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Abstract Nanocarriers are widely used for delivery of therapeutic and modulatory
agents to eukaryotic cells and specific intracellular compartments. Nanocarrier
internalization proceeds via different routes and predominantly via clathrin-coated
pits, lipid rafts/caveolae endocytosis and macropinocytosis/phagocytosis,
depending on the cell type as well as the physicochemical properties of the
nanocarrier. The intracellular fate of the nanocarrier is not only dependent on the
mode of entry, but may also be modulated by prior surface modification of
nanocarriers with organelle-specific localization ligands. This chapter discusses
important methodological aspects for studying cellular uptake and intracellular
trafficking of nanocarriers.
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ER Endoplasmic reticulum
GFP Green fluorescence protein
MOC Manders overlap coefficient
PALM Photoactivated localization microscopy
PCC Pearson co-localization coefficient
PEI Polyethylenimine
STORM Stochastic optical reconstruction microscopy
TEM Transmission electron microscopy
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1 Introduction

There have been numerous attempts to develop nanocarriers, which can not only
improve drug solubilisation and delivery to different eukarocytic, but also target the
desired intracellular compartments (Treuel et al. 2013). Several cellular barriers,
however, need to be crossed before nanoparticles can reach their designated
intracellular targets. Accordingly, a carrier may be designed to only enter specific
cells in relevant tissues and to enter different cells through a specific endocytic
pathway (Wang 2012). Likewise, intracellular transport mechanism of various
nanocarriers have also received considerable attention (Treuel et al. 2013; Sakhrani
and Padh 2013).

Various methods have been developed to study the mechanisms by which
nanocarriers are internalized by cells of different origin and to follow their
intracellular trafficking (Vercauteren et al. 2012). Here we describe the most
studied endocytic pathways and discuss some of the major barriers for uptake and
trafficking of nanocarriers. Advantages and disadvantages of commonly used
methods for nanocarrier trafficking studies are also discussed.

2 Endocytosis

For nanocarriers to deliver and release their cargo at an intracellular target site the
carriers need to enter the cell by crossing the plasma membrane. Most nanoparticles
are believed to be internalized by endocytosis (Canton et al. 2012). Endocytosis is
an energy-dependent process where particles are internalized in small vesicles.
The mostly studied endocytic pathways are clathrin-mediated endocytosis, cave-
olae-mediated endocytosis and macropinocytosis, but more pathways have been
identified that includes clathrin- and caveolae-independent endocytosis and
phagocytosis (Doherty and McMahon 2009) (Fig. 1).

2.1 Clathrin-Mediated Endocytosis

Clathrin-mediated endocytosis (CME) is initiated at clathrin-coated pits in plasma
membrane (Maxfield et al. 2004). Once the vesicle is formed in a dynamin-
dependent manner (Hinshaw 2000), it is uncoated and followed by fusion with or
maturation into early or recycling endosomes (Lemmon 2001; Ma et al. 2002;
Maxfield et al. 2004). Clathrin is important for the initiation of invaginations at the
membrane level and for the formation of the endocytic vesicles. Other assembly
proteins are also involved in the formation of invaginations (Brodsky et al. 2001;
Kirchhausen 1999).
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The clathrin coated vesicles have been demonstrated to be of various sizes
ranging from 50 to 300 nm. Particles reported to be internalized by CME are
generally up to 200 nm in diameter (Ehrlich et al. 2004). However, some studies
have indicated that larger particles may also be taken up by CME (Moreno-Ruiz
et al. 2009; Veiga et al. 2005). CME, however, is important when it comes to
cellular uptake and sorting of nutrients, plasma membrane proteins and lipids
(Conner et al. 2003).

2.2 Caveolae-Mediated Endocytosis

Caveolae-mediated endocytosis initiates from cholesterol-rich areas on the plasma
membrane (Khalil et al. 2006a). Formation of the invaginations is dynamin- and

Fig. 1 Schematic overview of intracellular trafficking pathways
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actin-dependent and the vesicles formed are reported to be in 60–80 nm size range
(Canton et al. 2012; Hinshaw 2000; Parton et al. 2007). Theses vesicles are coated
primarily by caveolin-1, which is responsible for the structure of the endocytic
vesicle, and caveolin-2. However, the role of the latter is still not clear (Canton
et al. 2012). The endocytic vesicles have been reported to be transported either to
the caveosome or to the early endosomes (Parton et al. 2003; Pelkmans et al.
2001). Nanocarriers internalized by caveolae-mediated endocytosis are reported to
be transported to endoplasmic reticulum and Golgi apparatus and some nanocar-
riers are also detected in the nucleus (Harris et al. 2002; Luetterforst et al. 1999;
Pelkmans et al. 2001). For gene delivery vectors, caveolae-mediated endocytosis is
the preferred route of internalization for efficient delivery and transcription of the
exogenous DNA (Gabrielson et al. 2009; van der Aa et al. 2007) as this may
substantially avoid lysosomal routing and subsequent lysosomal degradation of the
nucleic acids (Harris et al. 2002).

2.3 Macropinocytosis

Macropinocytosis is an actin-dependent membrane ruffling, which results in the
formation of large endocytic vesicles known as macropinosomes (Kerr et al.
2009). Macropinocytosis plays an important role in cellular uptake of fluids
(Conner et al. 2003). The reported size of the macropinosomes varies, but have
been demonstrated to be up to several micrometres, which is much larger than
vesicles from other endocytic pathways (Jones 2007). The size of the formed
vesicles further allows an opportunity for internalization of larger particles that
cannot enter via clathrin- and caveolae-mediated endocytosis. Indeed, some
pathogens use macropinocytosis to facilitate entry to different cells (Mercer et al.
2009).

2.4 Factors Influencing the Endocytic Pathway

Several factors have been reported to influence nanoparticle endocytosis. These
include nanoparticle physicochemical properties such as size, shape, surface
charge and ligand coating (Canton et al. 2012; Zhao et al. 2011).

A study by Rejman et al. (2004) demonstrated that while uptake of particles up
to 200 nm was dependent on microtubule, their corresponding larger particles
(500 nm) were not. This study further indicated that smaller particles where
mainly internalized by CME, whereas the larger particles entered cells through
cholesterol-dependent endocytosis and to a lesser extent were routed to the endo-
lysosomal pathway (Rejman et al. 2004). However, the literature is not consistent
in correlating nanoparticle size with internalization pathway. For instance, some
reports have indicated that particles up to 500 nm can be internalized by caveolae-
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mediated endocytosis (Georgieva et al. 2011; Rejman et al. 2004), while others
report that only particles up to 100 nm can be taken up by this route (Wang et al.
2009). These discrepancies may be due to different experimental setups, nano-
particle surface properties and the cell types examined.
Although the size of the nanoparticles can influence the endocytic pathway, many
particles are not uniform in size and have a broad size distribution, which might
render them to enter cells by different endocytic pathways, thus complicating the
analysis of internalization routes. Others have reported that the shape of the
nanoparticles determines the endocytic pathway for internalization (Gratton et al.
2008).

The uptake of particulate carriers of various sizes is also dependent on the cell
type (Massignani et al. 2009; Nakai et al. 2003). Zauner et al. (2001) presented a
study where they investigated the cellular uptake of microsphere of various sizes
by different cell lines. Not all the cell lines were capable of internalizing particles
above 1 lm, while all the tested cell lines could take up particles of 20 nm (Zauner
et al. 2001). Furthermore, the net surface charge of the particles has also been
suggested to influence the internalization pathway. Charged polystyrene or gold
particles are reported to internalize to a higher degree than electrically neutral
particles (Thorek et al. 2008; Villanueva et al. 2009). Also positively charged
particles have been reported to be internalized easier than their corresponding
anionic counterparts (Chen et al. 2011). This has been suggested to be due to ionic
interaction between the positively charged particle and the negatively charged
plasma membrane. In addition to the extent of the particle uptake, the surface
charge of the particles may further regulate the pathway of internalisation (Harush-
Frenkel et al. 2008; Zuidam et al. 2000). It has been demonstrated that dendrimers
coupled to different functional groups enter the cell by different pathways
dependent on the functional group. Dendrimers with amine or hydroxyl functional
groups enter cells through both CME and caveolae-independent pathways, while
dendrimers with functional carboxyl group mainly enter the cells via caveolae-
mediated endocytosis (Perumal et al. 2008).

Georgieva et al. (2011) reported that 500 nm nanoparticles coated with either
PEI or prion proteins were internalized through different endocytic pathways
compared with uncoated particles. The coating of the particles also had an effect
on the extent of particles that were co-localizing with recycling endosomes
(Georgieva et al. 2011). The percentage of particles removed from cells by exo-
cytosis may also dependent on the size of the particles. For example, the fraction
of small 14 nm gold nanoparticles exocytosed was higher than gold particles with
a diameter of 100 nm. Even though the percentage of particles exocytosed was
reported to be cell-type dependent, the trend is the same and a higher fraction of
the small particles being exocytosed (Chithrani et al. 2007). Not only the coating,
but also the density of the molecules used for coating can play an important role in
determining the endocytic pathway. Coating of liposomes with high density of the
cell penetrating peptide R8, shifted the endocytic pathway towards macropino-
cytosis compared with liposomes coated with low density of the peptide, which
were taken up by CME (Khalil et al. 2006b). A study by Li et al. (2011) indicated
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that PEI/DNA polyplexes are internalized by both clathrin- and caveolae-mediated
endocytosis. However, when PEI was chemically modified with the natural poly-
mer cyclodextran, the uptake mechanism was shifted toward caveolae-mediated
endocytosis in HEK293T cells, thus demonstrating the role of charge and com-
position of the carrier in modulating the internalization route (Li et al. 2011).

3 Methods for Identifying Endocytic Pathways

Two methods are commonly used to study the pathways of nanocarriers internal-
ization by cells. These include exclusion methodologies as well as co-localization
studies, where overlap between fluorescently labelled particles and fluorescently
labelled proteins are investigated by qualitative fluorescent microscopy.

3.1 Exclusion Methodologies

For exclusion determination, the nanocarrier should be fluorescently labelled
so the uptake can be measured by flow cytometry or quantitative microscopy
(Vercauteren et al. 2012). Several methods to exclude endocytic pathways have
been demonstrated. For instance, siRNA can be used to decrease the expression of
proteins required for the specific endocytic pathway in question (Zaki and Tirelli
2010). The use of siRNA may induce less cytotoxicity and be more specific than
alternative methods used for the exclusion assays (Spoden et al. 2008). Caveolin-1
and dynamin-2 are among the successful proteins that have been down-regulated
with siRNA (Huang et al. 2004). However, knockdown of proteins required for
certain endocytic pathways by siRNA technology, may lead to up-regulation of
some of the other endocytic pathways to compensate (Damke et al. 1995).

The most commonly used form of exclusion assays entail chemically inhibiting
specific endocytic pathways. Table 1 lists some of the most commonly used
inhibitors. The endocytosis inhibitors do not show exclusive specificity and many
of the inhibitors of CME have been reported to cause reorganization of the actin
skeleton (Ivanov 2008). Changes in the cytoskeleton might also affect other
endocytic pathways, which are reported to be actin-dependent. Especially hyper-
tonic sucrose as inhibitor for CME has been reported to be non-specific (Ivanov
2008). Also one of the mostly used inhibitors for caveolae-mediated endocytosis,
methyl-b-cyclodextrin, which causes acute depletion of cholesterol, has been
reported to significantly affect the cytoskeleton and also to inhibit CME and
macropinocytosis (Kanzaki et al. 2002; Rodal et al. 1999). Inhibitors of macr-
opinocytosis are also non-specific (Ivanov 2008). Even though, it is difficult to
inhibit one endocytic pathway without affecting other pathways, the inhibitors are
widely useful when studying internalization of nanocarriers.
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Some of the chemical inhibitors have been reported to induce cell type-dependent
cytotoxicity. This can result in incorrect interpretation. Accordingly, appropriate
concentration of inhibitors must be selected to optimize the conditions prior to testing
(Vercauteren et al. 2010). When analyzing exclusion assays by flow cytometry,
positive controls such as transferrin and folic acid, which are known to be inter-
nalized by clathrin- and caveolae-mediated endocytosis, respectively, should be
included (Rothberg et al. 1990; Schmid 1997). However, flow cytometry may not
necessarily distinguish between cells with internalized particles and those with
surface bound particles (Ogris et al. 2000; Salvati et al. 2011).

In addition, genetically-modified cell lines have been used to exclude endocytic
pathways (Ilina et al. 2012; Rejman et al. 2004). For example, Ilina et al. (2012)
reported particle uptake studies with genetically-modified cells where dynamin-
dependent and clathrin-mediated endocytic pathways were not operative. They
further reported that the use of chemical inhibitors and the genetic blockage do not
result in the same level of decrease in transfection efficiency (Ilina et al. 2012).
These results further indicate that the interpretation of the inhibition assays can be
difficult, and several methods should be considered before reaching a conclusion
about the uptake mechanism of particles in specific cell lines. One of the problems
with inhibition of endocytic pathways by mutant cell lines is the possibility of
another pathway becoming increasingly active, which may aid the uptake of
nanocarriers (Damke et al. 1995).

When identifying the endocytic pathway important for efficient delivery of
pDNA by PEI, many contradicting reports have been published. Von Gersdorff
et al. (2006) reported that clathrin-mediated endocytosis is required for efficient
transfection, whereas Hufnagel et al. (2009) reported that fluid phase uptake plays
an important role for efficient transfection with PEI/DNA polyplexes. However, it
has also been demonstrated that blocking of caveolae-mediated endocytosis can
inhibit expression of exogenous DNA (Gabrielson et al. 2009).

Uptake of fluorescently-labeled nanoparticles is usually measured by flow
cytometry at various time points after addition of particles. Not all fluorophores are
suitable for use in investigating cellular uptake through endocytosis. An example
is fluorescein which has been reported to show decreased brightness when pH is
below 9 and almost fully quenched at pH 6, which could result in inaccurate
interpretation of the results when the particles have reached the acidic environment
of endosomes and lysosomes (Geisow 1984).

3.2 Co-localization Microscopy Studies for Uptake
Mechanism

Co-localization studies with fluorescence microscopy depend on the availability
of fluorescently labeled nanocarriers and fluorescently labeled markers for the
specific endocytic pathways that are being investigated (Vercauteren et al. 2012).
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A commonly used method is to add the nanocarrier to living cells, which is
followed by fixation at various time points after addition. After fixation, immu-
nostaining of the specific endocytic marker is performed to detect possible
co-localization between nanocarrier and the marker for the endocytic pathway.
Several fixative agents have been reported to cause artifacts, which need to be
considered when analyzing the data (Lundberg et al. 2001; Pearson 2007). To
avoid such artifacts live-cell imaging may be applied.

To study co-localization by live-cell imaging, the marker protein has to be
tagged with an appropriate fluorescent marker. This may include stably transfected
cell lines where the marker proteins are coupled to a fluorescent tag such as the
Green Fluorescence Protein (GFP) or the Red Fluorescent Protein. However, it is
important to control the expression of the fluorescently-labeled marker proteins,
since their overexpression might increase the activity of an endocytic pathway,
which does not have the same activity in the parental cell line. Furthermore,
co-localization between two molecules acquisition, pre-processing of the image
and also sample preparation are very important steps to overcome possible artifacts
(Abraham et al. 2010; Bolte et al. 2006).

3.3 Other Methods to Study Internalization

Other methods have also been used to analyze the internalization of particles in the
nanometer range. Scanning electron microscopy, transmission electron microscopy
and atomic force microscopy have been applied to detect reorganization of the
plasma membrane (Georgieva et al. 2011; Leroueil et al. 2007). The re-organization
of the membrane when endocytosis is initiated varies between the different path-
ways and the electron density at the invagination sites can be distinguished by
electron microscopy thus making it possible to distinguish between endocytic
pathways (Doherty and McMahon 2009). Dynamic surface enhanced Raman
spectroscopy has also been used to investigate nanoparticle (e.g., gold nanoparticles
and carbon nanotubes) internalization and intracellular transport pathways (Ando
et al. 2011).

4 Intracellular Transport

From the point when the endocytic vesicles are detached from the membrane the
carrier has to be transported to the targeted cellular compartment. Several mech-
anisms of how the cargo is transported from early endosomes through late endo-
somes to lysosomes or recycling endosomes have been suggested (Gruenberg et al.
2004; Luzio et al. 2007; Saftig et al. 2009). Both the possibility of gradual mat-
uration and fusions of compartments have been suggested (Stoorvogel et al. 1991).
It has further been demonstrated that endosomes and lysosomes can communicate
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via small vesicles in cell free systems, which indicate that it is not only gradual
maturation that takes place (Vida et al. 1999).

Nanoparticles have been reported to accumulate in the peri-nuclear region
shortly after internalization (Bae et al. 2012; Bregar et al. 2013; Fichter et al. 2013;
Kim et al. 2012; Suh et al. 2003). The movement of carriers has in several cases
been demonstrated to be dependent on polymerization of either actin or micro-
tubule (Suh et al. 2003). To investigate the role of microtubule or actin in the
cytosolic transport of nanocarriers chemical inhibitors of polymerization of tubulin
or actin have been reported to interrupt the transport. PEI/DNA polyplexes have
been reported to be dependent on actin during cellular uptake, whilst the intra-
cellular trafficking is suggested to be microtubule dependent. In addition, a lac-
tosylated derivate of PEI was reported to be transported along microtubule (Grosse
et al. 2007). Similarly, liposomes have been reported to be transported along
microtubule during cellular transport. However, it has been demonstrated that the
transfection efficiency is enhanced both when disrupting or stabilizing microtu-
bule, because liposomes no longer are transported to the lysosomes. R8-coated
liposomes only reached the periphery of the nuclear when microtubule was not
disrupted by nocodazole (Hasegawa et al. 2001; Khalil et al. 2008). On the other
hand, PEI-mediated transfection was almost eliminated when disrupting micro-
tubule with nocodazole treatment in COS-7 cells (Grosse et al. 2007). Also free
plasmid DNA has been reported to be dependent of microtubule-mediated trans-
port on the route to the nucleus (Vaughan and Dean 2006). Suh et al. (2003)
reported that PEI/DNA polyplexes were transported along microtubule. The
transport was directed towards the nucleus and carried out by motor protein along
microtubule (Suh et al. 2003). However, it should be considered that when
destabilizing the microtubule and actin network the cell morphology is highly
affected. This can lead to changes in both cell uptake and intracellular transport of
nanoparticles (Dos et al. 2011).

Caveolae-mediated endocytosis has in many cases been reported to be an
endocytic pathway where delivery to endo-lysosomal pathway can be avoided and
trafficking occurs from the caveosome to endoplasmic reticulum and Golgi
apparatus (Badizadegan et al. 2000; Lencer et al. 1999). Currently, this transport
mechanism has not been completely elucidated. Particles can also be transported
between ER and Golgi apparatus. This event has been demonstrated to take
advantage of the normal cellular trafficking between the two organelles. Glycofect
particles has been demonstrated to be transported in COP I coated vesicle from
Golgi to ER (Fichter et al. 2013).

Liposomes internalized by macropinocytosis have also been reported to avoid
lysosomal degradation and to be present in the cytosol after endocytosis. When the
liposomes where internalized by macropinocytosis the transfection efficiency was
significantly higher than when internalized through CME (Khalil et al. 2006b).
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4.1 Endosomal Escape

To avoid degradation in the acidic lysosome environment nanoparticles have to
escape from early endosomes. One suggested mechanism is the proton-sponge
hypothesis and applicable to cationic species. This hypothesis was first suggested
in 1997 by Behr and colleagues. Here, polycationic species were suggested to
induce influx of negatively charged ions (e.g., chlorides) into the endosomes. This
influx is followed by water due to change in osmotic pressure. This may result in
endosome swelling and eventual rupture, resulting in cytosolic release of the
polycation (Behr 1997). A recent work, however, reported that the lysosomal pH
does not change after treating cells with PEI, thus suggesting that the proton
sponge hypothesis may be an inadequate explanation for endolysosomal release
(Benjaminsen et al. 2013).

Polycations have previously been described to be able to cause perturbations of
lipid bilayers, which may be an alternative mechanism by which nanocarriers may
escape endo-lysosomes (Bieber et al. 2002). Addition of cationic lipids to lipid
carriers has resulted in endosomal escape probably due to destabilization of the
lipid bilayer of endosomes (Wasungu et al. 2006). Akita et al. (2010) reported that
a pH-sensitive fusogenic peptide could be modified for endosomal escape. One
example is the GALA peptide, which can destabilize the lipid bilayer resulting in
successful endosomal escape (Akita et al. 2010).

4.2 Cytosolic Transport

After release from the endosomes nanoparticles must reach their designated
intracellular targets. For example, if pDNA is delivered the release should happen
in the periphery of the nucleus so the DNA is not degraded before it reaches the
nucleoplasm (Lechardeur et al. 2005). For cytoplasmic dissociation biodegradable
carriers have been designed. The biodegradable carriers will be gradually degraded
in the cytoplasm resulting in release of the cargo (Gosselin et al. 2001).

To reach the cellular compartment where the cargo is going to be released an
increasing amount of research has been put into targeting the organelle of interest
(Sakhrani and Padh 2013). For instance, the ER retention signal consisting of four
amino acids (KDEL) has been used to target ER. By targeting ER the endo-
lysosomal pathway might be bypassed and lysosomal degradation can be avoided
(Acharya et al. 2013; Wang et al. 2013). Mitochondria play an important role in
initiation of apoptosis, regulating calcium homeostasis, removal of reactive oxy-
gen species and in ATP synthesis. Hence, targeting of mitochondria through
mitochondrial targeting signal peptide can be very important in treatment of
various conditions (Heller et al. 2012; Sakhrani and Padh 2013).
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4.3 Nuclear Entry

If the cargo of the nanocarrier requires transport to the nucleus, passing the nuclear
envelope is a major barrier for efficient delivery. On the nuclear envelope, nuclear
pore complexes are widely distributed (Grossman et al. 2012). Molecules that
enter the nucleus have to pass through the channel of this complex. Small mole-
cules up to 9 nm in diameter can freely diffuse through the pore channel (Paine
et al. 1975), whereas molecules up to 39 nm are transported through the complex
by an energy-dependent transport (Pante et al. 2002).

DNA needs to be transported through the nuclear pore complex, but the
mechanism behind this still needs further investigation. Some reports suggest that
only during mitosis DNA can enter the nucleus or that the transfection efficiency is
dependent on the cell cycle, but microinjection of DNA in the cytoplasm has
shown that the exogenous DNA can be transcribed in non-dividing cells (Brunner
et al. 2000; Dean et al. 2005; Pollard et al. 1998).

It has been reported that a nuclear localization sequence added to the nano-
carriers can increase the transport to the nucleus. Also a DNA sequence coding for
a binding site for NFkB can increase the transport of DNA to the nucleus resulting
in an increase in transfection (Breuzard et al. 2008; Dean et al. 2005).

Entry to the nucleus has been under intense investigation and many con-
tradicting reports have been published. For example, PEI has been suggested to be
transported to the nucleus, only to be present in the nucleus after mitosis, whereas
other studies have indicated the inability of PEI to reach the nucleus (Brunner et al.
2000; Dowty et al. 1995; Larsen et al. 2012). Not many studies have evaluated the
mechanism by which a nanocarrier enters the nucleus, but it has been suggested
that polycations might rupture the membrane to access the nucleoplasm (Godbey
et al. 1999). The size of the nanocarriers can also be a major obstacle in the
transport through the NPC, since only molecules with a diameter of less than
40 nm can be transported through the nuclear pore complex and most nanocarriers
have been reported to be above 100 nm (Pante et al. 2002).

5 Techniques to Investigate Cellular Localization
of Nanocarriers

Investigations of intracellular trafficking of nanocarriers are in many cases carried
out by fluorescence microscopy. However, it is important to interpret the
microscopy data with care, since artifacts may be generated and the interpretation
of microscopy images can be very subjective (Bolte et al. 2006).

Fixation of cells before staining is widely used, but as previously mentioned the
fixation can induce artifacts. Live-cell imaging decreases the amount of artifact
that usually can be observed after a fixation procedure. However, to be able to
detect which organelles the nanocarrier is transported to it is necessary to use cell
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permanent organelle specific dyes or to label organelle specific proteins with GFP
or similar species (Vercauteren et al. 2012).

There exist several types of fluorescence microscopes. When using confocal
microscopes the end product is an image where only light from the focal plane is
emitted. For wide-field microscopes also light from the out of focus planes is
visible in the final image (Bolte et al. 2006). Images from wide-field microscopes
require deconvolution of the images to eliminate the out of focus blur. Especially,
if quantifying the co-localization of nanocarriers with organelle markers wide-field
images need to be deconvolved but it can also be an advantage to deconvolve
confocal images (Bolte et al. 2006; Scriven et al. 2008). Deconvolution requires an
accurate point-spread-function, which can be determined with use of various
algorithms calculating point-spread-function (PSF) in various ways. The PSF
should also be determined for the optical conditions used in experiments (McNally
et al. 1999). Co-localization can also be determined visually. An overlap of two
channels where the detected light is represented in two different colors will result
in color change if there is an overlap between the fluorophores. This, however, is a
subjective way of determining overlaps between channels and is only qualitative
(Bolte et al. 2006; Dunn et al. 2011). In recent years quantitative algorithms have
been developed to calculate the degree of co-localization.

The degree of co-localization can be calculated according to various coeffi-
cients. The most commonly used are the Pearson co-localization coefficient (PCC)
and the Manders overlap coefficient (MOC). The PCC identify co-localization
when a pixel from two different has the same intensity, whereas MOC detect
overlap when fluorescence in a pixel from two channels is detected (Bolte et al.
2006; Manders et al. 1992). When using PCC it is important that the same
instrument settings are used every time and when imaging nanocarriers their might
still be a different in intensity in both the nanocarrier and also in the protein labeled
from cell to cell and especially between experiments (Dunn et al. 2011).

For live-cell imaging MOC is the most commonly used coefficient since
intensity from organelle markers and the nanocarrier itself can vary between
experiments (Dunn et al. 2011). It is important when using MOC that a back-
ground threshold is set to avoid false positive read-out, which is a major risk when
calculating MOC to analyze the degree of overlap (Bolte et al. 2006; Dunn et al.
2011; Fletcher et al. 2010).

Suh et al. (2003) have performed real-time multiple particle tracking when
reporting that intracellular transport of PEI/DNA polyplexes to the periphery of the
nuclei is dependent on motor proteins along microtubule (Suh et al. 2003). The
same group also reported that polyplexes were actively transported to the early and
late endosomes and transport between the endosomes was also observed when
performing real-time multiple particle tracking (Suh et al. 2012).

Single-particle tracking is another powerful tool to study the route by which one
single nanocarrier is transported through the cell (Ruthardt and Brauchle 2010).
This method requires a fast and sensitive camera and the efficient laser excitation.
Single-particle tracking is following the trajectory for each separately visible
particle. Co-localization of particles are defined as significant correlation between
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the trajectories (Braeckmans et al. 2010). This method provides the possibility to
investigate if the single particles are transported in the same direction and to the
same organelles and will provide new insights as how a population of nanopar-
ticles behaves when added to cells (Ruthardt and Brauchle 2010). Other micros-
copy methods have been applied to study the intracellular distribution of
nanocarriers. Among them Raman microscopy and Fluorescence recovery after
photo-bleaching have been used to investigate interaction between nanoparticles
and mitochondria (Chernenko et al. 2009; Hemmerich et al. 2013; Phizicky et al.
2003).

5.1 High-Resolution Fluorescence Microscopy

Many of the traditional microscopes have a detection limit around 200 nm in the
XY-plane and 500 nm in the Z-plane for optimal settings. This gives a problem
when imaging nanocarriers with few hundred nanometers in diameter and single
particles are not possible to image (Bolte et al. 2006).

An optimized hardware is necessary to perform high-resolution microscopy.
Each step from the laser excitation to the camera acquisition has to be optimized
compared with conventional microscopy. When performing high resolution
microscopy on live cells there is a risk of inducing cell death due to high laser
power. Photoactivated localization microscopy (PALM) and stochastic optical
reconstruction microscopy (STORM) are two of the most described high resolution
microscopy techniques (Henriques et al. 2011). The super resolution techniques
create a dataset by excitation of few fluorophores at a time and an image is the
reconstructed based on the fluorescent particles. PALM and STORM are two very
similar setup but they vary in the fluorophores that are used for the experiments.
PALM uses genetically attached fluorophores such as GFP coupled proteins,
whereas STORM take advantages of fluorescent dyes (Henriques et al. 2011).

5.2 Transmission Electron Microscopy

Transmission electron microscopy (TEM) is also widely used for co-localization
studies. Gold labeled antibodies against a specific antigen are a specific method to
investigate the cellular localization of the protein of interest. By TEM it is possible
to distinguish between various organelles and cellular compartment and the
endocytic vesicles (Georgieva et al. 2011). However the interpretation of electron
microscopy can be difficult and may generate artifacts during sample preparation.
Sample preparation for electron microscopy includes embedding, slicing and
staining of the sample before imaging and this is very time consuming compared
to fluorescent imaging (Henriques et al. 2011). Nanocarriers can often be visual-
ized on their own by negative staining.
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5.3 Cellular Fractionation

Cellular fractionation has also been used to study the intracellular localization of
nanocarriers. Centrifugation steps are carried out to separate the various organelles
(He et al. 2013; Shi et al. 2013). For instance, Shi et al. (2013) labeled their
polyplexes with [3H]-DNA and [14C]-PEI before adding the polyplexes to the cell
growth medium. They separated the lysed cells into nuclear, light mitochondria,
heavy mitochondria, microsomes and cytosolic fractions. Quantification of the
radioactivity indicated that a large fraction of both PEI and DNA was detected in
the nuclei fraction. This method, however, was not sufficient to demonstrate if
polyplexes entered the nucleus intact or separately as DNA and/or PEI (Shi et al.
2013). A major disadvantage of this method is the risk of contaminating the
different cellular compartments with parts from the other fractions.

6 Conclusion

Uptake and intracellular trafficking of nanocarriers is currently under intense
investigation. Many factors can influence the endocytic pathways and need to be
taken into consideration when designing assays and analyzing the data. Quantifi-
cation of co-localization between nanocarriers and the marker protein can be
determined in a very subjective manner by looking at the overlay images from two
or more channels. However, several algorithms have been developed to give a
more objective quantification of the co-localization. Also exclusion assays when
studying the uptake of nanocarriers can be difficult to interpret with certainty, since
inhibiting the selected pathways can result in unwanted cellular responses such as
toxic responses or undesired increased activation of alternative pathways.
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