
Chapter 5
On the Blok-Esakia Theorem

Frank Wolter and Michael Zakharyaschev

In memory of Leo Esakia

Abstract We discuss the celebrated Blok-Esakia theorem on the isomorphism
between the lattices of extensions of intuitionistic propositional logic and the Grze-
gorczyk modal system. In particular, we present the original algebraic proof of this
theorem found by Blok, and give a brief survey of generalisations of the Blok-Esakia
theorem to extensions of intuitionistic logic with modal operators and coimplication.

Keywords Modal logic · Intuitionistic logic · Modal algebra · Heyting algebra ·
Intermediate logics

5.1 Introduction

The Blok-Esakia theorem, which was proved independently by the Dutch logician
Wim Blok [6] and the Georgian logician Leo Esakia [13] in 1976, is a jewel of
non-classical mathematical logic. It can be regarded as a culmination of a long
sequence of results, which started in the 1920–1930s with attempts to understand
the logical aspects of Brouwer’s intuitionism by means of classical modal logic and
involved such big names in mathematics and logic as K. Gödel, A.N. Kolmogorov,
P.S. Novikov and A. Tarski. Arguably, it was this direction of research that attracted
mathematical logicians to modal logic rather than the philosophical analysis of

F. Wolter (B)

Department of Computer Science, University of Liverpool, Liverpool, UK
e-mail: wolter@liverpool.ac.uk

M. Zakharyaschev
Department of Computer Science and Information Systems,
Birkbeck, University of London, London, UK
e-mail: michael@dcs.bbk.ac.uk

G. Bezhanishvili (ed.), Leo Esakia on Duality in Modal and Intuitionistic Logics, 99
Outstanding Contributions to Logic 4, DOI: 10.1007/978-94-017-8860-1_5,
© Springer Science+Business Media Dordrecht 2014



100 F. Wolter and M. Zakharyaschev

modalities by Lewis and Langford [43]. Moreover, it contributed to establishing
close connections between logic, algebra and topology. (It may be of interest to note
that Blok and Esakia were rather an algebraist and, respectively, a topologist who
applied their results in logic.)

Blok’s and Esakia’s aims were to understand and describe the structure of
the extremely complex lattices of modal and superintuitionistic (aka intermediate)
logics—or, in algebraic terms, the lattices of varieties of topological Boolean and
Heyting algebras.1 Their theorem provided means for a comparative study of these
lattices and gave a ‘superintuitionistic classification’ of the lattice of modal logics
containing S4. Esakia [16] believed that one could give a complete description of
the structure of all modal companions of an arbitrary superintuitionistic logic. In
particular, he aimed to describe the structure of all modal companions of intuition-
istic propositional logic Int, discovered that the McKinsey system S4.1 was one of
them and that the Grzegorczyk [33] system Grz was the largest one. It is to be noted
that the first to observe and investigate the close relationship between the lattices of
extensions of Int and S4 were Dummett and Lemmon [11], who—in 1959—used
the relational representations of topological Boolean and Heyting algebras that are
known to us as Kripke frames. Maksimova and Rybakov [47] in 1974 laid a solid
algebraic foundation to the area.

This chapter is a brief overview of results related to the Blok-Esakia theorem,
which supplements the earlier survey [10]. In Sect. 5.2, we discuss the role and place
of the Blok-Esakia theorem in the theory of modal and superintuitionistic logics. In
Sect. 5.3, we give Blok’s original algebraic proof of this theorem, which has never
been properly published. Section 5.4 surveys generalisations of the Blok-Esakia
theorem to intuitionistic modal logics, and, in Sect. 5.5, we discuss its extension to
intuitionistic logic with coimplication.

5.2 Modal Companions of Superintuitionistic Logics

According to the (informal) Brouwer-Heyting-Kolmogorov semantics of intuition-
istic logic, a statement is true if it has a proof. Orlov [57] and Gödel [25] formalised
this semantics bymeans of a modal logic where the formula�ϕ stands for ‘ϕ is prov-
able.’ (Novikov [55] read �ϕ as ‘ϕ is establishable.’) Their modal logic contained
classical propositional logic,2 Cl, three properly modal axioms

�(p → q) → (�p → �q), �p → p, �p → ��p,

1 Topological Boolean algebras [60] are also known as closure algebras [48], interior algebras [6]
and S4-algebras. Heyting algebras are called pseudo-Boolean algebras in [60].
2 Actually, Orlov [57] considered a somewhat weaker logic, which can be regarded as the first
relevant system.
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and the inference rules ϕ/�ϕ (if we have derived ϕ, then ϕ is provable), modus
ponens and substitution. Gödel [25] observed that the resulting logic is equivalent
to one of the systems in the Lewis and Langford [43] nomenclature, namely S4, and
conjectured that propositional intuitionistic logic Int, as axiomatised byHeyting [35],
can be defined by taking

ϕ ∈ Int iff T (ϕ) ∈ S4, (5.1)

where T (ϕ) is themodal formula obtained by prefixing� to every subformula3 of the
intuitionistic formula ϕ. This conjecture was proved byMcKinsey and Tarski [49] in
1948; many other proofs of this fundamental result were given later byMaehara [44],
Hacking [34], Schütte [67], Novikov [55], et al.

It has been known sinceGödel’s [24] that there are infinitelymany (more precisely,
continuum-many [36]) logics between Int and Cl. Moreover, some of them are
‘constructive’ in the same way as Int, for instance, the Kleene realisability logic [38,
54, 65] or the Medvedev logic of finite problems [50]. The logics sitting between
Int and Cl were called intermediate logics by Umezawa [72, 73]; in the 1960s,
Kuznetsov suggested the name superintuitionistic logics (si-logics, for short) for all
extensions of Int. We denote the class of si-logics by ExtInt. The class of normal
(that is, closed under the necessitation rule ϕ/�ϕ) extensions of S4 will be denoted
by NExtS4. Thus,

ExtInt = {Int + Γ | Γ ⊆ LI },
NExtS4 = {S4 ⊕ Σ | Σ ⊆ LM },

whereLI is the set of propositional (intuitionistic) formulas,LM is the set of modal
formulas, + stands for ‘add the formulas in Γ and take the closure under modus
ponens and substitution,’ while ⊕ also requires the closure under necessitation.

Dummett and Lemmon [11] extended the translation T to the whole class of
si-logics. More precisely, with every si-logic L = Int+Γ they associated the modal
logic τ L = S4 ⊕ {T (ϕ) | ϕ ∈ Γ } and showed that L is embedded in τ L by T : for
every ϕ ∈ LI , we have

ϕ ∈ L iff T (ϕ) ∈ τ L . (5.2)

It turned out, in particular, that τCl = S5, τKC = S4.2, τLC = S4.3, where

Cl = Int + p ∨ ¬p, S5 = S4 ⊕ p → �♦p,

KC = Int + ¬p ∨ ¬¬p, S4.2 = S4 ⊕ ♦�p → �♦p,

LC = Int + (p → q) ∨ (q → p), S4.3 = S4 ⊕ �(�p → q) ∨ �(�q → p).

3 There are different variants of the translation T ; in fact, it is enough to prefix � to propositional
variables, implications and negations only.
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One of the questions considered in [11] was to identify those properties of logics that
were preserved under the map τ .

Grzegorczyk [33] found a proper extension of S4 into which Int can also be
embedded by T . His logic is known now as the Grzegorczyk logic

Grz = S4 ⊕ �(�(p → �p) → p) → p.

Thus, we have, for every ϕ ∈ LI :

ϕ ∈ Int iff T (ϕ) ∈ Grz. (5.3)

In fact, according to the Blok-Esakia theorem, Grz is the largest extension of
S4 into which Int is embeddable by T . Esakia [13] observed that Int was also
embeddable into the McKinsey logic S4.1 = S4 ⊕ �♦p → ♦�p.

A systematic study of the embeddings of si-logics into modal logics was launched
by Maksimova and Rybakov [47], Blok [6] and Esakia [13, 15, 16]. Maksimova and
Rybakov introduced two more maps:

ρ : NExtS4 → ExtInt and σ : ExtInt → NExtS4

where

– ρM = {ϕ ∈ LI | T (ϕ) ∈ M}, for every M ∈ NExtS4; Esakia called ρM the
superintuitionistic fragment of M , and M a modal companion of ρM ;

– σ L = τ L ⊕ Grz, for every L ∈ ExtInt (Maksimova and Rybakov [47] used a
somewhat different map, which was later shown to be equivalent to σ by Blok and
Esakia).

Thus, for example, ρGrz = ρS4.1 = Int, τ Int = S4, and σ Int = Grz.
The results of Maksimova and Rybakov [47], Blok [6] and Esakia [13, 15, 16]

on the relationship between ExtInt and NExtS4 can be summarised as follows:

1. The set of all modal companions of any si-logic L forms the interval

ρ−1(L) = {M ∈ NExtS4 | τ L ⊆ M ⊆ σ L},

with τ L being the smallest and σ L the greatest modal companions of L in
NExtS4.4 Note that this interval always contains an infinite descending chain
of logics; for some si-logics, it may contain continuum-many modal logics.

2. The map ρ is a lattice homomorphism from NExtS4 onto ExtInt, τ is a lattice
isomorphism fromExtInt into NExtS4, and all the threemaps ρ, τ and σ preserve
infinite sums and intersections of logics [47].

4 That every si-logic L has a greatest modal companion was first established by Maksimova and
Rybakov [47], who gave an answer to an open question by R. Bull; however, they did not observe
that greatest modal companion is actually τ L ⊕ Grz.
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3. (The Blok-Esakia Theorem) The map σ is a lattice isomorphism from ExtInt
onto NExtGrz.

4. Rybakov [66] also observed that, for any L ∈ ExtInt, the lattice ExtL is isomor-
phically embeddable intoρ−1L . It follows, for example, that there are a continuum
of modal companions of Int.

The emerging relationship between the lattices ExtInt and NExtS4 can be described
semantically. Recall (see, e.g., [9, 27] for details and further references) that general
frames for Int are structures of the form F = (W, R, P), where W is a non-empty
set, R a partial order on W and P is a collection of upward closed subsets of W (with
respect to R) that contains ∅ and is closed under ∩, ∪ and the operation → defined
by taking

X → Y = {x ∈ W | ∀y (x Ry ∧ y ∈ X → y ∈ Y )}.

If P contains all upward closed subsets in W , then F is called a Kripke frame and
denoted by F = (W, R). Every si-logic L is characterised by the class FrL of general
frames validating L . General frames for S4 are triples of the form F = (W, R, P),
where R a quasi-order on W �= ∅ and P ⊆ 2W is a Boolean algebra of subsets of
W closed under the operation � defined by taking

�X = {x ∈ W | ∀y (x Ry → y ∈ X)}.

General frames of the form F = (W, R, 2W ) are called Kripke frames and denoted
by F = (W, R). Every logic M ∈ NExtS4 is characterised by the class FrM of
general frames validating M . For example, a Kripke frame F = (W, R) is in FrGrz
iff F does not contain an infinite ascending chain of the form x1Rx2Rx3 . . . with
xi �= xi+1, i ≥ 1. We call such frames Noetherian. The smallest non-Noetherian
frame contains two distinct points accessible from each other; we denote this frame
by C2.

Given a frame F = (W, R, P) for S4 and a point x ∈ W , we denote by C(x) the
cluster generated by x in F, that is, the set

C(x) = {y ∈ W | x Ry and y Rx}.

(Thus, the frame C2 above is just a two-point cluster.) The skeleton of F is the general
frame ρF = (ρW, ρR, ρ P) for Int defined by taking ρX = {C(x) | x ∈ X}, for
X ∈ P , C(x)ρRC(y) iff x Ry, and

ρ P = {ρX | X ∈ P and X = �X}.

Conversely, given a frame F = (W, R, P) for Int, denote by σF the frame
(W, R, σ P) for S4, where σ P is the Boolean closure of P in 2W . Note that the
operator σ does not preserve Kripke frames as, for example, σ(ω,≤) is not a Kripke
frame.Anotherway of converting an intuitionistic frameF = (W, R, P) into amodal
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one is by expanding its points into clusters. Given a cardinal κ , 0 < κ ≤ ω, define
τκF = (κW, κ R, κ P) by replacing every x ∈ W with a κ-cluster with the points xi ,
for i ∈ κ , and taking κ P to be the Boolean closure of {X I | I ⊆ κ and X ∈ σ P},
where X I = {xi | i ∈ I and x ∈ X} [79]. One can show that both ρσF and ρτκF
are isomorphic to F.

Given a class K of frames, we set ρK = {ρF | F ∈ K }; a similar notation
will be used for the operators σ and τκ . The logic determined by K is denoted by
LogK (it will always be clear from the context whether it is a si- or modal logic).
Now, we have:

(ρ) for any M ∈ NExtS4 and K , M = LogK iff ρM = LogρK ,
(τ ) for any L ∈ ExtInt and K , L = LogK iff τ L = Log{τκK | κ < ω},
(σ ) for any L ∈ ExtInt and K , L = LogK iff σ L = LogσK .

Thus, we can think of NExtS4 as a two-dimensional structure: in one dimension,
we can change the skeleton of frames and thereby change the si-fragment ρM of
a modal logic M ; in the other, we can change the size of clusters in frames, which
keeps the same si-fragment ρM but varies the logic between τρM and σρM .

A little bit different perspective can be obtained by employing the machinery of
canonical formulas (see [4, 9, 80] for details and further references). For simplicity,
let us imagine that all logics in ExtInt and NExtS4 are subframe logics, that is, their
classes of frames are closed under taking (not necessarily generated) subframes. All
such logics are Kripke complete [17, 78], so we can only deal with Kripke frames.
Given a finite rooted quasi-order F, one can construct a modal formula, α(F), such
that, for any frame G, we have G �|= α(F) iff F is a p-morphic image of a subframe
of G; in this case we also say that G is sub-reducible to F. A similar intuitionistic
formula, β(F), can be associated with any finite rooted partial order F. The formulas
of the form α(F) and β(F) are called subframe formulas. As shown in [17, 78],
all subframe modal and si-logics can be axiomatised by the respective subframe
formulas. (We note in passing that the subframe si-logics are precisely those logics
in ExtInt that can be axiomatised by purely implicative formulas [78, 81].)

Given a si-logic L = Int + {β(Fi ) | i ∈ I }, every logic M ∈ ρ−1L can be
represented in the form

M = S4 ⊕ {α(Fi ) | i ∈ I } ⊕ {α(F j ) | j ∈ J }, (5.4)

where every frame F j , j ∈ J , contains a cluster with at least two points. The logic
S4 ⊕ {α(Fi ) | i ∈ I } is obviously τ L , while σ L = τ L ⊕ α(C2). The lattice ρ−1Cl
of modal companions of classical logic Cl looks as follows:

τCl = S5 ⊂ · · · ⊂ S5 ⊕ α(Cn) ⊂ · · · ⊂ S5 ⊕ α(C2) = Log{C1},

where Cn is a cluster with n points. However, for other si-logics L , the lattice ρ−1L
may be very complex.



5 On the Blok-Esakia Theorem 105

Every M ∈ NExtS4 can be represented as

M = M∗ ⊕ τρM, with M∗ ⊆ Grz.

Muravitsky [53] called the logic M∗ a modal component of M and observed that
the modal components of M form a dense sublattice of NExtS4 with M ∩ Grz as
its greatest element. The problem whether this sublattice always has a least element
was left open in [53]. We only note here that a least element does exist if M is a
subframe logic.

The semantic characterisations given above can be used to investigate whether
this or that property of logics is preserved under the maps ρ, τ and σ . For example,
all the three maps preserve decidability, the finite model property and the disjunction
property [47, 79]; Kripke completeness is preserved by ρ, τ but not by σ [47, 68,
79]; interpolation is preserved only under ρ [46]. (For more preservation results and
further references consult [9, 10].)

In this chapter, we do not consider embeddings of Int and its extensions into
the logic of formal provability (in Peano Arthmetic) GL, found by Boolos [7],
Goldblatt [26] and Kuznetsov and Muravitskij [42]. A discussion of these results
can be found in [10]; see also the chapters in this volume written by T. Litak and
A. Muravitsky. Artemov [1] analyses the Brouwer-Heyting-Kolmogorov interpreta-
tion of intuitionistic logic in the context of his logics of proofs LP closely related to
S4. Relationships between first-order si- and modal logics are investigated in [23].

5.3 An Algebraic Proof of the Blok-Esakia Theorem

In this section, we give a sketch of the algebraic proof of the Blok-Esakia theorem
that was found byBlok in his PhD thesis [6] but never published in a journal. (A proof
using the machinery of canonical formulas was given in [9]; Jerabek [37] considered
modal companions of si-logics from the point of view of inference rules and also
gave a proof of the Blok-Esakia theorem.)

We remind the reader that si- and modal logics are determined by varieties of
Heyting and, respectively, topological Boolean algebras. A Heyting algebra A =
(A,∧,∨,→,⊥,�) extends a bounded distributive lattice (A,∧,∨,⊥,�) with a
binary operator a → b for the relative pseudo-complement of a with respect to b;
that is, for all c ∈ A, we have a ∧ c ≤ b iff c ≤ a → b. The class of all Heyting
algebras is a variety (equationally definable); we denote it by H . Subvarieties V of
H are in 1–1 correspondence to si-logics: for any class V of Heyting algebras, the
set

L(V ) = {ϕ ∈ LI | ∀A ∈ V A |= (ϕ = �)}

is a si-logic and, conversely, for every si-logic L ,
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V (L) = {A | ∀ϕ ∈ L A |= (ϕ = �)}

is a variety of Heyting algebras. Moreover, L(V (L)) = L and V (L(V )) = V for
any si-logic L and any variety V of Heyting algebras. These results can be proved
directly or using duality betweenHeyting algebras and general frames for Int: for any
such general frame F = (W, R, P), the set P with operations ∩, ∪, and → defined
above forms a Heyting algebra denoted byF+. Conversely, for every Heyting algebra
A, one can construct a general frame A+ = (W, R, P) whose domain W consists of
all prime filters X in A with X RY iff X ⊆ Y , and V ∈ P iff there exists a ∈ A with
V = {X ∈ W | a ∈ X}. Moreover, A is isomorphic to (A+)+.

A topological Boolean algebra, or an S4-algebra, A = (A,∧,∨,¬,⊥,�,�)

extends a Boolean algebra (A,∧,∨,¬,⊥,�) with a unary operator � satisfying
the following equations, for all a, b ∈ A:

�� = �, �(a ∧ b) = �a ∧ �b, �a ≤ a, �a ≤ ��a.

The class of all S4-algebras is a variety; we denote it by V (S4). Subvarieties V of
V (S4) are in 1–1 correspondence to normal extensions of S4: for any class V of
S4-algebras, the set

L(V ) = {ϕ ∈ LM | ∀A ∈ V A |= (ϕ = �)}

is a logic in NExtS4 and, conversely, for every logic L ∈ NExtS4,

V (L) = {A | ∀ϕ ∈ L A |= (ϕ = �)}

is a variety of S4-algebras. Moreover, L(V (L)) = L and V (L(V )) = V for any
L ∈ NExtS4 and any variety V of S4-algebras. Similarly to the representation of
Heyting algebras by frames for Int above, one can represent S4-algebras by general
frames for S4. For any such general frame F = (W, R, P) for S4, the set P with
the operations intersection, union, complement, and � defined above forms an S4-
algebra denoted by F+. Conversely, for every S4-algebra A, one can construct a
general frame A+ = (W, R, P) whose domain W consists of all ultrafilters X in
A with X RY iff {a | �a ∈ X} ⊆ Y , and V ∈ P iff there exists a ∈ A with
V = {X ∈ W | a ∈ X}. And again, A is isomorphic to (A+)+.

We are in the position now to describe the relationship between si-logics and
normal extensions of S4 at the level of Heyting and S4-algebras.

From S4-algebras to Heyting algebras. For any S4-algebra A = (A,∧,∨,

¬,⊥,�,�), we define a Heyting algebra ρA by taking

ρA = (ρ A,∧,∨,→,⊥,�),
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where ρ A = {�a | a ∈ A} and a → b = �(¬a ∨ b). Alternatively, one can obtain
(an isomorphic copy of) ρA by applying the operation ρ defined for general frames
to A+ and then taking the induced algebra; that is, ρA is isomorphic to (ρ(A+))+.

From Heyting algebras to S4-algebras. Conversely, with every Heyting algebra
A one can associate an S4-algebra σA in the following way. First, given a bounded
distributive lattice D = (D,∧,∨,⊥,�), we construct the free Boolean extension
B of D with domain B = σ D ⊇ D, which is the (uniquely determined) Boolean
algebra generated by D such that, for anybounded lattice homomorphism f : D → C
into a Boolean algebra C, there exists a unique Boolean homomorphism h : B → C
with h�D = f . Now, given a Heyting algebra A = (A,∧,∨,→,⊥,�), we obtain
the S4-algebra σA by setting in the free Boolean extension of its underlying bounded
distributive lattice

�a =
n∧

i=1

(ai → bi ), for a =
n∧

i=1

(¬ai ∨ bi ).

One can show that σA ∈ V (Grz) and thatA |= (ϕ = �) iff σA |= (T (ϕ) = �). σA
can also be obtained by first formingA+ = (W, R, P) and then taking the S4-algebra
(W, R, σ P)+ induced by (W, R, σ P), where σ P has been defined above.

Given classes K and H of S4- and Heyting algebras, respectively, we set

ρK = {ρA | A ∈ K } and σH = {σA | A ∈ H }.

We denote by HK , SK , PK , and PUK the classes of subalgebras, homomorphic
images, products, and ultraproducts of algebras inK , respectively. Recall that a class
K of algebras (of the same signature) is a variety if, and only if, it is closed under
subalgebras, homomorphic images, and products. Every first-order definable class
(and, hence, every variety) is closed under ultraproducts. The following lemma can
be proved by showing that ρV is closed under subalgebras, homomorphic images,
and products [5, 6]:

Lemma 1. For any variety V of S4-algebras, ρV is a variety of Heyting algebras.

For a variety V of Heyting algebras, σV is not always a variety. We denote by
σ ∗V the variety of S4-algebras generated by σV . The following result implies the
Blok-Esakia Theorem:

Theorem 1. (i) For every variety V of Heyting algebras, ρσ ∗V = V .
(ii) For every variety V of Grz-algebras, σ ∗ρV = V .

For a detailed and instructive exposition of the main steps of the proof of Theorem
1, we refer the reader to [3]. Here we focus on (ii) and, in particular, the following
technical lemma from Blok’s PhD thesis, which is the key to the algebraic proof of
the Blok-Esakia theorem.
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Lemma 2. Let A ∈ V (Grz) be a countable algebra and let B be a subalgebra of
A such that

– ρ A ⊆ B;
– there exists c ∈ A such that A is the Boolean closure of B ∪ {c} in A (denoted,

slightly abusing notation, A = [B ∪ {c}]B A).

Then A ∈ SPUB.

Proof (sketch). We follow the proof given in Blok’s PhD thesis [6]. Suppose that
B = {bi | i < ω} and letU be a non-principal ultrafilter onω.We remind the reader of
the definition of the ultraproduct

∏
i<ω B/U . First, we define an equivalence relation

∼U by taking g ∼U g′ iff {i < ω | g(i) = g′(i)} ∈ U , for any g, g′ ∈ ∏
i<ω B,

and set [g] = {g′ | g ∼U g′}. The domain of
∏

i<ω B/U is {[g] | g ∈ ∏
i<ω B}.

For b ∈ B, let b̂ = (b, b, . . . ) ∈ ∏
i<ω B. The map f : B → ∏

i<ω B/U defined
by taking f (b) = [̂b] is an embedding of the S4-algebra B into the S4-algebra∏

i<ω B/U . We show that f extends to an embedding f̂ of the S4-algebra A into
the S4-algebra

∏
i<ω B/U .

For n ≥ 0, let

Cn = {bi ∈ B | bi ≤ c, i ≤ n}, cn =
∨

b∈Cn

b, ĉ = (cn)n<ω.

First, using a Lemma on the existence of Boolean embeddings from [31, p. 84] one
can show that f can be extended to a Boolean embedding f̂ : A → ∏

i<ω B/U with
f̂ (c) = [̂c]. The next, and crucial, part of the proof is to show that f̂ commutes with
the �-operator. Then A ∈ SPUB, as required. To show that f̂ commutes with �,
let a ∈ A. Then

a = (c ∨ d1) ∧ (¬c ∨ d2) ∧ d3,

for some d1, d2, d3 ∈ B. It suffices to show that

(a) f̂ (�(c ∨ d1)) = � f̂ (c ∨ d1),
(b) f̂ (�(¬c ∨ d2)) = � f̂ (¬c ∨ d2),
(c) f̂ (�d3) = � f̂ d3,

since then we shall have:

f̂ (�a) = f̂ (�((c ∨ d1) ∧ (¬c ∨ d2) ∧ d3))

= f̂ (�(c ∨ d1) ∧ �(¬c ∨ d2) ∧ �d3)

= f̂ (�(c ∨ d1)) ∧ f̂ (�(¬c ∨ d2)) ∧ f̂ (�d3)

= � f̂ (c ∨ d1) ∧ � f̂ (¬c ∨ d2) ∧ � f̂ d3
= � f̂ (a).

Now, (c) follows from d3 ∈ B and the condition that f is a homomorphism. For (a),
let b = d1. We observe that
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�(c ∨ b) = �((�(c ∨ b) ∧ ¬b) ∨ b)

because �(c ∨ b)∧¬b ≤ c. We have �(c ∨ b)∧¬b ∈ B since �(c ∨ b) ∈ ρ A ⊆ B
and b ∈ B. Hence �(c ∨ b) ∧ ¬b = bn for some n < ω. We obtain cn ≥ bn and, for
all m ≥ n,

�(c ∨ b) = �((�(c ∨ b) ∧ ¬b) ∨ b) ≤ �(cm ∨ b) ≤ �(c ∨ b).

Thus, �(c ∨ b) = �(cm ∨ b) for all m ≥ n. The equation f̂ (�(c ∨ b)) = � f̂ (c ∨ b)

follows.
To show (b), let b = d2, p = �(¬c ∨ b), and q = �((c ∧¬b)∨ p). We note that

q = �(¬(¬c ∨ b) ∨ �(¬c ∨ b)). We obtain ¬p ∧ q ≤ c ∧ ¬b. Since A ∈ V (Grz),
we obtain, for all x ,

A |= �(¬�(¬x ∨ �x) ∨ �x) = �x

and, therefore,

�(¬q ∨ p) = �(¬�(¬(¬c ∨ b) ∨ �(¬c ∨ b)) ∨ �(¬c ∨ b))

= �(¬c ∨ b).

We have ¬p ∧ q ∈ B since ρ A ⊆ B, and so ¬p ∧ q = bn for some n < ω.
From ¬p ∧ q ≤ c ∧ ¬b we obtain bn ≤ cm ∧ ¬b for all m ≥ n, and therefore
¬bn ≥ ¬cm ∨ b, for all m ≥ n. Hence

�(¬c ∨ b) = �(¬q ∨ p) = �¬bn ≥ �(¬cm ∨ b) ≥ �(¬c ∨ b).

Thus, we obtain �(¬c ∨ b) = �(¬cm ∨ b) for all m ≥ n. The required equation
f̂ (�(¬c ∨ b)) = � f̂ (¬c ∨ b) follows. �

We are now in the position to show that σ ∗ρV = V , for any variety V of Grz-
algebras. The inclusion σ ∗ρV ⊆ V is clear. Since any variety is generated by its
finitely generated members, to prove V ⊆ σ ∗ρV it is sufficient to show that all
finitely generated A ∈ V are in the variety generated by σρV . Let A ∈ V be
generated by {a1, . . . , an}. σρA is (isomorphic to) a subalgebra of A. Consider the
sequence

[σρA ∪ {a1}]B A, . . . , [σρA ∪ {a1, . . . , an}]B A = A.

By Lemma 2, it follows by induction that

[σρA ∪ {a1, . . . , ai }]B A ∈ V (σρA) ⊆ σ ∗ρV ,

for 1 ≤ i ≤ n. Thus, A ∈ σ ∗ρV , as required.
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Intuitionistic logic and its extensions can be embedded in modal logics different
from normal extensions of S4 using different translations; for details and references,
the reader can consult [10]. In the remainder of this chapter, we briefly consider
extensions of Int with extra operators.

5.4 Blok-Esakia Theorems for Intuitionistic Modal Logics

Modal extensions of intuitionistic propositional logic are notoriously much harder
to investigate than si-logics and standard (uni)modal logics. In fact, it is already non-
trivial to define what an intuitionistic analogue of a given modal logic should be—for
intuitionistic� and♦ are not supposed to be dual. Servi [18, 20], for instance, used a
generalisation of the translation T to argue that her systems were ‘true’ intuitionistic
analogues of classical modal logics. In this section, we briefly discuss two extensions
of the Blok-Esakia theorem to intuitionistic modal logics.

We begin by considering themost obvious basic system IntK�, which is obtained
by adding to Int the standard axiom �(p ∧ q) ↔ (�p ∧ �q) and the necessita-
tion inference rule ϕ/�ϕ of the minimal modal logic K (♦ϕ can be defined as
¬�¬ϕ; note, however, that this ♦ does not distribute over disjunction). As before,
NExtIntK� denotes the family of logics of the form IntK� ⊕ Γ , where Γ is a
set of modal formulas. An example of a logic in this family is Kuznetsov’s [41]
intuitionistic provability logic

I� = IntK� ⊕ p → �p ⊕ (�p → p) → p ⊕ ((p → q) → p) → (�q → p),

an intuitionistic analogue of the provability logic GL. (Esakia suggested the name
KM for this logic; see Muravitsky’s chapter in this volume for a detailed account.)
Muravitskij [51, 52] actually proved that the lattices NExtI� and NExtGL are iso-
morphic (this result and some generalisations are discussed in Litak’s chapter).

A Kripke frame for IntK� is a structure of the form F = (W, R, R�), where R
is a partial order and R� a binary relation on W such that R ◦ R� ◦ R = R�. The
intuitionistic connectives are interpreted in F by means of R, while � is interpreted
via R�. Algebraically, every logic L ∈ NExtIntK� corresponds to the variety of
Heyting algebras with modal operators validating L . For more details on algebraic
and relational semantics of these logics and their duality, the reader is referred to
[71, 76].

We embed logics in NExtIntK� into extensions of the fusion (aka independent
join) S4 ⊗ K of the modal logics S4 and K. Assuming that the necessity operators
in S4 and K are denoted by �I and �, respectively, we consider the translation T
which prefixes�I to every subformula of a given formula in the language of IntK�.
As before, we say that T embeds L ∈ NExtIntK� into M ∈ NExt(S4 ⊗ K) if, for
every (unimodal) formula ϕ,
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ϕ ∈ L iff T (ϕ) ∈ M.

In this case M is called a bimodal companion of L .
For every logic M ∈ NExt(S4 ⊗ K), let

ρM = {ϕ | T (ϕ) ∈ M},

and let σ be the map from NExtIntK� into NExt(S4 ⊗ K) defined by taking

σ(IntK�⊕Γ ) = (Grz⊗K) ⊕ mix ⊕ T (Γ ), where mix = �I ��I p ↔ �p.

Here, the axiom mix reflects the condition R ◦ R� ◦ R = R� on frames for IntK�.
The following extension of the embedding results discussed in Sect. 5.2 was proved
in [76, 77]:

Theorem 2. (i) The map ρ is a lattice homomorphism from NExt(S4 ⊗ K) onto
NExtIntK�, which preservs decidability, Kripke completeness, tabularity and the
finite model property.

(ii) Each logic IntK� ⊕ Γ is embedded by T into any logic M in the interval

(S4 ⊗ K) ⊕ T (Γ ) ⊆ M ⊆ (Grz ⊗ K) ⊕ mix ⊕ T (Γ ).

(iii) The map σ is an isomorphism fromNExtIntK� ontoNExt((Grz⊗K)⊕mix)

preserving the finite model property and tabularity.

Very fewgeneral completeness and decidability results are known for intuitionistic
modal logics. The theorem above providesmeans for obtaining such results for logics
in NExtIntK�. For example, one can show that if a si-logic Int + Γ is decidable
(Kripke complete or has the finite model property) then the logic IntK� ⊕Γ enjoys
the same property (for details and more results, the reader is referred to [76, 77]).

Intuitionistic modal logics with independent� and♦ can be defined as extensions
of the basic system IntK�♦, which contains the axioms and rules of IntK� as well
as the following axioms for ♦:

♦(p ∨ q) ↔ ♦p ∨ ♦q and ¬♦⊥.

Kripke frames for IntK�♦ are of the form (W, R, R�, R♦), where R is a partial order
(interpreting the intuitionistic connectives), while R� and R♦ are binary relations
on W (interpreting, respectively, � and ♦) such that the following conditions hold:
R ◦ R� ◦ R = R� and R−1 ◦ R♦ ◦ R−1 = R♦.

Perhaps themost prominent logics inNExtIntK�♦were constructed by Prior [59]
and Fischer Servi [19, 20]. Fischer Servi introduced a weak connection between the
necessity and possibility operators in her system

FS = IntK�♦ ⊕ ♦(p → q) → (�p → ♦q) ⊕ (♦p → �q) → �(p → q).
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Frames for FS satisfy the following conditions:

x R♦y → ∃z (y Rz ∧ x R�z ∧ x R♦z),

x R�y → ∃z (x Rz ∧ x R�y ∧ z R♦y).

A remarkable feature of FS is that the standard first-order translation not only
embeds K into classical first-order logic but also FS into intuitionistic first-order
logic; for details, consult [32, 70]. Another important extension of IntK�♦ is the
logic

MIPC = FS ⊕ �p → p ⊕ �p → ��p ⊕ ♦p → �♦p ⊕
p → ♦p ⊕ ♦♦p → ♦p ⊕ ♦�p → �p

introduced by Prior [59]. MIPC is an intuitionistic analogue of the modal logic
S5 in the sense that it is equivalent to the one-variable fragment of intuitionistic
first-order logic in the same way as S5 is equivalent to the one-variable fragment
of classical first-order logic. (Note, by the way, that the two-variable intuition-
istic logic is undecidable [40], unlike the corresponding classical logic, which is
NExpTime-complete [30].) MIPC is determined by the class of its Kripke frames
(W, R, R�, R♦), where R� is a quasi-order, R♦ = R−1

� and R� = R ◦ (R� ∩ R♦).
The extension of MIPC with the duality axiom ¬�¬p → ♦p [21, 56, 64]

is known as weak S5 and denoted by WS5. Bezhanishvili [2] showed that, for
every formula ϕ, we have ϕ ∈ WS5 iff ¬¬ϕ ∈ MIPC (remember that, accord-
ing to Glivenko’s theorem, ϕ ∈ Cl iff ¬¬ϕ ∈ Int). Kripke frames (W, R, R�, R♦),
characterising WS5, are frames for MIPC such that R� is an equivalence relation
on W .

Bezhanishvili [3] proved an analogue of the Blok-Esakia theorem for WS5 and
the extension of Grz (in the language with �I ) with universal modalities. Modal
logics with universal modalities were introduced by Goranko and Passy [28] who,
for any (classical) modal logic L with �I , defined the (classical) bimodal logic Lu

with two boxes, �I and ∀, by taking

Lu = L ⊕ {axioms of S5 for ∀} ⊕ ∀p → �I p.

For example, the logic S4u can be interpreted in topological spaces by regarding
�I as the interior operator and ∀ as ‘for all points in the space.’ Because of this,
S4u plays a prominent role in spatial representation and reasoning; see [22] and
references therein. By adding to S4u the axiom ∀(♦I p → �I p) → ∀p ∨ ∀¬p, we
obtain the logic S4uC which is characterised by connected topological spaces [69].

Bezhanishvili [3] defined a translation T from the language of WS5 to the lan-
guage of S4u by extending the standard Gödel translation of Int into S4 with two
more clauses T (�ϕ) = ∀T (ϕ) and T (♦ϕ) = ∃T (ϕ), and showed that this translation
is an embedding of WS5 into both S4u and Grzu . It also embeds the logic
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WS5C = WS5 ⊕ �(p ∨ ¬p) → (p → �p)

into both S4uC and GrzuC = Grzu ⊕ ∀(♦I p → �I p) → ∀p ∨ ∀¬p. Moreover,
the following extension of the Blok-Esakia theorem holds for T :

– the lattice NExtWS5 is isomorphic to the lattice NExtGrzu , and
– the lattice NExtWS5C is isomorphic to the lattice NExtGrzuC.

A Blok-Esakia theorem for the lattice of all extensions of IntK�♦ is obtained
in [76]. In contrast to the target classical modal logics considered above, the modal
logic constructed in [76] has, in addition to the S4/Grz-modality, a modal operator
that is not normal (but still has a natural Kripke semantics).

5.5 The Blok-Esakia Theorem for the Heyting-Brouwer Logic

In the 1970s,CecyliaRauszer suggested the extensionof the signature of intuitionistic
logic by means of a new binary operator for coimplication, which we denote here
by →̆. Algebraically, →̆ is defined in terms of intuitionistic disjunction in the same
way as the intuitionistic implication is defined in terms of intuitionistic conjunction
and thus re-establishes, in an extension of intuitionistic logic, the symmetry between
classical disjunction and conjunction that is given up in the signature of intuitionistic
logic. The translation T of intuitionistic formulas to modal formulas can be extended
by setting

T (ϕ→̆ψ) = ♦P (T (ψ) ∧ ¬T (ϕ)),

where ♦P is the basic Priorean tense operator for ‘at some time in the past’ that is
interpreted by the inverse of the accessibility relation for the modal �. To emphasise
symmetry, in this section, we denote the modal operator � by �F for ‘always in
the future.’ It turns out that many properties of the translation T still hold for this
translation of coimplication in Priorean tense logic. In particular, a natural Blok-
Esakia theorem holds. Interestingly, Leo Esakia [12, 14] considered both logics and
made significant contributions to the study of algebras and their dual Kripke frames
for both tense logics and intuitionistic logic extended by coimplication.

The basic logic in the extended language is called Heyting-Brouwer logic, HB,
and is axiomatised by adding to any standard Hilbert-style axiomatisation of Int the
axioms (we set ¬̆ = p→̆�)

p → (q ∨ (q→̆p)), (q→̆p) → ¬̆(p → q),

(r→̆(q→̆p)) → ((p ∨ q)→̆p), ¬(q→̆p) → (p → q), ¬(p→̆p),

and the rule (RN): p/¬¬̆p. HB and its first-order extensions have been investigated
in [61–63].
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In the same way as intuitionistic logic, HB is determined by Kripke frames that
are partial orders and in which

– w |= ϕ→̆ψ iff there exists v with vRw, v |= ψ , and v �|= ϕ.

An algebraic semantics for HB is given by Heyting-Brouwer algebras (aka double
Heyting algebras, biHeyting-algebras, and Semi-Boolean algebras) which have been
investigated in, for example, [39, 45, 62]. For recent progress in proof theory for
HB we refer the reader to [8, 29, 58] (where, mostly, HB is called bi-intuitionistic
logic).

The basic tense logic into which HB is embedded by T is called S4.t. It is the
normal bimodal logic with operators�F and�P (and their duals ♦F and ♦P ) which
both satisfy the axioms for S4 and the Priorean tense axioms

p → �P♦F p and p → �F♦P p.

In the same way as S4, the tense logic S4.t is determined by Kripke frames that are
quasi-orders. The following equivalence follows directly from completeness with
respect to Kripke semantics: for all ϕ,

ϕ ∈ HB iff T (ϕ) ∈ S4.t.

We now extend the mappings τ , ρ, and σ between si-logics and normal extensions
of S4 to normal extensions of HB and S4.t. A normal super-Heyting-Brouwer logic
(shb-logic) is an extension of HB that is closed under modus ponens, substitution,
and (RN). By NExtL we denote the lattice of shb-logics containing a shb-logic L .
For a set Γ of intuitionistic formulas with coimplication, we denote by HB ⊕ Γ the
smallest shb-logic containingΓ . Similarly, a normal extension of S4.t is an extension
of S4.t closed under substitution, modus ponens, p/�P p, and p/�F p. By NExtL
we denote the lattice of normal tense logics containing a normal tense logic L and
by L ⊕ Γ we denote the smallest normal extension of L containing Γ .

The analogue of Grz in tense logic is given by Grz.t, which is obtained from S4.t
by setting

Grz.t = S4.t ⊕ {�F (�F (p → �F p) → p) → p, �P (�P (p → �P p) → p) → p}.

Note that we use the axiom for Grz for the future and the past. Using it for the future
only would give a weaker logic without the finite model property [74] which is a
tense companion of HB but not sufficiently strong for a Blok-Esakia theorem. We
set

– for L = HB ⊕ Γ , τ L = S4.t ⊕ {T (ϕ) | ϕ ∈ Γ },
– for M ∈ NExtS4.t, ρM = {ϕ | T (ϕ) ∈ M},
– for L ∈ NExtHB, σ L = Grz.t ⊕ τ L .

Now, using an extension of the algebraic methods used in Blok’s thesis, the following
is shown in [75]:
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1. The map ρ is a lattice homomorphism fromNExtS4.t onto NExtHB; τ is a lattice
isomorphism from NExtHB into NExtS4.t. The three maps ρ, τ and σ preserve
infinite sums and intersections of logics.

2. The map σ is a lattice isomorphism from NExtHB onto NExtS4.t.

Wolter [75] also considers extensions of thosemappings and theBlok-Esakia theorem
to non-normal super Heyting-Brouwer logics [logics that are not closed under (RN)]
and modal extensions of super Heyting-Brouwer logic. However, in contrast to the
situation for si-logics, the preservation properties of those mappings have not yet
been investigated in any detail.
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