animal models 
further support this claim. Such slow wave activity 
seen in the fronto-parietal cortex during temporal 
lobe seizures is similar to cortical slow waves 
in deep sleep, coma or encephalopathy [6, 7].  
In these states, cortical function and information 
processing is depressed, leading to impaired level 
of consciousness [8].

How does focal seizure activity in the temporal 
lobe lead to remote slow wave activity in the 
fronto-parietal association cortex? The anatomy 
and physiology of these changes differs from 
local “surround inhibition” described for focal 
cortical seizures [9, 10]. To affect distant lobes, 
long-range network interactions are required. 
Some initial clues for the mechanisms of these 
network changes have come from human cerebral 
blood flow (CBF) imaging with single photon 
computed tomography (SPECT) which, unlike 
fMRI, can be done successfully despite patient 
movement during seizures. As expected, ictal 
SPECT in temporal lobe seizures is associated 
with CBF increases in the temporal lobe (Fig. 5.1a). 
In addition, decreases are seen in frontal and 
parietal association cortex in the same regions 
which exhibit slow wave activity (Fig. 5.1a, b) 
[11–13]. Subcortical networks are also involved 
in temporal lobe seizures and SPECT imaging 
shows increases in the medial thalamus and 
midbrain (Fig. 5.1b) [13–16]. We found that the 
SPECT increases in the medial thalamus are 
correlated with the decrease in bilateral fronto-
parietal cortex [13], suggesting a mechanistic 
link between subcortical changes and depressed 
cortical function in temporal lobe seizures. These 
long-range network changes in cortical and sub-
cortical function are seen specifically in temporal 
lobe seizures with impaired consciousness [3, 13, 
14, 17, 18]. In contrast, temporal lobe seizures 
without impaired consciousness are associated 
with localized seizure activity in the temporal 
lobe, without these long- range network changes 
[3, 13].

Based on these findings from patients, we 
 proposed the network inhibition hypothesis to 
explain cortical dysfunction and impaired con-

sciousness in temporal lobe seizures (Fig. 5.2) 
[19, 20]. Normal cortical function and conscious-
ness is maintained by interactions between the 
cortex and subcortical arousal systems including 
the thalamus, brainstem and basal forebrain 
(Fig. 5.1a). Focal temporal lobe seizure activity 
in simple partial seizures does not have long- 
range network impact effects, so cortical function 
and consciousness are spared (Fig. 5.1b). In tem-
poral lobe complex partial seizures, propagation 
to subcortical structures (Fig. 5.1c)—such as the 
anterior hypothalamus, lateral septum and other 
regions—inhibits subcortical arousal systems 
(Fig. 5.1d). This in turn removes cortical arousal 
leading to fronto-parietal slow wave activity and 
impaired level of consciousness. Note that 
according to this hypothesis, the cortical slow 
wave activity is not part of the seizure itself, but 
instead is a long-range network consequence of 
depressed subcortical arousal.

Further support for the network inhibition 
hypothesis has come from recent behavioral 
observations in patients [21–23]. The network 
inhibition hypothesis predicts that when focal 
seizures propagate to subcortical structures, this 
will cause severe and widespread cortical dys-
function. Therefore focal seizures are expected 
to usually be associated with either marked 
impairment of many cognitive functions due to 
depressed level of consciousness, or alternatively 
to spare most cognitive functions. In support of 
this hypothesis, we recently found that behavioral 
deficits in a wide range of verbal and non- verbal 
test items during partial seizures are bimodally 
distributed, such that most seizures either globally 
impair or spare cognition [21–24].

While human studies have provided clinically 
relevant correlations between physiology and 
behavioral changes, and suggest that ictal neo-
cortical slow wave activity is distinct from direct 
seizure involvement, fundamental mechanistic 
studies are best performed in animal models. 
An experimental animal model could enable 
direct physiological measurements to determine 
if ictal neocortical slow wave activity is indeed 
distinct from seizure activity, and would allow 
further investigation of the mechanisms for this 
phenomenon.
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5.3  Insights from an 
Experimental Animal Model

Rodent models of limbic seizures replicate many 
of the behavioral and physiological characteris-
tics of human temporal lobe epilepsy [25–29]. 
We found that spontaneous focal limbic seizures 
in awake chronically epileptic rats following 
pilocarpine status epilepticus exhibited frontal 
neocortical 1–2 Hz slow wave activity and 
behavioral arrest similar to human complex 
partial temporal lobe seizures [30]. Ictal neocor-
tical slow wave activity in this model resembled 
slow wave activity during natural slow wave sleep 
in the same animals. In contrast when limbic 
seizures secondarily generalized, recordings from 
the frontal cortex showed 9–12 Hz polyspike 

discharges characteristic of ictal activity, instead 
of slow waves.

Additional physiological and neuroimaging 
experiments were performed in an acute lightly 
anesthetized rat model in which seizures could 
be induced under controlled conditions [30]. 
Seizures were induced by brief 2 s stimulus trains 
at 60 Hz to the hippocampus under ketamine/
xylazine anesthesia reduced to a stage where the 
cortex showed physiology near to the waking 
state. Under these conditions, induced partial 
limbic seizures produced frontal cortical slow 
wave activity similar to that seen in awake chron-
ically epileptic rats. This acute model enabled 
detailed physiological measurements to distin-
guish ictal neocortical slow waves from seizure 
activity. Measurements from the hippocampus 

Fig. 5.2 Network inhibition hypothesis. (a) Under 
normal conditions, the upper-brainstem and diencephalic 
activating systems interact with the cerebral cortex to 
maintain normal consciousness. (b) A focal seizure 
involving the mesial temporal lobe. If the seizure remains 
localized, a simple partial seizure will occur without 
impairment of consciousness. (c) Seizure activity often 

spreads from the temporal lobe to midline subcortical 
structures and propagation often extends to the contralat-
eral mesial temporal lobe (not shown). (d) Inhibition of 
subcortical arousal systems leads to depressed activity 
in bilateral frontoparietal association cortex and to loss 
of consciousness (Modified from Englot et al. [3] with 
permission)
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during partial limbic seizures revealed dramatic 
increases in neuronal firing (multiunit activity), 
cerebral blood flow, blood oxygen dependent 
(BOLD) functional magnetic resonance imaging 
(fMRI) signals, cerebral blood volume, and cere-
bral metabolic rate of oxygen consumption [30]. 
In marked contrast, during the same seizures the 
frontal cortex showed decreases in all of these 
measurements along with slow wave activity. 
These findings provide strong evidence that ictal 
neocortical slow wave activity is a distinct physi-
ological state, more closely resembling deep 
sleep or encephalopathy than seizure activity. 
Indeed, in the same animals slow wave activity 
under deep anesthesia induced similar changes in 
neuronal activity in the frontal cortex to those 
observed during partial limbic seizures.

Further evidence supporting a physiological 
distinction between ictal neocortical slow waves 
and seizure activity was provided by secondarily 
generalized seizures [30]. As in the awake model, 
when seizures propagated to the frontal cortex, 
instead of slow waves the frontal cortex showed 
high frequency polyspike discharges. Unlike the 
physiological decreases seen during slow wave 
activity, during secondary generalized seizures 
the frontal cortex showed marked increases in 
neuronal firing, cerebral blood flow, BOLD fMRI 
signals, cerebral blood volume, and cerebral met-
abolic rate of oxygen consumption.

In summary, direct measurements and neuro-
imaging during focal limbic seizures revealed very 
distinct physiology for hippocampal or cortical 
seizure activity which generally showed marked 
increases in all neurometabolic functions, contrast-
ing markedly with ictal neurocortical slow activity 
which showed opposite changes, with decreases 
in all markers of neurometabolic function. These 
finding support the hypothesis that ictal neocortical 
slow wave activity is not part of the seizure itself, 
but instead is a consequence arising from long-
range network effects producing altered physiology 
in regions remote from the seizure focus.

The next step has been to identify the network 
mechanisms by which seizure activity in the hip-
pocampus may produce slow wave activity in the 
neocortex. As we have already discussed, data from 
patients suggest that focal hippocampal seizures 

may depress subcortical arousal systems, which 
could lead to cortical slow wave activity resem-
bling deep sleep or coma (Fig. 5.2). Experiments 
from the rat model have provided further mech-
anistic details to support this hypothesis [31]. 
fMRI mapping during focal limbic seizures 
demonstrated that seizure activity propagates 
from the hippocampus to subcortical structures 
including the lateral septal nuclei, anterior hypo-
thalamus, and medial thalamus. Subsequent 
direct neuronal recordings confirmed increased 
activity in these subcortical regions during 
seizures. The lateral septal nuclei and anterior 
hypothalamus contain gamma amino butyric 
acid (GABA)-ergic neurons with projections to 
subcortical arousal structures and are thus well 
positioned to inhibit cortical arousal during 
seizures. In support of this model, electrical stim-
ulation of these regions in the absence of seizure 
activity was able to reproduce cortical slow wave 
activity and behavioral arrest [31, 32]. Cutting 
the fornix, the main route of seizure propagation 
from hippocampus to these subcortical struc-
tures, prevented cortical slow wave activity and 
behavioral arrest during seizures.

Additional studies have confirmed decreased 
subcortical arousal during focal limbic seizures, 
specifically in the cholinergic arousal systems 
[32]. fMRI mapping during focal limbic seizures 
have shown decreased signals in the midbrain 
reticular formation, thalamic intralaminar nuclei 
and possibly the basal forebrain. Juxtacellular 
recordings from the pedunculopontine tegmental 
nucleus in the brainstem demonstrated decreased 
firing of identified cholinergic neurons during 
frontal cortical slow wave activity in focal limbic 
seizures [32]. In addition, amperometric mea-
surements of choline signals as a surrogate 
marker of cholinergic neurotransmission showed 
decreases in both frontal cortex and intralaminar 
thalamus during focal limbic seizures, but not 
during secondarily generalized seizures. While it is 
likely that in addition to cholinergic arousal other 
subcortical arousal systems are also involved, 
these findings provide strong evidence that a well 
characterized subcortical arousal system is 
depressed during focal limbic seizures, resembling 
the decreased function seen in slow wave sleep.
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5.4  Conclusions and Future 
Directions

Here we have examined the activity patterns in 
focal limbic seizures to ask the question: What is 
a seizure network? In this case, more specifically—
which changes in activity during limbic seizures 
represent the seizure itself and which can be 
considered long-range network effects arising 
from, but physiologically distinct from seizure 
activity? Based on multi-modal measurements 
including direct recordings of neuronal activity, 
cerebral blood flow, and neuroimaging- based 
evaluation of neuroenergetics, we conclude that 
limbic seizure networks involve intense increases 
in activity in structures such as the hippocampus 
and subcortical regions including the lateral sep-
tum and anterior hypothalamus. As a long-range 
network consequence of this abnormal increased 
activity, there is also abnormal decreased activity 
in subcortical arousal systems including the 
brainstem, intralaminar thalamus and basal fore-
brain which causes the cortex to enter a state 
resembling deep sleep. These subcortical and 
cortical decreases in activity are not part of the 
seizure per se since they differ drastically from 
the increases typically associated with seizures. 
However, they are an important effect of the 
seizure network on other parts of the brain, and 
have a major clinical impact including impaired 
consciousness.

Important unanswered questions remain about 
these seizure networks. For example, although the 
presence of GABAergic neurons in structures 
involved in seizures (such as the lateral septum or 
anterior hypothalamus) suggests these may inhibit 
subcortical arousal systems, direct demonstration of 
subcortical inhibition has not yet been confirmed. 
Additional experiments including local infusion 
of GABAergic agonists and antagonists will be 
crucial. In addition, while cholinergic arousal was 
found to be depressed during limbic seizures, the 
possible involvement of other neurotransmitter 
systems should be investigated further. Another 
important direction for future investigation is the 
development of treatments to prevent long-range 
network impairment. Although ideally the sei-

zures themselves should be stopped, in some 
patients this is not possible. In these medically 
and surgically refractory cases, treatments aimed 
at preventing the impaired consciousness which 
accompanies depressed cortical function would be 
highly beneficial. Possible treatments based on the 
findings above would include deep brain stimula-
tion targeted at arousal regions such as the thalamic 
intralaminar region [33, 34] or pharmacological 
treatments such as modafinil [35] aimed at increas-
ing alertness in the ictal and post-ictal periods. 
Hopefully, further investigation of the interactions 
between local seizures and long- range network 
interactions will make such treatments possible, 
improving the lives of people with epilepsy.
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    Abstract     

  Although there is a great multiplicity of normal brain electrical activities, 
one can observe defi ned, relatively abrupt, transitions between apparently 
normal rhythms and clearly abnormal, higher amplitude, “epileptic” 
signals; transitions occur over tens of ms to many seconds. Transitional 
activity typically consists of low-amplitude very fast oscillations (VFO). 
Examination of this VFO provides insight into system parameters that 
differentiate the “normal” from the “epileptic.” Remarkably, VFO  in vitro  
is generated by principal neuron gap junctions, and occurs readily when 
chemical synapses are  suppressed, tissue pH is elevated, and [Ca 2+ ] o  is low. 
Because VFO originates in principal cell axons that fi re at high frequencies, 
excitatory synapses may experience short-term plasticity. If the latter takes 
the form of potentiation of recurrent synapses on principal cells, and 
depression of these on inhibitory interneurons, then the stage is set for 
synchronized bursting – if [Ca 2+ ] o  recovers suffi ciently. Our hypothesis 
can be tested (in part) in patients, once it is possible to measure brain 
tissue parameters (pH, [Ca 2+ ] o ) simultaneously with ECoG.  
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  Abbreviations 

   ACSF    Artifi cial cerebrospinal fl uid   
  DHPG    (S)-3,5-dihydroxyphenylglycine   
  ECoG    Electrocorticography   
  TMA    Trimethylamine   
  VFO    Very fast oscillations (>70 Hz)   

6.1           Introduction 

 The task of defi ning – or identifying – a seizure 
network is conceptually very complex and can be 
approached in a number of different ways. One 
could, for example, determine which brain regions 
(and which cell types) are the fi rst to discharge in 
a “non-normal” fashion that leads to aberrant 
EEG patterns. This approach has been the con-
ventional one, and has led to the concept of the 
epileptic “focus” or epileptic “zone.” These 
concepts have been problematic since it is now 
clear that – at least in the chronic human epileptic 
brain – cells in rather widespread brain regions 
are often linked in their aberrant discharge 
patterns as seizure are initiated (e.g., Worrell’s 
work). A related but more recent approach has 
been to identify those brain regions that generate 
high frequency oscillations at the onset of seizure 
activity. The use of such oscillations as a bio-
marker for “epileptic brain” has received much 
attention, and seems to provide a useful guideline 
for surgical intervention (i.e., removal results in 
“cure”). With this latter approach, it would appear 
that the “seizure network” is defi ned as that group 
of cells that generate these abnormally high fre-
quency EEG patterns. And thus an understanding 
of these generators would provide a useful handle 
on defi ning a seizure network – and for asking 
such questions as whether such networks are 
dynamic, are refl ective on tissue pathology, are 
exclusive to networks in epileptic brain (i.e., do 
not come into play in normal brain when seizures 
are exogenously generated), etc. We have therefore 
approached the question of “epileptic networks” 
via our interest in very fast oscillations (VFO). 

 The data discussed below suggest that the 
transition from normal brain rhythms to seizure 

is brought about (at least in an immediate sense) 
by alterations in brain tissue,  in the extracellular 
environment  rather than by neuronal activities per 
se – an idea that has been central to the epilepsy 
scientifi c endeavor for many years. As shown by 
many other authors (and also ourselves), very fast 
oscillations (VFO) – a striking and (we believe) 
fundamental sort of neuronal activity – are fre-
quently observed prior to and during seizures. 
What we bring to the table that is new is this: 
VFO occurs in just those ionic and pH conditions 
expected to occur after brain activation, and which 
might in themselves promote seizures. Furthermore, 
VFO itself could induce synaptic habituation 
(specifi cally of pyramidal/interneuron synapses) 
that would also favor seizures. This emphasis on 
the extracellular environment, and on the mecha-
nisms for transition from “normal” electrical 
activity to “seizure” activity, provides perhaps a 
new view of what might profi tably be explored as 
a defi ning feature of epileptic networks.  

6.2     Very Fast Oscillations in 
Normal and Epileptic Brain 

 During epileptic burst complexes (both interictal 
and ictal), there coexist large fi eld transients 
(often with simultaneous intracellular depolar-
izations and multiple action potentials), together 
with high-frequency fi eld oscillations (“VFO”), 
the latter sometimes at several hundred Hz [other 
terms include “ripples”, “fast oscillations”, and 
HFO or high-frequency oscillations]. This coex-
istence was observed in penicillin-induced epi-
leptogenesis in cat hippocampus in vivo, in 1969 
[ 7 ]; and not too long afterwards in the  in vitro  
hippocampal slice by Philip Schwartzkroin and 
David Prince [ 32 ,  33 ]. Since then, coexisting 
large fi eld transients, with superimposed VFO, 
have been observed in patient EEGs (for exam-
ple, [ 42 ], and see also below), as well as in many 
experimental contexts ([ 24 ]; reviewed in [ 45 ]). 

 How can one account for the coexistence of 
these two fi eld patterns, and their relation to normal 
brain activities, such as gamma (30–70 Hz) rhythms 
and physiological sharp waves? In this chapter, we 
shall note that putatively normal- appearing gamma 
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can alternate with large synchronized bursts, 
providing a model for the transition between nor-
mal and abnormal neuronal population behaviors. 
Interestingly, in this model – and in many other 
situations, including in patients – there is a segment 
of VFO  prior  to the synchronized burst. We shall 
examine the somewhat surprising conditions in 
which, experimentally, VFO can occur alone; and 
we shall review the cellular mechanisms of one 
experimental type of gamma oscillations (which 
turns out to be related to VFO). Finally, we shall 
conclude with an hypothesis as to how the transi-
tion from relatively normal activities, to epileptic 
ones, might take place in situ. Imbalance between 
synaptic excitation and inhibition – the text-book 
explanation – provides partial, but not complete, 
understanding. Our hypothesis is testable, at least 
in part; and, if valid, the hypothesis may have 
clinical application.

    An example of the alternation between “normal” 
gamma rhythm and epileptiform bursts.  It was 
discovered in 1998 (Fisahn et al.) that stable 
(i.e. lasting hours) gamma oscillations could be 
induced in properly prepared hippocampal slices, 
simply by addition of a compound such as carba-
chol to the bath. Similar oscillations can be pro-
duced by other compounds, including kainate, in 
hippocampus, neocortex, entorhinal cortex, and 
cerebellum slices (reviewed in [ 45 ]). [We shall 
describe some of the cellular mechanisms below.] 
Interestingly, a high concentration of the metabo-
tropic glutamate receptor agonist DHPG induces 
oscillations that alternate with epileptiform 
bursts, over periods of several seconds (Fig.  6.1 ). 
The amplitude of EPSPs in interneurons and in 
pyramidal cells evolves over the interburst peri-
ods, decreasing in interneurons, and increasing in 
pyramidal cells; and this explains, at least in part, 
the switch in behaviors [ 46 ]. Note, however, that 
fi eld VFO actually precedes the epileptiform 
bursts (Fig.  6.1 bii, and see also [ 24 ]).

      Further examples of VFO associated with, and 
prior to, epileptic transients and “full- blown” 
electrographic seizures.  

 The slight advance of VFO, relative to epilep-
tiform bursts, may be a quite general phenomenon 
(Fig.  6.2 ), occurring also in human tissue  in situ , 
as well as in resected human tissue. Such observa-

tions suggest that perhaps VFO is really the 
“fundamental” event in epileptic bursts. Indeed, 
in resected human tissue, it has been shown that 
blockade of chemical synapses can eliminate the 
large fi eld transients, while leaving VFO; whereas 
block of VFO with carbenoxolone also causes 
loss of the large transients [ 27 ]. At least in the 
experimental conditions there used, it was not 
possible to observe large transients without VFO, 
while the reverse could be observed. One won-
ders, therefore, if VFO at least contributes to the 
causation of the epileptiform bursts    (Fig.  6.2 ). 

  Fig. 6.1     Alternating gamma oscillation and synchro-
nized epileptiform bursts.  Rat hippocampal slice, CA3 
region, bathed in 100 μM DHPG (a metabotropic gluta-
mate receptor agonist), s. pyramidale fi eld recordings. 
( a ) long-duration trace showing 4 epileptiform bursts 
with interspersed gamma oscillations (~30 Hz). Scale 
bars 0.5 mV, 1 s. ( b ) the segment corresponding to the 
bar in (a) is expanded, and fi ltered to show broad-band 
(i), VFO (ii), and gamma (iii) signals. Note the brief 
VFO just prior to the epileptiform burst. Scale bars 0.5, 
0.1, 0.2 mV; 200 ms (From Traub et al. [ 44 ], reproduced 
with permission)       
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  Fig. 6.2     VFO preceding epileptiform bursts: 3 examples.  
(“WB” = wide- band.)  Left ,  In vivo , foramen ovale record-
ing of right temporal interictal activity in a patient with 
mesial temporal sclerosis.  Middle ,  In vitro , spontane-
ous fi eld potential burst in resected temporal neocortex 
from the same patient.  Right , model, simulation of net-

work burst in multilayer neocortical circuit model, with 
multicompartment neurons interconnected by chemical 
synapses and by gap junctions.  Scale bars  200 μV  in vivo , 
100 μV  in vitro , arbitrary for model; 100 ms (From 
Roopun et al. [ 27 ], reproduced with permission)       

  Fig. 6.3     Subdural grid ECoG recording of an electro-
graphic seizure, preceded by a ~2 s generalized discharge, 
and then localized, low-amplitude VFO (e.g. G21-G23).  

Recordings from a child with a  right frontal  cortical dyspla-
sia and intractable seizures. She responded well to surgery 
(From Traub et al. [ 42 ], reproduced with permission)       
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 At times, VFO can be sustained for seconds 
prior to the onset of an electrographic seizure 
(but not, so far as we are aware, of an interictal 

burst). Figure  6.4  shows an example of this 
phenomenon, in an electrocorticographic (ECoG) 
recording. 

  Fig. 6.4     Another run of preseizure VFO in ECoG.  
This example was recorded from the same patient whose 
ECoG was shown in Fig.  6.3 , with the same subdural grid 

but different recording technique (From Traub et al. [ 42 ], 
reproduced with permission)       

  Fig. 6.5     In vitro   ~200 Hz 
ripples are strongly 
potentiated by tissue 
alkalinization.  Stratum 
pyramidale recordings of 
spontaneous VFO in the 
CA3 region of rat 
hippocampal slice. VFO 
occurs transiently in 
control conditions ( top ), 
but becomes nearly 
continuous after tissue 
alkalinization with 10 mM 
NH 4 Cl. The effect is 
reversible (From Draguhn 
et al. [ 8 ], reproduced with 
permission)       
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 What the above data suggest is that VFO 
mechanisms may provide a clue as to what is dis-
tinctive about normal brain rhythms, as opposed 
to epileptiform events. In order to explore this 
idea further, we must make a digression into 
some of the relevant basic cellular mechanisms.  

6.3     Cellular Mechanisms of 
Epileptiform Bursts, VFO, 
and Gamma Oscillations 

  Synchronized epileptiform bursts  are considered, 
traditionally, to arise from an imbalance in 
synaptic excitation and inhibition – an idea per-
haps rooted in the experimental observation that 
blockade of GABA A  receptors was an effective 
experimental means of inducing such bursts [ 7 ]. 
The imbalance idea does not explain, however, 
why one does not simply observe sustained 
increases in fi ring rates; instead, epileptiform 
activity is organized into transient events, lasting 
tens to hundreds of ms. Furthermore, at least  in 
vitro , transient events can be elicited by stimula-
tion of a small number of neurons, sometimes 
even one neuron [ 19 ], although there can be a 
latency of >100 ms from the stimulus to the pop-
ulation event. This occurs, even though the den-
sity of excitatory synaptic connections,  in vitro  in 
CA3, is of the order of a few per cent. Traub and 
Wong [ 39 ] were able to account for the above 
observations, if it were postulated that recurrent 
excitatory connections were suffi ciently strong – 
specifi cally, that a burst of action potentials could 
induce a burst in a synaptically connected cell, in 
the relative absence of synaptic inhibition. This 
prediction was then verifi ed with paired record-
ings [ 20 ]. Notably, however, the model under 
consideration did not account for the VFO super-
imposed on epileptiform bursts. Why is this 
important? Couldn’t it be that the VFO is simply 
an irrelevant epiphenomenon? 

 We shall argue that the VFO is important, for a 
number of reasons, but in the present context, 
consider the following argument. “Strong” cou-
pling between neurons appears to be important for 
a synchronized burst to develop. Suppose that gap 

junctions were to exist between principal neurons, 
with coupling powerful to allow a single action 
potential in one cell to evoke an action potential 
in another cell. This type of strong electrical 
coupling does actually exist [ 18 ,  48 ], and it could 
cooperate with recurrent excitatory  chemical 
synapses. Additionally, as we shall note below, 
electrical coupling accounts for VFO itself. 

  VFO:  high-frequency oscillations (“ripples”) 
had been observed in the hippocampus  in vivo , 
during physiological sharp waves [ 4 ], but distinc-
tive clues to cellular mechanisms came from the 
discovery that ripples could occur  in vitro , with-
out sharp waves [ 8 ] – the ripples could then be 
studied in isolation. Remarkably, ripples can 
occur  in vitro  without chemical synapses, both in 
hippocampus and in the neocortex [ 8 ,  22 ,  46 ]. 
Ripples are coherent ( in vitro ) over hundreds of 
microns, and so are a true population phenome-
non. Extracellular fi elds (tens of μV) are too 
small to explain them, and a variety of pharmaco-
logical manipulations are consistent with gap 
junctions being fundamental.  In vitro  ripples are 
also associated with spikelets [ 8 ,  46 ] which, in 
the hippocampus, are likely of axonal origin [ 28 ]. 
Dye-coupling exists between axons of nearby 
CA1 pyramidal cells [ 28 ], consistent with the 
occurrence of gap junctions between axons, 
although not providing defi nitive proof (by itself) 
for this concept. 

 We have shown that  in vitro  VFO, at frequen-
cies up to about 250–300 Hz, can be explained 
by electrical coupling between axons under 
certain conditions: fi rst, the coupling is strong 
enough for a spike in one axon to evoke a spike 
in a coupled axon (indirectly supported by data 
of Dhillon and Jones [ 6 ], Mercer et al. [ 18 ] and 
Wang et al. [ 48 ]); second, each axon couples, on 
average, to more than one other; fi nally, that 
spontaneous axonal action potentials occur at 
least sometimes. This model accounts for the 
admixture of spikes and spikelets during VFO, 
for continuous frequency transitions from 
gamma to almost 200 Hz, and for spatial patterns 
of VFO in the neocortex [ 5 ,  35 ,  40 ,  46 ]; and, 
most importantly, it accounts for the propensity 
of VFO to occur when chemical synapses are 
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blocked. The model predicts that somatic action 
potentials during VFO are antidromic [ 2 ,  47 ]. 

  Persistent gamma oscillations  are traditionally 
viewed as arising simply from recurrent synaptic 
excitation to interneurons, and synaptic inhibi-
tion to pyramidal neurons. A number of pieces of 
experimental evidence indicate that the mecha-
nisms are somewhat more complicated. First, 
while it is true that blockade of AMPA/kainate, or 
of GABA A  receptors, will suppress persistent 
gamma, it is also true that persistent gamma is 
sensitive to gap junction blockade [ 11 ,  41 ,  42 ]. 
Second, the power spectrum of gamma oscilla-
tion fi elds reveals a peak at 70 or more Hz. This 
activity can be seen in Fig.  6.1 bii. This faster 
peak is not simply a harmonic of the gamma 
activity, because the high frequency peak persists 
when gamma is abolished by synaptic receptor 
blockade [ 42 ], or when stratum oriens is sepa-
rated from stratum pyramidale – in which case 
VFO persists in s. oriens [ 43 ]. Finally, pyramidal 
cell somata fi re rarely during persistent gamma 
[ 11 ]. 

 The above disparate and counter-intuitive 
observations are readily explained with a model 
that basically simulates persistent gamma as con-
tinuous VFO that is “chopped up” by recurrent 
synaptic inhibition – something that is possible if 
axonal gap junctions are not too far from periso-
matic sources of inhibition [ 41 ]. The model 
thereby accounts for the pharmacology, the fi eld 
potential profi les, and the rare somatic fi ring (the 
latter because the action potentials that drive the 
oscillation are generated in axons, and only some 
of these successfully propagate back to the soma 
as full spikes). The model predicts that, during 
persistent gamma, axons fi re at higher rates than 
somata; and that somatic action potentials are 
antidromic: these predictions have been experi-
mentally verifi ed [ 10 ].

6.4        VFO and Origin of Seizures 

  Experimental VFO is potentiated by alkaline 
conditions . A relation between systemic (and 
presumably brain) pH has long been suspected, 

with alkaline pH being epileptogenic: in absence 
and other seizure types associated with spike- 
wave [ 12 ,  23 ], and in febrile seizures and their 
experimental models [ 29 ,  30 ]. In addition, some 
drugs with anticonvulsant properties, are block-
ers of carbonic anhydrase (acetazolomide, topira-
mate, zonisamide) [ 21 ,  25 ]. Remarkably, alkaline 
pH strongly potentiates  in vitro  VFO (Fig.  6.5 , [ 8 , 
 46 ]). The effects on VFO are unlikely to result 
from actions of pH on synaptic transmission, as 
the effects can occur when synaptic transmis-
sion is effectively blocked [ 46 ]. A likely cause 
is the opening of gap junction channels by alka-
line pH [ 36 ], although it has not been possible yet 
to prove this directly. 

  VFO and calcium.  A class of experimental  in 
vitro  epilepsy models includes so-called fi eld 
bursts and related phenomena, in which ionic 
manipulations are used to suppress synaptic 
transmission (lowering [Ca 2+ ], use of Mn 2+ ), to 
increase neuronal excitability (for example, ele-
vating extracellular [K + ]), and probably to open 
gap junctions with increased pH [ 13 ,  34 ,  38 ,  51 ]. 
Such fi eld bursts likely (in our opinion) depend 
on gap junctions [ 26 ]. The occurrence of fi eld 
bursts fi ts in with long-held hypotheses concern-
ing a primary role for glia in epilepsy [ 9 ,  14 ,  37 , 
 50 ]; and also with long-standing observations 
that afferent stimulation, as well as seizures 
themselves, can have signifi cant effects on extra-
cellular ion concentrations, including the lower-
ing of [Ca 2+ ] o  [ 15 ].

    Experimental demonstration of gamma/VFO/
seizure evolution in alkaline conditions.  
Figure  6.6  illustrates a transition from VFO 
(~110 Hz) to electrographic seizure, suggestive 
of the human patient data of Figs.  6.3  and  6.4 , 
although the data in Fig.  6.6  are from an  in vitro  
hippocampal slice. The slice was bathed in an 
alkalinizing solution, and then a tetanic stimulus 
was delivered that evokes an epoch of so-called 
tetanic gamma, during which [K + ] o  is expected to 
rise, and [Ca 2+ ] o  to fall [ 50 ]. The gamma is 
followed by VFO (middle trace in Fig.  6.6 ), that 
turns into a brief electrographic seizure. We 
propose that synaptic excitation of interneurons 
is depressed during the VFO period, analogous to 
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what has been shown in the preparation of 
Fig.  6.1  [ 44 ]; such synaptic habituation during 
VFO remains, however, to be shown directly.  

6.5     Conclusion and Hypothesis 

 To summarize some of these data then, our view 
is that high-frequency fi ring in the pyramidal cell 
axon plexus is what drives both VFO and persis-
tent gamma oscillations.  VFO occur under 
specifi c extracellular conditions – which we 
hypothesize to be the initiating factor for sei-
zure activity.  What is now required, we believe, 
is direct measurement of extracellular tissue 
parameters [ 16 ], in epileptic patients, perhaps 
now using MRI [ 1 ,  17 ], and preferably in con-
junction with EEG or ECoG recordings. If such 
measurements do indeed indicate, for example, 
tissue alkalinization just prior to seizure onset, it 

will suggest alternative approaches to seizure 
prevention, and perhaps also better understand-
ing of how present treatments – such as the keto-
genic diet – are effective [ 3 ,  31 ].     
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    Abstract  

  The distinction between generalized and partial epilepsies is probably one, 
if not the most, pregnant assertions in modern epileptology. Both absence 
and generalized tonic-clonic seizures, the prototypic seizures found 
in generalized epilepsies, are classically seen as the result of a rapid, 
synchronous recruitment of neuronal networks resulting in impairment of 
consciousness and/or convulsive semiology. The term generalized also 
refers to electroencephalographic presentation, with bilateral, synchronous 
activity, such as the classical 3 Hz spike and wave discharges of typical 
absence epilepsy. However, fi ndings obtained from electrophysiological and 
functional imaging studies over the last few years, contradict this view, 
showing a rather focal onset for most of the so-called generalized seizure 
types. Therefore, we ask here the question whether “generalized epilepsy” 
does indeed exist.  
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7.1         Background 

 The concept of generalized and partial seizures 
dates back to confl ict during the last century 
between “universalizers” and “localizers”, the 
former defending a holistic integrated view of 
brain function against the “centrencephalic 
system” of Penfi eld and Jasper (reviewed in [ 4 ]). 
It was Hughlings Jackson [ 64 ] who propose 
a distinction between generalized and partial 
seizures. Only much later was the term 
“generalized” epilepsy itself fi rst employed by 
Gastaut [ 20 ]. Indeed, we will often refer in 
this chapter to generalized  versus  partial 
“seizures” rather than  “ epilepsies” since some 
experimental results may  stricto sensu  not be 
applicable to human epilepsy classifi cation and 
thus they remain seizure- related material. 
However, since generalized epilepsies are defi ned 
as such because of the “generalized” nature of 
their concomitant seizures, any suspicion with 
regard to the “generalized” nature of these 
seizures, will automatically challenge the 
“generalized” nature of the corresponding 
epilepsy and  vice versa . 

 Generalized seizures are characterized by 
sudden, often unexpected, manifestations 
(presumably refl ecting the involvement of the 
entire brain, or at least a large part of the brain) 
compared to the slower, clinically heterogeneous 
partial seizures where the patient often remains 
conscious, at least at the beginning of the seizure. 
With the development of EEG recordings, this 
assertion received a formidable confi rmation [ 7 ]. 
The electroencephalographic manifestations 
accompanying generalized absence seizures 
consist of highly stereotyped pattern of bilateral 
synchronous, regular and rhythmic spike and 
wave (SW) discharges at 2.5–4 Hz in children, 
juveniles and adults, lasting from a few seconds 
up to 30 s. In contrast, scalp EEG recordings 
reveal sustained diffused, synchronous, discharges 
during the  tonic  phase, and interrupted bursts 
during the  clonic  stage in generalized tonic-clonic 
seizures (GCTS).  

7.2     Evolution of the 
Classifi cation 

 Classifi cation in epileptology is a work-in- progress 
and a simple examination of the past 50 years 
reveals how the Jacksonian dogma has evolved. 
In the 1969 classifi cation [ 19 ], emphasis was put 
on the distinction between “seizure that are gen-
eralized from the beginning and those that are 
focal or partial at onset and become generalized 
secondarily”. In the 1981 classifi cation, it was 
proposed that generalized seizures have electro-
clinical patterns that “presumably refl ect neuro-
nal discharge which is widespread in both 
hemispheres”, underlying a conceptual shift from 
bilateral “onset” to bilateral “spread” [ 57 ]. In 1989, 
a new classifi cation postulated that partial 
localization-related epilepsies are “epileptic 
disorders in which seizure semiology or fi ndings 
at investigation disclose a localized origin of 
the seizures”, whereas generalized epilepsies are 
defi ned by initially bilateral ictal encephalographic 
patterns [ 56 ]. The “generalized” designation was 
essentially an electroclinical feature, which was 
discarded in 2010 when terminology was revised. 

 Indeed, in 2001 and 2006, an ILAE Task Force 
debated the relevance of this conceptual dichot-
omy [ 15 ,  16 ]. Recognizing that it was out of date 
with regard to pathophysiological advances in 
epileptology, the commission decided to keep its 
core concept in the 2010 revised classifi cation 
for convenience. Hence it was proposed that 
“Generalized and focal are redefi ned for seizures 
as occurring in and rapidly engaging bilaterally 
distributed networks (generalized) and within 
networks limited to one hemisphere and either 
discretely localized or more widely distributed 
(focal)” [ 6 ]. Today this convenient scheme, pre-
sumably aimed at distinguishing between epilep-
sies that are recommended for surgery (“surgical”) 
and others (“non-surgical” epilepsies), represents 
the fi rst issue to be addressed when diagnosing 
a person with epilepsy. However, it deserves 
re- evaluation in the light of recent advances 
obtained from clinical and basic research studies.  
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7.3     Absence Epilepsy: From the 
Centrencephalon to the 
Thalamo-cortical Loop 

 There is presently compelling evidence based on 
brain imaging, EEG recording and signal analysis 
techniques that a key element of generalized 
epilepsies, the sudden involvement of the whole 
brain, is highly disputable in typical absence 
epilepsy [ 4 ]. Paradoxically, one of the fi rst elec-
trophysiological studies of the pathophysiology 
of generalized SW discharges: the Jasper and 
Droogleever-Fortuyn paper, already suggested a 
mechanism for focal onset of absence seizures [ 34 ]. 
These authors succeeded in inducing typical 
3 Hz SW discharges by local 3 Hz stimulation 
in the midline and intralaminar nuclei of the 
thalamus. However, in spite of this evidence, 
the Montreal school [ 53 ] preferred the integrative 
hypothesis of the centrencephalic system presum-
ably infl uenced by the recent discovery of the 
reticular formation [ 47 ]. Later, Gloor’s team further 
explored the corticoreticular nature of generalized 
SW discharges, using the feline generalized peni-
cillin epilepsy model, introduced by Prince and 
Farrell [ 55 ], and established the link between sleep 
spindles and SW discharges (reviewed in [ 35 ]). 
Those data were still consistent with the thalamo-
cortical origin for SW activity and did not 
challenge or question the “generalized” character 
of absence epilepsy. Indeed,  in vitro  studies in 
ferret brain slices and computational models 
confi rmed later that thalamo-cortical oscillations 
could be driven by an intrathalamic circuit and 
revealed that some cellular properties of thalamic 
cells, which are involved in sleep spindles, most 
likely contribute to SW generation [ 29 ]. 

 During the 1980s, in parallel with the growing 
interest for a genetic etiology for the so-called 
“idiopathic” epilepsies, animal models with 
genetic inheritance of absence epilepsy were 
described. Specifi cally, both “genetic absence 
epilepsy in rats from Strasbourg” (GAERS) [ 73 ] 
and “Wistar Albino Glaxo/Rijswijk” (WAG/Rij) 
rats [ 68 ] were identifi ed. For the fi rst time these 

models provided the opportunity to directly test 
hypotheses in animals presenting with spontane-
ous absence seizures [ 13 ,  43 ,  69 ]. Both the  in vitro  
studies mentioned above [ 29 ] and the evidence 
obtained from genetic models led to the idea of 
a thalamo-cortico-thalamic network in which the 
typical SW discharges could elicit spontaneously. 
This network included the thalamic reticular 
nucleus in which inhibitory interneurons trigger 
GABAergic IPSPs on thalamic relay cells. T-type 
Ca 2+  current are deinactivated, as a consequence 
of hyperpolarization causing a burst of action 
potentials that in turn excited both reticular 
thalamic and cortical cells [ 5 ,  14 ,  31 ,  32 ,  52 ]. 
Enhanced T-type Ca 2+  currents were recorded in 
GAERS reticular thalamic cells and thalamic 
relay cells [ 67 ]. In addition, subtle abnormalities 
in GABAergic transmission were found in the 
reticular thalamic nucleus of GAERS compared 
to control rats [ 8 ]. However i n vivo  studies using 
a different model, namely a feline Lennox- Gastaut 
model, allowed Steriade and coworkers to pinpoint 
a cortical trigger for the SW discharge, reopening 
the controversy about whether the cortex or the 
thalamus were to be responsible for the generation 
of SW discharges [ 62 ].  

7.4     A Neocortical “Focus” 
as Trigger of Generalized 
Absence Seizures 

 More than 50 years of research were necessary to 
decrypt the pathophysiology of the thalamo- cortical 
loop in absence seizures, meaning how this neu-
ronal circuit could “jump” from the physiological 
sleep spindle to the pathological SW discharge. 
But the real trigger for an absence seizure was 
hiding somewhere else, and with its discovery the 
concept of “generalized” absence epilepsy ended. 
This discovery began in the 1960s, when it was 
reported that there was focal neocortical initiation 
of absence seizures. Marcus and Watson [ 41 ] 
discovered that bilateral application of pro-
convulsant drugs to the frontal cortices could 
produce a pattern of generalized SW discharges 
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similar to what was observed during an absence 
seizure. In the 1970 and 1980s, topographical 
EEG studies performed in patients with absence 
epilepsy confi rmed that SW discharges did not 
occupy the entire cortex. The  wave  component of 
the SW discharge was characterized by a maximum 
localized in frontal areas [ 58 ]. 

 These data were soon confi rmed in the GAERS 
model with intracellular recordings of thalamic 
relay cells where an excitatory drive (EPSCs) 
was shown, presumably originating from the 
cortex [ 54 ]. The role of the cortex in initiating SW 
discharges was further established  in vitro  by dem-
onstrating that cortico- thalamic input strength is 
critical for thalamo- cortical rhythmic activity and 
for changing a spindle into a SW oscillation [ 9 ]. 
But the evidence that was most compelling 
ultimately came from experiments performed in 
the WAG/Rij model where cortico-sub-cortical 
multiple-site EEG signals were studied using 
non-linear association analysis [ 45 ]. The authors 
identifi ed a consistent initiation zone in the peri-
oral region of the somatosensory cortex (Fig.  7.1 ), 
along with a leading role of the cortical projections 
to the thalamus lasting for the initial 500 ms of the 
SW discharge. Furthermore, the high degree of 
bilateral synchronization, characteristic of gener-
alized SW discharges in absence epilepsy, appeared 
to rely mainly on cortico-cortical connectivity, as 
indicated by non-linear analysis of inter, intra and 
thalamo-cortical relationships.

   Both initiating and leading roles of the 
neocortex were further suggested by data showing 
that SW discharges could be recorded in this 
structure without concomitant SW activity in 
thalamus, while the opposite situation never 
occurred [ 45 ,  70 ]. However, once a seizure evolved, 
both structures oscillated in concert, suggesting a 
stereotypical scenario where the  primum movens  
involves the peri-oral somatosensory cortex, which 
secondarily “switches on” the thalamo-cortical 
loop. The primary role of neocortex in the initia-
tion of SW activity was later confi rmed in 
GAERS rats; in these experiments, Manning and 
co-workers [ 40 ] found that local application of 
the anti-absence drug ethosuximide has maximal 
effi cacy when this drug is applied into the primary 
somatosensory peri-oral region while its infusion 
into the thalamus produced only minor and 

delayed reduction in SW discharges. Thus, SW 
discharge initiation in the two major genetic 
models of absence epilepsy occurs in the same 
restricted area of the somatosensory cortex. Why 
and how, however, remain to be clarifi ed.  

7.5     Focal Cortical Origin of 
Absence Seizures in Humans 

 Human studies on ictal generalized discharges in 
absence epilepsy have shown that patterns of 
activation and deactivation identifi ed by fMRI are 
restricted to some cortical (medial frontal cortex, 
precuneus, lateral parietal, and frontal cortex) 
and subcortical regions (thalamus, brainstem) 
[ 1 ,  11 ]. Due to the limited temporal resolution of 
fMRI, these results did not allow clear confi rma-
tion of a cortical initiation site. However, high-
resolution EEG and MEG studies in combination 
with advanced signal analytical techniques have 
confi rmed the existence of a preferential cortical 
origin of SW discharges. Localized sources were 
detected either in the frontal cortex, orbito-frontal, 
medial temporal or parietal lobe [ 27 ,  65 ,  74 ]. 
In addition, a rather localized preictal SW rhythm 
of low frequency (3 Hz) was detected in atypical 
absence patients [ 24 ], whereas a reproducible 
topography of locally synchronous cortical 
sources with increased local connectivity was 
described in a multifocal network, comprising 
the right prefrontal mesial, left orbito-frontal and 
left lateral post-central area [ 2 ]. 

 Absence seizures may indeed appear “bilateral 
and synchronous” (and thus “generalized”) in EEG 
recordings because of the highly connected inter- 
and intra-cortical networks that are sustained by a 
cortico-thalamic-cortical loop thus leading to 
oscillatory activity. However, the SW discharges 
appear to originate from specifi c cortical areas. 
The velocity of spread between hemispheres is 
presumably based on extensive monosynaptic 
inter-hemispheric connections via the corpus 
callosum (Fig.  7.2 ). Evidence for the role of 
callosal interhemispheric connectivity came from 
callosotomy experiments resulting in the disruption 
of the bilateral and synchronous SW discharges 
in several absence seizure and genetic animal 
models of absence epilepsy [ 41 ,  42 ,  48 ,  72 ].
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  Fig. 7.1    Evolution of the intra-hemispheric cortico-cortical 
association strength h 2  (a non-linear correlation coeffi cient 
between two signals was calculated for all electrode 
combinations as a function of time of shift between the 
signals) and time delays of the local fi eld potentials signals 
between electrode pairs. A cortical grid covering a major part 
of the somatosensory area was used for electrographical 
seizure recording in 16–22 month old WAG/Rij rats with 
spontaneous occurring spike-wave discharges. ( a )  Left : 
Electrode positions ( top ) and electrode labels ( bottom ) on 
the somatosensory cortex of rat H12. The numbers on the 
 top graph  refer to coordinates based on the rat’s anatomical 
brain atlas of Paxinos and Watson.  Right side  refers to 
frontal. ( a )  Right : A typical 3 s lasting electrographical 
spike-wave discharge recorded (with negativity up) with the 
cortical grid that covers a great part of the lateral neocortex 

with position of the electrodes and their labels on the  left . 
( b ) Time courses of the cortico-cortical nonlinear associa-
tions ( top panel ) and time delays ( bottom panel ) for several 
sites (as indicated by the  black arrows  on the  left ) with 
respect to the focal site (electrode 8). The association and 
time delays were assessed for successive 50 % overlapping 
500 msec epochs. For comparison the pictures on the  left  
depict the average overall associations ( top ) and the 
average overall time delays ( bottom ; in milliseconds). 
There is a gradual increase in association strength before 
the start of the seizure and a steep drop in association 
strength at the end. Before the seizure, time delays are 
inconsistent, and there is often a zero time lag. During the 
seizure, time delays are always positive indicating a delay 
at the different electrode positions compared to position 8, 
although the magnitude of the delay can vary [ 45 ]       
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   The cortex is endowed with a variety of 
excitatory neocortical projection neurons that play 
a role in the quick information transfer between 
homotopical regions of the two hemispheres 
via long myelinated axons through the corpus 
callosum. Homotopic regions include the somato-
sensory cortex [ 75 ], providing an anatomical 
explanation for fast spread and bilateral involve-
ment shown by the electrophysiological results [ 45 ]. 
In addition to their role in integrating homotopic 
neocortical regions, callosal projection neurons 
are also responsible for information transfer within 
each hemisphere [ 17 ]. Finally, there is an abun-
dant and widespread thalamo- cortico- thalamic 
network; the descending projections to the thalamus 
“are estimated to outnumber thalamo- cortical 
ones by an order of magnitude” [ 61 ]. The exten-
siveness of the cortico-thalamo- cortical network, 
visualized with white matter tractography, can be 
appreciated in Fig.  7.3 . The speed of involvement 
of the thalamus and cortical spread after local 
cortical initiation is undoubtedly mediated through 
these massive networks.

7.6        Generalized Convulsive 
Seizures 

 Aside from the archetypical absence epilepsy, 
a rather heterogeneous ensemble of syndromes 
constitute the group of primary (idiopathic) 

generalized epilepsies such as Juvenile 
Myoclonic Epilepsy, Juvenile Absence epilepsy, 
and Lennox- Gastaut syndrome, to mention 
only a few. If growing evidence points to the 
focal onset for typical absence epilepsy, what 

  Fig. 7.2    Diffusion tensor imaging (DTI) of the human 
corpus callosum colored by end point location.  Left : 
viewed from the  top ; Anterior side points to the  bottom. 
Right : lateral view with anterior part pointing to the  left . 

Notice the massive cross- hemispheric projections 
through which seizures might get quickly “generalized” 
(From Tromp [ 66 ]. Reprinted with permission from 
the author)       

  Fig. 7.3    Large-scale model of mammalian thalamo- cortical 
system based on DTI scans. The massive reciprocal con-
nections between cortex and thalamus are responsible 
for the quick propagation of SW discharges and other 
electroencephalographic markers of “generalized” epilepsies 
from their cortical sites of origin to the thalamus and back. 
In the illustration, left frontal, parietal, and a part of tem-
poral cortex have been cut to show only a small fraction 
of white-matter fi bers, color-coded according to their 
destination.  Red : projections to the frontal cortex,  blue  to 
parietal cortex,  green  to temporal cortex implying differ-
ent sources of reentrant axonal fi bers connecting one part 
of the cortex to another [ 30 ]       
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about other types of generalized epilepsies? 
Our pathophysiological understanding of idiopathic 
generalized epilepsies mainly relies on the 
ability of the aforementioned and incriminated 
networks to generate paroxysmal discharges. 
This susceptibility would thus result from the 
combination of a paroxysm-inducing mechanism 
such as arousal (“dyshormia”) or photosensitivity 
and a genetically- prone network [ 50 ]. Myoclonus, 
absence and ultimately GTCS would thus represent 
a crescendo of clinical manifestations related to this 
genetic predisposition for generalized paroxysms. 

7.6.1     Generalized Myoclonic 
Seizures 

 Myoclonus, on the one hand, can be either focal 
or generalized, and of either cortical, thalamo- 
cortical, reticular refl ex or negative nature, i.e., 
characterized by the inhibition of muscular 
activity [ 49 ]. In idiopathic generalized epilepsy, 
such as juvenile myoclonic epilepsy and absence 
myoclonic epilepsy, myoclonus is supposedly of 
thalamo- cortical nature and is associated with 
generalized EEG discharges. Interestingly mild 
peri-oral myoclonus has also been described in 
typical absence epilepsy [ 26 ], thus concerning 
the same cortical regions supposedly driving SW 
discharges in the genetic absence models [ 45 ]. 

 Experimentally, myoclonic seizures can be 
triggered in rodents, either by electrical or 
pharmacological stimulation by GABA A  receptor 
antagonists such as bicuculline, picrotoxin and 
pentylenetetrazole or fl urothyl; any of these 
procedures induce GTCSs with an initial, variable 
myoclonic phase, thus being slightly different 
from human generalized myoclonic epilepsy. 
Local application of most pro-convulsant drugs 
onto the cortex also elicits myoclonus of focal 
origin [ 71 ]. In a genetic model such as the 
photosensitive  Papio papio  baboons, generalized 
myoclonic discharges appear to start in the 
fronto-rolandic cortex [ 18 ]. In human idiopathic 
generalized epilepsies, evidence for asymmetry, 
asynchrony and ultimately focal onset of EEG 
generalized discharges has been gathered through 
the years; patients with heterogeneous primary 
generalized epilepsy have been studied using 

repetitive EEG showing the consistent presence 
of focal features [ 39 ,  50 ]. A restricted cortical 
network has been described during typical 
“generalized” 4–6 Hz seizure propagation in 
juvenile myoclonic patients; this includes regions 
of frontal and temporal cortex [ 28 ]. Another 
study using Jerk-locked averaging in JME patients 
pinpointed a frontal cortical generator [ 51 ]. 
The association of JME with some particular 
personality type, as described by Janz [ 33 ], has 
been related to fronto- cortical disturbances. 
Neuropsychological studies confi rmed verbal and 
visual memory impairment along with disturbed 
visuospatial processing and working memory 
alteration [ 63 ]. 

 Neuropathological studies have also revealed 
microdysgenesis in idiopathic generalized epi-
lepsy [ 44 ]. Hence, these results highlight an 
early cortical involvement in juvenile myoclonic 
epilepsy. FMRI studies in patients with idiopathic 
generalized epilepsy, again due to the poor temporal 
resolution of fMRI, have failed to demonstrate 
early focal activation. However, a consistent pattern 
of thalamic activation and cortical default- mode 
network deactivation were described during 
idiopathic generalized epilepsy [ 22 ,  38 ,  46 ], 
suggesting a common pathophysiology for 
generalized SW discharges among idiopathic 
generalized epilepsies. Suspension of default-mode 
network represent the earliest BOLD signal 
change to be observed and may thus hide a more 
discrete cortical onset, whereas later thalamic 
activation account for the sustained SW discharge. 
And indeed, BOLD pattern recorded during 
photoparoxysmal generalized discharges, a rather 
cortical electroencephalographic trait of photo-
sensible generalized epilepsy, does not concern 
thalamus [ 46 ].  

7.6.2     Primary Generalized Tonic 
Clonic Seizures 

 Primary GTCS, the third major type of seizure 
present in generalized epilepsy is classically dif-
ferentiated from secondary GTCS that occur in 
partial epilepsy. Use of the same term, for both 
primary and secondary GTCS seems contradictory 
despite clinical similarities, since pathophysiology 
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is obviously rather different. MEG studies have 
shown some discrepancies among the two types 
of GCTS with regards to levels of close and dis-
tant ictal synchronization. Distant synchrony 
appears higher in primary GTCS whereas 
increased local synchrony is reported in second-
ary GCTS [ 23 ]. Additionally interhemispheric 
coherence during secondary GCTS is surprisingly 
low [ 21 ], and variable during the time-course of a 
seizure [ 36 ]. A single-photon positron emission 
tomography study comparing spontaneous 
GCTS with electroconvulsive- therapy-induced 
GCTS showed specifi c fronto-parieto-temporal 
along with thalamic activation in bilaterally 
electroconvulsive- therapy-induced GCTS [ 10 ]. 
Infantile    “generalized” spasms can be focal in its 
etiology [ 12 ], and even involve the brainstem, as 
it is clear from generalized symmetric seizures in 
hemispherectomized children [ 37 ] .    

7.7     Conclusive Remarks 

 Focal versus generalized epilepsy is a classical 
dichotomy inherited from the Jacksonian era, and 
somewhat confi rmed by standard EEG. However, 
increasing evidence from both structural and 
functional imaging studies has been gathered 
though the years to call into question the concept 
of generalized epilepsy. Recent studies on rodent 
genetic absence models [ 40 ,  45 ] prove that 
absence epilepsy, considered as the prototype for 
generalized epilepsy, may originate from a rather 
focal, cortico-frontal region. In human, recordings 
using high density EEG/MEG studies with proper 
signal analytical techniques [ 27 ,  28 ,  60 ,  74 ] also 
revealed focal features. The traditional view of a 
widespread recruitment in absence seizures has 
also been contradicted by fMRI studies demon-
strating a rather restricted network of activation and 
deactivation, mainly corresponding to alterations 
in the default-mode network [ 1 ,  3 ,  25 ,  46 ,  59 ]. 
Refuting the concept of generalized epilepsy 
however, remains almost impossible  per se , as it 
consists of hundreds of different epileptic syn-
dromes. Looking for a focal onset in all those 
syndromes is not realistic and probably unnecessary. 

Most studies on “generalized epilepsies” mainly 
include patients with idiopathic  generalized 
epilepsy as this group represent the majority of 
so-called generalized epilepsy. 

 Overtaking the “centrencephalic” theory of 
the past century bares new ideas about the nature 
of generalized epilepsies. It is a safe bet that 
avoiding the use of the term “generalized epi-
lepsy” will benefi t for the next generation of 
epileptologists and patients. Future classifi ca-
tions based on networks properties, along with 
more specifi c information about etiology may 
decrease the emphasis on the classical electro-
clinical distinction of partial vs. generalized 
epilepsy. Nowadays the remaining distinction 
will thus refl ect differences in terms of spread-
ing velocity properties of the underlying net-
work rather than of that network size itself. But 
as conceptual evolution has a tendency to spread 
rather slowly in the medical community, one 
can predict that epilepsy will remain to be char-
acterized as either partial or generalized for 
some time to come.     
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    Abstract  

  Plasticity in the nervous system, whether for establishing connections and 
networks during development, repairing networks after injury, or modifying 
connections based on experience, relies primarily on highly coordinated 
patterns of neural activity. Rhythmic, synchronized bursting of neuronal 
ensembles is a fundamental component of the activity-dependent plasticity 
responsible for the wiring and rewiring of neural circuits in the CNS. It is 
therefore not surprising that the architecture of the CNS supports the 
generation of highly synchronized bursts of neuronal activity in non-
pathological conditions, even though the activity resembles the ictal and 
interictal events that are the hallmark symptoms of epilepsy. To prevent such 
natural epileptiform events from becoming pathological, multiple layers of 
homeostatic control operate on cellular and network levels. Many data on 
plastic changes that occur in different brain structures during the processes 
by which the epileptogenic aggregate is constituted have been accumulated 
but their role in counteracting or promoting such processes is still contro-
versial. In this chapter we will review experimental and clinical evidence 
on the role of neural plasticity in the development of epilepsy. We will address 
questions such as: is epilepsy a progressive disorder? What do we know 
about mechanism(s) accounting for progression? Have we reliable bio-
markers of epilepsy-related plastic processes? Do seizure- associated plastic 
changes protect against injury and aid in recovery? As a necessary premise 
we will consider the value of seizure- like activity in the context of normal 
neural development.  
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     The fi rst evidence for experimentally induced 
plastic changes in nervous system was provided by 
Minea in 1907. In his thesis, he described meta-
morphic phenomena in sensory neurons provoked 
by the compression and transplantation of ganglia 
into various organs [ 84 , quoted by Marinesco 
1909]. In the years that have passed, the study of 
neural plasticity has become a very important 
line of research in the neurosciences, with the 
aim of uncovering the neurobiological bases for 
the exquisite capability of the nervous system to 
adapt to environmental changes. Plasticity in the 
nervous system, whether for establishing connec-
tions and networks during development, repair-
ing networks after injury, or modifying 
connections based on experience, relies primarily 
on highly coordinated patterns of neural activity. 
Rhythmic, synchronized bursting of neuronal 
ensembles is a fundamental component of the 
activity- dependent plasticity responsible for the 
wiring and rewiring of neural circuits in the CNS. 
It is therefore not surprising that the architecture of 
the CNS supports the generation of highly syn-
chronized bursts of neuronal activity in non-
pathological conditions, even though the activity 
resembles the ictal and interictal events that are 
the hallmark symptoms of epilepsy. To prevent 
such natural epileptiform events from becoming 
pathological, multiple layers of homeostatic con-
trol operate on cellular and network levels. While 
there are extensive data concerning the plastic 
changes that occur in brain structures during the 
process of epileptogenesis, the role of these 
changes in counteracting or promoting epilepto-
genic processes remains controversial. 

 In this chapter we will review experimental and 
clinical evidence on the role of neural plasticity 
in the development of epilepsy. We will address 
questions such as: is epilepsy a progressive 
disorder? What do we know about mechanism(s) 
accounting for progression? Have we reliable 
biomarkers of epilepsy-related plastic processes? 
Do seizure-associated plastic changes protect 
against injury and aid in recovery? Moreover, as 
a necessary premise we will consider the value of 
seizure-like activity in the context of normal 
neural development. 

8.1     Modeling and Remodeling 
of Network Architecture 
During Development 

 The architecture of neuronal connectivity in the 
CNS is shaped through a process of functional 
validation. During postnatal development, this 
process depends primarily on environmental input 
and sensory stimulation, while during prenatal 
development, spontaneous patterned activity is 
largely generated intrinsically. Neuronal activity 
is essential for guiding synapse formation, 
remodeling, and elimination, so as to  establish 
optimal connectivity. For example, well in 
advance of eye opening, embryonic retinal 
ganglion cells generate rhythmic bursts of action 
potentials in both rodent [ 83 ,  127 ] and primate [ 70 ]; 
this highly correlated bursting is required for 
establishing retinotopic maps in the connections 
across the neuraxis. This activity is highly syn-
chronized within populations of neighboring 
neurons, and propagates throughout the visual 
pathway [ 2 ], so that waves of stimulation in 
defi ned regions of the retina can then coordinate the 
activity-dependent refi nement of corresponding 
eye-specifi c layers in the lateral geniculate nucleus 
[ 83 ,  127 ]. Moreover, the spontaneous bursting is 
relayed via thalamocortical projections to visual 
cortex, where it can shape the emerging ocular 
dominance columns [ 52 ]. A similar pattern of 
correlated bursting activity occurs pre-hearing in 
the developing auditory system, from the level of 
the cochlear ganglion cells to the brainstem 
auditory pathways [ 57 ,  58 ]. These spontaneous, 
highly synchronized and propagated rhythmic 
bursting patterns, which share many characteristics 
of ictal and interictal events, are a classic example 
of the developmental principle that neurons that 
fi re together, wire together [ 23 ,  47 ]. 

 Another classic example of highly synchronized 
rhythmic bursting of neuronal populations in utero 
takes place in spinal cord motoneurons. In fact, 
the spontaneous waves of hypersynchronous 
activity in this system have been characterized 
as epileptiform activity [ 101 ]. These discharge 
patterns propagate through the spinal cord, 
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triggering transregional synchronization and fast 
rhythmic repetitive limb movements described 
as clonus and convulsive-like in nature [ 14 ,  94 ]. 
While clearly a normal and adaptive feature of 
prenatal development, a similar pattern of activity 
in a postnatal organism would be considered 
pathological. 

 Before discussing the role of plastic mechanisms 
in epileptogenesis, we will review the evidence for 
a progressive course of epilepsies. For the pur-
poses of this chapter we will rely to the follow-
ing arbitrary defi nitions:
    Epileptic mechanisms  responsible for seizure 

generation consist of changes in cellular excitabil-
ity leading to excessive, disordered discharges 
underlying ictal manifestation.  

   Epileptogenic mechanisms  responsible for epi-
lepsy, i.e. an enduring propensity to generate 
epileptic seizures [ 32 ] consist of some hypo-
thetical neurobiological processes leading to 
a permanently dysfunction of the neuronal 
network/system.     

8.2     Epilepsy as a Progressive 
Disorder 

 Clinical and experimental observations suggest that 
an acute “initial event”(e.g. traumatic, infectious) 
can set in motion a series of degenerative, regen-
erative and infl ammatory changes resulting in a 
permanent epileptic neuronal aggregate. A crucial 
role is attributed to the epileptic activity both in 
the initial event (e.g. febrile seizure/status) and in 
the ensuing process leading to chronic epilepsy. 
Evidence in some patients for a progressive 
increase in the risk for seizures with increasing 
number of seizures is currently quoted in support 
of Gower’s statement that seizures beget sei-
zures [ 24 ]. Indeed, in support of the notion that 
seizures beget seizures, Hauser and Lee [ 44 ] 
found a signifi cant increase in risk for subsequent 
seizures with increasing seizure number in a 
population of patients who are generally consid-
ered to have a good prognosis for going into 
remission: those with unprovoked seizures of 
unknown cause, normal neurological examination, 

and normal EEG. It is worth saying, however, that 
there are many types of epilepsies that do not 
progress, in spite of seizure repetition. These 
non-progressive epileptic syndromes include 
benign childhood epilepsies with centrotemporal 
spikes [ 136 ], benign occipital epilepsies, childhood 
and juvenile absence epilepsies [ 137 ], juvenile 
myoclonic epilepsy, benign familial neonatal, 
infant and neonatal-infant epilepsies [ 124 ], and 
autosomal dominant nocturnal frontal lobe 
epilepsies. For many of these syndromes seizure 
activity decreases or disappears with age [ 40 ,  136 ]. 

 A progressive course toward drug refractori-
ness can be observed only in some types of 
human epilepsies currently grouped under the 
defi nition of epileptic encephalopathies (EEs) 
[ 6 ]. As for mesial temporal lobe epilepsy, a role 
of repeated seizures for inducing progressive 
cumulative alterations in neural circuits, result-
ing in progression of epilepsy severity, has been 
assumed (based on experimental results with 
rodent kindling models) but never demonstrated. 
Patients with mesial temporal lobe epilepsy 
(MTLE) and EEs substantially contribute to the 
30–40 % of patients with epilepsy who show 
drug resistance [ 27 ]; this population represents the 
main unsolved problem in clinical epileptology. 
This explains the great investment in research 
lines aimed at unraveling the neural mechanisms 
responsible for these types of epilepsies and the 
need to elaborate strategies capable of preventing 
their development. 

  The latent period . In several instances the 
natural history of MTLE indicates an initial 
precipitating event as an underlying cause of a 
chronic epilepsy [ 79 ,  80 ]. In some cases (trauma, 
infection, autoimmune process), the initial event 
is associated with repeated seizures often pre-
senting as status epilepticus (SE). Moreover, a 
signifi cant proportion of patients with mesial 
temporal sclerosis and MTLE had antecedents of 
complex febrile seizures in early childhood [ 19 ]. 
Between the initial event and the onset of the 
chronic epilepsy there is an interval of variable 
duration currently referred to as latent period. 
During this period, biological changes may 
occur that are considered to substantiate the 
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epileptogenic process. For these reasons much 
interest is focused on animal models that repro-
duce the typical sequence of initial event-latent 
period- chronic epilepsies. 

 The pilocarpine and kainic acid models are 
both obtained by the acute administration of a 
chemoconvulsant agent (pilocarpine or kainic 
acid) to rodents; this treatment induces a state 
of prolonged SE, followed by spontaneous recur-
rent seizures beginning after a variable latency 
(15–20 days) [ 18 ,  92 ,  128 ]. It must be said that 
that the existence of the latent period in chemo-
convulsant rodent models has been disputed [ 118 ] 
and that, in view of the inter-individual variability 
of its duration, the possibility that it simply 
refl ects the outer fringe of a probabilistic spread 
seizure latencies must taken into account. Indeed 
an impressive bulk of published results suggest 
that during the latent period several changes occur 
in hippocampal structures that are associated with 
the alteration of excitability and synchronization 
and may hypothetically account for epilepto-
genesis. For example, axonal sprouting, synaptic 
reorganization, gene and protein expression, 
neurogenesis, gliosis and functional glial altera-
tions, infl ammation, and angiogenesis have all been 
suggested to contribute to epileptogenesis in 
these models (see [ 125 ] for a review). Interestingly 
these changes can also be found in temporal 
lobe tissue samples from patients who underwent 
epilepsy surgery for drug refractory MTLE (see [ 22 ] 
for a review). Obviously, the fact that these 
changes occur during an ongoing epileptogenic 
process does not prove that they are necessary 
contributors to disease pathogenesis until the 
prevention of any of them is unequivocally proved 
to prevent the development of later epilepsy. 
For example, the mossy fi ber sprouting that char-
acteristically occurs after SE and is thought to be 
a hallmark feature of the post-SE neuroplasticity, 
has been demonstrated not to be necessary for 
the development of spontaneous recurrent sei-
zures [ 25 ,  48 ,  86 ,  95 ,  140 ]. Moreover the histo-
pathological alterations observed in pilocarpine 
and kainic models are not limited to the mesial 
temporal lobe structures, raising a question 
about their validity as MTLE models (e.g., [ 17 ,  21 , 
 66 ,  129 ]). 

 From the clinical standpoint, it is not clear that 
MTLE results from a process that is sustained or 
facilitated by epileptic activity. The analysis of 
the natural history of MTLE cannot answer the 
question of whether unfavorable outcomes are due 
to the persistence of epileptic activity (which is 
usually undetectable in the latent period between 
the initial event and the chronic phase), or if it is 
instead a product of the underlying neuroplasti-
city set in motion by the initial event. While 
previous prospective longitudinal analyses have 
been inconclusive [ 113 ], the results of the ongoing 
FEBSTAT (Consequences of Prolonged Febrile 
Seizures) prospective study [ 72 ,  90 ] may clarify 
this issue. Several studies have shown that only 
symptomatic SEs correlate with brain damage 
and late epilepsy [ 45 ,  64 ,  103 ,  114 ]. This makes it 
impossible to point to a necessary role of epileptic 
activity above and beyond (or apart from) the 
role of underlying lesion causing SE for the 
initiation and maintenance of the epileptogenic 
process [ 46 ]. 

 The statement “seizures beget seizures” implies 
a role of epileptic activity not only in initiating the 
epileptogenic process but also in maintaining it, 
suggesting a further progression of epilepsy 
toward a more severe state. Whereas there is 
some evidence consistent with possible acute 
seizure-associated epileptogenic changes (see 
review in [ 15 ]), a subsequent correlation of 
recurrent seizures and progression to the 
clinico- pathological picture of drug refractory 
MTLE with hippocampal sclerosis has not been 
unequivocally demonstrated. A prospective anal-
ysis of 103 patients with newly diagnosed focal 
epilepsy [ 107 ] showed a decrease in hippocampal 
volume after 1–3 years in 13 % of patients. Here 
again, the coexistence of uncontrolled seizures 
and hippocampal atrophy in a limited subset of 
patients is insuffi cient to prove a clear causal 
relationship between recurrent seizures and atro-
phy. In fact, sporadic reports on acute, possibly 
infl ammatory, damage to the hippocampus 
(localized limbic encephalitis; [ 11 ] and febrile 
SE [ 113 ]) suggest that acute seizures and hippo-
campal damage can develop within weeks/months, 
resulting in a MTLE pattern [ 59 ,  121 ] with 
little, if any, signs of further progression of 

G. Avanzini et al.



99

structural damage as detected by imaging, in 
spite of the persistence of seizure activity [ 71 ]. 

 Animal models of MTLE based on acute 
induction of SE by pilocarpine and kainic acid 
do not clarify this issue, because once the sponta-
neous recurrent seizures have fully developed in the 
late chronic period, they do not tend to worsen. 
In fact, in a similar model of focal tetanus 
toxin- induced spontaneous seizures in hippo-
campus, the spontaneous seizures last for about 
6 weeks and then tend to subside [ 55 ]. More 
recent data obtained in an animal model of post-
traumatic epilepsy, indicates that following brain 
injury induced in mice or rats by a controlled 
cortical impact (CCI), once spontaneous seizures 
appear, they maintain a fairly constant frequency 
and severity and do not appear to worsen over an 
extended time period [ 13 ]. 

 It is likely that numerous types of plasticity 
accompany the process by which epilepsy develops. 
For example, in addition to changes that occur in 
association with the primary site of epileptogenesis, 
there is experimental evidence for secondary 
epileptogenesis occurring in distant sites as a 
result of the abnormal activation of synaptic 
projections coming from the primary site (primary 
focus). Thus, the primary focus induces similar 
paroxysmal behavior (secondary focus) in the 
cellular elements of the otherwise normal net-
work [ 87 ]. This may explain some of the cases in 
which epileptic seizures appear to become more 
severe, as a result of recruiting additional path-
ways into the network of seizure propagation. 

 At the same time, some of the plasticity asso-
ciated with repeated seizure activity may give 
rise to compensatory processes that serve to limit 
or prevent the development of chronic state of 
seizures or epilepsy. Similarly, other aspects of the 
plasticity may compensate for the original damage 
that triggered the seizure activity. These types of 
plasticity and their mechanisms have been 
investigated in experimental animals in which 
repeated brief seizures (induced by electrical 
kindling stimulation, focal tetanus toxin, or 
electroshock treatments) cause little or no neuronal 
damage [ 10 ,  38 ,  56 ,  68 ,  78 ,  82 ,  130 ]. These 
repeated seizures have been shown to activate a 
host of genomic responses in the adult brain, 

ranging from immediate early genes, genes for 
neurotrophic factors and neuropeptides, as well as 
multiple alterations in the regulation of neurotrans-
mitters and their receptors in various brain regions 
[ 5 ,  12 ,  33 ,  41 ,  53 ,  65 ,  67 ,  73 ,  85 ,  88 ,  89 ,  97 ,  102 , 
 104 ,  106 ,  110 ,  117 ,  126 ,  139 ]. In most cases, these 
responses include the induction or modulation 
of numerous trophic and neuroprotective factors 
such as bFGF[(FGF-2) [ 41 ]], NGF and BDNF [ 5 ], 
GDNF [ 3 ], and heparin-binding EGF-like growth 
factor [ 115 ] in various brain regions. These factors 
are responsible for triggering neuroplasticity, 
synaptogenesis and even neurogenesis, at the 
same time that they confer resistance to injury.  

8.3     Neuroprotection, Repair and 
Recovery After Brain Injury 

 A consequence of the induction of trophic and 
neuroprotective factors following repeated non- 
injurious seizures is a dramatic neuroprotective 
state in which the seizure-exposed animals become 
resistant to neuronal damage as evidenced by 
histopathology and sensitive molecular markers 
of cell death [ 63 ,  66 ,  78 ,  98 ]. Because neuropro-
tection requires multiple seizure treatments over 
several days (a single treatment is not protective), 
there is likely to be a cumulative buildup of resis-
tance to injury. This suggests that seizures in the 
adult brain may be an endogenous therapeutic 
mechanism to recruit trophic cascades that promote 
neuronal survival and recovery in the face of 
degenerative insults or traumatic injury. 

 It is noteworthy that the type of seizures that 
are effective in conferring a neuroprotective 
effect on forebrain regions are seizures that last 
only several seconds and engage limbic forebrain 
networks either through kindling [ 63 ,  98 ] or by 
minimal electroshock administered via corneal 
electrodes [ 66 ,  78 ]. These stimuli produce 
characteristic signs of limbic-motor seizures 
(facial and forelimb clonus with rearing in the 
rodent), typically without the tonic-clonic motor 
manifestations characteristic of seizures that 
have spread to brainstem seizure-generating sites. 
In sharp contrast, repeated exposure to seizures 
that only engage brainstem seizure circuitry 
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(and not forebrain limbic networks) and evoke 
only tonic- clonic motor responses (without limbic-
motor seizures) [ 16 ] fails to confer neuroprotection 
and may even worsen neural injury [ 4 ]. These 
observations emphasize the network-specifi city 
of the protective responses. 

 Consistent with this concept of network speci-
fi city, the regional induction of mRNA for bFGF 
is very different following maximal electroshock 
seizures as compared to low-intensity (minimal) 
electroshock seizures, even when the two types 
of seizures are induced by corneal electrodes [ 33 ]. 
The minimal seizures increased bFGFmRNA levels 
by 350 % in entorhinal cortex by 5 h, whereas at 
the same timepoint after maximal seizures, the 
increase was only 200 %. Similarly, the increase 
in bFGF mRNA in hippocampus was greater after 
minimal seizures than after maximal seizures. 
In contrast, maximal seizures, but not minimal 
seizures, induced increases in bFGF mRNA in 
striatum and cerebellum [ 33 ]. This suggests that 
the minimal seizures, which are more selective 
for activating limbic forebrain networks may 
be more effi cacious in triggering neuroplastic 
changes in those networks as compared with more 
generalized seizures. The circuit- specifi city of 
seizure-induced neuroprotection also indicates that 
nonspecifi c responses such as stress associated 
with repeated seizures, various endocrine changes 
and other nonspecifi c physiological responses to 
seizures cannot account for the neuroprotection 
that appears to be selective for seizures involving 
limbic forebrain activation. Instead, adaptive 
changes restricted to the network through which 
the seizures propagate appear to be required for 
the neuroprotective state. 

 The fact that exogenous infusion of bFGF 
directly into hippocampus can protect against 
excitotoxic neuronal injury [ 75 ,  76 ] indicates that 
an increase in bFGF protein, as observed after 
several days of electroshock seizures [ 41 ] may 
account for a component of seizure-induced 
neuroprotection. It is also likely that multiple 
neuroprotective adaptive responses are engaged by 
repeated seizures and that the relative importance 
of any given factor may vary with cell type and 
brain region. 

 Because very brief seizures are remarkably 
protective even in the complete absence any 
evidence of injury or cellular stress, it may be 
that seizures serve to trigger activity-dependent 
mechanisms of neuroplasticity that recapitulate the 
injury-resistant and resilient conditions charac-
teristic of development. In the face of insults to 
the nervous system, transient recurrent seizure 
activity could serve to attenuate neurodegeneration 
and promote regrowth and remodeling in the net-
work affected by an insult. An especially robust 
demonstration of this type of protective action 
comes from a study in which daily electroshock 
seizures were administered to adrenalectomized 
rats [ 78 ]. Removal of the adrenal glands in adult 
rats leads to a highly selective apoptotic degen-
eration of the dentate granule cells in the hippo-
campus [ 74 ,  119 ,  120 ], refl ecting the fact that 
these neurons are directly or indirectly dependent 
upon adrenal corticosteroids [ 39 ]. These seizures 
completely prevented the dentate granule cell 
degeneration, while sham treatments or daily 
exposure to restraint stress did not alter the pro-
fi le of degeneration seen in the adrenalectomized 
animals. 

 Moreover, daily exposure to brief seizures has 
been shown to accelerate recovery of function 
following cortical damage, probably by enhanc-
ing post-injury plasticity in local and distant 
networks connected to the site of injury [ 43 ,  50 ]. 
Thus, clinical, and possibly subclinical, seizures 
that occur transiently during the post-traumatic 
period may serve an adaptive function: to reduce 
injury, promote repair and trigger compensatory 
plasticity. If this is the case, then the frequent 
procedure of placing patients on prophylactic 
anticonvulsant therapy immediately following 
either head injury or neurosurgical intervention 
may potentially retard or diminish functional 
recovery [ 49 ,  111 ]. In this context, seizures may 
be analogous to fever—a symptom that may 
have adaptive and protective value in specifi c 
pathological settings; and like fever, seizures can 
become maladaptive and injurious in their own 
right in the rare cases where they go beyond a 
self-limiting state and evolve into a chronic 
epileptic condition. 
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 During nervous system development, a 
dynamic continuum between neuronal plasticity 
and neuronal death exists and coordinated 
synaptic stimulation can ‘protect’ or ‘select’ the 
population of neurons or synapses that will be 
maintained. In an analogous fashion, seizure 
evoked stimulation may allow the sparing of 
otherwise vulnerable populations of neurons in 
the injured adult brain, a phenomenon that we 
have referred to as ‘excitotrophic’ [ 35 ]. This could 
account for the therapeutic benefi ts of controlled 
administration of electroshock seizures in various 
neurodegenerative disorders including Parkinson’s 
and Huntington’s Disease [ 1 ,  8 ,  9 ,  30 ,  34 ,  60 ,  62 , 
 91 ,  99 ,  108 ,  122 ], but it remains to be determined 
if the seizures slow the disease progression. 
Currently electroshock seizures are used in the 
treatment of bipolar affective disorders and 
their therapeutic impact may derive from neuro-
protective actions [ 77 ]. Further characterization 
of the mechanisms contributing to the neuropro-
tective impact of brief seizure episodes may 
generate novel strategies of neuroprotection 
and recovery of function following excitotoxic 
insults and other forms of injury to the central 
nervous system.  

8.4     Controlled Patterns 
of Hyper-synchronous 
Discharge in Certain 
Subcortical Networks 

 As Stevens had observed, “Rapid neuronal 
discharge (bursting), although typical of epileptic 
discharge, is part of the normal brain repertoire 
and does not necessarily signal pathology” [ 123 ]. 
These events can be distinguished from patho-
logical seizure activity in that they occur in highly 
confi ned areas and/or during highly restricted time 
periods (such as during certain phases of sleep). 
The networks of the limbic system, brainstem, and 
diencephalon are organized in such a way as to 
give rise to highly synchronized bursting in discrete 
nuclei in association with certain physiological 
states or functions such as parturition, growth 
hormone release, milk ejection, ovulation, and 

orgasm (see discussion in [ 123 ]). In association 
with the estrus cycle, neuronal spiking and 
coordinated burst discharges in nuclei of the basal 
hypothalamus and forebrain limbic preoptic area 
appear to coordinate the cyclical and pulsatile 
release of reproductive hormones [ 61 ]. Stevens 
[ 123 ] described this type of highly regulated 
hypersynchronous discharge as “microseizures” 
that serve to augment signal transmission for 
critical species-specifi c survival functions, but 
do not propagate beyond highly restricted cir-
cuitry due to surrounding inhibitory control. In 
conditions in which the inhibitory control mecha-
nisms are compromised, such microseizures 
could potentially propagate beyond their physio-
logically appropriate boundaries. The fact that 
certain phases of sleep [ 54 ,  96 ,  116 ] or hor-
monal cycles [ 7 ,  26 ,  31 ,  112 ] are associated with 
increased vulnerability to seizures may be a 
refl ection of this natural fl uctuation in physiolog-
ical microseizure discharge. 

 The limbic system network is also organized 
to generate synchronized, reverberatory discharge 
characteristic of Hebbian cell assemblies [ 47 ] that 
instantiate memories via temporal lobe circuitry. 
This core feature of associative learning is remi-
niscent of the activity-dependent plasticity that 
drives the shaping of neuronal connectivity during 
development. But in the case of learning in the 
mature brain, there is a selective strengthening of 
specifi c synaptic connections within a network in a 
highly defi ned spatiotemporal pattern. The limbic 
network comprised of the hippocampus, amygdala, 
mediodorsal thalamus, and piriform and rhinal 
cortices is especially suited to the amplifi cation 
of discharge patterns via reverberatory loops 
between the nuclei. The ability to amplify repeti-
tive discharge originating at one site, such as 
occurs during the process of kindling from the 
amygdala or other sites within the limbic net-
work, is a refl ection of the propensity for activity-
dependent plasticity in this system. In fact, 
kindling has been used as a model of learning and 
memory [ 36 ], especially because once an animal 
is fully kindled, the remodeling of the network 
that supports the kindled state is relatively per-
manent [ 37 ]. At the same time, it is curious that 
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the network would be poised to amplify the 
stimulation to the point that propagated seizures 
emerge, considering the fact that these seizures 
have no clear adaptive function. Perhaps by 
providing near-physiological stimulation in a 
repetitive manner, the kindling process lures the 
network into an amplifi cation process until it 
becomes hijacked by the long-lasting modifi ca-
tions associated with the repeated seizures. 

 The transfer effect in kindling, in which pre- 
kindling from one area reduces the number of 
stimulations necessary to kindle from another 
area, may likewise refl ect plasticity within the 
limbic seizure network (or the recruitment of 
new components to the network, as discussed 
above in the context of secondary seizure foci). 
However, transfer of kindling within the limbic 
system appears to require other networks (e.g., 
brainstem). For example, transfer of amygdala 
kindling is impaired by transection of or damage 
to midbrain and brainstem [ 20 ,  42 ,  51 ,  132 ]. 
This suggests that repeated limbic stimulation 
can alter the functions of other networks, either 
by actively recruiting them into a transfer pro-
cess, or perhaps by disrupting endogenous 
seizure- suppressive functions of these extra-
limbic circuits. 

 The fact that the process of kindling can be 
retarded or suppressed by the occurrence of 
generalized convulsive seizures [ 69 ,  93 ,  100 ] 
emphasizes the importance of homeostatic 
mechanisms for the process. The same is true 
for kindling using chemoconvulsants or corneal 
electroshock [ 28 ,  29 ,  105 ,  109 ,  138 ]: repeated 
minimal (threshold) limbic seizures become 
amplifi ed over time, while repeated maximal 
seizures induce a seizure- resistance over time. 

 It is, however, essential to recognize that the 
vulnerability to kindling is highly species- specifi c, 
with the rate of kindling taking days to weeks in 
rodents [ 37 ,  81 ], weeks to months in cats [ 37 ,  42 , 
 135 ], and months to years (with a relatively low 
success rate) in primates [ 37 ,  131 ,  133 ,  134 ]. 
These species differences may refl ect the extent 
to which the limbic network is under inhibitory 
control from an increasingly elaborated frontal 
cortex. Thus, the kindling phenomenon, which 

has been most thoroughly characterized in the 
rodent, may not readily generalize to humans or 
to human clinical conditions.  

8.5     Conclusions 

 Abundant evidence supports a neuroplasticity- 
inducing action of seizures and seizure-like 
events in the CNS. However, the extent to which 
the neuroplasticity serves an adaptive function vs. 
a maladaptive function depends on the context in 
which the seizure activity occurs. During fetal 
CNS maturation, neuroplasticity induced by 
naturally-occurring ictal activity and seizure-like 
phenomena promotes the formation of neural 
connections. Similarly, in the aftermath of injury 
in the mature CNS, limited seizure activity may 
promote neural repair and compensation and 
serve a neuroprotective role. However, the circum-
stances in which seizure activity serves a 
“normal” function typically involve seizure 
activity that is highly limited temporally and/or 
spatially (e.g., in specifi c circuitry, during specifi c 
developmental stages, or within a short period 
post injury). In the small percentage of cases in 
which the seizure activity does not remain highly 
controlled and limited, it becomes pathological, 
repeatedly interrupting normal function with 
maladaptive, and even potentially injurious 
consequences. The epilepsies represent this 
type of pathological seizure occurrence, and it is 
likely that some of the associated neuroplasticity 
impairs normal CNS function. Whether the neu-
roplasticity is also an essential component of 
the process of epileptogenesis remains to be 
determined, but since chronic epilepsy occurs only 
in a small percentage of individuals, we fi rst need 
to understand the unique features that render 
those individuals susceptible, and whether the 
unique features change the nature of the seizure-
induced plasticity in those individuals. 

 We can therefore conclude that epileptogenic 
mechanisms may indeed be a corruption of 
normal, adaptive neuroplasticity. If the normal 
neuroplasticity associated with limited, con-
trolled seizure activity is largely helpful, turning 
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pathophysiological in rare circumstances, this 
raises several challenging questions for future 
epilepsy research to address:
    1.    Do adaptive and maladaptive neuroplasticity 

differ, and if so, how?   
   2.    If there are distinctions between adaptive and 

maladaptive neuroplasticity, can we selectively 
prevent the maladaptive with compromising 
the adaptive?   

   3.    Which control mechanisms that normally 
prevent seizures from becoming repetitive and 
self-sustaining become compromised in indi-
viduals susceptible to epilepsy? Is it possible 
that it is the failure of these control mechanisms, 
rather than neuroplasticity, that is essential for 
epileptogenesis?         
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    Abstract  

  The effect of seizures on neuronal death and the role of seizure-induced 
neuronal death in acquired epileptogenesis have been debated for decades. 
Isolated brief seizures probably do not kill neurons; however, severe and 
repetitive seizures (i.e., status epilepticus) certainly do. Because status epi-
lepticus both kills neurons and also leads to chronic epilepsy, neuronal death 
has been proposed to be an integral part of acquired epileptogenesis. Several 
studies, particularly in the immature brain, have suggested that neuronal 
death is not necessary for acquired epileptogenesis; however, the lack of 
neuronal death is diffi cult if not impossible to prove, and more recent studies 
have challenged this concept. Novel mechanisms of cell death, beyond the 
traditional concepts of necrosis and apoptosis, include autophagy, phagopto-
sis, necroptosis, and pyroptosis. The traditional proposal for why neuronal 
death may be necessary for epileptogenesis is based on the  recapitulation of 
development hypothesis , where a loss of synaptic input from the dying 
neurons is considered a critical signal to induce axonal sprouting and synap-
tic-circuit reorganization. We propose a second hypothesis – the  neuronal 
death pathway hypothesis , which states that the biochemical pathways 
causing programmed neurodegeneration, rather than neuronal death  per se , 
are responsible for or contribute to epileptogenesis. The reprogramming of 
neuronal death pathways – if true – is proposed to derive from necroptosis 
or pyroptosis. The proposed new hypothesis may inform on why neuronal 
death seems closely linked to epileptogenesis, but may not always be.  
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9.1         Seizures and Neuronal 
Death: When, Where, 
and What?  

    Debates and controversies concerning the inter-
play among seizures, neuronal death and epilepsy 
continue to occur. Over several decades, many epi-
lepsy researchers have focused on various aspects 
of the issue of whether seizures cause neuronal 
death, and conversely, whether neuronal death is 
necessary and/or suffi cient to cause epilepsy. For 
example, a classic – yet still ongoing – debate is 
the degree to which GABAergic interneurons are 
lost in tissue from patients and animal models of 
temporal lobe epilepsy, and the consequence of 
such loss. In spite of the longevity and intensity 
of the previous debates, the relationship between 
seizures, neuronal death and epilepsy remains one 
of the most disputed in translational neuroscience, 
particularly as it relates to possible mechanisms of 
acquired epileptogenesis and the clinical interac-
tions and consequences of seizures and neuronal 
death. We will discuss, as the title implies, two 
important and longstanding hypotheses of con-
temporary epilepsy research – important because 
the degree to which seizures cause brain damage 
and the hypothetical role of neuronal death in the 
development of epilepsy are inter-related and 
could underlie the often quoted statement 
“Seizures beget seizures” [ 33 ]. These two issues 
are not “black and white”; rather, they probably 
form an interactive continuum and are quite com-
plicated; and furthermore, technical limitations 
and interpretational diffi culties plague any analy-
sis of them. The key questions include  when  do 
seizures kill neurons,  where  in the brain are neu-
rons most susceptible to seizure activity, and  what  
is the identity of the neurons that are preferentially 
killed? Answers to a fourth issue – “ How  do sei-
zures kill neurons?” – may hold a key to under-
standing at least one component of epileptogenesis, 
as described below. We will begin with a brief 
summary of some of the key questions and contro-
versial topics; then, we will review more recent 
views of the many possible mechanisms whereby 
seizures may kill neurons; and fi nally, we will con-
clude with a brief discussion of some of the ongo-
ing issues and controversies in this area. 

9.1.1     When 

 A large and long-standing body of experimental 
and clinical data indicates that some types of 
seizures lead to neuronal death, while other types 
do not. In either experimental animals or humans, 
whenever seizures are long enough in duration 
and occur repetitively for prolonged periods, 
some neurons – particularly in adults – are killed. 
In terms of the temporal features of the seizures 
that are thought to cause neuronal death, rela-
tively brief seizures – such as typical  absence  
seizures in children (usually lasting 5–10 s) – do 
not appear to cause overt brain damage. However, 
the more prolonged seizures characteristic of 
temporal lobe epilepsy, such as the traditional 
complex partial seizures (i.e., dyscognitive focal 
seizures) that may progress to tonic-clonic con-
vulsive seizures, are much more likely to lead to 
neuronal loss [ 84 ]. Finally, the prolonged and 
repetitive seizures that defi ne status epilepticus 
typically cause brain damage, often with exten-
sive neuronal death [ 10 ,  15 ,  29 ,  40 ,  57 ,  62 ,  67 , 
 85 ]. Interestingly, however, status epilepticus in 
the immature brain causes far less neuronal death 
[ 16 ,  38 ,  59 ,  68 ,  74 ,  75 ,  80 ,  81 ], and appears less 
likely to cause epileptogenesis [ 51 ,  74 ]. The long-
standing observation that experimental status 
epilepticus in laboratory animals, mostly rodents, 
leads to a chronic epileptic state raises the fol-
lowing question: Is the occurrence of neuronal 
death during status epilepticus a critical part of 
the epileptogenesis? In terms of epilepsy, one 
could view seizure clusters, where some of the 
interseizure intervals are much shorter than 
the typical interseizure intervals [ 36 ,  37 ], as 
essentially a reduced form of status epilepticus. 
The difference between status epilepticus and a 
seizure cluster in a patient with epilepsy is not 
always so clear. Thus, a fundamental question in 
clinical epilepsy is: Do the spontaneous recurrent 
seizures kill neurons – particularly when the 
seizures occur in clusters? If so, under what con-
ditions does this contribute to a worsening of 
epilepsy? Are seizure clusters a particular concern 
in terms of neuronal death and brain injury? 
These are some of the unanswered questions that 
are both clinically important and can theoretically 
be addressed with animal models.  
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9.1.2     Where? 

 If we focus on the seizures that characterize 
temporal lobe epilepsy and other forms of severe 
acquired epilepsy (e.g., after hypoxic-ischemic 

encephalopathy), many specifi c areas appear to 
be particularly prone to seizure-induced neuro-
nal death. Depending on the etiology, neuronal 
death can be relatively circumscribed, as with an 
infarct (Fig.  9.1a ), or it can be diffuse (Fig.  9.1b ). 

  Fig. 9.1    Schematic diagrams showing hypothetical rela-
tionships of neuronal populations after a brain insult that 
activates cellular mechanisms of neuronal death. In the 
four panels of the fi gure, two or three populations of neu-
rons are depicted in a schematic manner. Dead neurons 
( fi lled black triangles ) are shown within a network of live 
and completely- normal neurons ( fi lled red triangles ). 
Among these two populations of cells is another group of 
neurons, which form the core of this hypothesis; these 
neurons have undergone only the initial steps of a neuro-
nal-death and/or are under the molecular infl uence of the 
neuronal death process ( black triangular outline  with  red 
stiples  inside). ( a ) Focal neuronal loss. A small cluster of 
dead neurons is shown to be clumped together within a 
network of normal neurons, as would be expected to 
occur during an infarct. Between these two completely 
different neuronal populations is the group of neurons 

that are hypothetically epileptogenic, because they have 
undergone the fi rst part of a neuronal-death process and/
or are under the molecular infl uence of the neuronal 
death process. ( b ) Diffuse neuronal loss. Using the same 
code to defi ne the members of the neuronal population, 
this diagram illustrates scattered neuronal loss, as would 
be expected to occur after status epilepticus (vs an infarct 
in (a)). ( c ) Occurrence of neuronal death without genera-
tion of neurons altered or infl uenced by death-process 
mechanisms, which theoretically represents the occur-
rence of frank brain damage without subsequent epilepsy. 
( d ) Absence of neuronal death after a brain insult, but 
with the presence of death- pathway neurons. In this case, 
the death-pathway neurons are hypothesized to become 
epileptogenic, and they generate spontaneous recurrent 
seizures without the prior occurrence of overt neuronal 
death       
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Seizures, particularly repetitive seizures, cause 
substantial brain damage in highly susceptible 
areas, such as parts of the hippocampus, entorhinal 
cortex, amygdala, thalamus and other limbic 
structures; however, neuronal death after seizures 
can be more widespread and is generally quite 
variable (e.g., [ 24 ,  77 ]).

9.1.3        What? 

 A focus in epilepsy research has been – and 
remains – the unequivocal identifi cation of the 
type(s) of neurons that are killed: glutamatergic 
principal neurons, such as cortical pyramidal 
cells, and subpopulations of GABAergic inter-
neurons, which comprise 5–10 % of the neu-
rons in epilepsy-relevant brain regions and are 
highly heterogeneous in their anatomy and 
electrophysiology [ 4 ]. Regardless of the type of 
brain insult, the potential loss of interneurons is 
obviously a special case, because the loss of 
interneurons, if uncompensated by inhibitory 
axonal sprouting, can translate to a reduction in 
GABAergic tone.   

9.2     What Are Some of the 
Important Technical and 
Experimental-Design Issues? 

 The challenges and controversies concerning 
how to evaluate whether neuronal death has 
occurred and how to quantify it are substantial. 
Even when one only considers a fraction of the 
methodological and protocol-related issues, the 
additional factors involving “what, where, and 
when” of neuronal death (“how” is discussed 
below) add further complexity to the potential 
analyses and interpretations. Additional disagree-
ment surrounds the question “What is a seizure?” 
and the problem of what comprises an adequate 
animal model of acquired epilepsy. 

 An important issue in regard to consider-
ations of neuronal death in epilepsy – as with 
most other research – involves the complimen-
tary concerns of false positives (specifi city) and 

false negatives (sensitivity). For example, two 
of the main approaches to analyzing neuronal 
death involve staining (1) those neurons that 
 remain  after seizures and (2) the neurons that 
are  destined to die . Staining the remaining neu-
rons involves a variety of traditional techniques 
such as cresyl violet staining of Nissl substance, 
and/or more specifi c methods including but cer-
tainly not limited to immunocytochemical stain-
ing of specifi c cell types, such as GABAergic 
interneurons. This most basic level of methodol-
ogy has numerous caveats – some of which are 
obvious, and others not. For example, what does 
it mean when one fi nds no signifi cant (i.e., sta-
tistical) difference between an experimental 
condition or animal model and the control 
group? On fi rst principles, one has to ask: Does 
this mean that no neuronal loss (death) has 
occurred? Or, could it mean the amount of neu-
ronal death was so small that it could not be 
detected? Issues such as how the tissue was sec-
tioned (section thickness, where in the brain, but 
also orientation) are relevant, not to mention 
that extensive cell loss in epilepsy is associated 
with tissue shrinkage. Thus, cell number can be 
quite different than cell density. In regard to use 
of histological stains that mark “dying” neu-
rons, such as FluoroJade B (FJB), one must also 
consider their advantages and disadvantages. 
For example, one has to question our confi dence 
that they will actually die – can FJB- labeled 
neurons remain viable for a prolonged period 
before death? If we assume that all of the FJB 
neurons are going to die, or even most of them, 
then this approach has the important advantage 
that it can reveal situations in which only a small 
fraction of the neurons will die, which is simply 
not feasible with stains that mark the “remaining” 
neurons. Another issue, however, is that the FJB 
technique will only stain neurons that are dying 
at that particular time; so therefore, euthanasia, 
fi xation, and staining must be performed at the 
appropriate time; neurons could have died at 
other times, and their death would not be 
detected with FJB [ 94 ]. Thus, although it is 
quite diffi cult to quantify neuronal loss, it is 
even more diffi cult – if not impossible – to show 
that neuronal loss has not occurred.  
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9.3     Mechanisms of Seizure- 
Induced Neuron Injury 

 In order to explore how seizures could kill neu-
rons, it is fi rst necessary to review cell-death path-
ways; our understanding of them has expanded 
well beyond the traditional mechanisms of  apop-
tosis  and  necrosis . This seemingly simple endeavor 
is complicated by the observation that some of the 
newly identifi ed cell-death pathways share criteria 
used for identifi cation. For clarity, we classify cell-
death processes as non-infl ammatory (apoptosis, 
autophagy, phagoptosis) and infl ammatory (necro-
sis, necroptosis, pyroptosis) (Table  9.1 ).

9.3.1       Apoptosis 

 A controlled, programmed process of packaging 
internal components of the cell for clearing by 
phagocytes characterizes the apoptotic process. 
As such, intracellular molecules with the poten-
tial to activate immune responses are disposed of 
rapidly, without initiating an immune response [ 2 ]. 
Apoptosis is also characterized by chromatin 
and cytoplasmic condensation, plasma mem-
brane blebbing, formation of apoptotic bodies 
as well as fragmentation of cellular compart-
ments and DNA. Apoptosis occurs naturally 
during development and serves as a means to 
facilitate cellular turnover in healthy tissue, and 
also in response to hormone withdrawal [ 47 ]. 
This programed series of events is reliant upon 
the effector functions of activated caspases −3, 
−6, and −7, which enzymatically cleave intra-
cellular organelles, proteins and DNA. The 
degraded cellular corpse is then packaged in 
preparation for phagocytosis by macrophages or 

microglia [ 26 ]. Processing of intracellular com-
partments and subsequent removal of cellular 
debris during apoptosis does not result in a sec-
ondary infl ammatory response in surrounding tis-
sue as infl ammatory mediators are largely 
sequestered and degraded [ 2 ]. Changes in mito-
chondrial membrane permeability [ 50 ] and 
release of mitochondrial proteins are also 
observed [ 87 ]. Another characteristic of apop-
totic cells is the exposure of phosphatidylserine 
on the extracellular leafl et of their plasma mem-
brane. While phosphatidylserine is normally 
found exclusively on the cytoplasmic side of the 
plasma membrane, apoptotic cells present phos-
phatidylserine on the extracellular surface to 
serve as an “eat-me” signal for neighboring 
phagocytes [ 32 ,  70 ]. Cellular shrinkage, likely 
due to caspase-mediated proteolysis of cytoskel-
etal proteins, also typifi es apoptotic cells [ 49 ].  

9.3.2     Autophagy 

 Although autophagy usually serves a protective 
role, in extreme stress conditions it can contribute 
to cell death. In similar fashion as apoptosis, 
autophagic pathways also progress in a series of 
cellular steps that involve programmed degrada-
tion of cellular components. However, intracel-
lular autophagic, largely non-caspase, enzymes 
are responsible for degradation of organelles or 
other cytoplasmic proteins within double-mem-
brane vesicles known as autophagosomes [ 54 ]. 
The autophagosome then fuses with intracellular 
lysosomes to facilitate degradation of the con-
tents within the autophagosome by acid hydro-
lases. In contrast to apoptosis, caspase activation 
is not required and chromatin condensation is 
minor [ 11 ]. 

   Table 9.1    Six mechanisms of cell death   

 Death process  Programmed?  Infl ammatory lysis?  Effector  Shape Δ     TUNEL? 

 Necrosis  No  Yes  Non-caspase  Swell  No 
 Necroptosis  Yes  Yes  TNF-α RIPK1  Swell  No 
 Pyroptosis  Yes  Yes  Caspase-1  Swell  Yes 
 Autophagy  Yes  No  Lysosomes  ?  No 
 Phagoptosis  Yes  No  Microglia  No  No 
 Apoptosis  Yes  No  Caspase-3/6/7  Shrink  Yes 
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 In addition to contributing to the death of a cell, 
autophagic mechanisms also contribute to cellular 
function and homeostatic maintenance. For 
example, in the immune system, antigen- presenting 
cells utilize autophagy to digest intact proteins, 
creating smaller antigens for subsequent presen-
tation to T lymphocytes [ 21 ,  54 ]. Moreover, mice 
defi cient in proteins involved in autophagy 
develop spontaneous neurodegeneration [ 35 ,  48 ]. 
Taken together, these fi ndings indicate that, in addi-
tion to cell death, autophagy mediates an impor-
tant role in the organism’s response to pathogens 
as well as maintenance of cellular homeostasis.  

9.3.3     Phagoptosis 

 Many of the identifi ed physiological cell death 
pathways involve phagocytosis of either whole 
cells doomed to die or of fractured cellular com-
ponents. As such, the process of phagocytosis has 
been viewed as a secondary event, occurring after 
the death of the cell [ 70 ]. However, the process of 
phagocytosis can also kill living cells. Recent 
studies have identifi ed a pathway, termed “phagop-
tosis”, wherein phagocytes such as activated 
microglia actively contribute to the death of viable 
neurons and other cells [ 8 ]. Similar to apoptosis, 
the otherwise viable cell presents “eat- me” sig-
nals, such as phosphatidylserine, on the outer leaf-
let of its cellular membrane. The “eat- me” signals 
are then recognized by nearby phagocytes, and 
cellular uptake ensues followed by digestion of the 
viable cells. Importantly, cell death can be pre-
vented during phagoptosis by inhibiting phagocy-
tosis [ 28 ,  60 ]   . This is because “eat-me” signal 
exposure is transient and reverses when phagocy-
tosis is prevented. Therefore, neuronal insults not 
severe enough to initiate apoptotic pathways might 
be a trigger for phagoptosis due to the temporary 
exposure of eat-me signals on stressed but viable 
neurons [ 8 ,  28 ].  

9.3.4     Necrosis 

 In contrast to these non-infl ammatory modes of 
neuron death, during necrosis cells lyse, effectively 

spilling their internal contents into the interstitial 
fl uid and releasing molecules that can initiate 
infl ammatory cascades. This uncontrolled 
release of intracellular molecules can potentially 
damage surrounding tissue and cells [ 76 ,  79 ]. 
Necrotic cell death is typically initiated by 
extreme physiological stress or trauma that kills 
cells quickly. Biochemically, caspase is not 
involved. Morphologically, condensation or 
digestion of internal cellular compartments is 
not observed. Instead, organelles and the 
entire cell undergo extensive swelling. The 
cell eventually bursts, spilling its internal 
contents into the surrounding environment, 
triggering robust infl ammation in the neighbor-
ing tissue [ 45 ].  

9.3.5     Necroptosis 

 While necrosis leads to an uncontrolled cellular 
death, a variant of necrosis, which has some 
controllable features, has recently been 
described. This programmed pathway, termed 
necroptosis, exhibits characteristics of both 
programmed cell death and necrosis. The main 
characteristic distinguishing necrosis from 
necroptosis is that the latter is initiated by 
TNF-α and other death receptor activators, 
which promote the assembly of receptor-
interacting protein kinase 1 (RIP1) with RIP3 
[ 86 ]. Thus, kinase activity controls necroptosis 
[ 45 ]. Interestingly, RIP1 and RIP3 assemble 
into a functional kinase-containing cell-death 
complex only in the absence of functional cas-
pase 8 [ 25 ,  46 ]. While the physiological impact 
of necroptosis is currently under investigation, it 
is conceivable this pathway may be relevant in 
the event caspase activity is impeded and thus 
canonical apoptosis is not possible.  

9.3.6     Pyroptosis 

 Perhaps the most extreme example of 
infl ammation- related cell death is pyroptosis (i.e., 
caspase 1-dependent programmed cell death). 
While this form of cell death was fi rst described 
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after infectious stimuli, such as  Salmonella  and 
 Shigella  infection [ 6 ,  18 ], caspase- 1-dependent 
cell death also occurs in myocytes after myocar-
dial infarction [ 27 ] and in the central nervous 
system [ 53 ,  103 ]. The primary distinguishing 
feature of pyroptosis is the formation of the 
infl ammasome, an intracellular multimolecular 
complex that is required for the activation of 
infl ammatory caspases, particularly caspase 1. 
The activated infl ammasome culminates with 
production of enzymatically active caspase 1, 
which in turn mediates the maturation and 
secretion of active IL-1β and IL-18 [ 2 ]. Secreted 
pro-infl ammatory cytokines can subsequently 
infl uence nearby cells with potentially adverse 
consequences, such as blood-brain barrier break-
down and possible leukocyte entry into the brain. 
Although TUNEL-positive breaks in cellular 
DNA typify both apoptosis and pyroptosis, the 
latter is entirely reliant upon caspase-1 [ 7 ,  17 ]. 
This is important for classifi cation purposes 
because caspase-1 is not involved in apoptosis. 
Mitochondrial release of cytochrome c, a hall-
mark of apoptosis, also does not occur during 
pyroptosis. In contrast to the coordinated packag-
ing of intracellular components observed in apop-
tosis, cellular lysis and release of infl ammatory 
effector molecules occur during pyroptosis [ 26 ].   

9.4     How Might Seizure-Induced 
Neuronal Injury Promote 
Epileptogenesis? 

9.4.1     Overview of Two Competing 
Hypotheses 

 We envision two conceptually distinct answers to 
this question.  First , maladaptive new circuits 
among neurons could form to replace synapses 
 lost  during neuronal death. This mechanism, 
potentially involving axonal sprouting within 
excitatory pathways and amplifi ed by loss of 
inhibitory interneurons, has been described in 
numerous previous studies and can be termed 
the “ recapitulation of development ” hypothesis. 
If replacement of lost synapses is the critical factor 
underlying this mechanism, then neuronal death 

would seem to be an essential component of 
the process.  Second , rather than neuron death 
 per se  being responsible, molecular signals from 
upstream pathways that mediate some of the 
more newly recognized forms of cell death might 
underlie or contribute to epileptogenesis. We call 
this the “ neuronal death pathway ” hypothesis. 
We will focus on potential roles for IL-1β and 
TNF-α. We will also consider whether the infl am-
masome pathways (caspase-1 activation leading 
to synthesis of IL-1β and IL18), normally consid-
ered a feature of myeloid cells and innate immu-
nity, might be involved in epilepsy-related 
neurodegeneration. 

 In some cases focal infl ammation produced by 
lytic cell death, perhaps involving only a small 
number of neurons undetectable by normal Nissl 
stains (e.g., Fig.  9.1b ), could promote increased 
neuronal excitability and perhaps synchronous 
activity. However, in the absence of any neuronal 
death (Fig.  9.1d ), how might infl ammatory cas-
cades be initiated? Understanding how microglia, 
the innate immune cells of the CNS, respond 
to injurious or danger signals may provide 
insights into this undoubtedly complex process. 
Microglia in the intact, healthy brain continuously 
palpate the surrounding tissue for subtle distur-
bances [ 61 ], and can rapidly respond to tissue 
injury or danger signals by altering morphology, 
proliferating and expressing a wide variety of 
infl ammatory cytokines and chemokines [ 19 , 
 69 ]. Microglial activation can be initiated by 
injured neurons through the release of molecules 
collectively known as alarmins [ 4 ]. 

 One well-characterized alarmin, prostaglan-
din E2, is released by highly active neurons in a 
COX-2-dependent process. Cyclooxygenase 2 
(COX-2) is rapidly upregulated in hippocampal 
pyramidal cells and dentate granule cells after 
seizures [ 55 ,  73 ,  98 ], but the impact of  neuronal  
COX-2 has remained elusive because astrocytes, 
endothelial cells and probably other cell types in 
the CNS also express COX-2. To determine the 
role of neuronal COX-2 after status epilepticus, a 
neuron specifi c conditional knockout mouse was 
utilized wherein principal neurons of the hippo-
campus, dentate granule cells, amygdala, thala-
mus and layer-specifi c neurons in the piriform 
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and neocortex (layer 5) are devoid of COX-2, 
while the remaining cell types of the CNS still 
express functional protein [ 43 ,  72 ]. Interestingly, 
conditional ablation of COX-2 from neurons 
resulted in less severe damage to hippocampal 
neurons after status epilepticus produced by pilo-
carpine. The intensity of status epilepticus was 
not diminished in the COX-2 conditional knock-
outs, as judged by the temporal evolution of 
behavioral seizures and by cortical EEG [ 78 ], 
making it unlikely that neuroprotection was 
caused by a less severe seizure episode. 
Neuroprotection was accompanied by reduction 
in multiple markers of neuroinfl ammation as well 
as preserved integrity of the blood-brain barrier, 
suggesting that neuronal COX-2 mediates a 
broad deleterious role after status epilepticus. 
These fi ndings provide strong evidence that the 
neuron itself can contribute to the neuroinfl am-
matory milieu [ 78 ]. The benefi cial effects of the 
conditional ablation of COX-2 from principal 
forebrain neurons were completely recapitulated 
by systemic administration of a novel antagonist 
of EP2, a receptor for PGE2 [ 44 ]. 

 Injured neurons might indirectly contribute to 
infl ammation after status epilepticus through cell-
to-cell signaling with microglia. Multiple lines of 
evidence indicate that the local microenvironment 
plays an important role in regulating the microglial 
phenotype wherein microglia  activation is consti-
tutively inhibited by repressive forces [ 34 ,  65 ,  69 ]. 
For example, surface proteins on microglia, such 
as CD200R and CX3CR1 (the fracktalkine recep-
tor), normally interact with the neuronal surface 
protein ligands, CD200 and CX3CL1 (fracktal-
kine), respectively [ 14 ,  42 ]. If interactions between 
CD200R and CD200 [ 42 ,  102 ] or CX3CR1 and 
CX3CL1 [ 3 ,  13 ] are disrupted by signals released 
during neuronal damage or distress, then microg-
lia are unleashed from this constitutive state of 
inhibition and a more fl orid microglial response 
ensues. Enhanced microglial activation is likely 
attributed to the presence of ITIM motifs (immu-
noreceptor tyrosine- based inhibitory motif) on 
both CD200R and CX3CR1 as these motifs 
function as activators for SHP-1 and SHP-2 
phosphatases that can repress further infl amma-
tory signaling [ 5 ]. Indeed, CX3CR1-defi cient 
mice exhibit microglia- mediated neurotoxicity, 

through enhanced IL-1β secretion, after immune 
challenge [ 14 ]. Interestingly, altered expression 
of CX3CL1 has been reported in both epileptic 
patients and animals models after status epilepti-
cus [ 97 ]. 

 In addition to the above-mentioned studies, 
viable neurons might also induce infl ammatory 
cascades. Studies in  Drosophila melanogaster  
originated this concept, wherein damaged cells, 
prevented from dying, release mitotic signals 
that prompt neighboring cells to divide. Cells in 
the wing of fl ies were triggered to die by X-rays, 
but they were blocked from completing the 
death process by expression of anti-apoptotic 
proteins. The authors describe the resulting cells 
as “undead”. The neighboring cells divide in an 
apparent attempt to fi ll the void in the tissue 
expected to be left by the dying cells [ 64 ]. Do 
similar situations occur in human disease? 
Interestingly, neuronal populations expected to 
degenerate in the brains of Alzheimer’s Disease 
(AD) patients re-express proteins typically 
encountered in a mitotic cell cycle [ 12 ,  58 ,  92 , 
 93 ]. Importantly, DNA replication accompanies 
cell cycle entry [ 99 ]. Transgenic mouse models 
of AD also recapitulate neuronal cell cycle entry 
[ 88 ,  101 ], suggesting that the same “stressors” 
that provoke neuronal cell cycle entry in the 
human AD brain are phenocopied in the mice. 
However, cycling neurons exhibit little atrophy 
[ 100 ] and robust neuronal loss is absent in AD 
mice [ 41 ,  56 ], indicating that re-expression of 
mitotic proteins and DNA synthesis in a post- 
mitotic neuron is not suffi cient to induce death, 
at least in the lifetime of the mouse. It has been 
proposed that cycling neurons also might send 
out mitotic signals, pressuring otherwise healthy 
neurons to enter the “undead” state [ 39 ].  

9.4.2     Infl ammatory Pathways 
and Epileptogenesis 

 How might infl ammatory signaling upstream of 
neurodegeneration increase excitability and sub-
sequent synchronicity? Immune responses in the 
brain are initiated, maintained and terminated by 
soluble effector proteins known as cytokines. 
Although a strong correlation between seizures 
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and elevated infl ammatory cytokines or their 
mRNA transcripts has been reported [ 90 ], 
emerging experimental evidence indicates that 
infl ammatory cytokines can in turn alter neuro-
nal excitability and synchronicity by modulating 
receptor function and expression [ 31 ,  89 ]. For 
example, the pro-infl ammatory cytokine TNF-α 
has also been shown to promote the recruitment 
of AMPA receptors to postsynaptic membranes. 
Interestingly, the recruited receptors preferen-
tially lack the GluR2 subunit [ 52 ,  63 ,  82 ] and 
consequently the calcium conductance underly-
ing EPSPs is increased. Additionally, TNF-α 
causes endocytosis of GABA A  receptors from 
the cellular surface, decreasing inhibitory synap-
tic strength [ 82 ]. Taken together these fi ndings 
demonstrate that TNFα can have a profound 
impact on circuit homeostasis in a manner that 
can provoke the pathogenesis of seizures. 

 In addition to TNF-α, multiple lines of evi-
dence directly implicate IL-1β in lowering the 
seizure threshold, and perhaps in epileptogenesis. 
First, hippocampal application of IL-1β can 
increase seizure intensity threefold. This procon-
vulsant effect is attributed to IL-1β-mediated 
engagement of Src-family kinases in hippocam-
pal neurons. The activated kinases subsequently 
phosphorylate the NR2B subunit of the NMDA 
receptor, leading to seizure exacerbation [ 1 ]. 
Second, IL-1β can inhibit calcium currents 
through protein kinase C, at least at low concen-
trations [ 66 ]. Finally, IL-1β can also inhibit 
GABA A  receptor current, which could underlie 
neuronal hyperexcitability [ 95 ]. These studies, 
coupled with the fi ndings that pharmacological 
treatments targeting IL-1β or its activation result 
in robust anticonvulsant effects [ 20 ,  71 ,  90 ,  91 ], 
indicate that infl ammation might play an impor-
tant role in epileptogenesis and is a viable thera-
peutic target class.   

9.5     Implications of the New 
Concepts on Neuronal Death 
for Epileptogenesis 

 The long-standing  recapitulation-of-development  
hypothesis essentially states that neuronal death 
in acquired epilepsy is linked to a re-activation 

of developmental processes, which replace the 
synapses lost through neuronal death [ 30 ]. 
Initially, most experimental and clinical epi-
leptologists viewed this hypothesis as “mossy 
fi ber sprouting”, which causes the formation of 
new recurrent excitatory circuits among den-
tate granule cells. This hypothesis is discussed 
by Buckmaster [ 9 ] and a more general view 
would be that neuronal death in many areas of 
the brain, particularly in seizure-sensitive 
regions, causes multiple networks to form new 
local excitatory circuits [ 22 ,  23 ,  83 ]. The data 
reviewed above suggest a new hypothesis, the 
 neuronal-death-pathway  hypothesis, whereby 
the biochemical pathways causing programmed 
neurodegeneration, rather than neuronal death 
 per se , are responsible for or contribute to 
epileptogenesis. This hypothesis is consistent 
with the view that frank brain damage 
(i.e., cases where obvious neuronal death has 
occurred) leads to epilepsy, and further, that 
the likelihood of developing intractable epi-
lepsy is linked somehow to the severity of the 
brain injury. In addition, however, this hypoth-
esis may begin to explain why brain injuries 
that clearly induce neuronal death do not 
always appear to lead to epilepsy, since the 
critical hypothetical mechanism for acquired 
epileptogenesis would be the linkage between 
the to-be-defined mechanisms  within the 
pathways responsible for neuronal death , as 
opposed to neuronal death itself (Fig.  9.1c ). 
The identifi cation of these hypothetical processes 
is an area ripe for future investigation. Finally, 
this hypothesis could also explain how epilepsy 
may occur when neuronal death is absent or 
appears minimal (Fig.  9.1d ). It is conceivable 
that these molecular mechanisms may be 
aborted or reversed before neuronal death 
actually occurs, for example, so that specifi c 
signaling molecules direct some of the sur-
rounding neurons toward an epileptogenic 
phenotype, even though the processes of neu-
ronal death may not reach completion. The key 
point here is the proposal or hypothesis that 
molecular/genetic signals from neurons that 
are on a “death pathway” could initiate epilep-
togenesis independent of the fi nal outcome 
(i.e., neuronal death).  
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9.6     Concepts and Conclusions 

 Although much has been learned about when 
seizures do kill neurons and the conditions when 
they appear to cause less damage, it is extraordi-
narily diffi cult to  rule out  that neuronal death has 
occurred after seizures. One problem is both a 
conceptual and technical one, namely, showing 
that something has not occurred is particularly 
challenging, if not impossible. We simply do not 
know if a threshold exists whereby a few, brief 
seizures – possibly in the seizure-resistant imma-
ture brain – cause absolutely no neuronal death. 
In terms of the question, “When?”, there is no 
way to show that neuronal death has not occurred 
during and/or after seizures, except to count the 
remaining neurons in control and experimental 
groups; however, the potential error – even in 
well-powered studies, can be 10 % or more 
([ 10 ] [see Table 1 and Fig. 2A-B]; [ 96 ] [see Fig. 
6]) – and yet a loss of just a few percent of the 
neurons within a brain structure could have a sub-
stantive epileptogenic effect. If one considers the 
problem of “Where?”, it becomes obvious that 
the answer is “Almost anywhere!”. For the ani-
mal models of repetitive seizures and status 
 epilepticus – whether induced by hypoxia, pilo-
carpine, or some other precipitating insult – 
numerous seizure-sensitive areas of the brain 
show neuronal loss, and the structure could be 
different for individuals within a similarly-treated 
cohort of animals, further supporting the idea that 
it is extremely diffi cult to exclude a role of neuro-
nal death. In terms of, “What types of neurons 
may be lost?”, excluding loss of part of the criti-
cal interneuron pool generally requires specifi c 
staining techniques, such as immunohistochem-
istry with stereology (e.g., [ 10 ]). As important, 
however, is the discovery of new neuronal death 
pathways that could lead to neuron loss in ways 
that have previously not been appreciated. This 
latter set of observations opens up the possibility 
that a gateway to seizure-induced neuronal loss 
involves signaling pathways that represent or are 
infl uenced by early neuron-death pathways. 
Thus, we propose that – in addition to the previ-
ously proposed  recapitulation-of-development  

mechanisms – another hypothesis could be the 
 neuronal-death-pathway  hypothesis, whereby 
the early steps of neuronal death generate signals 
that promote epileptogenesis even if the neurons 
ultimately do not die. An attractive feature of this 
hypothesis is that it could lend itself to classifi ca-
tion by molecular markers that refl ect these neu-
ronal pathway molecules. This hypothesis might 
also explain why neuronal death seems so impor-
tant to acquired epileptogenesis, yet might in 
some cases be unnecessary.     
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    Abstract  

  Maintaining physiological variables within narrow operating limits by 
homeostatic mechanisms is a fundamental property of most if not all living 
cells and organisms. In recent years, research from many laboratories has 
shown that the activity of neurons and neural circuits are also homeostati-
cally regulated. Here, we attempt to apply concepts of homeostasis in 
general, and more specifi cally synaptic homeostatic plasticity, to the study 
of epilepsy. We hypothesize that homeostatic mechanisms are actively 
engaged in the epileptic brain. These processes attempt to re- establish 
normal neuronal and network activity, but are opposed by the concurrent 
mechanisms underlying epileptogenesis. In forms of intractable epilepsy, 
seizures are so frequent and intense that homeostatic mechanisms are unable 
to restore normal levels of neuronal activity. In such cases, we contend that 
homeostatic plasticity mechanisms nevertheless remain active. However, 
their continuing attempts to reset neuronal activity become maladaptive and 
results in dyshomeostasis with neurobehavioral consequences. Using the 
developing hippocampus as a model system, we briefl y review experimental 
results and present a series of arguments to propose that the cognitive 
neurobehavioral comorbidities of childhood epilepsy result, at least in 
part, from unchecked homeostatic mechanisms.  
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     Homeostasis or the maintenance of a physiological 
state – despite external or internal disturbances 
that would be expected to alter that state – is a 
biological concept central to both animal and 
human physiology [ 27 ]. This concept was fi rst 
introduced nearly 150 years ago by Claude 
Bernard who demonstrated the ability of organ-
isms to maintain a relatively constant internal 
environment and who stated that the maintenance 
of “ le milieu interieur ” was essential for life [ 3 ]. 
In 1929, Walter Cannon extended these concepts 
and coined the term homeostasis or “similar 
state” [ 7 ]. In adopting a systems level approach to 
physiology, Cannon suggested that coordinated 
adjustments of interacting systems through feed-
back systems result in the maintenance of physi-
ological parameters such as body temperature 
and circulating oxygen levels within a set range. 

 Today, the concept of homeostasis is funda-
mental to all studies of physiology from the level 
of individual cells to that of entire organisms. 
Indeed, it is such a well-accepted concept that 
it is taken for granted that the underlying basic 
mechanisms are essential for survival. Homeostasis 
includes, but is not limited to, the regulation of 
blood pH, circulating levels of glucose, body 
temperature, interstitial level of O 2  and CO 2  as 
well as critical electrolytes such as Na + , Cl − , K +  
and Ca +2 . In keeping with the work of Cannon, 
feedback systems are thought to be the primary 
regulatory mechanisms underlying homeostasis. 
In general, these feedback systems must fi rst 
detect a change in a parameter that needs to be 
held within narrow limits – also referred to as a set 
point. If it deviates from these limits, the system 
activates mechanisms to return the parameter to 
the set point. Such systems consist of a sensor 
that is able to measure changes in the parameter, 
an integrator that compares the detected informa-
tion to the desired set point and an effector that 
generates the compensatory response to return 
the parameter to homeostasis. Circulating levels 
of Ca +2  are a good example of such a feedback 
system. When blood Ca +2  falls below its set point, 
Ca +2 -sensing receptors in cells of the parathyroid 
gland are activated. This results in the release of 
parathyroid hormone which acts to increase circu-
lating Ca +2  levels. Multiple effector mechanisms 

are induced, including increased absorption from 
the gastrointestinal tract and reabsorption from 
urine. Another important source of Ca +2  is bone. 
Parathyroid hormone increases the activity of 
bone-degrading osteoblasts which release Ca +2  
from bone and thereby return circulating Ca +2  to 
its set point. 

10.1     Neuronal Homeostatic 
Plasticity 

 Over the past 15 years, a great deal of evidence 
has accumulated to suggest that the physiological 
activity of neurons and neuronal networks are 
homeostatically regulated [ 33 ,  34 ]. Neuronal 
networks of the central nervous system (CNS) 
are highly dynamic. This is easily observed in 
variations in human and animal EEG recordings 
over a 24-h period. For example, the dramatic 
alterations in recordings at transitions from 
NREM sleep to the awake state refl ect marked 
changes in the activity of individual neurons and 
the operations of their networks. At these times, 
an organism in interacting with its environment 
will store information for future use. Hebbian 
synaptic plasticity mechanisms such as long-term 
potentiation (LTP) and long-term depression (LTD) 
are widely thought to underlie the processes for 
learning and the storage of memories. However, 
for some time, theoretical neurophysiologists 
have recognized that Hebbian plasticity should 
destabilize and consequently interfere with net-
work operations [ 1 ]. The idea behind this claim 
is that once a group of excitatory synapses 
undergo a use-dependent form of plasticity – like 
LTP – they will in the future produce larger 
excitatory post-synaptic potentials (EPSPs) which 
will more likely induce action potentials in the 
postsynaptic neuron. This in turn results in even 
larger EPSPs and more neuronal fi ring, and a 
self-perpetuating cascade of ever-increasing 
synaptic strengthening and ultimately increasing 
network excitability. 

 Homeostatic synaptic plasticity has been pro-
posed as a stabilizing mechanism to counter 
the potential run-away excitation of Hebbian 
plasticity [ 33 ]. As would be expected, this relatively 

J.W. Swann and J.M. Rho



125

new fi eld of homeostatic plasticity has borrowed 
concepts from other forms of physiological 
homeostasis. For example, synaptic homeostasis 
has been defi ned as “a form of plasticity that acts 
to stabilize the activity of a neuron or neuronal 
circuit around some  set point  value” [ 33 ]. 
Possibly the best demonstration of homeostatic 
plasticity comes from studies of dissociated 
cultures of CNS neurons. In these models, when 
the networks of cortical neurons are pharma-
cologically challenged by application of a 
γ-aminobutyric acid type A (GABA A ) receptor 
antagonist such as bicuculline, the fi ring rates of 
individual neurons initially increase. However, 
over a period of many hours to days, fi ring rates 
return to their original rate, which is interpreted 
to be the homeostatic set point of affected neurons 
and their networks. Similarly, when activity is 
suppressed, fi ring rates are initially very low but 
are restored over time [ 35 ]. 

 There have been many studies of the cellular 
and molecular events underlying this form of 
neuronal plasticity. It has become clear that there 
are numerous mechanisms that can act indepen-
dently to regulate post-synaptic and pre-synaptic 
strength as well as mechanisms that operate at the 
level of individual synapses, and others that act in 
parallel but on a more global scale. The most 
studied of this type on neuronal plasticity is 
synaptic homeostasis – particularly at excitatory, 
glutamatergic synapses. In these studies, following 
periods of pharmacologically-induced heighted 
neuronal activity, the amplitude or strength of 
miniature excitatory post-synaptic currents 
(mEPSCs) has been shown to decrease at the 
times when neuronal fi ring rates had returned 
to their set point [ 35 ]. These alterations in 
mEPSCs were also found to parallel decreases in 
the amplitude of evoked synaptic events. Much 
evidence has emerged suggesting that synaptic 
homeostasis results from post-synaptic alterations 
in glutamatergic subunit expression and localization. 
Under some experimental conditions, a decrease 
in the number of glutamatergic synapses has also 
been demonstrated [ 13 ]. In other cases and cir-
cumstances, pre-synaptic changes in transmitter 
release have been reported [ 4 ,  6 ]. 

 In addition to synaptic homeostasis of 
glutamatergic synapses, the function of inhibitory 
synapses and inhibitory interneurons appear to 
be homeostatically regulated, as are the intrinsic 
excitability properties of individual neurons. 
As might be expected, synaptic inhibition is 
regulated in the opposite direction of excitation. 
For instance, when neuronal activity is experi-
mentally depressed as the amplitude of mEPSCs 
in pyramidal cells is increased, miniature inhibi-
tory post-synaptic currents (mIPSCs) decrease 
in strength [ 15 ,  20 ]. Both pre-synaptic and 
post- synaptic changes appear to contribute to 
homeostatic regulation of synaptic inhibition. 
The variety of mechanisms underlying this 
form of regulation may be a refl ection of the 
diversity of inhibitory synapses and inhibitory 
interneurons in the CNS. For instance, when 
ascending activity to the visual cortex is experi-
mentally lowered (in an attempt to mimic activity 
suppression  in vitro ), the amplitude of inhibitory 
synapses onto layer 4 pyramidal cells from fast 
spiking interneurons is reduced [ 22 ]. However, 
inhibitory synapses from other interneuronal 
subtypes appear to be stronger although fewer 
in number. 

 In terms of the intrinsic excitability of neu-
rons, it has been shown that when the activity of 
cultured neurons is experimentally suppressed, 
the intrinsic excitability of excitatory neurons 
is enhanced [ 9 ]. So these neurons are able to 
generate more action potentials in response to a 
given synaptic input than untreated control 
neurons. Thus, at the same time that excitatory 
synaptic transmission is increased and synaptic 
inhibition in decreased, alterations in the expres-
sion and function of ion channels (likely both 
inward and outward voltage-dependent currents) 
further enhance neuronal excitability in attempting 
to re- establish normal neuronal and ultimately 
network activity. 

 In summary, numerous studies over the past 
15 years have not only repeatedly demonstrated 
the ability of neurons to homeostatically adapt to 
experimentally-induced alterations in their activity 
but have also shown that the cells have a wide 
array of mechanisms at their disposal to stabilize 
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their activity in the face of forces like Hebbian 
synaptic plasticity that can potentially lead to 
neuronal and network instability.  

10.2     Homeostatic Plasticity 
Versus Epileptogenesis 

 The neuroscience community has learned a great 
deal from studies of the basic mechanisms of 
homeostatic synaptic plasticity. This has been 
propelled by the use of relatively simple culture 
systems that are amenable to rigorous experi-
mental manipulations and testing of hypotheses. 
A number of other studies have been performed 
 in vivo  in attempts to extend information from 
 in vitro  studies to the intact CNS. However, 
how these results impact our understanding of 
epilepsy is now only beginning to be explored. 
For at least the past 15 years, a large proportion 
of experimental epilepsy research efforts have 
been focused on understanding the mechanisms 
underlying epileptogenesis, a process that at 
least superfi cially appears to be the antithesis of 
homeostasis. The term epileptogenesis has been 
defi ned as a chronic process by which normal brain 

is transformed into tissue capable of generating 
spontaneous recurrent seizures [ 17 ]. In the acquired 
epilepsies (e.g. following traumatic brain injury), 
the seizure-prone state is thought to arise from a 
progressive series of molecular, cellular and 
circuit changes that evolve over time. 

 Results from long-term continuous video- EEG 
recordings in several animal models of acquired 
epilepsy have emphasized the progressive nature 
of epileptogenesis [ 11 ]. Within a week after 
injury, nonconvulsive seizures are fi rst observed. 
A week thereafter they become convulsive. 
Seizure frequency can gradually increase nearly 
tenfold over the ensuing 3–4 months. Such results 
are consistent with the idea fi rst proposed by 
Gowers in 1888 that “seizures beget seizures” [ 14 ]. 
Potential steps in the progression of epileptogen-
esis are illustrated by the positive feedback system 
in Fig.  10.1 . Here, seizures are envisioned to 
induce a cascade of molecular and cellular 
events that lead to sprouting of glutamatergic 
synapses and other forms of network reorganization 
that further enhance network excitability and 
the genesis of more seizures with increasing 
frequency. Juxtaposed to this is a diagram of the 
negative feedback loop that is thought to characterize 

  Fig. 10.1     Diagram outlining the hypothesized opposing 
forces of epileptogenesis and homeostasis . A positive 
feedback loop is envisioned to mediate epileptogenesis. 
Examples of some of the potential molecular events are 
named that lead to the network reorganization and synaptic 
sprouting that is thought to contribute to recurring seizures. 

Homeostasis is suggested to oppose epileptogenesis 
through negative feedback loops that are designed to 
re-establish normal neuronal and neural circuit excitability. 
Pruning of glutamatergic synapses is but one example 
of an effector mechanism that would reduce seizure 
generation       
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homeostasis in general and homeostatic plasticity 
more specifically. In this context, seizures are 
envisioned to activate sensory processes – just 
as increased neuronal activity is thought to during 
synaptic homeostasis. A molecular integrator 
compares neuronal activity to a set point value 
and induces changes in an effector, which in this 
example results in the pruning of excitatory 
synapses [ 13 ] and which in turn would be predicted 
to reduce neuronal and network excitability and 
reduce seizure frequency.

   If homeostasis is such a fundamental property 
of animal and human physiology, why does it 
apparently fail in epilepsy? One possibility is 
that it does not always fail since seizures do 
 spontaneously remit in some forms of epilepsy 
without any apparent reason. Many of the so-
called benign epilepsies of infancy and childhood 
carry a favorable prognosis. In these instances, 
children are simply said to “outgrow their seizures”. 
The mechanisms accounting for these observations 
are unknown. One possibility is that as the brain 
matures the developmental factors that enhance 
seizure susceptibility are no longer operant. 
Alternatively, ongoing homeostatic mechanisms 
may play a signifi cant role in these remissions. 
In contrast, in more severe and intractable 
epilepsy, it seems possible that homeostatic 
mechanisms are actively engaged in epilepsy but 
in many cases the precipitating injury (or in the 
case of genetic forms of epilepsy, i.e., the conse-
quences of gene mutations) are so severe that 
homeostatic mechanisms are simply unable to 
re- establish neuronal activity to the desired set 
point and seizure progression continues unabated 
by the processes underlying epileptogenesis. 
However, if this were the case, then as seizures 
recur, homeostatic mechanisms would also be 
repeatedly induced in an attempt to re-establish 
normal neuronal excitability and network stability. 

 There are a number of observations made in 
animal models of epilepsy that appear somewhat 
paradoxical in that molecular and anatomical 
changes observed would be expected to prevent 
seizures, not promote them. Increases in GABA A  
receptor subunits [ 16 ] and potassium channel 
expression [ 26 ,  28 ] as well as dendritic spine loss 

in hippocampal and neocortical pyramidal cells 
[ 5 ,  30 ] are just a few examples of alterations 
that researchers have sometimes referred to as 
“paradoxical” and possibly “compensatory” 
responses to on-going seizure activity. It is not 
hard to imagine that there are many other such 
paradoxical fi ndings that remain unpublished 
since they could not be explained in the context 
of epileptogenesis or the seizures that were being 
studied. However, such observations could be 
indicators of homeostatic processes taking place.  

10.3     Homeostasis and Seizures 
During Brain Development 

 The developing brain is well known to be highly 
susceptible to seizures. However, during the fi rst 
2–3 weeks of life in rats and mice, in general 
neither prolonged seizures nor recurrent seizures 
usually lead to the genesis of epilepsy later in life 
(but this remains unclear and controversial in 
the clinical setting). Nonetheless, these seizures 
are not without signifi cant consequences since 
numerous studies have shown that they routinely 
produce deficits in learning and memory – 
particularly in spatial learning [ 21 ]. Several 
labs have begun to explore the underlying mecha-
nisms. For example, recent studies of hippo-
campal CA1 pyramidal cells suggest that place 
cell function is impacted by recurrent early-life 
seizures. Place cells are thought to provide an 
animal with a spatial map of its environment and 
serve as surrogate markers for spatial memory. 
Among other observations, investigators have 
shown that place cells are unable to form stable 
maps in animals that experienced early-life 
seizures [ 19 ]. Further, rats exposed to early 
prolonged hyperthermia-induced seizures exhibit 
a signifi cant increase in hippocampal T2 MRI 
signal intensity which is associated with spatial 
memory defi cits [ 10 ]. 

 In exploring the underlying mechanisms of 
learning and memory defi cits, investigators have 
understandably focused on alterations in central 
excitatory and inhibitory synapses. Early-life 
seizures have been shown to profoundly affect 
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synaptic signaling through both glutamate and 
GABA A  receptors. For example, hypoxia-induced 
seizures in postnatal day 10 rats results in a 
decrease in silent N-methyl-D-aspartate (NMDA) 
synapses and an attenuation of hippocampal LTP 
that persists into adulthood [ 36 ]. 

 Changes in inhibitory neurotransmission can 
also play an important role in processes critical 
for learning and memory. Enhancement of 
GABA A  receptor signaling is known to impair 
LTP, and studies have shown increased inhibition 
after early-life seizures. For example, after both 
hyperthermia- and kainate-induced seizures, 
there is enhanced paired-pulse inhibition in the 
hippocampus [ 29 ] and selective increases in 
specifi c GABA A  receptor subunits, notably the 
α1 subunit, after status epilepticus induced by 
either lithium-pilocarpine or kainate at postnatal 
day 20 [ 25 ]. However, it should be noted that 
GABA A  receptor subunit changes following 
seizure activity are age-dependent as are the 
responses to agonists. Importantly, GABA A  
receptor activation in neonatal neurons results in 
membrane depolarization, in contrast to the 
normal hyperpolarizing response seen in mature 
neurons – a result of differential expression of 
the cation-co-transporters KCC2 and NKCC1 in 
early post-natal brain development which estab-
lishes the transmembrane chloride electro-
chemical gradient [ 2 ]. Early-life seizures have 
been reported to promote the developmental 
switch from depolarizing to hyperpolarizing, one 
consequence of which may be impaired spatial 
learning and memory [ 12 ]. 

 In addition to molecular receptor changes 
affecting both excitatory and inhibitory neuro-
transmission, a number of studies have reported 
decreases not only in dendritic spine density but 
also dendrite length and branching complexity in 
hippocampal pyramidal cells [ 18 ,  23 ]. Similar 
abnormalities in dendrite morphology have been 
reported in human epilepsy [ 30 ]. However, in 
experimental studies of seizure induction in 
early-life, dendritic changes have been observed 
after a series of seizures that do not lead to epi-
lepsy later in life and presumably do not induce a 
signifi cant epileptogenic process. For instance, 

when 15 brief (~3 min in duration) seizures are 
induced over a 5 -day period (3 seizures per day) 
in 1 week old mice, dendrite length and branch-
ing complexity are reduced by 25 % compared to 
control mice, and as adults these same mice are 
learning impaired [ 23 ]. Changes in CA1 dendrite 
arborization are observed within 1 week after the 
last seizure and have been shown to be the result 
of dendrite growth suppression. Very similar 
observations of growth suppression have been 
made in hippocampal slice cultures [ 24 ]. In these 
instances, slice cultures from 5 day-old mice are 
grown under conditions that produce recurring 
seizure-like activity. Within 24 h of initiating 
epileptiform activity, CA1 pyramidal cell den-
drites are shorter in length and have fewer 
branches than pyramidal cells from sister control 
cultures. Moreover, over time, while dendrites in 
control slices continue to grow, dendrites in slices 
that are undergoing seizure-like activity do not. 
Similar to the studies of synaptic homeostatic 
plasticity in dissociated cultures discussed earlier, 
mEPSC amplitude and frequency (recorded in 
pyramidal cells) are reduced in slice cultures fol-
lowing a few days of treatment [ 31 ]. Remarkably, 
a very recent report has shown that similar 
changes in excitatory synaptic transmission and 
dendrite arborization can be observed after only a 
few hours of synchronized epileptiform activity [ 8 ]. 
Collectively, these results suggest that seizures 
may not only suppress on-going dendrite growth 
but acutely may even induce a retraction of growing 
dendritic branches. 

 One interpretation of these results is that the 
seizures  in vivo  and seizure-like activity  in vitro  
are activating homeostatic mechanisms in attempts 
to limit neuronal excitability, re- establish network 
excitability  in vitro  and prevent the occurrence 
of future seizures. However, by limiting the 
branching complexity of hippocampal pyramidal 
cell dendrites, the number of excitatory glutama-
tergic synapse present on dendrites should also 
be reduced. Indeed, biochemical results have 
consistently shown reduced expression of mark-
ers for glutamatergic synapses, such as PSD95, in 
the hippocampus taken from mice that have expe-
rienced recurring early-life seizures and in slice 
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culture that have undergone chronic epileptiform 
activity [ 31 ,  32 ]. With a reduction in the number 
of glutamatergic synapses, one might predict 
defi cits in hippocampal- based learning and 
memory. This is because these synapses are well 
known to undergo Hebbian forms of synaptic 
plasticity, such as LTP and LTD, which are 
though to contribute in important ways to the 
formation of memories (see earlier discussion). 
Thus, in attempting to re-establish normal 
neuronal and network excitability, homeostatic 
mechanisms may also limit an animal’s capacity 
to learn since some of the anatomical substrates 
for learning have been eliminated. 

 In such situations, homeostatic mechanisms 
could become maladaptive or dyshomeostatic, 
where these mechanisms are driven to such 
extremes that they have undesirable conse-
quences. Regulating the circulating levels of Ca +2  
that was discussed earlier provides an example of 
such a phenomenon. In some clinical situations, 
blood Ca +2  levels can fall below its set point 
for prolonged periods of time. Dietary defi ciency 
is one cause of low blood Ca +2 . Under these 
circumstances, calcium sensing cells in the para-
thyroid gland release parathyroid hormone 
which activates osteoblasts in bone resulting in 
the release of Ca +2  into the blood in attempt to 
restore circulating Ca +2 . However, intense activa-
tion by parathyroid hormone will eventually lead 
to bone dissolution, cavitations of the skeleton 
and increased susceptibility to bone fractures. 
Similarly, it seems possible that uncontrolled 
seizures may induce neuronal homeostatic 
responses that in attempting to limit neuronal 
hyperexcitability results in impaired synaptic 
plasticity and learning defi cits. 

 It is thought that synaptic homeostatic plastic-
ity and Hebbian synaptic plasticity are normally 
complementary processes. While Hebbian plasticity 
occurs from moment-to-moment, homeostatic 
mechanisms occur more slowly, over hours and 
days and function to prevent runaway excitation 
or inhibition but do not to interfere with rapid 
information transfer and storage. However, in 
epilepsy where abnormal – and often extreme 
neuronal hyperexcitability – exists, homeostatic 

mechanisms appear unable to reset neuronal 
excitability levels to something approaching 
normal. But by continually attempting to reset 
normal levels, homeostasis may be driven to such 
extremes that it limits Hebbian plasticity and 
interferes with information processing.  

10.4     Concluding Remarks 

 At this time, some may not be convinced that 
homeostatic mechanisms are active in the epilep-
tic brain and more direct evidence is needed to 
support the notion that the cognitive neurobehav-
ioral comorbidities of epilepsy are at least in part 
a consequence of homeostasis and homeostatic 
imbalance. Currently, the challenge is in developing 
ways to study such hypothetical seizure- induced 
homeostatic mechanisms in relative isolation and 
in greater detail without the confound of the 
myriad molecular, cellular and genetic processes 
that are active in epileptogenesis. The developing 
hippocampus may serve as a useful model system in 
this regard since at least under some experimental 
conditions homeostatic mechanisms appear to 
predominate over mechanisms of epileptogenesis. 
The future may provide better experimental 
opportunities and researchers should be prepared 
to exploit them. Ultimately, a full understanding 
of the molecular mechanisms underlying seizure-
induced homeostasis will be required. It seems 
that employment of relatively simple  in vitro  
systems (e.g. dissociated or slice cultures) would 
accelerate discovery. However, key fi ndings  in 
vitro  will always need to be validated  in vivo . 
Under some experimental situations (e.g. the 
prolonged seizures of status epilepticus) neuronal 
injury and death may occur and should be avoided 
if possible. Being able to discriminate between 
injury-induced changes and homeostatic-induced 
mechanisms will be critical. However, currently 
neuroscience researchers have a wealth of new 
and powerful cellular and molecular tools at their 
disposal that should make such studies possible. 
Live time- lapse imaging of neurons in which 
molecular biomarkers of suspected key contributors 
of seizure- induced homeostasis can be visualized 
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is but one example of the types of experiments that 
should be possible. Once homeostatic mechanisms 
have been well characterized and ways to 
selective eliminate them have been discovered, 
returning to more complex situations where epi-
leptogenesis and homeostatic plasticity co-exist 
will be important not only to defi nitively prove 
that homeostasis is active in epilepsy but also to 
understand the costs and benefi ts of suppressing 
or enhancing these homeostatic processes.     
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    Abstract  

  Numerous changes in GABAergic neurons, receptors, and inhibitory 
mechanisms have been described in temporal lobe epilepsy (TLE), either 
in humans or in animal models. Nevertheless, there remains a common 
assumption that epilepsy can be explained by simply an insuffi ciency of 
GABAergic inhibition. Alternatively, investigators have suggested that 
there is hyperinhibition that masks an underlying hyperexcitability. Here we 
examine the status epilepticus (SE) models of TLE and focus on the dentate 
gyrus of the hippocampus, where a great deal of data have been collected. 
The types of GABAergic neurons and GABA A  receptors are summarized 
under normal conditions and after SE. The role of GABA in development 
and in adult neurogenesis is discussed. We suggest that instead of “too 
little or too much” GABA there is a complexity of changes after SE that 
makes the emergence of chronic seizures (epileptogenesis) diffi cult to 
understand mechanistically, and diffi cult to treat. We also suggest that this 
complexity arises, at least in part, because of the remarkable plasticity of 
GABAergic neurons and GABA A  receptors in response to insult or injury.  
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11.1         Introduction 

 In the nineteenth century, the idea that epilepsy 
was a brain disorder arose as a consequence of 
the relatively new discipline of neurology. In 
the latter half of the twentieth century, many 
studies showed that chemicals such as penicillin, 
a GABA A  receptor (GABA A R) antagonist, caused 
experimental seizures or epileptiform activity 
when applied to the neocortex of animals. Philip 
Schwartzkroin played a major role in the develop-
ment and refi nement of these ideas by the use of 
the hippocampal slice preparation [ 131 ,  132 , 
 152 ]. One view that emerged was that epilepsy 
might be caused by defects in inhibition, which 
was supported by pharmacological experiments 
showing that several anticonvulsants, such as the 
barbiturates and benzodiazepines, exerted their 
actions by facilitating the actions of GABA at 
GABA A Rs [ 88 ,  109 ]. 

 The idea that epilepsy is caused by insuffi cient 
GABAergic inhibition has developed more 
support as it has become clear that some types of 
GABAergic neurons are vulnerable in animal 
models of epilepsy, or lost in tissue resected 
surgically from patients with intractable epilepsy 
[ 78 ,  126 ,  127 ]. In addition, mutations in the subunits 
of the GABA A  receptor have been identifi ed as a 
basis of some genetic epilepsy syndromes, such 
as Genetic Epilepsy with Febrile Seizures+ 
(GEFS+) which can be caused by a point muta-
tion in the  GABRG   2   gene which normally encodes 
the γ subunit of the GABA A R [ 4 ,  159 ]. However, 
many arguments have also been made that 
epilepsy cannot be explained solely by a defect 
in GABAR-mediated inhibition. Some of the 
opposing views have come from studies of 
GABAergic agonists, which exacerbate some 
types of seizures instead of inhibiting them. 
For example, drugs that enhance GABAergic 
inhibition increase absence seizures instead of 
suppressing them. The explanation is related to 
the actions of GABA at GABA B  receptors on 
thalamocortical relay cells. By enhancing the 
actions of GABA to hyperpolarize relay cells, 
T-type Ca 2+  current in relay cells are strongly 
deinactivated, leading to more robust bursts of 

action potentials in relay cells when the hyperpo-
larizations end; these rebound bursts drive the 
thalamocortical oscillation [ 58 ,  141 ]. 

 In the last 20 years, a wealth of new infor-
mation about GABA and GABARs has been 
published using animal models of epilepsy and 
clinical research. One of the complexities that 
has emerged is the plasticity of GABAergic 
mechanisms. This plasticity is remarkable 
because it involves many aspects of GABAergic 
transmission: the numbers of GABAergic neurons 
and the locations of their axons; the synthesis, 
release and uptake of GABA; and alterations in 
GABA receptors. Although the contribution of 
GABAergic mechanisms, and their plasticity, to 
epilepsy is still an area of active research, it 
seems unlikely that there is simply too little 
GABA in epilepsy – or too much. Instead, 
GABAergic transmission is very different in 
epilepsy compared to the normal brain. This 
concept, that GABAergic inhibition is not simply 
defi cient in epilepsy, is consistent with the rela-
tively normal function of individuals with epilepsy 
during the interictal state. 

 We discuss below the basic characteristics 
of GABAergic transmission in the normal and 
epileptic condition to clarify this idea. For the 
epileptic condition, we focus on temporal 
lobe epilepsy (TLE) where this concept appears 
to be particularly relevant. We also focus on the 
dentate gyrus (DG) in animal models where status 
epilepticus (SE) is used to produce spontaneous 
recurrent seizures and simulate acquired TLE. 
The reason for this focus is that the data that are 
available for this context are extensive. However, 
these models have been criticized because they 
do not simulate all aspects of TLE. 

 Most of the discussion below addresses the 
ways that GABAergic circuitry are changed by 
SE and alterations in GABA A Rs in DG granule 
cells (GCs). Presynaptic GABA A Rs and effects 
of GABA A Rs on other cell types are also impor-
tant to consider in the context of the DG and 
epilepsy, and are reviewed elsewhere [ 70 ]. 
Regulation of GABA A Rs by phosphorylation 
also has implications for the dynamics of 
GABAergic transmission in epilepsy; effects 
relevant to the DG are discussed below and 
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additional issues are described elsewhere [ 83 ,  155 ]. 
Finally, GABA B Rs clearly have a role in epilepsy, 
but are outside the scope of this discussion and 
readers are referred to excellent reviews pub-
lished previously [ 14 ,  84 ].  

11.2     GABAergic Transmission 
in the Normal Adult Dentate 
Gyrus (DG) 

11.2.1     GABAergic Neurons in the DG 
of the Adult Rodent 

 Figure  11.1  illustrates the fundamental circuitry 
of the DG in the normal adult rodent [ 2 ]. The 
principal cell of the DG is the granule cell (GC), 
which uses glutamate as its primary neurotrans-
mitter, but also has the capacity to synthesize 
GABA, especially after seizures (discussed further 
below). GCs also synthesize numerous peptides 
that are packaged in dense core vesicles and 
behave as co-transmitters [ 55 ]. The peptides are 
numerous: dynorphin [ 25 ], leu-enkephalin [ 153 ], 
brain-derived neurotrophic factor [ 125 ], and oth-
ers. The major afferent input to the GCs is the 
perforant path projection from entorhinal cortical 
neurons in layer II [ 161 ]. The GCs form the 
major output from the DG, the “mossy fi ber” 
pathway, which innervates neurons in the hilus 
and area CA3 [ 2 ]. There is another glutamatergic 
neuron in the DG, located in the hilus, which is 
called a mossy cell (for reviews see [ 53 ,  126 ]). 
The major afferent input to mossy cells comes 
from the GCs, and mossy cells project to GCs 
and GABAergic neurons within the DG [ 126 ].

   There are many other types of neurons in the 
DG, and they use GABA as a neurotransmitter. 
Most of the GABAergic neurons have an axon 
that projects primarily in the area surrounding the 
cell body, similar to other cortical circuits where 
most of the GABAergic neurons are local inter-
neurons. However, there are several subtypes of 
DG interneurons that also have axons that project 
to distant areas of the DG, such as the contralateral 
DG [ 34 ,  49 ]. Like GCs, GABAergic neurons of 
the DG also use peptides as co-transmitters [ 55 , 
 138 ], and after seizures, some of the peptides in 

GCs are the same peptides as those in GABAergic 
neurons (e.g., neuropeptide Y; NPY; [ 120 ]). 

 The primary type of GABAergic neuron in 
the DG is the basket cell, which makes basket-
like endings around GC somata. It initially was 
described as a pyramidal-shaped neuron with 
somata at the base of the GC layer (on the border 
of the GC layer and the hilus) but the location, 
somatic morphology and other characteristics are 
actually diverse [ 115 ]. Furthermore, some of the 
basket cells with pyramidal shaped somata have 
axons that project to the contralateral DG [ 49 ]. 
There also is variation in neuropeptide content in 
pyramidal-shaped GABAergic neurons, ranging 
from paravalbumin, cholecystokinin, to substance 
P [ 55 ,  81 ,  139 ]. Electrophysiologically, these 
cells also vary, although they fi t the general 
characteristics of interneurons because they have 
a very large afterhyperpolarization following 
single action potentials [ 115 ]. They inhibit their 
postsynaptic targets by opening chloride channels 
of GABA A Rs at the soma. Because the resting 
potential of GCs is close to the reversal potential 
for chloride or hyperpolarized to it, chloride entry 
depolarizes the GC rather than hyperpolarizing it, 
shunting currents that would otherwise reach 
threshold for action potential (AP) generation; 
for this reason, “shunting inhibition” is probably 
the main inhibitory effect of basket cells, rather 
than hyperpolarization. 

 Another very important inhibitory cell type 
also inhibits AP generation of GCs, but is slightly 
different because it primarily innervates the axon 
hillock, rather than the somata of GCs. This cell 
type, the axo-axonic cell, is similar to chandelier 
cells in neocortex [ 142 ] in that chandelier-type 
endings envelope the axon hillock of GCs. The 
cell bodies of axo-axonic cells are variable and 
many types of neuropeptides are co-localized 
with GABA. The intrinsic electrophysiology of 
axo-axonic cells is consistent with fast-spiking 
interneurons [ 22 ]. 

 Another type of DG interneuron is the so- 
called HIPP cell, named because it has a  Hi lar 
cell body and projects to the outer 2/3 of the 
molecular layer, where the  p erforant  p ath projec-
tion terminates. This neuronal subtype usually 
expresses somatostatin and NPY [ 145 ] and has 

11 Is Plasticity of GABAergic Mechanisms Relevant to Epileptogenesis?



136

axon collaterals primarily in the molecular layer 
[ 52 ], with a less dense projection in the hilus 
[ 35 ]. It has been suggested that it inhibits the 
EPSPs produced by the perforant path input, pre-
sumably by innervating GC dendrites and shunting 
EPSPs traveling to the GC soma. HIPP cells may 

also inhibit glutamate release from perforant path 
terminals because they make synapses on the 
terminals [ 80 ]. The electrophysiology of HIPP 
cells is characteristic of interneurons generally 
[ 44 ], but it has been noted that they are relatively 
slow spiking [ 2 ,  115 ] and have a pronounced 

  Fig. 11.1     DG      circuitry in the normal adult rodent 
and following status epilepticus (SE).  ( a ) Circuitry of 
the normal rodent DG is shown schematically. Cell bodies 
outlined in  green  are glutamatergic; those cells outlined 
in  red  are GABAergic.  Black circles  indicate the primary 
location of the somata;  grey circles  are secondary loca-
tions.  Gray rectangles  indicate the location of the axon 
terminals. Abbreviations of the lamina of the DG are as 
follows:  OML  outer molecular layer,  MML  middle 
molecular layer,  IML  inner molecular layer,  GCL  gran-
ule cell layer,  SGZ  subgranular zone. MOPP, molecular 
layer cell body, axon in the terminal fi eld of the perforant 

path; HIPP, hilar cell body, axon in the terminal fi eld of 
the perforant path. HICAP, hilar cell body, axon in the 
terminal field of the commissural/associational 
projection (Adapted from Freund and Buzsaki [ 42 ]). 
( b ) A summary of a. ( c ) Changes in the DG circuitry 
following SE are diagrammed. After SE, changes are as 
follows: GC axons sprout into the IML; newborn GCs 
are born and some migrate into the hilus and GCL; many 
mossy cells are lost (indicated by the  arrow ,  light cell 
body color  and  dotted line  around the axon plexus); 
some GABAergic neurons are lost and others sprout 
into several layers (For references, see text)       
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‘sag’ in response to hyperpolarizing current 
commands [ 89 ]. This cell type has attracted a lot 
of attention in epilepsy research because these 
cells are relatively vulnerable to insults or injury 
[ 116 ,  126 ]. Several mechanisms have been pro-
posed for their vulnerability, such as STAT3 
expression [ 29 ]. It has also been shown that 
p75 NTR  receptors are present on the septocholin-
ergic terminals that innervate the HIPP cells, and 
can cause their death when the septocholinergic 
pathway is lesioned [ 37 ,  38 ]. 

 Analysis of the numbers of GABAergic neu-
rons using immunocytochemical markers and 
stereological techniques has led to estimations 
that the majority of DG interneurons are basket 
cells or axo-axonic cells, which express parval-
bumin or CCK. The other major subtype of DG 
interneuron is hilar HIPP cells, which co-express 
GABA and NPY or somatostatin (for reviews see 
[ 55 ,  81 ]. However, many other types of DG inter-
neurons exist: MOPP cells [ 28 ], ivy cells and 
neurogliaform cells [ 3 ] and hilar neurons that 
innervate the inner molecular layer (HICAP 
cells; [ 51 ,  52 ]). 

 The major afferents to DG interneurons are 
the perforant path, GCs, and mossy cells. In addi-
tion, there is extrinsic input from the ascending 
serotoninergic, cholinergic, and noradrenergic 
nuclei. The primary effects appear to be inhibi-
tory [ 41 ]. In addition, there are additional inputs 
to the DG from areas outside the hippocampus 
that are not well understood functionally, such 
as the supramammillary input [ 74 ]. Many 
neuromodulators, such as endocannabinoids, 
have been shown to exert striking effects in the 
DG [ 40 ], but how all the neuromodulators act in 
concert in the awake behaving animal is still 
unclear.  

11.2.2     GABA Receptors in the Normal 
Adult GC 

 Post-synaptic GABA A Rs mediate most fast 
synaptic inhibition in the forebrain (Fig.  11.2 ). 
GABA A Rs are heteromeric protein complexes 
composed of multiple subunits that form ligand- 
gated, anion-selective channels whose properties 

are modulated by barbiturates, benzodiazepines, 
zinc, ethanol, anesthetics and neurosteroids. 
There are several different GABA A R subunit 
families and multiple subtypes exist within each 
of these subtypes (α1-6, β1-4, γ1-3, δ, ε, π, Ф). 
The most common GABA A R is the α1β2γ2 
subtype, but multiple subtype combinations exist 
and they vary in different brain regions and cell 
types, and during different times in development 
[ 73 ,  111 ,  134 ]. Subunit composition of GABA A Rs 
plays a major role in determining the intrinsic 
properties of each channel, including affi nity for 
GABA, kinetics, conductance, allosteric modula-
tion, probability of channel opening, interaction 
with modulatory proteins, and subcellular dis-
tribution [ 77 ,  97 ,  134 ]. For example, alterations 
in the α-subtype results in differences in receptor 
kinetics, membrane localization and GABA A R 
modulation by benzodiazepines and zinc [ 87 ,  97 , 
 140 ,  154 ]. In the GC, GABA A Rs that contain α1 
subunits paired with γ2 subunits are sensitive to 
benzodiazepines and generally located at the 
synapse, contributing to phasic inhibition, a 
term that refers to the effects of GABA released 
at GABAergic synapses that binds to postsyn-
aptic receptors located at the synaptic cleft. 
These effects are primarily related to increased 
conductance when chloride channels open, and 
hyperpolarization of postsynaptic membrane 
potential when chloride infl ux occurs. However, 
as mentioned above, when the postsynaptic 
membrane potential is hyperpolarized relative to 
E Cl− , which may occur in GCs, there is a depolar-
ization. GABA A Rs that contain α4 subunits have 
unique pharmacological properties, such as 
insensitivity to benzodiazepines and increased 
sensitivity to zinc blockade. Receptors con-
taining α4 subunits are most often found with the 
δ rather than the γ subunit in combination with 
αβ. These α4βδ GABA A Rs are localized to 
extrasynaptic sites and contribute to tonic 
inhibition, which refers to the basal inhibitory 
current produced by low concentrations of extra-
cellular GABA that are present outside of the 
synapse (resulting from diffusion from synaptic to 
extrasynaptic space). Under physiological condi-
tions, only a minor population of α4βγ2 GABA A Rs 
are found at synapses of GABAergic neurons on 
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GCs, where they are proposed to affect both the 
rise time and decay of synaptic currents [ 71 ].

11.2.3        Regulation of [Cl] i  in Early 
Development and Its 
Relevance to TLE 

 One of the characteristics of GABAergic inhibi-
tion at GABA A Rs that has implications for 
epilepsy – and has been studied extensively in 
the hippocampus in TLE – is the regulation of 
chloride fl ux through the GABA A R. The direc-
tion of chloride fl ux is regulated by many factors, 
and one source of regulation that has attracted a 
great deal of attention is the K + -Cl –  cotransporters 

KCC2 and NKCC1. KCC2 extrudes chloride 
normally, and NKCC1 transports chloride into the 
cell [ 7 ]. In early life, KCC2 expression is low 
and there is a relatively high concentration of 
intracellular chloride; chloride effl ux occurs 
when GABA binds to the GABA A R, leading to a 
depolarization [ 8 ,  27 ]. After maturation, KCC2 
expression increases and this leads to a lower 
[Cl – ] i  and chloride infl ux when GABA binds to 
GABA A Rs, leading to a hyperpolarization [ 106 ]. 
As mentioned above, an exception is the GC, 
which has a resting potential (−70 to –80 mV) 
that is usually negative to E Cl– . Therefore, in early 
life, a strong depolarization of GCs by GABA is 
predicted, and a smaller depolarization in adult-
hood compared to adulthood. 

  Fig. 11.2     GABA   A    receptor subunits in dentate gyrus 
(DG) granule cells (GCs) in the normal adult rodent 
and following SE.  ( a ) Control conditions. ( 1 ) The subunits 
of the GABA A  receptor (GABA A R) are diagrammed, with 
sites of modulation noted. The location of the K + Cl –  
cotransporters NKCC1 and KCC2 are depicted schemati-
cally. ( 2 ) An overhead view of a typical GABA A R in a 
normal adult GC. It has α1, β2/3 and γ2 subunits with two 
sites for GABA and a benzodiazepine (BZD) site for mod-
ulation. ( 3 ) The prototypical GABAergic neuron in the DG 
is the basket cell (triangle) which has an axon that encir-
cles GC somata, making periodic GABAergic synapses. 
( 4 ) A schematic of the GABAergic synapse in control con-
ditions has synaptic α1β2/3γ2 receptors and extrasynaptic 

receptors that contain different subunits (α4β2/3δ). ( b ) 
After SE, KCC2 expression decreases and the direction of 
chloride fl ux may change as a result. The expression of α1 
subunits decrease and α4 subunits increase. Other changes 
are altered sensitivity to modulators. ( 2 ) One of the changes 
in the GABA A Rs in the DG after SE is loss of benzodiaz-
epine sensitivity. ( 3 ) The pyramidal basket cell and its 
basket plexus appears to be similar after SE, although 
other GABAergic neurons are altered, and there may be 
changes in expression of various peptides. ( 4 ) The 
GABAergic synapse after SE has fewer α1 subunits and 
increased α4 subunits, which may become perisynaptic 
(indicated by a ?) (References are listed in the text. Parts 
1–2 of this fi gures were adapted from Jacob et al. [ 59 ])       

 

H.E. Scharfman and A.R. Brooks-Kayal



139

 The idea that GABA is depolarizing in early 
postnatal life has recently been contested because 
most data that led to the idea were collected in 
slices where truncation of neuronal processes 
leads to elevated [Cl – ] i  [ 15 ]. However,  in vivo  
studies have been conducted that are consistent 
with a depolarizing action of GABA in pyramidal 
neurons in neonatal life [ 9 ]. It remains to be 
determined exactly at what age these depolariz-
ing effects end; in rodents it seems likely to be 
the fi rst or second postnatal week [ 9 ,  15 ]. 

 In the DG, one might expect that the switch 
from depolarizing to hyperpolarizing effects of 
GABA would not be as important because GABA 
typically has a depolarizing effect on GCs regard-
less. However, the size of the depolarization will 
be substantially greater if KCC2 expression is low, 
and moreover, there are many cells besides GCs in 
the DG that will be affected; only the GC has a 
very high resting potential. There are also many 
types of GABAergic inhibition, not only postsyn-
aptic. If the GABA A R is presynaptic, for example, 
the net effect could very different if the terminal is 
depolarized or hyperpolarized by GABA. 

 There is also another process in the DG that is 
likely to be affected if the effects of GABA 
“switch” from depolarizing to hyperpolarizing – 
the maturation of GCs that are born postnatally, 
i.e., postnatal or “adult” neurogenesis [ 67 ]. 
GABA is a critical regulator of the maturation 
and migration of immature neurons in early life 
[ 24 ,  160 ]. GABA also infl uences maturation and 
migration of adult-born GCs [ 36 ]. In acquired 
TLE this is potentially important because animal 
models of TLE have shown that there is a large 
increase in proliferation of adult-born GCs after 
seizures [ 90 ], and the young GCs often mismi-
grate (discussed further below). It has been sug-
gested that these mismigrated GCs contribute to 
chronic seizures (discussed further below).   

11.3     Alterations in GABAergic 
Transmission in Animal 
Models of TLE 

 There are many types of TLE, and one of the 
ways to classify the types is based on whether 
the epilepsy appears to have been “acquired.” 

The term ‘acquired’ indicates that an insult or 
injury occurred prior to seizures and is likely to 
have caused the epilepsy. Acquired TLE has 
been simulated in laboratory animals by various 
insults or injuries that lead to a pattern of brain 
damage that is typical of TLE, called mesial tem-
poral  sclerosis (MTS; [ 127 ]). In general, MTS 
involves loss of a large number of CA1 and CA3 
pyramidal cells, with sparing of CA2 and GCs. 
Many hilar neurons are lost, and these include 
both mossy cells and HIPP cells [ 116 ]. Notably, 
there are individuals with acquired TLE that do 
not have this classic description of MTS, and ani-
mal models vary in the extent they simulate MTS 
[ 127 ]. However, the pattern has been the focus of 
the most research in TLE, based on the assump-
tion that this general pattern of neuropathology 
causes TLE or is very important to TLE. 

 One method that leads to a MTS-like pattern 
of neuropathology in adult rodents is induction 
of SE, either by injection of a chemoconvulsant 
such as kainic acid or pilocarpine, or electrical 
stimulation of hippocampus [ 31 ,  85 ,  95 ]. Here 
we will focus primarily on the SE models to 
study TLE in adult rodents, and use the data from 
SE models to address changes in GABAergic 
inhibition. We suggest that these changes involve 
plasticity of GABAergic mechanisms rather 
than simply an erosion or increase in the effects 
of GABA. 

11.3.1     Alterations in GABAergic 
Neurons After SE 

 Early observations that GABAergic neurons 
were decreased in neocortical epileptic foci pro-
duced by alumina gel in monkeys supported 
ideas that disinhibition may be the cause of 
epilepsy [ 100 – 102 ], particularly because the 
reduction in GABAergic neurons preceded epi-
lepsy [ 56 ,  103 ]. Chandelier cells appeared to be 
one of the subtypes that was affected, and it was 
suggested that loss of the chandelier subtype of 
GABAergic neuron would be most likely to cause 
disinhibition of cortical pyramidal cells because 
loss of only a few axo-axonic cells would sub-
stantially change the number of GABAergic 
terminals at the axon hillock [ 33 ]. 
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 However, as more animal models were 
examined, there was less enthusiasm for the idea 
that disinhibition was the fundamental cause of 
seizures. In seizure-sensitive gerbils [ 93 ], the 
audiogenic seizure model [ 110 ], and kainic acid 
model [ 32 ], GABAergic neurons were not always 
decreased [ 54 ]. In fact, some GABAergic neu-
rons increased their axon arbors, exhibiting axon 
sprouting (discussed further below). When 
GABA A R-mediated inhibition was examined, it 
was often strong rather than weak [ 11 ]. Therefore, 
even if some changes in these animal models 
involve disinhibition acutely, GABAergic neurons 
and GABA A R-dependent inhibition often show 
recovery and plasticity. 

 In the DG, an alternative hypothesis to disin-
hibition was suggested to address an animal 
model of TLE in which the perforant path of 
adult rats was stimulated electrically to simulate 
the precipitating insult in TLE. In this animal 
model, a 24 h period of intermittent perforant 
path stimulation in urethane-anesthetized rats led 
to a loss of ‘paired-pulse’ inhibition. Based on the 
results from these experiments, investigators sug-
gested that the basket cells, (defi ned by parvalbu-
min expression) were spared but there was loss of 
HIPP cells (defi ned by somatostatin expression) 
and mossy cells [ 135 ]. Because mossy cells 
appeared to be decreased in numbers, and there 
were suggestions in the literature that they inner-
vated basket cells, it was hypothesized that the 
parvalbumin-expressing basket cells lost afferent 
input from mossy cells and became ‘dormant’ 
and this led to disinhibition of GCs [ 136 ]. The 
hypothesis became known as ‘the dormant basket 
cell hypothesis.’ It was suggested that the hypoth-
esis explained epileptogenesis in acquired TLE: 
if an early insult or injury led to loss of vulnera-
ble mossy cells and HIPP cells, but GCs and bas-
ket cells were spared, the result would be 
disinhibition of GCs [ 6 ,  75 ]. 

 However, later studies led to some doubt that 
this hypothesis could explain acquired TLE [ 12 ]. 
An alternative hypothesis – the ‘irritable mossy 
cell hypothesis’ – suggested that mossy cells 
could cause GC hyperexcitability because the 
mossy cells, which project directly to GCs, devel-
oped increased excitability. This hypothesis was 

developed on the basis of recordings from mossy 
cells in slices after post-traumatic injury [ 113 , 
 114 ], another type of precipitating insult that 
leads to TLE. In addition, mossy cell hyperexcit-
ability was shown subsequently in slices from 
epileptic rats after SE [ 128 ]. 

 A result that argued against these two hypoth-
eses came from studies of animals with chronic 
epilepsy after kainic acid-induced SE. These 
experiments showed that there was an increase in 
paired-pulse inhibition of GCs, not a decrease 
[ 139 ]. In addition, slices from animals after SE 
did not exhibit spontaneous seizure-like activity, 
suggesting they had intact inhibition rather than 
weak inhibition. This was unlikely to be due to 
the differences in the SE model since ‘irritable 
mossy cells’ were observed, at least in one study 
of SE [ 128 ]. In slices, exposure of slices to 
GABA A R antagonists led to seizure-like activity 
that was more prolonged in slices from animals 
that had SE than slices from control rats. From 
these experiments, it was suggested that slices 
from animals with SE were hyperexcitable but it 
was normally masked by GABA A R-mediated 
inhibition [ 129 ,  147 ]. In slices from humans with 
intractable TLE, there was enhanced sensitivity 
to bicuculline [ 39 ]. These observations and others 
led to the idea that increased inhibition was 
present to compensate for underlying hyperex-
citability [ 147 ,  162 ]. Although in some cases the 
studies of animals with SE and intractable TLE 
refl ect differences in the models or the subtypes 
of TLE, here the data from different models and 
humans was consistent, making the observations 
compelling. 

 Although an attractive idea, GABAergic 
inhibition in the animal models of SE does 
not necessarily seem to be too strong, masking 
underlying hyperexcitability. For example, inter-
neurons exhibit axonal sprouting in the DG in 
animal models of TLE [ 5 ,  32 ,  151 ]. It is not clear 
that they simply extend their output, inhibiting 
more glutamatergic neurons than normal, because 
they innervate inhibitory neurons as well [ 137 ]. 
Interneurons develop abnormal glutamatergic 
input from sprouting of the GCs into the inner 
molecular layer (mossy fi ber sprouting; for 
review see [ 19 ]). The evidence for this is based on 
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staining of the mossy fi bers with Timm stain 
[ 137 ]. Electron microscopy of the mossy fi ber 
boutons in the inner molecular layer supported the 
idea that the sprouted mossy fi bers activate 
GABAergic basket cells [ 43 ]. In further support 
of this idea, it was suggested that normal mossy 
fi bers in the hilus and area CA3 primarily inner-
vate GABAergic neurons and primarily have an 
inhibitory effect on CA3 [ 1 ]. Moreover, GCs 
express GABA as well as glutamate after SE [ 50 ] 
and GABA release from GCs can be inhibitory 
[ 158 ] although the latest studies suggest this may 
be limited to GCs at an early stage of develop-
ment [ 23 ]. The vast majority of studies show that 
GCs in normal hippocampus excite their target 
cells [ 60 ,  122 ,  156 ]. In addition, when mossy fi ber 
synapses in the epileptic rat were quantifi ed in the 
inner molecular layer, the majority were located 
on GCs, not interneurons [ 19 ,  20 ]. 

 One way to reconcile the different data is to 
suggest that mossy fi bers have a large dynamic 
range, with fi lopodia that excite interneurons and 
massive boutons that excite principal cells. The 
outcome may depend on recent activity, which 
can potentially upregulate GABA expression, or 
alter the peptide content of the massive boutons 
so that they are more excitatory [ 123 ]. Other 
hypotheses suggest that mossy fi bers can be 
inhibitory to area CA3 pyramidal cells depending 
on the fi ring mode of GCs – after bursts of GC 
action potentials, excitation of pyramidal cells is 
transiently suppressed [ 82 ]. 

 As our experimental techniques improved, our 
understanding of the underlying changes became 
clearer. For example, initial assays to assess inhi-
bition measured paired-pulse inhibition which 
uses extracellular recordings and is not an 
extremely reliable measurement, because small 
changes in the stimulating or recording sites can 
alter the extent of inhibition even in the same 
preparation [ 157 ]. As patch clamp recordings 
developed, more indices of pre- and postsynaptic 
GABAergic inhibition became possible, and the 
results have shown that the GABAergic system in 
the DG is changed in diverse ways after SE, not 
always consistent with disinhibition of GCs, and 
not always consistent with hyperinhibition 
(Fig.  11.1b , c).  

11.3.2     Alterations in GABA Receptors 
in GCs After SE 

 During SE, inhibitory GABAergic synaptic trans-
mission in the DG becomes compromised, pre-
sumably due to the dramatic increase in activation 
of GABAergic neurons. Miniature inhibitory 
post-synaptic currents (mIPSCs) are reduced in 
GCs and the number of active GABA A Rs per GC 
decreases [ 26 ,  47 ,  86 ] via enhanced clathrin- 
dependent GABA A R internalization [ 48 ,  59 ]. 
In vitro studies using hippocampal neurons, 
stimulated with a buffer containing low magnesium 
to induce spontaneous recurrent epileptiform dis-
charges, showed a large decrease in GABA-gated 
chloride currents that correlated with reduced 
cell surface expression and intracellular accumu-
lation of GABA A Rs [ 13 ,  48 ]. In vivo studies 
using chemoconvulsants have shown that SE pro-
motes a rapid reduction in the number of physio-
logically active GABA A Rs in GCs that correlated 
with a reduction in the level of β2/β3 and γ2 
immunoreactivity present in the vicinity of a pre-
synaptic marker [ 86 ]. In fact, SE appears to trig-
ger subunit specifi c events to regulate the 
traffi cking of GABA A Rs by promoting the 
dephosphorylation of β3 subunits [ 47 ,  150 ]. 
Decreased phosphorylation of β3 increases the 
interaction of GABA A Rs with the clathrin- adaptor 
protein 2 (AP2), facilitating the recruitment of 
GABA A Rs into clathrin-coated pits and promot-
ing their removal from the plasma membrane [ 47 , 
 150 ]. In hippocampal slices obtained from mice 
after SE, increased GABA A R phosphorylation or 
blockade of normal AP2 function resulted in 
GABA A R accumulation at the plasma membrane 
and increased synaptic inhibition [ 150 ]. 

 Alterations in GABA A R subunit composition 
occur subsequent to SE in a number of animal 
models, and there is evidence that these changes 
my contribute to epileptogenesis [ 18 ,  72 ,  76 ,  92 , 
 144 ,  166 ]. SE results in changes in the expression 
and membrane localization (i.e., extrasynaptic 
vs. synaptic) of several GABA A R subunits (e.g., 
α1, α4, γ2, and δ) in GCs. Beginning soon after 
SE and continuing until and after the animals 
become epileptic, these alterations are associated 
with changes in phasic and tonic GABA A R- 

11 Is Plasticity of GABAergic Mechanisms Relevant to Epileptogenesis?



142

mediated inhibition, and in GABA A R pharma-
cology [ 21 ,  30 ,  45 ]. After pilocarpine-induced 
SE, GABA A R α1 subunit mRNA expression 
decreases, and GABA A R α4 subunit mRNA 
expression increases [ 18 ]. Changes in GABA A R 
function and subunit expression have also been 
observed in neurons from surgically resected hip-
pocampus of patients with intractable TLE; [ 17 , 
 143 ]. These alterations are associated with an 
increase in α4γ2 containing receptors, a reduc-
tion in α1γ2 containing receptors in the DG [ 76 ], 
and shift of α4-containing receptors from extra-
synaptic to synaptic and perisynaptic locations, 
which is likely to be related to the appearance of 
α4βγ2 receptors [ 146 ,  166 ]. Changes in expres-
sion and localization of α-subunits associated 
with changes in synaptic GABA A R composition 
result in a number of changes in synaptic inhibi-
tion in GCs, including diminished benzodiaze-
pine sensitivity, enhanced zinc sensitivity, 
reduced neurosteroid modulation, and dimin-
ished phasic inhibition in dendrites [ 21 ,  30 ,  45 , 
 146 ]. Preventing the reduction in GABA A R sub-
unit α1 expression after SE via viral-mediated 
transfer of an α1 subunit transgene in adult 
rodents reduced subsequent epilepsy develop-
ment, resulting in a three-fold increase in the 
mean time to the fi rst spontaneous seizure, and a 
decrease to 39 % of AAV-α1-injected rats devel-
oping spontaneous seizures in the fi rst 4 weeks 
after SE compared to 100 % of rats receiving 
sham injections [ 99 ]. Together, these data support 
a role for GABA A R α-subunit changes in the pro-
cess of epileptogenesis. 

 Receptors containing α4 subunits are most 
often found with the δ rather than the γ subunit in 
combination with αβ. These α4βδ GABA A Rs are 
localized to extrasynaptic sites and contribute to 
tonic inhibition. Under physiological conditions, 
only a minor population of α4βγ2 GABARs are 
found within GABAergic synapses on GCs, 
where they are proposed to affect both the rise 
time and decay of synaptic currents [ 71 ]. In par-
allel with the decrease in α1 subunit expression in 
GCs after SE, there is a marked increase in α4 
subunit expression that results in an increase in 
the abundance of α4γ2-containing receptors in 
synaptic and perisynaptic locations [ 146 ,  166 ] 
(see Fig.  11.2 ), along with the reduction in 

α1γ2- containing receptors [ 76 ]. The α4βγ2 
receptors may contribute to epileptogenesis, as 
α4-containing GABA A Rs have been shown to 
desensitize rapidly, especially when assembled 
with β3 subunits [ 71 ]. In addition, GABA A Rs 
containing the α4 subunit are very sensitive to 
zinc blockade, as are GABA A Rs on GCs in the 
epileptic brain [ 21 ,  30 ]. Zinc containing mossy 
fi ber terminals sprout from the granule cell layer 
of the hippocampus onto other GCs and into 
CA3, likely depositing zinc onto the newly 
formed α4βγ2 receptors causing a decreased 
response to GABA. Collectively these alterations 
may contribute to epilepsy development, phar-
macoresistance and further epilepsy progression. 

 GABA A R subunit alterations after SE are reg-
ulated by increased synthesis of brain-derived 
neurotrophic factor (BDNF) and activation of its 
receptors (TrkB and p75) that control a number 
of down-stream pathways, including Janus kinase 
(JAK)/Signal Transducer and Activators of 
Transcription (STAT), protein kinase C, and 
mitogen activated protein kinase (MAPK; [ 76 , 
 107 ,  108 ]). BDNF is known to enhance cAMP 
response element binding protein (CREB) 
phosphorylation through binding to TrkB recep-
tors [ 105 ,  163 ], and is also a potent regulator of 
inducible cAMP response element repressor 
(ICER) synthesis [ 57 ]. Using chromatin immu-
noprecipitation (ChIP) and DNA pulldown stud-
ies, it has been determined that there is increased 
binding of pCREB and ICER to the GABARα1 
gene promoter ( GABRA1-p)  in DG after SE [ 76 ]. 
BDNF regulation of ICER expression is medi-
ated by JAK/STAT pathway activation, specifi -
cally activation of pJAK2 and pSTAT3 [ 76 ]. 
pSTAT3 association with the STAT-recognition 
site on the ICER promoter is enhanced after SE 
in DG and inhibition of JAK/STAT signaling 
pathway with pyridone 6 (P6) in primary hippo-
campal cultures and  in vivo  in DG prior to SE 
blocks both ICER induction and decreased 
transcription of  GABRA1  [ 76 ]. These fi ndings 
suggest a specifi c signaling cascade involving 
BDNF, JAK/STAT, and CREB that is critical to 
the reported decreases in α1 subunit levels follow-
ing SE and may contribute to epileptogenesis. 
Increases in GABARα4 subunit are transcriptionally 
regulated by BDNF activation of the TrkB 
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receptor which leads to upregulation of the early 
growth response factor (Egr3) pathway via a 
PKC/MAPK-dependent pathway [ 107 ]. Egr3 
association with the early-growth response-
recognition (ERE) site on the  GABRA4  promoter 
is enhanced after SE in DG [ 107 ] (See Fig.  11.3 ).

11.3.3        Regulation of GABA in Early 
Development and Its 
Relevance to TLE 

 One of the themes in studies of animal models of 
TLE is the idea that the myriad of changes in hip-
pocampal structure and function that have been 
described are associated with a recapitulation of 
development that is caused by the epileptogenic 
insult. A robust example is the dramatic increase 
in the rate of adult neurogenesis in the DG after 
epileptogenic insults like SE. First noted by 
Bengzon et al [ 10 ] using stimulus-evoked 
afterdischarges, and Parent et al. [ 90 ] after 
pilocarpine- induced SE, the increase in the rate of 
adult neurogenesis after seizures, and particularly 
SE (in adult rodents), has been reproduced by 
many laboratories in response to virtually all 

epileptogenic insults: kindling, kainic acid or 
electrically- induced SE, or traumatic brain injury 
[ 121 ,  124 ]. 

 Initially it was suggested that many of the 
neurons that are born after SE do not survive 
long- term [ 90 ] which has also been shown by 
others [ 96 ] but a substantial fraction of newborn 
neurons can survive in some animal models, and 
these mismigrate into the hilar region, where they 
are called hilar ectopic GCs (hEGCs; [ 119 ]). Other 
adult-born GCs migrate correctly but develop 
abnormal dendrites in the hilus, called hilar basal 
dendrites [ 104 ,  133 ]. These neurons also appear 
to survive long- term and can be generated for a 
long-time after SE [ 62 ]. Another subset of GC 
that develops after SE and is abnormal develops 
an enlarged cell body (hypertrophy; [ 98 ]). The 
abnormal GCs are potentially important because 
they contribute to mossy fi ber sprouting, partic-
ularly hEGCs [ 69 ,  94 ,  119 ]. HEGCs participate 
in seizures in vivo [ 130 ] and their numbers 
are correlated with chronic seizure frequency 
[ 79 ]. Manipulations that reduce hEGC number 
reduce chronic seizure frequency after SE 
[ 63 ], although selective deletion of hEGCs is not 
yet possible. The hEGCs display a variety of 

  Fig. 11.3     Regulation 
of GABA   A    receptor 
expression after SE.  
BDNF regulates the fi nal 
composition of GABA A Rs 
by differentially altering 
the expression of α1 and 
α4 subunits. Both in vivo 
and in vitro evidence 
suggest that increased 
levels of BDNF following 
SE activate at least two 
different signaling 
pathways: JAK/STAT and 
PKC/MAPK, resulting in 
the down-regulation of α1 
subunits and the up-regula-
tion of α4 subunits, 
respectively (Reproduced 
from Gonzalez and 
Brooks-Kayal [ 46 ])       
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electrophysiological characteristics [ 61 ,  118 , 
 164 ,  165 ] which are unlike normal GCs. For 
these reasons, the neurons that hypertrophy, and 
the hEGCs, have been suggested to contribute to 
seizure generation [ 63 ,  68 ,  98 ,  117 ,  119 ]. 

 The plasticity of GABAergic mechanisms in 
animal models of TLE plays a potentially impor-
tant role in the development of abnormal GCs, 
and therefore the role these GCs play in seizure 
generation. In a study that used experimental 
febrile seizures to induce epilepsy later in life, 
febrile seizures caused mismigration of immature 
GCs into the hilus by changing the normal regu-
lation of migration by GABA acting at GABA A Rs. 
This study was important in showing that altering 
the normal effect of GABA by febrile seizures 
could cause aberrant circuitry that would persist 
long-term, potentially contributing to seizure 
generation. Interestingly, the way that GABA 
was altered was in the expression of GABA A Rs; 
more GABA A Rs were found by western blot after 
febrile seizures. In response to increased depolar-
ization by GABA, immature GCs migrated oppo-
site to their normal direction, into the hilus 
instead of the GC layer. Knockdown of NKCC1 
could block the formation of hEGCs and reduce 
the long-term effects [ 68 ]. The studies of Koyama 
and colleagues and Swijsen et al. [ 149 ], who also 
studied febrile seizures, both found increased 
β2/3subunits occurred in newborn GCs after 
febrile seizures [ 149 ]. Changes in α3 subunits 
were also noted by Swijsen et al. [ 148 ]. The 
results suggest that febrile seizures lead to long- 
lasting changes in the expression of GABA A Rs in 
the DG, and in the GCs that were born after 
febrile seizures. These effects could lead to life-
long reduction in limbic seizure threshold. They 
also may contribute to the comorbidities in TLE, 
such as depression [ 16 ,  66 ], a psychiatric condi-
tion where adult neurogenesis in the DG has been 
shown to play a critical role [ 112 ]. 

 Another study of adult rodents is also relevant 
to the formation of aberrant GCs in TLE. This 
study used pilocarpine-induced SE in adult 
rodents to ask how KCC2 is altered immediately 
after SE. The investigators showed that there 
was a downregulation of KCC2 in the DG after 

SE which would make GCs (both mature and 
immature GCs) depolarize more in response to 
GABA [ 91 ]. If the results of Koyama et al. [ 68 ] 
are correct, greater depolarization by GABA 
would be likely to foster mismigration of imma-
ture GCs. A similar phenomenon may explain 
why newborn neurons after SE, in the adult, mis-
migrate for long distances –it has been described 
that they migrate from the subgranular zone to 
the border of the hilus and area CA3 [ 118 ]. 
Together the new information about [Cl – ] i  regula-
tion are providing potential mechanisms underlying 
acquired epileptogenesis in the immature and 
mature brain. Although a great deal more informa-
tion will be necessary before new treatments can 
be developed based on the new hypotheses, NKCC1 
antagonists are already in clinical trial [ 64 ,  65 ].   

11.4     Summary 

 In the DG, the robust plasticity of GCs has been 
of avid interest because they upregulate numer-
ous proteins and exhibit robust sprouting of their 
axons after seizures. Although extensive studies 
of GABA in the DG have been made in TLE, the 
remarkable plasticity of GABAergic mechanisms 
is often not considered as much as development 
of disinhibition or hyperinhibition. Here we sug-
gest that there are numerous pre- and postsynap-
tic changes in GABAergic transmission, even if 
one only addresses GABAergic synapses on GCs 
and GABA A  receptors. Taken together, this plas-
ticity leads to more complexity of GABAergic 
transmission in the epileptic brain, not simply an 
increase or decrease. The idea that GABAergic 
inhibition is dramatically altered, rather than 
increased or decreased, is consistent with the 
diversity of results of past studies. Therefore, this 
perspective helps address some of the confl icts in 
the past. It also provides a different and potentially 
more accurate perspective that will facilitate 
antiseizure drug development.     
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    Abstract  

  Identifying the role of GABA neurons in the development of an epileptic 
state has been particularly diffi cult in acquired epilepsy, in part because of 
the multiple changes that occur in such conditions. Although once ques-
tioned, there is now considerable evidence for loss of GABA neurons in 
multiple brain regions in models of acquired epilepsy. This loss can affect 
several cell types, including both somatostatin- and parvalbumin- expressing 
interneurons, and the cell type that is most severely affected can vary 
among brain regions and models. Because of the diversity of GABA 
neurons in the hippocampus and cerebral cortex, resulting functional 
defi cits are unlikely to be compensated fully by remaining GABA neurons 
of other subtypes. The fundamental importance of GABA neuron loss in 
epilepsy is supported by fi ndings in genetic mouse models in which GABA 
neurons appear to be decreased relatively selectively, and increased 
seizure susceptibility and spontaneous seizures develop. Alterations in 
remaining GABA neurons also occur in acquired epilepsy. These include 
alterations in inputs or receptors that could impair function, as well as 
morphological reorganization of GABAergic axons and their synaptic 
connections. Such axonal sprouting could be compensatory if normal circuits 
are reestablished, but the creation of aberrant circuitry could contribute to 
an epileptic condition. The functional effects of GABA neuron alterations 
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thus may include not only reductions in GABAergic inhibition but also 
excessive neuronal synchrony and, potentially, depolarizing GABAergic 
infl uences. The combination of GABA neuron loss and alterations in 
remaining GABA neurons provides likely, though still unproven, substrates 
for the epileptic state.  

  Keywords  

  Inhibition   •   Plasticity   •   Seizures   •   Sprouting   •   Somatostatin   •   Parvalbumin  

  Abbreviations 

   CCK    Cholecystokinin   
  eGFP    Enhanced green fl uorescent protein   
  eYFP    Enhanced yellow fl uorescent protein   
  GABA    Gamma aminobutyric acid   
  GAD    Glutamic acid decarboxylase   
  NPY    Neuropeptide Y   
  PV    Parvalbumin   
  SOM    Somatostatin   
  s. oriens    Stratum oriens   
  TLE    Temporal lobe epilepsy   
   uPAR     Urokinase plasminogen activator 

receptor   

12.1           Introduction 

 The question of whether GABA neuron loss 
gives rise to the epileptic state in acquired 
epilepsy has persisted for many years. Indeed, 
even the occurrence of GABA neuron loss was 
questioned at one time. While progress has 
been made, and a loss of GABA neurons has 
been convincingly identifi ed in humans with tem-
poral lobe epilepsy (TLE) and in many related 
animal models, determining the functional 
consequences of GABA neuron loss in epilepsy 
remains a major challenge. This review will focus 
on some of the complexities associated with 
interneuron loss and their role in epilepsy and 
suggest that GABA neuron loss could indeed 
give rise to the epileptic state through both direct 
and indirect routes.  

12.2     Loss of GABA Neurons Is a 
Consistent Finding in Models 
of Acquired Epilepsy 

 Interneuron loss is one of the most frequently 
observed alterations in models of TLE, and the 
consistency of GABA neuron loss provides a 
solid base for suggesting the potential importance 
of this alteration in creating an epileptic state. 
Although loss of GABA neurons has been 
identifi ed in multiple brain regions, loss of 
somatostatin (SOM)-expressing GABA neurons 
in the hilus of the dentate gyrus remains one 
of the clearest and most consistent fi ndings 
(Fig.  12.1a ,  b ). Loss of these GABA neurons has 
been found in virtually all models of acquired 
epilepsy, including kindling, status epilepticus and 
traumatic brain injury models [ 7 ,  25 ,  32 ,  44 ,  45 ]. 
Importantly, loss of SOM/GABA neurons in the 
dentate hilus is also found in human TLE, as part 
of the broader loss of neurons in typical hippo-
campal sclerosis, as well as in pathological 
conditions with more limited cell loss such as 
end-folium sclerosis [ 14 ,  35 ,  42 ,  48 ,  49 ].

   SOM neurons in stratum oriens (s. oriens) of 
CA1 are also among the vulnerable interneurons in 
several models of acquired epilepsy [ 1 ,  11 ,  27 ,  36 ]. 
As SOM neurons in both the hilus and s. oriens 
provide GABAergic innervation of dendrites of 
granule cells and pyramidal cells, respectively, 
they are ideally positioned to control excitability 
of the principal cells directly at the sites of their 
major excitatory inputs. This pattern of GABA 
neuron loss has led to the suggestion that 
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 interneurons that provide dendritic innervation are 
more vulnerable to damage in epilepsy than those 
which provide primarily perisomatic innervation, 
such as basket cells and axo- axonic cells, many 
of which express the calcium binding protein parv-
albumin (PV). Electrophysiological fi ndings of 
decreased dendritic inhibition, with preservation of 
somatic inhibition, in pyramidal cells of CA1 in 
models of recurrent seizures support this idea [ 11 ]. 

 While the distinction between dendritic and 
perisomatic innervation provides a useful frame-
work for considering GABA neuron loss, the dif-
ferences in vulnerability among the broad types 

of interneurons are not clear-cut, and additional 
complexities exist. While PV-expressing neurons 
are a major source of perisomatic innervation of 
pyramidal cells in the hippocampus, cholecystokinin 
(CCK)-expressing interneurons also provide 
perisomatic innervation of these neurons in CA1 
[ 3 ,  23 ]. In a mouse pilocarpine model of recur-
rent seizures, this CCK innervation appeared to 
be decreased while the PV innervation was 
preserved [ 51 ]. This could create an imbalance in 
perisomatic control that could favor synchroniz-
ing actions of PV basket cells, with loss of major 
modulatory inputs from CCK neurons. 

  Fig. 12.1    Comparisons of somatostatin (SOM)- and 
 parvalbumin (PV)-labeled neurons in the rostral dentate 
gyrus of control (a) and pilocarpine (Pilo)-treated 
(b) mice. ( a ) In the control dentate gyrus, cell bodies of 
SOM neurons are located primarily within the hilus 
(H) whereas those of PV neurons are positioned 
 predominantly along the base of the granule cell layer 
(G). PV-labeled axon terminals are concentrated in 

 perisomatic locations within the granule cell layer 
( arrows ) while SOM terminal fi elds are located in den-
dritic regions in the outer molecular layer (not shown). 
( b ) In the pilocarpine-treated mouse at 2 months after 
status epilepticus, a severe loss of SOM neurons is evi-
dent in the hilus whereas many PV neurons and their 
axon terminals ( arrows ) in the granule cell layer are pre-
served. Scale bars, 100 μm       
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 Perisomatic innervation includes both basket 
cells and axo-axonic cells [ 22 ], and these cell 
types could be affected differentially in epilepsy. 
Decreased innervation of the axon initial segment 
by PV-expressing axo-axonic neurons has been 
found in the hippocampus and cerebral cortex 
in several epilepsy conditions, suggesting that 
axo- axonic cells could be more vulnerable than 
basket cells [ 13 ,  15 ,  41 ]. 

 Thus loss of PV neurons can occur and has 
been described in the dentate gyrus in several 
animal models, without distinctions between 
basket cells and axo-axonic cells [ 1 ,  25 ,  29 ]. 
However, when both PV and SOM neurons have 
been studied in the same animals, the loss of 
PV-expressing neurons in the dentate gyrus is 
generally less severe than that of SOM interneu-
rons [ 7 ] (Fig.  12.1a ,  b ). 

 A decrease in numbers of PV-expressing inter-
neurons has now been identifi ed in several other 
regions of the hippocampal formation where 
their loss could be particularly important in regu-
lating activity within the broader hippocampal 
circuit. A signifi cant decrease in PV neurons has 
been identifi ed in layer II of the entorhinal cortex 
where loss of these neurons could contribute to 
increased excitability of the perforant path input 
to the dentate gyrus [ 30 ]. Interestingly, lower 
densities of PV-containing neurons have also 
been identifi ed in the subiculum, where their loss 
could lead to increased excitability of this major 
output region of the hippocampal formation, a 
region that is otherwise generally well preserved 
[ 2 ,  16 ]. 

 Thus decreases in both SOM and PV neurons 
can occur in epilepsy, and the particular pattern 
of loss may vary among epilepsy models, species, 
brain regions and even rostral-caudal levels of 
the hippocampal formation. The types of GABA 
neurons that are affected remain important as 
they will determine the specifi c functional effects. 
However, loss of GABA neurons remains a 
unifying theme. 

 Despite strong evidence for GABA neuron 
loss in many brain regions, direct relationships to 
the epileptic state have been diffi cult to demonstrate. 
This could be in part because GABA neuron 

loss does not occur in isolation in most forms of 
acquired or lesion-induced epilepsy. In human 
TLE and related epilepsy models, extensive cell 
loss can occur in many regions, including CA1 
and CA3 as well as the dentate hilus and extra-
hippocampal regions. This neuronal loss gener-
ally involves both principal cells and interneurons, 
making it more diffi cult to link GABA neuron 
loss directly to development of an epileptic state. 
However, fi ndings in several genetic mouse 
models provide support for the importance of 
GABA neuron loss in the development of 
epilepsy, and these fi ndings also have relevance 
for acquired epilepsy.  

12.3     Selective Loss of GABA 
Neurons Can Lead 
to an Epileptic State 
in Genetic Models 

 Some of the strongest evidence for loss of GABA 
neurons giving rise to the epileptic state has come 
from genetically-modifi ed mice in which GABA 
neurons are selectively affected, and increased 
seizure susceptibility and spontaneous seizures 
occur. In mice with loss of the  Dlx1  gene, a 
transcription factor that regulates development of 
GABAergic interneurons originating in the medial 
ganglionic eminence, there is a time- dependent 
reduction in the number of  interneurons in the 
cerebral cortex and hippocampus and develop-
ment of an epilepsy phenotype [ 10 ]. SOM and 
calretinin-expressing neurons were reduced in 
number whereas PV-expressing neurons appeared 
to be unaffected. Because the loss of GABA 
neurons is apparently selective in these mice, the 
fi ndings provide strong support for loss of GABA 
neurons giving rise to an epileptic state and also 
suggest that the loss of GABA neurons does not 
need to be extensive. In these mice, behavioral 
seizures were selectively induced by mild 
stressors by 2 months of age when there was an 
approximately 22 % reduction in GAD67- labeled 
neurons in the cerebral cortex and 24 and 29 % 
reduction in the dentate gyrus and CA1 respectively. 
Comparable or even greater GABA neuron loss 
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has been observed in the hippocampal formation 
in models of acquired epilepsy [ 37 ,  50 ]. 

 Similarly, in mice with mutation of the gene 
encoding urokinase plasminogen activator receptor 
( uPAR ), a key component in hepatocyte growth 
factor activation and function, interneuron migra-
tion is altered, and the mice have a nearly complete 
loss of PV neurons in the anterior cingulate and 
parietal cortex [ 40 ]. These mice also developed 
spontaneous myoclonic seizures and increased sus-
ceptibility to pharmacologically- induced convul-
sions. Thus the apparently selective loss of either of 
two major groups of interneurons supports the 
importance of GABA neuron loss in the develop-
ment of epilepsy.  

12.4     Remaining GABA Neurons 
Could Play a Critical Role in 
Development of Epilepsy 

 Despite clear evidence for loss of GABA neurons 
in virtually all models of acquired epilepsy and 
human TLE, some GABA neurons invariably 
remain, and alterations in these neurons could 
contribute to the creation of an epileptic condi-
tion. Indeed, it may be diffi cult to separate the 
effects of loss of GABA neurons from altered 
function of remaining neurons as the initial loss 
of GABA neurons may be a stimulus for the sub-
sequent changes in remaining GABA neurons. 
Critical changes may include impaired function 
of remaining GABA neurons and morphological 
reorganization of remaining interneurons that 
could lead to altered or aberrant circuitry. 

12.4.1     Impaired Function of 
Remaining Interneurons 

 Remaining GABA neurons often appear particu-
larly prominent in tissue from animal models of 
epilepsy, and the preservation of some GABA 
neurons has suggested that GABA neuron loss 
may be of limited importance in establishing the 
epileptic state. However, the function of remain-
ing GABA neurons could be altered, leading to 

inadequate control of principal cell activity. In the 
dentate gyrus and hippocampus, the functional 
state of remaining basket cells has been debated 
for many years. Specifi c details of the “dormant 
basket cell” hypothesis [ 46 ,  47 ] have been ques-
tioned, including the role of hilar mossy cell loss 
in reducing basket cell activity [ 5 ,  18 ]. However, 
the broad suggestion that basket cells and other 
GABAergic neurons might be functioning sub-
optimally due to decreased or impaired excitatory 
input remains plausible. Recent studies have 
identifi ed defi cits in basket cell function in the 
dentate gyrus that could indicate a decrease in 
excitatory afferent input or reduction of the readily 
releasable pool of synaptic vesicles, in association 
with an increased failure rate at basket cell to 
granule cell synapses [ 53 ]. 

 Alterations in the receptors and channels of 
remaining GABA neurons also could reduce the 
activity of these neurons. In both the rat and 
mouse pilocarpine model, expression of the δ 
subunit of the GABA A  receptor is increased in 
subgroups of GABA neurons in the dentate gyrus 
[ 38 ,  52 ]. As GABA A  receptors expressing the δ 
subunit are responsible for the majority of tonic 
inhibition in these neurons [ 24 ], an increase in δ 
subunit expression in interneurons could reduce 
their excitability and impair inhibitory control of 
the network [ 38 ]. Recent studies have demon-
strated that tonic inhibition is indeed enhanced in 
fast-spiking basket cells of the dentate gyrus at 
1 week after pilocarpine-induced status epilepti-
cus [ 52 ]. However, additional changes, including 
decreased KCC2 expression in the basket cells, 
appeared to compensate partially for the increased 
tonic inhibition of the basket cells, and dentate 
excitability was not increased. Nevertheless, 
simulation studies suggested that the changes in 
tonic inhibition, in combination with other recog-
nized alterations in dentate gyrus circuitry in 
epilepsy models, could lead to increased granule 
cell fi ring and self-sustained seizure-like activity 
in a subset of simulated networks [ 52 ]. Thus 
occasional alterations in interneuron activity, 
when combined with other changes in the network, 
may be suffi cient to overrule compensatory 
changes and lead to sporadic seizure activity. 
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While regulation of δ subunit-containing GABA A  
receptors by neurosteroids and other endogenous 
modulators could play important roles [ 21 ], 
changes in numerous other channels and recep-
tors in remaining GABAergic interneurons could 
reduce their effectiveness and contribute to the 
epileptic state. 

 Functional alterations in interneurons and 
their relationship to seizure activity are demon-
strated convincingly in genetic mouse models in 
which specifi c channels have been deleted rela-
tively selectively in interneurons. As a key example, 
loss of the alpha subunit of the Na v 1.1 sodium 
channel, that is encoded by the  SCN1A  gene, 
impairs sodium currents more severely in 
GABAergic neurons than in pyramidal cells [ 8 , 
 17 ,  34 ]. Such changes limit the ability of the 
inhibitory interneurons, including PV neurons, to 
fi re action potentials at high frequency, and the 
animals develop spontaneous generalized seizures. 

 Similarly, loss of function of the Ca V 2.1 
voltage- gated Ca 2+  channel reduces GABA 
release from cortical PV neurons, and generalized 
seizures occur in mice with such loss [ 43 ]. While 
decreased expression of this calcium channel was 
found in both PV and SOM neurons, only the 
loss in fast spiking, presumably PV, interneurons 
led to spontaneous seizures. Compensation by 
N-type Ca 2+  channels appeared to maintain func-
tion of the SOM interneurons but was insuffi cient 
for adequate function of the PV neurons. 

 Finally, elimination of the voltage-gated 
potassium channels of the Kv3 subfamily, that 
are particularly prominent in fast-spiking inter-
neurons in the deep layers of the neocortex, led to 
an inability of these interneurons to fi re at their 
normal high frequency and an increased suscepti-
bility to seizures [ 31 ]. 

 Thus in several genetic models, impairment of 
fast-spiking PV neurons, particularly a reduction 
in their ability to fi re action potentials at high fre-
quency, can lead to increased seizure susceptibility. 
Although these functional defi cits are induced by 
specifi c genetic modifi cations, similar alterations 
in remaining GABA neurons may occur in 
acquired epilepsy, and even small functional 
impairment in remaining neurons could tip the 
balance toward seizure activity.  

12.4.2     Morphological Reorganization 
of Remaining Interneurons 

 Clear demonstrations of loss of GABA neurons 
in acquired epilepsy have often been obscured 
by the plasticity of remaining interneurons. 
Remaining GABA neurons frequently express 
increased levels of GABA neuron markers, 
including the mRNA and protein of two isoforms 
of the GABA synthesizing enzyme, glutamic acid 
decarboxylase 65 and 67 (GAD65 and GAD67), 
as well as GABA [ 9 ,  19 ,  20 ]. Similarly the expres-
sion of peptides such as SOM and neuropeptide Y 
(NPY) within specific subclasses of GABA 
neurons are frequently upregulated [ 6 ,  33 ,  44 ]. 
These changes can be substantial and, during the 
chronic period, labeling of remaining GABA 
neurons can be quite strong and can suggest that 
either little loss of GABA neurons has occurred 
or that axons of remaining GABA neurons have 
sprouted [ 12 ]. It has remained particularly diffi -
cult to distinguish morphological growth and 
reorganization of GABAergic axons from an 
increase in GABAergic markers within remaining 
neurons [ 4 ,  27 ]. 

 Additional support for sprouting of existing 
SOM neurons in the dentate gyrus has been 
obtained from mice that express enhanced green 
fl uorescent protein (eGFP) in a subgroup of SOM 
neurons [ 54 ]. By studying the labeled interneu-
rons in pilocarpine-treated mice, Buckmaster and 
colleagues demonstrated that SOM neurons that 
survive in the ventral (caudal) dentate gyrus can 
re-innervate the outer half of the dentate gyrus 
that was partially deafferented by loss of hilar 
SOM neurons. Such reorganization has generally 
been presumed to be compensatory as remaining 
GABA neurons are replacing the innervation of 
neurons of a similar type and function [ 26 ,  54 ]. 

 Axonal reorganization of remaining GABA 
neurons can also create aberrant GABAergic cir-
cuitry as has been observed in the rostral dentate 
gyrus in the pilocarpine mouse model [ 39 ]. 
Apparent reinnervation of the dentate molecular 
layer was observed during the chronic period, 
but, in contrast to the previous study, few remaining 
SOM neurons were found in the rostral hilus. 
To determine if the innervation could be derived 
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from other sources, SOM neurons in s. oriens 
of control and pilocarpine-treated SOM-Cre 
recombinase mice were selectively labeled with a 
viral vector containing Cre-dependent channel-
rhodopsin2 (ChR2) fused to enhanced yellow 
fl uorescent protein (eYFP). In control mice, the 
axons of many labeled SOM neurons in s. oriens 
formed a dense plexus of fi bers in s. lacunosum- 
moleculare of CA1 (Fig.  12.2a ,  c ). This plexus 

was sharply delineated by the hippocampal fi ssure, 
and relatively few fi bers crossed the fi ssure to 
enter the adjacent molecular layer of the dentate 
gyrus (Fig.  12.2c ). In contrast, in pilocarpine-
treated mice, an extensive axonal plexus of 
eYFP-labeled fi bers was evident in the outer 
two-thirds of the dentate gyrus during the chronic 
period (Fig.  12.2b ,  d ). Thus SOM neurons in 
s. oriens exhibited an unexpected capacity for 

  Fig. 12.2    Axonal reorganization of remaining somatostatin 
(SOM) neurons in pilocarpine (Pilo)-treated mice at 
2 months after status epilepticus, illustrated schematically 
in (a, b) and in confocal images in (c, d). ( a ) This sche-
matic illustrates the normal circuitry of SOM neurons in 
the hilus ( red ) and s. oriens ( green ) and the labeling 
protocol. In a control SOM-Cre mouse, selective labeling 
of SOM neurons in s. oriens (O) of CA1, by Cre-dependent 
AAV transfection of ChR2-eYFP, leads to labeling of 
their axon terminals that are confi ned to s. lacunosum-
moleculare (LM). SOM neurons ( red ) in the hilus (H) 
innervate the outer molecular layer (M) of the dentate 
gyrus where they form synapses with dentate granule cells 
( G, blue ). These hilar SOM neurons are not labeled by the 
injection in s. oriens. ( b ) In pilocarpine- treated mice, 

similar labeling of SOM neurons in s. oriens leads to 
axonal labeling not only in s. lacunosum- moleculare of 
CA1 but also in the molecular layer of the dentate gyrus, 
a region that was previously innervated by vulnerable 
SOM neurons ( red ) in the hilus. ( c ) In a control SOM-Cre 
mouse, eYFP-labeled axons are concentrated in s. lacuno-
sum-moleculare (LM), and only a limited number of 
labeled fi bers cross the hippocampal fi ssure ( dashed line ) 
to enter the molecular layer (M) of the dentate gyrus. 
( d ) In a similarly transfected pilocarpine-treated mouse, 
numerous labeled fi bers cross the hippocampal fi ssure and 
form an extensive plexus in the outer two-thirds of the 
dentate molecular layer, where they innervate dentate 
granule cells. Scale bars, 20 μm (Adapted from data in 
Peng et al. [ 39 ])       
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morphological growth and reorganization, and 
created an aberrant circuit between hippocampal 
interneurons in s. oriens and granule cells of the 
dentate gyrus. The reorganized axons formed 
symmetric synaptic contacts with presumptive 
granule cell dendrites and spines, and optoge-
netic stimulation demonstrated that activation of 
the reorganized neurons produced GABAergic 
inhibition in dentate granule cells [ 39 ].

   The  in vivo  effects of the altered circuit are not 
known, but it is unlikely to provide normal con-
trol of granule cell activity. Because the reorga-
nized fi bers originated from GABA neurons in 
s. oriens of CA1, they would not receive the nor-
mal input from dentate granule cells that would 
be required for effi cient feedback inhibition. 
However, strong activity of CA1 pyramidal cells 
could potentially activate these SOM neurons 
and produce inhibitory responses in the granule 
cells, although through an indirect circuit with 
presumably altered timing. 

 These results emphasize that the reemergence 
of a GABAergic axonal plexus does not necessar-
ily indicate establishment of normal circuitry, and 
the reorganized circuit could be ineffective in con-
trolling activity of principal cells. Such fi ndings 
demonstrate yet another way in which GABA neu-
ron loss could lead to altered inhibitory control 
and thus contribute to an epileptic state.   

12.5     Replacement of GABA 
Neurons Supports Their 
Functional Importance 
in Epilepsy 

 Recent studies of transplantation of GABA 
neurons in the hippocampal formation of 
pilocarpine- treated mice support contributions of 
GABA neuron loss to the epileptic state [ 28 ]. 
After GABA neuron transplantation in the hip-
pocampal formation, the number of spontaneous 
seizures in these mice was reduced, despite the 
maintained presence of mossy fi ber sprouting in 

the inner molecular layer and, presumably, loss 
of mossy cells in the dentate hilus. While these 
fi ndings are consistent with a loss of GABA 
neurons leading to the epileptic state, it remains 
possible that the transplanted GABA neurons 
could be counteracting other fundamental 
epilepsy- producing alterations through compen-
satory increases in inhibition.  

12.6     GABA Neuron Loss Has 
Multiple Effects in Epilepsy 

 Loss of even a small fraction of GABA neurons 
can have profound functional effects due to the 
innervation of numerous principal cells by the 
expansive axonal plexus of many interneurons. 
However the effects of an initial loss of GABA 
neurons could be enhanced further by alterations 
of remaining GABA neurons. Despite having 
some basic compensatory effects, the remaining 
GABA neurons could contribute periodically to 
the epileptic state through multiple mechanisms. 
These could include creation of excessive 
synchronous activity within the network and an 
inability of aberrant GABAergic circuitry to 
respond appropriately when increased inhibitory 
control is required. While still speculative, there 
is increasing evidence that GABA neuron loss, 
through both direct and indirect mechanisms, 
could give rise to the epileptic state.     
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    Abstract  

  Many patients with temporal lobe epilepsy display structural changes in the 
seizure initiating zone, which includes the hippocampus. Structural changes 
in the hippocampus include granule cell axon (mossy fi ber) sprouting. 
The role of mossy fi ber sprouting in epileptogenesis is controversial. 
A popular view of temporal lobe epileptogenesis contends that precipitating 
brain insults trigger transient cascades of molecular and cellular events that 
permanently enhance excitability of neuronal networks through mechanisms 
including mossy fi ber sprouting. However, recent evidence suggests there is 
no critical period for mossy fi ber sprouting after an epileptogenic brain injury. 
Instead, fi ndings from stereological electron microscopy and rapamycin-
delayed mossy fi ber sprouting in rodent models of temporal lobe epilepsy 
suggest a persistent, homeostatic mechanism exists to maintain a set level of 
excitatory synaptic input to granule cells. If so, a target level of mossy fi ber 
sprouting might be determined shortly after a brain injury and then remain 
constant. Despite the static appearance of synaptic reorganization after its 
development, work by other investigators suggests there might be continual 
turnover of sprouted mossy fi bers in epileptic patients and animal models. 
If so, there may be opportunities to reverse established mossy fi ber sprout-
ing. However, reversal of mossy fi ber sprouting is unlikely to be antiepilep-
togenic, because blocking its development does not reduce seizure frequency 
in pilocarpine-treated mice. The challenge remains to identify which, if any, 
of the many other structural changes in the hippocampus are epileptogenic.  
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13.1         Introduction 

 Temporal lobe epilepsy is common and its under-
lying mechanisms remain unclear [ 12 ]. Many 
patients have a history of an initial brain insult 
followed by a latent period [ 30 ]. A common view 
of temporal lobe epileptogenesis is that during 
the latent period, cascades of molecular and 
cellular events together alter the excitability of 
neuronal networks, ultimately causing spontaneous 
seizures [ 38 ]. According to this view, following 
an injury there is a critical period when tempo-
rary treatment might permanently prevent network 
reorganization. Substantial network reorganiza-
tion occurs in the hippocampus of many patients 
with temporal lobe epilepsy [ 29 ]. The hippocampus 
is prone to epileptic activity [ 40 ] and is a site of 
seizure initiation in patients [ 37 ,  45 ]. Therefore, 
it is logical to ask whether structural changes in 
the hippocampus give rise to the epileptic state 
and whether blocking the development of 
structural changes during a critical period would 
prevent epileptogenesis. Structural changes in 
the hippocampus of patients with temporal lobe 
epilepsy include specifi c patterns of neuron loss 
[ 29 ], including inhibitory interneurons [ 11 ], 
hypertrophy of some surviving interneurons 
[ 28 ], GABAergic axon sprouting [ 1 ], dispersion 
of granule cells to ectopic locations [ 19 ], exces-
sive development of hilar basal dendrites on 
granule cells [ 53 ], and mossy fi ber sprouting 
(reviewed in [ 2 ]). 

 Philip Schwartzkroin’s research included work 
on mossy fi ber sprouting. His laboratory’s slice 
experiments on tissue resected to treat patients 
revealed a general correlation between mossy 
fi ber sprouting and hyperexcitability [ 13 ]. In 
those experiments, intracellular labeling and elec-
tron microscopy showed sprouted mossy fi bers 
synapsing with dendrites of granule cells and 
interneurons. Those fi ndings were supported and 
extended by experiments with kainate-treated rats 
that included evidence of autaptic synapses by 
sprouted mossy fi bers [ 58 ]. However, Phil and 
colleagues cautioned that the results provided no 
direct evidence that mossy fi ber sprouting was either 
necessary or suffi cient for hyperexcitability [ 13 ]. 

Phil and colleagues characterized mossy fi ber 
sprouting in other animal models, including 
p35-defi cient mice with cortical dysplasia [ 57 ], 
different mouse strains treated with kainic acid 
[ 31 ], and infant monkeys after limbic status 
epilepticus [ 16 ,  56 ]. Phil’s laboratory also helped 
localize the zinc transporter- 3 to mossy fi ber syn-
aptic vesicle membranes [ 55 ], which has become 
a useful marker for visualizing mossy fi ber 
sprouting. 

 Despite much investigation, the role of mossy 
fi ber sprouting in epileptogenesis remains 
unclear and controversial. It has been proposed 
to be proepileptogenic [ 48 ], antiepileptogenic 
[ 44 ], and an epiphenomenon [ 15 ]. Recent evi-
dence reviewed here raises questions about 
whether there is a critical period for mossy fi ber 
sprouting after epileptogenic injuries and 
whether mossy fi ber sprouting contributes to the 
generation of spontaneous seizures.  

13.2     Is Mossy Fiber Sprouting a 
Homeostatic Mechanism? 

 Neuron loss in the hilus of the dentate gyrus is a 
common structural change in patients with tem-
poral lobe epilepsy [ 29 ] that is replicated in 
animal models. Nadler et al. (1980) fi rst showed 
that the excitotoxin kainic acid kills hilar neurons, 
whose axons degenerate in the inner third of the 
molecular layer into which mossy fi bers later 
sprout. To quantify the initial loss of synapses 
onto granule cell proximal dendrites in the inner 
molecular layer and the later restoration of excit-
atory synaptic input from sprouted mossy fi bers, 
we used stereological electron microscopy to 
evaluate a rat model of temporal lobe epilepsy 
[ 49 ]. Tissue was obtained: (1) from rats 5 days 
after pilocarpine-induced status epilepticus to 
measure loss of synaptic input to granule cells 
before axon sprouting had occurred and (2) after 
mossy fi ber sprouting was well established 
3–6 months after status epilepticus. Numbers of 
granule cells were estimated from Nissl stained 
sections. Numbers of excitatory synapses in the 
molecular layer, where granule cell dendrites 
extend, were estimated in serial electron micrographs 

P.S. Buckmaster



163

that had been processed by post- embedding 
immunocytochemistry for GABA to avoid counting 
inhibitory synapses. Subsequently, numbers of 
excitatory synapses per granule cell were calculated 
for each rat (Fig.  13.1a ). Analysis of the inner 
third of the molecular layer revealed that the 
number of excitatory synapses per granule cell 
decreased to only 38 % of controls by 5 days after 
pilocarpine-induced status epilepticus (Fig.  13.1b ). 
This substantial loss of synapses probably is 
attributable primarily to loss of hilar mossy cells. 
Mossy cells, which were fi rst characterized elec-
trophysiologically by intracellular recording and 
anatomical labeling techniques in Phil’s labora-
tory [ 39 ], project most of their axon collaterals to 
the inner molecular layer of the dentate gyrus 
where they form glutamatergic synapses with 
proximal dendrites of granule cells [ 6 ,  8 ,  54 ]. 
Epileptogenic injuries, like status epilepticus, kill 
mossy cells [ 4 ] and thereby denervate proximal 
dendrites of granule cells. The extent of mossy 
cell loss correlates with the extent of mossy fi ber 
sprouting [ 23 ]. However, mossy cell loss alone is 
insuffi cient to cause mossy fi ber sprouting [ 24 ], 
and the molecular signals necessary for trigger-
ing mossy fi ber sprouting are not yet known.

   After initial loss, numbers of excitatory syn-
apses per granule cell in the inner molecular 
layer partially rebound to 84 % of controls in rats 
3–6 months after status epilepticus (Fig.  13.1b ). 
This recovery probably is attributable primarily 
to mossy fi ber sprouting [ 9 ], but other sources of 
excitatory synaptic input to the proximal den-
drites of granule cells include surviving mossy 
cells and proximal CA3 pyramidal cells [ 60 ]. 
Synapses with proximal dendrites of granule 
cells at 3–6 months after status epilepticus are 
1.3-times larger than in controls and twice as 
likely to be perforated [ 49 ]. Large, perforated 
synapses are likely to be functionally stronger 
than small, nonperforated synapses [ 14 ,  33 ,  35 ]. 
To maintain functional stability in the face of 
change, brains use an array of homeostatic 
mechanisms, including synaptic scaling [ 50 ]. 
Larger, stronger mossy fi ber synapses in the 
inner molecular layer of epileptic rats might be a 
homeostatic mechanism to compensate for fewer 
synapses (84 % of controls, in this case). 

 Similarly, on granule cell distal dendrites in 
the outer two-thirds of the molecular layer, 
numbers of excitatory synapses decrease to 69 % 
of controls by 5 days after status epilepticus, but 
rebound to 101 % of controls by 3–6 months 
(Fig.  13.1b ). With more complete recovery of 
synapse numbers, synapse size in the outer 
molecular does not change signifi cantly [ 49 ]. 
Initial loss of synapses with distal dendrites of 
granule cells probably is attributable to partial 
loss of layer II entorhinal cortical neurons caused 
by status epilepticus [ 26 ]. And recovery of syn-
apses probably is attributable to sprouting of 
axons of surviving layer II neurons [ 46 ]. Together, 
fi ndings from the inner and outer molecular layer 
suggest a homeostatic mechanism maintains 
excitatory synaptic input to granule cells in 
response to synapse loss after an epileptogenic 
injury.  

13.3     No Critical Period for Mossy 
Fiber Sprouting 

 If a homeostatic mechanism controls the number 
of excitatory synapses with granule cells, signals 
underlying that control might persist as long as a 
synaptic defi cit continues. Persistent signals con-
trast with the view of a transient cascade of 
molecular and cellular events that peak and then 
diminish after a critical period following a brain 
injury. To address these issues, we determined 
whether mossy fi ber sprouting would occur after 
a 2 month delay [ 27 ]. Rapamycin, which inhibits 
mossy fi ber spouting [ 3 ], was administered to 
mice daily beginning 24 h after pilocarpine- 
induced status epilepticus. After 2 months, mossy 
fi ber sprouting was suppressed almost by half in 
the rapamycin group compared to vehicle-treated 
controls (Fig.  13.1c ). Another cohort was evalu-
ated 6 months after the end of treatment, which 
was 8 months after status epilepticus. Mossy 
fi ber sprouting was well developed in both vehi-
cle- and rapamycin-treated mice, indicating that 
signals stimulating mossy fi ber sprouting must 
have persisted for more than 2 months. These 
fi ndings suggest there is no transient critical period 
for mossy fi ber sprouting after an epileptogenic 
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  Fig. 13.1    Excitatory synapse loss and mossy fi ber sprout-
ing of granule cells in pilocarpine-treated rodent models of 
temporal lobe epilepsy. ( a ) Number of putative excitatory 
synapses per granule cell in control rats and in rats 5 days 
and 3–6 months (epileptic) after pilocarpine-induced sta-
tus epilepticus. ( b ) Number of synapses with granule cell 
dendrites in the inner one-third and outer two-thirds of the 
molecular layer. Values represent mean ± sem. Sample size 
indicated at base of bars. Asterisks indicate differences 
from the control value unless specifi ed by a horizontal line 
(p < 0.05, ANOVA, Student-Newman Keuls method). ( a ) 
and ( b ) from Thind et al. [ 49 ]. ( c ) Extent of mossy fi ber 
sprouting in control mice and mice that experienced status 
epilepticus and were treated with vehicle or 1.5 mg/kg 
rapamycin every day for 2 months and then were perfused 
with no delay (0 delay) or after a 6 month delay (6 month 
delay) (From Lew and Buckmaster [ 27 ]). ( d ) Number of 

large hilar neurons (>12 μm soma diameter) per hippocam-
pus versus extent of mossy fi ber sprouting in mice that 
experienced pilocarpine-induced status epilepticus and 
were treated with vehicle or rapamycin for 2 months and 
then evaluated immediately (vehicle 0 months) or after 
another 6 months (vehicle or rapamycin 6 months). A lin-
ear regression line is plotted (R = 0.34, p = 0.021, ANOVA). 
( e ) Percent mossy fi ber sprouting was calculated by sub-
tracting the average percentage of the molecular layer plus 
granule cell layer that was Timm- positive in control mice 
and normalizing by the average value of mice that had 
experienced status epilepticus and were treated with vehi-
cle for 2 months. Averages of all groups are signifi cantly 
different from others (p < 0.05, ANOVA, Student-Newman-
Keuls method). ( f ) Percent seizure frequency was calcu-
lated by normalizing by the average of the vehicle-treated 
group. ( e ) and ( f ) from Heng et al. [ 18 ]       
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brain injury. Instead, preventing mossy fi ber 
sprouting might require long-term or continuous 
treatment. This scenario challenges the view of 
transient signaling cascades whose consequences 
could be permanently blocked by temporary 
treatment during a critical period. 

 One might question whether the precipitating 
injury in the mouse model was so severe that it 
maximally stimulated mossy fi ber sprouting 
toward saturation levels despite the delay caused 
by rapamycin. However, an all-or-none “toggle- 
like” signal and saturation effect is inconsistent 
with the graded degree of mossy fi ber sprouting 
among individual mice, which ranged over a fac-
tor of three and was correlated with the extent of 
hilar neuron loss (Fig.  13.1d ). Wide ranges in 
mossy fi ber sprouting between individuals were 
evident in vehicle-treated mice 2 months after 
status epilepticus and vehicle- and rapamycin- 
treated mice 8 months after status epilepticus, 
indicating that sprouting did not progressively 
develop toward saturated levels. These fi ndings 
suggest that a target level of mossy fi ber sprout-
ing in an individual might be determined shortly 
after a brain injury and then remain constant. 

 Together, fi ndings from stereological electron 
microscopy and rapamycin-delayed mossy fi ber 
sprouting suggest a persistent, homeostatic 
mechanism exists to maintain a set level of excit-
atory synaptic input to granule cells. If mossy 
fi ber sprouting were epileptogenic, this might be 
an example of a normally adaptive homeostatic 
mechanism that became pathogenic in response 
to an injury, which has been proposed previously 
as a theoretical possibility [ 10 ]. More generally, 
epileptogenesis might be an unintended side- 
effect of the brain’s homeostatic mechanisms, 
which evolved to maintain function in the face of 
plasticity. Epileptogenic injuries might trigger 
changes so much more extensive than normal 
plasticity that they push homeostatic responses 
into a range that creates a network that generates 
spontaneous seizures. Phil proposed a similar 
idea [ 41 ]: “I believe that the brain has been 
designed to operate at a knife’s edge. The evolu-
tionary demand for plasticity – a key attribute of 
higher order learning, memory, and all those 
complex functions that are characteristic of the 

mammalian CNS – has necessitated a sacrifi ce in 
stability of neuronal function.” 

 On the other hand, if epileptogenesis is main-
tained by homeostatic mechanisms gone awry, 
there may be opportunities to reverse established 
epilepsy-related structural abnormalities. 
Although mossy fi ber sprouting appears to 
develop gradually, plateau, and then cease, there 
might instead be continual turnover. Mossy fi bers 
in tissue from patients with temporal lobe epi-
lepsy display evidence of continuing synaptic 
reorganization years after precipitating injuries 
[ 21 ,  32 ,  36 ]. At least some sprouted mossy fi bers 
arise from adult generated granule cells [ 22 ,  25 ], 
which might continue to be generated long after 
precipitating injuries (but see [ 17 ]). To test 
whether mossy fi ber sprouting could be reversed 
after it had established, we infused rapamycin 
focally into the dentate gyrus for 1 month begin-
ning 2 months after pilocarpine-induced status 
epilepticus in rats, but there was no effect [ 3 ]. 
However, Huang et al. [ 20 ] reported that in 
chronically epileptic pilocarpine-treated rats, 
systemically administered rapamycin partially 
reversed already established mossy fi ber sprout-
ing. Moreover, grafts of CA3 pyramidal cells 
reduce mossy fi ber sprouting even when 
implanted 45 days after kainate-treatment, during 
which time considerable mossy fi ber sprouting is 
likely to have developed [ 42 ]. In addition, mild 
mossy sprouting generated by electroconvulsive 
shock was reported to decline over time [ 51 ]. 
Thus, more work is needed to test the reversibil-
ity of mossy fi ber sprouting.  

13.4     Mossy Fiber Sprouting Is Not 
Epileptogenic 

 Rapamycin also was used to test whether mossy 
fi ber sprouting was epileptogenic. Systemic treat-
ment with rapamycin at increasing doses to inhibit 
mossy fi ber sprouting to increasing degrees had 
no effect on the frequency of spontaneous sei-
zures in mice that had experienced pilocarpine- 
induced status epilepticus (Fig.  13.1e ,  f ) [ 5 ,  18 ]. 
These fi ndings suggest that mossy fi ber sprouting 
is neither pro- nor antiepileptogenic, but instead is 
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an epiphenomenon unrelated to seizure genesis. 
There are caveats with this conclusion, because 
rapamycin has side-effects [ 47 ], including suppres-
sion of axon sprouting by inhibitory GABAergic 
interneurons [ 7 ]. And rapamycin reduces seizure 
frequency in some rat models of temporal lobe epi-
lepsy [ 20 ,  52 ,  59 ] but not all [ 43 ]. It remains unclear 
whether rapamycin’s action in rats is antiseizure or 
antiepileptogenic. Nevertheless, the fi ndings from 
the mouse studies suggest mossy fi ber sprouting is 
not epileptogenic.  

13.5     Conclusions 

 Patients with temporal lobe epilepsy display many 
structural changes, especially in the hippocam-
pus. One possibility is that together numerous 
structural changes and other abnormalities all 
contribute partially to seizure generation. In that 
scenario, blocking the development of any one 
change, like mossy fi ber sprouting, might have 
negligible effects on epileptogenesis. Another 
possibility is that some or perhaps even many 
epilepsy-related structural changes are not epilep-
togenic, including mossy fi ber sprouting, and that 
seizure generation is attributable to one or two cri-
tical abnormalities whose importance has not yet 
been recognized. These alternate  possibilities – 
many abnormalities each contributing partially 
versus one or two abnormalities primarily respon-
sible for seizure generation–might require different 
therapeutic approaches, so it is important to dis-
tinguish between them. To do so, it will be useful 
to tap the ever-increasing knowledge base of 
molecular and cellular mechanisms underlying 
brain developmental processes and responses to 
injury. Creative application of ideas and reagents 
(for example, rapamycin), even from fi elds 
outside of epilepsy research, might yield useful 
approaches for specifi cally inhibiting or exacer-
bating individual epilepsy-related structural 
changes. Experimental manipulation of specifi c 
structural changes, one at a time, and rigorous 
measurement of effects on spontaneous seizures, 
might eventually reveal which, if any, are epilep-
togenic. If no single change alone appears to be 
responsible, then blockade of many or all could be 

used to test whether together they make the brain 
epileptic or if the cause of seizures is unrelated to 
structural changes in the hippocampus.     
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    Abstract  

  Infl ammation in the central nervous system (CNS) is associated with 
epilepsy and is characterized by the increased levels of a complex set of 
soluble molecules and their receptors in epileptogenic foci with profound 
neuromodulatory effects. These molecules activate receptor-mediated 
pathways in glia and neurons that contribute to hyperexcitability in neural 
networks that underlie seizure generation. As a consequence, exciting new 
opportunities now exist for novel therapies targeting the various compo-
nents of the immune system and the associated infl ammatory mediators, 
especially the IL-1β system. This review summarizes recent fi ndings that 
increased our understanding of the role of infl ammation in reducing seizure 
threshold, contributing to seizure generation, and participating in epilepto-
genesis. We will discuss preclinical studies supporting the hypothesis that 
pharmacological inhibition of specifi c proinfl ammatory signalings may be 
useful to treat drug-resistant seizures in human epilepsy, and possibly 
delay or arrest epileptogenesis.  
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 14      Does Brain Infl ammation 
Mediate Pathological Outcomes 
in Epilepsy? 

           Karen     S.     Wilcox      and     Annamaria     Vezzani    

14.1         Introduction 

    The state-of-the-art knowledge acquired in the 
last decade of experimental and clinical work 
indicates that cytokines and related molecules are 
increased in brain tissue after epileptogenic inju-
ries or during seizures. In the experimental setting, 
these molecules, endowed with proinfl ammatory 
properties, contribute signifi cantly to the generation 
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and maintenance of a hyperexcitable neuronal 
network, thus decreasing seizure threshold 
(Fig.  14.1 ) and making the occurrence of a 
seizure more likely.

   A key question that basic science has been 
addressing is how these proinfl ammatory mole-
cules affect neuronal and glial functions. Answers 
to this question will increase our knowledge of 
the complex mechanistic aspects of hyperex-
citability following infl ammation and will be 
instrumental in highlighting novel targets for 

developing drugs and therapies that raise seizure 
threshold, prevent seizure generation after an 
inciting event, and inhibit their recurrence in 
chronic epilepsy. 

14.1.1     Infl ammatory Molecules 
as Neuromodulators 

 The presence of molecules with proinfl ammatory 
properties in brain specimens obtained from 

  Fig. 14.1     Schematic representation of the pathophysiologic 
outcomes of innate immunity activation in epilepsy . 
Activation of innate immune signaling occurs in epilepsy 
also in the absence of infection, thus triggering the so-called 
“sterile” infl ammatory cascade ( a ). Endogenous mole-
cules (damage associated molecular patterns, DAMPs) 
such as IL-1β and the High Mobility Group Box 1 ( HMGB1 ) 
protein are released by neurons and glia following epilep-
togenic inciting events, or during recurrent seizures. The 
activation of their cognate receptors (IL-1R type 1 and 
TLR4, respectively) upregulated in astrocytes triggers 
the NFkB-dependent infammatory genes cascade, thus 

inducing various molecules with  proinfl ammatory  and 
 neuromodulatory  properties. The signaling activation in 
neurons increases excitability by provoking acquired 
channelopathies involving voltage-gated channels ( HCN1 ) 
or AMPA and GABA-A receptor complexes ( b ), as well 
as by rapid activation of Src kinase inducing the phos-
phorylation of the NR2B subunit of the NMDA receptor 
thereby promoting neuronal Ca 2+  infl ux ( c ). This chain of 
event contributes to the generation and establishment 
of an hyperexcitable neuronal network by direct receptor-
mediated neuronal effects or indirectly by inducing 
astrocytes and BBB dysfunctions       
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patients with epilepsy has been described as 
“brain infl ammation” (Table  14.1 ). However, there 
is emerging evidence that these molecules have 
neuromodulatory functions that activate signaling 
in neurons and glia that are different from those 
induced by the same molecules in leukocytes in 
the frame of a classical infl ammatory response to 
infection. During infection, proinfl ammatory 
cytokines and related molecules are released 
during innate immunity activation by immuno-
competent cells following “pathogen associated 
molecular patterns” (PAMPs) activation of toll-
like receptors (TLRs) or nucleotide- binding 
oligomerization domain (NOD-like) receptors. 
Cytokine release activates infl ammatory programs 
for pathogen removal and the subsequent induc-
tion of homoeostatic tissue repair mechanisms. 
Notably, in humans affected by various forms 
of pharmacoresistant epilepsy of differing etiolo-

gies (e.g. Rasmussen’s (RE) and limbic encepha-
litis (LE), malformations of cortical development, 
and mesial temporal lobe epilepsy (mTLE)) 
increased infl ammatory mediators are measured 
in epileptogenic foci in the absence of an identifi -
able active infectious process. However, it is also 
important to note that CNS infection, which is a 
common cause of TLE, can also result in a cytokine 
storm that affects excitability. In this context, evi-
dence of HHV6 infected astrocytes and neurons 
has been reported in about 2/3 of patients with 
mTLE [ 108 ]. Moreover, recent work has shown 
the presence of Human Papilloma virus in human 
focal cortical dysplasia type II which might be 
responsible for focal epileptogenic malformations 
during fetal brain development in association 
with enhanced mTORC1 signaling [ 18 ].

   The so-called  sterile infl ammation  in the brain 
can be induced when TLRs are activated by endog-
enous molecules released by injured brain cells, 
named “danger signals” or “damage- associated 
molecular patterns” (DAMPs). In particular, the 
activation of TLR4, which can also be activated 
by gram-negative bacteria, is induced by the 
ubiquitous nuclear protein High Mobility Group 
Box 1 (HMGB1) which is released, upon its 
cytoplasmatic translocation, by neurons and glial 
cells. In concert with IL-1β released by glia, 
thereafter activating IL-1 receptor type 1 (IL- 1R1), 
HMGB1 induces the transcriptional up- regulation 
of various infl ammatory genes, therefore promoting 
the generation of the brain infl ammatory cascade 
in glia and endothelial cells of the BBB (Fig.  14.1 ). 
In the context of malformations of cortical devel-
opment, the infl ammatory cascade is also induced 
in aberrant neuronal cells [ 3 ]. The activation of 
the IL-1R1/TLR4 signaling in neurons, which 
overexpress these receptors in pathologic condi-
tions, in concert with pathways induced by other 
cytokines such as TNF-α, IL-6, the complement 
system and some prostaglandins, alters neuronal 
excitability by modifying either glutamate or 
GABA receptor subunit composition, or traffi cking 
of receptors, or the function of voltage-gated ion 
channels via rapid onset post-translational mech-
anisms [ 118 ,  123 ]. Furthermore, initiation of the 
JAK/STAT and other signaling pathways through 
these mechanisms can also result in activation of 

   Table 14.1    Infl ammatory mediators in human epilepsies 
and experimental models   

  Clinical evidence  
 Infl ammatory mediators are overexpressed in 
epileptogenic foci in human pharmacoresistant epilepsy 
of differing etiologies (e.g. RE, LE, MCD, mTLE) 
  Microglia and astrocytes are main sources of 
infl ammatory mediators in brain tissue; neurons and 
endothelial cells of the blood brain barrier (BBB) also 
contribute to the generation of brain infl ammation 
  Leukocyte extravasation in brain depends on the 
etiology of epilepsy 
  BBB damage is often detected together with brain 
infl ammation 
  Experimental evidence  
  Recurrent seizures and epileptogenic brain injuries 
induce infl ammatory mediators in astrocytes, microglia, 
neurons, and microvessels in brain areas involved in 
seizure onset and generalization 
  This phenomenon is long lasting and may exceed the 
initial precipitating event by days or weeks depending 
on the epilepsy model. It is inadequately controlled by 
anti-infl ammatory mechanisms 
  In models of epileptogenesis, infl ammation initiates 
before the development of epilepsy 
  Specifi c anti-infl ammatory treatments reduce acute 
and chronic seizures and delay their time of onset 
  Transgenic mice with perturbed cytokine signaling 
show altered seizure susceptibility 
  Proinfl ammatory insults decrease seizure threshold 
( acutely  and  long-term ) 
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glial cells, inducing a cascade of events that 
alters their structure and function in a variety of 
ways that can also contribute to aberrant excit-
ability [ 99 ]. 

 In animal models, pharmacological interven-
tion to block or activate specifi c infl ammatory 
pathways induced in human epilepsy brain 
specimens has shown that: (i) cytokines such as 
IL-1β, TNF-α, and IL-6, and danger signals such 
as HMGB1 and S100β, contribute to seizures in a 
receptor-dependent manner; (ii) the complement 
system contributes to seizure generation and cell 
loss; and (iii) PGE2 contributes to cell loss by 
activating EP2 receptors in neurons (Table  14.2 ). 
This set of evidence is corroborated by the assess-
ment of susceptibility to seizures and cell loss 
in transgenic mouse models with impaired or 
overexpressed infl ammatory signalings [ 118 ].

14.1.2        IL-1β, HMGB1 and the NMDA 
and GABA Receptors 

 IL-1β and HMGB1 both potentiate NMDA recep-
tor function in cultured hippocampal neurons 
using post-translational mechanisms mediated by 
activation of IL-1R1 and TLR4, respectively [ 8 , 
 53 ,  121 ]. In particular, these cytokines enhance 
NMDA-mediated Ca 2+  influx by activating 
Src kinases-dependent NR2B phosphorylation 
(Fig.  14.2 ). This signaling has been demonstrated 

to underlie the proictogenic and proneurotoxic 
properties of these cytokines [ 7 ,  8 ,  40 ,  121 ].

   This rapid onset (within 2 min) mechanism is 
reminiscent of that induced by IL-1β in hypotha-
lamic neurons, which underlies the initial rise in 
body temperature induced by this cytokine [ 23 , 
 91 ,  105 ], and it involves MyD88-dependent and 
ceramide-mediated activation of Src kinases. 
IL-1β also down-regulates AMPA receptor expres-
sion and their phosphorylation state in a Ca 2+ - 
and NMDA-dependent manner in hippocampal 
neurons [ 53 ]. Recent evidence shows that HMGB1 
effects on neuronal excitability may also include 
a physical, receptor unrelated, interaction with 
presynaptic NMDA receptors resulting in enhanced 
Ca 2+ -dependent glutamate release from presynaptic 
terminals evoked upon NMDAR stimulation [ 80 ]. 
Notably, HMGB1 per se can also induce glutamate 
release from hippocampal gliosome preparations 
implying that this molecule may increase 
gliotransmission [ 81 ]. While the effect of IL-1β 
and HMGB1 on NMDA-induced Ca 2+ -infl ux in 
neuronal cell soma and dendrites mediates cell 
loss and increases seizures [ 7 ,  8 ,  121 ], whether 
the effect of HMGB1 on presynaptic or glial 
glutamate release results in pathologic outcomes 
has not been yet investigated. 

 Excitatory actions of IL-1β have been reported 
in hippocampal slices or cultured pyramidal 
neurons where the cytokine reduces synaptically- 
mediated GABA inhibition in CA3 hippocampal 
region via still unidentifi ed kinases [ 123 ,  129 ], 
and increases CA1 neurons excitability by reducing 
NMDA-induced outward current. This latter action 
involves activation of cytoplasmatic P38 MAPK 
phosphorylating large-conductance Ca 2+ -depen-
dent K channels [ 131 ].  

14.1.3     Cytokines, Synaptic 
Transmission/Plasticity 
and Seizures 

 Cytokine receptors are expressed by the same 
resident CNS cells that express their cognate 
cytokines, namely neurons, microglia, and astro-
cytes. Binding of ligands to these receptors set 

   Table 14.2    Antagonism of IL-1R1/TLR4 in rodent 
models of seizures   

  Seizure reduction in rodents exposed to an acute 
challenge  
 Kainic acid (lesional model), bicuculline and febrile 
seizures (non lesional models) [ 28 ,  87 ,  114 ,  119 ] 
  Status epilepticus [ 24 ,  64 ] 
  Electrical rapid kindling [ 88 ,  5 ,  6 ] 
  Chronic recurrent seizures reduced in  
  mTLE mouse model [ 66 ,  67 ] 
  SWD in GAERS & WAG/Rij (absence seizures 
models) [ 1 ,  49 ] 
  Other infl ammatory signaling contributing to seizures 
are mediated by  
  TNF-α, IL-6, COX-2 & complement system 
( reviewed in  [ 50 ,  115 ,  3 ]) 
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into motion a variety of signaling pathways that 
activate glial cells and can also lead to enhanced 
excitability of neurons. 

  IL-1β . In the hippocampus, IL-1β was reported 
to induce rapid changes in synaptic transmission, 
and to inhibit LTP via activation of MAPK and 
PKC [ 12 ,  75 ,  84 ,  96 ]. Fast neuronal actions of 
IL-1β were described in the preoptic/anterior 
hypothalamic neurons involving A-type K +  cur-
rents and the consequent reduced synaptic release 
of GABA [ 105 ]. 

  TNF-α . Work by Stellwagen et al. demon-
strated that TNF-α released by astrocytes binds to 
the TNF-α receptors (TNFR) on neurons and 
induces an increase in AMPA-type glutamate 
receptors and a concomitant decrease of GABA A  
receptors at synapses [ 102 ]. Specifi cally, TNF-α 
has been shown to increase traffi cking of GluR2- 
lacking AMPA receptors to synaptic membranes 
in both hippocampal and motor neurons [ 11 ,  55 , 
 56 ,  102 ,  103 ,  126 ]. In hippocampal neurons, 
this traffi cking has been shown to depend on 
the PI3K–Akt pathway [ 102 ]. GluR2-lacking 
receptors are permeable to Ca 2+  and activation of 
these receptors could dramatically alter synaptic 
strengths at these synapses or contribute to exci-
totoxicity. While TNFR knock out mice do not 
appear to have impaired long term potentiation 
(LTP) or long term depression (LTD), synaptic 

scaling may be modulated by TNF-α [ 101 ,  103 ]. 
While it is currently unclear what role TNF-α 
signaling may be playing in receptor traffi cking 
in epilepsy, recent work using the Theiler’s 
Murine Encephalomyelitis Virus (TMEV) model 
of TLE has demonstrated that there is over a 120- 
fold increase in whole brain TNF-α mRNA soon 
after infection in C57Bl/6 mice [ 47 ]. This dramatic 
increase in TNF-α expression is associated with 
acute seizures and changes in mEPSC amplitudes 
and decay times in hippocampal brain slices 
prepared from animals acutely infected with 
TMEV [ 57 ,  98 ,  104 ]. In addition, TNFR1 knock-
out mice are much less likely to exhibit seizures 
during the acute infection period. Taken together, 
the evidence suggests an important role of 
TNF-α in modulating excitatory circuits and 
excessive amounts of TNF-α may contribute to 
seizure activity. Accordingly, a proictogenic role 
of TNF-α mediated by TNFR1, and an opposite 
anti-ictogenic role of this cytokine mediated by 
TNFR2 have been reported in chemoconvulsant 
models of seizures [ 7 – 9 ,  124 ]. Molecular and 
functional interactions between TNFR and the 
glutamatergic system in the hippocampus appear 
to be implicated in the effect of this cytokine in 
seizure susceptibility [ 8 ]. 

 In addition to modifying synaptic transmission, 
TNF-α is also known to stimulate the release of 

  Fig. 14.2     Presynaptic and postsynaptic effects of HMGB1 
on glutamatergic transmission . HMGB1 protein evokes 
( 3 H)D-aspartate and glutamate release from re-sealed glial 
( gliosomes ) and neuronal ( synaptosomes ) subcellular 
particles isolated from the mouse hippocampus ( a ). This 
protein per se augments the calcium-independent neurotrans-
mitter outfl ow from gliosomes, but not from synaptosomes, 
in a concentration-dependent manner. This outfl ow is 

likely mediated by reversal of glutamate transporter (GLAST) 
since it is blocked by DL-threo-b-benzyloxyaspartate 
(TBOA) [ 81 ]. HMGB1 augments the NMDA-induced 
( 3 H)D-aspartate calcium-dependent release from synapto-
somes ( b ). This enhancing effect is mediated by increased 
intracellular calcium via the MK-801 sensitive channel. 
This HMGB1- NMDA receptor interaction involves the 
NR2B subunit [ 80 ]       
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glutamate from microglia [ 17 ,  107 ] and astrocytes 
[ 92 ,  93 ], and these additional sources of extracel-
lular glutamate likely contribute to excitoxicity 
in injured brain regions. Activation of TNFR in 
cultured microglia results in an increased expres-
sion of glutaminase, which converts glutamine to 
glutamate. This excess intracellular glutamate is 
then released through connexin 36 hemi-channels 
and can be blocked by the gap junction inhibitor, 
carbenoxolone [ 107 ]. It is thought that this mech-
anism can contribute to neuronal cell death that 
often accompanies chronic or prolonged tissue 
infl ammation. 

  IL-6 . Recent work has demonstrated that IL-6, 
another cytokine that is increased in response 
to epileptogenic insults, decreases GABA and 
glycine- mediated inhibitory synaptic currents 
following bath application to spinal cord slices 
[ 46 ]. Such changes in synaptic neurotransmitter 
receptor function can result in tipping the balance 
of excitation and inhibition towards hyperexcit-
ability. Binding of IL-6 to its receptor results in 
the activation of the JAK/STAT pathway and this 
pathway is known to regulate the expression of 
many different receptor gated ion channel subunits 
[ 60 ] and underlies NMDA-dependent LTD in the 
hippocampus [ 72 ]. Therefore, changes in IL-6 
expression levels could dramatically infl uence 
excitability of neural circuits responsible for 
seizure generation. Recent work with the TMEV 
mouse model of TLE, demonstrated that IL-6 
mRNA expression increases signifi cantly during 
the acute infection period and this increase 
parallels the onset of seizures in this model. 
Furthermore, IL-6 receptor knockout mice have a 
reduced incidence of seizures following TMEV 
infection, suggesting that this cytokine, which 
is largely expressed in this animal model by 
infi ltrating macrophages, contributes to lowering 
seizure thresholds [ 21 ,  47 ]. Finally, treatment 
of TMEV infected mice with either minocycline 
or wogonin, were both found to dramatically 
reduce concomitantly the number of infi ltrating 
macrophages in the brain and seizure incidence 
[ 21 ]. These results suggest that IL-6 may be an 
important regulator, possibly through the JAK/
STAT pathway, of synaptic plasticity and seizure 
activity.  

14.1.4     Cytokines and Voltage-Gated 
Ion Channels 

 While cytokines have been extensively studied in 
neuropathic pain and in epilepsy, very few studies 
have examined the effects of the prominent 
cytokines on voltage gated ion channels (see 
[ 122 ]). Nevertheless, the limited available litera-
ture demonstrates that cytokines can modulate a 
variety of voltage gated ion channels through 
multiple mechanisms [ 95 ]. For example, TNF-α 
has been shown to increase expression of TTX 
resistant sodium channels in isolated dorsal root 
ganglion cells, increase Ca 2+  currents in cultured 
hippocampal neurons and decrease inwardly 
rectifying K +  currents in cultured cortical astro-
cytes [ 35 ,  44 ,  48 ]. IL-1β has been shown to 
decrease Ca 2+  currents in cultured hippocampal 
and cortical neurons [ 83 ,  84 ,  132 ,  133 ] as well 
as Na +  and K +  currents in dissociated retinal 
ganglion cells [ 26 ]. 

 The effect of cytokines on ion channel function 
is an area where clearly further work is necessary 
so as to inform hypotheses about the full range of 
activity of cytokines in epilepsy, particularly in 
view of the plethora of differing effects on neuro-
nal functions that cytokines may have depending 
on their concentration, timing of tissue exposure, 
the type of neuronal cells expressing the relevant 
receptors, and the concomitant presence of other 
neuromodulatory molecules.  

14.1.5     Prostaglandins, Synaptic 
Plasticity and Seizure Activity 

 Arachidonic acid (AA) is converted to prostanoids 
via activity of the enzyme cyclooxygenase (COX). 
COX-2 is constitutively active at low levels in the 
hippocampus, its expression rapidly increases as 
a consequence of neural activity, and is necessary 
for some forms of synaptic plasticity, such as LTP 
in the dentate gyrus [ 42 ]. Prostaglandin E2 (PGE2), 
one of the most common of the prostanoids to be 
formed in the hippocampus, binds to the G-protein 
coupled EP2 receptor on neurons, activates cAMP 
and mediates synaptic plasticity via the cAMP–
protein kinase A (PKA)–cAMP-responsive 
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element binding protein (CREB) pathway [ 42 ,  116 ]. 
Following status epilepticus (SE), COX-2 expres-
sion is increased in the hippocampus and prosta-
glandins, including PGE2, are also subsequently 
increased and hypothesized to be involved in 
mediating neurodegeneration that occurs in 
multiple brain regions following SE. This neuro-
toxic effect may be due to excessive stimulation 
of EP2 receptors expressed by microglia and the 
consequent activation of an alternative pathway, 
the cAMP-Epac signaling pathway promoting 
upregulation of various infl ammatory mediators 
and oxidative stress [ 42 ]. Whereas pharmacological 
inhibition of COX-2 can be neuroprotective 
following CNS insults, this approach has not 
yielded great success in preventing the development 
of epilepsy following SE although disease- modi-
fying effects have been reported [ 45 ,  51 ,  61 ,  85 ]. 
Depending on the drug used to inhibit COX-2 
and the trigger of SE, adverse events have also 
been described in epileptic rats [ 39 ,  85 ]. Therefore, 
the search is on for drugs that can selectively 
interfere with downstream pathways of COX-2 
in an effort to mitigate the detrimental infl amma-
tory actions that can occur in the CNS following 
SE. Recently, Jiang et al. evaluated the ability of 
a novel small molecule and brain permeable EP2 
antagonist, TG6-10-1, to confer neuroprotection 
and prevent the development of epilepsy in mice 
treated with pilocarpine [ 43 ]. Encouragingly, 
there was signifi cant neuroprotection and decreased 
mortality following SE in the treated mice. However, 
there were no differences with vehicle-treated 
mice in spontaneous seizure frequency, suggesting 
that epileptogenesis was not interrupted with this 
treatment [ 43 ]. This suggests that adjunctive 
therapy with an EP2 antagonist may be important 
for attaining neuroprotection in patients experi-
encing SE, but additional approaches will be 
necessary to prevent the development of epilepsy. 
In this context, a recent study reported that 
co-treatment with IL-1 receptor antagonist 
(IL-1Ra, anakinra) and a COX-2 inhibitor given 
at the time of SE induction were required to 
reduce both cell loss and epileptogenesis in rats 
[ 52 ]. Similarly, combined treatment with IL-1Ra 
and VX-765, an inhibitor of IL-1β biosynthesis, 
given systemically to rats after 3 h of uninterrupted 

SE, afforded signifi cant neuroprotection although 
not inhibiting epilepsy development [ 74 ]. This 
evidence highlights the need of both early 
intervention and combined anti-infl ammatory 
treatments for optimizing benefi cial clinical 
outcomes. 

 Another strategy to be investigated is a 
combination of specifi c antiinfl ammatory 
drugs with classical antiepileptic drugs (AED) 
targeting complementary mechanisms. Indeed, 
some AEDs afford neuroprotection or decrease 
the severity of spontaneous seizures induced in 
SE models [ 71 ].  

14.1.6     TLR4 and Neuronal 
Excitability 

 Out of 11 members of the TLRs family, TLR4 is 
the most extensively studied in CNS for its 
involvement in increasing brain excitability and 
cell loss, and for reducing neurogenesis. 

 Rat cortical application of lipopolysaccharide 
(LPS), a PAMP component of gram-negative 
bacteria wall and prototypical activator of TLR4, 
has been reported to rapidly increase the excit-
ability of local neurons as assessed by measuring 
amplitudes of sensory evoked fi eld potentials 
following rat forepaw stimulation and sponta-
neous activity [ 90 ]. A ten-fold higher LPS 
concentration could evoke epileptiform activity 
which was prevented by pre-application of IL-1Ra, 
implicating a role of IL-1β released from LPS-
activated microglia [ 90 ]. 

 We recently discovered that intracerebral LPS 
application reduces hyperpolarization-activated 
ion channel (HCN1) protein in hippocampal 
tissue, an effect associated with a reduction in Ih 
current as assessed in whole-cell patch recording 
of CA1 pyramidal neurons. This effect is long- 
lasting but reversible upon resolution of both 
microglia activation and induction of proinfl am-
matory cytokines in these cells. The activation of 
IL-1R1/TLR4 signaling is responsible for this 
effect since it was precluded in TLR4 or IL-1R1 
knock-out mice, and by pharmacological block-
ade of these receptors with selective antagonists 
(Bernard et al., 2013, personal communication). 
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 The reported LTP and LTD impairment induced 
by TLR4 stimulation is compatible with neuro-
logical dysfunction and cognitive defi cits induced 
by early life exposure to LPS which are associ-
ated with specifi c and persistent changes in 
NMDA receptor subunits expression in the cortex 
and hippocampus, predicting modifi cations in 
CNS excitability (for review see [ 89 ,  127 ]).  

14.1.7     Infl ammation-Induced 
Functional Changes 
in Astrocytes 

 Reactive astrogliosis occurs as a consequence of 
cytokine activation of the IL-1R/TLR and JAK/
STAT pathway and other signaling pathways 
following CNS insults such as traumatic brain 
injury (TBI), SE, and infection [ 99 ]. Astrogliosis 
is a graded process and is characterized by hyper-
trophy of primary processes, dramatic increases 
in the expression of intermediate fi lament proteins 
such as glial fi brillary acidic protein (GFAP), a 
decrease and cell redistribution in glutamine 
synthetase [ 20 ,  29 ,  78 ,  125 ], an increase in 
expression of adenosine kinase, and, in some 
cases, a disruption in domain organization of 
glial processes [ 76 ,  99 ]. There is also a dramatic 
increase in gap junction coupling between astro-
cytes in animal models [ 106 ] and resected human 
tissue [ 19 ,  32 ,  70 ], and a number of specifi c sub-
units of kainate receptors (KAR) were recently 
found to be expressed in reactive astrocytes 
following chemoconvulsant- induced SE in 
rodents [ 112 ]. There are, therefore, a multitude of 
changes in astrocytes following seizure-inducing 
insults and these changes may have a dramatic 
impact on the circuit dynamics underlying 
seizure generation    [ 25 ,  36 ]. 

 As astrocytes are intricately involved in regu-
lating neuronal activity at the tri-partite synapse 
(review [ 2 ]), some of the changes in glial function 
that are observed in rodent models and human 
epilepsy could easily lead to hyperexcitability in 
neural circuits and contribute to seizure genera-
tion. For example, decreases in the endogenous 
anticonvulsant adenosine as a consequence of 
increased expression of adenosine kinase can lead 

to hyperexcitability and seizure activity [ 4 ,  15 ] 
and, while early after SE, glutamate uptake by 
astrocytes seems to be functioning well [ 106 ], 
there are numerous reports of cytokine-mediated 
decreases in glutamate transporter function in 
epilepsy and other disorders which could readily 
lead to excess excitation and cell death in vulner-
able neurons [ 62 ,  68 ,  86 ,  94 ]. Reactive astrocytes 
have also been reported to have a decrease in the 
inward rectifi er potassium channel (K IR ), namely 
Kv4.1, a critical ion channel that aids in the 
buffering of extracellular potassium concen-
trations, and this altered expression may be 
mediated by IL-1β [ 134 ]. Electrophysiological 
recordings in acute brain slices obtained from 
surgical specimens of patients with mTLE, have 
revealed a reduced K IR  conductance in reactive 
astrocytes [ 38 ]. However, we recently demon-
strated that K IR  mediated currents were not 
altered in astrocytes during the latent period up to 
2 weeks following SE in the KA-treated rat [ 106 ], 
and this is consistent with a recent report demon-
strating that initial decreases in Kv4.1 mRNA 
and protein return to control levels by day 7 after 
SE [ 134 ]. Therefore, reactive astrocyte function 
may change over time as epilepsy develops. 

 While many of the observed changes in astrocytes 
that occur as a consequence of infl ammation may 
actively contribute to network hyperexcitability, 
other components of reactive astrogliosis, such as 
increased gap junctional coupling, or increased 
neurotrophins may be critical compensatory 
mechanisms following injury, and may act to 
dampen excitability and protect neurons [ 36 ]. 
Thus, simply blocking the infl ammatory response 
in glial cells may be too global an approach for 
disease modifi cation during epileptogenesis, 
while targeting specifi c processes, such as 
maintaining K IR  function, might prove to be a 
more useful approach.  

14.1.8     Cytokines Effects on BBB: 
Consequences for Neuronal 
Excitability 

 Evidence obtained using in vitro models of the 
BBB [ 31 ,  130 ] or epilepsy models [ 58 ,  77 ,  111 ,  116 ] 
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demonstrated that cytokines and prostaglandins 
compromise the permeability properties of the 
BBB, and that such alteration in brain vessels is a 
common feature of drug-resistant epileptogenic 
foci in humans and experimental models. In 
particular, there is evidence of the presence of 
IL-1β in perivascular glia and astrocytic endfeet 
impinging on brain vessels in epilepsy tissue 
where the BBB is altered, as shown by the paren-
chymal extravasation of serum macromolecules 
such as albumin and IgG. One mechanism of 
BBB damage induced by cytokines involves 
breakdown of tight-junction proteins in brain 
vessels [ 58 ,  59 ,  69 ,  73 ] induced by activation of 
Src kinases. This evidence highlights that key 
molecular pathways activated by cytokines in 
epilepsy result in different outcomes depending 
on the target cell population (expressing the 
relevant receptors), i.e. BBB permeability func-
tion is compromised in vessels, hyperexcitability 
is induced in neurons, and astrocyte function is 
greatly modifi ed. 

 BBB damage leads to albumin extravasation 
which induces TGF-β signaling in astrocytes by 
activating the TGF-β receptor type 2 [ 33 ]. This 
signaling mediates transcriptional up-regulation 
of IL-1β and other infl ammatory genes in astrocytes 
[ 16 ,  34 ] while glutamate transporter and Kir4.1 
channels are down-regulated. These pathologic 
changes have been shown to establish a hyperex-
citable milieu in surrounding neurons due to 
increased extracellular K +  and glutamate [ 97 ] which 
decreases seizure threshold and may induce per 
se epileptiform activity [ 22 ,  34 ].  

14.1.9     Leukocytes, Autoantibodies 
and Neuronal Excitability 

 There is evidence of adaptive immunity activation 
in rare disorders such as Rasmussen’s encephali-
tis (RE), viral and limbic encephalitis and neuro-
logic or systemic autoimmune disorders. These 
conditions are often associated with seizures and 
epilepsy development. In RE brain tissue, cytotoxic 
CD8 +  T lymphocytes have been demonstrated in 
close apposition to neurons and astrocytes, then 
provoking their apoptosis by releasing granzyme 

B [ 10 ,  79 ]. The presence of these cells, and more 
in general CD3 +  leuckocytes, appears to be much 
less prominent in more common forms of epi-
lepsy. For example, in focal cortical dysplasia 
(FCD) type 2, scattered lymphocytes have been 
described in brain tissue while this phenomenon 
occurs at a minor extent in FCD type 1, and is 
almost undetectable in mTLE [ 41 ,  65 ,  110 ]. 
Others have detected leukocytes in brain paren-
chyma surrounding brain vessels also in mTLE 
[ 30 ,  128 ]. In animal models of epilepsy the role 
of these cells is still uncertain since they were 
reported to mediate anti- epileptogenic and 
neuroprotective effects in KA-treated rats [ 128 ] 
whereas they contribute to the pathology in pilo-
carpine-treated mice [ 30 ]. Notably, in this latter 
instance the effects of leukocytes may be ascribed 
to the peculiar mechanisms mediating seizures 
caused by pilocarpine and which are not shared 
by other chemoconvulsants [ 64 ,  109 ,  117 ]. 

 A recent randomized clinical study using 
tacrolimus, which impedes T cell proliferation 
and activation, in recent onset RE patients showed 
delayed deterioration of neurological defi cits but 
the treatment did not ameliorate drug resistant 
seizures [ 13 ]. However, case reports have shown 
decreased seizure frequency in one RE patient 
treated with natalizumab, a blocker of T cell 
entry into the CNS [ 14 ] and in a patient with mul-
tiple sclerosis and refractory epilepsy [ 101 ]. The 
authors discussed that interpretation of data was 
limited by an additional coadministration of 
varying antiepileptic medications. 

 In limbic encephalitis and autoimmune 
disorders, circulating autoantibodies against 
various neuronal proteins have been detected (for 
review, see [ 120 ]). These antibodies recognizing 
membrane neuronal proteins may have a patho-
logic role, in addition to their diagnostic value. In 
particular, antibodies against NR1/NR2 subunits 
obtained from serum of affected patients can 
increase extracellular hippocampal glutamate 
levels when intracerebrally infused in rats. 
Increased sensitivity to AMPA receptor-mediated 
neuronal excitability and GABAergic dysfunc-
tion have also been reported [ 63 ]. Antibodies 
directed against voltage-gated K +  channel complex 
increase excitability of hippocampal CA3 pyramidal 
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cells by reducing channel function at mossy 
fi ber-CA3 synapses [ 54 ]. AMPA receptor antibod-
ies alter synaptic receptor location and number 
by reducing those receptors containing the 
GLUR2 subunit, therefore increasing the relative 
abundance of Ca 2+ -permeable receptors [ 53 ].   

14.2     Conclusions 

 While understanding of the role of the innate 
immune system and the associated molecules 
with infl ammatory properties in epilepsy and 
seizure threshold changes has advanced tremen-
dously over the last decade, there are still a 
number of questions that yet remain open and 
require further investigation. For example, it is 
not yet clear which molecules and infl ammatory 
pathways activated following epileptogenic brain 
insults will make the most appropriate targets for 
intervening to prevent seizure occurrence and/or 
the process of epileptogenesis. The complex 
network changes that occur in a number of cell 
types in the CNS, including neurons, microglia 
and astrocytes, in response to increases in a myriad 
of neuromodulatory and infl ammatory molecules 
such as IL-1β, TNF-α, IL-6 and interferon-γ to 
name but a few, are diffi cult to decipher. Moreover, 
it has still to be determined which are the master 
regulators of the infl ammatory cascade, and 
when and how to prevent the induction of brain 
infl ammation or rather promote its resolution by 
implementing the effects of the endogenous 
antiinfl ammatory molecules, which are defective 
in epilepsy [ 82 ,  87 ]. 

 Nevertheless, the increasing recognition that 
the innate immune system is tightly coupled to 
epileptogenesis and seizure threshold changes is 
encouraging as it opens up many potential novel 
molecular targets for therapeutics. Most AEDs 
are mainly antiseizure, symptomatic drugs that 
target neuronal proteins such as sodium channels 
or glutamate receptors. Their adverse effects on 
cognition and induction of sedation, coupled 
with the knowledge that nearly 30 % of patients 
with epilepsy do not have their seizures adequately 
controlled with current AEDs, suggest that targeting 
the neuromodulatory infl ammatory pathways is a 
promising novel strategy with disease- modifying 

potential. Considering that prolonged administra-
tion in epilepsy is likely to be required, and the 
constraints imposed by the BBB, both the effi -
cacy and the safety of drugs that preclude or 
reverse the over-activation of specifi c innate 
immune mechanisms should be carefully con-
sidered. Importantly, some of these antiinfl am-
matory drugs are already in clinical use showing 
therapeutic effects in peripheral infl ammatory 
conditions [ 27 ,  37 ,  113 ]. These drugs might be 
considered to complement the symptomatic 
treatment provided by available AEDs for resolving 
the infl ammatory processes in the brain, therefore 
raising seizure threshold and decreasing the like-
lihood of seizure recurrence. In this context, a 
phase 2 clinical study with VX765 has given 
promising results in adult patients with drug 
resistant partial onset seizures (  http://clinicaltrials.
gov/ct2/show/NCT01048255    ;   www.epilepsy.
com/fi les/Pipeline2012/6-7    ).     
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    Abstract 

 The synaptic and intrinsic mechanisms responsible for epileptic seizures 
and briefer interictal epileptic discharges have been characterized in some 
detail. This chapter will outline some aspects of this work in the context of 
focal epilepsies, particularly in the temporal lobe, and will identify some 
of the major questions that remain. Early work, mainly using the actions of 
convulsant treatments on brain slices in vitro, revealed synaptic circuitry 
that could recruit populations of neurons into synchronous epileptic 
discharges. Subsequent investigations into cellular mechanisms of chronic 
experimental and clinical foci, again often in vitro, have revealed complex 
changes in synaptic properties, synaptic connectivity, intrinsic neuronal 
properties and selective losses of neurons: unraveling their roles in gener-
ating seizures, interictal discharges and interictal dysfunctions/comorbidities 
remains a signifi cant challenge. In vivo recordings have revealed aspects 
of the pathophysiology of epileptic foci that have practical implications, 
for instance high-frequency oscillations, and potentially high-frequency 
hypersynchronous neuronal fi ring, which have been useful in localizing 
the epileptogenic zone for surgical resection.  
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 15      Are Changes in Synaptic Function 
That Underlie Hyperexcitability 
Responsible for Seizure Activity? 

           John     G.    R.     Jefferys    

15.1         Introduction 

 Phil Schwartzkroin pioneered cellular electro-
physiology and basic research on epilepsy. I started 
my research career a couple of years after he did. 
His work impressed and inspired me from the start. 
His impact goes far wider than his considerable 
innovations and insights into the basic mechanisms 
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of epilepsy, notably through his leadership roles 
in epilepsy societies and his development of 
infl uential monographs such as the “Encyclopedia 
of Basic Epilepsy Research” and “Models of 
Seizures and Epilepsy” [ 53 ,  62 ]. In summary Phil 
has made major contributions to the development 
of the basic science of epilepsy, which thoroughly 
justify this volume celebrating his career. 

 Seizures are the diagnostic feature of epilepsy 
and are classically considered as hypersynchro-
nous electrophysiological activity [ 52 ]. The idea 
that seizures are hypersynchronous has been 
challenged recently, a point I will return to at the 
end of this chapter [ 36 ]. While the remit of this 
chapter is on the role of synaptic function in 
hyperexcitability and seizure generation, I will 
address broader issues on the pathophysiology 
of focal epilepsy. A quick defi nition of the terms 
of the title: hyperexcitability is a condition of 
neurons or neuronal networks in which they 
respond more intensely or more readily to nor-
mally innocuous activity, or may become spon-
taneously active; such responses or spontaneous 
activity may lead to the generation of seizures or 
other (briefer) epileptic discharges. Hyperexcitability 
can lead to seizures but the two are distinct 
concepts. 

 Normal brain tissue can generate seizures 
when exposed to convulsant conditions, as in 
acute models of epilepsy. Such acute models laid 
much of the groundwork for our understanding of 
basic mechanisms of clinical epilepsy, as well as 
being directly relevant to clinical symptomatic 
seizures. However, epilepsy is by defi nition a 
chronic condition where seizures occur spontane-
ously under physiological conditions; under-
standing why they do is a major challenge for 
both clinical and basic research. 

 Phil Schwartzkroin pioneered many of the 
models, preparations and concepts involved in 
understanding seizures and hyperexcitability, 
including: acute and chronic models of epilepsy, 
in vitro brain slices, synaptic properties, synaptic 
connectivity, intrinsic neuronal properties, glial 
properties ([ 39 ,  40 ]; for example: [ 60 ,  61 ,  63 – 68 ]). 
This chapter will outline work on basic mechanisms 

of epilepsy, particularly focal epilepsy of the medial 
temporal lobe, which has, in large part, developed 
from these innovations.  

15.2     Acute Epilepsy 
and Hyperexcitability 

 Some of the earliest epilepsy research used acute 
pharmacological block of inhibition (e.g. with 
penicillin, picrotoxin or bicuculline) to produce 
epileptic discharges, initially in vivo and then 
in hippocampal and neocortical slices in vitro. 
The introduction of brain slices in vitro into 
epilepsy research was a major step towards 
developing detailed cellular models of epileptic 
activity. Early advances included the discovery 
that the intrinsic electrical properties of central 
neurons were rather complex, and could look a 
lot like epileptic bursts [ 67 ,  75 ]. Another early 
discovery was that excitatory pyramidal cells were 
interconnected to form a recurrent excitatory 
network that was held in check by networks of 
inhibitory neurons [ 40 ,  46 ]. It is hard to think 
back to the state of the fi eld 40+ years ago, but 
the idea that excitatory neurons within a brain 
structure made connections with each other 
seemed novel at that time. Changing that mindset 
is an example of how epilepsy research can make 
major contributions to our understanding of nor-
mal brain mechanisms [ 44 ]. Essentially the idea 
that emerged is that excitatory neurons in regions 
such as the hippocampus and neocortex form 
interconnected excitatory synaptic networks 
which present the risk of a chain reaction of posi-
tive feedback [ 77 ]. Normally negative feedback, 
mediated by some types of inhibitory neuron, 
prevents the build-up of a chain reaction, but 
blocking or depressing GABAergic transmission 
clearly disrupts this control. Other convulsant 
treatments include changes in extracellular ions 
(e.g. K +  or Mg 2+  or Cl − ) or channel blockers (e.g. 
4-aminopyridine) have also been investigated in 
some depth (for review see [ 31 ]). Arguably all of 
these treatments make neurons and/or neuronal 
networks hyperexcitable. 

J.G.R. Jefferys



187

 In practice the ability of isolated hippocampal 
slices in vitro to generate synchronous epilepti-
form discharges depends on both synaptic and 
intrinsic neuronal properties [ 76 ]. Synaptic 
properties provide the most obvious mechanism 
for synchronization, although non-synaptic 
mechanisms can play a role [ 30 ], particularly 
when neurons are fi ring spontaneously as is dis-
cussed in the section on high-frequency oscilla-
tions. Intrinsic neuronal properties determine 
cellular excitability and amplify feedback exci-
tation, as is the case with voltage-gated Ca 2+  
currents in CA3 pyramidal cells in disinhibited 
hippocampal slices [ 77 ]. Intrinsic neuronal prop-
erties also can shape the morphology of epileptic 
discharges, for instance where voltage-gated 
Ca 2+  currents and Ca 2+ -dependent K +  currents 
generate rhythmic afterdischarges [ 76 ]. The 
importance of intrinsic neuronal properties is 
underlined by the many mutations in the genes 
for voltage-gated ion channels and their acces-
sory subunits that have been associated with cer-
tain clinical epilepsies [ 5 ], and experimental 
evidence of “acquired channelopathies” follow-
ing induction of epileptic foci in rodents [ 7 ,  54 ]. 

 A great deal of progress was made on the cel-
lular pathophysiology of acute epilepsy models 
in hippocampal and neocortical slices during the 
1980s and 1990s. As I will outline in the next sec-
tion, similar work on chronic models has devel-
oped rapidly since then. However, acute models 
in vitro continue to play important roles in epi-
lepsy research. One example is the concept of 
clustering of neuronal fi ring during high- 
frequency oscillations, where subsets of neurons 
fi ring at lower rates combine to generate a collec-
tive high-frequency rhythm [ 8 ,  24 ,  35 ]. Another 
example comes from work on neocortical slices 
exposed to low concentrations of extracellular 
Mg 2+ : bursts of rapid neuronal fi ring were spa-
tially restricted and propagated relatively slowly 
across the slices. This study exploited particular 
advantages of brain slices in vitro for integrating 
optical and electrical recordings of neuronal 
activity, concluding that the rate of propagation 
was controlled by feed-forward or surround 

inhibition which balanced excitatory synaptic 
outputs from the discharging neurons [ 78 ].  

15.3     Chronic Models 
and Hyperexcitability 

 Epilepsy is a chronic disease and the most realis-
tic models also are chronic and characterized by 
spontaneous seizures. Again Phil Schwartzkroin 
made pioneering contributions, particularly with 
the alumina gel model and with human record-
ings in vitro [ 68 ]. The idea of using the precision 
of in vitro methods to investigate chronic models 
and clinical conditions is fundamentally impor-
tant, particularly in epilepsy. I will outline some 
recent progress on chronic models, mainly of 
temporal lobe epilepsy. 

15.3.1     Cellular Pathophysiology 
in Chronic Foci 

 Perhaps the most common methods to model 
medial temporal lobe epilepsy in rodents rely on 
inducing an initial status epilepticus, by injection 
of pilocarpine (usually systemically) [ 19 ], injec-
tion of kainic acid (systemic or intrahippocam-
pal) [ 9 ,  85 ] or prolonged electrical stimulation 
[ 50 ,  80 ,  81 ]. Chapters on all these models can be 
found in a major monograph on epilepsy models 
which was co-edited by Phil Schwartzkroin [ 53 ]. 
Intrahippocampal tetanus toxin does not cause 
status epilepticus and causes little or no histopa-
thology in the short term [ 32 ,  45 ], but can cause 
spatially limited hippocampal sclerosis in a minority 
of cases as well as a late loss of somatostatin- 
containing interneurons [ 47 ]. All these models 
have a “latent period” during which epileptogen-
esis transforms normal into epileptic brain tis-
sue and results in spontaneous seizures, which 
are electrographically similar to those seen 
clinically. 

 One productive approach uses in vivo (or 
perhaps more accurately, ex vivo) brain slices to 
investigate cellular mechanisms of chronic epileptic 
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foci, both experimental and clinical [ 17 ,  29 ,  42 , 
 68 ]. Such studies have revealed diverse cellular 
changes, usually several coexisting in specifi c 
kinds of epileptic foci. These changes include 
synaptic, intrinsic neuronal, glial and structural. 
The problem gets more complex because while 
some changes increase excitability and probably 
promote epileptic activity, others may be adap-
tive, reducing excitability and tending to control 
epileptic activity, and some may even be epiphe-
nomena with no direct consequence for genera-
tion of epileptic seizures. 

 Many synaptic changes have been found in 
chronic epileptic foci, e.g. affecting transmitter 
release, receptor expression and synaptic modu-
lation (reviewed in [ 16 ]). I will outline a few 
examples here. Several of these epilepsy-related 
changes affect GABA-ergic inhibition. Selective 
losses of inhibitory interneurons provide an 
attractive mechanism for parallel increases in 
excitability and propensity to seizures. 
Histopathological evidence has been variable and 
a review of the substantial clinical and experi-
mental evidence is beyond the scope of this chap-
ter. Several studies have shown losses of 
somatostatin containing interneurons in chronic 
models of temporal lobe epilepsy, both in the 
hilus of the dentate area [ 15 ,  47 ] and in CA1 [ 18 , 
 22 ]. There also is evidence of loss of axon- and 
soma-targeting interneurons in clinical [ 21 ] and 
experimental material [ 41 ,  58 ] although this is 
less consistent and is complicated by changes in 
expression of markers, including parvalbumin, 
used to identify specifi c classes of interneurons 
[ 71 ] although evidence on soma-targeting inter-
neurons is contradictory [ 22 ,  71 ]. Survival of 
normal numbers of interneurons does not neces-
sarily mean that inhibitory function remains 
intact. Inhibition may be dysfunctional, as in the 
original dormant basket cell hypothesis or other 
conditions where excitation of interneurons is 
impaired [ 69 – 71 ,  82 ,  88 ]. Inhibition can also be 
weakened indirectly by changes in chloride 
homeostasis in the postsynaptic neurons, as 
shown in subicular slices from humans with med-
ically intractable epilepsy undergoing surgical 
resection [ 27 ]. Synchronous interictal discharges 
in this clinical tissue have substantial contribu-

tions from depolarizing GABAergic synaptic 
potentials, which appear to be associated with 
decreased expression of the KCC2 chloride trans-
porter which maintains chloride equilibria hyper-
polarized to rest. 

 Excitatory synapses also can be altered in 
epileptic foci. Receptors subunits can be modi-
fi ed, as is the case with AMPA receptors in more 
than one chronic model [ 55 ,  56 ]. Aberrant expres-
sion of different classes of receptor can affect syn-
aptic function, as in the expression of kainic acid 
receptors in dentate gyrus, which prolong EPSPs 
and strengthen synaptic integration [ 2 ]. It has long 
been known that seizures induce changes in syn-
aptic connectivity in the brain. The prototypical 
case is mossy fi bre sprouting in the dentate gyrus 
[ 74 ], raising the prospect of increased recurrent 
excitation through this glutamatergic pathway. 
Recent studies suggest that aberrant postsynaptic 
receptors make the new synapses particularly 
effective [ 2 ], although it looks as though their 
effects may be controlled by inhibitory mecha-
nisms, at least in vitro [ 51 ]. Despite the robust 
connection between chronic temporal lobe epi-
lepsy and sprouting, it turns out that preventing 
sprouting with rapamycin after an episode of sta-
tus epilepticus fails to prevent the development of 
chronic epilepsy [ 14 ,  26 ]. This is one example of 
the importance of testing the functional implica-
tions of cellular changes identifi ed in epileptic 
foci: even plausible phenomena like sprouting of 
excitatory synaptic connections are not necessar-
ily responsible for epileptogenesis. 

 Several neuropeptides change in chronic epi-
lepsy, as reviewed in Casillas-Espinosa et al. 
[ 16 ], often in directions that suggest they may act 
as endogenous anticonvulsants. These effects 
have attracted attention for translational research 
and is providing leads for potential innovative 
treatments for epilepsies that are refractory to 
currently available drugs [ 72 ]. Finally, intrinsic 
properties due to voltage-gated ion channels 
change in both genetic and acquired epilepsies, 
with examples for sodium, potassium, calcium 
and HCN channels amongst others; this topic is 
beyond the scope of this chapter, but is reviewed 
in Poolos & Johnston [ 54 ]. 
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 This short overview covers a small part of the 
diverse cellular pathologies and pathophysiolo-
gies that have been found in chronic focal epilep-
sies. Even the most reproducible of models 
reveals multiple distinct cellular changes. Major 
questions remain on the roles each plays. It may 
be that in isolation none are suffi cient to induce 
epileptic foci, but that several need to be present. 
It also is clear that some changes are antiepileptic 
and could provide leads for new treatments, as in 
the example of the work on peptides mentioned 
above. Of course some changes may be epiphe-
nomena, perhaps induced by repeated seizures, 
but with no material impact on seizure suscepti-
bility or generation. It is likely that different 
kinds of epileptic foci, both clinical and experi-
mental, may have their individual combinations 
of cellular abnormalities. Finally, epilepsy is 
more than the seizures, with a range of comor-
bidities that can be detected between seizures 
[ 13 ], many of which will have underlying cellular 
mechanisms that may be identifi ed by the kinds 
of investigations outlined above.  

15.3.2     The Epileptogenic 
Zone, Hypersynchrony 
and High- Frequency 
Oscillations 

 Around one in three persons with epilepsy fail to 
gain adequate seizure control with currently 
available drugs, maybe even more for medial 
temporal lobe epilepsy [ 84 ]. Surgical resection of 
the tissue responsible for seizures can be remark-
ably effective as long as the correct tissue is 
removed [ 48 ]. The epileptogenic zone is defi ned 
as the area that is necessary and suffi cient for 
resection to result in seizure freedom [ 57 ]. If the 
seizures stop after surgery then the resection 
must have been suffi cient, but it is harder to be 
certain that all the resection was necessary. 
Presurgical work-up can include non-invasive 
imaging, scalp EEG, subdural and depth record-
ings. Here I will focus on the discovery that 
high- frequency oscillations may help defi ne the 
epileptogenic zone in clinical and experimental 
foci [ 11 ]. 

 High-frequency oscillations have frequencies 
greater than used to be recorded by routine EEG, 
and typically are considered as 80 Hz and above. 
Paper-based EEGs meant that high-frequency 
oscillations were missed in clinical electrophysi-
ological investigations, but increasing computer-
ization and improved amplifi ers led to their 
discovery in clinical recordings during the 1990s 
[ 1 ,  23 ]. The early studies of high-frequency oscil-
lations divided them between physiological rip-
ples and pathophysiological “fast ripples”, 
separated by a boundary at around 200–250 Hz 
[ 11 ,  12 ]. Fast ripples have been associated with 
neuronal loss and hippocampal sclerosis [ 24 ,  73 ]. 
However in an experimental model lacking status 
epilepticus and with minimal or no neuronal loss 
we found that fast ripples (>250 Hz) were reli-
ably associated with the primary focus [ 37 ], 
which supports the idea that electrographic mark-
ers can extend surgery into more diffi cult cases. 

 It is well established that timing of gamma 
oscillations depends on inhibitory synaptic trans-
mission [ 4 ,  83 ]. Inhibitory mechanisms also are 
important in physiological ripples [ 87 ]. However 
it is more diffi cult to see how fast ripples at 
>250 Hz, and reaching >500 Hz, can depend on 
synaptic mechanisms. Fast ripples appear to rep-
resent synchronous fi ring of excitatory pyramidal 
and granule neurons [ 8 ,  10 ,  35 ]. These neurons 
do not fi re as fast as the fast ripple oscillation; 
rather they fi re every few cycles. In vitro studies 
suggest that excitatory neurons are weakly but 
signifi cantly synchronized in small fl uctuating 
groups extending over distances of a few hundred 
microns [ 35 ]. The potential mechanisms of syn-
chronization on a millisecond timescale are lim-
ited. Perhaps the most plausible is that groups of 
neurons which are close to threshold synchronize 
through electrical fi eld (sometimes called ephap-
tic) interactions [ 30 ,  33 ]: this effect is relatively 
weak under physiological conditions but weak 
fi elds are suffi cient to entrain neurons which are 
fi ring spontaneously [ 20 ]. 

 As mentioned above, removal of the epilepto-
genic zone is “necessary and suffi cient” for sei-
zure freedom. Determining how much tissue 
needs to be removed is a difficult challenge. 
An interesting approach to this important problem 
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comes from a clinical study which found that 
successful surgical outcome is associated with the 
proportion of tissue generating high- frequency 
oscillations that was resected [ 28 ]. 

 It is increasingly clear that, while the distinc-
tion between ripples and fast ripples have been 
quite successful, the frequencies of oscillations 
are not suffi cient to defi ne their functional sig-
nifi cance [ 34 ], either in terms of markers for epi-
leptogenic tissue or in terms of contributions to 
seizure generation (e.g. by strengthening synap-
tic summation) [ 6 ]. The distinction between 
interictal pathological and normal physiological 
activities may depend on many factors: some cor-
tical areas may differ from the hippocampus [ 43 ], 
not all epileptic foci are necessarily alike, and, 
from a practical point of view, electrode size can 
have an impact on recorded frequencies of high- 
frequency oscillations [ 86 ]. What does appear 
useful is fi nding recording sites with anomalous 
features, which may include faster activity than 
found in other sites in the same person [ 25 ,  38 ]. 

 A distinctive approach to identifying epilepto-
genic zone used multichannel microelectrodes, 
the Utah or NeuroPort arrays, in people undergo-
ing invasive ECoG recordings to fi nd the regions 
in which neuronal hyperactivity fi rst occurs at 
seizure onset. These arrays contain ~100 micro-
electrodes extending 1 mm from their bases 
which can be inserted into the cortex to record 
from neurons, probably located in layer 4–5. The 
big surprise was when Truccolo et al. [ 79 ] found 
that neurons recorded by their microelectrode 
arrays mostly stopped fi ring at electrographic 
(ECoG) seizure onset. This deviates substantially 
from experimental models of focal epilepsies, but 
does confi rm earlier clinical studies with single 
microelectrodes [ 3 ]. Subsequently Schevon et al. 
[ 59 ] did fi nd neuronal fi ring accelerating at sei-
zure onset in some of their arrays, but the advanc-
ing wave of neuronal hyperactivity and 
hypersynchrony was much more restricted than 
the epileptic ECoG. It is not clear whether they 
were luckier or more careful in their microelec-
trode positioning, but it is reassuring that seizures 
are associated with accelerating neuronal fi ring 
which is phase linked to the simultaneously 
recorded epileptic ECoG [ 49 ]. The discrepancy 

in localization was attributed to “inhibitory 
restraint” outlined above [ 59 ]: to recap, the idea 
is that feedforward inhibition constrains the 
advancing front of hyperactivity of excitatory 
neurons participating in the chain reaction of the 
epileptic seizure. This has been demonstrated 
explicitly in rodent neocortical slices in vitro [ 59 , 
 78 ]. On this model the focal slowly-propagating 
population of hyperactive hypersynchronous 
excitatory neurons projects to more widespread 
regions where excitation is held in check by feed-
forward inhibition so that most of epileptic ECoG 
occurs in the absence of accelerating neuronal 
fi ring. This challenges the original description of 
epileptic EEGs as “hypersynchronous” [ 52 ], but 
it can be argued that the original use is a reason-
able label for the large-amplitude relatively 
rhythmic EEG or ECoG, as long as it is clear that 
it does not necessarily mean hypersynchronous 
neuronal fi ring in the same area. These clinical 
investigations are diffi cult, but (ethics permitting) 
need repeating, ideally with critical experimental 
tests to determine whether the cellular interpreta-
tion of the role of feedforward inhibition derived 
from reductionist experiments really do apply to 
epileptic cortex in humans. 

 Perhaps the biggest challenges for this line of 
research are (a) whether the regions initiating 
hypersynchronous fi ring really do mark the epi-
leptogenic zone, and if so, (b) how to exploit it 
for presurgical evaluation in preparation for 
resection of medically intractable epileptic foci. 
Microelectrode arrays would be very diffi cult to 
implement in most clinical settings: inserting 
microelectrode arrays into human cortex can be 
diffi cult and can damage the recorded tissue, 
while analyzing the resulting data needs the tools 
of cellular electrophysiology normally found in 
basic neuroscience laboratories. However it may 
be that other, technically more straightforward, 
markers can be found. Perhaps the most promis-
ing are the high-frequency oscillations discussed 
above. They represent coincident fi ring of princi-
pal neurons, and may provide markers for hyper-
activity and hypersynchrony of neuronal fi ring. 
If they do, they would prove much more straight-
forward for clinical investigation than unit record-
ings from penetrating arrays of microelectrodes. 
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 Future work needs to refi ne presurgical identifi -
cation of the epileptogenic zone, using high- 
frequency oscillations and other biomarkers. The 
relationship between these biomarkers and path-
ological high-frequency neuronal fi ring detected 
by penetrating arrays may play a role in solving 
that clinical challenge. This relationship may also 
provide insights into the cellular mechanisms 
responsible for high-frequency oscillations, providing 
an in vivo approach to complement ex vivo (or in 
vitro) investigations to provide insights into the 
organization of the pathophysiological networks 
of epileptic foci.   

15.4     Concluding Remarks 

 The last few decades have seen spectacular 
advances in our understanding of the cellular 
pathophysiology of epileptic activity in acute and 
chronic models and in clinical foci. Multiple cel-
lular pathologies and pathophysiologies operate 
in chronic foci, whether clinical or experimental. 
One set of major challenges is to distinguish 
between those: responsible for generating sei-
zures, helping control them, responsible for 
comorbidities, and functionally neutral epiphe-
nomena. Progressive advances in chronic experi-
mental investigations in vivo have started to help 
us understand epileptic foci in situ, and to refi ne 
our concepts of the epileptogenic zone which 
should expand the application of surgery in cases 
of pharmacologically intractable epilepsies.     
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    Abstract 

 Seizures have variable effects on brain. Numerous studies have examined 
the consequences of seizures, in light of the way that these may alter the 
susceptibility of the brain to seizures, promote epileptogenesis, or func-
tionally alter brain leading to seizure- related comorbidities. In many –but 
not all- situations, seizures shift brain function towards a more immature 
state, promoting the birth of newborn neurons, altering the dendritic 
structure and neuronal connectivity, or changing neurotransmitter signaling 
towards more immature patterns. These effects depend upon many factors, 
including the seizure type, age of seizure occurrence, sex, and brain region 
studied. Here we discuss some of these fi ndings proposing that these 
seizure-induced immature features do not simply represent rejuvenation 
of the brain but rather a de- synchronization of the homeostatic mechanisms 
that were in place to maintain normal physiology, which may contribute to 
epileptogenesis or the cognitive comorbidities.  
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16.1         Introduction 

 Epilepsies have multiple causes and phenotypes, 
leading to different seizure and epilepsy syn-
dromes. A variety of genetic, toxic/metabolic, or 
structural abnormalities have been causally asso-
ciated with epilepsies. Epilepsy may occur as a 
“system disorder”, attributed to dysfunction –but 
no overt structural pathology – of specifi c neuro-
nal networks, as typically occurs in genetic gen-
eralized epilepsies, like absence epilepsy [ 4 ]. In 
other cases, specifi c pathologies, e.g., cortical 
malformations or hippocampal sclerosis, may 
lead to the generation of an epileptogenic focus. 

 Seizures and epilepsies may disrupt brain 
development. Often, these maldevelopmental 
consequences of seizures may manifest as age- 
inappropriate reversal to immature functions and 
developmental processes. For example, seizures 
may trigger the aberrant re-emergence of imma-
ture features of GABA A  receptor (GABA A R) sig-
naling in neurons from adult animals or may 
cause morphological changes reminiscent of 
immature neurons. Immature features include the 
generation of new neuronal progenitor cells, 
functional alteration of selected signaling path-
ways or morphological changes. Many of these 
immature features have been documented in sur-
gically resected epileptic tissues from individuals 
with drug-resistant epilepsies, like temporal lobe 
epilepsy (TLE), hypothalamic hamartomas, cor-
tical dysplasias, or peritumoral epileptic tissue. 
Comparisons with nonepileptic post-mortem or 
surgically resected tissues have indicated that 
some of these changes are specifi c for the epilep-
tic tissue [ 46 ,  47 ]. Yet, the appearance of these 
changes after seizures in animal models often 
depends upon a variety of factors. Here we will 
discuss the animal studies that have supported 
these observations and have provided insights 
on the complex interactions between the imma-
ture features of the epileptic focus and epilepsies, 
their etiologies and treatments and how these 
can be modifi ed by age, sex, region-specifi c or 
other factors.  

16.2     Neurogenesis in TLE 

 Perhaps the most classic argument for a reversal 
of normal age-specifi c functions with a re- 
emergence of patterns observed during develop-
ment is the observation that there is an increased 
number of newborn cells in the dentate gyrus, in 
response to seizures or during the epileptic state 
[ 101 ]. Increased neurogenesis in the dentate 
gyrus of adult rats has been shown using post-SE 
models of epilepsy [ 48 ,  86 ,  100 ] or kindling [ 84 , 
 105 ] or hyperthermic seizures [[ 61 ] and reviewed 
in [ 85 ,  101 ]] (Table  16.1 ). Newborn cells mani-
fest many of the electrophysiological and mor-
phological features of the granule cells, but also 
some distinctive characteristics. For example, 
they may be more dispersed [ 48 ,  100 ], have 
bipolar rather than polarized dendrites and they 
do not stain for Neuropeptide Y (NPY) or glu-
tamic acid decarboxylase (GAD) immunoreac-
tivity [ 100 ]. Furthermore, newborn cells may 
integrate abnormally into the hippocampus after 
seizures. Newborn neurons that migrate towards 
the CA3 pyramidal region may synchronize with 
CA3 neurons into epileptiform bursts [ 100 ]. 
Doublecortin-positive newborn neurons in the 
hilar dentate of epileptic rats exhibit long and 
recurrent basal dendrites directed towards the 
granule cell layer and also receive excitatory syn-
aptic input which is unusual in seizure-naïve rats 
[ 95 ]. These seizure-induced changes may con-
tribute to the excitability of the hippocampus. 
It has also been proposed that newborn neurons 
may not be capable to integrate normally in 
processes controlling cognitive processes, con-
tributing therefore to cognitive defi cits [ 30 ,  88 ].

   The effects of seizures on neurogenesis at the 
dentate is age, sex, region, model specifi c and 
may depend on the number and type of seizures 
that the animal experiences (reviewed in 
Table  16.1 ). In brief, neonatal rats may respond 
instead with reduced or unaltered neurogenesis. 
Furthermore, aged rats may not respond as 
robustly with neurogenesis following seizures as 
younger adults do. Longitudinal studies may 

A.S. Galanopoulou and S.L. Moshé



197

     Table 16.1    Effects of seizures on neurogenesis in the dentate gyrus   

 Animal characteristics  Model of seizures  Effect on neurogenesis in the dentate gyrus  Reference 

 PN0-4 Sprague–Dawley rats  PN0-4 fl urothyl seizures 
(brief, repetitive) 

 1-5 brief fl urothyl seizures had no effect 
on neurogenesis 

 [ 69 ] 

 25 fl urothyl seizures over 4 days  reduced  
neurogenesis in the dentate 

 PN1-7 Wistar rats  Recurrent pilocarpine 
SE (PN1, PN4, PN7) 

  Reduced  neurogenesis on PN8, PN14  [ 124 ] 

 BrdU (PN7, PN13, PN20, 
PN48) 

  Increased  neurogenesis on PN49 

 PN9 rats  PN9: kainic acid SE 
(2–3 h) 

  Reduced  neurogenesis in the superior 
blade of the dentate 

 [ 59 ] 

 BrdU: 3 h after kainic acid 
 PN6-20 Sprague–Dawley rats  1–3 episodes of kainic 

acid SE between PN6-20 
  Reduced  number of BrdU-positive neurons 
in rats with 3 SEs, assessed on PN13, 
PN20, PN30, but not at earlier timepoints 

 [ 63 ] 

 BrdU after each seizure 
and 4 h prior to sacrifi ce 

 PN10  PN10: Hyperthermic 
seizures (<30 min) 

 Normothermia-exposed males had more 
BrdU-positive cells than females 

 [ 61 ] 

 Sprague–Dawley male, 
female rats 

 PN11-16: Brdu injections  Hyperthermia had  no acute effect  
on neurogenesis (assessed at PN17) 
 Following hyperthermic seizures, 
newborn neurons in males  survived 
better  till PN66 than in females 

 PN15 Sprague–Dawley rats  PN15: fl urothyl SE   Increased  neurogenesis after SE  [ 78 ] 
 PN17: BrdU injection  Further increased in malnourished animals 

 PN21, PN35 Sprague–Dawley 
rats, both sexes 

 Lithium-pilocarpine SE   Increased  neurogenesis in both age groups  [ 98 ] 
 BrdU 3th–6th day after SE  No association with cell loss or subsequent 

probability for epilepsy 
 Adult  Pilocarpine-SE (3–5 h)   Increased  neurogenesis at 3, 6, and 13 days 

post-pilocarpine SE 
 [ 86 ] 

 Sprague–Dawley rats  BrdU: 1–27 days 
post-pilocarpine 

 Adult  Pilocarpine or kainic acid 
induced SE (1 h) 

 Newborn neurons born after SE migrate 
into the CA3 layer, maintain many granule 
cell characteristics (electrophysiological, 
morphological). However, they are NPY 
or GAD negative, have bipolar dendrites, 
and integrate abnormally, fi ring synchronously 
to CA3 pyramidal neurons 

 [ 100 ] 

 Sprague–Dawley rats  BrdU: 4–11 or 26–30 days 
post SE 

 Adult female mice 
(nestin-GFP transgenic mice)? 
(8 week old) 

 Kainic acid SE (2–3 h)   Increased  neurogenesis post-SE seen 
with the doublecortin positive neurons 
but not with the nestin or calretinin 
positive neurons 

 [ 48 ] 

 BrdU: 8 days post SE  Increased dispersion of newborn cells 
was seen with both doublecortin and 
calretinin positive neurons after SE 

 Adult male Sprague–
Dawley rats 

 Amygdala kindling   Increased  neurogenesis after ≥9 stage 
4–5 seizures but not after 4–6 seizures 

 [ 84 ] 

 BrdU: 1 day after 
last kindled seizure 
or stimulation 

 Neurogenesis may not play a role 
in kindling development 

(continued)
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reveal time-dependent changes in neurogenesis, 
which may be infl uenced also by the ability of 
these newborn cells to survive. For example, 
hyperthermic seizures caused the newborn neu-
rons to survive longer in males than in females 
till adulthood, suggesting sex-specifi c factors 
controlling their function [ 61 ]. Few brief seizures 
may not be as suffi cient to affect neurogenesis, as 
frequent or prolonged seizures do. 

 Investigations into whether aberrant neuro-
genesis may contribute to epileptogenesis have 
yielded variable results. Administration of anti-
mitotics that prevent neurogenesis may decrease 
the frequency of spontaneous seizures in post-SE 
animals [ 51 ]. However, other treatments that 
reduce seizure-induced neurogenesis have 
resulted in either reduction [ 109 ] or no effect [ 88 ] 
on the frequency of spontaneous seizures. The 
developmental studies on the effects of SE in 
2–3 week old rats which show increased 
SE-induced neurogenesis, even though neither 
cell loss nor epileptogenesis always ensue have 
also failed to associate the increase seizure- 

induced neurogenesis with either of these conse-
quences of SE [ 98 ]. Seizure-induced neurogenesis 
appears therefore to contribute to the excitability 
of the epileptic hippocampus and possibly to the 
associated cognitive dysfunction, but there is no 
defi nite evidence that it is required for or medi-
ates the ensuing epileptogenesis. Future research 
into deciphering the mechanisms leading to 
seizure- induced neurogenesis and how these are 
modifi ed by age or sex or seizure-specifi c factors 
would be needed.  

16.3     Evidence for Immaturity 
of GABA A  Receptor (GABA A R) 
Signaling in Epilepsies 

 GABA A R signaling is well known to undergo 
structural and functional changes through devel-
opment. The subunit composition of the GABA A R 
complexes changes to include subunits that will 
provide electrophysiologic and pharmacological 
properties more akin to mature neurons. A typical 

Table 16.1 (continued)

 Animal characteristics  Model of seizures  Effect on neurogenesis in the dentate gyrus  Reference 

 Adult male Wistar rats  Amygdala kindling   Increased  neurogenesis seen only at the 
BrdU late group (after stage 5 seizures) 

 [ 105 ] 
 BrdU early group: on the 
2nd–4th stimulation days 
 BrdU late group: on the 
days of their 2nd–4th stage 
5 seizure 

 Adult C57BL/6J mice  Flurothyl kindling   Increased  neurogenesis after:  [ 28 ,  29 ] 
 BrdU injections 0–28 days 
after 1 or 8 fl urothyl seizures 

 1–3 days following 1 seizure 
 0–7 days after 8 seizures 
 Greater degree of neurogenesis in dorsal 
than in ventral hippocampus, but the 
seizure induced increase in newborn cells 
was greater in the ventral hippocampus 

 Adult F344 rats (4 months old)  Kainic acid i.c.v. or graded 
kainic acid SE (<6 h) i.p. 

  16 days post-SE :  Increased  number of 
doublecortin positive neurons in the dentate 

 [ 40 ] 

  5 months after SE :  decreased  numbers of 
doublecortin positive neurons in the 
dentate 

 Adult F344 rats (12 month old)  Kainic acid SE (i.p.)   Increased  neurogenesis in the dentate, 
but to a less degree than in younger rats 

 [ 106 ] 
 BrdU: day 0–12 after SE 

  Seizures have age and model-specifi c effects on neurogenesis in the dentate gyrus 
  BrdU  bromodeoxyuridine,  GAD  glutamic acid decarboxylase,  GFP  Green fl uorescent protein,  i.c.v  intracerebroven-
tricular,  i.p.  intraperitoneal,  NPY  neuropeptide Y,  PN  postnatal day,  SE  status epilepticus  
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example is the developmental shift from alpha 2 
or 3 (GABRA2 or GABRA3) to alpha 1 
(GABRA1) subunits, which attribute faster kinet-
ics of the inhibitory post-synaptic currents 
(IPSCs) and higher sensitivity to  benzodiazepines 
[ 17 ,  47 ,  60 ]. In addition, GABA A R signaling 
changes from depolarizing early in development 
to hyperpolarizing in more mature neurons, ren-
dering GABA A R-mediated inhibition more effec-
tive in older animals [ 70 ]. This is thought to be 
due to the developmental shift in the balance of 
the activity of cation/Cl −  cotransporters (CCCs) 
that control the intracellular Cl −  concentration to 
favor cotransporters that maintain high intracel-
lular Cl −  (i.e., NKCC1) in immature neurons and 
low intracellular Cl −  in mature neurons (i.e., 
KCC2) [ 6 ,  26 ,  33 ,  90 ,  97 ]. The developmental 
increase in the expression and activity of KCC2, a 
Cl −  exporting transporter, and the parallel decrease 
in NKCC1 eventually reduce intracellular Cl − , 
permitting the appearance of hyperpolarizing 
GABA A R signaling in more mature neurons. 

 The presence of depolarizing GABA A R sig-
naling is critical for normal development, as it 
promotes neuronal growth, differentiation and 
synaptogenesis, by controlling calcium-sensitive 
signaling processes. In parallel, KCC2 may also 
modify the development of glutamatergic syn-
apses in dendritic spines via interactions with 
cytoskeletal proteins, like 4.1 N, independently 
of any effects on GABA A R regulation [ 62 ]. The 
absence of depolarizing GABA A R signaling early 
in life can either be incompatible with life or dis-
rupt neuronal differentiation and communication 
[ 6 ,  16 ,  26 ,  33 ,  43 ,  118 ,  119 ]. Considering the 
neurotrophic effects of depolarizing GABA A R 
signaling, it is not entirely surprising that depo-
larizing GABA A Rs are also found in pathologic 
conditions that favor neuritic growth and differ-
entiation so as to promote aberrant synaptogene-
sis, connectivity and re-wiring, as occurs in 
various forms of acquired, focal-onset epilepsies 
(Table  16.2 ). Indeed, depolarizing GABA A R sig-
naling can be facilitated by neurotrophins, like 
brain-derived neurotrophic growth factor 
(BDNF), which are released after seizures [ 96 ].

   Abnormal shifts in the CCC activity towards 
an NKCC1-dominant state or depolarizing 

GABA A R signaling have also been found in a 
number of pathological conditions predisposing 
to or leading to epilepsy, like trauma [ 11 ,  74 ], 
ischemia [ 45 ,  83 ], anoxia/glucose deprivation 
[ 36 ] as well as after kindling [ 80 ,  96 ] or during the 
latent or epileptic state in post-status epilepticus 
(SE) rodent models of epilepsy [ 7 ,  12 ,  13 ,  22 ,  87 ] 
(Table  16.2 ). Under such pathological conditions, 
the role of GABA A R signaling is not just to pro-
mote the healing and re-wiring of the brain but 
may acquire a pathogenic role, by promoting neu-
ronal excitability, due to the impairment in inhibi-
tion. In further support, KCC2 defi cient mice 
manifest early life epilepsy and histopathologic 
alterations reminiscent of hippocampal sclerosis 
[ 122 ]. Pharmacologic inhibition of depolarizing 
GABA A R signaling using the NKCC1 inhibitor 
bumetanide in combination with GABA A R ago-
nists has shown antiseizure effects in certain sei-
zure models [ 18 ,  25 ,  65 ,  68 ,  75 ,  94 ,  103 ], although 
model-, region-, age-, or time-dependent differ-
ences have been reported [ 65 ,  66 ,  68 ,  117 ,  127 ]. 
Administration of bumetanide with phenobarbital 
prior to seizure onset in the kainic acid induced 
SE model signifi cantly enhanced the antiseizure 
effect of phenobarbital, in an age-dependent man-
ner, that was attributed to the developmental 
decrease in NKCC1 expression [ 25 ]. Similarly, 
bumetanide inhibited rapid kindling of PN11 
Wistar rats when it was administered prior to kin-
dling stimuli [ 68 ] or hypoxic seizures when given 
prior to hypoxia in PN10 rats, even though the 
brain levels of bumetanide are signifi cantly low 
[ 18 ]. On the other hand, in vitro studies demon-
strated variable results of bumetanide when given 
after seizure onset that followed model, age, and 
region dependent patterns [ 54 ,  117 ]. In addition, 
NKCC1-knockout mice show greater susceptibil-
ity to 4-aminopyridine than wild type animals 
[ 127 ]. It is therefore possible that bumetanide 
administration prior to seizure onset and younger 
ages may facilitate its ability to enhance the anti-
seizure effects of GABA A R agonists. However it 
is also evident that model and region specifi c fac-
tors or other competing mechanisms may modify 
its effect. 

 Bumetanide has also been proposed to alleviate 
the febrile seizure-induced neurogenesis [ 56 ] and 
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     Table 16.2    Epilepsies associated with depolarizing GABA A R signaling   

 Epilepsy type/animal model  Stage in epilepsy  Findings  Reference 

  Human epilepsies  
 Human TLE  Following surgery 

for intractable epilepsy 
  Subiculum   [ 19 ,  42 ] 
 Depolarizing GABA A R signaling 
 Bicuculline inhibits interictal epileptic 
discharges in vitro 
 Higher probability for depolarizing 
GABA A R in KCC2-negative neurons 
 Microinjections of hippocampal/temporal 
lobe extracts in Xenopus oocytes yield 
depolarizing GABA A R and high NKCC1 
and low KCC2 mRNA expression 

 [ 81 ] 

 Lower probability for NKCC1 to colocalize 
with KCC2 in epileptic subiculum / CA1 

 [ 72 ] 

 Human epilepsy due 
to hypothalamic hamartomas 

 Following surgery 
for intractable epilepsy 

 Depolarizing GABA A R signaling in 
hypothalamic hamartomas 

 [ 55 ] 

 Human epilepsy due to cortical 
dysplasias 

 Following surgery 
for intractable epilepsy 

 Reduced KCC2 expression in focal cortical 
dysplasias 

 [ 107 ] 

  TSC, FCD type IIB   [ 110 ] 
 Increased NKCC1, reduced KCC2 
  TSC (single case)  
 Depolarizing GABA A R signaling 
  FCD type IIA  
 Increased NKCC1 and KCC2 
  FCD type I or II   [ 47 ] 
 Abnormal developmental changes 
in the expression of NKCC1, KCC2 
 Increase in NKCC1, altered subcellular 
expression of KCC2 in cortical 
malformations (FCD type IIB, 
hemimegalencephaly, gangliogliomas) 

 [ 3 ] 

 Tumor-associated human epilepsy  Peritumoral cells  Increased NKCC1 expression  [ 20 ] 
  Animal models of epilepsy  
 Post-SE epileptic rats, pilocarpine 
model, male Wister rats 

 Latent phase, 
3 weeks post-SE 

 Depolarizing GABA A R signaling 
in layer 5 entorhinal cortex but not in 
entorhinal layer 3, subiculum, dentate 
gyrus, or perirhinal cortex. 

 [ 13 ] 

 Post-SE epileptic rats, pilocarpine 
model, adult male Sprague–
Dawley rats 

 Established epilepsy, 
2–5 months after SE 

 Depolarizing GABA A R signaling 
in granule cells of the dentate gyrus, 
insular, subicular neurons or the deep 
layers of the piriform cortex 

 [ 7 ,  12 , 
 22 ,  87 ] 

 Reduction of KCC2 expression 
in the dentate gyrus, subiculum 
or the deep layers of the piriform cortex 

  Abnormal shift to depolarizing GABA A R signaling and/or expression of cation chloride cotransporters KCC2 and 
NKCC1 have been described in both human tissue derived from epileptogenic areas of patients with epilepsies, as well 
as in animal models of epilepsy 
  FCD  Focal cortical dysplasia,  SE  status epilepticus  
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the post-SE epilepsy-associated behavioral 
defi cits [ 14 ], but has not been shown to have anti- 
epileptogenic effects in post-SE epilepsy or an in 
vitro model [ 14 ,  75 ]. Depolarizing GABA A R sig-
naling also renders the injured neurons depen-
dent upon neurotrophic factors, like BDNF, for 
survival, by augmenting the expression of the 
pan-neurotrophin receptor p75 NTR  [ 108 ]. Neurons 
with depolarizing GABA signaling are therefore 

more amenable to dying in injured areas, which 
are deprived of BDNF. 

 Epilepsy and seizures have also been associ-
ated with disruption in the normal developmental 
patterns of expression of the subunits of 
GABA A Rs (see Table  16.3 ). In certain – but not 
all – cases these refl ect a return to a more imma-
ture type of GABA A R subunit composition, as 
in studies demonstrating a reduction in the α1 

    Table 16.3    Abnormalities in GABA A R subunit expression in human epilepsies and animal models of SE or epilepsies   

 Epilepsy type/animal model  Stage in epilepsy  Findings  Reference 

  Human epilepsies  
 Human TLE  Following surgery 

for intractable epilepsy 
 Decreased GABRA3 protein in temporal 
neocortex (layers I-III), no change in 
GABRA1 or GABRA2 

 [ 64 ] 

 Increased GABRA3, GABRA5, GABRB1, 
GABRB2, GABRB3 mRNA in subiculum 
compared to neocortex 

 [ 82 ] 

 Decreased GABRG2 mRNA in subiculum 
compared to neocortex 
 Decreased GABRA1, GABRA3, GABRB3, 
GABRG2 protein expression in sclerotic but 
not in nonsclerotic hippocampus (CA1) 

 [ 89 ] 

 Increased GABRB1, GABRB2, GABRB3 
protein expression in both sclerotic and 
nonsclerotic hippocampus 

 Human mesial TLE  Following surgery 
for intractable epilepsy 

 No change in GABRA1, GABRB1, GABRB2 
mRNA expression in the amygdala 

 [ 23 ] 

 Human epilepsy due 
to hypothalamic hamartomas 

 Following surgery 
for intractable epilepsy 

 No change in GABA A R subunit mRNA  [ 123 ] 

 Human epilepsy due 
to cortical dysplasias 

 Following surgery for 
intractable epilepsy 

  TSC, FCD type IIB   [ 110 ] 
 Decreased GABRA1 protein 
  FCD type IIA  
 Decreased GABRA4 protein 
  FCD type I or II   [ 47 ] 
 Abnormal developmental changes in the 
expression of GABRA1, GABRA4, 
GABRG2 protein 

  Animal models of SE or epilepsy  
 Post-SE, pilocarpine model, 
PN10 rats 

 Nonepileptic (adult)   In dentate gyrus granule cells   [ 126 ] 
 Increase in GABRA1 mRNA 
 No change in GABRA4, GABRD mRNA 

 Post-SE rats, pilocarpine 
model, adult male Sprague–
Dawley rats 

 1–8 days post-SE   In CA1 pyramidal neurons   [ 38 ] 
 Decrease in GABRA4, GABRB2/3, 
GABRG2, gephyrin protein 

(continued)
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subunit, whereas in others they indicate disrupted 
development [ 47 ]. Changes in GABA A R subunits 
may contribute to either drug refractoriness [ 15 ] 
or epileptogenesis [ 93 ] or the development of 
comorbidities.

   Most of the above studies have been done in 
either adult animals or are derived from individu-
als with drug-resistant epilepsy that underwent 
surgical resection of the epileptogenic focus at 
ages when the brain is relatively more mature. 
Age-specifi c patterns of regulation by seizures 
have been extensively shown for the seizure- 
induced changes in GABA A R subunits [ 126 ]. 

Similarly, the effects of neonatal seizures on 
GABA A R signaling and CCCs are not only age 
[ 32 ,  53 ] but sex-specifi c as well [ 32 ]. Kainic acid 
induced SE in PN4-6 rats accelerated the switch 
to hyperpolarizing GABA A R signaling in the 
CA1 pyramidal neurons of males, due to an 
increase in KCC2 expression and decrease in 
NKCC1 activity [ 32 ]. In contrast, kainic acid 
induced SE in PN4-6 female rats, in which 
GABA A R signaling is not depolarizing, causes a 
transient return to the depolarizing signaling 
mode due to an increase in NKCC1 activity [ 32 ]. 
In this study, the sexually dimorphic response to 

Table 16.3 (continued)

 Epilepsy type/animal model  Stage in epilepsy  Findings  Reference 

 Post-SE rats, pilocarpine 
model, adult rats 

 1–5 months post-SE   In dentate gyrus granule cells 
(hippocampus)  

 [ 15 ] 

 Decrease in GABRA1, GABRB1 mRNA 
 Increase in GABRA4, GABRB3, GABRD, 
GABRE mRNA 

 Post-SE rats, kainic acid, 
adult male Sprague–Dawley 

 1 month post-SE   In dorsal hippocampus   [ 104 ] 
 Increase in GABRA1, GABRA2, GABRA4, 
GABRB2, GABRB3, GABRG2 protein 
 Decrease in GABRD 

 Post-SE rats, kainic acid, 
adult male Sprague–
Dawley rats 

 7–30 days post SE   In dorsal hippocampus   [ 113 ] 
 Decrease in GABRA5 and GABRD mRNA 

 Post-SE, Electrically 
induced, adult male 
Sprague–Dawley rats 

 7–30 days post SE   In dorsal hippocampus   [ 76 ] 
 Increase in GABRA1, GABRA4, GABRB1, 
GABRB2, GABRB3 mRNA 
 Decrease in GABRD mRNA 

 Post-SE rats, pilocarpine, 
adult male Sprague–
Dawley rats 

 3–4 months post-SE   In CA1, CA3 pyramidal neurons   [ 41 ] 
 Decrease in GABRA5 protein 

 Post-SE rats, electrical 
stimulation of the amygdala, 
adult male Sprague–
Dawley rats 

 Epileptic rats   In hippocampus   [ 58 ] 
 Increase in GABRB3 mRNA (all regions) 
 Decrease in GABRA2 mRNA (CA3c) and 
GABRA4 mRNA (CA1) 

 Post-SE, pilocarpine model, 
adult Wistar rats 

 Epileptic rats   In cerebral cortex   [ 67 ] 
 Decrease in GABRA1, GABRG3, GABRD 
mRNA 
 Increase in GABRA5 mRNA 

 Post-SE, electrical 
stimulation of amygdala, 
adult female Sprague–
Dawley rats 

 Epileptic rats   In hippocampus   [ 8 ] 
 Phenobarbital non-responders are more 
likely to have reduced GABRA1, 
GABRB2/3, GABRG2 protein expression in 
the hippocampus than responders 

  SE and epilepsies have different effects upon the expression of GABA A R subunits (GABR). Their effects depend upon 
the type and/or model of SE or epilepsy, age at seizure occurrence, the region and timepoint after seizures when the 
study is conducted, and the specifi c subunit examined  
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neonatal seizures seemed to depend upon the 
earlier maturation of GABA A R signaling in the 
female hippocampus, attributed to a higher 
expression of KCC2 and lower NKCC1 activity 
in females [ 32 ]. Sex differences in the expression 
of KCC2 and NKCC1 or GABA A R signaling in 
the hippocampus have also been confi rmed in 
other studies [ 73 ,  79 ]. In addition, brief kainic 
acid seizures augment the activity of KCC2 
shortly after induction of seizures in neonatal 
male rats [ 53 ]. It should be noted however that 
these studies relate to the postictal – acute or sub-
acute – stages of neonatal SE. During the acute 
ictal phase of the SE, there is plenty of evidence 
to support that GABA A R signaling becomes 
depolarizing [ 25 ,  52 ]. 

 The consequences of these seizure effects on 
the direction of GABA A R signaling could impact 
upon the subsequent susceptibility of the animal 
to seizures, affect its ability to stop seizure propa-
gation, or alter cognitive abilities. For example, 
activation of GABA A R signaling in the anterior 
substantia nigra pars reticulata (SNR) in rats has 
important age and sex specifi c role in controlling 
seizure propagation in the fl urothyl model [ 114 , 
 115 ]. Exposure of male and female PN4-6 rats to 
kainic acid induced SE, at the time when 
GABA A R signaling is depolarizing, causes a pre-
cocious appearance of hyperpolarizing GABA A R 
signaling due to increase in KCC2 expression 
[ 35 ] and disrupts the GABA A R-sensitive anticon-
vulsant function of the anterior SNR in the fl uro-
thyl seizure model (unpublished data). It is 
possible that the early deprivation of the SNR of 
the neurotrophic effects of the depolarizing 
GABA A R signaling effects may impair its devel-
opment, leading to these long-lasting defi cits.  

16.4     Other Immature or 
Dysmature Features 
Associated with Epilepsies 

 Seizures may cause long-lasting changes in other 
signaling pathways involved in neurodevelop-
mental plasticity. The mTOR pathway has 
attracted a lot of research interest recently 
because it is central to cellular differentiation 

and growth. The mTOR pathway may become 
dysregulated in several seizure and epilepsy mod-
els [ 34 ,  92 ,  111 ,  121 ,  125 ] even if not necessarily 
caused by genetic disruption of components of the 
mTOR pathway. The ability of rapamycin, an 
mTOR inhibitor, to suppress epilepsy in these 
models as well as prevent or reverse certain of the 
histopathological or cognitive abnormalities has 
supported its role as a potential epileptostatic and 
potentially disease-modifying treatment. We use 
the term “epileptostatic” (i.e., epilepsy is on hold) 
to indicate that inhibition of the expression of epi-
lepsy and associated histopathological abnormali-
ties occur only in the presence of mTOR inhibition 
but re-appear after the mTOR inhibitor is with-
drawn. Other neurodevelopmental processes may 
also be affected, such as excitatory signaling or 
myelination. A neonatal brief kainic acid seizure 
may reduce the surface expression of the NMDA 
receptor (NR) subunit that normally emerges 
through developmental maturation, NR2A [ 21 ]. 
Seizures during the period of myelination can halt 
or impair myelination in both animal and human 
studies [ 24 ,  50 ,  91 ]. 

 Loss of dendritic spines and less frequently 
shortening of dendritic length or abnormal den-
dritic branching patterns may be seen in patients 
with TLE or focal epilepsies [ 5 ,  10 ,  31 ,  44 ,  71 , 
 102 ,  116 ]. Whether dendritic pathologies cause 
epilepsy is a matter open for investigation. 
Certainly many known etiologies of epilepsies 
demonstrate similar dendritic pathologies, includ-
ing Rett syndrome [ 2 ] and tuberous sclerosis 
(TSC) [ 112 ] implicating the affected pathways 
(MeCP2, mTOR) in their pathogenesis. However 
the evidence that dendritic pathology causes epi-
lepsy is currently lacking. Animal studies of sei-
zures or epilepsy, in models like kindling, 
iron-induced cortical epilepsy, tetanus toxin 
model, or post-SE models of epilepsy have dem-
onstrated similar dendritic abnormalities suggest-
ing that seizures may impair dendritic architecture 
and spine development [ 1 ,  39 ,  49 ,  57 ,  77 ,  120 , 
 125 ]. The lack of selectivity of the dendritic abnor-
malities for the epileptogenic focus, rather poses 
this feature as contributory to the overall neuronal 
dysfunction and seizure- associated comorbidities 
and to a lesser degree as causative of epilepsy. 
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 In addition, dysplastic lesions may be encoun-
tered in pathological specimens from patients 
with TLE [ 9 ]. These can be found as clusters of 
granular neurons in layer 2 of the neocortex, 
 nodular heterotopias in the temporal lobe, or het-
erotopic isolated neurons in the gray-white mat-
ter junction or deep subcortical white matter. It is 
currently unclear whether these dysplastic lesions 
are causative of or secondary to TLE. However, 
the possibility that such lesions may predispose 
to the development of TLE is supported by stud-
ies that demonstrate epileptogenic potential of 
these dysplastic lesions [ 27 ] as well as the animal 
studies demonstrating the pro-epileptogenic 
potential of pre-existing dysplastic lesions in 
two-hit seizure models [ 37 ,  99 ].  

16.5     Conclusions 

 Seizures and several pathologies predisposing to 
focal-onset epilepsies may trigger the re- 
acquisition of immature features in mature neu-
rons that are integrated in the epileptogenic focus. 
The appearance of these immature features is 
infl uenced by age and sex-specifi c factors, at 
least for certain of the events that precipitate epi-
lepsies. We propose that this untimely re-acquisi-
tion of the immature features is not equivalent to 
rejuvenation of the brain but may rather represent 
a de-synchronization of the homeostatic mecha-
nisms that were in place to maintain normal 
physiology. In other words the maladaptive inter-
actions and integration of these immature com-
ponents with otherwise appropriately functioning 
brain regions may contribute to the increased 
excitability and underlying pathological changes 
seen in the epileptic focus. Furthermore, such 
effects may disrupt normal brain development, 
leading to long-lasting impairments in networks 
that are critical for either seizure control, like the 
SNR, or for information processing leading to 
cognitive dysfunction. 

 A number of important unresolved questions 
arise. Under which conditions does the untimely 
presence of immature features and functions in 
the seizure-exposed brain promote epileptogen-
esis or cognitive decline? Conversely, what are 

the factors that can compensate and prevent dis-
ease progression? Are these functional changes 
different in epileptogenic foci than in regions 
that are secondarily affected by propagated sei-
zures and why? What are the mechanisms lead-
ing to seizure-induced neurogenesis and how are 
these modifi ed by age or sex or seizure- specifi c 
factors? Under which conditions might aberrant 
neurogenesis or abnormal GABA A R signaling 
have a pathogenic role in epileptogenesis or cog-
nitive processes? What is the key switch mecha-
nism that shifts depolarizing GABA A R signaling 
from promoting neurotrophic and healing pro-
cesses in seizure-exposed or injured brains to 
facilitating excitability, seizure maintenance, 
and potentially epileptogenesis? Does the altered 
expression of GABA A R subunits in post-seizure 
or epileptic brain impair inhibition or could it, in 
certain situations, protect from the potentially 
excitatory effects of depolarizing GABA? It is 
evident from the examples presented in 
Tables  16.1 ,  16.2  and  16.3 , that there is signifi -
cant variability across studies, animal models, 
disease states, and regions suggesting that the 
answer may not be ubiquitous. Therefore, even if 
certain answers may be obtained in specifi c 
experimental paradigms, it is critical to be able 
to translate them into the human situation and, 
most specifi cally, to a specifi c individual in need 
of specifi c prognosis or treatment after a specifi c 
insult. Identifying markers that will enable us to 
detect and follow longitudinally, in vivo, the 
evolution of these changes and their functional 
alterations would be critical in both validating 
their signifi cance and implementing individual-
ized targeted treatments to prevent disease 
progression.     
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    Abstract  

  Neuronal voltage-gated ion channels and ligand-gated synaptic receptors 
play a critical role in maintaining the delicate balance between neuronal 
excitation and inhibition within neuronal networks in the brain. Changes 
in expression of voltage-gated ion channels, in particular sodium, 
hyperpolarization- activated cyclic nucleotide- gated (HCN) and calcium 
channels, and ligand-gated synaptic receptors, in particular GABA and 
glutamate receptors, have been reported in many types of both genetic 
and acquired epilepsies, in animal models and in humans. In this chapter 
we review these and discuss the potential pathogenic role they may play 
in the epilepsies.  
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17.1         Introduction 

    Neuronal voltage-gated ion channels and ligand- 
gated synaptic receptors play a critical role in 
maintaining the delicate balance between excita-
tion and inhibition within neuronal networks in 
the brain that enables normal brain electrical 
function [ 10 ,  80 ]. The consequence of disturbing 
the expression or function of these, even rela-
tively subtly, can render neuronal networks liable 
to fi re in an inappropriate, hyper-synchronous, 
oscillatory manner which can be self-sustained, 
engage other neuronal networks, and result in a 
clinical epileptic seizure. Changes in expression 
of voltage-gated ion channels and/or ligand-gated 
synaptic receptors have been reported in many 
types of both genetic and acquired epilepsies. 
The causative relationship between these changes 
likely varies between different epilepsy syndromes. 
In some cases these changes are clearly causative 
of the epilepsy; in some they may represent 
susceptibility factors that render the brain more 
liable to become epileptic following a second 
insult (acquired or genetic); while in others they 
may be compensatory or even epiphenomena – 
related to the precipitating insult but not directly 
impacting on the epilepsy. 

 In this chapter we will outline some of the 
changes in expression of voltage-gated ion 
channels and ligand-gated synaptic receptors that 
have been reported in association with the devel-
opment of both genetic and acquired epilepsies, 
in animals and humans, and discuss their potential 
pathogenic role.  

17.2     Genetic Generalized 
Epilepsy (GGE) 

17.2.1     Overview 

 The genetic generalised epilepsies (GGEs) repre-
sent approximately 20–30 % of epilepsy cases 
and have a particularly high prevalence among 
children and adolescents [ 29 ,  31 ]. Patients with 
GGE have seizures that arise synchronously in 
both hemispheres on the electroencephalogram 

(EEG) without any identifi able structural brain 
abnormality [ 3 ]. Patients with GGE syndromes 
can experience a number of different seizure 
types, including generalised tonic-clonic seizures, 
myoclonic seizures and absence seizures. The 
GGEs are a complex group of disorders with 
the aetiology presumed to largely genetic [ 3 ]. 
The underlying pathophysiological basis of the 
GGEs is still incompletely understood, but it is 
generally believed that in most cases more than 
one genetic abnormality contributes to determine 
the epilepsy phenotype (i.e. polygenic). 

 There are many reports in the literature 
describing mutations in voltage-gated sodium 
[ 18 ], potassium [ 30 ], calcium [ 104 ], HCN channels 
[ 76 ] and GABA receptors [ 104 ] in patients with 
GGEs. However, because the epileptogenic 
networks that generate the seizures in GGE are 
bilaterally and diffusely distributed, patients do 
not undergo epilepsy surgery and therefore brain 
tissue to examine for protein expression are 
rarely available. As a result most studies investi-
gating changes in expression of ion channels and 
receptors relevant to GGE come from animal 
models. Of particular importance has been the 
Genetic Absence Epilepsy Rat from Strasbourg 
(GAERS) and Wistar Albino Glaxo/Rij-rat (WAG/
Rij), which are the two most validated polygenic 
rat models of GGE [ 12 ,  52 ]. GAERS and WAG/
Rij rats were both independently derived from 
selective inbreeding of Wistar rat colonies that 
spontaneously expressed generalised spike-and-
wave discharges (SWDs) on EEG recordings, to 
generate strains that expresses frequent and 
prominent spontaneous absence- like seizures 
accompanied by generalised SWDs that electro-
physiologically resemble those seen in human 
GGE with absence seizures. In both strains, the 
rats usually begin to display seizures in the 
second and third month post-natal, becoming 
longer and more frequent as the animals mature, 
being fully manifest in most WAG/Rij and in 
all GAERS by 4 months of age [ 12 ,  53 ]. It is well 
established and accepted that GAERS and the 
WAG/Rij strains are excellent models of human 
GGE with absence seizures because they parallel 
many of the features seen in humans with GGE 
such as; seizure, behaviour, electrophysiology, 
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pathophysiology and pharmacology (reviewed 
by [ 12 ,  15 ,  68 ]). 

 Many different ion channels and receptors, 
including GABA, glutamate, sodium, chloride, 
calcium and HCN channels, have been impli-
cated in the pathogenesis of epilepsy. There are 
numerous reviews detailing mutations in these 
genes, however this review will focus on altera-
tions in expression that occur in ion channels 
and receptors in rat polygenic models of GGE – 
GAERS and WAG/Rij.  

17.2.2     Voltage-Gated Ion Channels 

17.2.2.1     Hyperpolarization- Activated 
Cyclic Nucleotide-Gated 
(HCN) Channels 

 HCN channels the generate  I   h   current in the brain, 
which modulates pacemaker activity and cellular 
excitability [ 63 ,  79 ]. All four HCN isoforms, 
HCN1-4, are expressed with regional and develop-
mental differences in the brain and are differentially 
modulated by cAMP [ 7 ,  101 ]. 

 Within the thalamocortical circuit, which is 
critical in the generation of seizures in patients 
with GGE, HCN1 channels are abundantly 
expressed in the cortex and HCN2 and HCN4 
channels are abundantly expressed in the thalamus 
[ 57 ]. Several studies have examined HCN channel 
expression in GAERS and WAG/Rij rats reporting 
similar results. Using  in situ  hybridization, HCN1 
channel mRNA expression is increased in dis-
tinct thalamic nuclei in epileptic GAERS, namely 
the reticular nucleus and ventroposterior medial 
nucleus of the thalamus, with no changes in 
expression in the somatosensory cortex or of 
HCN2 and HCN4 channels [ 41 ]. In adult WAG/
Rij rats a reduction in HCN1 protein expression 
has been reported in the neocortex, hippocampus 
and cerebellum [ 89 ] whereas HCN1 channel 
protein expression is increased in the dorsal 
lateral geniculate nucleus of the thalamus [ 9 ,  32 ]. 
In another study, HCN1 protein expression was 
reported to be down regulated by 33 % in the 
neocortex in 1 month old WAG/Rij rats that were 
not yet experiencing spontaneous absence sei-
zures. The decrease in HCN1 expression became 

more progressive by three (56 % reduction) and 
6 months (68 % reduction) [ 40 ].  

17.2.2.2     Voltage-Gated Calcium 
Channels 

 Low voltage-activated,  “T-type” , calcium chan-
nels are recognized to play a key role in neuronal 
burst fi ring in neurons in the thalamus which are 
critical in generating the hypersynchronous 
thalamocortical oscillations that underlie gener-
alized SWDs [ 68 ]. Therefore alterations in 
expression of T-type channels have signifi cant 
potential to play a pathogenic role in GGE. The 
three T-type calcium channel subtypes, Ca V 3.1, 
Ca V 3.2 and Ca V 3.3, have unique biophysical, 
pharmacological and regulatory properties [ 67 ] 
with differential expression within the thalamo-
cortical circuit [ 73 ]. Mutations in the human 
 CACNA1H , which encodes Ca V 3.2, have been 
found in patients with different GGE syndromes 
[ 11 ,  31 ,  45 ]. Exogenous expression of mutant 
human Ca V 3.2 channels reveal a variety of bio-
physical changes [ 37 ,  64 ,  100 ]. Neurons from 
the thalamic reticular nucleus in GAERS, which 
plays a key role in regulation of the oscillatory 
thalamocortical network activity that underlies 
absence seizure-associated generalized SWDs in 
these animals, have been found to have a signifi -
cant increase in T-type calcium currents com-
pared to non-epileptic control rats [ 95 ]. In a 
developmental expression study in GAERS, 
Ca V 3.2 mRNA expression was found to be ele-
vated in the reticular nucleus of the thalamus in 
young animals before the onset of spontaneous 
absence seizures and Ca V 3.1 and Ca V 3.2 mRNA 
expression was increased in the ventral posterior 
thalamic relay nuclei and reticular nucleus of the 
thalamus of adult epileptic animals respectively 
[ 93 ]. Complimentary fi ndings have been docu-
mented in WAG/Rij rats. mRNA expression of 
all T-type calcium channels were found to be 
elevated in distinct thalamic nuclei in young 
WAG/Rij rats (P18-28) preceding seizure onset; 
Ca V 3.1 was shown to be increased in the lateral 
geniculate nucleus and centrolateral nucleus, 
Ca V 3.2 was increased only in the reticular nucleus 
and Ca V 3.3 was increased in the centrolateral 
nucleus and reticular nucleus [ 8 ].  

17 Are Alterations in Transmitter Receptor and Ion Channel Expression Responsible for Epilepsies?



214

17.2.2.3     Voltage-Gated Sodium 
Channels 

 Voltage-gated sodium channels are responsible 
for the initiation and propagation of action poten-
tials. Functional channels consists of one α sub-
unit (Nav1.1–Nav1.9) and a variable number of β 
(β1–β4) subunits. Subunits are composed of four 
domains. Each domain contains six transmem-
brane domains, as well as voltage sensor and pore 
forming domains. β subunits are smaller and con-
tain one anchoring transmembrane domain and 
large extracellular domain [ 51 ]. In the somatosen-
sory cortex of epileptic WAG/Rij animals, a sig-
nifi cant upregulation of Na v 1.1 and Na v 1.6 mRNA 
and protein levels was reported with the changes 
being localised to layer II-IV cortical neurons 
with immunohistochemistry [ 39 ]. Interestingly, 
long term treatment of WAG/Rij rats with 
ethosuximide commencing prior to the onset of 
spontaneous absence seizures not only suppressed 
seizures but it also completely abolished the 
abnormal expression of Na v 1.1, Na v 1.6 and HCN1 
when examined in 5 month old WAG/Rij rats [ 5 ].   

17.2.3     Altered Expression of Ligand 
Gated Ion Channels 

17.2.3.1     GABA Receptors 
 Fast responses to GABA are mediated by ligand- 
gated GABA A  receptors whereas slow responses 
are mediated by G-protein coupled GABA B  
receptors. Homeostatic balance of GABAergic 
and glutamatergic neurotransmission is critical 
for the maintenance of neuronal excitability. In 
absence epilepsy, the neuronal hyperexcitability 
which underlies absence seizure generation in the 
thalamocortical circuit is hypothesised to be due 
to an imbalance between excitatory and inhibitory 
neurotransmission [ 15 ].  

17.2.3.2     GABA A  Receptors 
 GABAA receptors are pentamers consisting of 
multiple subunit subtypes, including α (α1-α2), β 
(β1-β3), γ (γ1-γ3), δ, ε, π, θ, and σ (σ1-σ3) subunits. 
Properties of GABAA receptor strongly depend 
on subunit composition [ 25 ]. The most common 
subunit composition contains two α subunits, two 
β subunits and a γ subunit [ 50 ]. Expression of α 

and β subunits is suffi cient for the production of 
GABA-gated chloride channels, while the γ 
subunit is required for modulation by benzodiaz-
epines. Alterations in GABAergic inhibitory neu-
rotransmission can infl uence neuronal excitability 
and indeed alterations in expression of GABA 
receptors have been reported in GAERS and 
WAG/Rij. A study by Spreafi co et al. [ 86 ] found 
decreased immunofluorescence for β2–β3 
subunits of GABA A  receptors in the sensorimotor 
cortex and anterior thalamic areas of epileptic 
GAERS [ 86 ]. However, in WAG/Rij rats confl icting 
results have been reported. An increase in the 
expression of α4 and δ subunits of the GABA A  
receptor was observed in the relay nuclei of adult 
epileptic WAG/Rij animals [ 70 ] whereas decreased 
immunoreactivity of α3 subunit of the GABA A  
receptor was reported at inhibitory synapses in 
the reticular nucleus of the thalamus [ 47 ].  

17.2.3.3     GABA B  Receptors 
 The GABA B  receptors are metabotropic trans-
membrane receptors that are linked to potassium 
channels via G-proteins, thus GABA B  receptors 
mediate GABAergic slow responses. They are 
composed of two subunits; GABAB1 and 
GABAB2 with two splice variants of GABAB1 
[ 34 ]. The GABAB1a and GABAB1b subunits are 
thought to be the site of agonist binding, while 
the GABAB2 subunit activates the G-protein sig-
nalling pathway. Alterations in GABA B  receptor 
subunit expression and distribution have been 
reported in WAG/Rij rats with a marked reduction 
in GABA B1b,  GABA B1ac,  GABA B1d  and GABA B1bc  
mRNA levels in the cortex, whereas GABA B1a  
and GABA B2  mRNA levels were unchanged [ 55 ]. 
Alterations in GABA B  receptor expression in the 
thalamocortical circuit has been reported in one 
study on GAERS [ 74 ]. GABA B1  mRNA expression 
was shown to be increased in the somatosensory 
cortex but decreased in the ventrobasal nucleus 
of the thalamus. However, protein expression 
showed a different pattern of expression. Both 
GABA B1  and GABA B2  receptors were shown to be 
increased in all regions of the thalamocortical 
circuit (somatosensory cortex, ventrobasal 
nucleus and reticular nucleus of the thalamus) 
[ 74 ]. Moreover, transgenic mice overexpressing 
either GABAB1 subunits show an epileptic 
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phenotype characterized by spontaneous, recurrent 
atypical absence seizures [ 87 ,  103 ].  

17.2.3.4     Ionotropic Glutamate 
Receptors 

 The ionotropic glutamate receptor (iGluR) family of 
excitatory synaptic receptors, are divided into four 
distinct subgroups based on their pharmacology 
and structural homology, including the AMPA 
receptors (GluA1–GluA4), kainate receptors 
(GluK1–GluK5), NMDA receptors (GluN1, 
GluN2A–GluN2D, GluN3A, and GluN3B), and δ 
receptors (GluD1 and GluD2) [ 16 ]. The iGluRs are 
tetramers with a binding site for glutamate on each 
subunit that assemble as dimers of dimers, and their 
composition can be homomeric or heteromeric [ 94 ]. 

 AMPA receptors mediate fast glutamatergic 
neurotransmission, and GluA1 and GluA2 pro-
tein expression has been shown to be upregulated 
in adult epileptic GAERS in the cortical mem-
brane fraction [ 35 ]. In conjunction with this 
increase, it was also shown that stargazin (γ2), a 
transmembrane AMPA receptor regulatory pro-
tein (TARP), was also increased specifi cally in 
the membrane of the somatosensory cortex. 
Juvenile pre-epileptic GAERS did not show any 
alterations in AMPA receptor or TARP expres-
sion [ 35 ]. The epileptic and ataxic phenotype of 
the  stargazer  mouse was found to be genetically 
determined by a mutation in the stargazin gene 
( Cacng2 ) resulting in decreased expression of 
stargazin in the brain [ 43 ]. WAG/Rij at 3 and 6 
months of age show a reduction in the NMDA 
receptor GluN1 subunit and AMPA receptor 
GluA4 subunit immunoreactivity in the somato-
sensory cortex compared to control rats, which 
was especially evident in layers IV, V and VI 
[ 98 ]. Similarly, GluN2B protein expression has 
been shown to be decreased in layers III and V of 
the somatosensory cortex of 2 month and 6 month 
old WAG/Rij rats [ 33 ].   

17.2.4     Metabotropic Glutamate 
Receptors 

 Metabotropic glutamate receptors (mGluR) 
constitute a family of eight G-protein-coupled 
receptor subtypes that can indirectly modulate 

ion channels via second messenger systems. The 
family of mGluRs is composed of eight receptor 
subtypes, grouped into three different families 
according to their amino acid homology, pharma-
cologic properties, and G-protein coupling [ 13 ]. 
Class I metabotropic glutamate receptors (mGluR1 
and mGluR5) mediate an increase in neuronal 
excitability and their activation can induce sei-
zures. Class II receptors (mGluR2 and mGluR3) 
and class III receptors (mGluR4, mGluR6-8) 
depress synaptic transmission. 

 Several mGluRs subtypes are localised at 
synapses of thalamocortical neurons and thus 
may play an important role in the generation 
of epileptic generalised SWD    [ 61 ]. Indeed, 
mGluR1α subtype has been shown to be down 
regulated in the thalamus of 8 month old epileptic 
WAG/Rij rats but in young pre-symptomatic 
WAG/Rij rats this reduction was not observed 
indicating that this change in mGluR1α receptor 
is occurring as a consequence of the seizures 
[ 60 ]. Additionally, mGluR4 protein levels in the 
reticular nucleus and ventral posterolateral 
thalamic nuclei were signifi cantly reduced in 2 
month old pre-epileptic WAG/Rij, but in 8 month 
old epileptic WAG/Rij rats a signifi cant increase 
in mGluR4 protein levels in the reticular nucleus 
of the thalamus was observed [ 59 ].   

17.3     Acquired Epilepsies 

17.3.1     Overview 

 Acquired epilepsies are caused by brain insult 
such as stroke, traumatic brain injury (TBI), brain 
infl ammation, or status epilepticus. Consequently, 
the molecular and cellular pathology of acquired 
epilepsies is heterogeneous both in type, distribu-
tion, and temporal evolution [ 71 ,  72 ]. Previous 
studies in human tissue and animal models have 
shown that in addition to neurodegeneration, 
neurogenesis, vascular injury and angiogenesis, 
proliferation and activations of different types of 
glia, axonal/myelin injury and axonal sprouting, 
dendritic plasticity, and changes in the composi-
tion of extracellular matrix, also the composition 
of ligand and voltage-gated ion channels can 
change [ 72 ]. This is often referred as “acquired 
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channelopathy” which can contribute to both 
epileptogenesis, evolution of comorbidities, and 
drug-refractoriness [ 77 ]. 

 Previous global analyses of gene expression in 
epileptic tissue indicate that changes in the 
expression of mRNA, encoding for receptors and 
ion channels is not prominent. Some changes 
have, however, been observed in the level of mRNA 
for subunits of calcium channels or GABA recep-
tors (e.g. [ 26 ,  49 ,  72 ,  102 ]). Moreover, the 
changes in mRNA levels often do not correlate 
with the protein level [ 1 ,  44 ,  75 ]. The level of the 
expressed protein is the key for the function of 
receptors or ion channels. Therefore, we focus on 
changes in protein expression of channels and 
receptors. We compare the fi ndings in human 
tissue to that in animals undergoing epileptogenesis 
or already having established epilepsy (changes 
detected >7 days post-injury). The data are sum-
marized in Table  17.1 .

17.4         Altered Expression 
of Voltage-Gated 
Ion Channels 

17.4.1     Voltage-Gated Sodium 
Channels 

 Our literature search did not reveal any data on 
expression of α subunits in human TLE. In a 
rodent model of TLE, in which epileptogenesis 
was induced by status epilepticus (SE), Hargus 
et al. [ 28 ] reported that Na V 1.6 was present in 
axon initiation segment and Nav1.2 in the soma 
of neurons located in layer II of the entorhinal 
cortex. In animals with epilepsy, the expression 
of both subunits was increased at 3 months post-
 SE. Instead, expression of Nav1.1 and Nav1.3 
was low and did not differ between the control 
and epileptic animals. Authors concluded that 
changes in the expression of Nav1.2 and Nav1.6 
participate in generation of hyperexcitability of 
layer II neurons [ 28 ]. 

 There are few studies of expression of β 
subunits in human TLE. Navβ3 was found to be 
expressed in principal neurons of the hippocam-
pus proper. In TLE patients without hippocampal 

sclerosis, the expression of Navβ3 was reduced 
in the hippocampus as compared to that in TLE 
patients with hippocampal sclerosis [ 99 ]. In 
the normal hippocampus, Navβ1 subunit was 
expressed in neurons and a weak immunoreac-
tivity was also observed in astrocytes. The astro-
cytic expression of Navβ1 showed a remarkable 
increase during epileptogenesis and epilepsy 
triggered by SE [ 27 ].  

17.4.2     Voltage Gated Potassium 
Channels 

 Voltage gated potassium channels are six trans-
membrane proteins containing a pore consisting 
of two transmembrane fragments and a voltage 
sensor on N-terminal side. Usually channels are 
tetramers composed of identical subunits. Their 
function is to return the membrane potential to 
resting state after depolarization [ 14 ]. 

 One of the most studied subunits in human TLE 
and acquired epilepsy models is Kv4.2 (KCND2) 
that is critical for mediating the A-currents 
crucial for regulation of neuronal excitability and 
control of threshold for action potential initia-
tion. In TLE patients with hippocampal sclerosis, 
the level of Kv4.2 was increased in the somata of 
pyramidal cells and in activated astrocytes [ 1 ]. 
Immunoreactivity for its phosphorylated 
form, pKv4.2, was increased in granule cell and 
in molecular layers of the dentate gyrus as well as 
in the hippocampal CA3 principal cells. In areas 
of neurodegeneration, however, the dendritic 
immunoreactivity of Kv4.2 or pKv4.2 was reduced. 
In some pyramidal neurons pKv4.2 co-localized 
with postsynaptic markers. 

 Decrease in the expression of Kv4.2 in CA1 
has also been observed in animal models of 
epilepsy, including epileptogenesis triggered by 
SE or by TBI [ 4 ,  56 ,  82 ]. Increased expression of 
pKv4.2, similar to that observed in human TLE, 
has been found in the CA1 after SE in rats [ 4 ]. 
These observations suggested that a decrease in 
Kv4.2 and an increase in pKv4.2 by ERK kinases 
can contribute to increased dendritic excitability, 
resulting in reduced seizure threshold after 
epileptogenic brain insults [ 1 ,  4 ]. 
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 The two other subunits, Kv4.3 and Kv1.4, are 
implicated in A-current. In SE model, Kv4.3 
 protein translocated within the molecular layer of 
the dentate gyrus, resulting in an increase in its 
concentration in the outer two thirds of the 
molecular layer [ 56 ]. Kv1.4 is localized in axons. 
Interestingly, in epileptic animals an increase in 
Kv1.4 was observed in stratum lucidum of the 
CA3 and in the inner molecular layer of the dentate 
gyrus, which are the areas of extensive axonal 
sprouting after epileptogenic brain insults [ 56 ]. 

 Another voltage dependent potassium channel 
implicated in acquired epilepsy is Kv7.2 
(KCNQ2). Kv7.2 contributes to M-current, 
controlling baseline excitability. Number of 
Kv7.2 immuno-positive neurons was increased in 
the basolateral amygdala in animals after SE. 
The increase was present only in animals with 
spontaneous seizures. An increase in Kv7.2 was 
proposed to decrease the baseline excitability of 
amygdaloid neurons [ 66 ].   

17.5     Altered Expression of Ligand 
Gated Ion-Channels 

17.5.1     GABA A  Receptors 

 In drug-resistant patients with TLE, studies using 
subunit-specifi c antibodies have revealed pro-
found and complex alterations in the expression 
of GABAA receptor subunits in the hippocam-
pus. In particular, decrease in immunoreactivity 
of α1, α2, α3, and γ2 was observed in the CA1 
in TLE patients with hippocampal sclerosis 
[ 21 ,  48 ]. This was probably related to the CA1 
neurodegeneration. In the granule cells of dentate 
gyrus, however, the expression of α1 and α2 
subunits was increased. 

 An increased expression of β2 and β3 subunits 
was observed in the granule cell layer of dentate 
gyrus of patients with TLE, while the data avail-
able on the expression of β subunits in the 
CA1-CA3 subfi elds of the hippocampus proper 
are confl icting [ 21 ,  48 ]. Interestingly, several β 
subunits increase their expression in the apical 
dendrites and decrease the expression in the basal 
dendrites of granule cells [ 48 ]. 

 The literature reporting the changes in the 
expression of GABAA receptor subunits in 
animal models of acquired epilepsy is extensive 
(Table  17.1 ). In the normal rat hippocampus, the 
distribution of GABAA receptor α subunits is 
topographically organized in different hippocam-
pal subfi elds and layers [ 81 ]. Fritschy et al. [ 20 ] 
showed that at 6 weeks after SE in rats, the 
expression of α1 subunit was up-regulated in the 
granule cell and molecular layers of the dentate 
gyrus and down-regulated in the hippocampus 
proper. Interestingly, also the number of hilar 
α1 positive interneurons was reduced [ 20 ]. 
Accordingly, a decrease in α1 immunoreactivity 
in the CA1 subfi eld was reported at 1 month after 
SE. The decrease was accompanied by an increase 
in α1 immunoreactivity in the granule cell and 
molecular layers of the dentate gyrus TBI caused 
a decrease in α1 expression in hippocampal 
extracts at 1 week post-TBI. No such decrease in 
α1 expression was found when assessed at 90 
days post-TBI [ 23 ,  36 ,  75 ]. 

 SE in rats resulted in an increase in α2 subunit 
immunoreactivity in the molecular layer of the 
dentate gyrus which was accompanied with a 
decreased α2 expression in the CA1 [ 20 ,  85 ]. 
When kainic acid was injected directly into the 
hippocampus, a decrease in α2 immunoreactivity 
occurred in the ipsilateral CA1, CA3, and also in 
the dentate gyrus [ 6 ]. After TBI, α2 expression 
did not differ from that in controls [ 23 ,  75 ]. 

 Immunoreactivity of GABAA receptor α3 
subunit was decreased in the CA1 and CA3 
subfi elds of the hippocampus after SE [ 6 ,  20 ]. In 
the dentate gyrus, however, α3 immunoreactivity 
was increased in rats with epilepsy [ 20 ]. 

 Decrease in α4 subunits was observed in 
extracts from the whole rat hippocampus 1 week 
after TBI, but no changes was evident in rats 90 
days after TBI nor in rats in which epilepsy was 
induced by SE [ 36 ,  75 ,  91 ]. 

 Immunoreactivity of α4 subunit was increased 
in the molecular layer of the dentate gyrus at 
30 days after SE in mice [ 65 ]. Moreover, Sun 
et al. [ 91 ] demonstrated that in epileptic animals 
the α4 subunits located on the somata and 
dendrites of the dentate granule cells were more 
commonly present within inhibitory synapses 
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than extra- synaptically. This coincided with a 
diminished action of neurosteroids on synaptic 
current, possibly contributing to facilitation of 
seizures in epileptic animals [ 91 ]. 

 Expression of α5 subunit of GABAA receptor 
decreased in the CA1 subfi eld of the hippocampus 
in rats that had experienced SE [ 20 ,  85 ]. Moreover, 
SE resulted in a slight increase in α5 subunit 
immunoreactivity in the dentate gyrus [ 20 ]. An 
increased expression of α5 in the dentate gyrus 
and a decrease in the CA1 were also observed at 
1 month after SE [ 6 ]. However, no changes were 
observed in the expression of α5 expression at 7 
days after TBI induced by FPI [ 23 ,  75 ]. 

 In the normal rat brain, GABA A  receptor β1 
and β3 subunits are expressed in the dendritic 
areas of the hippocampus, including the stratum 
oriens and stratum radiatum of the CA1-CA3, 
and the molecular layer of the dentate gyrus. 
Staining for β2 subunit is light in pyramidal cell 
dendrites or in granule cells, but is present in 
hippocampal interneurons [ 84 ]. At 6 weeks after 
SE, immunoreactivity for β2 and β3 subunits was 
increased in the granule cell layer and decreased 
in the CA1-CA3 subfi elds of hippocampus proper 
as well as in the hilus of the dentate gyrus [ 20 ]. 
However, at 7 days post-TBI the hippocampal 
expression of β3 subunit remained unaltered [ 23 ]. 

 Immunoreactivity of GABAA receptor γ1 and 
γ2 subunits is light in the normal hippocampus. 
γ1 is expressed in astrocyte-like profi les. γ2 
subunit is highly expressed in the dendrites of 
CA1-CA3 neurons and in the molecular layer of 
the dentate gyrus as well as in perikarya of a 
subpopulation of hilar neurons. Expression of γ3 
subunit is most remarkable in fi bers [ 81 ]. After 
SE there is an increase in the immunoreactivity 
for γ2 subunit in the molecular layer of the den-
tate gyrus [ 6 ,  20 ,  65 ]. Zhang et al. [ 105 ] showed 
that in epileptic rats γ2 subunits are translocated 
to the perisynaptic location in the dendrites of 
granule cells. This resulted in a decrease in the 
expression of γ2 subunits at the synaptic region, 
and coincided with a decrease in phasic inhibition 
in the dendrites of granule cells [ 105 ]. Data on 
expression of γ2 subunit expression in the 
hippocampus proper are less consistent. After 
SE, Sperk et al. [ 85 ] observed an increase in γ2 

immunoreactivity in stratum lacunosum moleculare 
and stratum radiatum of the CA3. However, γ2 
immunoreactivity was decreased in the ipsilateral 
CA1 and CA3 [ 85 ]. A decrease in the hippocam-
pal expression of γ2 subunit was observed also 
after TBI using Western blot [ 36 ,  75 ]. 

 In the normal hippocampus, δ subunits are 
expressed in the molecular and granule cell 
layers and in interneurons of the dentate gyrus. 
Light immunoreactivity is also present in the 
CA1-CA3 subfi elds of hippocampus proper [ 81 ]. 
Chronically epileptic animals after SE showed a 
decrease in δ subunit immunoreactivity in the 
molecular layer of the dentate gyrus and an 
increase in interneurons. This was accompanied 
by an increase in excitability in hippocampal 
slices sectioned from epileptic animal [ 65 ]. As 
shown by Zhang et al. [ 105 ] the expression of δ 
subunit was decreased in the dendrites of dentate 
granule cells [ 105 ]. Unexpectedly, no impairment 
was observed in tonic inhibition, indicating that 
a reduction in the expression of δ subunit is 
compensated by other GABAA subunits [ 105 ]. 
In addition to SE models, a decrease in δ subunit 
was observed in the hippocampal extracts at 7 
days following TBI [ 75 ]. 

 In summary, the changes in the pattern of 
expression of different GABAA receptor sub-
units are complex and model specifi c. In several 
reports, the decrease in the expression of subunit 
protein correlated with the severity of neurode-
generation whereas the increases in the expres-
sion likely presented compensatory molecular 
plasticity in altered network. Undoubtedly, the 
reported alterations explain the impairment of 
GABAergic transmission tuning the network 
towards increased excitability.  

17.5.2     GABA B  Receptors 

 Contribution of the altered expression of 
metabotropic GABA B  receptors to acquired 
epileptogenesis and ictogenesis are poorly under-
stood as compared to that of GABA A  receptors. 
In the normal human brain, neuronal expression 
of one of the GABA B  receptors, GABABR1, has 
been reported in the hippocampus and entorhinal 
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cortex. In TLE, the expression of GABABR1 was 
reduced in the dentate granule cells as well as 
in the hippocampus, particularly in areas of neu-
rodegeneration. Interestingly, no compensatory 
change in the expression of GABABR1 was 
found in surviving neurons [ 58 ]. 

 Straessle et al. [ 88 ] investigated the distribution 
of the two variants of GABABR1 receptor, 
GABABR1a and GABABR1b as well as 
GABABR2 in a mouse model of TLE. At 
4–6 weeks or 3 month post-SE, ipsilateral 
CA1-CA3 showed a remarkable reduction in 
GABABR1a and GABA-BR1b as well as in 
GABABR2 immunoreactivities, which was 
associated with extensive hippocampal neuro-
degeneration. On the contrary, expression of 
GABABR1a, GABABR1b, and GABAR2 sub-
units was enhanced in the dentate granule cells. 
Moreover, temporary loss and then reappearance 
of interneurons stained for GABABR1a,b or 
GABABR1b was observed in the hilus and CA3, 
In contrast to GABAA receptor subunits, no 
changes GABABR1a, GABABR1b, or GABABR2 
immunoreactivities were observed in the molecular 
layer of the dentate gyrus [ 88 ].  

17.5.3     AMPA/Kainate Receptors 

 Studies investigating the expression of subunit pro-
teins forming AMPA (GluR1-4) and KA (GluR5-
7) receptors in epileptic tissue are meager, despite 
the fact that some of the non-NMDA glutamate 
receptors are targeted by antiepileptic drugs. 

 The expression of GluR1 and GluR2/3 was 
increased in the molecular layer and GluR2 also 
in the stratum radiatum, in TLE patients either 
with or without hippocampal sclerosis. An increase 
in GluR1 was also found in the CA3 principal 
cells as well as in hilar mossy cells [ 17 ,  54 ]. In 
hippocampal stimulation model of TLE, rats with 
epilepsy showed increased expression of GluR1 
in the molecular layer of the dentate gyrus [ 54 ]. 
In kainate model, however, hippocampal expres-
sion of GluR1 expression was decreased at 1 
month post-SE [ 83 ]. A decrease in GluR1 protein 
expression was also observed in the hippocampus 
at 3 months after TBI [ 36 ]. 

 Some information is available on kainate 
receptor subunit GluR5. Li et al. [ 44 ] reported an 
increase in GluR5 protein level in the hippocam-
pus, but not in the temporal neocortex of TLE 
patients [ 44 ]. An increase in GluR5, but not in 
GluR6 protein expression was also observed in 
rats at 3 or 6 months after SE in rats [ 97 ].  

17.5.4     NMDA Receptors 

 NMDA receptors are implicated in synaptic plas-
ticity, including LTP and LTD. This has created 
an interest whether they could play a role also in 
the development of aberrant synaptic plasticity 
found in nimal models and human TLE. 

 NMDA receptors are tetramers consisting of 
at least one NR1 subunit and NR2(A-D) or NR3 
(A-B) subunits. Properties of NMDA receptor are 
determined by its subunit composition [ 22 ]. 
Changes in the expression of NMDA receptors 
have been studied mostly at mRNA level, and 
these studies have focused on early time points 
after epileptogenic insult [ 22 ]. Much less infor-
mation is available on protein expression and on 
its localization in the epileptic tissue. 

 As NR1 subunit is an indispensable compo-
nent of the NMDA receptor, its expression 
provides information on the presence and local-
ization of all NMDA receptors. Frasca et al. [ 19 ] 
reported a decrease in the phosphorylated and 
non- phosphorylated forms of NR1 in animals 
with epilepsy after SE [ 19 ]. 

 More information is available on NR2, a subunit 
that is critical for the localization of NMDA 
receptor. After SE, the expression of NR2B 
protein was decreased which was accompanied 
by a decrease in PSD-95 protein. Moreover, the 
decrease in NR2 correlated with behavioral 
defi cits [ 92 ]. In another SE model, hippocampus 
showed a reduced expression of both NR2B as 
well as its phosphorylated form, p-NR2B. The 
decrease in p-NR2B in post-synaptic membranes 
was associated with its reduced interaction with 
postsynaptic density. Interestingly, spontaneous 
seizures in these animals caused a transient 
increase in p-NR2B. It was concluded that altered 
phosphorylation on NR2B leads to extra synaptic 
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localization of NMDA receptors in epileptic 
animals [ 19 ]. A decrease in hippocampal NR2B 
protein was also found in the CCI model of TBI 
in rats [ 36 ].  

17.5.5     Metabotropic Glutamate 
Receptors 

 To our knowledge, only mGluR4 protein expression 
has been studied in the human epileptic brain. In 
the normal human brain, almost no mGluR4 
immunoreactivity was present. The hippocampus 
resected from patients with TLE, however, showed 
a strong mGluR4 immunoreactivity, particularly 
in the dentate gyrus. Interestingly, mGluR4 was 
localized in periphery of pre- and postsynaptic 
membranes [ 46 ]. 

 mGluR5, a member of class I receptors has 
been studied only in animal models of epilepsy. 
In the normal hippocampus, mGluR5 protein is 
expressed in the dendritic fi elds of pyramidal 
cells [ 96 ]. After SE, the expression of mGluR5 
was reduced in the ipsilateral hippocampus, 
which correlated with the severity of neurode-
generation in CA1-CA3 pyramidal cells [ 96 ]. 
mGluR5 immunoreactivity was decreased also in 
CA1 following SE [ 38 ]. The decrease in mGluR5 
immunoreactivity after SE occurred in neurons 
whereas astrocytes showed a strong immunola-
beling [ 2 ,  96 ]. It was suggested that an increase 
in mGluR5 in astrocytes could associate with 
Ca2+ oscillations in astrocytes [ 2 ,  96 ] whereas a 
reduction in mGlur5 in the CA1 principal cells 
could associate with an impairment in LTD which 
is one of the post-SE functional consequences [ 38 ]. 

 Similarly to mGlur5, expression of mGluR2/3 
receptor proteins has been studied in models of 
TLE triggered by SE. When mGluR2/3 immuno-
reactivity was analyzed at 1 week, 3 weeks, or 3 
months after SE, its expression was increased in 
activated vimentin-positive astrocytes. It was 
proposed that this contributed to the propagation 
of calcium waves in astrocytic syncytium, resulting 
in generation of seizure focus [ 2 ]. Interestingly, 
at the 3 month time point the intensity of mGluR5 
staining was reduced in the molecular layer 
and in stratum lacunosum moleculare, and these 

changes coincided with neurodegeneration in 
the entorhinal cortex [ 2 ]. In another SE model, a 
decrease in mGluR2/3 immunoreactivity was 
detected in the stratum lacunosum moleculare 
of the CA1 and CA3 and in mossy fi bers located 
in the CA3 and the hilus [ 62 ]. An increase in 
mGluR2/3 immunoreactivity was found in the 
molecular layer of the dentate gyrus [ 62 ,  78 ]. It 
remains to be studied whether the increase in 
mGluR2/3 also after SE occurs in astrocytes [ 78 ].   

17.6     Conclusions 

 The spectrum of changes in expression of proteins 
forming ligand and voltage-gated ion channels in 
genetic and acquired epilepsies is wide and 
extends over different etiologies. Changes vary 
depending on the stage of epileptogenesis, brain 
area investigated, as well as the cell type and 
cellular compartment assessed. The overall picture 
of changes in receptors and ion channels is frag-
mentary and their functional analysis is limited. 
However, considering the multiplicity of molecular 
and cellular changes present in the epileptogenic 
regions, it remains a viable hypothesis that 
acquired channelopathies form a specifi c compo-
nent of the molecular fi ngerprint for epileptogen-
esis, eventually leading to the development of 
epilepsy. To which extent they also contribute to 
the development of comorbidities and/or tissue 
recovery remains to be studied.     
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    Abstract 

 The goals of constructing epilepsy models are (1) to develop approaches 
to prophylaxis of epileptogenesis following cortical injury; (2) to devise 
selective treatments for established epilepsies based on underlying patho-
physiological mechanisms; and (3) use of a disease (epilepsy) model to 
explore brain molecular, cellular and circuit properties. Modeling a par-
ticular epilepsy syndrome requires detailed knowledge of key clinical phe-
nomenology and results of human experiments that can be addressed in 
critically designed laboratory protocols. Contributions to understanding 
mechanisms and treatment of neurological disorders has often come from 
research not focused on a specifi c disease- relevant issue. Much of the 
foundation for current research in epilepsy falls into this category. Too 
strict a defi nition of the relevance of an experimental model to progress in 
preventing or curing epilepsy may, in the long run, slow progress. 
Inadequate exploration of the experimental target and basic laboratory 
results in a given model can lead to a failed effort and false negative or 
positive results. Models should be chosen based on the specifi c issues to 
be addressed rather than on convenience of use. Multiple variables includ-
ing maturational age, species and strain, lesion type, severity and location, 
latency from injury to experiment and genetic background will affect 
results. A number of key issues in clinical and basic research in partial 
epilepsies remain to be addressed including the mechanisms active during 
the latent period following injury, susceptibility factors that predispose to 
epileptogenesis, injury – induced adaptive versus maladaptive changes, 
mechanisms of pharmaco-resistance and strategies to deal with multiple 
pathophysiological processes occurring in parallel.  
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18.1         Introduction 

    I have chosen to limit discussion here to models 
of the partial or lesional epilepsies; however a 
number of the issues are generic to understand-
ing the relevance of other models to prevention 
and treatment of clinical epilepsies. What fol-
lows is not meant to be a literature review, but 
rather a discussion of unsolved issues and my 
opinions relevant to the use of epilepsy models. 
For additional discussion and references, the 
reader is referred to Epilepsia, 54: Supplement 4, 
1–74, 2013 and articles therein, generated by 
participants of a joint AES/ILAE translational 
workshop, and a number of recent reviews of 
epilepsy models and mechanisms [ 10 ,  11 ,  24 , 
 25 ,  28 – 30 ,  32 ,  37 ,  44 – 48 ]. Issues and diffi culties 
raised by these authors bear a remarkable resem-
blance to those highlighted in reviews more than 
20 years ago (e.g. [ 9 ]), in spite of the introduc-
tion of a number of new models and antiepileptic 
drugs. 

 Making laboratory models “relevant” requires 
several considerations. We should recognize that 
important contributions to understanding the 
mechanisms and treatment of neurological disor-
ders has often come from “non-targeted” 
research, not seemingly focused on a specifi c 
disease-relevant issue. Much of the foundation 
for current research in epilepsy falls into this cat-
egory. For this reason, too strict a defi nition of 
whether an experimental model is relevant or 
non-relevant to progress in preventing or curing 
epilepsy may, in the long run, slow progress. 
How should one design a model relevant to our 
clinical understanding and treatment? The fi rst 
step would be identifi cation of specifi c key clini-
cal issues that are roadblocks in preventing or 
treating epilepsy, and would be feasible to 
address in a critically- designed animal model. 
Such issues can only be identifi ed through 
detailed observations of clinical phenomenology 

and associated human research data, i.e. an 
important “bedside to bench” approach. Extensive 
basic research focused on one or more of these 
key issues should follow. The third step would 
use of data from the model to design a clinical 
experiment or trial. Here is where further defi ni-
tion of the too-often-used term “translational” 
becomes important. In literature, scholarly trans-
lation of a work requires intimate knowledge of 
the vocabularies and nuances of two languages. 
By analogy, application of data from a labora-
tory model to aspects of clinical disorder requires 
detailed clinical and basic experimental data. 
Inadequate defi nition of the experimental tar-
get and less than rigorous exploration of the 
laboratory results in a given model can lead to 
a failed effort, or the “Lost in Translation” 
phenomenon.  

18.2     Why Model at All? What 
Are the Long-Term Goals? 

18.2.1     Prophylaxis of Seizure 
Development in Lesional 
Epilepsies 

 Reference to any classifi cation of seizure disor-
ders clearly reveals that the epilepsies are multi-
faceted and related to a large variety of etiologies. 
Why should one expect that the same model of 
epilepsy will be useful for research on prevention 
of seizures resulting from a stroke versus a focal 
tumor versus a traumatic brain injury? Although 
each of these etiologies likely has a different 
 combination  of underlying mechanisms that lead 
to seizure generation, they may all involve some 
 common abnormalities  that are sequellae of focal 
injury, such as aberrant rewiring of cortical cir-
cuits or vulnerability of specifi c inhibitory inter-
neuronal subtypes. Preventative treatments that 
are selective for such specifi c subtypes of under-
lying pathophysiology might be effective in more 
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than one epilepsy syndrome and least likely to 
induce unwanted side effects. However, there are 
multiple mechanisms for epileptogenesis that 
occur in parallel for each subtype of lesional epi-
lepsy. As a consequence, too focused an approach 
on one pathophysiology or pathway or gene may 
yield a false negative result, even though the tar-
get mechanism has been successfully affected. 
This may be particularly true in a model of epi-
lepsy with a very high yield of seizures from dif-
fuse brain lesions, such as some post-status 
epilepticus models. Therefore, progress may 
require a roadmap of pathophysiological mecha-
nisms obtained from models of different types of 
epilepsies and even different models of a specifi c 
post-lesional epilepsy (e.g. [ 17 ]). Potential use of 
anti-epileptogenic cocktails containing more 
than one selective agent, treatments with single 
drugs that have multiple modes of action or treat-
ments directed upstream to affect multiple path-
ways for epileptogenesis [ 11 ] would be a logical 
direction in studies of prophylaxis after injury.  

18.2.2     Development of Selective 
Treatments for Established 
Epilepsies, Based on Underlying 
Pathophysiological Mechanisms 

 Unfortunately, as noted by many authors, in spite 
of the development of a number of new antiepi-
leptic drugs, the proportion of individuals who 
have poorly controlled seizures remains the 
same, at about one third. It has been proposed 
that the reason for this is the use of the same 
models for initial drug screening over the years. 
There are a number of unknowns that should be 
considered in designing models for experiments 
to address this goal. The species and strain of the 
animal model selected for a given experiment 
will signifi cantly affect the results [ 22 ,  43 ]. 
Susceptibility to seizures, and the effi cacy and 
spectrum of toxicity of a given antiepileptic drug 
will also vary in individuals with different genetic 
backgrounds [ 15 ,  39 ]. Do such genetic differ-
ences extend also to the specifi c mechanisms 
underlying development of a particular epilepsy 
syndrome due to different etiologies, e.g., limbic 

circuit epilepsy due to a head injury vs. following 
status epilepticus? Might these two etiologies for 
the same syndrome differ in their responses to a 
particular anti-seizure agent? Another important 
variable may be the temporal evolution of epilep-
togenesis after serious brain injury. This clearly 
varies markedly among individuals and may 
unfold over years [ 38 ,  41 ]. Is ongoing seizure 
activity responsible for the progressive loss of 
hippocampal volume seen in radiological stud-
ies? Do the mechanisms underlying seizures fol-
lowing an injury also vary over time, so that 
drugs might be selected on the basis of the dura-
tion of epilepsy in a particular model or patient? 
For example, early on after cortical injury, treat-
ments that are directed against alterations in 
blood brain barrier, and immunological mecha-
nisms or infl ammation may be effective, however 
underlying mechanisms may shift over time so 
that later, formation of new synapses, recurrent 
excitatory circuits or disturbed inhibitory circuit 
function become important drug targets. A related 
question is whether emergence of drug resistance 
is in part due to shifts in underlying epileptogenic 
mechanisms over time? Are decreases in respon-
siveness related to progressive changes late after 
injury, such a increasing excitatory sprouting 
and/or death of neuronal subtypes, and what is 
the role the plastic changes in cortical circuits 
resulting from ongoing epileptiform activity in 
this process?  

18.2.3     Disease as a Tool to Explore 
Brain Molecular, Cellular and 
Circuit Properties 

  “Epilepsy represents one of the most exquisite 
experiments of nature and its study may provide 
basic insight into fundamental functions of the 
brain.”  [ 20 ]. Epilepsy has long been used as a 
research tool to explore brain mechanisms such 
as circuit properties and connections, and mecha-
nisms of synchronization within normal brain. 
Clementi [ 3 ] described refl ex epilepsies in which 
a selective afferent input would trigger local sei-
zure activity and could be used to assess connec-
tivity. Much of the early information about 

18 How Do We Make Models That Are Useful in Understanding Partial Epilepsies?



236

localization of sensory and motor functions in 
cerebral cortex was derived from experiments in 
which the sites for seizure activity were mapped 
in human brain (e.g   . [ 33 ]). Epilepsy research has 
revealed normal brain mechanisms such as corti-
cal “surround” inhibition [ 35 ] and aspects of den-
dritic function [ 31 ,  53 ]. Plastic changes in brain 
structure and function are key to many normal 
processes during development, as well as after 
injury [ 19 ]. Epileptogenesis is a striking example 
of such brain plasticity [ 18 ]. Issues such as sprou-
ting of new connections, changes in receptor sub-
unit composition, and alterations in intrinsic 
membrane properties that are characteristic of 
neural development are also found during epilep-
togenesis and following prolonged recurrent sei-
zure activity. Clinical studies done with multiple 
implanted electrodes in patients with epilepsy, 
together with functional MRI have revealed sites 
of pathophysiological interaction, pathways for 
spread of activity and modifi cations of epileptic 
brain to experience and treatment.   

18.3     Issues/Problems 
in Developing Models 
of Epilepsy 

18.3.1     How Many Models Are 
Necessary for an Epilepsy 
with a Given Etiology? 

 As there is no perfect model of human partial epi-
lepsy, models must be chosen on the basis of the 
long-term goal to be addressed. If the goal is to 
determine whether a specifi c therapeutic agent 
decreases the incidence of seizures either pro-
phylactically or after epilepsy is established, a 
“high throughput” model with a relatively short 
latency between injury and seizure activity and a 
high proportion of animals developing behavioral 
seizures would be necessary to adequately power 
the experiment without exhausting available 
manpower or other resources. Lesional models 
with long latencies from injury and lower rates of 
occurrence of seizures would be impractical. The 
choice of models of chronic focal neocortical 
epilepsy for use in development of prophylactic 
or therapeutic strategies is particularly vexing 

due to long latencies, relatively low incidence of 
clinical seizures and variability between labora-
tories or even in the same laboratory. These 
requirements have led to the predominant use of 
models of chronic limbic system epilepsy follow-
ing status epilepticus induced by pilocarpine, kai-
nic acid or repetitive electrical stimulation. This 
approach begs the issue of whether other models 
of epileptogenesis such as those following trau-
matic injury in temporal lobes or neocortex have 
the same distribution of underlying mechanisms, 
and whether post-status epileptogenesis is a com-
mon pathophysiology in man. In other words, are 
we putting “all of our eggs into one basket?” 
Obviously, all pathologies cannot be represented 
in a given model. In other CNS disorders, such as 
autism, schizophrenia and Alzheimer’s disease, 
experiments have been done in a variety of mod-
els for a given condition, resulting in conclusions 
that multiple pathophysiologies may contribute 
to a given phenotype. 

 If, on the other hand, the experimental goal is 
to elucidate the basic cellular and synaptic 
 mechanisms that may contribute to hyperexcit-
ability and epileptogenesis, for example follow-
ing focal cortical or hippocampal injury, a model 
in which hyperexcitability persists in vitro in a 
high proportion of cortical slices from a known 
focal area of injury would be preferred over the 
more diffuse or multifocal brain injuries that 
occur following status epilepticus or severe brain 
trauma. In this case, one might choose the par-
tial cortical isolation model or epileptogenic 
focal areas in cortex due to infarction, con-
trolled local cortical trauma, or experimentally 
induced focal infl ammation/infection.  

18.3.2     Multiple Pathophysiological 
Processes 

 Not only are there multiple abnormalities in any 
given model, but also these abnormalities do not 
occur in parallel over time. This has important 
implications for choice of therapy, be it prophy-
lactic or after seizures have developed. For exam-
ple, early on after injury, infl ammation, alterations 
in the blood brain barrier, excessive release of 
glutamate from injured tissue and abnormalities 
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in membrane properties or receptors of acutely 
damaged neurons may be most important as tar-
gets for whatever agents are chosen. Further, it 
may be unclear which of these processes or com-
bination of them is epileptogenic, and underlies 
the later development of seizures. Infl ammation 
and blood brain barrier disturbances are present 
following any cortical trauma, yet only a minor-
ity of mild to moderate injuries result in partial 
epilepsy. Likewise, only a small proportion of 
gray matter infarctions result in focal epilepto-
genesis, even though similar acute processes 
occur following most injuries. Over time other 
more indolent processes may occur such as pro-
gressive loss of nerve cells following repetitive 
seizures or slowly activating mechanisms that 
induce either adaptive or maladaptive circuitry 
(e.g. [ 23 ,  27 ,  42 ,  49 ]). The choice of a therapeutic 
agent would depend on which of these processes 
was ongoing at a given point in time; it might not 
be effective to treat an area of injury with an anti- 
infl ammatory agent after epileptogenesis is well 
established. The best experimental strategy 
would be to attempt to isolate or control one or 
another of these potential epileptogenic processes 
and assess the end result in a preparation that is 
sensitive enough to detect small changes in what-
ever is being measured.  

18.3.3     Variables That May Affect 
the Development of Epilepsy 
After Cortical Injury and the 
Interpretation of Results 
of Modeling Experiments 

     (i)    Severity of injury and resulting epileptogen-
esis: It is clear that the severity of injury is a 
key prognostic factor in human posttrau-
matic epilepsy and one that may affect 
experimental results in a model [ 5 ]. Further, 
in models of severe traumatic injury or pro-
longed status epilepticus, multiple brain 
regions may be affected, making it diffi cult 
to determine site(s) of seizure origin. As dis-
cussed above, in experiments testing either 
prophylactic or therapeutic agents, it is 
desirable to use “high throughput” models 
in which there is frequent and intense seizure 

activity. Under these circumstances, it is 
possible that a therapeutic trial would appear 
to be negative because of the intense epilep-
tiform activity, even though the agent 
employed was altering its target, as hypoth-
esized. Other epileptogenic mechanisms 
might be powerful enough to hide favorable 
actions, leading to a false-negative trial.   

   (ii)    Site(s) and distribution of lesions (focal, 
multifocal, diffuse; hippocampus vs. neocor-
tex) may infl uence results: Different cortical 
areas have varying susceptibilities to the 
development of epileptiform activity. Such 
differences in epileptogenic capacity from 
region to region with a given injury (e.g. [ 5 ]), 
or even within different laminae in the same 
cortical area [ 4 ,  36 ]    may be due to variability 
in circuitry, receptors and intrinsic cell prop-
erties. Whatever the mechanisms, this vari-
ability makes it important to focus modeling 
experiments on specifi c neuronal types and 
structures comparable to those thought to be 
involved in clinical epileptogenesis. These 
intrinsic differences make it important to 
sample a given cell type or area, recognizing 
that there may be signifi cant differences if 
experiments are carried out in another corti-
cal region. There is marked variability in 
incidence, severity and frequency of sei-
zures, even in the same posttraumatic model 
in the same laboratory [ 5 ]. This variability 
resembles that seen following human head 
injury, but also makes testing of antiepileptic 
or prophylactic strategies more diffi cult and 
raises questions about models in which 
almost all animals have frequent seizures.   

   (iii)    The etiology as well as severity of a human 
cortical lesion may be a factor that deter-
mines the likelihood of epileptogenesis and 
success of a planned intervention. Penetrating 
injuries and those that induce intracerebral 
bleeding have a higher incidence of seizures 
than those resulting from infarction or closed 
head injury. There are also sometimes striking 
differences between incidence of seizures in 
different models in the same laboratory [ 17 ], 
and between different laboratories using the 
same model. Some of this variability may be 
due to errors in experimental design [ 21 ,  34 ].   
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   (iv)    Age and species: Assumptions regarding 
applicability of specifi c fi ndings from models 
of epilepsy in one strain or species to another, 
or to human epilepsy, should be made with 
caution. These differences extend to transport 
of antiepileptic drugs [ 1 ]; induction of status 
epilepticus and its consequences [ 2 ,  22 ,  55 ]; 
seizure-induced cell injury or death [ 43 ]; 
kindling [ 12 ,  50 ], and effects of ischemia [ 54 ]. 
Susceptibility to epilepsy may be greater in 
the immature brain [ 16 ,  52 ], although some 
parameters that are thought to be important 
to epileptogenesis, such as the maturation of 
excitatory axonal arbors of cortical pyrami-
dal cells, are slow to develop fully [ 40 ]. This 
makes results of experiments performed in 
models of epilepsy in immature in vitro 
slices diffi cult to generalize to mature cortical 
CNS structures.       

18.4     What Are Some Key Issues 
for Clinical and Basic Research 
in Partial Epilepsies? 

     (a)    Latent period between injury and seizures 
provides evidence for ongoing epileptogenic 
processes following cortical injury and an 
opportunity for prophylaxis. 

 There may be a critical period within the 
fi rst few days after injury when therapeutic 
intervention will be effective, even though 
the latency to seizures is signifi cantly longer 
(e.g. [ 6 ,  13 ,  14 ,  26 ]). Further analyses of 
pathophysiological events that occur during 
the critical period and are interrupted during 
such experiments may lead to new effective 
antiepileptogenic approaches.   

   (b)    Non-epileptogenic vs. epileptogenic injury. 
 What are the genetic or other susceptibility 

factors that predispose an individual to epi-
leptogenesis after injury (e.g. [ 8 ,  51 ])?   

   (c)    Which changes in epileptogenic brain are 
adaptive vs. maladaptive? 

 Injury-induced axonal sprouting has been 
considered a key  maladaptive  epileptogenic 
mechanism in a variety of models, and in 
human cortical structures. (reviewed in [ 25 , 

 37 ]). However, establishment of new connec-
tivity may also be an important  adaptive  
mechanism that underlies recovery from 
stroke and other injury [ 7 ,  23 ,  27 ]   . Recent 
results show that excitatory synaptic connec-
tivity and epileptogenesis can be signifi -
cantly reduced in cortically injured rats by 
treatment in vivo with gabapentin, a drug that 
interferes with synaptogenesis induced by 
astrocytic thrombospondins [ 26 ]. Will such 
drugs also limit behavioral recovery from 
brain injury? Additional experiments are 
required in models of injury-induced epilep-
togenesis to determine whether maladaptive 
connectivity can be limited without affecting 
adaptive mechanisms that foster behavioral 
recovery.   

   (d)    New (targeted) drug development; 
pharmaco-resistance. 

 Why have rates of seizure control not 
increased, in spite of introduction of multiple 
new anti-epileptic drugs?   

   (e)    Mechanisms of interictal-ictal transitions. 
Why a seizure today? What starts it? How 
does it propagate? What ends it?  “Why does 
the relatively restricted sporadic discharge 
of chronically epileptic neurons become peri-
odically enhanced and propagated to produce 
overt seizures?”  [ 20 ].   

   (f)    What are the trigger mechanisms for sporadic 
seizures? Roles of “stress”, sleep, fever, hor-
mones, etc.   

   (g)    Effects of epileptiform activity on neocorti-
cal and limbic structure/function.   

   (h)    What are the long term impacts of epilepsy 
on the mature and developing brain?   

   (i)    Co-morbidities as targets for research using 
animal models.      

18.5     Conclusions 

     1.    In assessing models of neocortical or 
 temporal lobe epilepsy, it is important to fi rst 
identify the specifi c issue to be addressed in 
the laboratory, derived from clinical observa-
tions and research, or results of previous 
experiments.   
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   2.    The long list of variables detailed above, that 
can infl uence results and conclusions, should 
be considered in advance and experimental 
and control groups and protocols planned 
accordingly.   

   3.    Convenience is not the most important crite-
rion for use of a given model. In the case of 
preclinical trials of agents for chronic partial 
epilepsy, the choices are quite limited, as sei-
zure frequency suffi cient to power the experi-
ments is present predominantly in post-status 
models where widespread abnormalities are 
present and the analogy to the pathophysiol-
ogy of spontaneously-occurring clinical par-
tial epilepsy is unclear [ 29 ].   

   4.    A major question for the model chosen will be 
whether expected results, based on known or 
expected variability of data, will yield an 
unambiguous answer to a specifi c issue, 
within practical limits of available resources.   

   5.    A broader defi nition of the term “translation” 
is necessary, to include mechanisms by which 
defects at molecular, cellular and network lev-
els are “translated” or evolve into the dysregu-
lated cortical activities that generate 
epileptiform activity and behavioral events. 
Without knowledge of events at this level, the 
“Lost in Translation” phenomenon, i.e., failed 
clinical trials, false negative experiments, or 
collection of data irrelevant to the clinical 
issue, will be more likely.   

   6.     “A really complete understanding of epilepsy 
might require almost total knowledge of the 
central nervous system”  [ 20 ]. Much of our 
progress in epilepsy research derives from 
non-epilepsy related experiments in basic 
neuroscience. Too much emphasis on the “rel-
evance” of a particular model or approach to 
epileptogenesis may limit discovery of major 
contributing mechanisms derived from less 
targeted experiments.         
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    Abstract  

  Treatment of the epilepsies have benefi tted immensely from study of animal 
models, most notably in the development of diverse anti-seizure medica-
tions in current clinical use. However, available drugs provide only symp-
tomatic relief from seizures and are often ineffective. As a result, a critical 
need remains for developing improved symptomatic or disease-modifying 
therapies – or ideally, preventive therapies. Animal models will undoubtedly 
play a central role in such efforts. To ensure success moving forward, a criti-
cal question arises, namely “How does one make laboratory models relevant 
to our clinical understanding and treatment?” Our answer to this question: It 
all begins with a detailed understanding of the clinical phenotype one seeks 
to model. To make our case, we point to two examples – Fragile X syndrome 
and status epilepticus-induced mesial temporal lobe epilepsy – and examine 
how development of animal models for these distinct syndromes is based 
upon observations by astute clinicians and systematic study of the disorder. 
We conclude that the continuous and effective interaction of skilled clini-
cians and bench scientists is critical to the optimal design and study of ani-
mal models to facilitate insight into the nature of human disorders and 
enhance likelihood of improved therapies.  
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     Animal models have played a critical role in 
 epilepsy research dating back to 1937 when 
Putnam and Merritt [ 32 ] published the fi rst ani-
mal model of seizures, the electroshock test in 
cats. Since that time, thousands of papers have 
been published that detail the development and 
utilization of animal models of seizures and epi-
lepsy. Currently, there are over 100 different ani-
mal models employed in epilepsy research [ 33 , 
 35 ]. These models utilize a wide array of species 
including drosophila, zebrafi sh, mice, rats, guinea 
pigs, cats, and even non-human primates. These 
models have provided insight into cellular and 
molecular mechanisms surrounding many aspects 
of the epilepsies. Moreover, some of these mod-
els have led to the development of novel therapies 
in the clinic. 

 That said, much work remains. Current phar-
macologic treatments for epilepsy are “symp-
tomatic” insofar as they suppress but do not 
prevent, modify, or cure the disorder. There is a 
critical need for new and improved treatment 
options that promote not only enhanced symp-
tomatic therapy, but also (for the fi rst time) pro-
vide disease- modifying or preventive therapy. 
Satisfying this need will require the use of 
appropriately designed and implemented animal 
models. To ensure success, we must address the 
following question: “How does one make labo-
ratory models relevant to our clinical under-
standing and treatment?” 

 In our view, the answer to this question starts 
with a detailed understanding of the clinical phe-
notype one seeks to model. This understanding in 
turn guides design and analysis of the animal 
model. Here we choose two examples to illustrate 
our thinking. One consists of a monogenic disor-
der, Fragile X syndrome. The other is a subtype of 
the common, sporadic disorder temporal lobe epi-
lepsy – namely the syndrome of mesial temporal 
lobe epilepsy emerging months to years after an 
episode of prolonged seizures (status epilepticus). 

For each example, we will focus on a specifi c 
 animal model that promises to inform clinical 
understanding and treatment. 

19.1     Evaluating Clinical Relevance 

    Evaluating the clinical relevance of an animal 
model is not a question unique to epilepsy research. 
In fact, this question is seminal to preclinical inves-
tigation of most human diseases. One approach to 
considering the relevance of a model for a particu-
lar human disease involves model evaluation using 
three criteria: its construct validity, its face validity, 
and its predictive validity [ 5 ]. 

 “Construct validity” refers to how closely an 
animal model recapitulates the causal mecha-
nisms underlying the disease in humans [ 5 ]. 
Construct validity is most readily addressed with 
monogenic disorders in which clinical and 
molecular genetic analyses have elucidated the 
molecular etiology of the syndrome in humans. 
For example, in Dravet Syndrome, the underly-
ing cause for most human cases consists of  de 
novo  mutations of the  SCN1A  gene that result in 
loss of function [ 7 ]. Consequently, approaches 
to developing an animal model of Dravet 
Syndrome with high construct validity would 
include engineering an experimental animal (e.g. 
fl y or zebrafi sh or mouse) with a null mutation of 
 SCN1A  or by substituting the wild type gene with 
an actual mutation identifi ed in a human, a strat-
egy referred to as “knock-in”. 

 “Face validity” refers to how closely an animal 
model recapitulates phenotypic characteristics of 
the human disease [ 5 ]. For example, patients with 
Rett Syndrome display several characteristic fea-
tures, including cognitive impairment, breathing 
irregularities, and stereotypic hand movements [ 18 , 
 29 ]. An animal model of Rett Syndrome with high 
face validity would reproduce most if not all of 
these phenotypic features. 
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 Finally, “predictive validity” refers to how 
closely an animal model recapitulates treatment 
responsiveness observed in humans [ 5 ]. For 
example, absence seizures in humans are typi-
cally quite responsive to the pharmacologic agent 
ethosuximide [ 16 ]. An animal model for absence 
seizures that has high predictive validity would 
demonstrate a similar response to ethosuximide. 

 As we consider how to enhance the relevance 
of animal models to our clinical understanding 
and treatment, we will use these criteria as a 
framework. Ideally, animal models would have 
high validity for each of these three criteria. 
However, as we discuss below, this may not be 
possible, and – importantly – may not be neces-
sary in order to inform clinical understanding 
and/or treatment of epilepsy. In fact, having high 
validity in only one criterion – construct, face, or 
predictive – may still provide a useful model for 
the appropriately selected question.  

19.2     Mendelian Disorders 
of Epilepsy 

 Mendelian disorders of epilepsy are those in which 
clinical and molecular genetic evidence estab-
lishes the mutation of a single gene as the cause of 
the disorder. To date, mutations in over 100 genes 
comprising a wide range of proteins have been 
linked to human diseases in which epilepsy is 
one of the phenotypic manifestations [ 28 ,  34 ]. 
Collectively, these Mendelian epilepsies account 
for only a small fraction of all epilepsies [ 28 ]. That 
said, study of these disorders will hopefully bene-
fi t individuals affected with these mutations, and 
insights derived from such studies may also inform 
mechanisms of non-Mendelian epilepsies. 

 For these Mendelian epilepsies, identifi cation 
of the causal mutant gene by clinical and molecu-
lar genetic studies creates the opportunity to 
engineer an animal model by introducing the 
mutant gene into the genome of an experimental 
animal (e.g. fl y, zebrafi sh, mouse, etc.) and exam-
ining its phenotypic manifestations. Such models 
typically have high construct validity because 
scientists can incorporate the precise genetic 
abnormality seen in humans, whether this 

 abnormality is a point mutation, chromosomal 
translocation, a frameshift mutation, etc. This 
high construct validity commonly equates to high 
face validity – the models recapitulate the key 
phenotypic features of the human disease. In 
these situations, the high construct and face 
validity strengthen the likelihood that such mod-
els will have high predictive validity as well. 

 However, high construct validity does not assure 
high face validity. For example, cystic fi brosis is a 
disease characterized by multi-organ failure with 
recurrent and persistent pulmonary infections 
being quite prominent. A common cause of cystic 
fi brosis is a mutation of F508 in the  CFTR  gene 
[ 17 ]. Mouse models with this exact mutation in 
their endogenous  Cftr  gene do not reproduce the 
severe pulmonary phenotype seen in humans. 
There are numerous possible explanations for this 
disparity including differences in the genetic back-
ground, immune response, etc.  In spite of such a 
disparity, the low face validity of these models does 
not preclude their usefulness for addressing impor-
tant questions. In fact, these cystic fi brosis models 
have been used extensively and with good success 
to probe questions surrounding other aspects of the 
human disease. The key issue is that the question 
addressed in the animal model must be carefully 
aligned with a specifi c and important question aris-
ing in the human disorder. 

 To illustrate these considerations in greater 
detail, we consider Fragile X syndrome – a disorder 
in which epilepsy is a prominent manifestation 
and for which engineering genetically modifi ed 
mice have produced useful models that promise 
to inform our clinical understanding and treatment 
of this disease. 

19.2.1     Characterizing Fragile X 
and Developing 
an Animal Model  

 Fragile X syndrome is a genetic disorder 
 occurring in 1:5,000 males [ 8 ]. Phenotypic mani-
festations include seizures, autism, cognitive 
impairment, hypersensitivity to sensory stimuli, 
motor incoordination, growth abnormalities, 
and various physical characteristics such as an 
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 elongated face, large protruding ears, and 
 marcoorchidism [ 6 ,  9 ,  30 ]. Clinical and  molecular 
genetic investigations have led to identifi cation 
of the molecular etiology of this syndrome, 
namely, a mutation of a gene termed “Fragile X”. 
Development of an animal model for Fragile X 
has been decades in the making. Its history began 
in 1943 when two clinicians (J. Purdon Martin 
and Julia Bell) described a family in England 
in which 11 males of two generations presented 
with mental retardation and social withdrawal 
[ 26 ]. Based on the pedigree, these clinicians 
hypothesized that this presentation of symptoms 
represented a novel, sex-linked recessive genetic 
disorder. Microscopic evaluation of chromo-
somal spreads isolated from these patients 
revealed the X-chromosome to be deformed or 
broken, thereby leading to the name “Fragile X” 
[ 24 ]. It took nearly 50 years, but the causative 
gene on the X-chromosome was fi nally identifi ed 
to be  FMR1  [ 39 ]. The primary mutation within 
this gene leading to Fragile X was an expansion 
of the CGG trinucleotide repeat found within the 
5′ untranslated region of  FMR1 . Investigators 
quickly demonstrated that this genomic expan-
sion in turn leads to transcriptional silencing of 
the gene and thus a lack of the protein encoded by 
this gene – fragile X mental retardation protein 
(FMRP; [ 31 ]). With the gene, the mutation, and 
the effect on protein expression documented, sci-
entists next set out to develop an animal model 
for Fragile X. By introducing a null mutation of 
the  Fmr1  gene into the genome of a mouse, an 
animal model was developed that recapitu-
lated the loss of FMRP expression observed in 
humans [ 14 ]. By defi nition, this model does not 
exactly recapitulate the initial pathologic lesion 
 underlying the human disorder, namely, the CGG 
 trinucleotide expansion, and thus does not have 
 perfect  construct validity. However, it does reca-
pitulate what is likely the primary consequence 
of the mutation, loss of FMRP expression. 

 The fact that the  Fmr1  knockout mouse is not 
identical to the human genetic abnormality, yet 
recapitulates the human protein abnormality, 
raises an interesting point regarding animal 
model development. Specifi cally, a model  lacking 
 perfect  construct validity may nonetheless shed 
light on clinical understanding and treatment of a 

disorder. Indeed the  Fmr1  knockout mouse does 
recapitulate many aspects of the human pheno-
type, thereby giving it high face validity. Similar 
to humans with Fragile X, these mice exhibit sei-
zures, cognitive problems, hyperactivity, and 
macroorchidism [ 4 ,  14 ,  30 ]. The high face valid-
ity of this mouse model has led to an intense 
search for how the genotype causes the pheno-
type. Briefl y, FMRP is highly expressed within 
neurons, especially at synapses [ 4 ,  10 ,  30 ]. Here, 
it binds many messenger RNAs and represses 
translation of these mRNAs into protein [ 2 ,  22 , 
 36 ,  42 ]. Upstream of these events is the G-protein- 
coupled glutamate receptor, mGluR, the activa-
tion of which leads to protein translation [ 21 ,  40 ]. 
The loss of the repressive effects of FMRP in 
Fragile X allows for unopposed mGlu5 signaling, 
which in turn results in excessive protein transla-
tion (Fig.  19.1 ). It is this unopposed mGlu5 sig-
naling that likely contributes to the phenotypic 
manifestations of Fragile X syndrome, because 
crossing FMRP mutant mice to mice in which 
one allele of mGlu5 has been eliminated reduces 
seizures and other abnormalities of the FMRP 
mutant mouse [ 11 ]. These fi ndings have led to 
development of potent and selective inhibitors of 
the mGlu5 receptor. Continuous treatment of 
FMRP mutant mice with mGlu5 inhibitors com-
mencing early in life eliminates seizures and 
other phenotypic abnormalities. Moreover, initi-
ating treatment with mGluR5 inhibitors in adult 
FMRP mutant mice  after  the development of 
 seizures and other abnormalities reduces these 
seizures and corrects these other abnormalities. 
Collectively, these fi ndings have provided the 
foundation of a clinical trial for patients with 
Fragile X syndrome with an mGlu5 inhibitor, 
results of which will inform the predictive valid-
ity of this model.

19.2.2         Fmr1  Knockout Mouse – A 
Model Facilitating Clinical 
Understanding and Treatment 
of Fragile X Syndrome 

 In sum, clinical recognition of the distinctive 
phenotype and its familial aggregation provided 
the foundation for discovery of the mutant gene 
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decades later. Insight into the nature of the caus-
ative mutations, in turn, enabled engineering a 
genetically modifi ed mouse model. This model 
illustrates how discovery of the molecular mech-
anisms by which the genotype leads to the pheno-
type can give rise to identifi cation of a target for 
development of small molecules that could be 
used as drugs to treat the disorder. Careful align-
ment of the animal model with the clinical phe-
notype, an alignment simplifi ed by knowledge of 
the molecular etiology afforded by molecular 
genetics, has led to a sequence of discoveries that 
in turn have enabled design of a clinical trial 
based upon disease mechanism.   

19.3     Non-Mendelian Disorders 
of Epilepsy 

 The vast majority of the epilepsies do not exhibit a 
Mendelian pattern of inheritance; instead they 
typically arise sporadically as a consequence of 
various cortical lesions including developmental 
abnormalities, neoplasms, traumatic brain injury, 
and vascular insults. In contrast to a Mendelian 
disorder in which development of an animal model 
is based upon a known molecular etiology (i.e., a 
mutant gene), here the model must rely on reca-
pitulating some feature(s) of the clinical syndrome. 
Once again, however, a detailed characterization 

of the syndrome in humans is of critical impor-
tance to both appropriate design and evaluation of 
the animal model. One non-Mendelian epilepsy 
syndrome that has been extensively characterized 
by clinicians is a form of temporal lobe epilepsy 
(TLE) arising long after an episode of prolonged 
seizure activity (status epilepticus – SE). 

19.3.1     The Clinical Syndrome 

 TLE is the most common and also most devastat-
ing form of partial epilepsy in humans [ 33 ]. 
Broadly defi ned, TLE is an epilepsy in which sei-
zures most commonly are initiated from the 
medial temporal lobe. A diversity of etiologies of 
TLE has been identifi ed, implying that TLE com-
prises multiple disease subtypes. Despite such 
heterogeneity, some features are conserved – most 
notably the associated asymmetric pattern of hip-
pocampal neuronal loss and gliosis, termed hip-
pocampal or temporal lobe sclerosis [ 33 ]. 

 One proposed subtype of TLE that presents 
with hippocampal sclerosis is that arising after an 
episode of SE [ 41 ]. Retrospective analysis of 
patients undergoing surgery for intractable TLE 
reveal that many of these patients experienced an 
episode of prolonged, focal, severe seizures (SE) 
many years prior to epilepsy development [ 15 ]. 
Most commonly, these severe seizures occurred 

  Fig. 19.1    FMRP and mGluR5 modulation of protein 
 translation. ( a ) In wild type animals, FMRP inhibits protein 
translation while mGlu5 activation promotes translation. By 
balancing these opposing actions, the appropriate amount of 

protein products is generated. ( b ) However, in mouse 
 models of Fragile X ( Fmrp  knockout animals), the loss of 
the repressive effects of FMRP leads to unopposed mGlu5 
signaling and ultimately excessive protein synthesis       
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in the context of complicated febrile seizures 
 during infancy or childhood but similar observa-
tions have been made following afebrile status 
epilepticus arising  de novo  in adults. Longitudinal 
studies have confi rmed these observations in that 
up to half of individuals experiencing  de novo  
status epilepticus of either febrile or afebrile 
 origin in childhood or adulthood develop recur-
rent seizures (epilepsy) after a seizure-free latent 
period of variable duration [ 1 ,  37 ]. Importantly, 
inducing SE experimentally in an otherwise nor-
mal animal is suffi cient to trigger the subsequent 
development of TLE. Based on these converging 
lines of evidence, it seems likely that the occur-
rence of  de novo  SE during infancy or adulthood 
contributes to TLE development in humans. 

 One prominent feature of this syndrome is a 
structural abnormality referred to as Ammon’s 
Horn or hippocampal sclerosis [ 43 ]. It has long 
been recognized that many patients with TLE 
have atrophic and damaged hippocampi as visu-
alized on MRI or histopathologic examination 
[ 25 ,  43 ]. Animal studies provide convincing evi-
dence that severe seizure activity is suffi cient to 
induce hippocampal damage similar to hippo-
campal sclerosis observed in humans, namely, 
neuron loss predominantly in the hilus and CA1 
as well as mossy fi ber sprouting in the dentate 
gyrus [ 12 ]. However, the specifi c relationship 
between hippocampal sclerosis and epileptogen-
esis has been highly debated. In our view, it 
seems plausible that hippocampal sclerosis is 
both a consequence of SE and can contribute to 
development of TLE. In the context of this con-
troversy, there emerged an important clinical 
observation: MRI evidence of acute hippocampal 
injury within days following complicated febrile 
seizures, an event followed months later by hip-
pocampal atrophy [ 38 ]. This MRI abnormality is 
evident in a subset of children following an epi-
sode of febrile status epilepticus. The question 
arises as to whether the subsequent emergence of 
TLE years later occurs in the subset with hippo-
campal damage and not in those with normal 
 hippocampi (as detected by MRI) following sta-
tus epilepticus. Addressing this question is the 
objective of a multicenter, longitudinal study 
(the FEBSTAT study) of children undergoing 

 complicated febrile seizures, a study that will 
permit correlating the occurrence of acute hippo-
campal injury and subsequent hippocampal 
 sclerosis with the later emergence of TLE [ 19 ]. 
Importantly, the detailed analysis of this syn-
drome will provide the information needed to 
design and characterize animal models properly 
aligned with the human disease.  

19.3.2     Animal Models of SE-Induced 
Epilepsy 

 SE-induced TLE is a heterogeneous disorder. 
Variability in presentation can be seen at almost 
every aspect of the disease – SE etiology, latent 
period duration, epileptic seizure severity, histo-
pathology, etc. As such, it is unlikely that one 
single model can perfectly recapitulate all of its 
many facets. For this reason, it is no surprise that 
many different models for SE-induced TLE have 
emerged. That said, there are several key features 
that an animal model of this syndrome is expected 
to refl ect. First, the model should begin with a 
brief episode of SE that is followed by emergence 
of spontaneous recurrent seizures after a latent 
period. Second, the model should correlate SE 
with  unilateral  hippocampal sclerosis, consistent 
with the pathologic fi ndings noted in humans on 
both MRI and histopathology. Third and fi nally, 
the model should produce adult-onset of TLE as 
a result of either SE in adulthood [ 37 ] or in 
infants and children [ 1 ]. 

 One model that fulfi lls these three criteria is 
TLE arising following SE induced by microin-
fusion of the ionotropic glutamate receptor 
agonist, kainic acid (KA), into the amygdala. 
This model can be induced by infusion of KA 
into the amygdala of either young (P10) or 
adult rodents, the resulting SE leading to sub-
sequent development of epilepsy. In adult mice 
and rats, microinjection of KA into the basolat-
eral amygdala nucleus leads to almost immedi-
ate onset of status epilepticus [ 3 ,  27 ]. Typically, 
SE is allowed to continue for 40 min, at which 
point a benzodiazepine such as diazepam or 
lorazepam is administered to stop the seizure 
activity. Approximately 3 days after the initial 

S.C. Harward and J.O. McNamara



249

SE event, spontaneous recurrent  seizures arise 
and appear to persist lifelong. In P10 rat pups, 
a similar approach has been utilized [ 13 ]. 
Kainic acid is microinjected into the basolat-
eral amygdala nucleus leading to almost imme-
diate onset of SE that lasts for several hours. 
Typically, SE is allowed to continue until its 
natural termination (as opposed to the pharma-
cologic intervention used in adult animals). 
When these animals are evaluated 4 months 
later, they exhibit both behavioral and electro-
graphic seizure activity, demonstrating the 
emergence of TLE. 

 This model is one of several in which induc-
tion of SE in an otherwise normal rodent results 
in emergence of TLE. Other methods include 
systemic pilocarpine administration (a musca-
rinic agonist), systemic kainic acid administra-
tion, or focal electrical stimulation. These 
methods are effective and have been used exten-
sively by many labs, with each of the models 
exhibiting advantages and disadvantages. 
Adapting the intra-amygdala KA model to mice 
[ 3 ] simplifi es study of genetically modifi ed ani-
mals, providing a powerful tool for elucidating 
molecular and cellular mechanisms of epilepsy. 
Additional advantages of the intra-amygdala 
KA model in the mouse include: 100 % of 
KA-injected mice develop SE; mortality is only 
10–20 %; and 100 % of surviving animals 
become epileptic [ 3 ,  13 ,  27 ]. The effi ciency 
together with low attrition provides important 
advantages, especially for studies of genetically 
modifi ed animals with limited availability. 

 Importantly, a number of features of this 
model align with the clinical syndrome. To 
begin, this model mimics the initial pathologic 
insult observed in many patients, namely, SE. 
Furthermore, this model can induce epilepsy via 
SE in both young and adult animals, similarly to 
that observed in humans. However, the con-
struct validity is not perfect in that in this model, 
SE is induced by a convulsant (KA) while in the 
majority of children, SE arises in the context of 
a febrile illness. That said, the fact that SE, 
whether induced by diverse chemical methods 
or electrical stimulation, causes TLE suggests 
that the key variable promoting epileptogenesis 

in most instances is the occurrence of SE  per se , 
not the cause of the SE. 

 In terms of face validity, this model does 
 recapitulate many but not all components of the 
clinical syndrome. First, this model does mimic 
the temporal course of the disease in that SE 
leads to a latent period which in turn evolves into 
TLE. One area of debate with this model is the 
length of the latent period. In humans, the time 
between SE and TLE is on the order of months to 
years while in this model it is only a few days. 
Second, this model does yield unilateral hippo-
campal sclerosis following epilepsy onset that 
can be detected by both MRI and histopathologic 
analysis [ 13 ,  27 ]. One caveat is that the pattern of 
neuron loss within the hippocampus is different 
from that observed in humans. For most human 
specimens, neuron loss is most prominent in the 
hilus and CA1 regions [ 43 ]. In the  intra-amygdala 
KA model, neuron loss is most prominent in CA3 
and hilus, leaving CA1 relatively spared [ 13 ,  27 ]. 
Lastly, in humans with TLE, memory defi cits 
and  other comorbidities are common [ 25 ]. To 
date, there are no studies clearly documenting 
memory defi cits following implementation of 
this animal model. However, recent work revealed 
the occurrence of anxiety-like behaviors in this 
model [ 23 ]. 

 Regarding predictive validity, since there is 
currently no preventive therapy for TLE arising 
after SE in humans, it is not possible to assess 
the predictive validity of this model. However, 
the utility of this model has enabled discovery of 
two molecular targets that show promise for 
development of preventive therapy. First, David 
Henshall and colleagues reported that expression 
of the microRNA, miR-134, is increased follow-
ing SE and that inhibiting miR-134 expression 
shortly after SE onset may be antiepileptogenic 
[ 20 ]. Second, work from our lab revealed that SE 
induced the enhanced activation of the BDNF 
receptor tyrosine kinase TrkB [ 23 ]. The utility 
of this model in the mouse enabled a powerful 
chemical-genetic approach using genetically 
modifi ed mice. This approach led to the discov-
ery that inhibition of the TrkB kinase activity, 
commencing following SE and continued for 
just 2 weeks, prevented development of TLE in 
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more than 90 % of animals when they were 
tested a month later. These discoveries, made 
possible by adapting this model to the mouse 
(40), provide novel targets for development of 
preventive therapy for this particular syndrome. 
Whether similar molecular mechanisms underlie 
development of TLE induced by different causes 
(e.g. trauma, developmental abnormalities, etc.) 
is uncertain. 

19.3.2.1     Aligning Animal Models 
with Human Disease 

 The epilepsies represent a collection of hetero-
geneous disorders for which only symptomatic 
treatment is currently available. The lack of effi -
cacy, together with undesirable consequences of 
symptomatic therapy for many patients, under-
scores the need to develop preventive therapies. 
Development of preventive therapies based 
upon disease mechanism requires properly 
aligning the animal model with the clinical syn-
drome. This is a challenging task, one that must 
begin with a detailed characterization of the 
clinical disorder. Such information provides a 
context critical to design and study of animal 
models that recapitulate key features of the clin-
ical disorder. This descriptive fi rst step under-
scores the importance of continuous and 
effective interactions of clinicians and bench 
scientists to assure the optimal alignment of ani-
mal models with human diseases, thereby 
enhancing the likelihood that study of the mod-
els will contribute to understanding the mecha-
nisms of the disease and improving treatment. 
In short, the most effective and effi cient way to 
develop animal models is to start at the bedside, 
move to the bench, and with a lot of hard work 
and luck, return to the bedside with a novel ther-
apy in hand.       
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    Abstract 

 While seizures ultimately result from aberrant fi ring of neuronal networks, 
several laboratories have embraced a non- neurocentric view of epilepsy to 
show that other cells in the brain also bear an etiologic impact in epilepsy. 
Astrocytes and brain endothelial cells are examples of controllers of 
neuronal homeostasis; failure of proper function of either cell type has 
been shown to have profound consequences on neurophysiology. Recently, 
an even more holistic view of the cellular and molecular mechanisms 
of epilepsy has emerged to include white blood cells, immunological 
synapses, the extracellular matrix and the neurovascular unit. This review will 
briefl y summarize these fi ndings and propose mechanisms and targets for 
future research efforts on non-neuronal features of neurological disorders 
including epilepsy.  
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 20      What Non-neuronal Mechanisms 
Should Be Studied to Understand 
Epileptic Seizures? 

              Damir     Janigro       and     Matthew C.     Walker    

     This book is devoted to one of the all-time leaders 
in epilepsy research, Philip Alan Schwartzkroin. 
Phil has not only changed the traditional under-
standing of mammalian neurophysiology but he 
also revolutionized the tools we employ to study 
the brain as one of the people to perfect the brain 
slice preparation [ 70 ,  71 ,  74 – 76 ]. Last but not least, 
Phil has edited many seminal books and papers, 
and incessantly contributed to the recruitment and 
scientifi c development of scores of young scien-
tists. Under the shadow of this giant (and former 
mentor for one of us (DJ)) writing this review is a 
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humbling experience; one way to start the process 
is to refer the reader to Phil’s recent introduction 
to the fi eld of epilepsy research [ 72 ]. 

20.1     Why Study Non-neuronal 
Mechanisms in Neurology 
or Neuroscience? 

    We study the brain for many reasons, not least of 
which is for its intrinsic interest (see 
Schwartzkroin’s recent introduction to the fi eld 
[ 72 ]). The fascination with neurons and neuronal 
circuitries is not surprising since neurons are the 
collectors and effectors of our daily experiences 
and actions. In the specifi c case of epilepsy 
research (clinical or basic/translational), the 
quest for “epileptic neurons” or “epileptic cir-
cuits” has produced remarkable results, leading 
to the discovery of viable anti-epileptic drug 
targets and to the multimodal defi nition of the 
“epileptic focus”, an invaluable clinical tool for 
the neurosurgeon. However, as in other neuro-
logical disorders, a neurocentric approach has left 
certain questions unanswered and experimental 
opportunities remain. The most striking example 
of why neuroscience should become more 
“holistic” is embolic stroke, a disease stemming 
from cerebrovascular disease that has devastating 
consequences on brain function. After the NIH 
convened a Stroke Progress Review Group in 
2001, stroke research shifted from a purely neu-
rocentric focus to a more integrated view wherein 
dynamic interactions between all cell types 
contribute to function and dysfunction in the 
brain. In the fi eld of epilepsy research and treat-
ment, there is no pressing need for such a sharp 
re- direction, since the fi eld is already characterized 
by the study of many cell types, and non- neuronal 
processes. For example:
    1.    Many neuronal molecular, morphological 

defects or functional abnormalities described 
in human epileptic brain are present through-
out the cycle of interictal-to-ictal states that 
characterize the epileptic brain. The persis-
tence of these neuronal abnormalities does not 
fully explain why at a given time point an 
interictal cortex develops a seizure. Other 

mechanisms, such as changes in cerebral 
blood fl ow or blood-brain barrier permeability 
have been proposed to mediate the interictal to 
ictal transition.   

   2.    It has been proposed that the process of epi-
leptogenesis is distinct from the process of 
ictogenesis. According to this hypothesis, 
what makes a brain epileptic (e.g., genetic 
mutations, acquired or inherited; malforma-
tions of brain development) does not directly 
cause seizures. In fact, seizures can occur in 
“non- epileptic” brain and people with epi-
lepsy spend most of the time not having sei-
zures, indeed many experience only a few 
seizures per year. Again, as in (1)   , non-neuro-
nal mechanisms spanning from altered cere-
bral blood fl ow to glial dysfunction have been 
used to explain how an asymptomatic neuro-
logic condition can suddenly develop into a 
seizure state or the fact that seizures can occur 
in non- epileptic brain (e.g., stroke).   

   3.    Multiple drug resistance to anti-epileptic 
drugs affects over 20 % of patients with epi-
lepsy. Multiple drug resistance cannot be fully 
explained in pharmacodynamic or neuronal 
terms, and great emphasis has been put on 
pharmacokinetic mechanisms that include the 
blood-brain barrier.   

   4.    Analysis of resected or  post-mortem  epileptic 
brain reveals a number of pathophysiological 
changes in astrocytes and microglia. MRI 
studies show, in addition to persistent structural 
changes such as malformations of brain devel-
opment, an array of transient changes that 
refl ect post-ictal or interictal functional fl uc-
tuations in the extracellular space (increased 
FLAIR signal, perfusion changes  etc. ).   

   5.    The analysis of molecular transcripts and 
changes in gene expression in patients with 
epilepsy reveal a surprising number of genes 
and proteins that are involved in astrocytic 
function, blood-brain barrier maintenance and 
transport, as well as immune signaling and 
extracellular matrix proteins.    
  The following paragraphs detail the rationale 

for new or corroborative experiments that will 
help understand the extent and nature of non- 
neuronal mechanisms of seizure disorders.  
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20.2     Identifi cation of Important 
Problems 

 The translational nature of modern research 
affords the unique opportunity to use real life 
clinical problems and “translate” these into 
meaningful laboratory efforts. As beautifully 
illustrated by Phil in his summary of basic mech-
anisms [ 72 ], the tools used for research are not 
always the same used in clinical practice. In fact, 

a substantial discrepancy in size and temporal 
resolution becomes evident when comparing 
clinical and laboratory-based approaches (Fig.  20.1 ). 
For this mini review, we will focus on three fun-
damental yet often neglected aspects of ictogen-
esis and epileptogenesis: the blood-brain barrier, 
glia (Fig   .  20.2 ) and the extracellular matrix. The 
following paragraphs will summarize current 
understanding and knowledge gaps related to 
these cellular and molecular mechanisms of 
neuronal pathophysiology.

  Fig. 20.1    Comparison of methods used in basic ( a ) or clinical ( b ) neuroscience. Note the partial overlap and signifi cant 
differences       

  Fig. 20.2    Some mechanisms 
by which glia can affect 
seizure activity. Glia 
regulate the concentration 
of extracellular potassium, 
the size of extracellular 
space and so electrical 
fi eld effects (ephaptic 
communication), and 
uptake of neurotransmitter       
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20.3         The Blood-Brain 
Barrier (BBB)  

 The BBB is the most important vascular barrier of 
the CNS. The BBB protects the brain from harm-
ful substances of the blood stream, while supply-
ing the brain with the nutrients required for proper 
function. The BBB strictly regulates the traffi ck-
ing of cells of the immune system and pro-infl am-
matory cytokines from the blood into the brain. 
Recent fi ndings indicate that neurovascular dys-
function is an integral part of many neurological 
disorders [ 35 ,  88 ]. In diseases with a compro-
mised BBB, the microenvironment of neurons is 
altered; infi ltration into the brain of cells, ions, or 
molecules may initiate a CNS response. Failure of 
the BBB is observed in association with a variety 
of pathological events, occurring as consequence 
of either systemic pathologies such as stroke, sys-
temic infl ammation and CNS disease such as 
multiple sclerosis (MS) and epilepsy. Increasing 
evidence has shown that BBB damage causes 
abnormal neuronal activity. For example, seizures 
are observed in MS patients, as consequence of 
stroke, or during systemic or local infl ammation. 
As a proof-of- principle, we (DJ et al.) and others 
have demonstrated that failure of the BBB induced 
by “mechanical” means (such as osmotic shock) 
can play a key role in the onset of seizures [ 45 ]. 

 In vitro and  in vivo  experiments on various 
models of neurological diseases have shown that 
blood-brain barrier damage accompanies the 
development of neurological symptoms; in con-
trast, managing BBB failure promotes recovery 
and affords neuroprotection. BBB disruption 
(BBBD) causes seizures in animal models and 
human subjects [ 19 ,  45 ,  46 ,  48 ,  50 ,  51 ,  85 ]. In 
particular, a model of temporal lobe epilepsy 
(pilocarpine, PILO) also depends on BBBD [ 19 , 
 51 ,  84 ]. The currently accepted mechanism of 
BBBD-induced seizures predicts activation of 
adhesion molecules on endothelial cells and leu-
kocytes [ 19 ]. According to this hypothesis, and in 
analogy to what is observed in multiple sclerosis, 
leukocyte adhesion to or interaction with BBB 
endothelial cells is an essential step leading to 
BBBD. Published results have shown that anti- 

infl ammatory therapy (e.g., glucocorticosteroids) 
effectively reduce BBBD and associated symptoms 
[ 48 ]. The specifi c cell types involved in infl amma-
tion-promoted blood-brain barrier dysfunction are 
poorly understood but many leukocyte families 
have been shown to be involved, including natural 
killer cells and cytotoxic lymphocytes [ 4 ,  46 ,  50 ]. 
Attempts to curb the immune response, such as 
the extreme case of splenectomy, have been 
shown to decrease experimental seizures [ 50 ]. 
While BBBD-induced seizures were independent 
from the means used to obtain disruption (osmotic, 
pilocarpine, albumin), a specifi c molecular effec-
tor of pilocarpine-induced seizures, perforin, was 
only recently identifi ed [ 50 ]. Perforin released by 
T cells may explain how activation of T lympho-
cytes leads to increased BBB permeability; in 
fact, this molecule can effectively “perforate” the 
cell membrane causing a rapid loss of function 
and eventually cell death. In many ways, perforin 
actions mimic those of membrane-permeating 
 antibiotics, nystatin or gramicidin. 

 Another reason to focus on the BBB when 
studying epilepsy is the failure to generate new 
brain therapeutics owing to insuffi cient knowl-
edge of the mechanisms involved in brain drug 
distribution under pathological conditions. Drug 
resistance affects a signifi cant number of people 
with epilepsy; it is estimated that approximately 
20–30 % of people with epilepsy fail to respond 
to available anti-epileptic drugs (AEDs) [ 4 ,  26 , 
 30 ,  37 ,  48 ,  61 ,  67 ]. In the past decade the over-
expression of multidrug transporter proteins 
(e.g., MDR1) at the blood-brain barrier (BBB) 
has been proposed as a mechanism that contrib-
utes to the failure of AEDs to penetrate into 
epileptic brain [ 1 ,  9 ,  16 ,  41 – 43 ,  47 ,  49 ,  59 ,  77 ]. In 
addition to multidrug transporters, it was shown 
that transcripts of P450 enzymes are elevated in 
primary endothelial cells (EC) isolated from drug 
resistant epileptic (DRE) patients; these enzymes 
include AED-metabolizers such as CYP3A4, 
CYP2C19,  etc.  [ 21 ]. In addition, transcripts for 
PHASE II metabolic enzymes are present in DRE 
EC; these enzymes are responsible for the metab-
olism of 1st and 2nd generation AEDs; CYP3A4 
and MDR1 co-localize at the BBB (and neurons) 
in human DRE brain [ 22 ] and overexpression 
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of CYP3A4 in DRE EC is associated with 
exaggerated carbamazepine (CBZ) metabolism. 
This new metabolic pathway produces the toxic 
CBZ metabolite quinolic acid (QA) leading to 
the paradoxical situation of an anti-epileptic drug 
being metabolized in the proximity of the epileptic 
focus to a seizure-promoting agent. 

 In summary, therapeutic considerations (use of 
anti-infl ammatory therapy to treat seizures, BBB 
transporters in multiple drug resistance to anti-
epileptic drugs) and etiologic factors (loss of BBB 
in seizures) suggest that the BBB is a viable and 
important target for studies aimed at the under-
standing and treatment of epilepsy. In addition to 
the role of the blood brain barrier, two other non-
neuronal elements need to be considered – glia and 
brain extracellular matrix – both of which have 
been shown to have an increasing repertoire of 
roles in regulating network and brain excitability.  

20.4     Neuroglia 

 “Glia” comes from the Greek meaning glue, and 
Virchow in his search for connective tissue in the 
brain, fi rst coined the term neuroglia, considering 
them a sort of putty that supported the neurons 
[ 79 ]. Later, Golgi distinguished glia from neu-
rons by the lack of an axon and ascribed to them 
a nutritive as well as supportive role. Ramon y 
Cajal determined that they were involved in the 
insulation of nerve cells and axons, a role later 
confi rmed for oligodendroglia by a young 
Penfi eld who also established a role of glia in 
phagocytosis [ 24 ]. The repertoire of glia has, 
however, expanded in recent years from support-
ive tissue to playing an active role in determining 
network excitability, both modulating and 
responding to neuronal activity (Table  20.1 ).

20.4.1       Glia, Extracellular Space 
and Potassium Buffering 

 Glia play a critical part in the regulation of the 
size of the extracellular space, and extracellular 
ion homeostasis. In particular, they play a crucial 
role in the regulation of the concentration of 

potassium [ 73 ]. Glia express both aquaporins and 
potassium channels (inward rectifying and 
delayed rectifying) that play a role in this glial 
function through maintaining potassium and 
water homeostasis [ 5 ,  11 ,  18 ]. In addition, the 
connection of glia through gap junctions results in 
a glial syncytium, which facilitates not only water 
and potassium buffering but also glial communi-
cation [ 23 ]. Abnormalities of glial buffering of 
potassium result in potassium accumulation 
during neuronal activity. Such an increase in 
extracellular potassium will result in the depolar-
ization of neurons and may therefore play a role in 
seizure initiation and spread [ 44 ,  73 ]. Reductions 
in the size of the extracellular space can affect 
neuronal communication through enhancement of 
ephaptic transmission (electrical interactions 
occurring though juxtaposed neuronal elements, 
which are lessened by increasing the conductive 
space between these elements), alterations in neu-
rotransmitter “spill-over” and clearance, and 
changes in the regulation of extracellular ion con-
centrations. It is noteworthy that decreasing the 
extracellular space can promote seizure activity, 
whilst strategies aimed at increasing the extracel-
lular space and decreasing glial and neuronal 
swelling can terminate seizure activity [ 31 ].  

20.4.2     Glia and Neurotransmitter 
Concentrations 

 Glia also regulate the extracellular concentra-
tion of glutamate and GABA. They express the 

   Table 20.1    Role of glia in the central nervous system   

 Roles of Glia 

 A supportive and protective role for neurons 
 A role in infl ammation 
 Regulation of the size of the extracellular space 
 Maintenance of ion homeostasis in the extracellular space 
 Neurotransmitter uptake and synthesis 
 Providing neurons with energy 
 Detecting glutamate release from neurons and other glia 
 Release of neurotransmitters, and regulatory proteins 
 Synapse formation and regulation 
 Communication between neuronal activity and cerebral 
blood fl ow 
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 glutamate transporters GLAST (EAAT1) and 
GLT1 (EAAT2), which are responsible for most 
glutamate clearance [ 12 ]. These transporters 
determine the extracellular glutamate concentra-
tion, thus shaping the NMDA receptor response 
and the “spill-over” of glutamate following syn-
aptic release onto other synapses (heterosynaptic 
activation) and extra-synaptic receptors [ 36 ]. 
Through this means, glial glutamate clearance 
plays a role in long-term synaptic plasticity. 
The expression of these transporters is regulated 
by an interaction between neurons and glia 
mediated by ephrins [ 55 ], which are extracellu-
lar proteins involved in neuronal development 
but which may be altered in injury and have been 
proposed to be involved in synaptic reorganisa-
tion following status epilepticus. Thus mecha-
nisms that may play a part in synaptic 
reorganisation during epileptogenesis could also 
be involved in alterations in the expression of 
glutamate transporters. These possible roles of 
ephrins in epileptogenesis (see also below) have 
yet to be fully investigated. 

 The role of glia in the regulation of extracel-
lular GABA is less clear since the glial GABA 
transporter (GAT3) seems to be mainly effective 
when the neuronal GABA transporters (predomi-
nantly GAT1) are blocked [ 34 ]. However, it is 
likely that GAT3 regulates a different pool of 
GABA that derives from non-vesicular sources. 
Further, GAT3 seems to play a greater part in 
regulating the extracellular GABA detected by 
interneurons than that detected by principal cells 
[ 80 ]. It has been proposed that GAT3 can reverse 
during periods of excessive activity, thus increas-
ing extracellular GABA concentrations [ 28 ]. 
Finally, glia also are involved in the synthesis of 
neurotransmitters and in the glutamate-GABA 
shunt by which glutamate is converted to GABA 
[ 10 ]. Glutamate taken up by glia is converted to 
glutamine, which is then released into the extra-
cellular space. Glutamine is taken up by neurons 
and converted to GABA. Inhibition of any of 
these processes results in a decrease in vesicular 
GABA content, GABA release and consequently 
GABAergic transmission [ 39 ]. Decreases in glu-
tamate uptake that have been observed during 

epileptogenesis could therefore not only increase 
extracellular glutamate but also decrease 
GABAergic transmission.  

20.4.3     Glia and Metabolism 

 The uptake of glutamate by glia may have a fur-
ther important role in neuronal energetics. 
Glutamate enters the Krebs cycle and therefore 
acts as an energy substrate. Glial glutamate uptake 
also activates the sodium-potassium ATPase, 
increasing glucose uptake and glycolysis [ 63 ]. 
Thus increases in extracellular glutamate during 
seizure activity can increase glial metabolism. 
Consequently, glia release lactate, which is taken 
up by neurons and used as an energy substrate, 
particularly during periods of excessive neuronal 
activity [ 6 ]. The role of glia in neuronal metabo-
lism is probably even more extensive than this. 
Neurons lack pyruvate carboxylase [ 68 ], an 
enzyme that is crucial for replenishment of oxalo-
acetate in the Krebs cycle. As a result of this, the 
synthesis of GABA and glutamate can rapidly 
deplete Krebs cycle intermediaries in neurons. 
Replenishment of these intermediaries in neurons 
can, however, occur from direct transport of these 
intermediaries from glia to neurons. Glia are also 
a major producer of glutathione from glutamate, 
cysteine and glycine; glial glutathione production 
is necessary for protection of neurons from free 
radicals, which are produced during excessive 
neuronal activity [ 17 ]. Failure of glia to provide 
energy substrates for neurons could therefore pro-
mote neuronal death and disorders of neurotrans-
mitter production and neuronal function. Indeed, 
glia play a crucial role in neurometabolism but 
how this is altered during and to what extent it 
plays a part in epileptogenesis are still unclear.  

20.4.4     Glia, the Tripartite Synapse 
and Synaptic Plasticity 

 One of the main recent advances in our under-
standing of glia in modulating network activity 
has been the concept of the tripartite synapse in 
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which glia in close proximity to synapses play a 
part in synaptic transmission, along with the 
presynaptic terminal and postsynaptic cell [ 2 ]. 
Vesicles and vesicle-associated proteins have 
been detected in astrocytes, often in close asso-
ciation to nerve terminals. Glia can detect 
glutamate via metabotropic glutamate receptors, 
which mediate a focal rise in astrocyte calcium, 
which has been proposed to mediate vesicular 
transmitter release. Calcium rises in one astro-
cyte can trigger a calcium wave through the glial 
syncytium, suggesting a mechanism by which 
focal activity can spread. Glia can also release 
neurotransmitter through reverse transport and 
membrane channels. Most of the studies in this 
area support glial release of glutamate, d-serine 
and ATP (which is converted to adenosine by 
extracellular ectonucleotidases) [ 27 ]. Glutamate 
released from glia can act at post-synaptic NMDA 
receptors and has been proposed to contribute to 
paroxysmal depolarizing shifts underlying epi-
leptiform activity [ 82 ]. D-serine is a co-agonist at 
NMDA receptors and d-serine release from glia 
seems to be necessary for NMDA receptor 
mediated long term potentiation [ 29 ]. Lastly, 
increased adenosine levels through glial ATP 
release modulates presynaptic release of glutamate 
in a bimodal fashion through A1 (decreasing 
release probability) and A2 (increasing release 
probability) receptors [ 81 ]. Thus glia can alter 
network excitability over short time periods, 
and could play a role in both seizure initiation 
(glutamate/D-serine release) and termination 
(adenosine). 

 Glia can also play a longer term role in modu-
lating synaptic transmission through the interac-
tion of ephrins, specifi cally ephrin-A3 on 
astrocytes with the EphA4 receptor on dendrites 
[ 55 ]. This is a bidirectional interaction, which 
regulates the expression of glutamate transporters 
in glia and modulates spine and synapse forma-
tion in neurons. Such interactions are important in 
synaptic plasticity. In addition, glial ephrin signal-
ing is important for neurogenesis, indicating a 
role for glia in modulating neuronal development 
and connectivity [ 55 ]. The role that this plays in 
epileptogenesis has yet to be explored.  

20.4.5     Glia and Neurovascular 
Coupling 

 When neuronal activity increases in an area of 
the brain, there is a concomitant increase in cere-
bral blood fl ow to that area – a phenomenon 
termed “neurovascular coupling.” There appear 
to be multiple mechanisms mediating this effect, 
but there is evidence that glutamate acting via 
metabotropic glutamate receptors and glutamate 
uptake by glia can affect the release of vasoactive 
compounds that directly affect cerebral vascula-
ture [ 64 ]. One important consequence of this sce-
nario is that neurovascular coupling may depend 
upon the release of glutamate rather than local 
neuronal fi ring. Indeed, there is accumulating 
evidence that, although neurovascular coupling 
correlates both with neuronal fi ring and local 
fi eld potentials (i.e. post-synaptic receptor activa-
tion through glutamate release), the coupling 
with fi eld potentials is stronger [ 40 ]. This 
increased blood fl ow is a critical component of 
seizure activity that can be detected with ictal 
SPECT or as an increase in the MRI blood oxy-
gen level dependent (BOLD) signal.  

20.4.6     Changes in Glia 
with Epileptogenesis 

 Brain injury and neuronal loss invariably leads to 
a reactive gliosis in which there is not only a pro-
liferation of astrocytes but also changes in astro-
cytic morphology and gene expression [ 78 ]. 
Moreover, a reactive gliosis is observed in multi-
ple pathologies associated with epileptogenesis, 
including traumatic brain injury, stroke, tumors, 
vascular lesions and hippocampal sclerosis. 
Abnormal glia are also found in tuberous sclero-
sis; specifi c knockout of the Tsc1 gene in glia 
results in seizures [ 83 ]. 

 Reactive gliosis may alter regulation of the 
extracellular space and promote ephaptic trans-
mission. Aquaporin expression in astrocytes 
changes from astrocyte end feet (i.e., their peri-
vascular location) to a more diffuse expression [ 5 ]. 
This has been proposed to lead to abnormal water 
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regulation, with perivascular water accumulation 
and increased water uptake by astrocytes resulting 
in astrocyte swelling and a decrease in the extra-
cellular space. Breakdown of the blood brain bar-
rier and accumulation of albumin within glia also 
leads to a reduction in glial inward rectifying 
potassium channel expression and so decreased 
buffering of potassium rises [ 13 ]. Moreover there 
is evidence in human epileptic tissue of a change 
in glial glutamate transporter expression and, from 
rodent studies of epileptogenesis, decreased effi -
cacy of glutamate uptake [ 13 ,  65 ]. 

 Glial metabolism also changes during epilep-
togenesis. There is an increase in the expression 
of adenosine kinase and along with astrocytosis, 
this leads to decreased adenosine levels with epi-
leptogenesis [ 7 ]. There are decreased levels of 
glutamine synthetase, and a consequent decrease 
in the glutamate-GABA shunt, resulting in 
decreased inhibitory transmission [ 10 ]. Indeed, a 
specifi c reactive gliosis mediated by transfection 
with a viral vector had no effect on the intrinsic 
excitability of neighboring neurons, but selec-
tively decreased inhibitory transmission, leading 
to an inhibitory defi cit and increased propagation 
of excitatory transmission [ 60 ]. This is a clear 
demonstration that reactive gliosis alone is suffi -
cient to promote hyperexcitability. Glial metabo-
lism may also be affected by a reactive gliosis 
due to decreased glutamate uptake, although the 
role that changes in glial metabolism have on the 
development of epilepsy are unclear. 

 Although it is uncertain to what extent reac-
tive gliosis affects the tripartite synapse, astro-
cyte calcium rises mediated by activation of 
metabotropic glutamate and purinergic receptors 
can promote the generation of seizure activity in 
vitro and  in vivo  [ 25 ]. Also glial metabotropic 
receptors are upregulated in epilepsy [ 3 ]. 

 The critical role that glia play in the infl am-
matory process underlying epileptogenesis is 
discussed elsewhere in this book. 

There has thus been growing evidence that glia 
can alter network excitability through multiple 
mechanisms. The possible roles of reactive gliosis 
and the part that it plays both in the development 
of epilepsy and the generation of seizures need to 
be further modeled and studied. The extensive 

role that glia play in many critical functions will 
need to be carefully dissected in order to target 
specifi c glia mediated processes during epilepto-
genesis (Fig.  20.2 ).   

20.5     The Extracellular 
Matrix (ECM)  

20.5.1     Physiological Role 
of the Extracellular Matrix 

 The extracellular matrix (ECM) consists of 
molecules that are secreted both by neurons and 
glia, and that aggregate in the extracellular space. 
About 20 % of the volume of the adult brain con-
sists of extracellular matrix, and the extracellular 
matrix plays an essential role in determining the 
diffusion of small molecules [ 57 ]. In contrast to 
ECM elsewhere in the body, the brain ECM pre-
dominantly consists of proteoglycans, glycos-
aminoglycans (in particular hyaluronic acid), and 
glycoproteins of the tenascin family. There are 
also proteins that link the ECM to ECM and to 
molecules on neurons and glia [ 15 ]. 

 The vast majority of the ECM is present in the 
extra-synaptic space. The ECM also makes up 
the basal lamina, which contributes to the blood- 
brain barrier. It has also been increasingly recog-
nized that brain ECM consists of other 
well-defi ned components including peri- neuronal 
nets (mesh-like structures which surround cell 
bodies and proximal dendrites particularly of 
parvalbumin-expressing interneurons as a mesh- 
like structure), and specifi c components present 
at synapses which are linked to proteins at the 
post- synaptic and pre-synaptic membrane [ 15 ]. 

 Peri-neuronal nets consist of proteoglycans of 
the lectican family which link with hyaluronic 
acid and tenascin-R [ 86 ]. Peri-neuronal nets are 
critical in development, closing critical periods 
and stabilizing synapses and neuronal plasticity. 
Digestion of proteoglycans associated with peri- 
neuronal nets or knockout of tenascin-R affect 
both synaptic plasticity and the excitability of 
interneurons. Peri-neuronal nets therefore play a 
crucial role in regulating network excitability 
and plasticity. 
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 The extracellular matrix can undergo remodeling, 
which is dependent upon a series of serine prote-
ases, such as plasminogen activators (in particu-
lar urokinase-type plasminogen activator), 
thrombin, metalloproteinase’s, and reelin. All of 
these have been implicated in neuronal and net-
work plasticity [ 14 ]. Alterations and remodeling 
of peri-neuronal nets permit neuronal reorganiza-
tion following brain damage and seizures, and 
during development. 

 The interaction of the extracellular matrix 
with neurons can occur via specifi c receptors, 
integrins, which are transmembrane heterodi-
meric transmembrane glycoproteins composed 
of two of 26 subunits. Integrins bind to intracel-
lular cytoskeleton and secondary messenger sys-
tems and extracellularly to other cells and the 
ECM [ 32 ]. They are closely associated with glu-
tamate receptors and various ion channels. 
Integrins regulate multiple processes including 
synaptic plasticity, neuronal migration and devel-
opment, axonal growth and synaptogenesis. They 
are also involved in angiogenesis.  

20.5.2     Changes in the ECM 
in Epilepsy 

 There are persistent changes in multiple compo-
nents of the ECM during the development of epi-
lepsy. Peri-neuronal net components, including 
aggrecan, neurocan, hyaluronan, tenascin-R and 
some of the linking proteins, decrease during epi-
leptogenesis; a progressive decrease in perinenu-
ronal nets is associated with a progressive 
decrease in inhibition and the occurrence of sei-
zures (months after traumatic brain injury) [ 53 , 
 62 ]. In addition, degradation of the ECM may 
permit aberrant neuronal and synaptic reorgan-
isation. ECM remodelling and the increased 
secretion of proteases may also contribute to 
this process. There is robust evidence that expres-
sion of MMP-9 is increased during epileptogen-
esis, and that this increase may promote kindling 
[ 54 ]. Other serine proteases are also up-regulated 
in epilepsy including urokinase-type plasmino-
gen activator (uPA) and its receptor (uPAR) 
[ 38 ]. Intriguingly, uPAR up-regulation may be 

protective as uPAR knockouts develop a more 
severe epilepsy phenotype following status epi-
lepticus [ 56 ]. This indicates that some of the 
changes of ECM during epileptogenesis may be 
adaptive rather than pathogenic. 

 In addition, mutations in the gene encoding 
SRPX2 (Sushi-repeat Protein, X-linked 2), one 
of the ligands of uPAR, results in bilateral peri-
sylvian polymicrogyria and epilepsy in humans 
[ 66 ]. Integrin expression is also increased during 
epileptogenesis and in pathologies associated 
with the development of epilepsy [ 87 ]. 

 Lastly, an extracellularly secreted molecule, 
leucine rich, glioma-inactivated 1 (LGI1) has 
been strongly associated with epilepsy [ 8 ,  20 ,  33 , 
 58 ,  69 ]. LGI1 interconnects presynaptic disinteg-
rin and metalloproteinase domain-containing 
protein 23 (ADAM23) to postsynaptic ADAM22 
at the synaptic cleft. LGI1 is important for 
 traffi cking and kinetics of a presynaptic potas-
sium channel, Kv1.1, and also for traffi cking of 
post- synaptic AMPA receptors. In humans, muta-
tions in LGI1 cause autosomal dominant lateral 
temporal epilepsy or autosomal dominant partial 
epilepsy with auditory features with onset in 
childhood/adolescence [ 58 ]. In addition, autoan-
tibodies directed against LGI1 have been shown 
to underlie limbic encephalitis and temporal lobe 
seizures in humans [ 69 ]. 

 Overall, there is growing evidence for the 
importance of the ECM in epileptogenesis, plas-
ticity and determining network excitability. 
Further studies aimed at modeling disruption and 
reorganization of the ECM will be important for 
a greater understanding of the epileptogenic pro-
cess. Moreover, the ECM provides an ideal target 
for therapies aimed at disrupting epileptogenesis 
and modifying established epilepsy, as it is extra-
cellular and so easily accessible to drugs and has 
multiple downstream effects, regulating recep-
tors, channels and synaptic transmission.   

20.6     Conclusions 

 There is burgeoning evidence to support a 
critical role for non-neuronal mechanisms in 
epileptogenesis and the generation of seizures. 
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Both animal experiments and experiments of 
nature (gene mutations) indicate that pathology 
of non- neuronal elements are suffi cient for epi-
leptogenesis. However, most of our present 
therapies are neurocentric, indicating that there 
may be enormous undiscovered therapeutic 
potential in targeting these non-neuronal 
elements. Moreover, it is a concern that many of 
the large scale mathematical models of brain 
function (e.g., the blue brain project [ 52 ]) have 
thus far ignored the role of these non-neuronal 
constituents.     
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    Abstract  

  In recent years, there has been a focus on studies of comorbidity in 
epilepsy. The concept of epilepsy comorbidity is complex. This is partly 
because epilepsy is essentially a symptom for which there are many 
underlying causes, with multiple genetic and environmental infl uences. 
These causal conditions themselves carry comorbidities which vary from 
condition to condition. The fact that some psychiatric comorbidities 
are ‘bidirectional’ complicates this further.      These issues reduce the 
usefulness of any unitary study of ‘epilepsy comorbidity’. Epilepsy 
comorbidities can be divided into direct/indirect and somatic/psychiatric 
categories. Only some aspects are susceptible to experimental modeling. 
This chapter briefl y reviews the clinical studies of cause, frequency, epide-
miology and mortality of comorbidities, and their use as biomarkers for 
epilepsy.  
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 21      What Epilepsy Comorbidities 
Are Important to Model 
in the Laboratory? Clinical 
Perspectives 

              Simon     Shorvon    

21.1         Defi nitions and Divisions 
of Epilepsy Comorbidities 

 The term comorbidity has been said to have been 
fi rst coined by Feinstein [ 7 ] to defi ne the co- 
existence of different diseases or conditions. 
The original studies of epilepsy comorbidity 
emphasized migraine, psychiatric disorders and 
vascular disease, but since the early 2000s there 
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has been a greater focus on this problem and 
more recent studies have demonstrated a wider 
range of comorbid disorders and have attempted 
to defi ne their extent [ 10 ,  14 ,  15 ,  18 ] and underly-
ing mechanisms [ 3 ,  11 ,  22 ,  31 ]. Some of the 
comorbid conditions are susceptible to experi-
mental modeling and others are not. In broad 
terms, experimental or animal models are most 
appropriately employed to investigate the mecha-
nisms and the causes of comorbidity. 

 The concept of ‘comorbidity’ of a condition 
such as epilepsy is complicated. As a rider to any 
discussion, it should of course be realized that 
epilepsy is essentially a symptom for which 
there are many underlying causes, with multiple 
genetic and environmental infl uences [ 25 ,  28 ]. 
These causal conditions themselves carry 
comorbidities, which vary from condition to 
condition, thus complicating any broad study of 
‘epilepsy comorbidity’. Studies in epilepsy have 
divided and defi ned the range of comorbidities in 
a number of different ways.
    (i)    Direct/indirect: The direct comorbidities are 

those that are due to epilepsy. The indirect 
comorbidities are those that are due to under-
lying causes of the epilepsies or to risk factors 
which are shared with epilepsy.   

   (ii)    Psychiatric/somatic: The psychiatric comor-
bidities refer to the primary psychiatric 
diseases and the somatic comorbidities to 
systemic and neurological disease.    

  It is probably not surprising to know that these 
divisions are artifi cial and there are in each system 
grey areas where conditions overlap or are not 
easy to pigeon-hole. Understanding comorbidity 
is important for various reasons:
    (i)    The comorbidities may have an important 

infl uence on prognosis of epilepsy (including 
mortality) and indeed often have a greater 
infl uence than the epilepsy itself.   

   (ii)    The therapy of epilepsy may be infl uenced 
by their presence (as well as the fact that 
some comorbidity is due to therapy)   

   (iii)    The comorbidities may have diagnostic 
implications in some situations   

   (iv)    Doctors dealing with epilepsy should be 
alert to the risk of comorbidities as these too 
may require treatment   

  (v)     The comorbidities of epilepsy may in many 
instances cause more distress and dysfunction 
than the epilepsy itself.     

 There is also often a two-way relationship 
between comorbidity and epilepsy (often known 
as a ‘bidirectional’ relationship; discussed further 
below). Comorbidity can affect the course of the 
epilepsy directly (via organic effects on the brain) 
or indirectly (via chronic ill health, side-effects 
of treatment, secondary psychiatric effects). 
Comorbidities also affect health care utilization, 
and all the outcomes of epilepsy including 
mortality.  

21.2     Causes of Comorbidity 
in Epilepsy 

 ‘Direct comorbidity’ is that due to the epilepsy 
or the effects of seizures themselves. Examples 
of seizure-related comorbidity are fractures 
due to falls in seizures, or memory disturbance 
due to cerebral damage. Laboratory studies  
offer the opportunity for prevention and espe-
cially neuroprotection and these are topics 
which can be modeled experimentally. Other 
direct morbidity is due to the secondary handi-
cap of epilepsy which includes chronic ill 
health, psychiatric problems, social drift and 
other pressures. These are topics which cannot 
be studied in laboratory models. 

 The indirect comorbidities may be: (a) due to 
the underlying causes themselves, such as stroke 
or cerebral tumour, which cause epilepsy and 
also other effects; (b) due to shared risk factors 
which have been shown to predispose to epilepsy 
and also to other medical condition, examples 
include vascular disease which predisposes to 
stroke, or alcoholism which predisposes to head 
trauma. Sometimes the risk factors are genetic 
(discussed further below); (c) due to the treatment 
of epilepsy, examples include hepatic or bone 
disease, or interactions between medications; 
(d) conditions where the mechanisms underlying 
the association are quite unknown for instance 
associations with asthma, bowel disease or 
thyroid disease. Many of these aspects can be 
studied experimentally. 
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 Psychiatric comorbidity (which can be both 
direct and indirect) is particularly complex with 
genetic, environmental, shared underlying causes 
and also treatment and direct cerebral damage 
all potentially contributing to the epilepsy and 
the comorbidities.  

21.3     Epidemiology and 
Frequency of Comorbidities 
of Epilepsy 

 There have been a number of large scale surveys 
of comorbidity, based on National Health Service 
statistics. 

21.3.1     Somatic Comorbidity 

 The fi rst database to be mined was the UK General 
Practice Research Database (GPRD) which covered 
a period between 1995 and 1998 [ 11 ]. Data were 
based on a population of 1.3 million, in which all 
ICD codes (codes defi ned by the International 
Classifi cation of Disease (ICD) were recorded and 
of these 1,041,643 adults were studied. 5,834 per-
sons with epilepsy were identifi ed. The most 
common somatic conditions in adults with epi-
lepsy were: fractures (10 %), with highest rates in 
women older than 64 years (17 %); asthma (9 % 
with the highest rates (11 %) in younger women); 
and migraine (8 %). Amongst the oldest patients, 
the most common somatic comorbidities were 
diabetes (9 %), transient ischaemic attacks (18 %), 
ischaemic heart disease (14 %), heart failure 
(12 %), neoplasia (7 %), and osteoarthritis (12 %). 
The most common neurologic disorders in this age 
group were brain degenerative diseases (14 %) and 
Parkinson's disease (4 %). The importance of 
environment is also shown by the study of Babu 
et al. [ 2 ] in India which showed increased rates of 
neurocysticercosis, sleep disorders, and tubercu-
losis compared with controls. 

 Téllez-Zenteno et al. [ 32 ] have used data 
obtained through two door-to-door Canadian 
health surveys, the National Population Health 
Survey (NPHS, N = 49,000) and the Community 
Health Survey (CHS, N = 130,882), covering 

98 % of the Canadian population. They found 
that those with epilepsy had a statistically 
significant higher prevalence of many chronic 
conditions when compared to the general popula-
tion; those conditions which occurred twice as 
often or more were (proportional risk): stomach/
intestinal ulcers (CHS 2.5, NPHS 2.7), stroke 
(CHS 3.9, NPHS 4.7), urinary incontinence 
(CHS 3.2, NPHS 4.4), bowel disorders (CHS 2.0, 
NPHS 3.3), migraine (PR, CHS 2.0, NPHS 2.6), 
Alzheimer’s disease (NPHS 4.3), and chronic 
fatigue (CHS 4.1). Of course several of these 
conditions are causal conditions of epilepsy (stroke, 
Alzheimers disease) and so it is not at all surprising 
that they cluster with epilepsy in population sur-
veys, but the others were more surprising. It was 
postulated by the authors that gastro-intestinal 
diseases may be due drug therapy or autonomic 
ictal effects, although both explanations seem 
unconvincing.  

21.3.2     Psychiatric Comorbidity 

 The commonest comorbidities of epilepsy are 
psychiatric. There are a number of epidemiologi-
cal studies of comorbidities looking at this asso-
ciation. In the study mentioned above, Gaitatzis 
et al. [ 11 ] found the commonest psychiatric con-
ditions in adults with epilepsy were: depression 
(18 %), anxiety (11 %) and psychosis (9 %). 
Overall, 41 % of patients with epilepsy received a 
psychiatric diagnosis at some point during the 
3-year study period. Téllez-Zenteno et al. [ 32 ] 
used data from the Canadian Community Health 
Survey (CCHS) to compare the rates of psychiat-
ric disease in those with and without epilepsy. The 
CCHS included 36,984 subjects. Those with a 
history of epilepsy reported higher lifetime anxi-
ety disorders (odds ratio (OR) 2.4, 95 % confi -
dence intervals (CI) = 1.5–3.8) or suicidal thoughts 
(OR 2.2 (1.4–3.3))   . Surprisingly, the risk of major 
depressive disease or of panic disorder/agorapho-
bia were not greater in those with epilepsy (and 
may throw some doubt upon the methodology of 
this study). 

 There are also a number of case control studies, 
looking both at the frequency of epilepsy in 
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psychiatric populations and vice versa (the so- called 
bidirectional relationship). A variety of mental 
disorders, alcoholism and dementia are found 
more commonly in patients with epilepsy than in 
non-epileptic controls. The strongest associations 
of epilepsy are with major depression, bipolar 
disease, and schizophrenia. Major depressive 
episodes are more common in patients with 
epilepsy than in the general population, with 
prevalence ranging from 11 to 62 %, compared 
with 3.7–6.7 % for the general population [ 6 ,  8 , 
 17 ,  23 ,  32 ]. There is an even stronger association 
with psychosis; the prevalence of the interictal 
psychosis of epilepsy ranges (in different studies) 
between 4   .3 and 44 % and in a recent review, 
rates of 19.4 % and 15.2 % in generalized epilepsies 
and temporal lobe epilepsy groups are recorded. 

 The association of neurological and psychiatric 
disorders to epilepsy is complex. The fact that 
there is an association was fully recognized in the 
late nineteenth century and the concept of the 
‘Neurological Trait’ was universally accepted 
[ 19 ,  26 ,  27 ]. According to this concept, epilepsy 
was an essentially inherited condition and 
inherited together with other neurological and 
psychiatric disorders. It was accepted that within 
a family the same inherited tendency might mani-
fest in one person as epilepsy and in other family 
members as other conditions, but all refl ected the 
same underlying inherited infl uence (of course, 
“genes” were not recognized, nor were Mendelian 
principles widely known at this time). Although 
different authorities included different conditions 
within the inherited tendency, at the core were mental 
disturbances such as insanity, mental retardation, 
behavioral aberrations, alcoholism – and epilepsy. 
Gowers, for instance, in 1881 wrote: “There are 
few diseases in the production of which inheri-
tance has great infl uence…. It is well known that 
the neuropathic tendency does not always manifest 
itself in the same form…. The chief other morbid 
states (besides epilepsy), in which the neuro-
pathic tendency is manifest are insanity, and, to a 
much smaller degree, chorea, hysteria, and some 
forms of disease of the spinal cord. Intemperance 
is probably also due, in many cases, to a neuro-
pathic disposition” [ 13 ]. In Gowers’ personal 
series of 1,218 epilepsy cases, he found that 42 % 

“presented evidence of neurotic inheritance.” In 
the nineteenth century, the concept was also 
linked to that of ‘degeneration’ and it was widely 
believed that the manifestations of the trait 
worsened as it was inherited from generation to 
generation. 

 Another topic of current interest is the “bidirec-
tional nature” of the comorbidity epilepsy with 
various neuropsychiatric conditions. The associa-
tion is often considered to be due to such factors 
as recurrent epileptic seizures, social stigma, 
adverse effects of drug treatment or the underlying 
structural or metabolic brain injury. However, 
recent studies have shown that the ‘bidirectionality’ 
may in fact predate the development of epilepsy 
[ 1 ,  4 ,  24 ] and be due to shared genetic propen-
sities. Qin et al. [ 23 ] found a family history of 
epilepsy to be a risk factor for schizophrenia or 
schizophrenia-like psychosis, even after adjusting 
for personal history of epilepsy. Similarly, adults 
with new-onset epilepsy are seven times more 
likely to have a prior history of depression. Adults 
and children with newly diagnosed epilepsy have 
been noted to have a prior history of attempted 
suicide which is fi ve times that of the general 
population. One development in the fi eld was the 
fi nding that copy number variants (CNVs) underpin 
the pathogenesis of some neuro-developmental 
disease. Several studies have demonstrated that 
the same large CNVs underpin epilepsy, autism, 
schizophrenia, mental retardation and attention 
defi cit hyperactivity disorder [ 1 ,  4 ,  5 ,  16 ,  20 ,  21 , 
 24 ,  30 ,  33 ,  34 ]. 

 If there are shared genetic infl uences, both the 
epilepsy and the neuropsychiatric conditions are 
frequently ‘neurodevelopmental’ in origin [ 19 ]. 
 Functional annotation analysis  is one attempt to 
understand shared pathogenic mechanisms, 
and the effect of the dimension of time is another 
factor which complicates analysis and renders 
simple ‘gene hunts’ unlikely to be very revealing. 
The reasons for this are the differing gene expres-
sion at different times, the effect of development 
of the activation of functional genetic pathways 
and the strong effect of environmental factors 
and chance in development (see 20 for further 
discussion of this point)   . The genetic mechanisms 
of these shared propensities (which has eerie 
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echoes of the concept of the “neurological trait”) 
are the subject of study and certainly can be 
modeled experimentally – this could be an area 
of promising future research.   

21.4     Mortality Associated 
with Comorbidity 

 The risk of death in epilepsy is elevated even 
when the epilepsy is in remission, In our own 
recently published 25-year follow-up study of 
people with newly diagnosed epilepsy the risk 
of premature death was twice that of the general 
population [ 29 ]. The underlying causes of 
epilepsy (stroke, brain tumour etc.) have an 
obviously increased rate of mortality. This not 
surprisingly increases the risk of premature 
mortality amongst those with epilepsy. Of more 
interest from the point of view of studies of 
comorbidities, are the ‘external’ causes of mortal-
ity in epilepsy (ie not underlying causes of epilepsy 
such as brain tumours or strokes) and the risk of 
premature mortality due to such causes. 

 An outstanding study in the fi eld was recently 
published examining the relationship of psychiat-
ric comorbidity to premature death [ 9 ]. This is 
the gold standard study in the area, and outshines 
all the others in terms of its comprehensive nature 
and intelligence. Data were obtained from all 
individuals born in Sweden between 1954 and 
2009, via a variety of nationwide population 
registers in Sweden which were then linked: 
the Patient Register, the Censuses from 1970 to 
1990, the Multi-Generation Register, and the 
Cause-of- Death Register. Epilepsy was identifi ed 
through the National Patient Register, which 
includes individuals hospitalized or having out-
patient appointments with specialist physicians 
in Sweden who had received a diagnosis of epi-
lepsy (n = 69,995). Data for causes of death were 
retrieved for all individuals who died between 
1969 and 2009 from the Cause of Death register 
based on death certifi cates, which covers over 
99 % of all deaths. Patients were compared 
with age-matched and sex-matched controls 
(n = 660,869) from the general population as well 
as unaffected siblings (n = 81,396). 6,155 (8.8 %) 

people with epilepsy died during follow-up. The 
study had extensive sensitivity testing and the 
comparison with unaffected siblings was important 
for exploring interfamilial confounding. 

 The study found a very substantially elevated 
risk of premature death in epilepsy. The odds 
ratio for premature mortality was 11.1 [95 % 
CI = 10.6–11.6] compared with general popula-
tion controls, and 11.4 [10.4–12.5] compared 
with unaffected siblings. 15.8 % of the deaths 
were due to external causes. The external causes 
with the highest odd ratios were non-vehicle 
accidents (OR 5.5, 95 % CI 4.7–6.5) and suicide 
(3.7, 3.3–4.2). Of those who died from external 
causes, 75.2 % had comorbid psychiatric disorders, 
with the strongest associations being with depres-
sion (13.0, 10.3–16.6) and substance misuse 
(22.4, 18.3–27.3). This link between premature 
morbidity and psychiatric disease is of course of 
fundamental importance in clinical practice. 
Epilepsy was found in this study to be an indepen-
dent risk factor for all-cause and external causes 
of death, a fi nding which was most clearly 
shown by the comparison of patients with their 
unaffected siblings, with the rate of mortality 
increased by 2.9× for suicide and 3.6× for acci-
dents. Another important point recognized was 
that despite the high relative risks (odds ratios), 
the absolute rates of premature mortality from 
external causes was only 1.4 %. However, about 
a third of the epilepsy patients had at least one 
comorbid psychiatric diagnosis and about 10 % 
exhibited substance misuse [ 9 ].  

21.5     Comorbidity as Biomarker 
for Epilepsy 

 If comorbidities are common and easily measured, 
they can be used as biomarkers for epilepsy. 
Examples might include genetic markers or even 
physiological changes. The study of epilepsy 
biomarkers is not yet well developed, but bio-
markers potentially have great importance for 
diagnostic purposes and also for prognosis and 
for studying the effects of therapy. Galanopoulou 
and Moshe [ 12 ] divided the search for biomarkers 
into four categories. Some are not likely to be 

21 What Epilepsy Comorbidities Are Important to Model in the Laboratory? Clinical Perspectives



270

susceptible to experimental study, but others 
are. Two of the categories defi ned were (in their 
own words): 

 Biomarker of epileptogenicity: The desired 
features of these biomarkers include:
•    Specifi city in differentiating the epileptic state 

from reactive changes resulting from an initial 
precipitating event or the fi rst seizure, and 
from developmental processes that have not 
yet reached maturity;  

•   Sensitivity in diagnosing epilepsy at the pre-
clinical or early symptomatic stages, when 
clinical diagnosis has not yet been established;  

•   Ability to detect the reversal of epileptoge-
nicity, to prevent unnecessary continuation of 
treatments.    
 Biomarkers of treatment implementation, 

tolerability or toxicity: Many antiepilepsy drugs 
have side effects, which result in comorbidity, the 
mechanisms for which offer the possibility of 
biomarker studies:
•    Provide target identifi cation for treatment 

selection, distinguishing it from age-specifi c 
relevant processes;  

•   Defi ne the timing and therapeutic window of 
treatment administration, based on age- and 
sex-adapted criteria;  

•   Distinguish the treatment-responsive from the 
resistant patient populations early;  

•   Provide early risk identifi cation and monitor-
ing of treatment-related toxicities, based on 
age- and sex-adapted criteria, with suffi cient 
specifi city for the administered treatment;  

•   Have the ability to localize the epileptogenic 
focus accurately and facilitate more effective 
ablative treatments, if medical treatments are 
not curative.     

21.6     Experimental and Animal 
Models of Comorbidity 

 As emphasized above, only some aspects of 
epilepsy comorbidity are susceptible to modeling 
in the experimental laboratory. Experimental 
studies which are most likely to be successful 
are those directed at the causal molecular, 
physiological and/or genetic mechanisms of the 

relationship of epilepsy and its comorbid 
conditions The relationship, especially for the 
psychiatric (and other brain-related) comorbidities 
are likely to be complex and have developmental 
and time- sensitive dimensions. Those comorbidi-
ties that have priority are, in the author’s opinion, 
in the following areas:
    (a)    Studies of the adverse effects of epilepsy on 

brain function, with experimental studies that 
focus on the mechanisms of brain damage 
and the role of neuroprotection   

   (b)    Studies of the adverse effects of epilepsy on 
somatic function, with experimental studies 
that focus on the molecular mechanisms of 
these effects and ways of blocking these (the 
role of osteoporosis for instance in fractures).   

   (c)    Studies of the underlying mechanisms of 
psychiatric comorbidities, with experimental 
studies focusing on the genetic and molecular 
basis, the bidirectionality of the relationship 
between epilepsy and comorbidities, and on 
shared pathways.   

   (d)    Studies of the role of comorbidity as bio-
marker of either epileptogenicity or of the 
adverse effects of treatment. These two may 
have a developmental or age-related effects, 
with different vulnerabilities at different ages.         
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    Abstract  

  An epilepsy comorbidity is a condition or disorder that occurs at a frequency 
greater than chance in a person with epilepsy. Examples of common 
epilepsy comorbidities are depression, anxiety, and intellectual disability. 
Epilepsy comorbidities can be quite disabling, sometimes affecting a 
patient’s quality of life to a greater extent than seizures. Animal models 
offer the opportunity to explore shared pathophysiological mechanisms, 
therapeutic options, and consequences of both the epilepsy syndrome 
and a given comorbidity. In this chapter, depression is used as an example 
of how animal models can inform translational questions about epilepsy 
comorbidities.  
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 22      Epilepsy Comorbidities: 
How Can Animal Models Help   ? 

           Carl     E.     Stafstrom     

22.1         What Are Epilepsy 
Comorbidities and Can 
Animal Models Help? 

 While epilepsy is primarily considered to be a 
condition of recurrent, unprovoked seizures, it is 
increasingly evident that epilepsy involves a 
lot more than seizures. Epilepsy comorbidities, 

defi ned as medical or psychiatric disorders that 
occur at a frequency greater than chance in a 
patient with epilepsy, play a crucial role in the 
quality of life and treatment effectiveness in 
patients with epilepsy. Epilepsy comorbidities 
include disorders of cognition, mood, and behavior 
[ 3 ,  14 ,  26 ], as well as a variety of medical and 
neurological disorders [ 10 ]. Specifi c examples 
include depression, anxiety, intellectual impairment, 
autism, sleep disorders, migraine, and many 
others (Table  22.1 ). In some individuals, comor-
bidities can be more impairing than the seizures 
themselves [ 11 ]. Many patients have more than 
one comorbidity, underscoring the need to under-
stand the roles played by single and multiple 
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comorbidities in epilepsy, epileptogenesis, and 
quality of life in persons with epilepsy.

   The concept of epilepsy comorbidity has been 
under-recognized but is not new. Recent attention 
has been focused on epilepsy comorbidities with 
the addition of comorbidities as a separate NIH 
Epilepsy Benchmark [ 23 ]. In addition, recognition 
of a comorbidity as a major cause of impaired 
quality of life of persons with epilepsy is elaborated 
in the recent Institute of Medicine report [ 5 ]. 

 There are several possible relationships between 
epilepsy and a comorbidity (Fig.  22.1 ) [ 3 ,  10 ]. 
First, the relationship can be causal, with one 
disorder causing the other or making the other 
disorder more likely (Fig.  22.1a ). That is, a comor-
bid condition can lead to epilepsy, or conversely, 

the comorbid condition occurs as a result of the 
epilepsy or its treatment. Several examples will 
clarify this concept. The etiologies of most symp-
tomatic epilepsies (for example, traumatic brain 
injury, stroke) correspond to this cause-and- effect 
model [ 10 ]. Conversely, epilepsy itself can lead 
to a comorbidity such as anxiety disorder in 
predisposed individuals [ 34 ]. Finally, numerous 
examples of epilepsy treatments leading to 
behavioral comorbidities can be cited, such as the 
association of phenobarbital with hyperactivity 
in children and the association of levetiracetam 
with altered mood [ 35 ].

   Second, shared risk factors, which can be 
genetic, metabolic, structural or environmental, 
can lead to the development of both epilepsy and 
a comorbidity (Fig.  22.1b ). An example is the 
structural brain damage caused by perinatal 
hypoxia-ischemia that leads to both epilepsy and 
comorbid cerebral palsy [ 3 ]. This type of rela-
tionship also includes the comorbidities that 
are considered “bidirectional”, that is, common 
underlying mechanisms could facilitate the devel-
opment of both epilepsy and the comorbidity. 
Depression is a common and critically important 
example of an epilepsy comorbidity and is discussed 
in detail below. Third, the relationship between 
epilepsy and a comorbidity could be incidental or 
even spurious (Fig.  22.1c ). 

 Since so many people with epilepsy harbor 
one or more comorbidity, it is important to elu-
cidate these relationships. For example, there 
could be shared pathophysiological mechanisms 
between epilepsy and a comorbidity, with the 
possibility that one or both conditions is amena-
ble to a treatment or disease modifi cation that 
exploits these common mechanisms. Of note, no 
specifi c therapy exists for a comorbidity in the 
context of epilepsy. That is, if a patient with 
epilepsy is diagnosed with a comorbidity such as 
anxiety or depression, treatment choice is limited 
to medications used to treat anxiety or  depression, 
irrespective of the concurrent epilepsy. Novel 
treatments are needed that take into account the 
specifi c pathogenic mechanisms of both epilepsy 
and the comorbidity. 

 Given the prevalence of epilepsy comorbidities 
and the lack of understanding of their mechanisms, 

   Table 22.1    Examples of epilepsy comorbidities   

 Anxiety disorder 
 Autism spectrum disorder 
 Cardiovascular disease/stroke 
 Dementia/Alzheimer disease 
 Depression 
 Intellectual disability/cognitive impairment 
 Migraine 
 Sleep disorders 
 Suicidality 

  Fig. 22.1    Possible relationships between epilepsy and 
comorbidity. ( a ) A causal relationship might exist whereby 
epilepsy or an epilepsy treatment might cause a comorbid-
ity, or a comorbidity might lead to epilepsy. ( b ) Common 
risk factors might exist (e.g., environmental, genetic, 
structural) that lead to both epilepsy and a comorbidity. 
( c ) Comorbidity and epilepsy might be independent, unrelated 
associations       
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the question arises as to whether animal models 
can provide useful information about pathogenesis 
or treatment [ 18 ]. The purpose of this chapter is 
to provide an overview of some of the theoretical 
issues in modeling epilepsy comorbidities in 
animals, followed by an example of how under-
standing one specifi c epilepsy comorbidity – 
depression – might enhance understanding of the 
pathophysiology of both disorders and could help 
to identify treatment targets. Comprehensive 
reviews of comorbidities in animal models of 
epilepsy already exist [ 3 ], as do detailed guide-
lines for testing specifi c cognitive functions in 
animal models of epilepsy [ 45 ]. 

 The fi rst question to consider is how closely 
an animal model resembles the human condition. 
This question applies to epilepsy as well as to the 
comorbidity, and when trying to model both 
conditions in one animal, obvious challenges 
arise (Table  22.2 ). Species differences are usually 
obvious, but not trivial. While at fi rst glance, it 

might seem implausible that a rodent could 
exhibit depression similar to that experienced by 
a patient. However, a burgeoning literature sup-
ports the idea that there are shared features and 
pathophysiological mechanisms between depres-
sion in animals and humans (discussed in greater 
detail below). Second, for any comorbidity under 
consideration, the experimenter must evaluate 
how the testing paradigm itself might contribute 
to the animal’s performance; that is, does the test 
itself elicit stress or another set of behaviors that 
confound the original intention? Third, it is critical 
that longitudinal observations be employed – it is 
insuffi cient to test an animal only once in a behav-
ioral paradigm since both epilepsy and most 
comorbidities are chronic (and often evolving) 
conditions (Table     22.3 ).

22.2         Depression as an Example 
of an Epilepsy Comorbidity 

 Depression is extremely common in the general 
population, but even more so among people with 
epilepsy [ 22 ]. In population-based studies, it has 
been estimated that approximately 25–35 % of 
individuals with epilepsy suffer from depression 
(even higher if the epilepsy is not well controlled) 
and that people with depression have a 3- to 
7-times greater risk of developing epilepsy than 
the general population [ 15 ,  20 ,  47 ]. Depression 
also affects 8–26 % of children with epilepsy [ 9 , 
 37 ]. These percentages far exceed those expected 
in the general population and may well underes-
timate the actual prevalence of depression in 
persons with epilepsy. A history of depression is 
a reliable predictor of worse epilepsy severity 
[ 20 ]. The bidirectional relationship of epilepsy 
and depression (epilepsy is more likely in people 
with depression, and depression is more likely 
among people with epilepsy) is validated by 
neurobiological data of several types, including 
neurotransmitter analyses, MRI and positron 
emission tomography studies of temporal or 
frontal lobe function, and investigations of 
hypothalamic- pituitary-adrenal (HPA) axis dys-
function [ 21 ]. The bidirectional relationship 
suggests that there may exist one or more common 

   Table 22.2    Factors to consider in animal models of 
epilepsy comorbidities   

 Age of onset (of seizures and comorbid symptoms) 
 Brain region and neurotransmitter system underlying 
comorbidity 
 Environmental factors (e.g., cage size and density, light/
dark cycle) 
 Food intake (e.g., may be decreased in depressed 
animals) 
 Gender of animal 
 Handling by laboratory personnel 
 Species/strain/genetic background 
 Symptoms versus syndrome (i.e., concurrent additional 
comorbidities) 

   Table 22.3    What can be learned from studying epilepsy 
comorbidities in animal models?   

 Mechanisms of shared pathophysiology 
 Potential avenues for therapy and disease modifi cation 
(e.g., relative roles of antidepressant and anticonvulsant 
medications on both epilepsy and depression) 
 Correlations between behavioral phenotype of the 
comorbidity and features of the epilepsy syndrome 
(seizure type, frequency, temporal relationship with 
comorbid symptoms, etc.) 
 Role of the comorbidity in epilepsy progression and 
epileptogenesis 
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neurobiological mechanisms and that these 
mechanisms might be exploited for therapeutic 
advantage. 

 Depression is a heterogeneous disorder with 
several distinct subtypes classifi able using the 
Diagnostic and Statistical Manual of Mental 
Disorders (5th edition, DSM-V [ 1 ]). It is important 
to recognize that the DSM is based on expert con-
sensus not validated biomarkers. DSM-V criteria 
for the diagnosis of depression include despair, 
anhedonia (inability to experience pleasure), veg-
etative symptoms (weight loss, appetite decrease 
or increase, decreased energy, insomnia), feelings 
of worthlessness and guilt, decreased focus/
attention span, and suicidal ideation. It is uncer-
tain whether depression in persons with epilepsy 
is identical to depression in persons without 
epilepsy. Data suggests that many “atypical” fea-
tures that do not adhere to the strict DSM criteria 
typify depression in individuals with epilepsy 
[ 20 ]. Atypical features include a greater degree of 
anxiety, irritability, and mood lability. Importantly, 
the timing of depressive episodes may relate to 
seizure occurrence; a bout of depression may 
precede a seizure (interictal episode) or occur 
around the same time as a seizure (peri-ictal epi-
sode) [ 22 ]. Despite their frequent co-occurrence, 
the severity of depression, at least in temporal 
lobe epilepsy, is not proportionate to the number 
of seizures [ 12 ]. The treatment goal is reduction 
of both seizures and depressive symptoms, although 
seizure control does not always correlate with 
improvement in depression [ 13 ]. Ideally, this goal 
would be achieved using monotherapy, with one 
drug improving both seizure control and depres-
sion. Specifi c data about the impact of antide-
pressants on depression in epilepsy are scarce but 
much needed. 

 The effects of antidepressants on epilepsy and 
antiepileptic agents on depression are complex. 
Some antiepileptic drugs are well known for their 
mood stabilizing properties (e.g., carbamazepine, 
valproate, lamotrigine). Likewise, antidepres-
sants have been shown to exert anticonvulsant 
effects in both patients and animals – selective 
serotonin reuptake inhibitors (SSRIs), serotonin- 
norepinephrine reuptake inhibitors (SNRIs), and 
tricyclic antidepressants (TCAs) can increase brain 

monoamines such as serotonin, norepinephrine, 
and dopamine, favoring an anticonvulsant action 
[ 16 ]. In addition, depression can be ameliorated 
by alterations of the primary neurotransmitter 
systems of the brain – glutamate receptor antago-
nists (e.g., dizocilpine, ketamine) or γ-amino-butyric 
acid (GABA)-receptor agonists [ 33 ,  40 ]. The 
multifaceted effects of these and other novel 
agents in epilepsy and depression are poised for 
study in animal models [ 28 ].  

22.3     Evaluating Depression 
in Animal Models of Epilepsy 

 Depression is an exemplary disorder in which to 
explore the opportunities and challenges between 
epilepsy and a comorbidity using animal models 
[ 8 ]. Obviously, many subjective symptoms of 
depression cannot easily be extrapolated to animals, 
but an approximation of some of the  symptoms 
makes the study of this comorbidity in animals 
quite tenable. To that end, a set of modifi ed criteria 
for depression in rodents has been proposed [ 3 ]. Of 
the depression criteria listed in DSM-V, despair 
and anhedonia are most readily testable in animals, 
with validated laboratory tests available for 
those symptoms. The forced swim test (FST) is a 
measure of despair in rodents, while anhedonia, 
the failure to experience pleasure, is assessed by 
the taste preference test (TPT). These tests have 
been widely used to screen potential antidepres-
sant compounds. It is important to recognize 
that a single administration of those or any other 
experimental measure of depression in animals 
represents only a single point in time, whereas a 
comorbidity typically evolves over time, neces-
sitating serial assessments. 

 The FST is performed by placing an animal in 
a water-fi lled chamber with smooth sides, from 
which it cannot escape. Initially, the animal typi-
cally swims around frantically, trying to escape 
by climbing the walls (active escape phase). 
Eventually, the animal seems to give up this futile 
effort and becomes immobile, simply fl oating in 
the water, striving to keep its head above water to 
prevent drowning (immobility phase). These two 
phases are easily quantifi ed, with the immobility 
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phase comprising a validated measure of despair 
(Fig.  22.2a ). In models of depression, animals 
that are depressed have shorter active escape 
phases and enter the immobile phase sooner. 
Importantly, the FST is itself a stressor for an 
animal. Antidepressant drugs increase the active 
escape phase duration, supporting the contention 
that the immobility phase represents despair. 
The FST has been used for antidepressant drug 
discovery in animal models of depression, but 
pharmacologic studies of antidepressants in epileptic 
animals have emerged only recently.

   The TPT compares a rodent’s preference for 
drinking a solution sweetened with saccharine 
(or sucrose) over plain water (Fig.  22.2b ) [ 32 ]. 
Ordinarily, rodents prefer to drink the sweet 
solution. Sugar consumption stimulates dopaminer-
gic fi bers projecting from the ventral tegmental 
area to the nucleus accumbens, where the amount 
of dopamine released correlates with motivational 
aspects of reward [ 39 ]. In depressed animals, 
intake of sweet liquids such as sucrose or saccharine 
is decreased and there is no difference in rodents’ 
consumption of the sweetened versus plain 
water, suggesting that they have less interest in 
the fl avored fl uid. 

 Other tests have also been employed for 
comorbidities in epilepsy research, some appli-
cable to depression and others more refl ective of 
anxiety, cognitive function, memory, or learning. 
Comprehensive lists of such tests (Table 1 in [ 3 ] 
and Table 1 in [ 8 ]) reveal that many are in need of 
validation in animals with epilepsy. As well, 
there is an urgent need for multi- dimensional 
behavioral tests to simultaneously assess concurrent 
comorbidities in the same subject – depression, 
anxiety, sleep dysfunction, etc.  

22.4     Examples of Comorbid 
Epilepsy and Depression 
in Animal Models 

 To illustrate some of the insights that can be 
gained from animal models, examples are now 
provided that examine various aspects of the rela-
tionship between epilepsy and depression. These 
examples include both acquired and genetic eti-
ologies. Space precludes detailed discussion of 
other relevant examples such as GAERs (genetic 
absence epilepsy rats from Strasbourg) [ 19 ] and 
genetically epilepsy prone rats (GEPRs) [ 17 ]. 

 Chemoconvulsant models of temporal lobe 
epilepsy (TLE) in rats using either kainic acid 
(KA) or lithium/pilocarpine (LiP) allow detailed 
study of the relationship between seizures (number, 
frequency, duration and timing of spontaneous 
recurrent seizures) and the occurrence of behavioral 
and cognitive abnormalities. KA is a glutamate 
receptor agonist; pilocarpine is an agonist of 

  Fig. 22.2    Laboratory tests of depression in rodents. 
( a ) The forced swim test is a measure of despair, one of 
the core symptoms of depression.  Left , active escape 
phase.  Right , immobility phase, considered to represent 
despair. ( b ) The taste preference test is a measure of anhe-
donia, or loss of ability to experience pleasure. A normal 
animal prefers the sweetened liquid, while a depressed 
animal does not express this preference       
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muscarinic acetylcholine receptors. Both forms 
of chemoconvulsant-induced epilepsy mimic 
limbic epilepsy, with initial status epilepticus 
followed weeks-to-months later by spontaneous 
recurrent seizures and behavioral and cognitive 
abnormalities. In both KA- and LiP- epilepsy, 
evidence of depression has been documented on 
the FST and TPT [ 24 ,  36 ]. Following KA-induced 
status epilepticus, rats had shorter latencies to the 
immobile phase on the FST and longer duration 
of immobility, suggesting that these rats were 
depressed (increased despair) [ 24 ]. Using micro-
array analysis, it was shown that depressed 
rats had a reduction in expression of the gene 
for serotonin receptor 5B. Most strikingly, 
environmental enrichment prevented both FST 
abnormalities and the underlying gene expression 
changes, suggesting that environmental factors play 
a crucial role in the development of depression as 
an epilepsy comorbidity. Investigation of struc-
tural brain injury and the roles of antidepressant 
and anticonvulsant drugs in this model would 
further clarify these relationships. 

 In the other chemoconvulsant model, intra-
peritoneal injection of LiP causes limbic status 
epilepticus, followed in subsequent weeks by 
behavioral defi cits such as learning and mem-
ory impairment and a depression phenotype. 
Compared to naïve rats, LiP-treated rats demon-
strated increased immobility time in the FST 
and loss of taste preference in the TPT [ 29 ], 
supporting the depression phenotype of despair 
and anhedonia. These behavioral defi cits were 
rescued by treatment with a blocker of the 
serotonin 5HT1a receptor, but there was no 
effect of selective serotonin reuptake inhibitors 
(SSRIs) [ 29 ], suggesting that depression in this 
model does not respond to medications typically 
used to treat clinical depression. These observa-
tions support the conclusion that depression, at 
least in some epilepsy disorders, represents an 
atypical form of the condition. This model pro-
vides the opportunity to dissect contributions 
of the multiple serotonin receptors involved in 
various depression subtypes [ 27 ]. The effects of 
standard anticonvulsants on depression and 
antidepressants on epilepsy have not yet been 
reported in this model. 

 To investigate the mechanism linking depression 
to epilepsy in this model, the authors noted that 
dysregulation of the HPA axis is a marker of 
depression, with increased levels of plasma 
glucocorticoid (cortisol) due to loss of negative 
feedback of cortisol on corticotrophin releasing 
hormone and adrenocorticotrophic hormone 
release [ 25 ]. LiP-treated rats had elevated cortisol 
levels, supporting the depression phenotype [ 31 ]. 
After status epilepticus in these animals, there 
was reduced serotonergic innervation from 
brainstem raphe nuclei to the hippocampus 
due to upregulation of raphe 5-HT1A autore-
ceptors, as found in some human depression 
[ 4 ]. Furthermore, a blocker of 5-HT1A receptors, 
WAY-100635, improved performance on the FST, 
forming a link between abnormal serotonergic 
function, depression, and behavior [ 30 ]. 

 Further studies showed that increased hippo-
campal interleukin 1-β (IL1β) signaling might 
mediate both depressive symptoms and height-
ened hippocampal excitability leading to sponta-
neous seizures in this model. The authors proposed 
a scheme whereby epilepsy leads to depression 
by increasing IL1β signaling, which upregulates 
raphe 5-HT1A autoreceptors, compromising 
raphe-to-hippocampus serotonergic neurotrans-
mission.  These fi ndings raise the possibility of a 
link between mechanisms of epilepsy, depression, 
stress, and the infl ammatory response [ 49 ]. 
Potential loci for intervention might include block-
ade of glucocorticoid action, downregulation of 
raphe 5HT1A autoreceptors, or anti-infl ammatory 
agents. This model can also be utilized to further 
characterize the mechanisms of neuronal excit-
ability underlying epilepsy and depression. 

 The next example is rats bred for susceptibility 
or resistance to depression-like behaviors during 
swimming in the FST (named SwLo and SwHi, 
respectively). SwLo rats display increased 
immobility in the FST and anhedonic tendencies. 
Importantly, SwLo rats also have increased pre-
disposition to limbic seizures induced by kainic 
acid or pilocarpine, providing an excellent oppor-
tunity to examine the joint mechanisms of depres-
sion and epilepsy, with particular relevance to 
temporal lobe epilepsy [ 7 ,  46 ]. Chronic antide-
pressant treatment reverses the FST defi cits in 
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SwLo rats [ 50 ], substantiating the validity of this 
model in depression. In addition, the existence of 
the converse model – SwHi rats that are resistant 
to depression – provides a unique opportunity to 
examine whether this strain is also relatively 
resistant to seizure development. To date, there 
are no data regarding the effects of anticonvul-
sants on either depression or seizure development 
in this model. Finally, this model provides further 
evidence for the interaction of environment and 
genetics in the expression of both depression 
and epilepsy, as aerobic exercise was found to 
improve both FST performance and seizure resis-
tance in SwLo rats compared to SwHi rats [ 6 ]. 

 Lastly, a genetic model of absence epilepsy has 
revealed a number of important relationships 
between epilepsy predisposition and psychiatric 
comorbidities. The inbred WAG/Rij (Wistar 
Albino Glaxo/Rijswijk) rat strain develops 
absence seizures at approximately 2–3 months of 
age, in parallel with the onset of depression and 
anxiety phenotypes [ 41 ]. Therefore, this model is 
ideal to investigate the age-related onset and 
causal relationship between depression and epi-
lepsy with spike-wave discharges. WAG/Rij rats 
have defi ciencies in the FST and TPT, as well as 
anxiety-related behaviors in the open fi eld test 
[ 44 ]. The depressive symptoms in this model can 
be rescued by chronic treatment with the TCA, 
imipramine (but the effect of imipramine on 
seizures is unknown). Chronic treatment of WAG/
Rij rats with the anti-absence drug ethosuximide 
from 3 weeks to 5 months of age led to persistent 
seizure suppression many months after discontin-
uation of treatment [ 2 ]. Chronic ethosuximide 
treatment also reduced immobility time on the 
FST, suggesting that this anticonvulsant exerted 
both antiepileptic and antidepressant effects [ 48 ]. 
The authors concluded that there is a causal rela-
tionship between the development of the epileptic 
phenotype and depressive symptoms in this model 
[ 43 ]. Prominent involvement of the dopaminergic 
system in these behavioral dysfunctions is sup-
ported by acute treatment with a dopamine recep-
tor D2/3 antagonist, raclopride, which exacerbated 
FST defi ciencies, and a D2/3 receptor agonist, 
parlodel, which exerted antidepressant effects 
[ 42 ]. Recent work also implicates involvement of 
the mTOR pathway in both epileptogenesis and 

depression in WAG/Rij rats [ 38 ]. Blockade of the 
mTOR pathway with rapamycin for either 7 days 
(“sub-chronic”) or 17 weeks (“chronic”) amelio-
rated absence seizures but had an opposite effect 
on depression using the FST and TPT – sub-
chronic treatment with rapamycin had an antide-
pressant effect while chronic treatment produced 
a prodepressant effect. These results could form 
the basis of a novel treatment strategy for epi-
lepsy and depression (mTOR inhibition), while 
raising the interesting caveat that the same agent 
(rapamycin) can exert different effects on 
depression, depending on the specifi c administra-
tion protocol. Taken together, data from more 
than three decades of study of the WAG/Rij rat 
absence epilepsy model strongly support a close 
interrelationship between seizures and psychiatric 
comorbidities, especially depression, and provide 
an excellent model in which to investigate corre-
lations between seizure occurrence, cognitive 
dysfunction, and treatment parameters.  

22.5     Conclusion 

 Potential pathophysiological overlaps between 
epilepsy and epilepsy comorbidities are eminently 
amenable to study in the laboratory using animal 
models. While acknowledging species differences 
and other inherent limitations of animal models 
of epilepsy and psychiatric diseases, the shared 
pathophysiology between epilepsy and depression, 
anxiety, and other comorbidities are readily ame-
nable to laboratory investigation and could yield 
insights into the pathophysiological mechanisms 
in one or both conditions, as well as potential 
therapeutic modalities. This rigorous approach 
to translational neurobiology has been typifi ed 
by laboratory models championed by Dr. Philip 
Schwartzkroin and his colleagues.     
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    Abstract 

 Despite the development of numerous novel antiepileptic drugs (AEDs) in 
recent years, several unmet clinical needs remain, including resistance to 
AEDs in about 30 % of patients with epilepsy, adverse effects of AEDs 
that can reduce quality of life, and the lack of treatments that can prevent 
development of epilepsy in patients at risk. Animal models of seizures and 
epilepsy have been instrumental in the discovery and preclinical develop-
ment of novel AEDs, but obviously the previously used models have failed 
to identify drugs that address unmet medical needs. Thus, we urgently 
need fresh ideas for improving preclinical AED development. In this 
review, a number of promising models will be described, including the use 
of simple vertebrates such as zebrafi sh ( Danio rerio ), large animal models 
such as the dog and newly characterized rodent models of pharmacoresis-
tant epilepsy. While these strategies, like any animal model approach also 
have their limitations, they offer hope that new more effective AEDs will 
be identifi ed in the coming years.  
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23.1         Introduction 

 Rodent models of seizures and epilepsy have 
played a fundamental role in advancing our 
understanding of basic mechanisms underlying 
ictogenesis and epileptogenesis. They have also 
been instrumental in the discovery and preclini-
cal development of novel antiepileptic drugs 
(AEDs) [ 12 ]. Indeed, animal models with a simi-
larly high predictive value do not exist for other 
neurological disorders, such as bipolar disease or 
migraine [ 62 ]. Despite the availability of predic-
tive rodent models, at least 30 % of epilepsy 
patients are not controlled by currently available 
AEDs. One reason is that, with few exceptions, 
most AED candidates were identifi ed in simple 
evoked seizure models in otherwise healthy 
rodents such as the maximal electroshock seizure 
(MES) or acute pentylenetetrazole (PTZ; metra-
zol) tests [ 48 ]. In these traditional models, in use 
since the 1940s, successful AED treatments sup-
press acute seizure events, but effects on drug- 
resistant seizure events or chronic spontaneous 
seizures are not routinely evaluated. Thus, we 
urgently need fresh ideas for improving preclini-
cal AED development. Here, a number of prom-
ising models will be described, including the use 
of simple vertebrates such as zebrafi sh ( Danio 
rerio ), large animal models such as the dog and 
newly characterized rodent models of pharmaco-
resistant epilepsy. We will not discuss  in vitro  
brain slice models or neurons derived from 
patients using induced pluripotent stem cell tech-
nology, because the network complexity of the 
brain and its alterations by seizure activity are 
diffi cult to recapitulate in the dish.  

23.2     Zebrafi sh-Based Approaches 
to Epilepsy and Drug 
Discovery 

 Traditionally used as a model organism to study 
vertebrate development and embryogenesis, 
zebrafi sh only recently emerged as an important 
model for epilepsy research [ 5 ,  17 ,  27 ,  29 ,  53 ,  65 , 
 70 ]. The rapid ex vivo development, genetic trac-

tability and transparency of larval zebrafi sh make 
them ideally suited to these types of studies 
(Fig.  23.1 ). Because zebrafi sh are vertebrates with 
a fairly complex nervous system [ 2 ,  21 ,  61 ] 
recording electroencephalographic activity is also 
possible [ 7 ], and with exposure to standard con-
vulsant manipulations (e.g., PTZ, pilocarpine, 
4-aminopyridine, heat) abnormal electrical dis-
charge with brief high-frequency small amplitude 
(interictal-like) and longer duration, complex 
multi-spike large amplitude (ictal- like) events can 
be readily observed. Sophisticated imaging 
approaches, taking advantage of the transparency 
of larval zebrafi sh and genetic modifi cation to 
express calcium or bioluminescence indicators, 
provide additional evidence that central nervous 
system (CNS)-generated seizure-like activity is 
robust in response to PTZ. This is an important 
advantage of zebrafi sh as a model organism for 
epilepsy research as CNS-generated abnormal 
electrical events are often considered a hallmark 
feature of this disease. In the original description 
of the acute PTZ seizure model in wild-type 
zebrafi sh at 6 or 7 days post- fertilization (dpf), 
Baraban et al. [ 5 ] provided a framework for char-
acterizing epilepsy in zebrafi sh: (i) evidence for 
seizure-induced gene ( c-Fos ) expression, (ii) a 
scoring system for seizure-like behaviours, (iii) 
electrophysiological examples of abnormal elec-
trographic burst discharge and (iv) sensitivity to 
common AEDs (valproate, ethosuximide, carba-
mazepine, phenytoin, phenobarbital and diaze-
pam). As expected from similar PTZ testing in 
rodents [ 71 ], valproate and diazepam were the 
most effective at inhibiting electrographic seizure 
events with approximate ED 50 s of 1 mM and 
5 μM, respectively. Using this same model, 
Berghmans et al. [ 11 ] extended this dataset to 
include 14 standard AEDs. These follow-up 
experiments used an assay where wild-type larvae 
were “incubated” in a test compound for 24 h 
prior to acute PTZ administration and monitoring 
of seizure-like behaviour exclusively in a 
locomotion- based tracking assay. These studies 
confi rmed the results of Baraban et al. [ 5 ] but also 
highlight the limitations of a behaviour-only 
assay as two drugs that failed to alter electro-
graphic burst discharge amplitude (ethosuximide 
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and carbamazepine) were identifi ed as 
 “anticonvulsant” as measured by a reduction in 
swim activity. A likely explanation is that over-
night exposure to these AEDs was either toxic or 
sedative to developing zebrafi sh, as both possi-
bilities would appear as suppressed locomotion in 
motion-based tracking assay. More recently, 
Afrikanova et al. [ 1 ] revisited this overnight expo-
sure-PTZ challenge assay and evaluated a similar 
list of 13 AEDs using a combination of locomo-
tion tracking followed by electrophysiology on 
agar-immobilized larvae. These latter studies 
aligned most closely with the original PTZ fi nd-
ings, identifying valproate and diazepam, while 
also showing that ethosuximide altered burst fre-
quency but not amplitude. Maximum-tolerated 
drug concentrations were studied in both papers 
highlighting an additional advantage of the zebraf-
ish platform for simultaneous in vivo evaluation 
of drug toxicities e.g., one of the primary reasons 
that most compounds identifi ed in preclinical tri-
als ultimately fail to reach the clinic. In a recent 
paper by Baxendale et al. [ 10 ] also using PTZ, a 
high-throughput screen of a ~2,000 bioactive 

small molecule library was reported. These studies 
used a fi rst- pass assay based on increased  c-Fos  
mRNA expression (as measured by in whole-
mount situ hybridization) following PTZ exposure 
at two dpf and a secondary locomotion-based assay 
at four dpf for additional concentration-response 
studies. Unfortunately, it is unclear whether the 
46 compounds identifi ed using this approach are 
antiepileptic as previous studies indicate the earli-
est possible developmental stage where confi rmed 
electrographic seizures could be observed in 
zebrafi sh larvae is three dpf [ 6 ,  27 ]. Before this 
age, larvae are still in chorion and do not swim 
freely. Furthermore, these non-physiological 
assays should be interpreted with caution as the 
Baxendale et al. [ 10 ] study identifi ed several can-
didate compounds with known neurotoxicity pro-
fi les e.g., lindane, rotenonic acid, deguelin, endrin 
and propanil.

   Although seizures can be easily induced, drug 
discovery using acute seizure models, even in 
zebrafi sh, are prone to the same limitations as in 
rodents. Namely, these approaches use healthy 
animals, the seizure-events are acute and evoked 

Adult heterozygote mutants

Large numbers of offspring (+/+, +/-, -/-)

Transfer to individual wells Record seizure behavior

Chemical library

Phenotype-based screen e.g., inhibition of seizure behavior

  Fig. 23.1    Schematic 
illustration of the zebrafi sh 
assay       
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using potentially non-physiological stimuli such 
as a stimulation electrode or convulsants, and 
most importantly they do not model spontane-
ously occurring seizure events. Zebrafi sh 
diverged from humans roughly 450 million years 
ago but recent genome sequencing revealed that 
the similarity between the zebrafi sh and human 
genome is ~70 % [ 28 ]. This fact, coupled with 
the fecundity of adult zebrafi sh (producing 100–
200 offspring per week from a single adult breed-
ing pair), the permeability of larvae to drugs 
placed in the bathing media, and ability to thrive 
in volumes as small as 100 μl make zebrafi sh an 
attractive model for a drug discovery program 
targeted to genetic forms of epilepsy. In the 
Baraban laboratory, we have focused on zebraf-
ish designed to mimic monogenic epilepsy disor-
ders of childhood as they offer the advantages of 
spontaneous seizure activity and a genetic basis 
mimicking the human condition. In this approach, 
one can model specifi c forms of pediatric epi-
lepsy – Type I Lissencephaly ( Lis1 ), Angelman 
syndrome ( Ube3A ), Tuberous Sclerosis Complex 
( Tsc ) or Dravet syndrome for example ( Scn1a ) – 
then design drug screening programs targeted to 
that patient population. In some cases these are 
stable mutations carried in the zebrafi sh germ-
line, where other models involve acute antisense 
knockdown of gene expression in immature 
zebrafi sh. Thus, a form of “personalized medi-
cine” aimed at identifying new therapeutic 
options for relatively rare, but catastrophic, forms 
of epilepsy. Our recent studies are based on a 
two-stage screening process. First, zebrafi sh 
mutants are placed in individual wells and behav-
iour (locomotion) is tracked using a 96-well for-
mat. Once a baseline level of spontaneous seizure 
activity is established a test compound is added, 
and then a second locomotion assay is performed 
to evaluate the effect on seizure behaviour (with 
distance travelled and mean velocity of swim 
movement used as surrogate markers) [ 5 ,  16 ]. As 
freely behaving larvae can simultaneously be 
observed for heart rate, edoema or touch- 
sensitivity, in vivo toxicity is also determined 
with this strategy. Using a 96-well format it is 
relatively easy to power this research for statisti-
cal analysis and multiple drug concentrations can 

be assessed in a given plate. The same fi sh can 
subsequently be used for electrophysiological 
analysis, which allows a determination of “false 
positives” in the locomotion assay that are lethal, 
sedative or paralyzing. With even a modest 
zebrafi sh facility, this approach can easily be 
used to screen 20–50 drugs per week. The disad-
vantage of this strategy is that it is not well-suited 
to acquired forms of epilepsy that develop more 
slowly over time or in the adult nervous system, 
or compounds that are not easily dissolved in 
embryo media. It is also diffi cult to directly trans-
late concentrations that are effective via bath 
application in larval zebrafi sh to those that may 
be useful clinically in humans.  

23.3     Rodent Models of 
Pharmacoresistant Seizures 

 The concept of developing rodent seizure or epi-
lepsy models that do  not  respond to clinically 
approved AEDs and then using such models for 
the discovery of novel more effective AEDs is not 
new but, to our knowledge, was fi rst proposed by 
Löscher in 1986 [ 38 ]. Since then, several models 
of pharmacoresistant seizures have been devel-
oped, including the phenytoin-resistant kindled 
rat [ 40 ], the lamotrigine-resistant kindled rat 
[ 68 ], and the phenobarbital-resistant epileptic rat 
[ 14 ]. In all these models, resistance to one AED 
extends to other AEDs (cf., [ 49 ]), thus fulfi lling 
the criterion of pharmacoresistant epilepsy [ 32 ]. 
By using two of these models, Löscher and col-
leagues described several factors that differenti-
ated AED-resistant from AED-responsive rats, 
including the extent of neurodegeneration in the 
hippocampus, genetic factors, AED target altera-
tions, alterations in drug effl ux transporters, and 
intrinsic severity of the epilepsy as a determinant 
of AED refractoriness [ 49 ]. Similar factors have 
been described for AED-resistant human epi-
lepsy, so that the rat models obviously refl ect 
clinically important mechanisms of refractori-
ness. The next logical step was to use such mod-
els for new treatment discovery. One example 
here is that inhibiting the drug effl ux transporter 
P-glycoprotein (Pgp), which is increased at 
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the blood–brain barrier of AED-resistant rats, 
counteracted resistance to phenobarbital in epileptic 
rats [ 15 ]. The increased Pgp functionality in epi-
leptic rats can be visualized in vivo by positron 
emission tomography [ 4 ]. By using Pgp imaging, 
Feldmann et al. [ 19 ] demonstrated that about 
40 % of AED-resistant patients exhibit increased 
brain functionality of Pgp and could potentially 
benefi t from Pgp inhibition. This example illustrates 
that chronic rodent models of pharmacoresistant 
seizures are helpful to discover new strategies for 
treatment of medically intractable epilepsy. 

 The disadvantage of the described chronic 
epilepsy models is that they are not suited for 
large-scale testing of novel compounds but rather 

for evaluation of selected treatment strategies as 
illustrated by the example of Pgp inhibition. 
Kindling models such as the phenytoin-resistant 
kindled rat [ 40 ] or the lamotrigine-resistant kin-
dled rat [ 68 ] have the advantage that seizures can 
be induced at will, so that chronic drug adminis-
tration is not needed, whereas models with spon-
taneous recurrent seizures (SRS) such as the 
phenobarbital-resistant epileptic rat [ 14 ] necessi-
tate continuous (24/7) EEG/video recording for 
assessing drug effi cacy. When testing drug effects 
on SRS in such rat models, the rapid elimination 
of most drugs, including AEDs, in rats (Table  23.1 ) 
necessitates the use of an adequate dosing regi-
men during prolonged drug administration to 

    Table 23.1    A comparison of elimination half-lives of antiepileptic drugs in humans, dogs and rats   

   Half-life (h) 

 AED  Human  Dog  Rat 

 Carbamazepine  25–50 a,b   1–2 a,b   1.2–3.5 a  
 Clobazam  16–50  ~1.5  1 
 Clonazepam  18–50  1–3  ?    
 Diazepam  24–72 a  (DMD = 40–130)  1–5 a  (DMD = 4)  1.4 a  (DMD = 1.1) 
 Ethosuximide  40–60  11–25  10–16 
 Felbamate  14–22  4–8  2–17 c  
 Gabapentin  5–7  3–4  2–3 
 Lacosamide  13  2–2.5  3 
 Lamotrigine  21–50  2–5  12 to >30 
 Levetiracetam  6–11  4–5  2–3 
 Oxcarbazepine  1–2.5 a  (MHD = 8–14)  ~4 a  (MHD = 3–4)  ? a  (MHD = 0.7–4) 
 Perampanel  70  5  2 
 Phenobarbital  70–100 b   25–90 b   9–20 b  
 Phenytoin  15–20 b,c   2–6 b,c   ~1–8 b,c  
 Potassium bromide  ~300  ~600  72–192 
 Pregabalin  6  6–7  2.5 
 Primidone  6–12 a  (PB = 70–100)  4–12 a,b  (PB = 25–90)  5 a  (PB = 9–20) 
 Tiagabin  5–8  1–2  1 
 Topiramate  20–30  3–4  2–5 
 Valproate  8–15 a   1–3 a   ~1–5 a,c  
 Vigabatrin  5–7 d   ? d   ~1 d  
 Zonisamide  60–70  ~15  8 

  Data are from previous reviews of Löscher [ 44 ,  46 ] and have been revised and updated for the present study. Note that 
rats and dogs eliminate most AEDs more rapidly than humans, which has to be considered when using such drugs for 
chronic studies in experimental animals 
  DMD  desmethyldiazepam,  MHD  monohydroxy derivative,  PB  phenobarbital, ? indicates that no published data were 
found 
  a Active metabolites;  b shortens on continuing exposure to the drug (because of enzyme induction);  c non-linear kinetics 
(half-life increases with dose);  d duration of action independent of half-life because of irreversible inhibition of GABA 
degradation  
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avoid false negative results [ 46 ]. The same is true 
when administering potential antiepileptogenic 
drugs in the latent period following epileptogenic 
brain insults in rats [ 46 ]. Mice developing SRS 
after intrahippocampal injection of kainate have 
been proposed as a model of pharmacoresistant 
seizures; these mice have the advantage that the 
frequency of SRS is so high that drug effi cacy can 
be determined after single dose administration 
[ 54 ,  66 ]. However, as yet this model has only 
rarely been used for investigating the antiepileptic 
effi cacy of novel compounds [ 54 ].

   Based on the logistical problems associated 
with drug testing in chronic models, models such 
as the zebrafi sh or acute rodent seizure models 
are indispensable when testing large numbers of 
investigational compounds before evaluating the 
most interesting compounds in chronic models. 
One of these acute seizure models, the 6-Hz 
model of partial seizures in mice, was initially 
proposed to provide a useful model of therapy- 
resistant limbic seizures [ 9 ], but more recent 
studies have not confi rmed this idea [ 49 ]. Rather, 
the 6-Hz model is a valuable part of a preclinical 
test battery to further differentiate compounds. 
Also, a more recent genetic mouse model of 
Dravet syndrome, in which clinical symptoms of 
this syndrome occur after Scn1a heterozygous 
knockout, may be an interesting possibility for 
testing drugs or drug combinations for treatment 
of as yet pharmacoresistant types of seizures [ 59 , 
 60 ]. Furthermore, a zebrafi sh Scn1a mutant, such 
as the one recently described by the Baraban lab-
oratory [ 8 ] would be an effi cient fi rst pass high- 
throughput approach to identify potential 
candidate compounds that can be further investi-
gated in chronic rodent models of pharmacoresis-
tant seizures.  

23.4     Naturally Occurring 
Epilepsy in Dogs 
as a Translational Model  

 The dog is an important large animal model in 
various fi elds of biomedical research and fi lls a 
crucial step in the translation of basic research to 
new treatment regimens. For instance, because of 

the relative large body size of dogs and many 
similarities in physiology and pharmacology 
between dogs and humans, scaling doses from 
dogs to humans is much easier than using rodents 
in selecting doses for clinical trials in humans. To 
our knowledge, Löscher et al. [ 37 ] were the fi rst 
to propose naturally occurring canine epilepsy as 
a translational model of human epilepsy. The 
prevalence and phenomenology of epilepsy in 
dogs are very similar to human epilepsy. Indeed, 
epilepsy is the most common chronic neurologi-
cal disease in dogs, affecting about 0.6–1 % of 
the dog population [ 64 ,  69 ]. Furthermore, causes 
of canine epilepsy are similar to those in humans 
(Fig.  23.2 ) except that cerebrovascular disease 
does not play any signifi cant role, because it is 
rare in dogs [ 69 ]. About 50 % of dogs with partial 
and generalized convulsive seizures are not con-
trolled by treatment with AEDs, so that epileptic 
dogs have been proposed as a valuable model of 
pharmacoresistant epilepsy that can be used to 
unravel mechanisms of resistance and evaluate 
new strategies for treatment [ 44 ,  64 ]. However, 
clinical trials on new AEDs in epileptic dogs are 
as laborious and time-consuming as clinal trials 
in human patients, necessitating randomized trial 
designs in which the new drug is compared with 
either placebo or a standard comparator [ 57 ,  58 ]. 
Recently, different treatments, including AEDs, 
vagal stimulation, and ketogenic diet were com-
pared with placebo in epileptic dogs, and an 
unexpectedly high placebo rate was found, which 
was similar to that known from controlled clini-
cal trials in humans with epilepsy [ 57 ,  58 ]. In 
contrast to humans, the placebo effect has been 
largely disregarded in veterinary medicine. In 
humans, a placebo response seems to require a 
recognition by the patient of the intent of treat-
ment efforts. Because it is generally presumed 
that animals lack certain cognitive capacities, e.g. 
the ability to comprehend the intent of the veteri-
narian’s manipulations, the power of suggestion, 
and expectations of recovery and healing, the 
existence of a placebo effect in animals seems 
counterintuitive [ 55 ]. However, in veterinary 
studies, the placebo response may be a result of 
expectations of the pet owner regarding treatment 
in studies as those conducted by Munana et al. 
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[ 57 ,  58 ] in epileptic dogs, where the owners are 
responsible for administration of treatment and 
outcome measures (i.e., seizure frequency) are 
derived solely from owner observations. Other 
factors that may be included in placebo responses 
in veterinary studies include regression to the 
mean, investigator bias, client bias, the potential 
for a higher level of care during the study, and 
improved adherence to treatment with active 
medication that is being administered in addition 
to the placebo during the study (for details see 
[ 57 ]). Furthermore, the placebo response can be 
because of effects of placebo administration on the 
animal, which is well documented in laboratory 
animals and may involve conditioned responses 
among others [ 55 ]. As a consequence, studies on 
new treatments in laboratory animals (or pets) 
should always include a “placebo” group receiv-

ing all manipulations (e.g., handling, injections, 
electrode implantation, seizure recording etc.) 
that are used for the new treatment.

   In addition to chronic epilepsy, naturally 
occurring canine status epilepticus (SE) has been 
proposed as a translational platform for evaluat-
ing investigational compounds for eventual use in 
human trials [ 34 ] and a controlled study on i.v. 
levetiracetam for treatment of SE in dogs has 
been published recently [ 23 ]. 

 One important caveat that has to be consid-
ered when using dogs for long-term studies on 
AEDs is that dogs, similar to rodents, eliminate 
many drugs, including most AEDs, much more 
rapidly than humans (Table  23.1 ). Thus, when 
using AEDs such as phenytoin, carbamazepine or 
valproate with too low half-lifes for maintenance 
treatment in epileptic dogs, no suffi cient drug 

  Fig. 23.2    A comparison 
of the presumed causes 
of recurrent epileptic 
seizures in humans and 
dogs. The graph on humans 
illustrate the proportion 
of incidence cases of 
epilepsy by etiology in 
Rochester, Minnesota, 
U.S.A., 1935–1984 [ 24 ]; 
a similar graph was 
initially shown by 
Lowenstein [ 35 ]. The graph 
on dogs illustrates data from 
a recent epidemiologic 
study on canine 
epilepsy [ 69 ]       

 

23 What New Modeling Approaches Will Help Us Identify Promising Drug Treatments?



290

levels and, hence, no antiepileptic effects are 
obtained in this species [ 20 ,  36 ,  37 ]. The few 
AEDs with suffi ciently long half-lives for main-
tenance treatment include phenobarbital, primi-
done (because of its metabolism to phenobarbital), 
and potassium bromide, which is the reason why 
until recently only these old drugs were approved 
for treatment of canine epilepsy in the US or 
Europe. This situation has changed by the recent 
approval of imepitoin for treatment of dogs with 
newly diagnosed epilepsy (see below). 
Furthermore, several newer AEDs, including 
levetiracetam, felbamate, zonisamide, topira-
mate, gabapentin, and pregabalin are used as add-
 on treatment in dogs with pharmacoresistant 
seizures [ 64 ]. It has been tried to overcome the 
problem of too rapid elimination of most AEDs 
by dogs by using sustained-release formulations; 
however, sustained-release preparations devel-
oped for use in humans are not suited for dogs 
because of the much higher gastrointestinal pas-
sage rate in dogs (~24 h) vs. humans (~65–100 h) 
[ 36 ,  44 ]. Thus, AED formulations that exhibit 
retarded release of the drug in the gastrointestinal 
tract have to be adapted to the dog to overcome 
problems associated with too rapid drug elimina-
tion in this species. For phenytoin, a slow-release 
preparation has been developed for dogs, by 
which therapeutic plasma levels could be main-
tained despite the rapid elimination of this drug 
in dogs [ 18 ], but, to our knowledge, no clinical 
experience with this preparation has been pub-
lished. Vigabatrin has been evaluated for control 
of epilepsy in dogs, because its mechanism of 
action (irreversible inhibition of GABA degrada-
tion) allows an effective treatment which should 
be independent of species differences in drug 
elimination. Vigabatrin proved to be effective in 
epileptic dogs with phenobarbital-resistant sei-
zures, but at least in part vigabatrin had to be 
withdrawn because of development of severe 
adverse effects, such as haemolytic anaemia [ 67 ]. 

 Löscher’s group has used dogs as a transla-
tional model over the recent 25 years in the 
development of a new category of AEDs, i.e., 
drugs that act as partial agonists at the benzodi-
azepine (BZD) site of the GABA A  receptor. 
Such drugs have the wide spectrum of antiepi-

leptic activity against diverse types of seizures 
as the traditional full BZD agonists such as 
diazepam, clonazepam or clobazam, but are 
much better tolerated and lack the tolerance and 
abuse liability of the full agonists [ 22 ,  41 ]. In 
our studies, we either used a canine seizure 
model, in which seizures are induced by i.v. 
infusion of pentylenetetrazole, or epileptic dogs. 
The fi rst partial BZD agonist that was character-
ized in dogs (and compared with full BZD ago-
nists) was the β-carboline abecarnil, providing 
proof-of-concept that partial BZD agonists are 
advantageous for treatment of seizures com-
pared to traditional, full-agonist BZDs [ 39 ,  41 ]. 
More recently, the low-affi nity partial BZD ago-
nist imepitoin, an imidazolin derivative, was 
evaluated in the dog seizure model and epileptic 
dogs and reported to provide effi cacious antiepi-
leptic activity without the known disadvantages 
of full BZD agonists [ 45 ,  51 ]. Based on several 
randomized controlled clinical trials in epileptic 
dogs, imepitoin was recently approved in 
Europe for treatment of canine epilepsy [ 13 , 
 51 ]. That imepitoin is an effective and safe AED 
in epileptic dogs indicates that low-affi nity par-
tial BZD agonists may offer a new mechanistic 
category of useful AEDs.  

23.5     Network Approaches 
for Development of Novel 
Treatments 

 Several of the models described in this review 
may be particularly interesting for evaluating a 
novel strategy of AED development, the network 
approach [ 3 ,  26 ,  50 ]. One of the dominant strate-
gies in drug discovery is designing maximally 
selective ligands to act on individual drug targets 
[ 26 ]. However, many effective drugs act via mod-
ulation of multiple targets rather than single pro-
teins. Furthermore, most epilepsies develop not 
from alterations of a single target but rather from 
complex alterations resulting in an epileptic net-
work in the brain. The only existing cure of epi-
lepsy is resective surgery in which the regional 
epileptic network or part of this network is 
removed. Thus, treatments focusing exclusively 
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on a single protein or individual biochemical 
pathway may be less effective than treatments 
targeting different proteins or pathways involved 
in the network. The latter approach has been 
recently termed “network pharmacology” and 
relates to principles of systems biology [ 3 ,  26 ]. 
The principle of network pharmacology is to 
develop combinations of existing drugs, which 
regulate activity via different targets within a bio-
logical network, for diseases that do not suffi -
ciently respond to single drug treatment or for 
which no treatment exists. Integrating network 
biology and polypharmacology holds the prom-
ise of expanding the current opportunity space 
for druggable targets [ 26 ]. However, the rational 
design of polypharmacology faces considerable 
challenges in the need for new methods to vali-
date target combinations and optimize multiple 
structure-activity relationships while maintaining 
drug-like properties. The advances in zebrafi sh 
chemical screening technologies may allow 
rapid identifi cation of the most interesting drug 
combinations resulting from network approaches, 
followed by evaluating these combinations in 
chronic models of epilepsy. 

 Some examples for interesting network 
approaches include combinations of glutamate 
receptor antagonists that target different gluta-
mate receptor subtypes. We reported that 
extremely low doses of the NMDA (N-methyl- D - 
aspartate ) receptor antagonist MK-801 (dizocil-
pine) markedly potentiated the anticonvulsant 
effect the AMPA (alpha-amino-3-hydroxy-5- 
methyl-4-isoxazolepropionic acid) receptor 
antagonist NBQX (2,3-dihydroxy-6-nitro-7- 
sulfamoylbenzo(F)quinoxaline) without increas-
ing its adverse effects [ 42 ]. Similar over- additive 
effects were seen when NBQX was combined 
with the competitive NMDA antagonist 
CGP39551 (the carboxyethylester of DL-(E)-2-
amino- 4-methyl-5-phosphono-3-pentenoic acid) 
or the low-affi nity, rapidly channel blocking 
NMDA receptor antagonist memantine [ 42 ,  43 ]. 
We are currently evaluating combinations of clin-
ically approved NMDA antagonists (ketamine, 
memantine) and the novel AMPA antagonist per-
ampanel in models of diffi cult-to-treat seizures. 
Another interesting example is the combination 

of phenobarbital with the diuretic bumetanide, 
which is currently evaluated clinically following 
promising preclinical data [ 31 ,  52 ]. The biologically 
plausible idea behind this combination is that a 
shift from inhibitory to excitatory GABA may be 
involved in diffi cult-to-treat neonatal and adult 
seizures [ 30 ,  56 ]. GABA-mediated excitation has 
been observed when expression of the chloride 
importer NKCC1 is higher than expression of the 
chloride exporter KCC2; e.g., early during devel-
opment and in the hippocampus of adults with 
temporal lobe epilepsy [ 30 ,  56 ]. Bumetanide 
inhibits the neuronal chloride cotransporter 
NKCC1, thereby reverts the GABA shift and 
enables GABAmimetic drugs such as phenobar-
bital to potentiate inhibitory GABAergic trans-
mission [ 52 ]. This recent work builds on an 
earlier demonstration from the Schwartzkroin 
laboratory that furosemide, another chloride 
cotransporter inhibitor, exhibits powerful anti-
convulsant activity across a range of  in vitro  and 
in vivo seizure models [ 25 ]. Further examples for 
interesting network approaches include com-
bined targeting of different infl ammatory path-
ways, which are involved in seizure generation 
[ 33 ]. These examples strongly indicate that com-
binatorial treatment strategies offer new options 
for epilepsy therapy.  

23.6     Conclusions 

 Models for the discovery of drugs with antiepi-
leptic activity have traditionally relied on a rela-
tively small number of acute seizure models 
employed in otherwise healthy rodents. While 
useful in the discovery of most drugs currently 
available in the clinic, more resistant types of epi-
lepsies including temporal lobe epilepsy patients 
who are unresponsive to available AEDs and 
catastrophic, often genetically-based, types of 
epilepsies seen in children necessitate alternative 
drug discovery strategies. Zebrafi sh, canine and 
novel rodent approaches are described here and 
offer several unique advantages over these tradi-
tional models. While these strategies, like any 
animal model approach also have their limita-
tions, they offer hope that new classes of 
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AEDs will be identifi ed in the coming years. 
Furthermore, animal models in which epilepsy 
develops after brain insults or gene mutations are 
essential in the search for novel antiepileptogenic 
treatments that prevent or modify the develop-
ment of epilepsy in patients at risk [ 47 ,  63 ]. 
Previously, this fi eld was dominated by studies in 
SE models in rats, although SE is only rarely a 
cause of symptomatic epilepsy [ 47 ]. Thus, mod-
els of more common causes of acquired epilepsy, 
such as traumatic brain injury, and models in 
which epilepsy develops after gene mutations 
should be used more extensively in research on 
antiepileptogenesis. We have started to use the 
zebrafi sh and canine approaches to identify 
molecular pathways that may be involved in the 
epileptogenic process and may offer new targets 
for antiepileptogenic treatments.     
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    Abstract  

  Although more than a dozen new anti-seizure drugs (ASDs) have entered 
the market since 1993, a substantial proportion of patients (~30 %) remain 
refractory to current treatments. Thus, a concerted effort to identify and 
develop new therapies that will help these patients continues. Until this 
effort succeeds, it is reasonable to re-assess the use of currently available 
therapies and to consider how these therapies might be utilized in a more 
effi cacious manner. This applies to the selection of monotherapies in 
newly-diagnosed epilepsy, but perhaps, more importantly, to the choice of 
combination treatments in otherwise drug-refractory epilepsy. Rational 
polytherapy is a concept that is predicated on the combination of drugs 
with complementary mechanisms of action (MoAs) that work synergisti-
cally to maximize effi cacy and minimize the potential for adverse events. 
Furthermore, rational polytherapy requires a detailed understanding of 
the MoA subclasses amongst available ASDs and an appreciation of the 
empirical evidence that supports the use of specifi c combinations. The 
majority of ASDs can be loosely categorized into those that target neuro-
transmission and network hyperexcitability, modulate intrinsic neuronal 
properties through ion channels, or possess broad-spectrum effi cacy as a 
result of multiple mechanisms. Within each of these categories, there are 
discrete pharmacological profi les that differentiate individual ASDs. This 
chapter will consider how knowledge of MoA can help guide therapy in a 
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rational manner, both in the selection of monotherapies for specifi c seizure 
types and syndromes, but also in the choice of drug combinations for 
patients whose epilepsy is not optimally controlled with a single ASD.  

  Keywords  

  Mechanism of action   •   Anti- seizure drugs   •   Monotherapy   •   Polytherapy   
•   Drug-refractory epilepsy  

24.1         Introduction 

 Approximately 50 million people worldwide 
suffer from epilepsy. While more than 20 anti- 
seizure drugs (ASDs 1 ) are currently available and 
many patients can be successfully treated with 
just one drug, there remains a substantial popula-
tion (up to 40 % of all newly diagnosed patients) 
whose seizures are unresponsive to monotherapy 
[ 48 ,  57 ]. Most, if not all, of these patients will 
receive combination therapy at some point in the 
clinical management of their epilepsy [ 86 ]. Many 
will be exposed to newer ASDs, which are invari-
ably brought to market as “adjunctive treatments” 
to those ASDs that are currently approved. 

 Emerging evidence suggests that combining 
ASDs with different mechanisms of action (MoAs) 
may be the most effective means to successfully 
manage diffi cult-to-control epilepsy [ 11 ]. Since 
many patients with refractory epilepsy may take 
three or more ASDs concurrently, it is essential 
that clinicians select drugs with the greatest 
potential for synergism and the lowest risk for 
adverse effects [ 11 ]. This can be considered 
“rational” polytherapy. Ultimately, this approach 
may offer the greatest potential to effectively 
manage seizures in patients with pharmacoresis-
tant epilepsy: maximizing benefi t and minimizing 
harm. Such an approach may also highlight novel 

1   Anti-seizure drugs (ASDs) is a new descriptive term con-
sidered by some to better refl ect the effects of current 
therapies for epilepsy, in that they prevent only one of 
many sequelae of the disorder, i.e. the seizures, but not 
other comorbidities associated with epilepsy [ 14 ,  45 ]. 

pathways or targets that might be exploited in 
future drug development efforts.  

24.2     Does Mechanism of Action 
Really Matter? 

 It is logical to suggest that MoA should be con-
sidered at a number of steps in the treatment 
spectrum: when choosing an initial monotherapy 
for some primary generalized epilepsies; when 
considering a switch to a new ASD after a previ-
ous monotherapy has failed; or when adding a 
second or even third ASD in the therapy-resistant 
patient. Unfortunately, the absence of important 
clinical data from appropriate double-blind 
 randomized clinical trials, which attempt to com-
pare mechanistically distinct ASDs in discrete 
patient populations, prohibits such a logical ther-
apeutic approach. Designing and delivering such 
a trial would be an enormous undertaking and 
one that is unlikely ever to be fully realized, on 
both logistical and fi nancial grounds. Moreover, 
much of the evidence that is available to the 
patient with epilepsy and his or her clinician has 
been derived from clinical observation and often 
as a result of the desire to avoid poor outcomes, 
rather than to optimize the likelihood of good 
ones. This is most evident in the case of seizure 
worsening, where knowledge of MoA, the syndromic 
diagnosis and, in some cases, the underlying 
etiology can be benefi cial. For example, clinical 
experience has demonstrated that GABAergic 
agonists and sodium channel blockers can worsen 
generalized spike-wave seizures in absence 
epilepsy. Similarly, sodium channel blockers, but 
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not GABAergic agonists, can worsen seizures in 
patients with Dravet’s syndrome or severe myo-
clonic epilepsy of infancy (SMEI). Time will tell 
whether ongoing improvements in our under-
standing of the underlying molecular etiology of 
the epilepsies will direct the choice of treatment 
in other seizure types. 

 Robust empirical evidence to support 
mechanism- driven therapy may be lacking, but 
proof-of-principle can be derived through post- 
hoc analysis of clinical trial data. This is unfortu-
nately not done with suffi cient regularity. Results 
from head-to-head monotherapy studies (where 
available) can be scrutinized for any evidence of 
preferential effi cacy of a specifi c MoA within a 
specifi c seizure type [ 10 ,  37 ]. Likewise, add-on 
clinical trial studies of new ASDs can be interro-
gated for evidence of preferred combinations 
of ASDs, as was done with post-hoc analysis of 
lacosamide trial data [ 76 ]. In this analysis, lacos-
amide appeared to possess less effi cacy and to be 
associated with more adverse effects when added 
to existing treatment regimens that contained at 
least one “traditional” voltage-gated sodium 
channel (VGSC) blocking ASD ( i.e.  phenytoin, 
carbamazepine, lamotrigine, oxcarbazepine) than 
when added to regimens that were devoid of sodium 
channel blockers [ 76 ]. Although the power of 
such post-hoc analyses is questionable and the 
original studies on which they are based are both 
heterogeneous and not necessarily refl ective of 
real life, the results are important to direct future 
rational therapy decisions. 

 Such insight allows for some generalizations, 
not least of which is that, for newly-diagnosed 
focal epilepsies, MoA is mostly irrelevant. The 
majority of these patients will respond to a 
modest dose of whichever drug is chosen [ 9 ], 
with choice more often dictated not by MoA, but 
by clinical and demographic characteristics. In 
this population, MoA becomes more relevant 
when patients start to fail ASDs due to a lack of 
adequate seizure control at a therapeutic dose. 
Under those circumstances, for example, it would 
not make sense to replace one VGSC blocker 
with another. Failure due to adverse effects is 
different and it would be reasonable to replace car-
bamazepine with lamotrigine if carbamazepine 

was effective, but not well tolerated. Arguably, 
MoA becomes most important in this population 
when the decision is made that monotherapy is 
not suffi cient and that polytherapy is required. 
Under those circumstances, the best outcomes 
are often seen with drugs that work in different 
ways. For the drug refractory patient, the ques-
tion then becomes: what is meant by “different”? 
Are lamotrigine and lacosamide different? Are 
benzodiazepines and barbiturates different? Is it 
enough to consider the class into which the drug 
might be arbitrarily placed, or is discrete consid-
eration of the pharmacological minutiae more 
important? That remains unclear. A related issue 
is the supposed promiscuity of the majority of 
ASDs in terms of their cellular effects, resulting 
in negative perceptions of the effi cacy of the drug 
in that particular circumstance. This unfortunate 
attitude often undermines efforts to explore and 
to implement rational treatment strategies for 
therapy-resistant epilepsy on the basis of MoA. 

 The understanding of how ASDs exert their 
effects at the cellular level has improved immea-
surably in the past 25 years [ 52 ]. This advance 
will only further optimize treatment outcomes in 
epilepsy. Admittedly for some ASDs, the precise 
MoA remains frustratingly elusive, but for most, 
the primary cellular effects are now well described 
[ 93 ]. In the remainder of this chapter, we describe 
current understanding of ASD MoAs, categorized 
by target type (Table  24.1 ), and thereafter discuss 
the clinical implications of those actions and how 
therapeutic management may develop in future 
years from such observations.

24.3        Compounds That Target 
Neurotransmission and 
Network Synchronization 

 Epilepsy, in its broadest sense, is generally 
considered to arise due to an imbalance in, or 
abnormal synchronization of, inhibitory and excit-
atory signaling within neuronal networks [ 2 ,  80 ]. 
As such, it is not surprising that most currently 
available ASDs target ion channels or receptors 
involved in excitatory and/or inhibitory neuro-
transmission (Table  24.1 ) [ 49 ,  93 ]. Similarly, it 
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makes sense that ASDs which display broad 
mechanistic profi les,  i.e. , those that target multiple 
processes and pathways that are known to contrib-
ute to abnormal network synchronization, such as 
valproate, felbamate, topiramate, or zonisamide, 
often display broad spectrum clinical utility [ 51 , 
 62 ]. Thus, understanding the specifi c MoAs of 
various ASDs may improve treatment outcomes 
when drug combinations are selected that display 
the most promising synergistic interactions at 
both inhibitory and excitatory synapses while 
conferring the least risk for adverse events. 

 Curbing excitatory neuronal activity can be 
achieved through GABAergic neuromodulation 
[ 5 ]. Some of the earliest marketed ASDs, including 
barbiturates and benzodiazepines, directly target 

the GABAergic system (Table  24.1 ) and although 
the MoA of valproate remains to be defi nitively 
identifi ed, one of its many pharmacological effects 
is to increase synaptic GABA turnover [ 49 ,  51 ]. 
Of the newer ASDs, two were specifi cally designed 
to enhance synaptic GABAergic inhibitory neu-
rotransmission. Tiagabine blocks synaptic GABA 
reuptake [ 66 ,  87 ] thereby prolonging the inhibi-
tory action of GABA at GABAergic synapses, 
whereas vigabatrin selectively inhibits GABA 
transaminase [ 49 ,  77 ], an action that prevents 
the catabolism of GABA and increases readily 
releasable GABA within presynaptic terminals [ 49 ]. 
Topiramate enhances GABAergic neurotransmis-
sion through non-benzodiazepine site effects 
on the GABA A  receptor [ 82 ,  83 ]. More recently, 
stiripentol has been approved for the treatment 
of Dravet’s syndrome. Stiripentol is a positive allo-
steric modulator of α3-β3-γ2-containing GABA A  
receptors, increasing GABAergic neurotrans-
mission in neuronal circuits where this receptor 
subtype is expressed. Preference for stiripentol 
over non- selective GABA A  receptor drugs in 
Dravet’s syndrome suggests that pursuing sub-
unit selective agents in drug development may 
provide improved seizure control or tolerability 
in other epilepsies [ 18 ]. With multiple ASDs that 
target the GABAergic system (Table  24.1 ), 
pharmacological enhancement of inhibitory neu-
rotransmission can be considered a well-proven 
strategy for seizure control. 

 Until recently, efforts to target glutamate- 
mediated excitatory neurotransmission have met 
with disappointment. Within the brain, excitatory 
synaptic transmission is mediated predominately 
by AMPA- and NMDA-type glutamate receptors 
[ 20 ,  28 ]. Early preclinical evidence suggested 
that modulating glutamatergic signaling could 
effectively control or suppress seizures [ 78 ]. However, 
efforts to develop NMDA-receptor selective 
antagonists for the clinical management of epilepsy 
met with diffi culty due to signifi cant adverse 
behavioral effects [ 90 ]. To date, only felbamate 
possesses any substantial effects on NMDA-type 
glutamate receptors [ 41 ,  46 ,  73 ,  92 ]. Conversely, 
the modulation of AMPA-type glutamate recep-
tors holds more clinical promise [ 74 ]. Modulation 
of AMPA, but not NMDA [ 42 ], receptor signaling 
exerts fewer effects on synaptic plasticity [ 38 ] 

           Table 24.1    Mechanism of action of approved anti- seizure 
drugs   

 Mechanism of action  Anti-seizure drug(s) 

  Neurotransmission and network synchronization  
 Inhibitory 
neurotransmission: 
GABA system 
modulation 

 Barbiturates, 
Benzodiazepines, Felbamate, 
Stiripentol, Tiagabine, 
Topiramate, Valproate, 
Vigabatrin 

 Excitatory 
neurotransmission: 
Glutamate receptor 
modulation 

 Felbamate, Perampanel, 
Topiramate 

 Synaptic vesicle 
modulation: SV2A 
protein binding 

 Levetiracetam 

  Neuronal voltage-dependent ion channels  
 Sodium (Na + ) channels 
  Fast-inactivated  Carbamazepine, 

Eslicarbazepine, 
Lamotrigine, Oxcarbazepine, 
Phenytoin, Rufi namide, 
Topiramate, Zonisamide 

  Slow-inactivated  Lacosamide 
 Calcium (Ca 2+ ) channels a   Ethosuximide, Gabapentin, 

Lamotrigine, Pregabalin, 
Topiramate, Valproate, 
Zonisamide 

 Potassium (K + ) channels: 
Kv7.2/7.3 selective 

 Ezogabine 

   a As noted in the text, ASD effects on voltage-gated 
calcium channels have to be differentiated on the basis of 
whether they modify low or high voltage-gated calcium 
channels; e.g., ethosuximide, valproate and zonisamide 
have all been reported to modify the low voltage-gated 
T-type calcium current  
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and has greater potential to modulate network 
hyperexcitability [ 74 ], an effect largely attributable 
to activity-dependent AMPA receptor localiza-
tion dynamics that underlie fast synaptic excitatory 
neurotransmission [ 1 ]. To this point, perampanel 
is the fi rst glutamatergic system-selective ASD 
that acts as a noncompetitive AMPA receptor 
antagonist [ 72 ], decreasing neuronal excitability 
and synchronization [ 74 ]. Amongst many other 
proposed MoAs, topiramate has also been shown 
to suppress excitatory neurotransmission by 
blocking non-NMDA type-glutamate receptors 
[ 36 ] and can reduce high basal concentrations 
of extracellular glutamate in the hippocampi of 
spontaneously epileptic rats [ 44 ]. Taken together, 
the effect of felbamate on NMDA receptors, the 
AMPA-selective effects of perampanel, and the 
non-NMDA effects of topiramate further dem-
onstrate that glutamatergic modulation can 
effi ciently suppress epileptic activity. 

 Excitatory neurotransmission may also be 
infl uenced by the binding of the ASD levetiracetam 
to the SV2A protein (Table  24.1 ), a membrane 
glycoprotein of synaptic vesicles [ 3 ]. The specifi c 
role of SV2A protein is still under active investi-
gation. It is currently hypothesized that SV2A 
contributes to excitatory neurotransmission by 
participating in synaptic vesicle exo- and endocy-
totic processes in response to calcium- triggered 
vesicle fusion [ 24 ,  97 ]. Interestingly, SV2A 
knockout mice develop severe seizures [ 22 ] and 
resected brain tissues from patients with tempo-
ral lobe epilepsy show decreased immunoreactiv-
ity for SV2A protein [ 89 ], suggesting a possible 
role of reduced levels of SV2A in epileptogenic-
ity. Levetiracetam is effective in the 6 Hz model 
of psychomotor seizures, but ineffective in other 
“traditional” animal models of epilepsy, further 
highlighting its unique pharmacological profi le 
[ 47 ]. The availability of a drug like levetiracetam 
might be considered advantageous from a rational 
therapy perspective. The unique and novel MoA 
may be effectively combined with other ASDs 
with diverse MoAs to mitigate seizure frequency 
and susceptibility. More importantly, where it is 
possible to use selective combinations of such 
diverse MoAs to enhance effi cacy, it may be 
possible to minimize the likelihood of adverse 
events by decreasing the total exposure burden of 

the ASDs. Indeed, the fact that levetiracetam 
possesses a unique mode of action could explain 
why it has been so successful clinically, as both 
monotherapy and adjunctive treatment.  

24.4     Compounds That Modulate 
Intrinsic Neuronal Properties 

 The above-described drug mechanisms modulate 
seizure susceptibility by selectively regulating 
excitatory and inhibitory neurotransmission and 
thereby suppressing aberrant neuronal network 
synchronization. However, many of the currently 
available treatments for epilepsy can also modu-
late the intrinsic excitability of individual neurons 
by targeting ion channels (Table  24.1 ). Multiple 
ASDs, such as carbamazepine, phenytoin, lamotrig-
ine and oxcarbazepine modulate the fast-inactivated 
state of VGSC, whereas lacosamide is thought to 
have a preferential effect on the slow-inactivated 
state of the channel. In contrast, the gabapenti-
noids (gabapentin and pregabalin) and ezogabine 
decrease neuronal fi ring by selectively targeting 
calcium and potassium channels, respectively. It 
is likely that ion channel-selective mechanisms 
have naturally emerged amongst ASDs because 
ion channel dysfunction is so heavily implicated 
in the pathophysiology of many idiopathic 
epilepsies [ 55 ]. Recent evidence also demon-
strates a link between genetic channelopathies 
and acquired epilepsies and supports the further 
development of ion channel modulators for the 
management of seizure disorders in general [ 68 ]. 

 Ion channel-targeting drugs modulate depo-
larization and action potential generation and 
propagation. Many ASDs, including carbamaze-
pine, phenytoin, lamotrigine and oxcarbazepine, 
bind VGSCs, with preferential affi nity for the 
channel protein when in the fast-inactivated state. 
This leads to a prolongation of recovery following 
transient depolarizations [ 54 ], thereby limiting 
repetitive action potential fi ring. This effect is 
also both use- and frequency-dependent, mean-
ing that it is enhanced during periods of high- 
frequency neuronal fi ring, as during epileptic 
discharges. Topiramate may also exert some anti-
seizure effects through blockade of use- dependent 
VGSCs, although this effect appears to be different 
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from traditional VGSC-blocking ASDs [ 56 ]. 
Conversely, lacosamide also targets VGSCs but 
with preferential effects on the slow-inactivated 
state of the channel which predominates during 
sustained depolarization [ 23 ]. A selective action 
on the slow-inactivated rather than fast- inactivated 
state of VGSCs promotes the stabilization of 
hyperexcitable neuronal membranes, and suggests 
that lacosamide is pharmacologically distinct 
from traditional ASDs that target the fast-
inactivated state (Table  24.1 ) [ 23 ]. The charac-
teristic use- and frequency-dependence of sodium 
channel block is the only example of selectivity 
for a disease-related mechanism amongst current 
ASDs and explains why these drugs can interfere 
with a fundamental neurophysiological mechanism 
without signifi cantly affecting normal neuronal 
activity. 

 In addition to blocking sodium channels, 
several ASDs act via blockade of voltage-gated 
calcium channels (Table  24.1 ), an action that 
effectively decreases intracellular calcium ion 
concentration. In the dendrites and cell soma, 
elevated intracellular calcium can promote desta-
bilization of VGSCs and increase cellular excit-
ability and the likelihood of action potential 
fi ring [ 69 ]. In pre-synaptic nerve terminals, ele-
vated intracellular calcium is the trigger for neu-
rotransmitter release. ASDs that selectively target 
high voltage-activated calcium channels have 
found success in the management of epilepsy and 
also neuropathic pain [ 85 ]. The gabapentinoids 
(gabapentin and pregabalin) selectively bind to 
the accessory subunit α2δ-1 of voltage-gated 
calcium channels [ 32 ] to block P/Q-type calcium 
currents at nerve terminals, reducing the calcium-
dependent release of glutamate [ 31 ]. Lamotrigine 
has also been shown to target P/Q-type, N-type 
and R-type channels [ 30 ,  91 ], all of which are 
expressed on pre-synaptic nerve terminals. 
Topiramate and felbamate are reported to have 
similar effects, although the channel subtypes are 
less well defi ned. However, a different action is 
seen with ethosuximide. This ASD interacts with 
the low voltage-activated T-type calcium channel 
that is predominantly expressed on thalamocorti-
cal relay neurons [ 21 ], which have in turn been 
implicated in the generation of the hypersyn-

chronous discharges that underlie generalized 
absence epilepsy. Blockade of T-type channels 
by ethosuximide almost certainly explains its 
effi cacy in this regard, and may also explain the 
anti-absence effects of both valproate and 
zonisamide [ 13 ,  88 ]. Thus, several currently 
available ASDs modulate high and low voltage-
activated calcium channels; an effect that 
indirectly reduces excitatory neurotransmission 
at glutamatergic synapses and limits neuronal 
synchronization. 

 Rather than targeting cellular excitability by 
limiting depolarization, it is also possible to 
promote hyperpolarization via a facilitatory 
effect on potassium currents. This is the primary 
MoA of ezogabine, which is a positive allosteric 
modulator of K v 7.2/7.3 voltage-gated potassium 
channels that carry the so-called M-current [ 96 ]. 
The M-current is a non-inactivating potassium 
conductance, which exerts a hyperpolarizing 
infl uence on the resting membrane potential [ 53 ]. 
It serves as a natural brake on excitability in 
regions prone to synchronous network activity, 
with enhancement of the M-current by ezogabine 
suppressing epileptiform activity by prevention 
of spike bursting [ 75 ,  98 ,  99 ]. The role of potassium 
channels in modulating neuronal excitability is 
further underscored by the fi nding that mutations 
in K v 7.2/7.3 potassium channel genes provide 
the basis for seizures in benign familial neonatal 
convulsions (BFNC), a rare form of epilepsy that 
arises due to mutations in these channels [ 7 ,  8 ,  16 ]. 
Thus, ezogabine provides another example of 
how targeting intrinsic neuronal properties can 
attenuate epileptic activity.  

24.5     Compounds That Reduce 
Seizure Susceptibility 
Through Multiple 
Mechanisms 

 As outlined above, currently available ASDs 
exert their effects through multiple mechanisms, 
including suppression of neuronal excitability, 
reduction in the propensity to fi re an action poten-
tial, disruption of neurotransmission through 
interactions with synaptic vesicles, or an increased 
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inhibitory tone. Some ASDs, namely valproate, 
felbamate, topiramate and zonisamide, are 
reported to possess two or more of these effects 
(Table  24.1 ). These ASDs are effective across 
multiple epilepsy indications [ 51 ], suggesting 
that one way to treat a heterogeneous disorder 
like epilepsy is to broadly target ion channels 
and neurotransmitter receptors. Indeed, several 
clinical and preclinical studies provide strong 
proof-of-concept for such a treatment strategy 
[ 29 ,  76 ], with some authors suggesting that com-
bining a drug with a single MoA with a drug with 
multiple MoAs may improve seizure control [ 11 ]. 
However, this approach might also result in 
mechanistic redundancy (where a specifi c mechanism 
is unnecessary or unhelpful) or reinforcement 
(where a specifi c mechanism is duplicated) – 
either scenario could potentially elevate the risk 
of adverse effects without necessarily enhancing 
seizure control. This can be considered an inher-
ent limitation of drugs with multiple MoAs, that 
in some patients not all of those mechanisms will 
be benefi cial and some may indeed be detrimen-
tal. This would explain why these compounds are 
often considered to be powerful drugs with 
proven broad-spectrum effi cacy but which are 
occasionally not well-tolerated. 

 Broad-spectrum ASDs pose an interesting  
pharmacological conundrum: whether a single 
drug with multiple MoAs ( i.e.  polypharmacology) 
is equivalent, superior, or inferior to multiple 
drugs, each with single MoAs ( i.e.  polypharmacy)? 
Would it be better to use a combination of 
phenytoin, ethosuximide and acetazolamide, 
which target sodium channels, T-type calcium 
channels, and carbonic anhydrase respectively, or 
zonisamide, which targets all of these mecha-
nisms simultaneously? Rational polytherapy 
would suggest that the single drug should behave 
in exactly the same way, in terms of both effi cacy 
and tolerability, as the three-drug combination, 
assuming dose equivalents can be found and drug 
interactions can be compensated for. This is a 
puzzle that will probably never be solved because 
there are likely to be few prescribers who would 
choose the combination therapy under these 
circumstances. Most would opt instead for 
zonisamide on the grounds of ease of use, but 

also to limit adverse effects that are perceived to 
hinder polypharmacy approaches.  

24.6     Preclinical Evidence 
of Potential for Polytherapy 

 Preclinical data suggest that the greatest potential 
for synergistic effects with polytherapy arises 
when ASDs with multiple MoAs are combined 
with ASDs with single, distinct MoAs [ 34 ,  43 ]. 
Preclinical isobolographic studies in rodent 
models of epilepsy have played an important role 
in teasing out either favorable or synergistic 
interactions from those that may be negative or 
antagonistic [ 25 ,  64 ,  79 ]. This preclinical evidence 
supports the concept of rational polypharmacy to 
control seizures using ASDs with diverse MoAs, 
although critics would argue that data from 
studies involving experimental animals are far 
more frequently positive than is observed clini-
cally. With the possible exception of valproate 
combined with lamotrigine, synergistic combina-
tions identifi ed in animal models do not appear to 
reliably extend to the clinic. 

 Such discrepancies between preclinical and 
clinical observations can be explained, at least in 
part, by the inherent limitations in the preclinical 
studies. First, they are almost always conducted 
using high-throughput models of acute seizures 
in non-epileptic rodents. Given that the epileptic 
brain is undoubtedly remodeled relative to the 
normal brain [ 50 ], there are likely to be changes 
in the pharmacological responsiveness. Second, 
these studies are invariably conducted following 
acute drug dosing and with effi cacy determined 
at or around the time of peak effect. This clearly 
does not refl ect the clinical situation, and ignores 
any pharmacokinetic interaction that may exist 
between the compounds being tested or any toler-
ance that might develop from repeated adminis-
tration. Such effects would also bypass the role of 
hepatic induction and/or inhibition seen when 
two or more ASDs are chronically combined in 
the patient population. This does not imply that 
these types of preclinical studies of ASD combi-
nations lack value, but simply that the results 
should not be automatically assumed to translate 

24 What Are the Arguments For and Against Rational Therapy for Epilepsy?



302

to the clinic. The apparent discrepancy between 
the results of preclinical and clinical combination 
studies could just as easily be explained by the 
fact that clinical studies have never been system-
atically explored. It is possible that the same 
combinations are synergistic in both animal 
models and human patients; it is just that we do 
not yet possess the clinical evidence to prove it. 

 If nothing else, preclinical evaluation can 
provide important insights into potentially syner-
gistic and antagonistic combinations, which can 
be taken forward for more detailed clinical inves-
tigation. In this regard, such an approach can help 
to triage the myriad of possible combinations and 
allow clinical researchers to focus on those likely 
to be most benefi cial (or least detrimental). With 
the introduction of more etiologically relevant 
animal models, future studies can be designed to 
examine combinations using chronic dosing in 
animals with therapy-resistant epilepsy. Such 
studies should more clearly defi ne the true 
clinical potential for synergism. However, as the 
models become more elaborate and the treatment 
schedules more demanding, the likelihood of 
undertaking in-depth isobolographic studies of 
every possible ASD combination diminishes, not 
least because of the time and cost involved. A 
compromise may be required such that combina-
tions are initially identifi ed using acute seizure 
models, later confi rmed using chronic treatment 
in models of drug-resistant epilepsy, and only 
then advanced to clinical validation studies.  

24.7     Clinical Evaluation 
of Polytherapy 

 Validating the fi ndings of preclinical studies and 
thus establishing a basis for rational polytherapy 
requires the formal clinical evaluation of combi-
nations of ASDs. This is a complex and challenging 
task that is unlikely to ever be systematically 
completed. It is more likely that clinical validation 
will be reserved for only the most robust com-
binations and in circumstances where  evidence 
is considered absolutely essential to clinical 
implementation. 

 Clinical combination studies are notoriously 
diffi cult to undertake. They require the investiga-
tion of effi cacy and tolerability of both single 
drugs and combinations in relatively homoge-
neous populations of patients using a design that 
is suffi ciently powered to separate synergism 
from additivity alone, as well as adjusting combi-
nations to balance overall drug load. Not surpris-
ingly, such a study has never been attempted in 
epilepsy and it is debatable whether one ever will 
be. In the meantime, we are largely dependent on 
small proof-of-principle studies and anecdotal 
observations for evidence of effective polytherapy 
regimens. These include the classic and unex-
pected observations suggesting synergism with 
valproate and lamotrigine [ 12 ], which were later 
proven to hold true [ 67 ]. These studies provided 
validation of an ASD combination that was 
already in widespread use and probably considered 
useful by many investigators but for which there 
was no specifi c evidence of benefi t. However, it 
is debatable whether there will ever be suffi cient 
imperative or resources to pursue such a valida-
tion in the future. 

 The more applicable alternative strategy is the 
utilization of existing resources to search for at 
least indirect evidence of synergism. In this 
regard, post-hoc analysis of Phase III regulatory 
trial data provides a potential opportunity. The 
study by Sake and colleagues used the reanalysis 
of Phase III clinical trial data to demonstrate 
effi cacy and tolerability with add-on lacosamide 
stratifi ed by background therapy ( i.e.  whether it 
contained sodium channel blockers or not) [ 76 ]   . 
Although the trials were never designed for this 
purpose and the analysis was arguably under-pow-
ered, some interesting fi ndings were reported. Not 
least of these was the observation that lacos-
amide, which targets the slow-inactivation state 
of the VGSC, showed reduced effi cacy and 
enhanced adverse effects when combined with 
traditional sodium blockers (which target the fast-
inactivated state) than when combined with non-
sodium channel blocking drugs [ 76 ]. If a similar 
approach were undertaken with all newly licensed 
ASDs, we could rapidly develop a picture of 
which mechanisms work best together and over 
time, with suffi cient numbers of studies, it may 

M. Barker-Haliski et al.



303

be possible to start to investigate individual drug 
combinations. Making this a mandatory require-
ment in the regulatory approval process would 
expedite the generation of such data and insisting 
on its release for independent meta- analysis 
would add further validity.  

24.8     Other Considerations 
for Rational Therapy 

 Consideration of multiple factors including MoA, 
route of metabolism and excretion must be made 
when determining the therapeutic treatment strategy. 
While it is generally considered best to combine 
therapies with different MoAs to maximize 
clinical effect, the risk for drug-drug interactions 
due to convergent induction or inhibition of cyto-
chrome P450 enzymes poses a risk for extraneous 
adverse events in the context of polytherapy if 
such considerations are not accounted for in 
advance. Such risk/benefi t assessments should 
be based on metabolic pathway and pharmacoki-
netics. The newer generation ASDs, at least those 
that do not undergo hepatic metabolism, are 
thought to possess the least potential for pharma-
cokinetic interactions as they are not primarily 
metabolized in the liver [ 35 ]. In contrast, pheno-
barbital, phenytoin, carbamazepine, primidone, 
valproate, lamotrigine, felbamate, rufi namide, 
and to some extent topiramate and oxcarbazepine 
are all associated with a risk of drug-drug interac-
tions due to their route of metabolism [ 61 ,  63 , 
 95 ]. When these drugs are combined, pharmaco-
kinetic interactions may confound apparent phar-
macodynamic effects and mask any possible 
synergism (or antagonism). That said, pharmaco-
kinetic interactions can also be benefi cial in a 
therapeutic sense, allowing a more rapid attain-
ment of steady state with long half-life drugs in 
enzyme-induced patients ( i.e.  with zonisamide; 
[ 81 ]), or combining a benefi cial pharmacokinetic 
interaction with a pharmacodynamic one ( i.e. , 
valproate with lamotrigine). Such understanding 
of pharmacokinetics and drug interactions is 
essential when evaluating  combination therapy 
and when reporting potential synergism between 

ASDs, which will invariably be interpreted as being 
pharmacodynamic in nature. 

 Of additional consideration is the infl uence 
of genetics on therapeutic response. Siblings 
with epilepsy show similar responses to mono-
therapy or polytherapy [ 84 ]. There is, thus, 
strong evidence for a genetic contribution to 
the pharmacological management of epilepsy 
although the individual variants that predispose to 
treatment success or failure in general remain to 
be identifi ed. However, there is now substantial 
evidence for specifi c genetic mutations in certain 
epilepsies; e.g., greater than 25 “epilepsy genes” 
have been identifi ed [ 71 ], many of which encode 
the voltage- and ligand-gated ion channels that 
are also the predominant targets of ASDs [ 33 , 
 70 ]. This is most clearly illustrated in Dravet’s 
syndrome, which is associated with loss-of-
function mutations in one allele of the Na v 1.1 
channel [ 17 ]. Na v 1.1 channels are the predomi-
nant sodium channels in inhibitory interneu-
rons [ 58 ]. Importantly, this information provides 
a better understanding of why the sodium 
channel blocker, lamotrigine, can exacerbate 
seizures in patients with Na v 1.1 mutations by 
possibly inhibiting the remaining functional 
sodium channels on inhibitory interneurons. Of 
course, this very elegant scientifi c explanation 
came long after clinical experience had already 
taught us to avoid sodium blockers in patients 
with a Dravet’s phenotype [ 39 ]. In the future, 
however, it may be possible to predict likely 
treatment response on the basis of drug MoA 
and the underlying molecular etiology of the 
epilepsy. In this regard, Dravet’s syndrome pro-
vides us with a clear example of the importance 
of translation (both forward and back) in directing 
a rational therapeutic approach. In the context of 
this chapter, it is also interesting that combina-
tion therapy with stiripentol, valproate and cloba-
zam appears to be the most effective treatment 
in patients with Dravet’s syndrome [ 19 ]. Finding 
an effective therapeutic approach with ASDs 
that do not specifi cally target the mutations in 
VGSCs in Dravet’s patients thus illustrates one 
of the best examples to date of rational polyther-
apy for genetic epilepsy. 
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 Indeed, several other genetic disorders present 
with seizures, which, unlike Dravet’s syndrome, 
may be effectively managed with therapies that 
specifi cally target the mutated protein or pathway 
[ 26 ,  94 ,  100 ]. For example, tuberous sclerosis 
(TSC) arises as a result of a mutation in one of 
two proteins in the mammalian target of rapamycin 
(mTOR) proliferation pathway (TSC1 or TSC2) 
and which has recurrent seizures as a characteristic 
phenotype [ 65 ]. The mTOR inhibitor rapamycin 
effectively suppresses aberrant cellular proliferation 
in TSC [ 27 ] and has been proposed to be disease-
modifying, although whether adjunct rapamycin 
will effectively reverse the epileptogenic process 
and protect against seizures remains to be deter-
mined [ 65 ]. A similar situation applies to Fragile 
X Syndrome (FXS), an autism spectrum disorder 
in which approximately 14 % of patients present 
with mild seizures [ 6 ]. FXS arises due to a triplet 
repeat in the  FMR1  gene that leads to loss of the 
RNA- binding protein, Fragile X Mental Retardation 
Protein (FMRP) [ 4 ]. This protein interacts with 
machinery essential to synaptic plasticity processes 
mediated by group I metabotropic glutamate 
receptors (mGluRs), including mGluR5 [ 4 ]. 
Clinical trials are currently ongoing to examine 
the use of mGluR5 antagonists in the targeted 
treatment of FXS [ 40 ]. Additionally, FXS patients 
may benefi t from a rational polytherapy approach 
as preclinical studies in FMR1 knockout mice, 
which display audiogenic seizures [ 59 ], suggest 
that acute, combined treatment with an mGluR5 
inverse agonist and a GABA B  receptor agonist 
can synergistically suppress seizures better 
than either treatment alone [ 60 ]. Furthermore, 
studies are underway to determine whether 
treatment for FXS could translate into effective 
means to suppress network hypersynchroniza-
tion and changes in synaptic plasticity that arise 
in epilepsy in general. 

 Our limited experience from Dravet’s syndrome, 
TSC, and FXS suggests that understanding the 
molecular etiology of epilepsy can promote 
rational therapeutic approaches by identifying 
pathways for targeted intervention or those that 
should be avoided. With current  large- scale efforts 
to unravel the genetic contribution to epilepsy, 
including those coordinated by Epi4K, EpiPGX, 

CENet, and the ILAE Genetics Consortium, it is 
probable that opportunities for rational therapy 
guided by the underlying etiology of the disorder 
will expand considerably. For example, emergent 
evidence suggests that  de novo  mutations of ion 
channel-encoding genes are prevalent in severe 
childhood epileptic encephalopathies [ 15 ,  33 ]; 
this information will then likely be informative 
to direct personalized treatment strategies for 
patients with similar mutations. Obviously, the 
hope of such collaborative research endeavors is 
that the emerging data will eventually inform 
clinical practice and could play an important role 
in individualized therapy. Such observations will 
further illustrate the need for critical evaluation 
of the disease characteristics and genetic associa-
tions  a priori  before deciding on a rational mono- 
or polytherapeutic approach. We may not be able 
to hit every target in every patient, but a better 
understanding of the disorder from a molecular 
perspective can only be an improvement over 
current practice in which most patients are treated 
from a position of blissful ignorance regarding 
the cause of their epilepsy.  

24.9     Summary and Conclusions 

 MoA is an important criterion in the selection of 
ASDs for individuals with epilepsy, particularly 
in the avoidance of seizure worsening in general-
ized epilepsies, in the replacement of ineffective 
monotherapies, and when instituting or adjusting 
polypharmacy regimens. In all of these cases, 
therapy (whether mono- or poly-) can be said to 
be rational when MoA is considered. As detailed 
above, currently available ASDs often share simi-
lar features in their MoA, allowing for selective 
application of ASDs in certain epilepsy patients. 
These MoAs dictate how individual drugs behave 
clinically, in the control of specifi c seizure types 
and in their propensity to elicit specifi c adverse 
effects, and also how ASDs perform within poly-
therapy regimens. For patients in whom mono-
therapy has proved inadequate, current evidence 
supports the combination of a drug with a single, 
selective MoA with one that possesses multiple 
cellular effects. Future effort to understand how 
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drug combinations work in certain patient 
populations is clearly of critical importance. In 
most cases, however, clinical validation of com-
binations identifi ed in experimental models is 
lacking and greater efforts should be made to 
conduct post-hoc analysis of clinical trial data, 
which may provide essential information to 
direct basic research efforts, and vice-versa. At 
present, rational therapy for epilepsy describes 
the use of existing medications to treat seizure 
types and syndromes of mostly unknown cause 
using knowledge of how those medications work 
and interact at the cellular level. In some ways, it 
is not surprising that this approach is sub-opti-
mal. Future advances in our understanding of the 
underlying molecular etiologies of the epilepsies, 
driven at least in part by current global genomics 
efforts, are likely to improve rational therapy of 
epilepsy immeasurably. These rationally applied 
strategies to mono- and polytherapeutic manage-
ment will thus be critical to future efforts to better 
treat the refractory epilepsy patient, as well as the 
newly diagnosed patient.     
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    Abstract 

 Advances in genetic analysis are fundamentally changing our understanding 
of the causes of epilepsy, and promise to add more precision to diagnosis 
and management of the clinical disorder. Single gene mutations that 
appear among more complex patterns of genomic variation can now be 
readily defi ned. As each mutation is identifi ed, its predicted effects can now 
be validated in neurons derived from the patient’s own stem cells, allowing 
a more precise understanding of the cellular defect. Parallel breakthroughs 
in genetic engineering now allow the creation of developmental experimental 
models bearing mutations identical to the human disorder. These models 
enable investigators to carry out detailed exploration of the downstream 
effects of the defective gene on the developing nervous system, and a 
framework for pursuing new therapeutic target discovery. Once these 
genetic strategies are combined with interdisciplinary technological advances 
in bioinformatics, imaging, and drug development, the promise of delivering 
clinical cures for some genetic epilepsies will be within our reach.  

  Keywords 

 Mutation   •   Phenotype   •   Gene testing   •   Comorbidity   •   Modifi er   •   Complexity  

        R.   Guerrini      (*) 
     Neuroscience Department ,  Children’s Hospital A. 
Meyer-University of Florence ,   Florence ,  Italy   
 e-mail: r.guerrini@meyer.it   

    J.   Noebels      
  Department of Neurology ,  Baylor College of Medicine , 
  Houston ,  TX ,  USA   
 e-mail: jnoebels@bcm.edu  

 25      How Can Advances in Epilepsy 
Genetics Lead to Better 
Treatments and Cures? 

           Renzo     Guerrini      and     Jeffrey     Noebels    

25.1         Introduction 

 The last decade has witnessed several revolutions 
in our ability to understand the genetic basis of 
the epilepsies and its role in diagnosis and treat-
ment. Ten years ago, only a few genes, mostly for 
ion channels, had been linked to the appearance 
of epilepsy in large, multigenerational pedigrees. 
The general belief was that such families were 
rare, that the numbers of causative genes for 
epilepsy were few, and that each of the clinically 
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defi ned Mendelian syndromes was the exclusive 
product of one gene alone. Furthermore, the 
absence of a positive family history in a patient 
with epilepsy suggested that a purely genetic 
etiology was unlikely. Following this logic, it 
was anticipated that detecting a mutation in one 
of these genes would be highly predictive of a 
specifi c seizure syndrome, and that only a rare, 
inherited mutation causes disease. Understandably, 
most investigators concluded that knowledge of 
the gene defect could lead shortly to dramatically 
improved treatments, if not a cure, for the disorder. 

 In fact, none of these pioneering assumptions 
has proven to be entirely correct. However, as in 
the fi eld of DNA sequencing, we have entered the 
‘next generation’ of epilepsy genetics, and what 
began as a search for a few inherited gene errors 
that could explain why some epilepsies are famil-
ial has expanded into a set of powerful research 
tools and discoveries that have immeasurably 
accelerated our ability to correctly diagnose and, 
in some cases, treat the disease. Major strides in 
clinical phenotyping and classifi cation of epi-
lepsy syndromes have been driven by, and con-
tribute to the identifi cation of, new monogenic 
epilepsies, both inherited and de novo in origin. 
Advances in neuroimaging have proven critical 
to the discovery of genes leading to malforma-
tions of cortical development. New methods in 
molecular genetics and gene sequencing have 
allowed rapid identifi cation of candidate genes 
for an increasing number of epilepsy syndromes 
and potential comorbidities, including sudden 
unexpected death. Advances in genetic epidemi-
ology, genome-wide association studies and 
whole exome candidate gene profi ling have stim-
ulated the analysis of complex genetic traits. The 
mathematical aspects of these analyses, as well 
as the emergence of mutation and polymorphism 
databases and genotype-phenotype correlations, 
are now included in the growing new fi eld of epi-
lepsy bioinformatics. 

 In the neurobiology laboratory, identifi ed 
genes arising from both human and experimental 
genetic studies now offer an unparalleled oppor-
tunity to examine basic mechanisms of the 
disease. Genetically engineered models enable 
the electrophysiological validation of a candidate 

epilepsy gene using in vivo and in vitro 
approaches, and are essential to pinpoint the 
specifi c brain networks involved. Stem cells 
derived from patient’s fi broblasts can now be 
reliably transformed into neurons to evaluate 
the effects of the mutation on cell biology and 
signaling within the affected nervous system. 
Contemporary experimental mouse models not 
only give investigators the ability to selectively 
express a predefi ned human gene mutation in the 
brain at different stages of brain development, 
but also to reverse its effects with drugs and other 
genes. High resolution, chronic imaging tech-
niques using fl uorescent reporters of gene expres-
sion permit the study of the pathophysiology of a 
genetic lesion over time, tracking the ‘down-
stream’ molecular biology of the seizure path-
ways. Seizures typically arise after prolonged 
periods of abnormal neural development, and in 
these cases where the damage is already done, 
correcting the actual gene defect may come too 
late to reverse the epileptic condition. However 
careful analysis of these secondary changes in 
the physiology and anatomy of the affected 
neural circuits may offer a second opportunity to 
discover a novel target for therapy, fulfi lling the 
promise of a cure.  

25.2     The Emerging Picture 
of Epilepsy Genetics 

25.2.1     Gene and Mutation Diversity 

 It is now estimated that genetic factors contribute 
to at least 40 % of all epilepsies. While there has 
been considerable progress in identifying genes 
for Mendelian epilepsies, the extent of genetic 
susceptibility to more common sporadic epilepsy 
syndromes remains unknown. Although limited 
evidence, in both animal models and human 
disease, has been gathered that susceptibility to 
epilepsy conferred by specifi c mutations might 
be infl uenced by non-pathogenic alleles at other 
genetic loci [ 1 ,  15 ] the characterization and 
validation of susceptibility variants appears 
particularly complex and requires large-scale col-
laborative efforts. Moreover, our understanding 
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genetic susceptibility to a major heterogeneous 
disorder such as epilepsy would likely be incom-
plete without reference to a specifi c syndrome. 
Over 600 entries for pedigrees showing Mendelian 
phenotypic inheritance patterns can be found 
in the Online Mendelian Inheritance in Man 
(OMIM) database, and genetic loci have been 
identifi ed in over 160 of these cases. These genes 
arise not only among the >400 members of the 
ion channel gene family, but across an extraordi-
narily diverse group of molecular pathways that 
also regulate membrane excitability, synaptic 
plasticity, and rhythmic network fi ring behavior. 
Causative genes also include those for presynap-
tic neurotransmitter release, postsynaptic recep-
tors, transporters, cell metabolism, and 
importantly, many formative steps in early brain 
development, such as the proliferation and migra-
tion of neuronal precursors, dendritogenesis, syn-
aptogenesis, and glial biology. However, inherited 
mutations in these known epilepsy genes cur-
rently only account for a small fraction of 
patients. Thus, many additional genes causing 
seizures are likely to be identifi ed. Within each of 
these genes, the molecular rearrangements them-
selves are typically novel, or occur with a very 
low allele frequency within the epilepsy popula-
tion. Thus monogenic epilepsies are disorders of 
many, individually rare, errors in an increasingly 
broad spectrum of biological pathways. 

 Most of the idiopathic epilepsies arise spo-
radically among unaffected family members, or 
do not appear to follow single gene inheritance 
patterns. From a purely genetic perspective, this 
fi nding may be explained by an inadequate fam-
ily size, or an underlying complex pattern of mul-
tigenic inheritance, or even genetic mosaicism, 
three possibilities which have long bedeviled the 
analysis of inherited disease. However a new 
alternative has arisen from an important insight 
made over the past decade, and promises a steep 
increase in our ability to isolate genetic risk of 
epilepsy in individuals, even in small families – 
namely, the detection of de novo mutation of 
single genes or copy number variants of even 
larger chromosomal regions that encompass 
them. De novo splice site or nonsense mutations 
that impair function by removing critical portions 

of the encoded protein have been identifi ed at 
convincingly high frequency within specifi c 
epilepsy phenotypes, in particular the SCN1A 
sodium channel linked to the severe myoclonic 
epilepsy known as Dravet Syndrome. This real-
ization, along with the recent ability to rapidly 
sequence and assess gene variation in a large list 
of candidate genes, will greatly contribute to the 
personal identifi cation of causative genes in the 
epilepsy clinic.  

25.2.2     Phenotype Complexity 

 Large scale genotype-phenotype studies within 
monogenic populations have determined that the 
simple correspondence between genotype and 
phenotype can break down, resulting in different 
ages of onset and clinical seizure severity (phe-
notypic heterogeneity) within those bearing 
mutations in the same gene. This poor correlation 
may be due to the many possible structural altera-
tions in the mutant protein leading to either gain 
or loss of function. However, even in families 
with single gene inheritance of an identical gene 
mutation, a degree of complexity remains, as evi-
denced by ‘unaffected carriers’ of the ‘causative’ 
mutation. In these cases, the phenotypic variabil-
ity in such families can be attributed to the pres-
ence of polymorphisms in modifi er genes 
infl uencing the phenotypic expression or, alterna-
tively, to environmental factors. 

 Conversely, identical clinical phenotypes may 
be due to different underlying genotypes (genetic 
heterogeneity). Most of the broad phenotypic cat-
egories of seizure disorders are now recognized 
to arise from mutations in more than a single 
gene. In some cases, the different genes for a 
clinical epilepsy syndrome all contribute a single 
functional heteromeric unit, such as the different 
receptor subunits (α,β,γ,δ) contributing to a func-
tional GABAa receptor in generalized epilepsy, 
the pore forming (α) and regulatory (β1) subunits 
of the sodium channel in Dravet Syndrome, the 
different pore forming subunits (KCQ2/3) of the 
M-current in Benign Neonatal Infantile Epilepsy, 
or the nicotinic cholinergic receptor subunits 
(α2,β2,β4) in ADNLFE. In other cases, entirely 
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separate gene pathways may contribute to a very 
similar phenotype. This property may ultimately 
explain not only clinical differences in the seizures 
attached to each gene and their neurological 
severity in affected patients, but also their 
pharmacoresistance in clinical subsets of the 
disorder. 

 Pharmacoresistance can itself be considered 
as a phenotypic trait whose intrinsic mechanisms 
are, at least in part, infl uenced by genetic varia-
tion. Pharmacogenetic studies have attempted to 
investigate whether drug resistance is infl uenced 
by single nucleotide variants in genes for drug 
targets, or in other genes related to drug uptake 
and metabolism, which might explain resistance 
to drugs [ 16 ]. These studies, however, are ham-
pered by serious methodological diffi culties, 
since they do not take into account the causal 
heterogeneity of ‘epilepsy’ in the populations 
studied. This oversimplifi cation is refl ected in the 
assumption that a single mechanism would infl u-
ence drug effi cacy in relation to different mecha-
nisms of epileptogenicity, which should be 
replicated across multiple studies. However 
results from such studies have not been consis-
tent. For example, a single intronic nucleotide 
polymorphism in the SCN1A gene was associ-
ated with higher prescribed doses of phenytoin 
and carbamazepine in a UK based study [ 29 ], but 
not in subsequent studies in Austria [ 34 ] and Italy 
[ 20 ]. Likewise, studies exploring how gene vari-
ants may infl uence AED penetration into the 
brain have provided confl icting results [ 2 ]. Very 
large studies on etiologically and ethnically 
homogeneous populations would be necessary to 
fully explore the real infl uence of specifi c genes 
on pharmacoresistance.  

25.2.3     Discovery of Novel 
Comorbidity Syndromes 

 Epilepsy clinicians have long recognized the fre-
quent association of a variety of cognitive and 
neuropsychiatric symptoms with seizures, and 
understood that these occur more often than 
would be predicted by chance. Whether these 
result as a direct developmental effect of the 
cause of the epilepsy, the seizures themselves, or 

their treatment will always be under debate. 
Since their co-expression is usually incomplete, 
other genes may also contribute to the relative 
penetrance of the co-morbidity. 

 In the laboratory, mouse models of apparently 
unrelated disorders, such as Alzheimer’s disease, 
have delivered fi rm evidence that single genes 
can produce both epilepsy and cognitive defects 
unrelated to antiepileptic treatment, and suggest 
that antiepileptic treatment may be especially 
neuroprotective in carriers of these genes [ 24 , 
 25 ]. Sudden unexpected death (SUDEP) is 
another important comorbidity, affecting indi-
viduals with idiopathic epilepsy. Recent evidence 
has confi rmed the hypothesis that genes underly-
ing cardiac arrhythmias are co-expressed in brain 
and produce epilepsy [ 10 ]. These genes may 
prove clinically useful in predicting SUDEP risk 
and exploring treatments to prevent premature 
lethality in epilepsy patients. 

 A great deal of interest is now devoted to 
understanding the developmental causes of epi-
leptic encephalopathies, in relation to autism 
spectrum disorders (ASD) and intellectual dis-
ability. Exome sequencing in a large cohort of 
individuals with epileptic encephalopathies and 
subsequent protein-protein interaction analysis 
revealed a high interconnectivity between genes 
carrying de novo mutations, with a much greater 
probability of overlap with ASD and intellectual 
disability exome sequencing studies [ 7 ]. 

 Finally, the ability to probe the full genomic 
variant profi le of unrelated epilepsy patients with 
and without comorbidities holds enormous prom-
ise in understanding the genetic roots of comor-
bidity. Recently, one such study identifi ed a de 
novo truncation of the skeletal muscle chloride 
channel,  CLCN1  in a young woman with a child-
hood writer’s cramp and longstanding pharmaco-
resistant seizures. This genomic analysis led to 
the unexpected discovery that CLCN1 is 
expressed not only in skeletal muscle, but in thal-
amocortical and cerebellar brain networks, where 
disruption of chloride-mediated membrane repo-
larization could lead to hyperexcitability and sei-
zures [ 5 ]. This hypothesis-generating study is a 
harbinger of the kind of novel candidate gene 
discovery that awaits the widespread use of next 
generation sequencing (Fig.  25.1 ).
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25.2.4        Gene Testing 

 Recent identifi cation of causative genes for a 
number of early-onset severe epilepsies has cre-
ated the opportunity for diagnostic genetic test-
ing in this population. Some examples include 
brain malformations and epileptic encephalopa-
thies of infancy. At present, the clinical impact of 
genetic testing in these syndromes is by itself 
limited, due to the small percentage of patients in 
whom a single, causative gene mutation can be 
identifi ed and the lack of specifi c, gene-directed, 
treatment options. However, genetic counseling 
can certainly be improved by recognizing a spe-
cifi c etiology. It also sets the stage for further 
research advances in understanding how each of 
the genes give rise to epileptogenic defects, and 
discovering which of these may be reversible. It 
has been claimed that, in some cases, discovery 
of a single causative gene defect may reduce the 
need for further diagnostic investigation at the 
biochemical level. However, from a practical 
standpoint, since genomic variants require time 
to analyze, this information typically arrives after 

reversible causes have been clinically excluded. 
It is also essential to understand that recent profi l-
ing studies of whole genomes and large sets of 
candidate exomes such as ion channel genes have 
determined that patients with sporadic epilepsy 
often carry more than one potentially causative 
mutation [ 17 ], complicating the interpretation. 
Furthermore, all individuals carry, on average, 
50–100 loss of function variants in disease genes 
that for the most part produce no apparent clini-
cal effects [ 30 ], signifying that the mere presence 
of a variant does not predict clinical status. This 
is likely explained by the presence of other ‘pro-
tective’ modifi er genes. Thus, as we gain access 
to a broader view of the genetic landscape in indi-
viduals with epilepsy, we expect to routinely 
encounter patients with a complex genetic basis 
for their seizure phenotype. 

 The next steps toward increasing the power of 
genetic testing in epilepsy include identifying 
more genes for monogenic epilepsies, and learn-
ing to understand the contribution of specifi c 
genes in epilepsies with complex inheritance. 
This will require continued genotype-phenotype 

  Fig. 25.1     Detection of heterozygous de novo nonsense 
mutation in  CLCN1,  encoding a premature stop codon 
in the CLC-1 chloride channel protein in a proband 
with generalized tonic clonic and absence seizures 
with a subtle myotonic phenotype . ( a ). PCR amplifi cation 
of the fi nal coding exon (exon 23) in the trio yielded a 
550 bp product. ( b ) Sequence chromatograms for the trio 

shows the heterozygous base pair substitution encoding a 
premature stop codon in the proband, but not in either 
parent. ( c ) Schematic diagram of a single alpha-subunit of 
the CLC-1 channel protein showing the location of the 
C-terminal truncation R976X mutation in the proband. 
( d ) Typical absence seizure in the proband (From Chen 
et al. [ 5 ])       
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correlations, coupled with functional studies of 
the abnormal proteins to more accurately under-
stand the pathophysiological implications of each 
new mutation and how they combine to create 
neural excitability phenotypes. While bioinfor-
matic analysis offers an increasingly powerful 
way of categorizing the potential damage a gene 
variant may infl ict on protein function, it cannot 
conclusively predict its actual effect upon a 
neuron, and indeed, despite being expressed in 
multiple cell types, it may not affect them all 
equally. However we are now entering the era of 
‘personalized’ mutation analysis, where the 
mutant functional defect can be determined 
directly in the patient’s own cells, sometimes 
fi nding that it is counter to the expected result. 
For example, a currently held hypothesis for the 
mechanism of epilepsy in Dravet Syndrome, as 
studied in a mouse model of  Scn1a  haploinsuffi -
ciency, is based on the failure of interneurons to 
fi re adequately in the face of reduced sodium cur-
rent through  Scn1a  ion channels [ 31 ]. Analysis of 
membrane excitability in stem-cell derived neu-
rons transformed from a Dravet Syndrome patient 
showed that the mutation, predicted to reduce the 
density of functional sodium channels, resulted 
in increased sodium current and hyperexcitability 
in cells classifi ed as both excitatory and inhibi-
tory, implying a distinctly different pathogenic 
mechanism [ 19 ]. These studies may have practi-
cal implications for diagnosis, genetic counseling 
and possible treatment, as well as increasing our 
knowledge of normal brain function and mecha-
nisms of epileptogenesis. 

 We can now consult lists of epilepsy syn-
dromes in which a chromosomal locus or loci 
have been mapped, and those in which one or 
more gene mutations or variants have been iden-
tifi ed. These lists are constantly expanding as 
new loci and genes are identifi ed. Our view on 
the correlations between phenotype and genotype 
in genetic epilepsies is also rapidly changing in 
relation to new fi ndings emerging from exome 
sequencing and the use of diagnostic panels as 
unexpected phenotypes become associated with 
mutations of specific genes and vice-versa. 
A constantly updated database will be essential 
to establish all the known gene mutations and 

polymorphisms and their clinical correlates, so 
that genotype-phenotype correlations can be 
determined. This is the objective of the Human 
Variome Project [ 13 ] and an achievable goal 
for epilepsy genetics. For example, over 700 
mutations in SCN1A have now been reported in 
the SCN1A Variant Database [ 14 ] and offer the 
possibility of predicting the onset, if not the 
severity, of the related phenotype with a reason-
able likelihood.   

25.3     Does Knowledge of a 
Specifi c Genetic Cause 
Infl uence Treatment? 

 The appropriateness or inadvisability of a given 
treatment in a specifi c condition has in some 
instances been acquired in clinical practice and 
then scientifi cally justifi ed by genetic knowledge. 
For example, the potential for lamotrigine, a 
sodium channel blocker, to aggravate seizures in 
Dravet syndrome was initially reported well 
before the discovery that loss of function  SCN1A  
mutations were the cause of the syndrome [ 11 ]. 
However from a clinical perspective, a number of 
specifi c conditions provide evidence that 
improved understanding of epilepsy genetics, 
together with enhanced knowledge of molecular 
pathology and electroclinical characteristics, 
substantiate more rational and effective treatment 
choices resulting in better patient management. 
In cases where genotype-phenotype correlations 
suggest that the epilepsy may have a benign 
course, gene testing may support the decision to 
withhold antiepileptic drug therapy during criti-
cal periods of brain maturation. Examples of this 
are mainly related to benign familial epilepsies 
starting in the fi rst years of life due to  PRRT2, 
KCNQ2  and  SCN2A  gene mutations [ 33 ]. 

 Only in very rare conditions, however, do the 
treatment choices specifi cally target the inherited 
pathophysiological mechanism. An interesting 
example is represented by autosomal dominant 
nocturnal frontal lobe epilepsy (ADNFLE) due to 
mutation of neuronal nicotinic acid acetylcholine 
receptor alpha subunit in which the therapeutic 
effect of nicotine patch treatment on refractory 
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seizures was elegantly albeit anecdotally demon-
strated using an N-of-1 trial [ 32 ]. Other studies 
have confi rmed that transdermal nicotine admin-
istration may be a suitable treatment option for 
patients with ADNFLE and severe seizures [ 4 ]. 
However, the translational dimension of these 
observations is limited as nicotine is highly 
addictive and may cause cardiovascular effects. 
More specifi c examples derive from clinical con-
ditions in which a rationale therapeutic approach 
is prompted by administering a substance that 
can correct a metabolic defect that causes epi-
lepsy. Pyridoxine-dependent epilepsy, for exam-
ple, is an autosomal recessive disorder in which 
seizures manifesting in the neonatal period or in 
infancy can only be controlled after administra-
tion of high doses of pyridoxine [ 12 ]. If untreated, 
the disorder can lead to life threatening status 
epilepticus. Affected patients require lifelong 
pyridoxine supplementation but antiepileptic 
medication is usually unnecessary. While prog-
nosis for seizure control is excellent in most 
patients, neurodevelopmental impairment is 
often present and although it has been suggested 
that children who are treated early have a better 
outcome, this is not always the case [ 9 ]. 
Pyridoxine-dependent epilepsy is likely underdi-
agnosed and for this reason in many centers pyri-
doxine administration is part of a treatment 
protocol for neonatal seizures. Pyridoxine depen-
dent epilepsy is caused by mutations in the 
 ALDH7A1  gene, which encodes for an aldehyde 
dehydrogenase (antiquitin) acting in the cerebral 
lysine catabolism pathway [ 21 ]. Affected indi-
viduals have α-aminoadipic semialdehyde 
(AASA) levels, which cause an intracellular 
reduction in the active vitamin B6 co-factor pyri-
doxal- 5′ -phosphate (PLP) and a concomitant 
imbalance of glutamic acid and  γ -aminobutyric 
acid (GABA). Folinic acid-responsive seizures 
are very similar to PDE [ 8 ]. Early seizures can 
also be caused by defi cient pyridox(am)ine 5′ 
-phosphate oxidase (PNPO), which respond to 
pyridoxal-5′ -phosphate supplementation [ 9 ]. 

 A third important example of a direct link 
between genetic diagnosis and effective treatment 
choice is represented by the use of the ketogenic 
diet in the treatment of the GLUT1 defi ciency 

syndrome, an autosomal dominant disorder due 
to a mutation in the  SLC2A1  gene. Brain glucose 
transport occurs by facilitated transport, predom-
inantly via GLUT1, located on the blood–brain 
barrier endothelium,  SLC2A1  mutations result in 
insuffi cient transport of glucose into the brain. 
Patients with GLUT1 defi ciency had originally 
been described as exhibiting a severe neurologi-
cal syndrome with early intractable seizures, fol-
lowed by developmental delay, microcephaly and 
paroxysmal or continuous dyskinesia. This con-
dition was initially identifi ed and subsequently 
diagnosed in clinical practice, based on low glu-
cose levels in the CSF ( hypoglycorrhachia) in the 
setting of normal serum glucose or of abnormal 
CSF/serum glucose ratios [ 6 ]. However, a wide 
range of variants have been described, resulting 
in variable degrees of impairment of glucose 
transport [ 23 ], complicating the utility of the 
genetic information in clinical practice [ 18 ]. 
Neurologic consequences of GLUT1 defi ciency 
presumably arise from disordered brain energy 
metabolism, secondary to reduced transport. D 
-glucose is the main fuel for the brain, although 
alternative fuels such as ketone bodies can be 
used. The treatment of choice for GLUT1 defi -
ciency syndrome is a diet that mimics the meta-
bolic state of fasting and provides ketones as an 
alternative fuel for the brain, effectively restoring 
brain energy metabolism. The ketogenic diet is a 
high-fat, adequate protein, low carbohydrate diet 
that provides 87–90 % of daily calories as fats 
and is used in the treatment of drug resistant 
childhood epilepsy. As the developing brain 
requires substantially more energy in young chil-
dren, patients with GLUT1 defi ciency syndrome 
should be started on the diet as early as possible 
and should remain on the diet at least until ado-
lescence. Although some patients with milder 
seizure disorders may respond to antiepileptic 
medication, most do not and seizure response to 
the ketogenic diet is remarkable. Also, some 
pharmacological agents such as phenobarbital 
and diazepam, impair GLUT1 function and 
should be avoided [ 3 ]. In the past few years, the 
range of clinical epilepsy phenotypes where 
GLUT1 mutations and a positive response to the 
ketogenic diet have been identifi ed is expanding 
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[ 22 ,  26 – 28 ], raising the possibility that the gene 
acts as a modifi er of other coexisting abnormali-
ties. The usefulness of the ketogenic diet in 
GLUT1 defi ciency syndrome was demonstrated 
before the syndrome was linked to mutations of 
the GLUT1 gene, based on the expected patho-
physiological consequences of low levels of gly-
corrachia, however, the possibility of uncovering 
GLUT1 mutations in patients with atypical clini-
cal presentations of GLUT1 defi ciency and even 
borderline or normal levels of glycorrachia, has 
brought about invaluable advantages for the diag-
nosis and treatment of this disorder.  

25.4     Conclusion 

 In the epilepsy clinic, genetic analysis has 
revealed not only the presence of more mono-
genic epilepsy syndromes, but, thanks to continu-
ally emerging genome-phenome correlations, is 
also pointing the way to earlier and more accu-
rate diagnosis. Gene-specifi c classifi cation of 
patients will aid clinical stratifi cation to tailor 
more relevant diagnostic testing and better char-
acterization of the natural history of the disease, 
enabling improved outcome prediction and 
genetic counseling for family planning. Future 
clinical treatment trials will almost certainly 
include genomic characterization to enhance the 
detection of a drug response signal as well as any 
gene-linked adverse effects. The relative contri-
butions of major categories of genetic infl uence, 
including inherited monogenic epilepsies, de 
novo mutations, and sporadic individuals with 
complex multigenic inheritance are under explo-
ration in many different seizure types and are 
beginning to inform genetic counseling in the 
neuropediatric setting. The defi nitions of classi-
cal epilepsy syndromes have been enlarged to 
account for multiple genetic etiologies, and novel 
comorbidity syndromes. 

 In the epilepsy neurobiology laboratory, 
genetics continues to reveal mechanistic insight 
into the rich biological diversity of gene defects 
leading to epilepsy phenotypes. Genes linked to 
epilepsy have opened the door to understanding 
the neurobiology and pathology of epilepsies and 
localizing the vulnerable neural pathways at the 

molecular, cellular, and functional levels. Defects 
in ion channels and a broad range of other cellu-
lar signaling pathways including receptors, trans-
porters, and proteins for exocytotic release of 
neurotransmitters now constitute primary classes 
of epileptogenic mechanisms. A second major 
category of epilepsy genes involves transcription 
factors regulating the early migration and matu-
ration of interneurons, and a third group controls 
metabolic functions within the cell and neuron- 
glia relationships. 

 Mouse models bearing mutations in each of 
these gene-delineated pathways allow us to 
examine the fi ne details of how they alter 
 developmental plasticity in the epileptic brain, to 
learn when and where cellular pathology arises, 
and how it spreads to alter excitability in cortical 
networks through remodeling of gene expression 
and synaptic reorganization. Mice engineered to 
conditionally express gene mutations in specifi c 
circuits provide information on which circuits are 
necessary or suffi cient to produce the seizure 
phenotype. Finally we can learn whether there 
are critical developmental stages for correcting or 
reversing the gene defect, exactly what the 
desired drug effect should be at the cellular level, 
and which molecular targets are most effective in 
preventing the epileptic disorder. Taken together, 
these advances hold great promise for improving 
the clinical management of seizure disorders.     
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    Abstract  

  Recent technological advances open exciting avenues for improving the 
understanding of mechanisms in a broad range of epilepsies. This chapter 
focuses on the development of optogenetics and on-demand technologies 
for the study of epilepsy and the control of seizures. Optogenetics is a 
technique which, through cell-type selective expression of light-sensitive 
proteins called opsins, allows temporally precise control via light delivery 
of specifi c populations of  neurons. Therefore, it is now possible not only 
to record interictal and ictal neuronal activity, but also to test causality and 
identify potential new therapeutic approaches. We fi rst discuss the benefi ts 
and caveats to using optogenetic approaches and recent advances in opto-
genetics related tools. We then turn to the use of optogenetics, including 
on-demand optogenetics in the study of epilepsies, which highlights the 
powerful potential of optogenetics for epilepsy research.  
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26.1         Introduction 

 By enabling unprecedented possibilities for 
studying the cell populations and networks 
involved in seizure initiation, propagation, and 
termination, recent technological advances open 
exciting avenues for improving the understand-
ing of mechanisms in a broad range of epilepsies. 
Through optogenetics, modulation of select cell 
populations is possible at specifi c times, provid-
ing the opportunity to not only record neuronal 
activity during seizures, but also to manipulate 
neuronal activity. In this way, it is possible to 
probe critical networks and circuits, and identify 
potential new therapeutic approaches. This chapter 
focuses on the development of optogenetics and 
on-demand technologies for the study of epilepsy 
and the control of seizures. 

 Optogenetics is a rapidly evolving field 
providing powerful tools for neuroscience 
[ 19 ,  72 ], including the study of epilepsies [ 12 , 
 46 ]. Optogenetics is a technique in which light- 
sensitive proteins, called opsins, are introduced 
into cells. In this way, it is possible to control 
the activity of neuronal populations by shining 
light and activating the opsins. Opsins can be 
light- sensitive channels, pumps, G-protein-
coupled receptors, or even transcriptional effec-
tors [ 47 ]. We focus on light-sensitive channels 
and pumps whose activation can inhibit or 
excite neurons, and fi rst discuss the benefi ts 
and caveats to using these optogenetic approaches, 
as well as recent advances in related tools. 
We then turn to the use of optogenetics in the 
study of epilepsies specifi cally.  

26.2     Optogenetics: Development 
and Technical Advances 

 Cell-type and temporal precision are two key 
strengths to optogenetic approaches. Temporal 
precision is achieved by appropriately timed light 
delivery (though, of course, this can present its 
own challenges, as discussed below for on- 
demand approaches). Selective opsin expression 
is less straightforward, and is achievable through 

distinct methods. In general, expression is often 
achieved through the use of viral vectors, (including 
adeno-associated virus (AAV) or lentivirus), 
electroporation [ 2 ], or the use of transgenic ani-
mals. Inducible expression [ 79 ,  80 ,  103 ] and 
selective expression of opsins can be achieved for 
specifi ed populations of neurons defi ned by their 
neurochemical profi le (e.g., expression of parval-
bumin), developmental origin [ 20 ,  25 ,  59 ,  81 ], 
their date of birth (e.g., through the use of retro-
viruses which only infect actively dividing cells 
[ 83 ]), their location (e.g., by injecting virus in a 
restricted region), levels of activity at a specifi c 
time [ 36 ], or their long-distance projections (e.g., 
through the use of WGA-Cre, which is retro-
gradely transported transynaptically [ 34 ]). 

26.2.1     Selective Cell-Type Expression 

 To achieve selective expression in neurons 
defi ned by their neurochemical profi le, two broad 
methods are used. The most straight forward 
approach is to place the expression of the opsin 
under a specifi c promoter (or even enhancer 
[ 88 ]). However, this approach has three disad-
vantages. First, especially when used with 
viruses, leaky expression is often noted (that is, 
expression in other cell populations). Second, 
long promoters do not fi t in small vectors (e.g. 
adeno-associated viruses (AAV)). Third, in cases 
where the promoter is a relatively weak promoter, 
the expression of opsins can be insuffi cient to 
achieve strong light-induced currents and alter 
the activity of the neurons. 

 In order to overcome these drawbacks, a second 
method was developed: the opsin is instead 
placed under a strong promoter, and selectivity is 
achieved through the Cre/loxP system. Cre can 
mediate either inversion (fl ipping) or excision 
(removal) of DNA, depending on the relative ori-
entations of the loxP sites. For viruses, attempts 
at selective expression through the introduction 
of a fl oxed STOP cassette (which would be 
excised by Cre) can produce leaky expression 
(expression even in cells not expressing Cre). 
Additionally, attempting selective expression 
through a single inversion (which is then fl ipped 
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by Cre to allow transcription) can produce weak 
expression, as Cre can continue to mediate fl ip-
ping, re-inverting the sequence and inhibiting 
transcription. Therefore, a FLEX system (‘fl ip- 
excision’ [ 9 ,  71 ], also referred to as DIO – double- 
fl oxed inverse open reading frame [ 99 ]) was 
implemented (Fig.  26.1a ). In this scenario, two 
sets of loxP sites are used. For one, a mutated 
sequence is used – lox2272. This sequence is still 
recognized by Cre, but is only paired with a simi-
larly mutated sequence [ 51 ]. Therefore, two dis-
tinct sets of loxP pairs can be achieved (one set 
carrying the mutation, and one set not). One 
round of Cre-mediated recombination fl ips the 
sequence, and another excises one of each type of 
loxP site, preventing future recombination and 

locking the virus in its activated state. This 
method has proven effective in achieving specifi c 
opsin expression, as well as suffi cient levels of 
opsin expression [ 9 ]. Cre can be introduced by 
several methods, including virus injection (note 
that only low levels of Cre expression are needed). 
WGA-Cre, mentioned above, can be used to 
achieve selective expression based on axonal pro-
jections [ 34 ]. For example, a FLEX-opsin virus 
can be injected into the hippocampus contralat-
eral to WGA-Cre virus injection, to achieve opsin 
expression selectively in hippocampal neurons 
projecting contralaterally, e.g., mossy cells [ 34 ]. 
Alternatively, Cre-dependent virus can be 
injected into a transgenic mouse (or rat) line 
expressing Cre in a select population of neurons.

   There is a wealth of transgenic mouse lines 
available, including an ever-growing resource 
of Cre lines [ 80 ], many of which are commer-
cially available (e.g., the Jackson laboratory 
Cre Repository: cre.jax.org). In addition to 
being useful in combination with Cre-dependent 
viral- based opsin expression methods, Cre lines 
can be crossed with lines expressing opsins in a 
Cre- dependent fashion [ 56 ] (Fig.  26.1b ). For 
example, the Ai32 line developed at the Allen 
Institute expresses the excitatory opsin chan-
nelrhodopsin fused to an enhanced yellow fl uo-
rescent reporter protein (ChR2(H134R)-EYFP) 
from the endogenous  Gt(ROSA)26Sor  locus 
(a locus active in most cells) with expression 
enhanced with a CAG promoter [ 56 ]. Cre medi-
ates removal of a fl oxed STOP cassette, and 
allows expression of the opsin. 

 An important caveat for Cre-mediated selec-
tivity is that excision of DNA (e.g., removal of 
the STOP cassette) is permanent, even if Cre- 
expression itself is transient. This means that 
opsins can be expressed in cells that are not 
(currently) expressing Cre. Indeed, even if the 
cell is simply descended from a cell in which 
recombination has occurred, opsins will be 
expressed. This caveat can have signifi cant 
experimental consequences. For example, fol-
lowing seizures, somatostatin (a neuropeptide 
whose expression is often used as a biochemical 
marker for populations of inhibitory interneu-
rons) is transiently expressed in principal cells 

  Fig. 26.1     Strategies for selective opsin expression.  
( a ) The FLEX system makes use of two pairs of loxP sites 
( triangles ), including the mutated lox2272 ( dark trian-
gles ). Cre mediates inversion using one set of loxP sites 
(for simplicity, only the inversion using lox2272 sites are 
illustrated), fl ipping the opsin sequence into the correct 
orientation (stage 2). Cre-mediated excision of one of 
each loxP sites locks the vector in an active state (stage 3) 
(Based on Figure 1 from Ref. [ 9 ]). ( b ) Three potential 
ways to achieve selective opsin expression include 
( i ) injecting a Cre-dependent virus (as in  a ) and a Cre- 
delivering virus (e.g., WGA-Cre, as further discussed in 
the text [ 34 ]), ( ii ) injecting a Cre-dependent virus into a 
mouse expressing Cre in a subset of neurons, or ( iii ) cross-
ing a mouse line expressing Cre in a subset of neurons 
with a mouse line expressing opsins in a Cre-dependent 
manner       

 

26 How Might Novel Technologies Such as Optogenetics Lead to Better Treatments in Epilepsy?



322

[ 26 ]. If selective opsin expression in somatostatin-
expressing interneurons is being achieved 
through a Cre- dependent mechanism, selectivity 
of expression will be (permanently) lost follow-
ing a seizure. 

 Another major limitation of available methods 
for achieving opsin-expression selectivity is the 
current inability to achieve selectivity in a popu-
lation defi ned by multiple characteristics. For 
example, within a broad neuron population 
defi ned by a single neurochemical marker, there 
are several distinct cell-types. In the hippocam-
pus alone, axo-axonic (also referred to as chande-
lier cells), dendritically targeting bistratifi ed 
cells, and a subset of basket cells (which target 
the perisomatic region of postsynaptic cells) all 
express the calcium binding protein parvalbumin 
[ 8 ,  30 ,  41 ,  45 ]. Therefore, selective opsin expres-
sion in parvalbumin-expressing neurons still 
results in expression across multiple cell-types. 
Additionally, there are interneurons that are 
defi ned in part by expression of proteins which 
are also expressed by principal cells. For exam-
ple, subsets of interneurons express the neuro-
peptide cholecystokinin (CCK) [ 30 ,  45 ,  53 ]. 
However, as principal excitatory cells can also 
express CCK, selective expression in interneu-
rons cannot be achieved through a Cre-mediated 
mechanism alone. 

 Importantly, this is a limitation of current 
methods which can be overcome through inter-
sectional transgenics [ 80 ]. By combining the 
powerful Cre/loxP system with the Flp/Frt system 
(an analogous, but distinct, recombination system), 
it is possible to require expression of two markers 
for opsin expression. For example, Cre expres-
sion could be placed under the CCK promoter 
(and thus expressed in CCK-expressing cells) 
and Flp placed under an interneuron- specifi c 
marker. Indeed, selective expression of fl uores-
cent proteins has already been achieved in CCK 
interneurons by using such an approach and a 
RCE-dual reporter mouse line [ 80 ]. However, in 
order for such an approach to be used for selec-
tive expression of opsins, mouse lines or viral 
vectors requiring both Cre and Flp for opsin 
expression will need to be generated. Additionally, 
while there is a vast resource of Cre lines, Flp- lines 

are markedly scarcer, and the fi eld would certainly 
benefi t from an increase in this resource. Note 
that beyond allowing access to relatively selec-
tive expression in more interneuron types (includ-
ing neurogliaform and ivy cells, the numerically 
most dominant interneuron cell type in the hip-
pocampus [ 7 ,  16 ,  31 ]), intersectional transgenic 
approaches could also overcome the loss of selec-
tivity for somatostatin interneurons following 
seizures (described above). 

 In order to apply optogenetics in humans, a 
viral-based approach will clearly have to be used. 
Note that viral vectors have been used in humans, 
including in the brain [ 10 ,  58 ,  62 ], and gene- 
delivery in general is being considered for a range 
of neurological diseases [ 10 ,  87 ]. Beyond opto-
genetics, gene-delivery itself may be a new 
approach in epilepsy [ 67 ,  74 ,  94 ]. Optogenetic 
tools to modify gene transcription may also one 
day be used therapeutically [ 47 ]. Note that inser-
tional mutagenesis (and the risk for tumor gen-
eration) can be avoided by using vectors which 
remain extrachromosal (e.g. recombinant AAV). 

 For animal studies, however, transgenic mouse 
methods offer several benefi ts over viral-based 
approaches. First, injection of virus is an invasive 
process, which is avoided through a transgenic- 
only approach. Second, for viral-based expres-
sion methods, the level of opsin expression varies 
depending on the number of copies of viral vec-
tor in the cell. Therefore, there can be great cell-
to- cell variability in the amount of opsin 
expression. In some cases expression can be so 
high that light induces toxic levels of current. Of 
course, high levels of expression can also be a 
benefi t of viral-based methods, when transgenic 
lines do not produce strong enough photocur-
rents. Third, if the site of virus injection and the 
placement of the optical fi ber delivering light to 
the tissue are improperly aligned, insuffi cient 
light may reach the opsin-expressing neurons. In 
contrast, in the transgenic lines, variability is 
reduced, even expression is achieved in the select 
cell population throughout the brain, and spatial 
selectivity is achieved through the location of 
light delivery. 

 In addition to the Cre-dependent opsin 
expressing mouse lines described above, there 
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are several mouse lines expressing opsins 
directly under a specifi c promoter. This avoids 
the need for crossing strains, and leaves open the 
door for other Cre-based manipulations. 
However, a strong promoter must be used to 
achieve suffi ciently high levels of opsin expres-
sion. The currently available lines include mice 
expressing the excitatory opsin channelrhodop-
sin under the Thy1 promoter [ 5 ]. Many of these 
mice are commercially available. Finally, there 
have been recent developments in achieving 
transgenic optogenetic rats [ 82 ], further expand-
ing the possibilities for using optogenetics in 
epilepsy research.  

26.2.2     Direction of Modulation 
of Neuronal Activity 

 In addition to cell-type specifi city, another bene-
fi t of optogenetic approaches, over for example 
electrical stimulation, is the control of direction 
of modulation of neuronal activity (e.g., excita-
tion versus inhibition). 

26.2.2.1     Activation 
 Two main classes of opsins are available, allow-
ing cell-specifi c activation or inhibition. Most of 
the optogenetic tools used for neuronal activation 
derive from Channelrhodopsin-2 (ChR2), a 
naturally- occurring, non-selective cation channel 
expressed by the algae  Clamydomonas rein-
hardtii . Upon exposure to blue light (470 nm 
absorption peak), ChR2 opens and allows passive 
movement of Na + , K + , Ca 2+  and H +  following the 
electrochemical gradient [ 63 ], depolarizing cell 
membranes, and if the cell is depolarized to 
threshold, generating action potentials. ChR2 
possesses fast activation kinetics, and is able to 
trigger single action potentials in expressing cells 
following 1–2 ms light exposure, making it a par-
ticularly attractive tool for precisely timed stimu-
lation of neuronal populations. ChR2 was the 
fi rst opsin successfully expressed in mammalian 
neurons [ 19 ]. Since then, researchers have 
focused on improving its expression levels and its 
ON/OFF kinetics, and developed different vari-
ants with largely diverse properties. Several com-

prehensive reviews about Channelrhodopsin 
variants are available in the literature (see refer-
ences [ 14 ,  54 ,  60 ]), and new variants are con-
stantly being developed. Here we will focus on 
some important variants most often used in 
epilepsy research applications. 

 The fi rst modifi cation to the original ChR2 
sequence, an amino acid substitution at position 
134, produced a variant with improved expres-
sion levels and larger photocurrents in neurons 
(ChR2-H134R), but presenting slightly lower 
deactivation kinetics [ 33 ]. The lower deactiva-
tion kinetics produces lower fi delity of light 
pulse to action potential generation at high light 
stimulation frequencies, such that cell fi ring 
may not accurately follow the stimulus (missed 
spikes and/or multiplet spikes per light pulse). 
Further research therefore then focused on 
improving kinetics, to allow activation of neu-
ronal populations at higher frequencies (above 
40 Hz) with better fi delity of spike generation. 
The fi rst variant producing higher consistency 
of high frequency spike generation was devel-
oped by a chimeric combination of ChR1 
(another channelrhodopsin from  C. reinhardtii ) 
and ChR2, and was named ChIEF [ 55 ]. ChIEF 
displayed reduced inactivation during persis-
tent light stimulations and improved fi delity at 
frequencies higher than 25 Hz. Similarly, one 
amino acid substitution at position 123 of the 
original ChR2 sequence, led to the develop-
ment of ChR2(E123T), or ChETA [ 37 ], a ChR2 
variant displaying dramatically improved acti-
vation/deactivation kinetics, allowing consis-
tent and reliable action potential generation at 
frequencies up to 200 Hz. However, photocur-
rents generated by ChETA were somewhat 
smaller than wild-type ChR2, posing a poten-
tial drawback for its successful application  in 
vivo . To solve this issue, an additional modifi -
cation of the amino acid sequence at position 
159 resulted in the development of ChR2(ET/
TC), an improved ChETA variant combining 
high temporal fi delity with large photocurrent 
generation [ 14 ]. ChR2(ET/TC) still represents 
to date the channelrhodopsin with the best per-
formance in terms of spike fi delity generation 
and amplitude of photocurrents. 
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 All of the ChR2 variants described above 
display an excitation maximum at around 
470 nm, and require blue light for their activa-
tion. However, the propagation of light in tissue 
is directly proportional to its wavelength, with 
blue light presenting high scattering and low pen-
etration compared to higher wavelengths such as 
red light. Additional penetration through brain 
tissue is achieved by avoiding wavelengths 
absorbed by hemoglobin. For experiments requir-
ing coverage of large brain areas, channelrhodop-
sin variants with red-shifted absorption maxima 
are therefore preferred, as they allow activation 
of an increased number of neurons with lower 
light stimulation intensity. The fi rst attempt 
towards generating red-shifted activating opsins 
was made by cloning VChR1, a channelrhodop-
sin naturally expressed by the spheroidal alga 
 Volvox carteri . VChR1 presented an excitation 
maximum at 550 nm, but signifi cantly lower pho-
tocurrents and expression levels in mammalian 
neurons when compared to ChR2 [ 100 ]. To 
improve VChR1 photocurrents, researchers cre-
ated a chimera by substituting helices 1 and 2 of 
VChR1 with their analogs in ChR1, thereby 
developing C1V1 [ 97 ]. Subsequent modifi cation 
of glutamic acid residues at positions 122 and 
162 (resulting in C1V1-T/T) further improved its 
photocurrents, and resulted in a channelrhodop-
sin variant with photocurrents comparable to 
ChR2(H134R) and excitation maximum at 
550 nm. C1V1(T/T) also presented vastly 
increased light sensitivity, allowing its activation 
with lower light power, making it especially 
attractive for  in vivo  studies. 

 The ChR2 variants described above enable 
fast and precise activation of neuronal popula-
tions, but are not optimal for experiments 
requiring activation of specifi c neuronal popu-
lation over longer time windows (minutes). At 
expression levels typically achieved in neu-
rons, long time activation would require con-
stant delivery of high power to the tissue, with 
potential and undesirable heating effects. To 
allow neuronal activation for longer time peri-
ods, a separate class of activating opsins was 
developed, where a single brief pulse of blue 
light is sufficient to trigger the channel into its 

active state. Channelrhodopsins with these 
properties were named Step-Function Opsins 
(or SFOs), and caused depolarization of cell 
membranes for periods of 30–60 s after 10 ms 
blue light exposure [ 15 ]. Even slower deactiva-
tion kinetics were achieved with a Stabilized 
SFO [ 97 ], displaying dramatically improved 
light sensitivity and a channel deactivation 
time constant of about half an hour. A major 
advantage of SFOs is that they can be used to 
slightly alter the network contribution of dif-
ferent cell types, as the depolarization they 
provide following light is generally sub- 
threshold, and therefore does not directly acti-
vate expressing cells, but only increases cell 
sensitivity in responding to physiological net-
work activity.  

26.2.2.2     Suppression 
 The second major class of optogenetic tools 
available for the study of neuronal networks is 
constituted by opsins able to hyperpolarize the 
cell membrane and, if strong enough, silence 
action potential generation. The fi rst opsin 
shown to inhibit neuronal activity was halorho-
dopsin (NpHR), a chloride pump driven by 
orange light and naturally expressed by the bac-
terium  Natromonas pharaonis . When expressed 
in neurons, exposure to orange light (570 nm 
absorption maximum) causes active pumping of 
chloride ions into the cell, thereby hyperpolariz-
ing the membrane potential and inhibiting action 
potential generation [ 98 ]. However, expression 
of NpHR in neurons was not optimal, and it 
formed aggregates in the endoplasmic reticulum 
that could lead to cellular toxicity [ 33 ]. Further 
development of the NpHR sequence focused on 
decreasing aggregates, improving photocurrents 
and promoting membrane localization. Several 
rounds of substantial mutagenesis of the original 
NpHR sequence allowed researchers to develop 
a variant (named eNpHR3.0) displaying a three-
fold increase in photocurrents and twofold 
increase in membrane hyperpolarization effects, 
together with a signifi cant red shift of its excita-
tion wavelength, making eNpHR3.0 ideal for a 
varied range of studies involving neuronal 
silencing [ 34 ]. 
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 Although halorhodopsin chloride pumps are 
able to reduce neuronal activity with high effi -
ciency, actively pumping chloride ions into the 
neurons could have effects on chloride homeo-
stasis, with potential shifts in the effect of 
GABAergic inhibition via chloride-permeable 
GABA A  receptors (i.e., shifting E GABA ) [ 66 ]. 
E GABA  is already compromised in epileptic tissue 
[ 35 ]. Increasing the intracellular concentration of 
chloride by its active pumping via NpHR activa-
tion could further exacerbate this phenomenon, 
and cause a shift in E GABA  to the point where 
GABA A  activation becomes depolarizing [ 66 ]. 

 Together with halorhodopsins, a separate class 
of tools to inhibit neuronal activity was developed 
from naturally-occurring proton pumps derived 
from different strains of the bacterium 
 Halorubrum sodomense . In contrast to NpHR 
and its variants, proton pumps hyperpolarize cell 
membranes by actively transporting protons to 
the extracellular environment, upon exposure to 
orange/yellow light. The most widely used pro-
ton pumps include Archaeorhodopsin-3 (also 
called Arch [ 22 ]) and ArchT [ 38 ]. Both have been 
shown to be able to successfully inhibit neuronal 
activity  in vitro  and  in vivo , including when 
expressed in the brain of non-human primates 
[ 38 ]. Recently, Arch3.0 and ArchT3.0 variants 
were developed, using modifi cations similar to 
those made to the original NpHR sequence, and 
yielded proton pumps displaying large photocur-
rents in neurons and increased action potential 
silencing effects [ 60 ]. Due to the fact that these 
pumps rely on active transport of protons for 
hyperpolarizing cell membranes (rather than 
chloride transport), they would not contribute to 
the disturbance in chloride reversal potential and 
GABA A -mediated inhibition [ 66 ], but may have 
alternate effects, such as altered pH. 

 Channelrhodopsins and halorhodopsins or 
proton pumps can also be expressed simultane-
ously in the same cells to allow bidirectional 
control of the cell population of interest [ 34 ,  39 , 
 40 ]. ChR2 and most of its variants are activated 
by blue light, and are therefore spectrally com-
patible with NpHR or Arch variants, which are 
activated by orange/yellow light. Moreover, if 
particular experimental conditions require simul-

taneous activation of one population and silencing 
of another, a combination of red-shifted channel-
rhodopsins could be used together with NpHR or 
Arch. This could be used, for example, to study 
the effects of simultaneous pyramidal cell silencing 
and GABAergic interneuron activation on seizure 
activity. 

 Although the expression of opsins can be 
specifi c and directed to desired cell populations 
using the strategies described above, the out-
come of neuronal activation and/or silencing in 
intact networks can be more intricate than per-
haps initially expected, due to the extremely 
complex nature of neuronal circuits. For exam-
ple, results from  in vivo  experiments using 
ChR2-mediated light stimulation show some 
cells being activated (as expected), while others 
are silenced, likely due to network interactions 
[ 38 – 40 ]. Similarly, in a study using ArchT acti-
vation (expected to inhibit cells), a substantial 
number of neurons responded to light instead by 
increasing their firing rate [ 38 ]. As epileptic 
circuits often undergo considerable changes, 
including axon sprouting and changes in network 
connections, potentially unexpected network roles 
should also be considered when using optoge-
netics with epileptic tissue. Indeed, optogenetics 
provides a powerful means to explore these 
changes and their consequences on the function-
ing of the network in epilepsy. Provided opsin 
expression remains specifi c, optogenetics pro-
vides the ability to examine the role of specifi c 
neuronal populations in health and disease in a 
manner previously unachievable with techniques 
such as electrical stimulation.   

26.2.3     Light Delivery 

 In experimental conditions, light is delivered by 
using a variety of different systems, depending on 
the needs. Sources able to generate light with suit-
able wavelength and power include lasers and 
light emitting diodes (LEDs). Laser sources have 
the advantage of providing light with narrow 
wavelengths, and therefore do not require fi lter-
ing. Additionally, lasers can provide high power, 
even when coupled to small diameter fi bers which 
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are routed through optical commutators. Lasers 
can be used with mechanical shutters for light on/
off switching to avoid delays in reaching maximum 
power. However, shutters can be expensive, sensi-
tive, and have relatively short life expectancies. A 
major disadvantage of lasers is their cost. LED 
light sources are generally more affordable and 
are becoming increasingly powerful. While LEDs 
have the disadvantage of delivering light with 
typical “tails” in excitation spectrum, these can be 
adequately fi ltered to ensure proper wavelength 
excitation. LED sources typically reach maxi-
mum power in less than 200 μs even at very high 
frequency. Therefore, light can be switched on 
or off by delivering external voltage pulses (rather 
than via a mechanical shutter) without sacrifi cing 
light power. 

 For  in vitro  preparations light is typically 
delivered through the lens of the microscope 
[ 48 ,  84 ,  102 ], although other methods are also 
used, including optical fi bers positioned in close 
proximity to the tissue area of interest [ 50 ]. For 
example, small diameter fi bers [ 50 ] or laser-
scanning photostimulation [ 95 ] can be used to 
activate specifi c regions in the slice, allowing 
for example circuit mapping and investigation 
of network alterations occurring after seizures. 
When light is delivered through the lens of the 
microscope, fi ltered light from a mercury or 
xenon lamp source can also be used, similar to 
epifl uorescence applications. 

 For  in vivo  situations, light is most commonly 
delivered through an optical fi ber implanted in 
the region of interest and connected to the light 
source of choice. Sophisticated light delivery 
options have also been designed, including multi-
waveguides capable of delivering light of differ-
ent wavelengths to different locations along the 
guide [ 104 ]. Additionally, the optical fi ber can be 
combined with a recording electrode. The combi-
nation is termed an optrode, and a number of 
designs and protocols exist [ 1 ,  4 ,  42 ,  69 ,  75 ,  78 , 
 89 ,  90 ,  101 ], including a recent protocol for sim-
ple and relatively low cost optrodes designed for 
chronic (months long) recordings in rodents [ 6 ]. 
Optical fi bers can be directly implanted [ 6 ] or 
guided into the tissue by a cannula previously 
fi xed to the animal’s skull [ 99 ]. For long-term  in 

vivo  applications, an optical commutator is often 
used to reduce torque on the optical patch cord 
connecting the animal and the light source. There 
also exist wireless options for light delivery, 
including headborne LED devices [ 90 ] and 
injectable μ-LEDs [ 44 ]. 

 A major caveat to consider while planning  in 
vivo  optogenetic experiments is that brain pene-
trance by light is rather limited, as described 
above, and progressively reduces with decreasing 
wavelengths. Therefore, the spatial distance 
between the light and the cells expressing the 
opsin can be critical, and will determine the mini-
mal required power for adequate activation of the 
transgene. The choice of opsin is also important, 
as some are several fold more sensitive to light 
than others, or have red-shifted excitation 
 maximum allowing simultaneous activation (or 
inhibition) of a large number of neurons while 
maintaining a small diameter optical fi ber (reducing 
tissue damage).   

26.3     Optogenetics: Shedding 
Light on Epilepsy 

26.3.1     Review of Recent Studies 

 The fi rst attempt at using optogenetic approaches 
for suppressing abnormal hypersynchronized 
activity involved expression of eNpHR (a slightly 
improved NpHR protein) in pyramidal cells of 
the hippocampus [ 84 ]. The inhibitory opsin was 
introduced in excitatory principal cells of organo-
typic hippocampal slices by using a lentivirus 
carrying the NpHR transgene under the control 
of the CaMKII alpha promoter, which is 
expressed in excitatory cells and absent in inhibi-
tory interneurons. Organotypic hippocampal 
slices are proposed to represent an  in vitro  model 
of epileptic tissue, as they exhibit network reor-
ganization, such as cell death, axonal sprouting 
and synaptic formation, leading to hyperexcit-
ability [ 3 ,  11 ]. The ability of NpHR to inhibit epi-
leptiform activity in such “epileptic” tissue was 
tested by applying orange light during stimula-
tion train induced bursting (STIB), a stimulation 
protocol that reliably evokes afterdischarges in 
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the CA1 and CA3 area. Orange light application 
effectively suppressed STIB-induced activity, 
while blue light application was ineffective, indi-
cating the specifi city of the approach used 
(Fig.  26.2 ) [ 84 ].

   Optogenetic approaches have also had success 
in inhibiting seizures  in vivo  across a range of 
epilepsies, including induced (acute) seizures 
[ 76 ], focal cortical seizures [ 94 ], temporal lobe 
seizures during the chronic (spontaneous sei-
zures) phase of the disease [ 48 ], and thalamocor-
tical epilepsy in a model of cortical stroke [ 65 ]. 

 Using the rat pilocarpine model of acute 
induced seizures in awake behaving male rats, 
Sukhotinsky and colleagues examined the ability 
to inhibit seizures using optogenetic inhibition of 
the hippocampus [ 76 ]. The inhibitory opsin 
halorhodopsin (eNpHR3.0 [ 34 ]) was expressed 
in principal excitatory cells in the hippocampus 
using adeno-associated virus (AAV) and a 
CamKIIα promoter. Animals receiving light and 
expressing the opsin showed an increase in time 
to seizure onset from the time of pilocarpine 
injection compared to controls (time to seizure 
onset with opsin activation: 21 ± 1.8 min versus 
15.2 ± 1.1 min in controls). Controls included 
animals not injected with virus and not receiving 

light, animals injected with virus but not receiving 
light, and animals receiving light but not expressing 
the opsin. Therefore, the activation of opsins (and 
inhibition of hippocampal principal excitatory 
cells) delayed the time to seizure onset. This 
study supports the notion that optogenetics can 
be used to inhibit seizures. Moreover, it indicates 
that targeted inhibition of principal cells in the 
hippocampus can delay the onset of pilocarpine 
induced seizures. 

 Wkyes and colleagues demonstrated the suc-
cessful use of an optogenetic approach to inhibit 
focal cortical seizures [ 94 ]. Neocortical epilepsy 
is frequently drug-resistant, and new therapeutic 
approaches are being actively sought. Focal corti-
cal epilepsy was induced in rats by focal injection 
of tetanus toxin into the motor cortex. Lentivirus 
was co-injected with the tetanus toxin, in order to 
transduce excitatory pyramidal neurons in the 
epileptic focus with the inhibitory opsin halorho-
dopsin (NpHR2.0, under a CamKIIα promoter). 
Seven to 10 days after the injection of tetanus 
toxin, the ability of an optogenetic approach to 
inhibit seizures was investigated. EEG was 
recorded for a 1,000 s baseline period, then inter-
mittent light (20 s on, 20 s off) was delivered for 
1,000 s, and then a fi nal 1,000 s of post-light EEG 

  Fig. 26.2     Optogenetic inhibition of epileptiform activ-
ity in vitro.  NpHR expression in excitatory principal cells 
of organotypic hippocampal slices is effi cient in inhibit-
ing stimulation train induced bursting (STIB) when acti-

vated by  orange light , in both CA3 ( a ) and CA1 ( b ) areas. 
Stimulation with  blue light  failed to alter STIB-induced 
bursting ( b ,  bottom ) (Reproduced with permission from 
Ref. [ 84 ])       
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was recorded. Compared to the periods of no- light 
delivery, opsin activation by light delivery attenu-
ated recorded EEG epileptiform activity. In animals 
not expressing opsins, light delivery did not 
affect the high-frequency power of the signal, 
supporting the conclusion that the light-effect 
observed in opsin-expressing animals was due to 
the activation of opsins, rather than of light deliv-
ery  per se . Not only does this study indicate that 
an optogenetic approach can inhibit focal cortical 
epileptiform activity, but also that inhibition of a 
portion of excitatory cells at the focus is suffi -
cient to do so. 

 These two studies support the potential for an 
optogenetic approach for diverse epileptic activ-
ity, and make use of the power of optogenetics to 
selectively target specifi c populations of cells. An 
additional major benefi t of optogenetics is the 
temporal precision which it can provide. That is, 
an optogenetic approach could be employed in an 
on-demand or responsive fashion, such that inter-
vention only occurred either immediately before 
a seizure would occur (seizure prediction) or 
early during a seizure onset (seizure detection). 
In addition to the experimental benefi ts of an on- 
demand approach, by limiting intervention to 
only those times when it is needed, an on-demand 
approach may reduce negative side effects asso-
ciated with chronic treatments. 

 On-demand optogenetics have been used in 
two models of epilepsy – thalamocortical and 
temporal lobe epilepsy. Using a cortical stroke 
model of thalamocortical epilepsy, and line- 
length threshold crossing for automated sei-
zure detection, Paz and colleagues demonstrated 
the successful inhibition of seizures [ 65 ]. The 
inhibitory opsin halorhodopsin (eNpHR3.0 
[ 34 ]) was expressed under a CamKIIα pro-
moter in the ventrobasal thalamus ipsilateral to 
the site of induced cortical stroke. On-demand 
light activation of opsins interrupted seizures. 
In addition to illustrating the potential for on-
demand optogenetics to stop seizures, these 
fi ndings supported the theory that the cortical 
strokes produced thalamocortical seizures; that 
is, optogenetics can provide insight into the 
mechanisms of seizures, including critical 
brain regions and networks. 

 On-demand optogenetics has also been used 
successfully in a mouse model of chronic tem-
poral lobe epilepsy [ 48 ]. Seizures were 
detected on- line with custom-designed, tun-
able, multi-algorithm based detection software 
(Fig.  26.3 ). This software, and instructions on 
how to use the software, is available for down-
load through Nature Protocols [ 6 ]. The intra-
hippocampal kainate mouse model used 
mimics unilateral hippocampal sclerosis, and 
displays both spontaneous electrographic-only 
seizures (that is, seizures with little or no overt 
accompanying behavior) as well as seizures 
that progress to overt behavioral seizures. 
Seizures were detected early, prior to overt 
behavior. Selective expression of the inhibitory 
opsin halorhodopsin (eNpHR3.0) was achieved 
by crossing mice expressing halorhodopsin in 
a Cre-dependent fashion with mice expressing 
Cre under the CamKIIα promoter [ 56 ]. 
On-demand light  delivery to the hippocampus, 
inhibiting excitatory cells, dramatically trun-
cated seizures (Fig.  26.4 ).

    Krook-Magnuson et al. [ 48 ] then went on to 
try a second approach. Rather than inhibiting 
excitatory cells directly through optogenetics, the 
authors instead used optogenetics to excite a sub-
population of inhibitory neurons. Selective 
expression of the excitatory opsin channelrho-
dopsin (ChR2) was achieved by crossing mice 
expressing ChR2 in a Cre-dependent manner 
with mice expressing Cre selectively in 
parvalbumin- expressing neurons. In the hippo-
campus, parvalbumin-expressing interneurons 
represent less than 5 % of the total neuronal pop-
ulation [ 16 ,  30 ,  92 ]. Remarkably, seizures were 
signifi cantly inhibited through this approach. 
Seizures were also signifi cantly inhibited when 
light was delivered to the contralateral hippocam-
pus. Finally, light delivery reduced the number of 
seizures progressing to overt behavioral seizures. 
These data indicate that focal light delivery can 
have a signifi cant effect on temporal lobe sei-
zures, that an on-demand approach can work in 
temporal lobe epilepsy, and that a strategy 
directly targeting only a small fraction of cells 
(that is, parvalbumin-expressing interneurons) 
can signifi cantly inhibit temporal lobe seizures.  
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26.3.2     Obstacles and Future 
Potential in Epilepsy Research 

 While the results from these studies are promis-
ing, a number of hurdles need to be overcome 
before optogenetics, and hopefully on-demand 
optogenetics, can be realized in the clinical set-
ting. These include demonstration of safe and 
stable opsin expression in humans, as well as a 
safe implantable device for on-line seizure detec-
tion and light delivery. However, on-demand 
optogenetics, with its cell-type, spatial, and 
temporal- specifi city, may one day aid patients 
currently suffering from uncontrolled seizures 
and the negative side-effects of systemic treat-
ment options. An example patient population that 
could benefi t from the clinical realization of an 

on-demand optogenetic therapeutic is patients 
with refractory bilateral temporal lobe epilepsy 
for whom surgical resection is not an option. 

 Optogenetics additionally presents a powerful 
tool for expanding our understanding of mecha-
nisms of epilepsy. While the studies discussed 
here have demonstrated a wide potential for opto-
genetics in the fi eld of epilepsy, there is much 
more to be gained from fully harnessing the 
power of optogenetics. Through optogenetics it is 
possible to test hypotheses regarding critical cell- 
types and networks involved in the initiation, 
continuation, propagation, and (natural or 
induced) cessation of seizures. The studies 
described above inhibited seizures using optoge-
netic techniques, but it is also possible to use 
optogenetic approaches to study mechanisms 

  Fig. 26.3     Schematic of online seizure detection for on-
demand optogenetics.  EEG input ( blue ) recorded from the 
animal is amplifi ed (Amp), digitized (A/D), and relayed to a 
PC running real-time seizure detection software. This soft-
ware is tuned for each animal, with user-defi ned thresholds 
( green ). Seizure detection algorithms utilize features of sig-
nal power ( top ), spikes ( middle ), or frequency ( bottom ). 
Once a seizure has been detected using the selected criteria, 
the software can activate, via a TTL signal from the digitizer 

to the laser, the optical output ( orange ) delivered to the ani-
mal. Signal power related calculations ( purple , during an 
example seizure shown in  grey ), spike characteristics (e.g., 
amplitude, rate, regularity, and spike width, shown in  red ), 
and frequency characteristics (shown for the same seizure, 
with warmer colors representing higher energy) are illus-
trated. COMP: digital comparator. This on-line seizure 
detection software is available for download through refer-
ence [ 6 ] (Figure reproduced with permission from Ref. [ 48 ])       
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of epilepsy through the induction (rather than 
inhibition) of seizures [ 64 ]. The information 
gained from optogenetic experiments can in turn 
open the door for new therapeutic approaches 
beyond optogenetics, including new drugs tar-
geting key cell types or electrical stimulation 
targeting key brain regions. 

 While the fi eld is benefi ting greatly from recent 
technological advances, there is a continuing need 

for additional developments. A reliable and inex-
pensive long-term EEG monitoring system, with 
fully computerized analysis of EEG and video for 
automated detection and analysis of electrographic 
and behavioral seizures, would push the fi eld for-
ward dramatically. For example, this would 
increase the feasibility (and statistical power by 
allowing more animals to be monitored and ana-
lyzed) of studies with mild or moderate head 

  Fig. 26.4     Seizure control in vivo in mice expressing 
HR in principal cells in a model of temporal lobe epi-
lepsy.  ( a ) Crossing CamK-Cre and Cre-dependent halor-
hodopsin (HR) mouse lines generated mice expressing the 
inhibitory opsin HR in excitatory cells (Cam-HR mice). 
( b ) Experimental timeline. ( c–e ) Example electrographic 
seizures detected ( vertical green bars ), activating amber 
light (589 nm) randomly for 50 % of events (light:  amber 
line , example in  d ; no-light example in  e ). ( f ) Typical 
example distribution of post-detection seizure durations 
(5 s bin size) during light ( solid amber ) and no-light inter-

nal control conditions ( hashed gray ). Inset: fi rst 5 s bin 
expanded, 1 s bin size. Note that most seizures stop within 
1 s of light delivery. ( g–i ) Group CamHR data showing 
the percent of seizures stopping within 5 s of detection 
( g ), within 1 s of detection ( h ), and the average post-
detection seizure duration (normalized to average no-light 
post-detection duration for each animal) ( i ). Note that in 
one animal (shown in  c–e ), all seizures were stopped 
within 1 s of light delivery. Averaged data: fi lled circles. 
Error bars represent s.e.m. Scale bars in  c–e : 100 μV, 5 s 
(Reproduced with permission from Ref. [ 48 ])       
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injury for which only a small subset of animals go 
on to develop epilepsy. Recent advances in wire-
less devices, including those capable of delivering 
light [ 44 ,  90 ], and improvements in seizure detec-
tion [ 6 ,  91 ] are paving the way for such future 
advances. These advances will additionally 
improve the utility of optogenetics for epilepsy 
research by allowing chronic on-demand light 
delivery to freely moving, untethered, animals.   

26.4     Other Technical Advances: 
New Avenues, New Insights 

 This chapter has focused on optogenetics. 
Clearly, however, the fi eld takes advantage of a 
large range of new technological advances, sev-
eral of which are being rapidly integrated with 
optogenetics. For example, on-demand 
approaches (which as described above can be 
successfully integrated with optogenetics) have 
the potential to provide both experimental and 
therapeutic benefi ts. While electrical stimulation 
lacks the cell-type specifi city of optogenetics, it 
can provide temporal precision, and thus can also 
be used in an on-demand fashion. Previously, on- 
demand electrical stimulation was found to pro-
vide superior seizure control in rats [ 32 ]. More 
recently, on-demand transcranial electrical stim-
ulation (TES) was used to reduce spike-and-wave 
episodes in absence seizures in rats [ 13 ]. There is 
also intense clinical interest in an on-demand 
therapeutic option, and clinical trials have shown 
promise (reviewed in reference [ 93 ]). 

 A step beyond early seizure detection is sei-
zure prediction. A recent study in patients with 
drug-resistant partial-onset epilepsy was able to 
predict for a subset of patients periods of high 
seizure risk and periods where the chances of 
having a seizure were relatively low, based on an 
analysis of the frequency bands recorded from 
intracranial EEG [ 24 ]. Further supporting the 
possibility of seizure prediction, changes in 
multi-unit activity are reported in human patients 
prior to seizure onset [ 18 ,  85 ]. Unfortunately, 
there is considerable variability in this early 
activity from seizure to seizure [ 17 ,  18 ], which 
may limit the ability to have accurate seizure pre-

diction. However, detecting seizures early (prior 
to overt behavioral manifestations) and intervening 
(optogenetically or otherwise) to truncate sei-
zures to this pre-clinical stage could have a large 
impact on patient quality of life. 

 Imaging techniques are an additional exam-
ple of the wide-range of expanding techniques 
that are being increasingly applied to the study 
of epilepsy, and include diffusion tensor imag-
ing (DTI, reviewed in reference [ 28 ]), magnetic 
resonance imaging (MRI, which can be com-
bined with optogenetics [ 52 ]), positron emis-
sion  tomo-graphy (PET), single-photon 
emission computed tomography (SPECT, for a 
review see reference [ 57 ]), the new clarity brain 
[ 23 ], calcium imaging and voltage sensitive 
dyes (for recent reviews see references [ 28 , 
 77 ]). Anatomical imaging techniques of neuro-
nal projections in intact brains allow examina-
tion of network connections between brain 
regions in health and disease. Appreciating 
long-distance network connections, and how 
these shape local network connections [ 49 ,  86 ], 
will undoubtedly provide crucial information on 
seizure propagation mechanisms, as well as 
potentially mechanisms behind seizure initiation 
and termination. Functional imaging can reveal 
local as well as long-distance network dynam-
ics, and is contributing substantially to our 
understanding of mechanisms in epilepsy. For 
example, a recent study using calcium imaging 
of epileptic tissue found not only variability in 
fi ring between neurons during epileptiform 
events, but also variability between epilepti-
form events, with each event comprised of dif-
ferent patterns of co- activated clusters of 
neurons [ 29 ]. 

 Advances are certainly not limited to seizure 
detection or imaging techniques. Whole-genome 
sequencing, which is providing ever-expanding 
information on the genetics of epilepsies 
(reviewed in reference [ 61 ]), is an excellent 
example of the driving force that new technologi-
cal advances can provide to the fi eld. Additional 
diverse technological advances, including uncaging 
of GABA [ 96 ] and devices allowing focal cooling 
[ 68 ], are introducing unique new opportunities 
for studying and treating epilepsy. Advances in 
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recording techniques are providing unprecedented 
information regarding the activity of neurons 
during epileptiform events. It is now possible to 
record from hundreds of units in human epileptic 
patients (for a discussion of the spike sorting 
techniques involved see reference [ 27 ]), provid-
ing a wealth of information on the involvement 
of neurons in seizures [ 18 ,  43 ,  85 ]. The novel 
information gained from these new techniques 
can aid in seizure detection and prediction 
discussed above. Importantly, this data can also 
be incorporated into “big data”-driven large-scale 
computational models [ 16 ,  70 ]. Hypotheses can 
then be tested  in silico , and new hypotheses in 
turn generated to be tested  in vitro  or  in vivo  
(for reviews of computational neuroscience in 
epilepsy, see references [ 21 ,  73 ]). 

 From the genetics, to the proteins, to the cell- 
types and networks critical in epilepsy, advances 
are being made and insights gained. Optogenetics, 
together with a vast array of novel technological 
developments, is expected to continue to light 
new avenues for studying the mechanisms of the 
epilepsies.     
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