
Chapter 6
Strategic Management Scheduling

José G. Borges, Jordi Garcia-Gonzalo, Susete Marques,
Victor A. Valdebenito, Marc E. McDill, and André O. Falcão

6.1 Introduction

Strategic management planning plays a key role in the development of forest
schedules as the temporal dimension is a determinant characteristic of all forestry
production systems. Strategic or long-term management planning typically encom-
passes temporal horizons extending over more than 10 years so that forestry
economic and biological processes may be adequately acknowledged (Chap. 2).
The importance of this planning level was highlighted in a recent review of forest
management problems that are prevalent world-wide (Borges et al. 2014b). Forest
management experts representing 26 countries from Europe, North and South
America, Africa and Asia involved in the FORSYS Cost Action (http://www.
cost.eu/domains_actions/fps/Actions/FP0804) did include strategic management
planning in the list of the most important problems that foresters have to face in
their countries (Borges et al. 2014b).

Long term stand-level problems tend to be more important in countries where
the forest is mostly privately owned and highly fragmented (Borges et al. 2014b).
This spatial scale structures a problem with specific features and that requires
specialized solution techniques (Chap. 6). In this chapter we will focus on long-term
management planning at the regional and forest-level spatial scales (Chap. 2). The
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latter typically encompasses several contiguous stands and is more frequent in the
case of industrial plantations. Nevertheless, in the case of the vertically integrated
forest industry its land base is often dispersed over a region. Further, the industry
is often concerned with the supply of raw material from other ownerships within a
regional framework.

Socioeconomic development and demographic trends have led to an increasing
awareness of the externalities that derive from the use of forests for commercial
purposes over extended planning horizons. Strategic management scheduling of
industrial forests is thus increasingly framed by demands other than by the forest
industry (Chap. 2). As a consequence, the long term sustainability of an industrial
forest is currently assessed by a set of indicators (Chap. 13) to characterize both the
supply of industrial product flows and the ecological/economic features of its land
base. Moreover, the forest industry competitiveness often depends on the success
of certification processes where a wide range of ecological and socioeconomic
indicators are considered (Chap. 15).

In this context, strategic or long term management scheduling of industrial forests
has to address objectives that range from traditional products’ even-flow goals to
stock control and landscape structure targets. Borges et al. (2014b) reported that
even when strategic management planning addresses only market wood products
thus excluding all other goods and services, forest managers often target multiple
objectives rather than a single one. For that purpose, forest managers sometimes
sequence land allocation and harvest scheduling decisions. For example, in Brazil,
land allocation decisions in areas managed by the industry are often made prior to
harvest scheduling decisions. The legal framework prescribes the amount of land
that a rural property has to preserve for environmental purposes or to maintain
uncultivated, protecting soils and water streams (usually referred in Brazil as APPs –
Permanent Preservation Areas), or to reserve as a precautionary measure to maintain
a constant stock of wood and forest resources (also referred in Brazil as RLs –
Legal Reserves) (Rodriguez and Nobre 2013). Nevertheless, even when uses are
segregated in space the management of the industrial plantation may still be framed
by concerns other than with the sustainability of the product flow to the factory.

The spatial context of harvest scheduling decisions is typically addressed at
tactical and operational planning scales (Chap. 2). The importance of locational
specificity in a management plan, i.e. the definition of the spatial location where
management options are actually to be implemented, grows when tactical and
operational concerns are to be addressed (Chap. 7). Nevertheless the possibility of
balancing strategic and tactical goals may be facilitated if long-term management
planning does address locational specificity. The management of the industrial plan-
tation is often framed by spatial considerations that require the acknowledgement
of neighboring relations between stands. If these are totally ignored by strategic
management planning it may even more difficult to reconcile the long-term and
medium and short-term perspectives and schedules. Accordingly, in countries where
strategic forest-level management planning targeting only wood products is reported
as a prevalent problem, locational specificity of the long-term solution is typically
required (Borges et al. 2014b). In fewer cases it was reported that neighborhood
relations should also be fully acknowledged.

http://dx.doi.org/10.1007/978-94-017-8899-1_2
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The practice of strategic management scheduling of industrial plantation thus
focus on the structuring, the representation and the solution of a range of long-term
planning problems. These may be classified according to dimensions that include
the spatial scale, the number of objectives as well as of products and the spatial
context. In any case, thoughtful development of all stages of the decision process
requires information and knowledge about the structure of the planning process, the
land base that is the object of the planning exercise, the models available to make
projections of forest products and the models available to generate prescriptions that
may be implemented in each stand (Chap. 2). Last but not the least it requires the
application of forest economic and finance models (Chap. 5).

Problem structuring issues may be better addressed in the framework of the
development of information systems that may encapsulate the data and the model
base needed to support the integration of temporal planning levels (Chap. 9). In
this chapter we will address the representation of industrial forest strategic forest
management problems as well as the interpretation of its solution. We will start with
a simple harvest scheduling model aiming at the maximization of economic returns
while addressing concerns with the sustainability of a product flow (Problem 1).
This policy scenario will be expanded to reflect concerns with the volume in the
ending inventory and with the average carbon stock (Problem 2). Further concerns
with the environmental impacts of clearcuts will be addressed in Problem 3. The
integration of road building and maintenance decisions within strategic forest
management scheduling will be discussed as Problem 4.

Several modeling approaches will be considered to represent and solve each
problem. In the case of Problems 1 and 2 we will start with linear programming
formulations, the technique most widely used in long-term forest management
scheduling (Chap. 2). Mixed integer programming formulations will be used to
ensure the locational specificity of the solutions to Problems 1 to 3. We will present
a goal programming representation of the multiple objective policy scenarios in
Problems 1 to 3. A meta-heuristic – simulated annealing – will be considered as
an alternative integer solution approach in the case of Problems 1 to 3. Further,
a Pareto frontier approach will be used to illustrate how the setting of manage-
ment planning targets may benefit from a priori display of trade-offs between
objectives. The reader is referred to Chap. 2 for an introduction to each modeling
approach.

6.1.1 Example Forest and Applications

In this chapter, an example forest will be used to illustrate all problems and how they
may be addressed by each modeling approach. Several applications of the modeling
approaches to strategic management planning of industrial plantations will be briefly
described in six Management Planning in Action boxes.

Our example forest encompasses a set of 16 stands from Leiria National Forest
(LNF), a pine forest in Portugal (Fig. 6.1). Land classification led to stand areas that
range from 28.5 to 31 ha (Table 6.1). Long-term planning typically extends over the

http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_5
http://dx.doi.org/10.1007/978-94-017-8899-1_9
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
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Fig. 6.1 Example forest with 16 pine stands from Leiria National Forest in Portugal

number of years corresponding to 1.5 rotations (Chap. 2). In the case of LNF the
planning horizon extends over 100 years (Tomé et al. 2010; Garcia-Gonzalo et al.
2013). Nevertheless, for illustration purposes we will consider a four 10-year period
planning horizon.

http://dx.doi.org/10.1007/978-94-017-8899-1_2
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Table 6.1 Current inventory
in the 16 stands example
forest

Stand Age (years) Area (ha) Vol (m3)

1 43 31 268.9
2 43 29.8 268.9
3 43 30 268.9
4 43 28.9 268.9
5 53 29.2 331.3
6 53 29.8 331.3
7 53 29.8 331.3
8 53 30 331.3
9 33 29 193.6
10 33 29.5 193.6
11 33 29.6 193.6
12 33 30.5 193.6
13 23 28.5 107.5
14 23 28.9 107.5
15 23 29 107.5
16 23 29.7 107.5
Total 473.2
Average 38 29.6 225.3

These stands were assigned LNF inventory plot information (Table 6.1). Stand
age ranges from 23 to 53 years. The volume ranges from 107. 5 to 331.3 m3/ha in
the case of younger and older stands, respectively. A prescription writer was used to
generate 3–5 prescriptions for each stand. For simplicity, the prescriptions involve
only clearcuts and it is assumed that stands regenerate naturally. Prescriptions are
available that involve clearcuts in alternative years of the same planning period.

An empirical growth and yield model was used to estimate the values of volume
harvested in each planning period and at the ending inventory as well as of the
carbon stock, resulting from the assignment of each prescription to each stand
(Table 6.2). The corresponding revenues were computed considering a constant
price equal to 15.5AC/m3. Their present value in year 1 of the planning horizon was
computed considering a discount rate equal to 3 % (Table 6.2).

What You Will Learn in This Chapter

• The dimensions of strategic forest management planning in the case of industrial
plantations.

• How to build a model that may represent a strategic forest management planning
problem.

• How to analyze the potential of operations research techniques to address several
long-term management planning problems.

• How to interpret the long-term schedules provided by several modeling
approaches.
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6.2 Volume and Area Control in Long Term Industrial
Forest Management Planning (Problem 1)

The demand of timber has played a major role in defining strategic forest man-
agement planning problems as well as in early modeling approaches to address
it (Chap. 2). Ecological and socioeconomic conditions prevailing in nineteenth
century Europe, e.g. extensive deforestation of areas close to urban centers and
limited transportation technology, prompted the development of management mod-
els emphasizing the stability of timber supply (Borges and Hoganson 1999).
Theoretical concepts such as “sustainable yield” and “normal forest” (Alves 1984,
Chap. 2) emerged in order to address that society economic requirements. Biolog-
ical or financial parameters contributed explicitly to time the harvest (Chap. 5).
Socioeconomic factors were implicitly considered by area or volume harvested
control methods (Chap. 2) that targeted the sustainability of timber flows over
extended planning horizons.

The area control method aims to get to the maximum sustainable timber even
flow by balancing the age-class distribution as quickly as possible. It achieves this
goal by simply harvesting A/r hectares each period where A is the forest area and r
is the number of periods in the rotation. The area to be harvested in each period may
be adjusted to take into account the productivity of each hectare in the forest. In the
worst-case scenario, this will result in a regulated forest in r periods. The problem
with area control is that during the periods where the age-class distribution of the
initial forest is being regulated – which can be a long time if r periods is very long –
the volume harvested each period can vary dramatically. The more unbalanced the
initial age-class distribution, the larger this problem will be.

Volume control methods were developed to try to produce a more even flow
of volume while still eventually producing a regulated forest. In area control, the
forester cuts a constant area of forest each period and hopes to produce a steady flow
of timber, sometimes not too successfully. With volume control, the forester cuts a
certain volume each period and hopes to eventually produce a regulated forest. With
area control, the question of how much area to cut each period is straightforward.
With volume control, the problem of determining how much to cut each period is
less obvious.

An approach that would be analogous to the area control solution would be
to simply cut the long term sustainable yield (LTSY) each period. Unfortunately,
depending on the initial age-class distribution of the forest, this approach could
result in severe overcutting, eventually reducing the inventory of the forest to zero,
or cut so little that it would take a very, very long time to regulate the forest. For
example, the Hundeshagen method of determining the volume to cut adjusts the
LTSY by the ratio of the current total forest inventory over the total forest inventory
that will be present when the forest is regulated. The logic of this is that if the forest
currently has more inventory than it will have once it is regulated, then more volume
should be cut to reduce the excess inventory. Conversely, if the forest currently has
less inventory than it will have once it is regulated, then less volume should be cut
to allow the inventory to build up.

http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_5
http://dx.doi.org/10.1007/978-94-017-8899-1_2
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Mathematically, Let I0 be the current inventory (at time 0) and let IReg be the
inventory that will be present in the forest when it is regulated. The volume to cut in
the first period, H1, according to the Hundeshagen method is:

H1 D I0

IReg

LTSY (6.1)

In many cases, if this volume is harvested each period, one will achieve a fairly
constant volume of timber over time and the forest will eventually be regulated.
However, depending on the initial age-class distribution of the forest, this formula
can lead to overcutting, followed by undercutting, followed by overcutting, until the
age-class distribution approaches a somewhat balanced state, and the harvest level
fluctuations settle into a more constant level. Other volume control formulas have
been developed, some as general rules and others for very specific situations, but
none of them ideal for all situations. The main problem with classical approaches,
however, is that all of them, when confronted with the detailed inventory information
and varied conditions and constraints of modern forestry, fail to handle the
complexity of industrial forest management planning.

Furthermore, more sophisticated approaches are available that can handle much
of this complexity. Management science and computational capacity developments
enhance management planning processes by providing the ability to further analyze
alternative strategies through the use of mathematical programming or simulation
(Chap. 2). Automation provided the means to process huge amounts of data and
enabled the use of these more sophisticated techniques. As a result, the potential
for the definition of more sound strategic schedules for industrial forests has been
increased. Therefore, we now turn our attention to the application of modern
techniques introduced in Chap. 2 to address Problem 1.

6.2.1 Linear and Integer Programming

While many different objective functions can be defined for harvest scheduling
models, and even combined in a single, multi-objective model, the two most
common objectives are maximizing the discounted net revenues from the forest or
minimizing the cost of managing the forest. We will consider the former for illus-
tration purposes as most planning models developed for industrial forest plantations
use the discounted net revenues objective function. Moreover, to enhance readability
we will list a sub-set of the decision variables when describing each equation.

In the case of our example forest, a model to address sustainability concerns with
the supply of volume through both volume and area control may be described by
Eqs. 2.1, 2.2, 2.3, 2.4, 2.5, and 2.6 in Chap. 2. The LP formulation of Problem 1 (F1)
will thus include (a) an objective function that expresses the management objective
of maximizing the forest net present value subject to (b) a set of area constraints to
ensure that the area managed in each stand does not exceed the area available, (c)

http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
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a set of accounting equations to determine the volume harvested in each period, (d)
a set of accounting equations to determine the area harvested in each period, (e) a
set of volume control constraints, (f) a set of area control constraints and (g) a set of
non-negativity constraints.

(a) Objective function Z. In this abbreviated form it displays the decision variables
xkj, i.e. the area of stand k assigned to prescription j, for stands 1, 2 and 16:

MAX Z D 5:0x11 C 4:6x12 C 4:2x13C3:9x14C3:5x15C5:2x21C4:8x22C4:4x23

C 4:0x24 C 3:6x25 C � � � C 2:9x161 C 2:7x162 C 2:4x163 C 2:3x164

(6.2)

(Eq. 2.1 in Chap. 2)
The coefficients of the decision variables ckj correspond to the net present value

per hectare associated with prescription j for stand k. They include the value of the
ending inventory. For example the net present value resulting from the assignment
of an hectare of stand 1 to its prescription 1 is equal to 5.0 � 103 AC/ha (c11).

This value was computed by adding the discounted return associated to the
volume harvested in year 8 of planning period 1 to the value of ending inventory. The
former was computed by multiplying the volume harvested – v 111 (307.4 m3/ha)
in Table 6.2 – by the stumpage price – 15.5AC/m3 – and by the discount factor –
((1/(1 C 0.03)7) – and is thus equal to, approximately, 3.9 � 103 AC/ha. The latter
was computed assuming a perpetual series of optimal rotations. In the case of
stand 1, the optimal rotation is 50 years. Thus the Soil Expectation Value (SEV)
(Chap. 5) was computed by first multiplying v111 (30.7 � 10 m3/ha) in Table 6.2) –
by the stumpage price – 15.5AC/m3 to get the revenue resulting from selling
the stumpage from the second rotation in year 58. This was multiplied by the
discount factor ((1/((1 C 0.03)50 � 1)) to get the present value of a perpetual series
of revenues occurring every 50 years (1.4 � 103 AC/ha). As the initial year of this
series corresponds to the 8th year of the planning horizon that value must be
discounted further 7 years. The present value of ending inventory is thus estimated
as 1.4 � 103 AC/ha times 1/(1 C 0.03)7 D 1.1 � 103 AC/ha. In summary, approximately,
c11 D 3.9 C 1.1 D 5.0 � 103 AC/ha (5019.4AC/ha in Table 6.2).

The maximization is subject to

(b) The set of area constraints stating that the sum of the stand area assigned to each
prescription cannot exceed the total stand area (Eq. 2.2 in Chap. 2) (6.3)

x11 C x12 C x13 C x14 C x15 D 31

x21 C x22 C x23 C x24 C x25 D 29:8

: : :

x161 C x162 C x163 C x164 D 30

(6.3)

http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_5
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
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(c) The set of accounting equations to determine the volume harvested in each
period H1 to H4 (Eq. 2.3 in Chap. 2). Each Eq. (6.4) includes all decision
variables that involve a harvest in the corresponding period.

30:74x11C32:00x21C30:16x31C32:00x41C : : : C34:25x81C36:88x82�H1D0

33:57x12C36:14x13C34:94x22C37:62x23C : : : C31:63x111C32:32x121�H2D0

38:50x14C40:66x15C40:08x24C42:32x25C : : : C32:47x151C32:00x161�H3D0

39:88x94C42:111x95C40:08x104C42:32x105C: : :C34:94x162C37:62x163�H4D0

(6.4)

The coefficients of the decision variables vkjt correspond to the volume harvested
per hectare in period t when prescription j is assigned to stand k. For example, as we
have just checked, the volume harvested in period 1 from stand 1 if it is assigned to
its prescription 1 (v111) is equal to 30.7 � 10 m3/ha (Table 6.2).

(d) The set of accounting equations to determine the area harvested in each period
AH1 to AH4. Each equation (6.5 – analogous to Eq. 2.3 in Chap. 2) includes all
decision variables that involve a harvest in the corresponding period.

x11 C x21 C x31 C x41 C � � � C x81 C x82 � AH1 D 0

x12 C x13 C x22 C x23 C � � � C x111 C x121 � AH2 D 0

x14 C x15 C x24 C x25 C � � � C x151 C x161 � AH3 D 0

x94 C x95 C x104 C x105 C � � � C x162 C x163 � AH4 D 0

(6.5)

(e) The set of volume control constraints (6.6 – Eq. 2.4 in Chap. 2). It expresses a
policy aiming at non-declining volume flows and at a maximum 10 % increase
of volume harvested in consecutive periods.

H1 � H2 � 0

H2 � H3 � 0

H3 � H4 � 0

H2 � 1:1H1 � 0

H3 � 1:1H2 � 0

H4 � 1:1H3 � 0

(6.6)

(f) The set of area control constraints (6.7 - – analogous to Eq. 2.4 in Chap. 2). It
expresses a policy aiming at maximum 10 % fluctuations of area harvested in
consecutive periods.

AH2 � 0:9AH1 � 0

AH2 � 1:1AH1 � 0

AH3 � 0:9AH2 � 0

AH3 � 1:1AH2 � 0

AH4 � 0:9AH3 � 0

AH4 � 1:1AH3 � 0

(6.7)

http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
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(g) The set of non-negativity constraints (6.8 – Eq. 2.6 in Chap. 2).

x11; x12; x13 : : : ; x164; x165 � 0 (6.8)

According to the solution by the LP model (Table 6.3), the optimal long-
term management plan is associated with an objective function value Z equal to
2,041.3 � 103 AC. It encompasses a periodic harvest of 4,089 � 10 m3. The area
harvested ranged from 116.2 to 119.1 ha in periods 4 and 3, respectively. The
solution thus demonstrates that the LP model may address efficiently and effectively
both volume and area control objectives.

The plan proposed by the LP model reflects the stand age distribution. Younger
stands are harvested later (Table 6.4) in periods 3 (stand 13) or 4 (stands 14–16).
Conversely, older stands are harvested earlier in periods 1 (stands 5–8) or 2 (stands
1–4) in order to avoid opportunity costs associated with the delay of harvesting
mature timber. Classical approaches might meet the regulation objectives and yet
at a cost that might be higher than needed. The LP plan is efficient as it meets the
regulation objectives while minimizing the opportunity costs of doing so.

Nevertheless the LP solution aims at providing further insight about the forest
management planning problem. The distinction made by Geoffrion (1976) between
the mathematical programming “ostensible purpose” – optimization of a particular
problem, and its “true purpose” – generation of information to support decision
making is illuminating. The value of the LP dual variables (shadow prices) conveys
the impact of changing the independent term in a constraint in the value of the
objective function (Chap. 2). Thus the LP solution may be used to check the impact
of setting alternative area and volume control objectives.

The usefulness of this information may be illustrated by analyzing the value of the
shadow prices associated to the area constraints (Eq. 6.3). They reflect the marginal
value of each stand for the forest owner (Table 6.5). As expected the marginal
value of younger stands (stands 13 –16) is lower as they are harvested later in the
planning horizon. The highest marginal value of stand 6 is due both to its age and its
productivity (Table 6.2). This information provides insight about the value structure
of the current inventory as well as about the management planning problem. The
forest owner may take advantage further of this information when making decisions
on whether and how to expand the forest land base. The LP solution provides an
estimate of the maximum amount he might pay when buying an additional hectare
of each stand. Conversely, it conveys the minimum price he should consider when
selling one hectare of each stand.

The LP solution also provides information about the opportunity costs associated
with the selection of alternative plans. The reduced costs of decision variables
measure the impact of selecting a non-optimal prescription on the value of the
objective function (Chap. 2). For example, the solution highlights the costs of
anticipating or delaying the timing of harvests (Table 6.6). It further shows that the
option of not harvesting when available (stands 13–16) is associated with the highest
costs. These result both from the loss of revenue that results from the harvests in

http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
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Table 6.5 Stand marginal
value

Stand Problem 1 Problem 2

1 138:6399 154.6636
2 138:7129 154.7451
3 135:5367 151.2018
4 134:5236 150.0716
5 147:4294 156.2438
6 170:8324 162.6433
7 146:7897 155.6337
8 151:4685 160.5945
9 107:6591 139.6389
10 110:0547 142.7462
11 108:8038 141.1238
12 111:5544 144.6913
13 95:69504 129.6633
14 96:56702 130.8448
15 97:84652 132.5785
16 98:75606 133.8109

those stands and from the loss of revenue that results from the need of adjusting
the timing of harvests in other stands in order to meet the area and volume control
targets.

However useful, LP is not able to convey the geographical location of forest
activities. Yet this may be important even in a long-term planning framework. LP
divisibility may lead to solutions where stands are split into non spatially referenced
units to be managed differently. For example stand 10 was split into 2 units of
29.4 and 0.1 ha to be managed according to its prescriptions 2 and 4, respectively.
Further, computational constraints lead frequently to the aggregation of stands
into analysis areas thus compounding the impact of LP divisibility. Solutions to
such highly aggregated models are very sensitive to changes in assumptions and
aggregation schemes (Rose 1984). In this context, the information produced by the
solution may be of little value to understand the management problem and to support
effectively decision-making. Formulation F1 may then be changed within a Model
I framework to further address concerns with locational specificity. The resulting
MIP formulation of Problem 1 (F2) may be described as:

(a) Objective function Z. In this abbreviated form it displays the decision variables
xkj, i.e. whether stand k is assigned to prescription j, for stands 1, 2, 3 and 16:

MAX Z D 155:6x11C143:7x12C131:5x13C119:3x14C107:6x15C155:7x21

C143:8x22C131:5x23C119:4x24C107:7x25C152:1x31C140:5x32

C128:5x33 C 116:7x34 C 105:2x35 C � � � C 85:9x161 C 79:4x162

C72:6x163 C 68:5x164 (6.9)

(Eq. 2.7 in Chap. 2)

http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
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Table 6.6 Prescription
reduced cost

Stand Prescription Problem 1 Problem 2

1 1 0:00 �48:28

2 0:00 0:00

3 �12:65 0:00

4 �14:53 0:00

5 �25:99 �1:60

2 1 0:00 �48:31

2 0:00 0:00

3 �12:65 0:00

4 �14:53 0:00

5 �26:00 �1:60

3 1 0:00 �47:20

2 0:00 0:00

3 �12:36 0:00

4 �14:20 0:00

5 �25:41 �1:56

4 1 0:00 �46:85

2 0:00 0:00

3 �12:27 0:00

4 �14:09 0:00

5 �25:22 �1:55

5 1 16:68 0:00

2 0:00 �53:45

3 �1:69 0:00

4
5

6 1 0:00 0:00

2 �17:36 �55:69

3 �19:12 �0:05

4
5

7 1 16:61 0:00

2 0:00 �53:27

3 �1:68 �0:05

4
5

8 1 17:14 0:00

2 0:00 �54:97

3 �1:74 �0:05

4
5

9 1 0:00 �1:62

2 0:00 0:00

3 �8:53 0:00

4 0:00 0:00

5 �7:25 �1:49

(continued)
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Table 6.6 (continued) Stand Prescription Problem 1 Problem 2

10 1 0:00 �1:66

2 0:00 0:00

3 �8:72 0:00

4 0:00 0:00

5 �7:41 �1:53

11 1 0:00 �1:64

2 0:00 0:00

3 �8:62 0:00

4 0:00 0:00

5 �7:32 �1:51

12 1 0:00 �1:68

2 0:00 0:00

3 �8:83 0:00

4 0:00 0:00

5 �7:51 �1:55

13 1 �8:76 �1:53

2 0:00 0:00

3 �5:11 0:00

4 �29:27 0:00

5
14 1 �8:84 �1:55

2 0:00 0:00

3 �5:16 0:00

4 �29:54 0:00

5
15 1 �8:96 �1:57

2 0:00 0:00

3 �5:23 0:00

4 �29:93 0:00

5
16 1 �9:05 �1:58

2 0:00 0:00

3 �5:28 0:00

4 �30:21 0:00

5

In this model, the decision variables are integer to ensure that stands are
not split by the assignment of prescriptions. Thus the coefficients of the
decision variables ckj correspond to the total net present value associated with
prescription j for stand k. Again they include the value of the ending inventory.
For example the net present value resulting from the assignment of stand 1 to its
prescription 1 (c11) is equal to 155.6 � 103 AC. This is computed by multiplying
the net present value per ha that results from this assignment – 5.0 � 103 AC/ha –
by the stand area – 31 ha (Table 6.1).

The maximization is subject to
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(b) The set of area constraints (Eq. 2.8 in Chap. 2) (6.10)

x11 C x12 C x13 C x14 C x15 D 1

x21 C x22 C x23 C x24 C x25 D 1

x31 C x32 C x33 C x34 C x35 D 1

: : :

x161 C x162 C x163 C x164 D 1

(6.10)

(c) The set of accounting equations to determine the volume harvested in each
period H1 to H4 (Eq. 2.9 in Chap. 2). Each Eq. (6.11) includes all decision
variables that involve a harvest in the corresponding period.

953:0x11C953:5x21C931:7x31C : : : C1027:5x81C1106:4x82�H1D0

1040:5x12C1120:4x13C1041:2x22C : : : C933:2x91C956:8x121�H2D0

1193:6x14C1260:5x15C1194:3x24C : : : C941:6x151C950:3x161�H3D0

1156:5x94C1221:2x95C1182:2x104C : : : C1037:6x162C1117:2x163�H4D0

(6.11)

The coefficients of the decision variables vkjt correspond to the volume
harvested in stand k in period t when assigned to prescription j. For example, the
volume harvested in period 1 from stand 1 if it is assigned to its prescription 1
(v111) is approximately equal to 953 � 10 m3. This was computed as the product
of the stand area (31 ha) by the volume per hectare in period 1 that results from
that assignment (307.4 m3/ha (Table 6.2)).

(d) The set of accounting equations to determine the area harvested in each period
AH1 to AH4 (analogous to Eq. 2.9 in Chap. 2). Each Eq. (6.12) includes
all decision variables that involve a harvest in the corresponding period. Its
coefficients correspond to the stand area.

31x11 C 29:8x21 C 30x31 C � � � C 30x81 C 30x82 � AH1 D 0

31x12 C 31x13 C 29:8x22 C � � � C 29:6x111 C 30:5x121 � AH2 D 0

31x14 C 31x15 C 29:8x24 C � � � C 29x151 C 29:7x161 � AH3 D 0

29x94 C 29x95 C 29:5x104 C � � � C 29:7x162 C 29:7x163 � AH4 D 0

(6.12)

(e) and (f) Volume and area control constraints may now be expressed just like in
the case of the linear programming model (6.6 – Eq. 2.4 in Chap. 2 and
6.7 – analogous to Eq. 2.4 in Chap. 2).

(g) The set of constraints stating that the decision variables may take only the values
1 (if the prescription is assigned to the stand) or 0 (if the prescription is not
assigned to the stand) (6.13 – Eq. 2.8 in Chap. 2)

x11; x12; x13; : : : ; x165 are binary (6.13)

http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
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According to the solution by the IP model (Table 6.3), the optimal objective
function value Z decreased to 2,021.0 � 103 AC. Stands 2 and 10 are no longer split by
different prescriptions (Table 6.4) and this thus cost 20.3 � 103 AC. The harvest tim-
ings shifted in the case of three other stands in order to meet the new requirements.
The requirement of locational specificity impacted the volumes and areas harvested
in each period. They still meet the volume and area control constraints and yet are
more uneven as management flexibility decreased (Table 6.3). In the case of larger
forests with more stands the requirement of locational specificity may not have an
impact as substantial on the evenness of areas and volumes harvested in each period.
Yet it may have a higher impact on the computational cost.

Management Planning in Action 6.1: Volume Control in Long Term
Industrial Forest Management Planning at Celbi in Portugal

Celbi is currently a factory of Altri, a leading Portuguese eucalypt pulp pro-
ducer, with a capacity of up to 600 � 106 tonnes (http://en.altri.pt/aboutaltri/).
Currently Altri manages about 84 � 103 ha of forest in Portugal all certified
by the Forest Stewardship Council (FSC) and PEFC. Its wood self-sufficiency
rate stands around 30 % and all its mills are entirely self-sufficient on power
that is produced through the burning of wood components not suitable for
pulp production (http://en.altri.pt/aboutaltri/).

In 2000, a priority of former Celbi owners (Stora Enso) was the assessment
of the sustainability of pulpwood supply to this mill from its eucalypt land
base extending over about 39 � 103 ha. This prompted the development of
a linear programming (LP) model within a sustainability assessment project
coordinated by the Forest Research Centre (http://www.isa.ulisboa.pt/cef/).
The LP model included about 664 � 103 decision variables corresponding to
prescriptions associated with 3,361 stands in Celbi eucalypt land base. The
planning horizon included 31 one-year periods extending up to 2030. The
model aimed at maximizing net present value. It included area and volume
control constraints similar to the ones presented in 6.2. It further included
constraints on the maximum area to be converted each year.

The project was successful as the LP model provided the information
needed by the firm – e.g. the pulpwood potential supply ranging from
475 to 535 � 103 m3, according to scenarios of productivity growth after a
conversion as well of expansion of the eucalypt land base – to develop its
strategic plan (Borges and Falcão 2000).

http://en.altri.pt/aboutaltri/
http://en.altri.pt/aboutaltri/
http://www.isa.ulisboa.pt/cef/
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6.2.2 Heuristics

The locational specificity requirement may also be addressed by heuristic
approaches. A heuristic may be defined as a technique that seeks good solutions
at a reasonable computational cost without being able to guarantee optimality or
even feasibility (Reeves 1993). The computational complexity of some industrial
forest strategic management planning problems sometimes suggests the use of
heuristics as these techniques may be more flexible and capable of addressing more
complicated objective functions and constraints than exact algorithms. Moreover,
given the uncertainties that derive from the large-scale attributes of the general
forest management problem, good solutions may be adequate (Borges et al. 2002).
As Gunn and Rai (1987) pointed out, solutions that are near optimal and near
feasible may be adequate and even preferable if they can be produced with a
greatly reduced solution effort, given the uncertainty about biological, technical and
economic data in most forest management problems.

The design of heuristic approaches may often take advantage of the specific form
of the forest management scheduling problem. Based on this design, specialized
optimization solution processes can sometimes be evolved to address very large and
complex problems (Borges et al. 2002). For example, Hoganson and Rose (1984)
developed a specialized LP decomposition approach that may be used to solve this
management planning problem thus circumventing the need to use MIP to address
locational specificity requirements. Just like LP, this heuristic approach conveys
information about the marginal values of resources and the volume flow targets thus
contributing to the effectiveness of management planning.

The reader is referred to Borges et al. (2002) for a detailed review of the use of
heuristics in multiple objective forest management. In this chapter we will consider
for illustration purposes a meta-heuristic – simulated annealing (SA) – that has been
widely used to address forest management planning problems (e.g. Lockwood and
Moore 1993; Dahlin and Sallnas 1993; Murray and Church 1995; Tarp and Helles
1997; Boston and Bettinger 1999; Van Deusen 1999; Falcão and Borges 2002). In
this illustration, the simulated annealing approach involved the conversion of the
MIP formulation (Eqs. 6.6, 6.7, 6.9, 6.10, 6.11, 6.12, and 6.13) into a new objective
(or evaluation) function. The resulting SA formulation of Problem 1 (F3) may be
represented in abbreviated form as:

MAX Z D 155:6x11 C 143:7x12 C 131:5x13 C 119:3x14 C 107:6x15 C : : :

C 85:9x161 C 79:4x162 C 72:6x163 C 68:5x164 � � (6.14)

Where � stands for a global penalty function that decreases the value of Z if the
constraints are violated. The literature reports several approaches to design a penalty
function (e.g. Michalewicz 1996). In this chapter we will follow the approach
proposed by Falcão and Borges (2001) so that the penalty function is more sensitive
to large violations of the constraints and less responsive to small deviations. The
separable penalty functions thus consisted of parabolas where deviations from the
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area constraints and the volume and area control objectives do contribute to decrease
the value of Z. In all cases it was assumed that a 5 % deviation from feasibility
was equivalent to a 1 % deviation from unconstrained NPV when estimating the
parameter that characterizes the shape of the parabola for each constraint. Thus this
parameter was computed as

Aconst_j D �NP V=
�
�Dconst_j

�2
(6.15)

Where �NPV stands for an unconstrained NPV reduction of 1 % and �Dconst _ j

stands for a 5 % deviation from feasibility in constraint j. Aconst _ j is equal to zero
if constraint j is met. In the case of our example problem, the penalty function will
thus include three terms, one per Eqs. 6.6, 6.7 and 6.10. � may thus be described in
an abbreviated form as

� D Aconst_6_10

h
.x11Cx12Cx13Cx14Cx15�1/2C: : :C.x161Cx162Cx163Cx164�1/2

i

C Aconst_6_6

h
.H1–H2/2C : : : C.H3–H4/2C.H2–1:1H1/2C : : : C.H4–1:1H3/2

i

C Aconst_6_7

h
.0:9AH1–AH2/2C : : : C.0:9AH3–AH4/2C.AH2–1:1AH1/2C : : :

C.AH4–1:1AH3/2
i

(6.16)

with x11, x12, x13, : : : , x165 as binary
In summary, the SA objective (or evaluation) function thus included as its first

term the MIP objective function and as its second term a penalty function. The latter
penalizes the violation of the area constraints (the first term in Eq. 6.16), of the
volume control constraints (the second term in Eq. 6.16) and of the area control
constraints (the third term in Eq. 6.16).

Afterwards, the SA approach involved an iterative process (Fig. 6.2) where solu-
tions in each iteration were represented by a vector with 16 elements corresponding
to the 16 stands. The value of each vector element consisted of a pointer to the
prescription assigned to the corresponding stand. Solutions are thus integer.

The solution process started by selecting randomly a solution vector and by
computing its objective function value (Fig. 6.2). Each SA iteration consisted of
changing randomly the assignment of a prescription in 5 stands (5-opt approach) and
computing its objective function value Z2. In order to avoid premature convergence
to a local optimum, an inferior solution i.e. a solution associated with a lower
objective function value might be accepted.

The SA solution strategy was implemented as described by Borges et al. (2002). It
involved the design of a solution acceptance function and the definition of a stopping
criterion. The former determined whether an inferior solution might be accepted.
The probability of accepting inferior solutions increased with the temperature and it
decreased with the magnitude of the inferior move (Fig. 6.2):
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Fig. 6.2 Flowchart of the simulated annealing heuristic. Z1 and Z2 solution values before and after
a proposed move, T system “temperature”, rand random number between 0 and 1 (From Borges
et al. 2002)



200 J.G. Borges et al.

exp Œ.Z1 � Z2/ =T � > rand (6.17)

where exp stands for the exponential function, Z2 and Z1 stand for the value of the
SA objective (fitness evaluation) function (Eq. 6.14) after and before the 5-opt move,
respectively, T stands for the control parameter (temperature) which decreases with
the number of iterations according to the cooling schedule and rand stands for a
random number in the interval [0 1]. In this example, the initial temperature was
equal to 100,000. The temperature was decreased in each iteration according to a
cooling rate equal to 0.9999. The stopping criteria was the number of iterations
(100,000).

Meta-heuristic solutions are sensitive to parameter and penalty values. Typically
these are problem specific and require pre-testing so that values are selected that may
lead to approximate the optimal solutions. In this illustration, the parameterization
did lead to the optimal MIP solution (2021.1 � 103 AC) (Table 6.3). This is also a
consequence of the problem small size.

6.2.3 Goal Programming and Pareto Frontier

Both LP and MIP have single criteria objective functions. Other objectives e.g. area
and volume control were represented as constraints in the model. An alternative to
this approach is to consider all criteria in the objective function. Goal programming
is a technique that has been widely used for that purpose in strategic forest
management planning. In the case of our example forest, the goal programming
formulation of Problem 1 (F4) may be described as:

(a) Objective function Z

Min Z D 8:4746 PdevAH1 C 8:4746 NdevAH1 C 8:4746 PdevAH2

C 8:4746 NdevAH2 C 8:4746 PdevAH3 C 8:4746 NdevAH3

C 8:4746 PdevAH4 C 8:4746 NdevAH4 C 0:0244 NdevH1

C 0:0244 NdevH2 C 0:0244 NdevH3 C 0:0244 NdevH4

C 0:0049 NdevNPVt (6.18)

Where the decision variables consist of the deviations from the levels of the
criteria set by the decision-maker. The variables PdevAH1 to PdevAH4 and
NdevAH1 to NdevAH4 represent, respectively, the positive and the negative
deviations from the target set to the area harvested in each planning period to
reflect the area control regulation objectives. The variables NdevH1 to NdevH4
correspond to the deviations from the harvest levels targeted in each period.
It was assumed that there was no constraint to harvesting higher volumes in
each period and thus positive deviations were not minimized. Finally, the third
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criteria corresponds to the discounted net revenue from the forest e.g. the criteria
listed in the LP and the MIP objective functions. The coefficients of the decision
variables correspond to the product of 1,000 by the inverse of the criteria target
levels measured in hectares, cubic meters and Euros, in the case of the area
harvested, the volume harvested and the discounted revenues, respectively. The
GP model was set to minimize the percent deviations to overcome dimensional
constraints to the treatment of all three criteria. The discounted revenues criteria
was provided with a weight equal to 10 while the remaining two were weighted
equally as 1. For example, in the case of NdevNPVt the coefficient is computed
as 10*1,000*1/2,041,298 D 0.0049 while in the case of PdevAH1 the coefficient
is computed as 1*1,000*1/118 D 8.4746.

(b) The equation that computes the discounted net revenue from the forest

�
155:6x11 C 143:7x12 C 131:5x13 C 119:3x14 C 107:6x15 C 155:7x21

C 143:8x22 C 131:5x23 C 119:4x24 C 107:7x25 C 152:1x31 C 140:5x32

C 128:5x33 C 116:7x34 C 105:2x35 C : : : 85:9x161 C 79:4x162 C 72:6x163

C 70:2x164

�
� 103 � NP V t D 0 (6.19)

(c) The Eq. 6.20 that set the target for the area harvested in each period (118 ha) to
reflect the area control objectives, where this area is defined by Eq. 6.12

AH1 � P devAH1 C NdevAH1 D 118

AH2 � P devAH2 C NdevAH2 D 118

AH3 � P devAH3 C NdevAH3 D 118

AH4 � P devAH4 C NdevAH4 D 118

(6.20)

(d) The Eq. (6.21) that set the target for the volume harvested in each period
(41 � 103 m3) to reflect the volume control objectives, where this harvest level
is defined by Eq. 6.11.

H1 � P devH1 C NdevH1 D 4100

H2 � P devH2 C NdevH2 D 4100

H3 � P devH3 C NdevH3 D 4100

H4 � P devH4 C NdevH4 D 4100

(6.21)

(e) The Eq. 6.22 that sets the target for the discounted net revenue from the forest
(2,041,298AC).

NPVt � PDevNPVt C NDevNPVt D 2; 041:3 (6.22)
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(f) The set of constraints stating that the decision variables may take only the values
1 (if the prescription is assigned to the stand) or 0 (if the prescription is not
assigned to the stand) (Eq. 6.13)

x11; x12; x13; : : : ; x165 are binary

In this illustration, the target values were set to emulate the area and volume
control objectives and took advantage of the insights provided by the solutions by
the other techniques. For example, the target for the criteria NPV was set as the value
of the optimal LP solution. Generally, the targets are set based on a priori knowledge
about the criteria space e.g. about the productive potential of the industrial forest.

The solution by the GP model (Table 6.3) shows that the NPV criteria target
was almost achieved (2,040,967.45AC) while still guaranteeing that no stand was
assigned to more than one prescription (Table 6.4). Yet this was at the cost of
deviations from other targets. The MIP solution did point out that in order to
meet the volume and area control objectives, while ensuring locational specificity
of management options, the maximum net returns from the forest were equal to
2,021,000AC. For example, in the GP model the harvest levels in periods 1 and 2 did
not meet the 41 � 103 m3 targets. Further, there was a decline in harvest levels in
periods 3 and 4.

This solution highlighted that often decision-makers lack the a priori knowledge
about the productive potential of the industrial forest that is needed to specify
coherent targets. It showed that setting a higher target level for the NPV criteria led
to the underachievement of criteria emulating the area and volume control objec-
tives. In fact, the information regarding the long-term impact of forest management
options on objectives and conditions of interest is hardly ever perfect. The efficiency
and the effectiveness of a multiple criteria approach to industrial forest strategic
management planning calls for the use of models and methods as learning devices.
The quality of decisions may be enhanced by a learning process that may provide
additional insights about the resource capability model and the trade-offs between
objectives (Borges et al. 2014a).

Most multiple criteria approaches reported in the forestry literature typically
require the decision-maker to either specify the desired level of achievement or
specify the preferences for the various objectives (Martins and Borges 2007). As
often there is little information about what is possible to achieve (e.g. volume
flows), defining a priori the goals and preferences may not be realistic and lead
to poor management decisions (Tóth et al. 2006). Shortcomings of mechanistic
approaches to the specification of the levels of achievement of various objectives
as well as of the decision-makers preferences have been pointed out by Tóth and
McDill (2009) and Romero (2004). In order to overcome them, Tóth and McDill
(2009) demonstrated the possibility of developing and displaying a Pareto frontier
e.g. of finding the non-dominated points in the feasible set in the criteria space
(FSCS) in the case of problems with up to three forest management planning
objectives. Romero (2004) discussed the use of several achievement functions and
corresponding assumptions regarding decision-makers preferences.
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Fig. 6.3 Decision map showing the Edgeworth-Pareto Hull for a two criteria planning problem –
NPV and Timber – subject to volume and area control constraints, considering minimum achieve-
ment levels min NPV D 1,700 � 103 AC and min Timber D 162 � 103 m3. Point A corresponds to
the point in the Pareto frontier with NPV D 2,012.4 � 103 AC and Timber D 166.9 � 103 m3

Providing information about the set of efficient solutions can help the decision-
maker understand the trade-offs between competing objectives. The analysis of
these trade-offs may provide further insight about the forest management planning
problem and help set adequate levels of achievement for various objectives (Borges
et al. 2014a). In this section, we will apply an interactive modelling approach to
generate the Pareto frontier of our industrial forest strategic management planning
problem (Problem 1). The approach builds from the LP formulation of Problem
1 to display the trade-offs between discounted returns (NPV) and timber volume
harvested (Fig. 6.3). The reader is referred to Borges et al. (2014a) for a detailed
description of the modelling approach.

This trade-off information helps decision-makers set informed levels of achieve-
ment that reflect their preferences. It shows that harvesting over about 163 � 103 m3

leads to a decrease of NPV. The LP solution did indeed highlight that it was
not profitable to harvest more timber while meeting the volume and area control
objectives. For illustration purposes lets assume that the decision-maker took
advantage of this information to set as levels of achievement NPV D 2,012,415.5AC
and Timber D 166,914.5 m3 (Point A in Fig. 6.3). The modeling approach may then
be used to retrieve the corresponding LP solution in the feasible set in the decision
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Fig. 6.4 Flowchart of simulation approach

space (Table 6.3). The solution highlights that the timber volume increase results
from higher harvest levels in periods 3 and 4 at the cost of lower harvest values
in earlier periods (Table 6.3). Harvesting later stands 9 and 14 (Table 6.4) leads to
higher volumes yet this timber was financially mature earlier. As a consequence the
value of NPV decreases.

6.2.4 Binary Search

Simulation is a technique that has also been widely used to address volume and
area control objectives. In summary, binary search starts by setting the harvest level
deemed as sustainable and by ordering the forest stands according to the priority for
harvesting or harvest rule (Fig. 6.4).

The simulation approach proceeds by going down the list of ordered stands and
harvesting them until the harvest level is met. Afterwards it projects the inventory to
the next planning period. In this step, simulation parameters such as the area burned
or new forest areas to include may be used to update the inventory. The stands are
again ordered according to the harvest rule and this process is iterated successively
to check whether the target volume level is sustainable or not. If, for example it finds
that the initial level was too high, the estimate is decreased while if the inventory
becomes too high the estimate is increased.

For illustration purposes, lets assume that the target level is set at 40,865 m3

(the volume in the LP solution) and that stands are ordered according to the age.
Results from the simulation approach show that the average age of the forest
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Fig. 6.5 Average stand age in the example forest as a function of periodic harvest levels

decreases over time from 43.7 years in the current inventory to 13.2 years in the
inventory in period 7 when that harvest level may no longer be met. This suggests
that the length of the planning horizon considered in Formulations 1–4 may have
been too short. The harvest levels are not sustainable over longer periods. The
simulation of other harvest levels help estimate the long term sustainable yield
(Fig. 6.5).

Management Planning in Action 6.2: Assessing the Sustainability
of National Pulpwood Supply: An Application in Portugal

Eucalypt (Eucalyptus globulus Labill) is the most important pulpwood pro-
ducing species in Portugal. Eucalypt plantations extend over 647 � 103 ha –
about 20.6 % of the total forest area in Portugal with a total yield of
about 5.75 � 106 m3 per year. Nevertheless the land base owned or managed
by vertically integrated pulp and paper companies provides at most 30 %
of its pulpwood needs. In 2004 a priority of CELPA (http://www.celpa.
pt), the Portuguese pulp and paper association, was the assessment of the
sustainability of pulpwood supply from areas not owned or managed by the
industry.

(continued)

http://www.celpa.pt
http://www.celpa.pt
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(continued)

This prompted the development of a simulation approach similar to the
one presented in 6.2 by the Large-Scale Informatics Systems Laboratory
(http://lasige.di.fc.ul.pt/) and the Forest Research Centre (http://www.isa.
ulisboa.pt/cef/). The eucalypt area not owned or managed by the industry
was classified into analysis areas according to criteria such as age, coppice
cycle, site index and location. Analysis areas were ranked for harvesting
according to a weighted average of age, location and quadratic mean diameter.
Simulation parameters included the probabilities of wildfire occurrence, of
conversion i.e. of a clearcut and of abandonment. The possibility of expansion
of the eucalypt area was also considered (Falcão 2006). This approach is being
used by CELPA since 2004.

The mathematical programming and the simulated annealing approaches to
address volume and area control in long term industrial forest management planning
considered the objective of maximizing net present value. However, it is worthwhile
to briefly note how the choice of objective function can influence the “personality”
of the resultant model and the implications for how key constraints should be
formulated. In a nutshell, the cost minimization model tends to be “lazy” and the
profit maximization model tends to be “greedy.”

In the case of the cost minimization model, the production constraints such as
volume constraints must be specified as minimum targets (i.e., greater-than-or-
equal-to constraints) or the optimal solution will be to produce nothing. This can be
the most appropriate model when the plantation is owned by a vertically-integrated
company that requires the forest to produce a certain volume of wood each year to
meet the production requirements of a mill. In such models, a key concern may be
the feasibility of meeting other constraints – such as sustainability or environmental
constraints – while meeting the needs of the mill. Another possibility is that the mill
requirements can be met too easily, and the forest is underutilized, which should
make it easy to meet sustainability and environmental constraints but may not be in
the best interest of the company.

With profit-maximization models, it is generally best to let the model determine
the profit-maximizing level of production over time, but to add constraints that
prevent the outputs (or inputs) of some products from fluctuating too wildly from
one period to the next as illustrated in this section. If the model projects more
production than is required by the mill this excess can potentially be sold to other
companies, and if the projected production is less than is required, the company can
either buy wood on the open market, buy more forestland, or develop more intensive
management prescriptions that will produce higher yields.

http://lasige.di.fc.ul.pt/
http://www.isa.ulisboa.pt/cef/
http://www.isa.ulisboa.pt/cef/


6 Strategic Management Scheduling 207

Unless specifically required to by model constraints, profit maximization models
often will not meet sustainability and environmental constraints. In particular, with
a finite planning horizon, a profit-maximizing model will tend to harvest anything
it can before the end of the planning horizon. This was highlighted by the binary
approach to solve Problem 1. This is usually not a desirable outcome, so some
kind of ending constraints must usually be imposed on profit-maximizing harvest
scheduling models. As with any other aspect of harvest scheduling models, there
are many ways to ensure that the model leaves the forest in a desirable condition
at the end of the planning horizon. Furthermore, more than one approach can
be incorporated into a model. One approach is to require the model to achieve
a specific age-class distribution – such as a regulated forest – at the end of the
planning horizon. While this approach may be useful in some circumstances, there
are two disadvantages of this approach. First, if the planning horizon is not long
enough it may not be possible to achieve the desired age-class distribution within
that time frame and the model will be infeasible. Second, even if it is feasible,
these constraints will tend to drive much of what the model does, especially in
the final periods, and it leaves the model with very little flexibility to achieve any
other management objectives. Three more promising ways to ensure that the model
will leave the forest in a desirable ending condition are (1) to include a value of
the ending forest in the objective function coefficients as in our case study, (2) to
require the average age of the forest as a whole at the end of the planning horizon
to be greater than or equal to some target, or (3) to require the total forest inventory
at the end of the planning horizon to be greater than or equal to some target, as
illustrated in the next section.

6.3 Long-Term Industrial Forest Management Planning
to Address Both Multiple Product and Stock Control
Objectives (Problem 2)

The focus of strategic management planning is on the assessment of the long-
term sustainability of the industrial forest resource base. The implementation of
volume and area control policies targets the provision of even or non-declining
product flows from the industrial forest over the planning horizon. The solution
of Problem 1 by several techniques (Sect. 6.2) did demonstrate the success of those
policies. Nevertheless it highlighted that those policies, in particular if framed by
revenue maximization objectives, do not guarantee the long-term sustainability of
the industrial forest. Thus, Problem 1 was modified to address concerns with that
sustainability. Specifically, for illustration purposes, the policy model was extended
to include a condition on the value of the inventory at the end of the planning
horizon.



208 J.G. Borges et al.

Climate change concerns have led society and forest managers to focus on the
potential of forests as carbon sinks. Accordingly, since 2000, carbon has emerged as
an important product of industrial plantations (Chap. 14). The scale and scope of the
carbon market has since expanded. Therefore it is increasingly important to assess
the sustainability of carbon stock targets in strategic industrial forest management
planning. The policy model of Problem 1 was thus further expanded to include
conditions on the fluctuations of the carbon stock in the industrial forest.

In this section we will illustrate how to build mathematical programming models
and how to design heuristic approaches to address jointly revenue optimization, area
and volume control objectives as well as stock control concerns. The introduction
of the new policy scenario defines our strategic management planning Problem
2. We will further interpret the solution of the new problem and assess the
impact of constraints on the value of the ending inventory and on the average
carbon stock on the harvest schedule and on the timber supply. Finally, we will
illustrate how to assess the potential of specific solution techniques to address
Problem 2.

6.3.1 Linear and Integer Programming

In the case of our example forest, the LP formulation of Problem 1 (F1) may be
extended to represent Problem 2 (Formulation 5) by including (a) an accounting
equation to compute the volume of the ending inventory, (b) a set of accounting
equations to determine the average carbon stock in each planning period, (c) a
constraint on the value of the ending inventory and (d) a set of constraints on the
average carbon stock over the planning horizon.

(a) The accounting equation to compute the volume of the ending inventory. In this
abbreviated form, it displays the decision variables xkj, i.e. the area of stand k
assigned to prescription j, for stands 1, 2 and 16:

18:2x11 C 14:0x12 C 9:7x13 C 5:4x14 C 2:1x15 C 18:9x21C14:6x22C10:1x23

C 5:7x24 C 2:1x25 C � � � C 2:2x161 C 0:2x162 C 38:6x164 � VolEI D 0

(6.23)

Where VolEI represents the volume of standing timber in the whole forest
at the end of the planning horizon. The coefficients of the decision variables
VolEIkj correspond to the volume per hectare in the ending inventory in stand k
if it is managed according to prescription j. For example, if one hectare of stand
1 is managed according to prescription 1, the value of the ending inventory in
that hectare will be VolEI11 D 18.2 � 103 m3 (Table 6.2).

(b) The set of accounting equations to determine the average carbon stock in each
planning period (Eq. 6.24):

http://dx.doi.org/10.1007/978-94-017-8899-1_14
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6:1x11 C 9:0x12 C 9:0x13 C 9:0x14 C 9:0x15 C 6:4x21 C 9:4x22 C 9:4x23

C 9:4x24 C 9:4x25 C : : : C4:9x161C4:9x162C4:9x163C4:9x164�CStock1

23:6x11 C 20:1x12 C 7:2x13 C 10:6x14 C 10:6x15 C 2:5x21C21:0x22C7:6x23

C 11:0x24C11:0x25 C : : : C7:4x161C7:4x162C7:4x163C7:4x164 � CStock2

20:5x11 C 9:2x12 C 23:6x13 C 22:9x14 C 8:2x15 C 21:4x21 C 9:6x22C2:5x23

C 23:8x24 C 8:5x25 C : : : C6:4x161C9:4x162C9:4x163C9:4x164�CStock3

4:7x11 C 3:4x12 C 20:5x13 C 9:2x14 C 23:6x15 C 4:9x21 C 3:5x22 C 21:4x23

C 9:6x24C2:4x25C : : : C24:5x161C20:9x162C7:5x163C11:0x164�CStock4
(6.24)

Where CStockt represents the average carbon stock in our example forest
in period t. The coefficients of the decision variables CSkjt correspond to the
average carbon stock in period t in an hectare of stand k when managed
according to prescription j. For example, if one hectare of stand 1 is managed
according to prescription 1, the value of the average carbon stock in period 1 in
that hectare will be CS111 D 6.2 � 10 Mg C (Table 6.2).

(c) The constraint on the value of the ending inventory (Eq. 6.25)

VolEI � 5; 500 (6.25)

It is thus assumed that sustainability concerns may be addressed by setting
the volume of the ending inventory criteria as 55,000 m3.

(d) The set of constraints on the average carbon stock over the planning horizon
(Eq. 6.26).

0:9CStock1 � CStock2 � 0

0:9CStock2 � CStock3 � 0

0:9CStock3 � CStock4 � 0

CStock2 � 1:1CStock1 � 0

CStock3 � 1:1CStock2 � 0

CStock4 � 1:1CStock3 � 0

(6.26)

No fluctuations over 10 % are thus allowed between the average carbon
stocks in two consecutive periods.

According to the solution by the LP model (Table 6.3), the optimal long-
term management plan is associated with an objective function value Z equal
to 1,937.7 � 103 AC. It encompasses a periodic harvest of 4,020.2 � 10 m3. The
area harvested ranged from 106.8 to 116.6 ha in periods 4 and 1, respectively.
The average carbon stock decreased from 2,799.1 � 10 Mg C in period 1 to
2,040.6 � 10 Mg C in period 4. The solution thus demonstrates that the LP model
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may address too efficiently and effectively both volume and area control regulation
objectives as well as concerns with stock control and the sustainability of the
resource.

The LP solutions to Problems 1 and 2 also provide information about the
opportunity cost associated with the new policy scenario. In fact, the NPV as
measured by the objective function decreased by 5 % while the period harvest levels
decreased by about 690 m3. The constraint on the volume at the ending inventory
is active and harvest levels must be lowered in order to meet the 55,000 m3 target.
The average carbon stock is always higher than in the solution to F1 yet it decreases
substantially over time. This suggests that the current harvest levels may still not be
sustainable and that the target for the volume of ending inventory may need to be
adjusted. In fact, the simulation approach described in Sect. 6.2.4 did highlight that
the 4,020.2 � 10 m3 harvest level is not sustainable in the long term.

The plan proposed by the LP model reflects again the stand age distribution.
Younger stands are proposed to be harvested later than in the case of F1 in periods 3
or 4 or are proposed not be harvested in order to meet the ending inventory constraint
(Table 6.4). Conversely, just like in the case of F1, older stands are harvested earlier
in periods 1 (stands 5–8) or 2 (stands 1–4) in order to avoid opportunity costs
associated with the delay of harvesting mature timber. Nevertheless, some additional
stands were split into more than one prescription in order to meet the stock control
constraints.

The value of the shadow prices associated to the area constraints (Eq. 6.3) shows
that in general the marginal value of each stand for the forest owner is higher
in the case of F5 (Table 6.5). As expected the marginal value of younger stands
(Stands 13–16) increases the most as they are instrumental to meet the stock control
objectives. An additional hectare of one of these stands contributes directly to the net
present value through the revenues resulting from its harvest. It contributes further
indirectly to the net present value by relaxing the need to shift the harvest of older
stands to later periods. Stand 6 is still the stand with the highest marginal value due
both to its age and its productivity (Table 6.2). Nevertheless its value decreased as
its harvest forces costly shifts of harvest timings in other stands. The LP solution
thus adjusted the estimates of the maximum amount the forest owner might pay
when buying an additional hectare of each stand when stock control objectives
are considered. It further provided updated information about the opportunity costs
associated with the selection of alternative plans e.g. the costs of anticipating or
delaying the timing of harvests in each stand (Table 6.6). In particular it highlights
the opportunity costs associated with the anticipation of harvest in older stands.
These result from the loss of revenue that results from the need of adjusting the
timing of harvests in other stands in order to regulate the harvest schedule and to
meet the stock control objectives.

The strategic targets may turn out to be infeasible because of tactical and
operational considerations that were left out from Problem 2. Feasible strategic
targets may be approximated by enforcing locational specificity constraints. This
may be even more critical in the case of Problem 2 as more stands had to be
split between prescriptions to comply with the new policy scenario. It may thus
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be interesting to modify F5 within a Model I framework to further address concerns
with locational specificity. The resulting MIP formulation of Problem 2 (F6) is an
extended version of the MIP Formulation of Problem 1 (F2) to include further (a)
an accounting equation to compute the volume of the ending inventory, (b) a set of
accounting equations to determine the average carbon stock in each planning period,
(c) a constraint on the value of the ending inventory and (d) a set of constraints on
the average carbon stock over the planning horizon:

(a) The accounting equation to compute the volume of the ending inventory. In this
abbreviated form, it displays the decision variables xkj, i.e. whether stand k is
assigned to prescription j, for stands 1, 2 and 16:

563:6x11C434:1x12C299:6x13 C 168:3x14C64:1x15 C 563:8x21C434:4x22

C 299:7x23 C 168:4x24 C 64:1x25 C � � � C 63:9x161 C 7x162 C 1147:2x164

� Vol EID0 (6.27)

The coefficients of the decision variables VolEIkj correspond now to the
volume in the ending inventory in stand k if it is managed according to
prescription j. For example, if stand 1 is managed according to prescription 1,
the value of the ending inventory in that stand will be VolEI11 D 563.3 � 103 m3.
This was computed as the product of the stand area (31 ha) by the volume per
hectare at the end of the planning horizon that results from this assignment
(18.2 � 103 m3 (Table 6.2)).

(b) The set of accounting equations to determine the average carbon stock in each
planning period (Eq. 6.28):

190:1x11C279:5x12C279:5x13C279:5x14C279:5x15C190:2x21C279:6x22

C 279:6x23C279:6x24C279:6x25C : : : C145:9x161C145:9x162C145:9x163

C 145:9x164 � CStock1

73:2x11 C 62:5x12 C 225:1x13 C 328x14 C 328x15 C 73:2x21 C 624:8x22

C 225:2x23C328:2x24C328:2x25C : : : C216:9x152C216:9x153C216:9x154

C 219x161 C 219x162 C 219x163 C 219x164 � CStock2

637:5x11 C 286:2x12 C 732x13 C 710:3x14 C 253:6x15C637:8x21C286:4x22

C 73:2x23 C 710:6x24C253:8x25C : : : C189:5x161C278:7x162C278:7x163

C 278:7x164 � CStock3

146:3x11 C 105:2x12 C 637:58x13C286:3x14C732x15C146:4x21C105:2x22

C 637:8x23 C 286:4x24C73:2x25C : : : C729:9x161C622:7x162C224:4x163

C 327:1x164 � CStock4 (6.28)
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The coefficients of the decision variables CSkjt correspond now to the average
carbon stock in period t in stand k when managed according to prescription j.
For example, if one hectare of stand 1 is managed according to prescription 1,
the value of the average carbon stock in period 1 in that stand will be CS111 D
190.1 � 10 Mg C. This was computed as the product of the stand area (31 ha) by
the average carbon per hectare in stand 1 that results from this (6.2 � 10 Mg C
(Table 6.2)).

(c) and (d) The constraints on the value of the ending inventory and on the average
carbon stock may now be expressed just like in the case of the LP model
F5 (Eqs. 6.25 and 6.26, respectively)

According to the solution by the IP model (Table 6.3), the optimal objective
function value Z decreased to 1,867.1 � 103 AC. No stands are split between different
prescriptions (Table 6.4) and this thus cost 106.6 � 103 AC. The requirement of
locational specificity in Problem 2 is thus five times more expensive than in Problem
1. The model proposed to delay the harvest of most stands. It further proposed a
no harvest prescription in the case of the younger stands (stands 13–16). The stock
control objectives when combined with the requirement of locational specificity thus
did impact substantially the volumes and areas harvested in each period, which are
considerably lower. The average carbon stock is thus higher. Moreover, the lack of
management flexibility lead to a harvest plan that left a volume at the ending of the
planning horizon that is much higher than required (83,355 m3). Again, in the case
of larger forests with more stands the requirement of locational specificity may not
have an impact as substantial on the adjustment of harvest plans and on the criteria
levels. Yet it may have an even higher impact on the computational cost.

6.3.2 Heuristics

The locational specificity requirement in Problem 2 may also be addressed by
heuristic approaches such as simulated annealing (SA). In the case of our example
forest, the SA approach involved the extension of the SA formulation for Problem
1 (F3) to address the new policy scenario. In summary, the SA formulation for
Problem 2 (F7) takes the objective (evaluation) function of F3 (Eq. 6.14) and
modifies its penalty function to include two further terms that penalize deviations
from the target volume at the end of the planning horizon and from the average
carbon stock constraints. In both cases, it was assumed that a 5 % deviation
from feasibility was equivalent to a 1 % deviation from unconstrained NPV when
estimating the parameter that characterizes the shape of the parabola for each of
these two constraints. The penalty function may thus be represented in abbreviated
form as:
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� D Aconst_6_10

h
.x11Cx12Cx13Cx14Cx15�1/2C: : :C.x161Cx162Cx163Cx164�1/2

i

C Aconst_6_6

h
.H1–H2/2C: : :C.H3–H4/2C.H2–1:1H1/2C : : : C.H4–1:1H3/2

i

C Aconst_6_7

h
.:9AH1–AH2/2 C � � � C .:9AH3–AH4/2 C .AH2–1:1AH1/2 C : : :

C .AH4–1:1AH3/2
i

C Aconst_6_21.VolEI � 5500/2

C Aconst_6_22

h
.:9CStock1–CStock2/

2 C � � � C .:9CStock3–CStock4/
2

C .CStock2–1:1CStock1/2 C � � � C .CStock4–1:1CStock3/2
i

(6.29)

Afterwards, the SA approach involved an iterative process identical to the process
described in Sect. 6.2.2 (Fig. 6.2) where solutions in each iteration were represented
by a vector with 16 elements corresponding to the 16 stands. Penalties and heuristic
parameters were the same as in the case of Problem 1. In this illustration, the
parameterization did lead again to the optimal MIP solution (1,867.1 � 103 AC)
(Table 6.3). This is also a consequence of the problem small size.

Management Planning in Action 6.3: Impacts of Timber Manage-
ment Scheduling on Multiple Product and Stock Control Objectives
in Minnesota

Minnesota is located in the United States Upper Midwest and it extends over
about 21 � 106 ha. Its forest area extends over about one third of the territory.
In 1989, a citizen petition was submitted to the Minnesota Environmental
Quality Board (EQB) to seek action to address a potential increase of nearly
3.62 � 106 m3 in annual timber harvesting activity associated with a proposed
2.2 � 109 USD increase in the state’s primary wood processing plant capacity
(Kilgore 1992). As a consequence, the state of Minnesota decided to develop
a Generic Environmental Impact Statement (GEIS) of timber harvesting.

For that purpose, prescriptions were associated to 13,536 USDA Forest
Service’s Forest Inventory and Analysis (FIA) plots, assumed to represent
forest conditions in Minnesota. The most appropriate prescription for each
stand/plot was selected by a scheduling model that matched demand for a
product with the stand or forest area best able to supply that product and in
consideration of mitigations and other constraints (Rose et al. 1993; Jaakko
Consulting Inc 1994). The scheduling model was based on a Lagrangean
relaxation of a typical forest management planning LP model such as the ones
presented in 6.2 and 6.3 (Hoganson and Rose 1984). This model, developed
at the University of Minnesota (http://www.forestry.umn.edu/), encompassed
specialized techniques to search for the values of the dual variables of the LP

(continued)

http://www.forestry.umn.edu/
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(continued)

model as well as the design of maps of wood procurement zones for each
market to overcome the combinatorial nature of integrating harvest timing
decisions and wood shipping decisions (Hoganson and Kapple 1991).

The GEIS involved over 60 scientists and it represented one of the most
extensive studies of timber harvesting and forest resources conducted in the
United States (http://iic.gis.umn.edu/download/geis/documnts.html). It was
influential to (1) determine the extent of industrial timber harvesting and
related timber management activities in Minnesota; (2) identify and assess
the environmental and related impacts of industrial timber harvesting; and (3)
recommend strategies to mitigate adverse impacts where such were found to
be significant (Kilgore and Ek 2007).

6.3.3 Goal Programming and Pareto Frontier Methods

In the case of our example forest, the goal programming formulation of Problem 2
(F8) consists of a modification of its formulation for Problem 1 (F4). The objective
function includes new terms in order to minimize the deviations from targets
regarding the average carbon stock in each planning period and the volume at the
end of the planning horizon. The formulation may be described as

(a) Objective function Z

Min Z D 8:4746 P devAH1 C 8:4746 NdevAH1 C 8:4746 P devAH2

C 8:4746 NdevAH2 C 8:4746 P devAH3 C 8:4746 NdevAH3

C 8:4746 P devAH4 C 8:4746 NdevAH4 C 0:0244 NdevH1

C 0:0244 NdevH2 C 0:0244 NdevH3 C 0:0244 NdevH4

C 0:0049 NdevNP V tC0:04 NdevCStock1C0:04 NdevCStock2

C 0:04 NdevCStock3C0:04 NdevCStock4C0:04 P devCStock1

C 0:04 P devCStock2C0:04 P devCStock3C0:04 P devCStock4

C 0:0182 NdevVolEI (6.30)

Where the decision variables consist again of the deviations from the levels
of the criteria set by the decision-maker. Two additional criteria were added,
the average carbon stock CStock in period t and the volume of ending inventory
VolEI. In the case of CStock the objective function penalizes both over and
under achievements while in the case of VolEI it aims at minimizing the
under achievement. The coefficients of the corresponding decision variables

http://iic.gis.umn.edu/download/geis/documnts.html
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correspond to the product of 1,000 by the inverse of the criteria target levels
measured in Mg and cubic meters, in the case of the average carbon stock
and the volume of the ending inventory, respectively. Like before, the new
GP model was set to minimize the percent deviations to overcome dimensional
constraints to the treatment of all five criteria. The discounted revenues criteria
was provided again with a weight equal to 10 while the remaining four were
weighted equally as 1.

(b) The Eq. 6.20 setting a new target (89 ha) for the area harvested in each period
to reflect the area control objectives, where this area is defined by Eq. 6.12.

(c) The Eq. 6.21 setting a new target for the volume harvested in each period
(35 � 103 m3) to reflect the volume control objectives, where this harvest level
is defined by Eq. 6.11.

(d) The Eq. 6.22 setting a new target for the discounted net revenue from the forest
(1,870,000AC), where the discount net revenue is defined by Eq. 6.19

(e) The Eq. 6.31 setting a target for the volume of ending inventory, where this
volume is defined by Eq. 6.27:

VolEi C P devVolEi C NdevVolEi D 5; 500 (6.31)

(f) The Eq. 6.32 setting a target for the average carbon stock in each period
(24 � 103 Mg C) to reflect the stock control objectives, where this average is
defined by Eq. 6.28.

C stock1 � P devC stock1 C NdevC stock1 D 2; 400

C stock2 � P devC stock2 C NdevC stock2 D 2; 400

C stock3 � P devC stock3 C NdevC stock3 D 2; 400

C stock4 � P devC stock4 C NdevC stock4 D 2; 400

(6.32)

(g) The set of constraints stating that the decision variables may take only the values
1 (if the prescription is assigned to the stand) or 0 (if the prescription is not
assigned to the stand) (Eq. 6.13)

x11; x12; x13; : : : ; x165 are binary

In this illustration, the target values were set by taking advantage of the insights
provided by the solutions by the other techniques. For example, the target for the
criteria NPV was set as the value of the optimal MIP solution. The solution by
the GP model (Table 6.3) shows that the NPV criteria target was almost achieved
(1,866,130AC) while still guaranteeing that no stand was assigned to more than one
prescription (Table 6.4). Else the solution has a pattern similar to the MIP and SA
solutions i.e. under achievement of harvest levels and over achievement of targets
for both average carbon stock and volume in the ending inventory.

The Pareto frontier method may again be used to explore further the tradeoffs
between the criteria and help set meaningful targets. The approach may build now
from the LP formulation of Problem 2 (F5). Lets assume that the decision-maker
wants to analyze the tradeoffs between four criteria e.g. NPV, VolEI, the average
carbon stock over the whole planning horizon and the total volume harvested.
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Fig. 6.6 Decision maps displaying the Edgeworth-Pareto Hull of a four criteria planning problem
considering minimum achievement levels for the four criteria (min NPV D 1,700 � 103 AC, min
VolEI D 55 � 103 m3, min CStock D 24.0 � 103 Mg C and min Timber D 135 � 103 m3). Each set
of decision maps corresponds to a specific average carbon stock (CStock) (a) 24.0 � 103 Mg C, (b)
26.0 � 103 Mg C : : : , d) 30.0 � 103 Mg C. Points A and B in (a) correspond to solutions selected by
decision-makers from two decision maps associated with VolEI target levels of 55 and 75 � 103 m3)

The Pareto frontier method may then be used to generate three-dimensional
decision maps for which the values of the third, fourth, : : : criterion are fixed
(e.g. Fig. 6.6 where the value of total timber harvested is fixed for each map and
where the value of the average carbon stock is fixed for each set of decision maps).
The maps are monotonic: a map contains all maps with better values of the third,
fourth, : : : criterion (e.g. Fig. 6.6). When arranged in the form of horizontal series or
even matrices, bi- or three-dimensional decision maps developed by this approach
may provide information about the Pareto frontier in spaces up to five dimensions
(Borges et al. 2014a).

Based on the tradeoff information provided by the Pareto frontier approach, lets
assume that the decision-maker sets 24,000 Mg C as the level of achievement
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for the average carbon stock criteria (set of decision maps (a) in Fig. 6.6)
and that he wants to explore solutions associated with an average carbon stock
CStock D 24.0 � 103 Mg C (Figs. 6.6a) and alternative VolEI target levels (e.g. about
55 and 75 � 103 m3 – points A and B in Fig. 6.6a, respectively).

The Pareto frontier approach may then be used to retrieve both solutions in the LP
feasible set in the decision space (Table 6.3) and generate further insights about the
management planning problem. As Borges et al. (2014a) pointed out, the usefulness
of the Pareto frontier approach lies mostly in the preprocessing of the management
planning problem to generate trade-off information so that the first specification of
the levels of achievement by the decision-maker is more informed. Nevertheless,
as this approach is based on the approximation of the Pareto frontier, the retrieval
of a feasible solution requires the use of an achievement function to minimize the
deviations between the solution selected in a decision map by the decision-maker
and the feasible set in the criteria space, This is similar to the solution process by
goal programming. Thus special attention should be also provided to the selection
of an achievement function (Romero 2004).

Management Planning in Action 6.4: Long Term Cork Forest Man-
agement Scheduling to Address Multiple Product and Stock Control
Objectives in Southern Portugal

In 2003, the Portuguese Regional Agriculture Office of Alentejo (DRAPAL)
(http://www.drapal.min-agricultura.pt/) and the Extremadura Regional Gov-
ernment in Spain (http://www.gobex.es/consejerias/ceei_tecnologica.php)
launched the project “Development of an information system for ecological-
economic cork and holm oak ecosystem management”. This cross-border
cooperation initiative (http://ec.europa.eu/regional_policy/archive/interreg3/
abc/voleta_west_en.htm) encompassed a regional sustainability assessment of
cork flows to the forest industry.

This prompted the development and application of a modeling approach
similar to LP model 6.3 by the Forest Research Centre (CFS) (http://www.isa.
ulisboa.pt/cef/). The cork and holm oak land base extending over 1 � 106 ha in
Alentejo was inventoried and firstly classified into 23,373 land units that were
further aggregated into 84 analysis areas. The model included up to 8,400
prescriptions over a 5 ten-year periods planning horizon. Besides the area
constraints, the LP model further included timber and cork non-declining flow
constraints as well as carbon stock targets (Borges et al. 2009). The solution
highlighted the constraining impact of the current inventory on potential cork
supply in the first planning period and that both timber and cork non-declining
flows policies may be sustained over the planning horizon (Borges et al.
2009).

More recently, in order to address DRAPAL concerns, the LP model
was integrated by CFS and the Research Centre in Mathematics and
Applications (http://www.cima.uevora.pt/) within a multi-criteria approach

(continued)

http://www.drapal.min-agricultura.pt/
http://www.gobex.es/consejerias/ceei_tecnologica.php
http://ec.europa.eu/regional_policy/archive/interreg3/abc/voleta_west_en.htm
http://ec.europa.eu/regional_policy/archive/interreg3/abc/voleta_west_en.htm
http://www.isa.ulisboa.pt/cef/
http://www.isa.ulisboa.pt/cef/
http://www.cima.uevora.pt/
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(continued)

targeting timber, cork, carbon, net present value and value of ending inventory
achievement levels (Borges et al. 2014a). This approach is similar to the
Pareto frontier approach described in Sect. 6.3.3

6.4 Designing the Industrial Forest Landscape in Long Term
Management Planning

Financial efficiency usually dictates the concentration of activities of harvesting and
infrastructure (e.g. road network) development. Conversely, broader economic and
environmental goals often suggest its dispersion in time and space. For example,
area and volume control objectives reflect concerns with the sustainability of timber
supply and constrain the concentration of the timing of harvests in industrial plan-
tations (Sect. 6.2). Nevertheless, the implementation of forest plans also requires
spatially feasible prescriptions that may address simultaneously environmental
concerns with the sustainability of the industrial land base and financial concerns
with the dispersion of forest operations. These often encompass the definition of
adjacency constraints: a maximum size of openings or a range of feasible opening
sizes and a minimum exclusion period – the minimum time that must elapse between
harvests on neighboring stands.

The spatial context of harvest scheduling decisions is typically addressed at tac-
tical and operational planning scales (Chaps. 2 and 7). Nevertheless the possibility
of balancing strategic and tactical goals may be facilitated if long-term management
planning does provide a strategic design of the industrial forest landscape that may
help accommodate requirements of tactical management planning. This may be
achieved by extending Problem 2 and its concerns with timber harvesting regulation
and with stock control objectives to include adjacency constraints.

Typically, this combinatorial optimization problem (Problem 3) involves very
large numbers of integer variables and constraints. The literature reported several
approaches to build and solve a forest management planning problem with adja-
cency constraints. For example, Borges et al. (2002) discussed thoroughly the use
of heuristic approaches to address it, while Constantino et al. (2008) presented a
range of mathematical programming representations of the adjacency problem. In
fact, as Borges et al. (2002) pointed out, currently available optimization packages
combine often the use of both heuristic and mathematical programming techniques.
For example, heuristic techniques may utilized directly in optimization packages
to help in key aspects of the solution process like in (1) finding initial feasible
solutions, (2) finding initial bounds on optimal solutions, (3) selecting branches
to search in a standard branch and bound technique and (4) selecting the specific
mathematical programming strategy to use for solving a specific mixed integer
problem (Borges et al. 2002).

http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_7
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In order to illustrate how to accommodate concerns with the design of our
industrial forest landscape example, the policy model of Problem 2 was further
expanded to include adjacency constraints. In this section we will illustrate how
to build mathematical programming models and how to design heuristic approaches
to address jointly revenue optimization, area and volume control objectives, stock
control concerns and adjacency constraints. For illustration purposes we will
consider the Path approach to build the adjacency constraints (McDill et al. 2002).
The introduction of the new policy scenario defines our strategic management
planning Problem 3. We will further interpret the solution of the new problem and
assess the impact of adjacency constraints on the value of the ending inventory,
on the average carbon stock, on the harvest schedule and on the timber supply.
Finally, we will illustrate how to assess the potential of specific solution techniques
to address Problem 3.

6.4.1 Mixed Integer Programming

The adjacency problem requires information about the location of management
options. Thus LP may no longer be used to address Problem 3. In the case of our
example forest, assuming that the maximum size of openings is 60 ha and that a
1-period exclusion is considered, the MIP formulation of Problem 2 (F6) should be
expanded to include the path adjacency constraints (6.33 – Eq. 2.13 in Chap. 2) to
define the MIP formulation of Problem 3 (F9):

x11 C x21 � 1

x11 C x21 C x41 � 2

x11 C x21 C x52 C x53 � 2

x11 C x31 C x41 � 2

x11 C x41 C x51 C x52 � 2

x11 C x41 C x61 C x62 � 2

x11 C x21 C x71 C x72 � 2

x11 C x21 C x81 C x82 � 2

x21 C x31 C x41 � 2

x21 C x41 C x51 C x52 � 2

x21 C x51 C x52 C x81 C x82 � 2

x31 C x41 C x51 C x52 � 2

x31 C x41 C x61 C x62 � 2

x31 C x41 C x71 C x72 � 2 (6.33)

http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_2
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According to the solution by the MIP model (Table 6.3), the optimal objective
function value Z decreased to 1,866.6 � 103 AC. No stands were split between
different prescriptions (Table 6.4) and all adjacency constraints were met. The
solution was very similar to the MIP solution of Problem 2. This demonstrates that
the 60 ha opening size limit is very easy to meet.

6.4.2 Heuristics

The adjacency constraints in Problem 3 may also be addressed by simulated
annealing (SA). In the case of our example forest, the SA approach involved
the extension of the SA formulation for Problem 2 (F7) to address the new
policy scenario. In summary, the SA formulation for Problem 3 (F10) takes the
objective (evaluation) function of F7 (Eq. 6.29) and modifies its penalty function to
include one further term that penalizes deviations from adjacency constraints. These
deviations were more penalized than the deviations from the other constraints. All
other penalties and heuristic parameters were the same as in the case of Problem 2.
The penalty function may thus be represented in abbreviated form as:

� D Aconst_6_10

h
.x11Cx12Cx13Cx14Cx15�1/2C: : :C.x161Cx162Cx163Cx164�1/2

i

C Aconst_6_6

h
.H1–H2/2C : : : C.H3–H4/2C.H2–1:1H1/2C : : : C.H4–1:1H3/2

i

C Aconst_6_7

h
.:9AH1–AH2/2 C � � � C .:9AH3–AH4/2 C .AH2–1:1AH1/2 C : : :

C .AH4–1:1AH3/2
i

C Aconst_6_21.VolEI � 5500/2

C Aconst_6_22

h
.:9CStock1–CStock2/2 C � � � C .:9CStock3–CStock4/2

C .CStock2–1:1CStock1/2 C � � � C .CStock4–1:1CStock3/2
i

C Aconst_6_33

h
.x11 C x21 � 1/2 C � � � C .x31 C x41 C x71 C x72 � 2/2

i
(6.34)

Afterwards, the SA approach involved an iterative process identical to the process
described in Sect. 6.2.2 (Fig. 6.2) where solutions in each iteration were represented
by a vector with 16 elements corresponding to the 16 stands. In this illustration,
the parameterization lead to a suboptimal solution (1,866.1 � 103 AC) (Table 6.3).
Nevertheless the best solution found by this random search heuristic did meet all
constraints thus highlighting again that the 60 ha opening size is easy to meet.
Computational costs were low as a consequence of the problem size.
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6.4.3 Goal Programming

In the case of our example forest, the goal programming Formulation of Problem
3 (F11) consists of a modification of F8 to include the adjacency constraints
(Eq. 6.33). No target was changed. The solution (Tables 6.3 and 6.4) again highlights
that the adjacency constraints had little impact on the proposed plan.

Research is currently being conducted so that the Pareto frontier approach con-
sidered in earlier sections may address multi-criteria problems such as Problem 3,
where the spatial context of stand-level decisions must be acknowledged. The
integration of the Pareto frontier approach with combinatorial resource capability
and policy models (e.g. mixed integer programming models) will provide the
functionality needed to analyze tradeoffs between criteria before setting their levels
of achievement.

Management Planning in Action 6.5: Designing the Forest Landscape:
Applications in Portugal and in Minnesota

In 1998, Celbi, currently a factory of a leading Portuguese eucalypt pulp
producer (Altri) (see Management Planning in Action 6.1), decided to lay
out the harvest of one of its properties extending over about 640 ha in
Central Portugal to minimize the environmental impacts of eucalypt stands
clearcutting. All 144 stands in this property (Vale do Mouro) were mature.
Yet it was decided to schedule the harvest over five 1-year periods so that
no adjacent stands might be harvested in the same period. Decision-makers
further wanted to minimize the opportunity cost of harvest delay.

This prompted the application of a dynamic programming approach to
solve a simplified version of the MIP model in Sect. 6.3 (no product flow
or stock control objectives were considered) within a project coordinated
by the Forest Research Centre (http://www.isa.ulisboa.pt/cef/). For a detailed
description of the technique the reader is referred to Hoganson and Borges
(1998) and Borges et al. (1999a). The industry found that the adjacency
constraints led to a decrease of about 3 % of the net present value (Borges
et al. 1999b).

This technique was extended to further analyze trade-offs between timber
production and environmental objectives in the early 2000s in a forest area
comprising Minnesota DNR managed lands in Itasca and Cass County (http://
www.dnr.state.mn.us/index.html) and USDA Forest Service lands within
the Chippewa National Forest (http://www.fs.usda.gov/chippewa/). Approx-
imately 302,000 ha distributed over 92,000 stands were modeled (Hoganson
et al. 2004). This project coordinated by the University of Minnesota (http://
www.forestry.umn.edu/) estimated the impact of landscape design, namely
of the supply of interior space, on industrial timber management scheduling
(USDA Forest Service 2004).

http://www.isa.ulisboa.pt/cef/
http://www.dnr.state.mn.us/index.html
http://www.dnr.state.mn.us/index.html
http://www.fs.usda.gov/chippewa/
http://www.forestry.umn.edu/
http://www.forestry.umn.edu/
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6.5 Integrating Road Building Schedules in Long Term
Industrial Forest Management Planning

Harvest scheduling and road building problems have traditionally been addressed
in two sequentially linked steps. In the first step, the optimal harvest scheduling
model identifies the areas that will be harvested during the planning horizon, without
accounting for road building considerations. In the second step, the minimal road
cost program that provides road accessibility for the optimal harvest schedule is
determined. During the 1960s and 1970s tactical forest planning was essentially
designed using this sequential approach (Guignard et al. 1998). According to
Weintraub and Navon (1976), a sequential approach leads to two main problems:
the wrong set of stands (nodes) may be made accessible, and the selection of the
access period for each stand may be not optimal. Kirby et al. (1986) suggest that
since the integrated formulation is less constrained than the sequential formulation,
the cost of implementing a management plan using an integrated approach will
be always smaller than or equal to the cost of a management plan based on the
equivalent sequential procedure. Thus, for example, a slight increase in harvest
cost due to a change in harvest location could result in a significant reduction in
road building cost, an improvement that could not be recognized in a sequential
procedure. Guignard et al. (1998) found that if the objective is to maximize the
net present value of the timber minus road building and transportation costs, then
the integrated approach can generate up to 60 % greater profits than the traditional
sequential approach.

Weintraub and Navon (1976) present one of the first integrated models reported
in the literature, where silvicultural and transportation activities are simultaneously
considered. The authors suggest a MIP approach to find the maximum value for dis-
counted revenues earned from the sale of timber, where road, timber management,
and transportation costs are included in the analysis. Kirby et al. (1986) introduce
the Integrated Resource Planning Model (IRPM), which is a Goal MIP problem
formulated as an assignment problem where management decisions are associated
with treatment units explicitly identified on the ground. Decision variables are
defined for every unit and management alternative, in terms of the proportion of
the unit area (0–1) assigned to every management alternative. Constraints impose
minimum requirements on water run-off, recreation usage, wildlife usage, erosion,
timber yield, visual degradation, employment and revenue. The road network is
formulated as a multi-commodity, multi-period, fixed charge, capacitated network
problem with mutually exclusive road capacities. Their results produce up to a 21 %
reduction in cost compared to the traditional sequential model.

Guignard et al. (1998) suggest additional improvements to the original Kirby
et al. (1986) model. Lifting and branch and bound priorities based on double con-
traction considerations are used to reduce the computational time required to solve
the problem to optimality. Different road standards are considered in the model,
including dirt, gravel and paved alternatives along with the associated building
and transportation costs and capacity and seasonality restrictions. Following the
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original strengthened model proposed by Guignard et al. (1998), Andalaft et al.
(2003) combine road capacity reduction with triggers and lifting constraints using
Lagrangian relaxation. The proposed model is applied to a Chilean pine plantation
problem with planning horizons between 2 and 5 years. Operational seasonality
(winter and summer) and road standards (dirt, gravel and paved roads) are included
in the model. Adjacency constraints are formulated differently than in traditional
methods, where a minimum harvest area (as opposed to a maximum harvest area) is
imposed to guarantee acceptable operational fixed costs.

6.5.1 Potential Road Network

Forest road networks used as input for the model are defined considering potential
and actual road segments meeting the minimum technical road requirements and
providing full accessibility to every management unit in the forest. In the conceptual
network, landings are represented by nodes and road segments are represented by
arcs. In the initial step, a minimum number of landings is identified. Usually, landing
locations are identified based on the machinery available for logging operations.
A road exit node represents the connection point between the forest road network
and the road that connects the forest with the final destination for the timber. Note
that, even though forests can have multiple road exits, the problem can be easily be
transformed into a one exit node problem by creating a dummy node that connects
all the potential and existing exit nodes.

Based on a topographic analysis of the forest, a set of potential road segments is
created such that every node is connected to the exit node. The set of potential road
segments is identified by Rij, representing the arc that connects node i with node j.
f t

ij represents the timber volume flow between node i and node j, and f t
ji represents

the timber volume flow between node j and node i. This differentiation is used to
model road networks where cycles are allowed. Even though flow directions are
differentiated by the flow variables f t

ij and f t
ji, road decision variables are undirected

variables, and consequently rij represents both arcs (i, j) and (i, j) simultaneously.

6.5.2 The Integrated Harvest Road Model

The general MIP formulation for the harvest scheduling problem (Chap. 2) can
be adapted to incorporate road building decisions using an integrated approach.
Different formulations can be used for this purpose, and the strength of the resulting
models can be appreciably different. Tight or strong formulations are important in
practice, as computation times required to obtain acceptable solutions are directly
related to this characteristic. Thus the integrated harvest road model can be modeled
as follows:

http://dx.doi.org/10.1007/978-94-017-8899-1_2
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Sets

T Set of periods in the planning horizon, such that T D f1, 2, : : : , nTg.
M Set of management units, such that M D f1, 2, : : : , nMg.
Mi Set of management units associated with transportation node i. In other words,

the set of management units from which timber will be hauled through node i.
N Set of nodes in the road network.
A Set of the current and potential road segments where (i, j) describes an arc between

nodes i and j such that (i, j) 2 A
Pm Set of road segments that belong to the path between the node associated with

management unit m and the exit node in the road network.

Decision Variables

xt
m Binary variable which assumes a value of 1 if management unit m is harvested

in period t, and 0 otherwise. Notice that x0
m D 1 represents that management unit

m is not harvested at all during the planning horizon.
rt

ij Binary variable which assumes a value of 1 if road segment (i, j) is built in period
t, and 0 otherwise.

f t
ij Total annual timber flow (mbf/year) from node i to node j in period t.

Constants

am Area of management unit m (acres).
vt

m Volume per acre (mbf/acre) obtained from unit m if it is harvested in period t.
ct

m Net discounted revenue per acre ($) if management unit m is harvested in period
t. Assuming a discount rate r (expressed as decimal fraction), it is calculated as
ct

m D ct *
m /(1 C r)t, where ct *

m is the revenue per acre earned at period t if unit m is
harvested in this period.

qij Timber flow capacity per time unit (mbf/year) of road segment (i, j).
Rt

ij Net discounted building cost ($) if the road segment (i, j) is built in period t. This
cost includes road and bridge building costs. Assuming a discount rate expressed
as decimal fraction, it is calculated as Rt

ij D Rt *
ij /(1 C rate)t, where Rt *

ij is the road
building cost incurred at period t if road segment (i, j) is built in this period.

Objective Function

Max Z D
X

m2M

X

t2T [f0g
ct

mat
mxt

m �
X

.i;j /2A

X

t2T

rt
ij Rt

ij ; (6.35)

Subject to,

X

m2M i

vt
mamxt

m C
X

.k;i/2A

f t
ki �

X

.i;l/2A

f t
il D 0; i 2 N n fexitg ; t 2 T; (6.36)
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Fig. 6.7 Timber flow representation in a road network

X

m2M

vt
mamxt

m �
X

.k;exit/2A

f t
k;exit D 0; t 2 T; (6.37)

f t
ij C f t

j i � qij

tX

t 0D1

r t 0

ij � 0; .i; j / 2 A; t 2 T; (6.38)

f t
ij � 0; rt

ij 2 f0; 1g ; .i; j / 2 A; t 2 T: (6.39)

Equation 6.35 represents the modified objective function for the integrated
approach, where it is maximized the total discounted net revenue obtained from
the forest. Note that in this formulation, road building costs are discounted from
the net revenue obtained from the volume harvested during the planning horizon
and the ending forest value. Equation set 6.36 defines the volume flow balance
equations for non-exit nodes, where it is guaranteed that all flows entering a non-exit
node will exit in the same period (Fig. 6.7a). Thus, in a given period t, this set of
equations forces the total inflow volume coming from the associated management
units and the connected nodes (f t

ji, f t
ki ) to equal the total volume that leaves node

i (f t
ij, f t

ik ). This equation set differs from the constraints suggested by Kirby et al.
(1986) and Guignard et al. (1998), since in this case it is assumed that all volume
produced in the forest will be transported to external exit nodes. Equation set 6.37
is defined as the volume flow balance equations for the exit node at the end of
each period t. In particular, it is assumed that all the volume produced in the forest
will be transported to the exit node (Fig. 6.7b), from which it will be shipped to
the final market destination. Constraint set 6.38, named as road capacity constraint
set, defines the maximum timber flow allowed through a particular road segment.
The upper flow bound is defined by the flow capacity qij, which is based on the
technical road characteristics. Notice that if f t

ij � 0 or f t
ji � 0, this equation can only

be satisfied when
tX

t’D1

r t 0

ij � 1. A set of logical constraints ensuring that a road
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segment can only be built once during the planning horizon

 
X

t2T

rt
ij D 1

!

could be

included, but such a constraint is unnecessary in the formulation. Finally, constraint
set 6.39 describes the nature of the continuous and binary road variables used in the
integrated formulation approach.

An advantage of this formulation lies in its flexibility to accommodate different
road network structures, including road networks with and without cycles (spanning
tree). However, as with the fixed charge network problem, if capacities are much
larger than the actual flows, the LP relaxation of this model tends to produce weak
bounds (Wolsey 1998). In this context, road capacity reduction has been proposed as
a way to obtain tighter formulations (Weintraub et al. 2000). Even though, previous
research has proposed reducing the capacity bounds as much as possible (Andalaft
et al. 2003), it may be difficult to apply on road networks where cycles are allowed.

6.5.3 Unitary Flow model (UF)

The Unitary Flow model (UF) attempts to overcome the drawbacks observed with
the traditional fixed charge network flow problem without losing the flexibility
produced by accommodating different network structures. As mentioned, given that
road capacities are usually much larger than the actual flows, capacity constraints
mainly play a trigger function for binary variables associated with road-building
decisions. Thus, in order to reduce the gap between road capacities and actual flows,
unitary harvest volume can be assumed for road constraint modeling purposes. In
this case, the potential volume that flows from a management unit to a given node
(associated landing) can be assumed to always be unitary in the context of the road
building constraints. Thus, an upper bound equal to the total number of management
units in the forest can be used as the road capacity for any road segment in the
network.

This formulation includes the objective function described in Eq. 6.35, constraints
6.39, and additional road constraints defined as follows:

X

m2M i

xt
m C

X

.k;i/2A

f t
ki �

X

.i;l/2A

f t
il D 0; i 2 N n fexitg ; t 2 T; (6.40)

X

m2M

xt
m C

X

.k;exit/2A

f t
k;exit D 0; t 2 T; (6.41)

f t
ij C f t

j i � jM j
tX

t 0D1

r t 0

ij � 0; .i; j / 2 A; t 2 T: (6.42)
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Equation set 6.40, named as volume flow balance equation set for non-exit nodes,
guarantees that no timber will be left at a non-exit node by requiring that all the
traffic entering a particular node will exit in the same period. Inbound volumes from
harvested management units are defined by

X

m2M i
xt

m, assuming unitary harvest
volume from management units. Equation set 6.41 guarantees that all volume
harvested from the forest will exit through the exit node. Similar to equation set 6.40,
it is assumed unitary volume from each management unit harvested. Constraint set
6.42 is defined to trigger the building of a particular road segment if there is a non-
zero flow of timber on that road. For this set of constraints, the maximum flow for
any road segment can be defined as the number of management units in the problem
(jMj, cardinality of set M).

6.5.4 Integer Constraint One-by-Unit Model (IC-OU)

An alternative approach to the fixed charge network flow problem can be used when
road networks follow a spanning tree structure. With a spanning tree structure, there
is a unique path between every management unit and the exit node. This can be
used to construct a set of trigger constraints to incorporate road building decisions
into the model. In this case, when a management unit is harvested, all road variables
associated with the path from that unit to the exit node must be built during or before
the harvest period.

This formulation includes the objective function described in Eq. 6.35, constraints
6.39, and additional road constraints defined as follows:

jP mj xt
m �

tX

t 0D1

tX

.i;j /2P m

rt 0

ij � 0; m 2 M; t 2 T; (6.43)

X

t2T

rt 0

ij � 1; .i; j / 2 A: (6.44)

Set of constraints 6.43 requires that if management unit m is harvested in period
t, then the respective path Pm to the exit node must be built, either previously
or in period t (Fig. 6.8). Notice that jPmj represents the cardinality of set P,
i.e., the number of road segments in the path. Thus, when xt

m equals 1, then
Xt

t 0D1

X

.i;j /2P m
rt 0

ij � jP mj, otherwise the constraints will not be satisfied. In

this context, we need the set of logical constraints defined by constraint set 6.44.
Otherwise, a less expensive road segment in Pm could be built more than once to
satisfy constraint set 6.43.



228 J.G. Borges et al.

Unit m exit

rijt
rjkt

rklt
rl,exitt

i

j
k

l

xmt

Fig. 6.8 Graphical representation of a path from a management unit to its respective exit node. In
this case, all the road segments in the path must to be built to harvest management unit m

6.5.5 Integer Constraint One-by-Road (IC-OR)

An alternative way to incorporate road building decisions using an approach similar
to IC-OU is to subdivide constraint set 6.43 into jPmj new sets of constraints, one for
each road segment in Pm. This formulation includes the objective function described
in 6.35, constraints 6.40 and 6.44, and additional road constraints defined as follows:

xt
m �

tX

t 0D1

r t 0

ij � 0; m 2 M; .i; j / 2 P m; t 2 T; (6.45)

6.5.6 Tightening Constraint (TC)

Even though road constraints can be fully incorporated using any of the previous
four formulations, additional superfluous constraints can be added to obtain tighter
formulations. By including these constraints, integer-infeasible solutions can be
eliminated from consideration, improving LP relaxation bounds. In particular, two
sets of constraints that have been proposed in previous research are considered:
road-to-road and project-to-road constraints, which are formulated as follows:

rt
ij C

X

.i;l/2A

tX

t 0D1

r t 0

ij �
X

.k;j /2A

tX

t 0D1

r t 0

ij � 0; .i; j / 2 A; t 2 T; (6.46)

xt
m �

X

.i;j /2A

tX

t 0D1

r t 0

ij � 0; m 2 M; t 2 T; (6.47)

Constraint set 6.46, named as road-to-road set of constraints, prevents isolated
road segments from being built. As illustrated in Fig. 6.9, road segment (i, j) only
should be built if node i or node j are already connected with some other nodes in
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the network, in this case with nodes l1, l2, k1 or k2, otherwise an unconnected road
segment would be built.

Constraint set 6.47, named as road-to-project set of constraints, requires that if a
management unit is harvested, its associated node must be connected. In Fig. 6.10,
management unit m can be harvested only if node i is already connected to one of
its neighboring nodes j, k, or l.

Management Planning in Action 6.6: Integrating Road Building Sched-
ules in Long-Term Forest Management Planning in Pennsylvania

To illustrate the integrated formulation, we consider from the PA Bureau of
Forestry, the landscape named as Whitaker Hollow and the problem of road
building scheduling over a five 10 years temporal horizon. This landscape is
made up of even-aged stands in two forest types, Northern and Allegheny
Hardwoods. Based on the topographic characteristics of the Whitaker Hollow
landscape, a total of 113 nodes are identified on the map (Fig. 6.11a). Then,
a road network following a spanning tree structure (without cycles) was
designed, generating 113 road segments with a total distance of 20.85 miles.
Considering the topographic requirements, 5 bridges were identified on this
road network (spanning tree). The model assumes that a bridge will only be
built if the respective road segment requiring a bridge is considered in the road
building program.

(continued)



230 J.G. Borges et al.

(continued)
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Total Distance      20.85 miles
Bridges                 5 bridges
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Fig. 6.11 (a) The potential spanning tree road network for the Whitaker Hollow landscape.
(b) The potential road network allowing cycles for the Whitaker Hollow landscape

Similarly, a second road network allowing cycles was designed for the
Whitaker Hollow landscape (Fig. 6.11b). In this case, 201 road segments
were identified, almost twice the number in the spanning tree structure.
Similarly, the potential road length increased from 20.85 to 41.18 miles when
cycles were allowed. The network with cycles requires more variables and
constraints in the model, however it provides a much larger set of potential
solutions for the problem. Even if the initial road network allows cycles, given
that transportation costs are not considered in the analysis, the road network
built in the optimal solution will always follow a spanning tree structure. In
fact, it can be shown that if a node is connected to more than one node on its
way to the exit node, an improved solution can be obtained just by building
the less expensive connected arc (road segment) that connects the arc with a
path toward the exit node.

Figure 6.12a shows a map of the solution obtained using the traditional
sequential approach for the Whitaker Hollow landscape. In this approach,
the road building program is determined by finding the minimal cost road
network satisfying the accessibility requirements imposed by the optimal
harvest schedule, which had been determined irrespective of road building
decisions. During the first half of the planning horizon (periods 1 and 2),
harvest operations are mainly scheduled in the western part of the landscape,
and during the last three periods (periods 3, 4 and 5), harvest operations are
concentrated on the eastern part of the landscape. Similarly, Figure 8 shows
a map of the optimal solution for the integrated model using a spanning tree
road network structure. In this graphical representation, it is possible to verify
that the sequential and integrated approach solutions harvest exactly the same
management units and build the same road network.

(continued)
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(continued)
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Fig. 6.12 (a) Solution for the traditional sequential approach. Colors indicate the periods
in which management units are scheduled to be harvested and road segments are scheduled
to be built. (b) Solution for the integrated model with a spanning tree road network. Colors
indicate the periods in which management units are scheduled to be harvested and road
segments are scheduled to be built. (c) Solution for the integrated model including a road
network with cycles. Colors indicate the periods in which management units are scheduled
to be harvested and road segments are scheduled to be built

The main difference between the solutions is the sequencing of the harvest
decisions and the road building activities. Figure 6.12c shows a map of the
optimal solution for the integrated model using a road network structure
with cycles. The same management units are scheduled for harvest as in the
solutions obtained via the traditional sequential approach and the integrated
approach incorporating a spanning tree road network. However, the sequence
of the harvest operations is different. In particular, the different harvest
timings allow the model to take advantage of the flexibility offered by a road
network with cycles. In this case, different road segments were built. Even
though the potential road network allows cycles, the final solution follows a
spanning tree structure.
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6.6 Summary

Long term considerations typically frame all decision processes in industrial forests
management planning. The sustainability of the resource and the stability of product
supply can hardly be addressed at another temporal scale as a consequence of the
biological processes at the core of the forest production system. Thus strategic
management scheduling is at the apex of the hierarchy of planning levels. It provides
the input needed by tactical and operational management planning that will be
addressed later in this book in Chaps. 7 and 8. For example, it generates information
about the range of product supply values that may be targeted in the short term
by tactical management planning while safeguarding the future. Nevertheless, the
adequacy of those estimates increases with the amount of detail of long-term
analysis. The effectiveness of strategic management planning does depend in part
on how it addressed tactical and operational constraints.

Long-term management planning of industrial forests unfolds as summarized
in Chap. 2. It requires data and information about the land base and the veg-
etation dynamics as well as about the management options and the costs and
revenues resulting from their implementation. These data and information items
were discussed in detail in earlier chapters. Data acquisition and management –
e.g. inventory and land classification, prescription generation, growth and yield
projections and market analysis – is a lengthy and costly process that takes a
huge part of the time needed to develop a strategic management plan. It requires
computerized tools that will be characterized later in Chap. 9.

In this chapter we have built from the state of the art reported by over 94
researchers from all over the world (Borges et al. 2014b) to characterize the
dimensions – e.g. spatial scale, number of objectives, type of goods and services,
spatial context – of strategic forest management planning of industrial plantations.
We further provided a brief historical overview of how the relative importance
of these dimensions evolved in recent decades. This led to the classification of
long term problems into four main clusters. The first cluster was characterized by
objectives (criteria) such as revenue maximization e.g. maximization of the value
of the industrial forest, cost minimization and the regulation of the forest over the
planning horizon. The second cluster included additional stock control objectives.
The third cluster included further landscape design objectives. The forth cluster
addressed strategic road building objectives within the framework proposed by the
first cluster.

For illustration purposes, in the case of the first cluster we considered concerns
with the regularity of the volume and the area harvested over the planning horizon.
This is often a concern of managers of industrial plantations: how much to harvest
so that there is no rupture in raw material supply. In the case of the second cluster
we considered further both carbon sequestration objectives and concerns with the
sustainability of the industrial forest by including a constraint on the inventory at the
end of the planning horizon. In the case of the third cluster we included adjacency
constraints. All these three clusters encompassed only harvesting decisions. The

http://dx.doi.org/10.1007/978-94-017-8899-1_7
http://dx.doi.org/10.1007/978-94-017-8899_8
http://dx.doi.org/10.1007/978-94-017-8899-1_2
http://dx.doi.org/10.1007/978-94-017-8899-1_9
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fourth cluster included further road building decisions. Other criteria might have
been included in each cluster yet we think that we have considered the most
representative for illustrating the processes of model building and for analysing the
potential of operations research techniques to address strategic forest management
scheduling as well as for interpreting its solutions.

The forestry literature reports several alternative modelling approaches to address
strategic management planning problems within each cluster (e.g. Martins and
Borges 2007; Diaz-Balteiro and Romero 2008). In this chapter we have classified
them into mathematical programming and heuristic approaches. We have differ-
entiated further between approaches that address explicitly one or else several
objectives. Moreover we have referred to the potential of a posteriori preference
modeling approaches. This was influential to highlight the potential of each broad
class of techniques. For illustration purposes we have selected from each group,
modeling approaches such linear programming, mixed integer programming, goal
programming, simulation, simulated annealing and Pareto frontier methods. Again,
other techniques are available that may be used to address strategic management
planning. Nevertheless we think that the selection made does provide the informa-
tion needed to help develop both model building and model solving to address the
most representative problems.

This chapter builds from the formal presentation of management planning models
in Chap. 2 to illustrate how each technique may be used to address each problem. For
that purpose we have introduced an example forest with 16 stands. This academic
example does provide the data and the information needed for a detailed numerical
illustration of model building. It facilitates further the interpretation of results. A list
of problems at the end of the chapter builds from the same example forest to support
model building, model solving and interpretation of results by readers

6.7 Problems

1. Discuss the potential of mathematical programming to address strategic indus-
trial forest management scheduling.

2. The prescriptions available to each of the 16 stands are summarized in
Table 6.2. It was assumed that timber prices were constant and independent of
the stand age. Often this is not the case. Consider the information in Table 6.7
and build a new prescription table to reflect the relation between stand age and
timber price.

3. The solutions by linear programming (LP) to Problems 1 (LP Run #1) and 2
(LP Run #2), assuming constant prices, are reported in Tables 6.3, 6.4, 6.5, and
6.6. Use LP to optimize the objective function of Problems 1 and 2 subject
only to the stand area constraints (Eq. 6.3) and assuming that prices are either
constant or as reported in Table 6.7. Summarize the solutions of these runs
(LP Run #3 and LP Run #4, respectively) in Tables similar to 6.3, 6.4, 6.5,

http://dx.doi.org/10.1007/978-94-017-8899-1_2
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Table 6.7 Timber prices Interest rate (i) 3 %
Timber age (years) Stumpage price (AC/m3)

0–25 15.5
25–45 24
45–50 30
>50 45.5

and 6.6. Explain how you could determine the optimal schedule without even
using linear programming. How could one derive the dual prices for each stand?

4. Use LP to solve Problems 1 and 2, assuming that prices are as reported in
Table 6.7. Summarize the solutions of these runs (LP Run #5 and LP Run #6,
respectively) in Tables similar to 6.3, 6.4, 6.5, and 6.6.

5. The binary search check demonstrated that the inclusion of the value of ending
inventory value in the objective function coefficients (Problems 1 and 2) as well
as the inclusion of a 55,000 m3 constraint on the volume of ending inventory
(Problem 2) did not prevent the models from prescribing harvest levels that are
not sustainable in the long term. Change Problem 2 to include a 75,000 m3

constraint on the volume of the ending inventory. Consider prices reported in
Table 6.7 and use LP to solve this problem and summarize the solution of this
run (LP Run #7) in Tables similar to 6.3, 6.4, 6.5, and 6.6.

6. Compare Run #1 to #7 in terms of the differences in volumes harvested in each
planning period and volume of ending inventory. Based on the characteristics
of each LP model, explain the differences, if any.

7. Use LP to solve Problem 2 (considering a 75,000 m3 constraint on the volume
of the ending inventory), assuming that prices are as reported in Table 6.7,
and modified so that no area, volume or carbon stock control constraints are
considered. Summarize the solution of this run (LP Run #8) in Tables similar
to 6.3, 6.4, 6.5, and 6.6.

8. Compare Run #4 and Run #8 in terms of the differences in the stands that are not
harvested over the planning horizon. Based on the characteristics of the stands
involved, explain the differences. i.e. why did each run select not to harvest the
stands that it did?

9. Consider the reduced costs for stand # 1 in the case of Runs #4 and #8. Try to
explain why the reduced costs changed as they did between these runs. Be as
specific as you can. Why did they change more for some prescriptions than for
others?

10. Determine how much the marginal value changed between Runs #4 and #5 for
each stand. Explain these changes the best you can i.e. why are some changes
larger than others? Why do some increase and others decrease?

11. Consider the changes in reduced costs for prescriptions for stands #1, #5,
and #11 between Run #4 and #5. Explain the changes (direction and relative
magnitude) the best you can in terms of the characteristics of the stands and the
characteristics of the management planning problems.
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12. Using Run #4 as the basis of comparison, the simple “with and without
principle” of economics, and the value of the objective function found for Runs
#4 through #8 determine on a per hectare basis:

(a) The cost of area and volume control constraints
(b) The combined cost of area and volume control constraints C the constraint

on the carbon stock C the 55,000 m3 ending inventory constraint
(c) The cost of the 75,000 m3 ending inventory constraint
(d) The combined cost of area and volume control constraints C the constraint

on the carbon stock C the 75,000 m3 ending inventory constraint

13. From your understanding of the original problem try to explain why you think
the costs in question 12 are of the magnitude that they are. Do you think these
costs are significant? Why?

14. If you were asked to estimate the cost of the constraint on the carbon stock
in Problems 1 and 2 how would you proceed? Do you expect that cost to be
significant? Why?

15. Assume that the industrial forest owner learns that timber demand in each
period is equal to 10,000 m3. Modify the model for Run #4 to include the new
constraints. Summarize the solution of this run (LP Run #9) in Tables similar
to 6.3, 6.4, 6.5, and 6.6.

16. In the case of Run #9 very few stands are scheduled for harvest during the
planning horizon. Based on stand characteristics, explain why the model picked
to harvest the stands that it did.

17. Consider Runs #4 and #9. Explain the marginal values of the stands in the case
of Run #9 in terms of values associated to Run #4. Be as specific as you can.

18. One might say that with forest management scheduling models “the marginal
value of valuable stands likely decreases and the marginal value of marginal
stands likely increases.” Do you agree with this statement? Explain why or
why not.

19. Replicate Runs #4 to #9 with the requirement that no stands are fragmented:

(a) Do you need to use Mixed Integer Programming (MIP) or Simulated
Annealing (SA) to get the integer solutions to Runs #3 and #4? Why?

(b) What is the cost of the locational specificity requirement in the case of
Runs #4 to #9. Explain the differences based on the characteristics of the
management planning problems.

20. Build and solve a goal programming (GP) model representing the problem that
corresponds to Run #8. When would you rather use GP than pure LP to address
an industrial forest management planning problem?

21. Discuss the potential of Pareto frontier approaches to address industrial forest
management planning problems.

22. Develop your own heuristic to solve Problem 3, assuming that prices are as
reported in Table 6.7 and a 75,000 m3 ending inventory constraint. Summarize
the solution of this run in Tables similar to 6.3, 6.4, 6.5, and 6.6.
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(a) Compare your solution to the Mixed Integer Programming (MIP) solution
to this problem.

(b) What is the cost of the adjacency constraints? Do you think they are
significant?

23. Discuss the potential of heuristics to address industrial forest management
planning problems.
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