
Chapter 2
Canonical Extensions, Esakia Spaces,
and Universal Models

Mai Gehrke

In memory of Leo Esakia

Abstract In this chapter we survey some recent developments in duality for
lattices with additional operations paying special attention to Heyting algebras and
the connections to Esakia’s work in this area. In the process we analyse the Heyting
implication in the setting of canonical extensions both as a property of the lattice
and as an additional operation. We describe Stone duality as derived from canoni-
cal extension and derive Priestley and Esakia duality from Stone duality for maps.
In preparation for this we show that the categories of Heyting and modal algebras
are both equivalent to certain categories of maps between distributive lattices and
Boolean algebras. Finally we relate the N-universal model of intuitionistic logic to
the Esakia space of the corresponding Heyting algebra via bicompletion of quasi-
uniform spaces.

Keywords Heyting algebra ·Booleanization ·Canonical extension ·Eskia duality ·
Universal model

2.1 Introduction

With his study of duality for Heyting algebras and modal algebras, Esakia was one
of the first to study duality for lattices with additional operations [12]. Jónsson and
Tarski studied duality for Boolean algebras with additional operations in the form of
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canonical extensions very early on [34, 35]. In this chapter we highlight some of the
main results of central importance for these works of Esakia, and Jónsson and Tarski,
and indicate some further developments in duality theory for lattices with additional
operations, mainly as they pertain to Heyting algebras.

The theory of canonical extensions, which recasts duality in a purely algebraic
setting of lattice completions, was initiated by Jónsson and Tarski in their two papers
[34, 35]. At first sight, one might think the purpose was to get rid of the topological
nature of Stone duality, but this aspect is actually still very much present, though in a
form more similar to the later developed point-free approach to topology. The main
purpose for Jónsson and Tarski in recasting duality in algebraic form was to make it
easier to identify what form the dual of an additional algebraic operation on a lattice
should take. Thus in the first paper [34] they proved a general theorem about the
extension of maps and preservation of equational properties, and the second paper
[35] then specified the ensuing dual structures in which one can represent the original
algebras.

The theory of canonical extensions has moved forward significantly since the
seminal work of Jónsson and Tarski and is now applicable far beyond the original
Boolean setting. It has the advantage of allowing a uniform and relatively transparent
treatment of duality issues concerning additional operations. Since Esakia’s work on
duality for Heyting and S4 modal algebras may be seen as special instances of duality
for lattices with additional operations, the theory of canonical extensions has in fact
allowed the generalisation of many of Esakia’s results and methods to a much wider
setting. In this chapter we will show this while focussing mainly on Heyting algebras.

In Sect. 2.2 we give a brief introduction to canonical extension and show that it
provides a point-free approach to duality for Heyting algebras. To this end, we show,
in a constructive manner, that the canonical extension of any distributive lattice is a
complete

∨
-distributive lattice and thus also a Heyting algebra. Further, we show

that the canonical embedding of a lattice in its canonical extension is conditionally
Heyting and thus a Heyting algebra embedding if the original distributive lattice is a
Heyting algebra. In Sect. 2.3 we explain how additional operations are treated in the
theory of canonical extensions and illustrate this in the particular example of Heyting
implication, viewed as an additional operation on a lattice.

Section 2.4 is purely algebraic and is a preparation for the duality results for Heyt-
ing and S4 modal algebras. Here we discuss Booleanisation of distributive lattices. In
modern terms Booleanisation is the fact that the inclusion of the category of Boolean
algebras in the category of distributive lattices has a left adjoint. This means, among
other, that for any distributive lattice D, there is a unique Boolean algebra D− that
contains D as a sublattice, and that is generated by D as a Boolean algebra. This
implies that the category of distributive lattices is equivalent to the category of lattice
inclusions D ↪→ D− with commutative diagrams for which the maps between the
domains are lattice maps and the maps between the codomains are Boolean algebra
maps. One can then see Heyting algebras as the (non full) subcategory of those inclu-
sions D ↪→ D− which have an upper adjoint g: D− → D and with commutative
diagrams that also commute for the adjoint maps. Finally S4 modal algebras also
live inside the category of lattice embeddings from distributive lattices to Boolean
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algebras as those lattice embeddings e: D → B that have an upper adjoint, and the
maps are, as for Heyting algebras, the commutative diagrams that commute both for
the embeddings and for their upper adjoints. That is, in this setting, one may see the
category of Heyting algebras as the intersection of the category of distributive lattices
and the category of S4 modal algebras. This point of view on distributive lattices,
Heyting algebras, and S4 modal algebras allows one to see all of them as certain maps
between distributive lattices and Boolean algebras. Now applying Stone duality to
these maps yields Priestley duality for distributive lattices, and Esakia duality for
Heyting algebras and modal algebras.

In Sect. 2.5 we show how Stone duality may be derived from the canonical exten-
sion results by ‘adding points’ in the sense of point-free topology. Further, we give
an algebraic account of the duality for operators and the corresponding notion of
bisimulation. This last topic is treated further in Sect. 2.7 where we discuss Esakia’s
lemma and its generalisation as obtained in our paper [22] with Bjarni Jónsson.
Finally, in Sect. 2.6, we derive both Priestley and Esakia duality from Stone duality
with the help of the results of Sect. 2.4.

In Sect. 2.8, we briefly discuss set representations of distributive lattices and in
particular the representation of the free N -generated Heyting algebra in the so-called
N -universal model. In particular, we outline recent results from [19] which show that
the Stone or Priestley space of a distributive lattice is the bicompletion of any set
representation of the lattice, viewed as a quasi-uniform space.

I would like to thank the anonymous referee as well as Dion Coumans and Sam van
Gool for carefully reading a draft of the chapter and making many useful comments
which have improved the chapter greatly. I also want to thank Guram Bezhanishvili
for detailed historical comments pointing out how my view point of Esakia duality
here closely corresponds to Leo Esakia’s own derivation of the duality. These histor-
ical comments have been incorporated in Sects. 2.4 and 2.6 as appropriate. Finally I
would like to thank Dick de Jongh for helpful discussions about the universal models
for intuitionistic logic.

2.2 Canonical Extension

Canonical extensions were first introduced by Jónsson and Tarski [34] in order to
deal with additional operations such as modalities and relation algebraic operations
in the setting of Stone duality. The idea is the following: A topological space is a
pair, (X,O) where X is a set, and O is a collection of downsets of X (in the order on
X induced by O). Since the poset X and the complete lattice, D(X), of all downsets
of X are dual to each other via the discrete duality between posets and downset
lattices, the information in giving (X,O) is exactly the same as the information
in the embedding O ↪→ D(X). Further, in the case of Stone duality, since O is
generated by the dual lattice D, the data O ↪→ D(X), in turn, amounts to giving an
embedding D ↪→ D(X). This latter formulation brings the entire duality within the
setting of lattice theory, making the proper translation of additional structure such as
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operations on the lattice more transparent. The key insight needed here is that this
embedding may be uniquely characterised among the completions of D.

Definition 1. Let L be a lattice, a canonical extension of L is a lattice completion
L ↪→ Lδ of L with the following two properties:

density: L is
∨ ∧

- and
∧ ∨

-dense in Lδ , that is, every element of Lδ is both
a join of meets and a meet of joins of elements of L;

compactness: given any subsets S and T of L with
∧

S ≤ ∨
T in Lδ , there

exist finite sets S′ ⊆ S and T ′ ⊆ T such that
∧

S′ ≤ ∨
T ′ in L .

The fundamental facts about canonical extensions are the following.

Theorem 1. Every bounded lattice has a canonical extension and it is unique up to
an isomorphism which commutes with the embedding of the original lattice in the
extension.

Theorem 2. For any bounded distributive lattice D, the map η: D → D(X,≤) into
the lattice of all downsets of the dual space X of D which sends each element d ∈ D
to the corresponding clopen downset η(d) is a canonical extension of D.

In the original approach of Jónsson and Tarski for Boolean algebras [34] and
Gehrke and Jónsson for bounded distributive lattices [22], Theorem 2 provided the
existence part of Theorem 1. However, the canonical extension may also be obtained
directly from the lattice without the use of the axiom of choice. This was first identified
by Ghilardi and Meloni in the case of Heyting algebras in their work on intermediate
logics [31]. A similar choice-free approach was used in [20] where Theorem 1 was
first proved in the setting of arbitrary (i.e., not-necessarily-distributive) bounded
lattices. There, it was shown that the lattice of Galois closed sets of the polarity
(F ,I , R), where F is the collection of lattice filters of L and I is the collection
of lattice ideals of L , and F RI if and only if F ∩ I �= ∅, yields a canonical extension
of L . This is actually part of a more general representation theorem for so-called �1-
completions of a lattice. These are the completions satisfying the density condition
in Definition 1. In [21] it was shown that any such completion may be obtained as
the Galois closed subsets of a certain kind of polarity between a closure system of
filters and a closure system of ideals of the original lattice. A different choice-free
approach to the existence of canonical extensions for lattices via dcpo presentations
was given in [26].

It follows from Theorem 2 that the canonical extension of any bounded distributive
lattice is a downset lattice and therefore a complete Heyting algebra. We show here,
in a choice-free manner, that the canonical extension of any bounded distributive
lattice is a frame and thus also a complete Heyting algebra. Further, we show that the
embedding of a bounded lattice in its canonical extension is conditionally Heyting,
meaning that it preserves the implication whenever defined. Thus canonical extension
also provides a constructive approach to Esakia duality.

We first need a few facts about canonical extensions. In working with topological
spaces, the closed and the open subsets, obtained for a Boolean space by taking
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arbitrary intersections and arbitrary unions of basic clopens, respectively, play a
very important role. For canonical extensions, the basic clopens are replaced by the
image of the embedding L ↪→ Lδ and the closures under infima and suprema play
roles similar to those of closed and open subsets in topology. Also, from a lattice
theoretic perspective, the density condition that is part of the abstract definition of
canonical extension makes it clear that the meet and the join closures of L in Lδ play
a central role.

Definition 2. Let L be a lattice, and Lδ a canonical extension of L . Define

F(Lδ) := { x ∈ Lδ | x is a meet of elements from L },

I (Lδ) := { y ∈ Lδ | y is a join of elements from L }.

We refer to the elements of F(Lδ) as filter elements and to the elements of I (Lδ) as
ideal elements.

The reason for this nomenclature is that the poset F(Lδ) of filter elements of Lδ

is reverse order isomorphic to the poset Filt(L) of lattice filters of L via the maps
x 
→ (↑x) ∩ L and F 
→ ∧

Lδ F , and, dually, the poset I (Lδ) of ideal elements
of Lδ is order isomorphic to the poset Idl(L) of lattice ideals of L via the maps
y 
→ (↓y) ∩ L and I 
→ ∨

Lδ I . Establishing these isomorphisms is in fact the first
step in proving the uniqueness of the canonical extension, see e.g. [21, Theorem 5.10].
Note that now we can reformulate the density condition for canonical extensions by
saying that F(Lδ) is join dense in Lδ and I (Lδ) is meet dense in Lδ .

We are now ready to prove that the canonical extension of a bounded distributive
lattice satisfies the join-infinite distributive law.

Theorem 3. Let D be a bounded distributive lattice. Then Dδ is
∨

-distributive.

Proof. As a first step we want to show for x ∈ F(Dδ) and X ⊆ F(Dδ) that

x ∧
∨

X ≤
∨

{ x ∧ x ′ | x ′ ∈ X }.

To this end, let z ∈ F(Dδ) with z ≤ x ∧ ∨
X and y ∈ I (Dδ) with

∨{ x ∧ x ′ | x ′ ∈
X } ≤ y. By the join density of F(Dδ) and the meet density of I (Dδ), it suffices to
show that we must have z ≤ y.

The condition on y implies that, for each x ′ ∈ X , we have x ∧ x ′ ≤ y, and thus,
by compactness, there are a, b ∈ D with x ≤ a, x ′ ≤ b and a ∧ b ≤ y. As a
consequence we have

∨
X ≤

∨
{ b ∈ D | ∃x ′ ∈ X ∃a ∈ D with x ≤ a, x ′ ≤ b, and a ∧ b ≤ y }.

This inequality, combined with z ≤ x ∧∨
X ≤ ∨

X and compactness, now implies
that there are b1, . . . , bn ∈ D, there are x ′

1, . . . , x ′
n ∈ X with x ′

i ≤ bi , and there
are a1, . . . , an ∈ D with x ≤ ai and ai ∧ bi ≤ y and z ≤ b1 ∨ . . . ∨ bn . Let
a = a1 ∧ . . . ∧ an then, since z ≤ x ∧ ∨

X ≤ x , we have
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z ≤ x ∧ (b1 ∨ . . . ∨ bn)

≤ a ∧ (b1 ∨ . . . ∨ bn)

= (a ∧ b1) ∨ . . . ∨ (a ∧ bn)

≤ (a1 ∧ b1) ∨ . . . ∨ (an ∧ bn) ≤ y.

It follows that x ∧ ∨
X ≤ ∨{ x ∧ x ′ | x ′ ∈ X }as desired. In order to prove that Lδ

is
∨

-distributive, it is enough to consider suprema of collections X of filter elements
since the filter elements are join dense in Lδ . However, we need to know that for any
u ∈ Lδ , we have u ∧ ∨

X ≤ ∨{ u ∧ x ′ | x ′ ∈ X }. To this end we have

u ∧
∨

X =
∨

{ x ∈ F(Lδ) | x ≤ u ∧
∨

X }
≤

∨
{ x ∧

∨
X | u ≥ x ∈ F(Lδ) }

≤
∨

{
∨

{ x ∧ x ′ | x ′ ∈ X } | u ≥ x ∈ F(Lδ) }
=

∨
{
∨

{ x ∧ x ′ | u ≥ x ∈ F(Lδ) } | x ′ ∈ X }
≤

∨
{ u ∧ x ′ | x ′ ∈ X }.

This completes the proof. �
Note that, by order duality, it follows that the canonical extension of a distributive

lattice also is
∧

-distributive, but this is not our focus here. Next we prove that the
canonical embedding is conditionally Heyting.

Proposition 1. Let L be a bounded lattice. The canonical extension η: L → Lδ

preserves any existing relative pseudocomplements.

Proof. Let a, b ∈ L and suppose a →L b = max{c ∈ L | a ∧ c ≤ b}exists. Let
x ∈ F(Lδ) with a ∧ x ≤ b, then, by compactness, there is c ∈ L with a ∧ c ≤ b
and x ≤ c. Thus x ≤ a →L b. Since F(Lδ) is join dense in Lδ , it follows that
a →L b = max{u ∈ Lδ | a ∧ u ≤ b}and thus a →Lδ b exists and is equal to
a →L b. �
Corollary 1. Let A be a Heyting algebra. The canonical extension of A as a bounded
lattice is a Heyting algebra embedding.

2.3 Implication as an Additional Operation

In the previous section, we saw that canonical extension, or equivalently, the rep-
resentation given by topological duality for bounded lattices, restricts to Heyting
algebras giving Heyting algebra representations. The theory of canonical extensions
was developed to deal with additional operations that may not be determined by the
order of the underlying lattice. As such, canonical extension for distributive lattices
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with additional operations may be seen as a generalisation (in algebraic form) of
Esakia duality.

In this section, we give the general definitions of extensions of maps and relate
these, in the case of Heyting algebras, to the Heyting implication on the canonical
extension.

Definition 3. Let K and L be lattices, f : K → L any function. We define maps f σ

and f π from K δ into Lδ by

f σ (u) :=
∨{∧

{ f (a) | a ∈ K and x ≤ a ≤ y } | F(K δ) � x ≤ u ≤ y ∈ I (K δ)
}

,

f π (u) :=
∧{∨

{ f (a) | a ∈ K and x ≤ a ≤ y } | F(K δ) � x ≤ u ≤ y ∈ I (K δ)
}

.

The above definition, for arbitrary maps, was first given in the setting of distributive
lattices and it was shown that these are in fact upper and lower envelopes with respect
to certain topologies [23]. This is not always true in the general lattice setting, but
it is still true for mono- and antitone maps and for arbitrary maps on lattices lying
in finitely generated lattice varieties. For details, see Sect. 4 of [25] and the Ph.D.
thesis of Jacob Vosmaer [47].

The two above extensions of a map f are not always equal, but for maps that are
join or meet preserving, or that turn joins into meets or vice versa, the two extensions
agree and we say such maps are smooth, see e.g. [23, Corollary 2.25]. However, for
binary operations, coordinate-wise preservation, or reversal, of join and/or meet is
not sufficient to imply smoothness. Example 1 below shows that implication, viewed
as an additional binary operation on the lattice underlying a Heyting algebra, need
not be smooth.

In the example we will make use of two basic facts about canonical extensions
of lattices which are useful when dealing with additional operations: First of all, the
canonical extension of a finite product is, up to isomorphism, the product of the canon-
ical extensions of the individual lattices. This allows one to compute coordinate-wise.
Secondly, the operation L 
→ L∂ which yields for each lattice the order dual lattice
also commutes with canonical extension and the filter elements of Lδ are precisely
the ideal elements of (L∂ )δ = (Lδ)∂ and vice versa.

Looking at the definitions of the extensions of maps, note that they are self dual in
the order on the domain of the map. Thus we can take the order dual of the domain,
or of any coordinate of the domain, and still obtain the same extension. Further note
that, if the map is order preserving, then the upper bounds of the intervals on which
we are taking meets, and the lower bounds of the intervals on which we are taking
joins play no role. Accordingly, for f : K → L order-preserving we have

f σ (u) =
∨ {∧

{ f (a) | x ≤ a ∈ K } | F(K δ) � x ≤ u
}

,

and, in particular, f σ (x) = ∧{ f (a) | x ≤ a ∈ K } for filter elements x ∈ F(K δ).
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Example 1. Let A be the Heyting algebra consisting of a countable decreasing chain
with a bottom added. Since A is a chain it is a Heyting algebra in which the implication
is given by

f (a, b) =
{

1 if a ≤ b,

b if a > b.

Since f is order-preserving in its second coordinate and order-reversing in its first,
it will be convenient to regard f as a map from A∂ × A to A; we then have an
order-preserving map to work with. We label the canonical extensions of the two
chains as in the figures below.

1

a1

a2

a3

x

0

Aδ

1

a1

a2

a3

x

0

A∂ δ
= Aδ ∂

In Aδ there is a single element which is not a lattice element, namely the filter
element x . The canonical extension of A∂ × A is the product shown below. The only
element which is neither a filter element nor an ideal element of the product is (x, x)

and this is where the two extensions take different values.

(1,0)

(c1,0)

(c2,0)

(1,z)

(z,0)

(0,0)(z,z)

(0,z)

(1,1)

(c1,1)

(c2,1)

(1,c1)

(0,c1)(z,1)

(0,1)

The value of f σ (x, x) is calculated by approaching (x, x) from below with filter
elements, and in the second coordinate x is itself a filter element, while it is an ideal
element of the dual lattice A∂ . Also, in A∂ , the only filter elements below x are the
actual lattice elements a ∈ A∂ . Thus we get:
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f σ (x, x) =
∨

{ f σ (a, x) | A∂ � a ≤∂ x }
=

∨{∧
{ f (a, b) | x ≤ b ∈ A } | A∂ � a ≤∂ x

}

=
∨{∧

{ b | x ≤ b ∈ A, b < a } | x ≤ a ∈ A
}

= x .

The value of f π (x, x) is calculated by approaching (x, x) from above

f π (x, x) =
∧

{ f π (x, b) | x ≤ b ∈ A }
=

∧ {∨
{ f (a, b) | A∂ � a ≤∂ x } | x ≤ b ∈ A

}

=
∧

{1 | x ≤ b ∈ A }
= 1.

We conclude that f is not smooth.
It is clear from the above computation, that, if one of the extensions of the impli-

cation on A is equal to the Heyting implication that exists on Aδ , then it must be
the π -extension, and that is indeed the case in general. This is actually just a special
instance of the fact that, for an order preserving map f , if g is the upper adjoint of
f with respect to some coordinate, then gπ is the upper adjoint of f σ with respect
to the same coordinate [24, Proposition 4.2].

Proposition 2. Let (A,→) be a Heyting algebra, then (Aδ, (→)π ) is a Heyting
algebra.

Proof. Let x, x ′ ∈ F(Aδ), and y ∈ I (Aδ). Using the fact that → is order preserving
as a map from A∂ × A, we have

x ′ →π y =
∨

{a′ → b | x ′ ≤ a′ ∈ A � b ≤ y}.

Using the compactness property and the definition of filter and ideal elements we
then obtain the following string of equivalences

x ∧ x ′ ≤ y ⇐⇒ ∃a, a′, b ∈ A (x ≤ a, x ′ ≤ a′, b ≤ y and a ∧ a′ ≤ b)

⇐⇒ ∃a, a′, b ∈ A (x ≤ a, x ′ ≤ a′, b ≤ y and a ≤ a′ → b)

⇐⇒ x ≤ x ′ →π y.

Now let u, v, w ∈ Aδ , then, using the density property, the fact that Aδ is
∨

-
distributive, and the definition of extension for additional operations we have the
following string of equivalences
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u ∧ v ≤ w

⇐⇒ ∀x, x ′ ∈ F(Aδ)∀y ∈ I (Aδ)
[
(x ≤ u, x ′ ≤ v, and w ≤ y) ⇒ x ∧ x ′ ≤ y

]

⇐⇒ ∀x, x ′ ∈ F(Aδ)∀y ∈ I (Aδ)
[
(x ≤ u, x ′ ≤ v, and w ≤ y) ⇒ x ≤ x ′ →π y

]

⇐⇒ u ≤ v →π w.

�

2.4 The Connection Between Heyting Algebras
and S4 Modal Algebras

The well-known equivalence between Heyting algebras and certain S4 modal alge-
bras plays a fundamental role in Esakia duality, and in order to clarify the relationship
of Esakia’s duality to Stone and Priestley duality and to canonical extension, we need
a purely algebraic and categorical description of this classical connection. This is the
purpose of the current section.

McKinsey and Tarski [38] initiated the rigorous study of the connection between
Heyting algebras and S4 modal algebras. They worked with closed sets instead of
opens and thus with closure algebras and what we now call co-Heyting algebras.
In the 1950s, Rasiowa and Sikorski worked further in this area. Their work may
be found in their influential monograph [42]. They are the ones who switched to
working with the interior and open sets as it is done now. Another paper in the area
that was important to Leo Esakia was the 1959 paper by Dummet and Lemmon [11].
The next period of activity occurred in the 1970s with the work of Esakia and Blok,
the most relevant and important publications being [4, 5, 12–14]. In particular, one
may find a treatment of the results presented in this section in Sect. 5 of Chap. II
of Leo Esakia’s 1985 book [14]. This book is written in Russian, but it may soon
be available in English translation. Esakia called the S4-algebras corresponding to
Heyting algebras stencil algebras. These were also already studied by McKinsey-
Tarski and Rasiowa-Sikorski. Blok (and Dwinger) also payed special attention to
these. Finally, the fully categorical description of the relationship between S4 and
Heyting may be found in the paper [37] by Makkai and Reyes from 1995.

This equivalence between the category of Heyting algebras and the category of
what was called stencil S4-algebras is also at the heart of the Blok-Esakia theorem.
This theorem states that the lattice of subvarieties of the variety of Heyting algebras is
isomorphic to the lattice of subvarieties of the variety of Grzegorczyk algebras. In fact,
the reason that the Blok-Esakia theorem is true is that all varieties of Grzegorczyk
algebras are generated by the stencil algebras that they contain. The Blok-Esakia
theorem is treated in detail in the chapter by Frank Wolter and Michael Zakharyaschev
in this same volume.

Here we start from Booleanisation for distributive lattices in general, a theory
which dates back to Peremans’ 1957 paper [39]. This is already responsible for the
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fact that distributive lattices alternatively may be seen as embeddings of distributive
lattices into Boolean algebras that they generate. This fact is the algebraic counterpart
to Priestley duality. In categorical terms, Booleanisation is the left adjoint of the
inclusion of the category of Boolean algebras as a full subcategory of the category of
bounded distributive lattices. More concretely, given a bounded distributive lattice D,
its Booleanisation D− is the unique, up to isomorphism, Boolean algebra containing
D as a bounded sublattice and generated as a Boolean algebra by D. It may be
obtained algebraically by a free construction [15, 39] or via duality (or otherwise)
by embedding D in the power set of its dual space (or in any other Boolean algebra)
and generating a Boolean algebra with the image. The inclusion homomorphism
eD: D → D− is the unit of the adjunction and thus the Booleanisation of a bounded
lattice homomorphism h: D → E commutes with the inclusions eD and eE so that
h− extends h. Note that the elements of D− can be written in the form

∧n
i=1(¬ai ∨bi )

where the ai s and the bi s all belong to D.
Next, Heyting algebras may be seen as those distributive lattices for which

eD: D → D− has a left adjoint, and this extends to a categorical duality.

Proposition 3. A bounded distributive lattice A is the reduct of a Heyting algebra
if and only if the inclusion e: A → A− of A in its Booleanisation has an upper
adjoint g: A− → A. Furthermore, a lattice homomorphism h: A1 → A2 is a Heyting
algebra homomorphism if and only if the following diagram commutes

A−
1

h−

g1

A−
2

g2

A1
h

A2

where gi : A−
i → Ai is the upper adjoint of the embedding ei : Ai → A−

i for i =
1 and 2.

Proof. Suppose e: A → A− has an upper adjoint g: A− → A, and let a, b, c ∈ A.
We have

a ∧ b ≤ c

⇐⇒ e(a) ∧ e(b) ≤ e(c)

⇐⇒ e(a) ≤ ¬e(b) ∨ e(c)

⇐⇒ a ≤ g(¬e(b) ∨ e(c)).

Thus A is a Heyting algebra with b → c := g(¬e(b) ∨ e(c)).
Conversely, if A is a Heyting algebra, the following string of equivalences, tog-

gling carefully between the algebras A and A−, shows that the adjoint does exist and it
gives an explicit way of calculating it. Let a ∈ A and u = ∧n

i=1(¬e(bi )∨e(ci )) ∈ A−
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where bi , ci ∈ A for each i ∈ {1, . . . , n} , then we have

e(a) ≤
n∧

i=1

(¬e(bi ) ∨ e(ci ))

⇐⇒ e(a) ≤ ¬e(bi ) ∨ e(ci ) for all i ∈ {1, . . . , n}
⇐⇒ e(a) ∧ e(bi ) ≤ e(ci ) for all i ∈ {1, . . . , n}
⇐⇒ a ∧ bi ≤ ci for all i ∈ {1, . . . , n}
⇐⇒ a ≤ bi → ci for all i ∈ {1, . . . , n}

⇐⇒ a ≤
n∧

i=1

(bi → ci )

Finally, given the formulas relating the upper adjoint of the inclusion and the Heyting
implication, and using the fact that h− extends h, it is a simple calculation to see that
the statement about morphisms is true. �

On the other hand, this is closely related to S4 modal algebras via the following
observation.

Proposition 4. The category of S4 modal algebras is equivalent to the following
category: The objects of the category are adjoint pairs e : D � B : g where D is
a bounded distributive lattice, B is a Boolean algebra, and the lower adjoint eis a
lattice embedding; The morphisms of the category are pairs (h, k), where h: B → B ′
is a homomorphism of Boolean algebras, k: D → D′ is a bounded lattice homomor-
phism, and the resulting squares commute both for the upper and lower adjoints.

Proof. Given an S4 modal algebra (B,�), it is easy to check that Im(�) is a bounded
distributive sublattice of B, and that the map g: B → Im(�) defined by b 
→ �(b)

is upper adjoint to the inclusion map e: Im(�) → B. Conversely, given an object
e: D � B: g in the category as described above, it is also easy to see that (B, e ◦ g)

is an S4 modal algebra, as well as that the compositions of these two assignments
bring us back to an object equal or isomorphic to the one we started with. For the
morphisms the pertinent diagram is

B1
h

g1

B2

g2

D1

e1

k
D2

e2

Suppose the square commutes both up and down. We have
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h ◦ (e1 ◦ g1) = (h ◦ e1) ◦ g1

= (e2 ◦ k) ◦ g1

= e2 ◦ (k ◦ g1)

= e2 ◦ (g2 ◦ h)

= (e2 ◦ g2) ◦ h

so that h is a homomorphism for the corresponding modal algebras. Conversely,
suppose that h: B1 → B2 satisfies h◦(e1◦g1) = (e2◦g2)◦h. We define k: D1 → D2
by k = g2 ◦ h ◦ e1. Then we have

k ◦ g1 = (g2 ◦ h ◦ e1) ◦ g1 = g2 ◦ (e2 ◦ g2 ◦ h) = g2 ◦ h

and

e2 ◦ k = e2 ◦ (g2 ◦ h ◦ e1) = idD2 ◦ (h ◦ e1) = h ◦ e1

and thus both diagrams commute. �
Combining Proposition 3 and Proposition 4 we obtain the following corollary

which is the algebraic counterpart of the famous Gödel translation in logic.

Corollary 2. The category of Heyting algebras is equivalent to the full subcategory
of those S4 modal algebras (B,�) for which Im(�) generates B.

2.5 From Canonical Extensions to Stone Duality

Historically Jónsson and Tarski obtained canonical extension as an algebraic descrip-
tion of Stone duality. However, in retrospect, canonical extension can be obtained
directly and in a choice-free manner, and then the duality can be obtained from it by
adding points (via Stone’s Prime Filter Theorem). This point of view is particularly
advantageous when one wants to understand additional operations on lattices.

Given a distributive lattice D, the canonical extension Dδ is a complete distributive
lattice, and, using Stone’s Prime Filter Theorem, one can prove that it has enough
completely join prime elements. For completeness we give the argument here. Before
we do this, note that completely join and meet prime elements of a complete lattice
C come in splitting pairs (p, m) satisfying

∀u ∈ C
(

p � u ⇐⇒ u ≤ m
)

and thus the correspondence between completely join and meet prime elements is
given by p 
→ κ(p) = ∨{u ∈ C | p � u}. We denote the poset of completely
join prime elements by J∞(C) and the poset of completely meet prime elements by
M∞(C). It then follows that κ : J∞(C) → M∞(C) is an isomorphism of posets.
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Proposition 5. Let D be a bounded distributive lattice and Dδ its canonical exten-
sion. Then every element of Dδ is a join of completely join prime elements and a
meet of completely meet prime elements.

Proof. It suffices to show that for u, v ∈ Dδ with u � v there is a splitting pair (p, m)

as described above with p ≤ u and v ≤ m. By the density condition for canonical
extensions, u � v implies that there are x ∈ F(Dδ) and y ∈ I (Dδ) with x ≤ u,
v ≤ y, and x � y. Let Fx = (↑x) ∩ D be the filter of D corresponding to x and
Iy = (↓y) ∩ D be the ideal corresponding to y. If a ∈ Fx ∩ Iy , then

x =
∧

Fx ≤ a ≤
∨

Iy = y

which contradicts the choice of x and y. Thus, by Stone’s Prime Filter Theorem,
there is a prime filter p of D with Fx ⊆ p and Ix ⊆ D \ p. Now, letting p = ∧

p
and m = ∨

(D \ p), where the extrema are taken in Dδ , we see that p ≤ x ≤ u and
v ≤ y ≤ m.

It remains to show that (p, m) is a splitting pair. To this end, suppose u ∈ Dδ

and p � u, then there is y ∈ I (Dδ) with u ≤ y but p � y. Now p � y means
that p ∩ Iy = ∅ where Iy = (↓y) ∩ D. Thus we have Iy ⊆ D \ p and u ≤ y ≤ m
as required. Conversely, since p ∩ (D \ p) = ∅, we have p � m, and thus u ≤ m
implies p � u. �

Given the canonical extension of a bounded distributive lattice D, the Stone space
of D may be obtained by topologising the set X = J∞(Dδ) with the topology
given by the ‘shadows’ of the ideal elements on X , that is, by the sets y 
→ {p ∈
J∞(Dδ) | p ≤ y} for y ∈ I (Dδ). Since I (Dδ) is closed under finite meets and
arbitrary joins and the elements of X are completely join prime, it follows that these
sets form a topology. One can then show that the sets â = {p ∈ J∞(Dδ) | p ≤ a}
for a ∈ D are precisely the compact open subsets of this space and they generate the
topology. This yields a compact sober space in which the compact-open sets form
a basis, which is closed under finite intersection. These spaces are known as Stone
spaces or spectral spaces. In case the lattice is Boolean, all join primes are atoms and
the corresponding space is a compact Hausdorff space with a basis of clopen sets.
These spaces are (unfortunately) also known as Stone spaces or, for some authors,
as Boolean spaces. We call the spaces for distributive lattices Stone spaces and the
ones for Boolean algebras Boolean spaces. As mentioned above, the elements of D
correspond to the compact open subsets of the Stone space, the ideal elements of Dδ

correspond to the open subsets. Order dually, the filter elements of Dδ correspond,
again via the assignment x 
→ {p ∈ J∞(Dδ) | p ≤ x}, to the closed sets in the Stone
topology for the lattice D∂ that is order dual to D. One can also understand these sets
directly relative to the Stone space of D itself. For this purpose some concepts from
stably compact spaces are needed (see [36, Sect. 2] for further details): A subset S of
a space X is called saturated provided it is an intersection of opens (this will yield
precisely the downsets of X = J∞(Dδ)). Then the sets {p ∈ J∞(Dδ) | p ≤ x} for
x ∈ X are precisely the compact saturated subsets of of the Stone space of D.
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The specialisation order of a topology on a set X is usually defined by x ≤ y if
and only if x ∈ {y} if and only if for every open subset U ⊆ X , we have x ∈ U
implies y ∈ U . In this setting this yields the reverse order to the order on J∞(Dδ) as
inherited from Dδ . Since it is more convenient to work with the order that fits with
Dδ , we work with the dual definition of specialisation order: x ≤ y if and only if
y ∈ {x} if and only if for every open subset U ⊆ X , we have y ∈ U implies x ∈ U .
Thus opens are downsets here rather than upsets.

Given a modality �: D → E (that preserves 1 and ∧), the extension �σ =
�π : Dδ → Eδ (which we call �δ) is completely meet preserving, see [23, Theo-
rem 2.21]. Accordingly, it is completely determined by its action on the completely
meet prime elements of Dδ . This action is encoded using pairs from the Cartesian
product of X E = J∞(Eδ) and X D = J∞(Dδ) via the relation

x Sy ⇐⇒ κ(x) ≥ �δ(κ(y))

The relations thus obtained are characterised by three properties:

(B1) ≥ ◦ S ◦ ≥ = S;
(B2) S[x] = {y ∈ X D | x Sy} is compact saturated for each x ∈ X E ;
(B3) �S(U ): = (S−1[U c])c = {x ∈ X E | ∀y ∈ X D (x Sy =⇒ y ∈ U } is compact

open for each compact open subset U ⊆ X D .

The first property is clearly satisfied, the second corresponds to the fact that �δ

sends completely meet prime elements to ideal elements, and the third property
corresponds to the fact that �δ restricts to a map from D to E (we give the details of
the correspondence below in the order dual case of join and 0 preserving modality).

Recovering the modal operator from the relation is easily seen to work just as in
Kripke semantics. In fact, this approach via canonical extension makes clear why
the box operation given by a Kripke relation should be defined the way it is:

�̂δ(a) = {
x ∈ X E | x ≤ �δ(a)

}

=
{

x ∈ X E |
∧

{�δ(κ(y)) | a ≤ κ(y)} � κ(x)
}

= {
x ∈ X E | ∀y ∈ X (y � a =⇒ �δ(κ(y)) � κ(x))

}

= {
x ∈ X E | ∀y ∈ X (x Sy =⇒ y ∈ â)

}

= �S(â).

Dual statements of course hold for a modality ♦: D → E (that preserves 0 and ∨).
In particular, ♦σ = ♦π : Dδ → Eδ , which we call ♦δ , is completely join preserving
and the dual relation is given by R = {(x, y) ∈ X E × X D | x ≤ ♦δ(y)}. This relation
satisfies

(D1) ≤ ◦ R ◦ ≤ = R;
(D2) R[x] = {y ∈ X D | x Ry} is closed for each x ∈ X E ;
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(D3) ♦R(U ): = R−1[U ] = {x ∈ X E | ∃y (x Ry and y ∈ U )} is compact open
for each compact open U ⊆ X D .

Finally, we recover the operation from a relation R with these properties via

♦̂δ(a) = ♦R(â) = {
x ∈ X E | ∃y ∈ X D (x Ry and y ∈ â)

} = R−1[â].

The conditions given here are well-known to duality theorists and may be found, e.g.
in [32], but we give an algebraic derivation here based on the canonical extension.
To this end first note that it is a simple fact from discrete (Birkhoff) duality that∨

-preserving maps on downset lattices, f :D(X) → D(Y ), are in one-to-one corre-
spondence with relations R ⊆ Y × X satisfying ≤ ◦R◦ ≤= R. Also, the canonical
extension of an operation preserving finite joins is completely join preserving [23,
Theorem 2.21]. Thus, it suffices to show that the extensions ♦δ: Dδ → Eδ of ∨ and
0 preserving maps ♦: D → E are characterised within the

∨
-preserving maps from

Dδ to Eδ by the conditions (D2) and (D3).

Proposition 6. Let k: D → E be an order preserving map. Then kσ : Dδ → Eδ sends
filter elements to filter elements and consequently, if kσ has an upper adjoint, then
this upper adjoint sends ideal elements to ideal elements.

Proof. By definition

kσ (u) =
∨ {∧

{ k(a) | a ∈ D and x ≤ a ≤ y } | F(Dδ) � x ≤ u ≤ y ∈ I (Dδ)
}
.

Thus for u = x ∈ F(Dδ) this definition reduces to

kσ (x) =
∨ {∧

{ k(a) | a ∈ D and x ≤ a ≤ y } | x ≤ y ∈ I (Dδ)
}
,

and since k is order preserving and D ↪→ Dδ is compact this is the same as

kσ (x) =
∧

{ k(a) | a ∈ D and x ≤ a }.

Thus kσ (x) ∈ F(Dδ). Now suppose g: Eδ → Dδ is an upper adjoint to kσ and that
x ∈ J∞(Eδ) and y ∈ I (Dδ), then we have

x ≤ g(y) ⇐⇒ kσ (x) ≤ y

⇐⇒
∧

x≤a∈D

k(a) ≤ y

⇐⇒ ∃a ∈ D (x ≤ a and k(a) ≤ y)

=⇒ ∃a ∈ D (x ≤ a ≤ g(y)).
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Now since g(y) is the join of all the x ∈ J∞(Eδ) below it, it follows that it is the
join of all the a ∈ D below it and thus it is an ideal element. �

Theorem 4. Let f : Dδ → Eδ be a
∨

-preserving map. Then f = ♦δ for some♦: D →
E if and only if the following conditions are met:

1. The upper adjoint of f sends completely meet prime elements to ideal elements;
2. f sends elements of D to elements of D.

Proof If f = ♦δ for some ♦: D → E , then it follows from Proposition 6 and
the fact that M∞(Dδ) ⊆ I (Dδ) that the upper adjoint of f sends completely meet
prime elements to ideal elements. The second condition is clearly also satisfied as f
restricted to D is ♦.

For the converse, suppose f : Dδ → Eδ is
∨

-preserving and satisfies the two
conditions in the theorem. Define ♦: D → E by ♦(a): = f (a) for a ∈ D. Then
certainly ♦δ = f on D. Now let x ∈ F(Dδ). Then

♦δ(x) =
∧

{♦a | x ≤ a ∈ D} =
∧

{ f (a) | x ≤ a ∈ D} ≥ f (x)

since f is order preserving. On the other hand, if m ∈ M∞(Dδ) and f (x) ≤ m,
then x ≤ g(m) where g: Eδ → Dδ is the upper adjoint of f . Now since, by the
first condition, g(m) is an ideal element, there is a ∈ D with x ≤ a ≤ g(m). Thus
f (a) ≤ m and now, as ♦ is order-preserving

♦δ(x) ≤ ♦(a) = f (a) ≤ m.

By the meet density of M∞(Dδ) in Dδ , it follows that ♦δ(x) = f (x) and thus
♦δ = f on F(Dδ). Finally since both functions are

∨
-preserving, it now follows

that ♦δ = f on all of Dδ . �
We are now ready to verify that the two conditions in the theorem correspond

dually to the conditions (D2) and (D3) given above.

Proposition 7. Let D and E be bounded distributive lattices with dual spaces
X D and X E , respectively. Let f : Dδ → Eδ be a

∨
-preserving map and R ⊆

X E × X D the corresponding dual relation. Then the following hold:

1. The upper adjoint of f sends completely meet prime elements to ideal elements
if and only if R satisfies condition (D2);

2. f sends elements of D to elements of D if and only if R satisfies condition (D3).

Proof. Since the compact open subsets of X D are precisely the downsets in X D

of elements of D, and since f is obtained from R as the map U 
→ R−1[U ] on
downsets, or in other words as the map u 
→ ∨

R−1[↓u ∩ J∞(Dδ)] on the canonical
extensions, it is clear that f sends elements of D to elements of D if and only if R
satisfies condition (D3). In order to prove the first equivalence, let m ∈ M∞(Eδ)

and take x ′ ∈ J∞(Eδ) with m = κ(x ′), then we have
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{x ∈ X D | x ≤ g(m)} = {x ∈ X D | x ≤ g(κ(x ′))}
= {x ∈ X D | f (x) ≤ κ(x ′)}
= {x ∈ X D | x ′ � f (x)} = (R[x])c.

Thus (R[x])c is the downset in X D of g(m) and this set is open if and only if g(m)

is an ideal element. �
The duality for homomorphisms is derivable in a similar manner. The pertinent

facts are the following. Let h: D → E be a map between bounded distributive lattices.
Then the following statements are equivalent:

1. h is a bounded lattice homomorphism;
2. hσ = hπ is a complete lattice homomorphism;
3. hσ = hπ has a lower adjoint which sends completely join primes to completely

join primes.

The dual of a bounded lattice homomorphism h: D → E is the map

(hδ)
 � X E : X E → X D

and it is characterised by the property that, under this map, the pre-image of a compact
open is always compact open. Such maps are usually called spectral maps or Stone
maps. The dual of a spectral map f : X E → X D is given by inverse image and so is
the canonical extension of the dual map.

If a lattice homomorphism also preserves an additional operation on the lattice,
then one can derive, in the same way as we’ve done above, that the dual maps
will satisfy bisimulation conditions with respect to the relation corresponding to the
additional operation. We finish this section by considering this situation.

Consider a diagram

E1
h1

1

E2

2

D1
h2

D2

where Ei and Di are bounded distributive lattices, the hi are lattice homomorphisms,
and the maps ♦i are operators (the argument is similar for n-ary operators). We want
to obtain the dual condition to the diagram commuting. If D1 = D2, and h1 is
equal to h2, this is simply the statement that it is a homomorphism with respect
to the diamonds. To this end one may first show that the following statements are
equivalent:

1. h2 ◦ ♦1 = ♦2 ◦ h1;
2. hδ

2 ◦ ♦σ
1 = ♦σ

2 ◦ hδ
1;

3. ∀x ∈ X E1 hδ
2(♦σ

1 (x)) = ♦σ
2 (hδ

1(x))
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4. ∀x ∈ X E1∀z ∈ X D2 (z ≤ hδ
2(♦σ

1 (x)) ⇐⇒ z ≤ ♦σ
2 (hδ

1(x))).

The equivalence of (1) and (2) follows from the fact that the first map is an operator
and the second one order preserving on either side of the equality since this implies
that (h2 ◦ ♦1)

σ = hδ
2 ◦ ♦σ

1 and (♦2 ◦ h1)
σ = ♦σ

2 ◦ hδ
1, see [22, Theorem 4.3]. The

equivalence of (2) and (3) follows because all the extended functions are completely
join preserving and X E1 is join-dense in Eδ

1. The last two are equivalent because
X D2 is join-dense in Dδ

2. Now denoting the dual of hi by fi and the dual of ♦i by Ri

for i = 1 and 2, we get

z ≤ hδ
2(♦σ

1 (x)) ⇐⇒ f2(z) ≤ ♦σ
1 (x)

⇐⇒ f2(z)R1x

and

z ≤ ♦σ
2 (hδ

1(x)) ⇐⇒ ∃z′ ∈ X E2 (z ≤ ♦σ
2 (z′) and z′ ≤ hδ

1(x))

⇐⇒ ∃z′ ∈ X E2 (z R2z′ and f1(z
′) ≤ x)

So the above diagram commutes if and only if

∀z ∈ X D2∀x ∈ X E1

[
f2(z)R1x ⇐⇒ ∃z′ ∈ X E2 (z R2z′ and f1(z

′) ≤ x)
]
.

Note that the backward implication can be simplified as we can bring the quantifier
outside to get

∀z ∈ X D2∀z′ ∈ X E2∀x ∈ X E1

[
(z R2z′ and f1(z

′) ≤ x) =⇒ f2(z)R1x
]
.

A special case of this condition is the one obtained by choosing x = f1(z′):

∀z ∈ X D2∀z′ ∈ X E2

[
z R2z′ =⇒ f2(z)R1 f1(z

′)
]
.

On the other hand, since ≤ ◦ R1 ◦ ≤ = R1 the latter condition also implies the
previous one. So the diagram commutes if and only if the following two conditions
hold:

(♦back) ∀z ∈ X D2∀x ∈ X E1

[
f2(z)R1x =⇒ ∃z′ ∈ X E2 (z R2z′ and f1(z′) ≤ x)

]
.

(♦forth) ∀z ∈ X D2∀z′ ∈ X E2

[
z R2z′ =⇒ f2(z)R1 f1(z′)

]
.

In the case where h1 = h2 these are precisely the conditions dual to being a ♦-
homomorphism between bounded distributive lattices. For box operations �1 and
�2 with dual relations S1 and S2, respectively, we get order-dual dual conditions,
namely:

(�back) ∀z ∈ X D2∀x ∈ X E1

[
f2(z)S1x =⇒ ∃z′ ∈ X E2 (zS2z′ and f1(z′) ≥ x)

]
.

(�forth) ∀z ∈ X D2∀z′ ∈ X E2

[
zS2z′ =⇒ f2(z)S1 f1(z′)

]
.
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2.6 From Canonical Extensions to Esakia Spaces

As we have seen in Proposition 2 of Sect. 2.3, (π -)canonical extension provides
a choice free approach to duality for Heyting algebras. In Sect. 2.5 we have seen
how to obtain Stone duality from canonical extension. In this section we spell out
how to move between the canonical extension of a Heyting algebra and its Esakia
dual space. In order to witness the Heyting implication, we will make use of the
results of Sect. 2.4 relating Heyting algebras to pairs of adjoint maps. It can also be
done directly as we will indicate at the end of this section, however, we feel that the
approach via adjoint pairs of maps is the most transparent and reflects most directly
the spirit of the work of Leo Esakia.

Accordingly we need the following correspondence results:

1. Sublattices D ↪→ E of bounded distributive lattices E correspond dually to spec-
tral quotients, but these can most simply be described not as certain equivalence
relations but as certain quasi-orders on the dual Stone space [45]. A quasi-order
gives rise to an equivalence relation and to an order on the quotient which will be
the specialisation order of the spectral quotient space: Given a spectral space X ,
its spectral quotients are in one-to-one correspondence with the so-called com-
patible quasi-orders � ⊆ X × X [17, Theorem 6]. A compatible quasi-order
on a Stone space X is a quasi-order on X satisfying the following separation
condition for all x, y ∈ X

x �� y =⇒ ∃U ⊆ X (Ucompact open and a � -downset, y ∈ U and x �∈ U ).

Here U is a �-downset provided for all z, z′ ∈ X we have z � z′ ∈ U implies
z ∈ U . Given a sublattice D ↪→ E , the corresponding quasi-order is given
by �D = {(x, y) ∈ X E × X E | ∀a ∈ D (y ≤ a =⇒ x ≤ a)} where the
comparisons of x and y with a are made in Eδ (note D ⊆ Dδ ↪→ Eδ). Given a
compatible quasi-order, � on X E , the dual space of the corresponding sublattice
of E is the quotient space X D = (X E/≈, τ�), where ≈ = �∩� and τ� is given
by those open subsets of the space X E which are also �-downsets. We will
denote the space (X/≈, τ�) given by a given compatible order � on a Stone
space X by X/�. The map dual to the embedding D ↪→ E is the quotient map
X E � X E/� and the relation R corresponding to D ↪→ E viewed as a 0 and
∨ preserving map from D to E is the relation x R[x ′]≈ iff x � x ′.

2. A pair of maps ♦: D � E : � is an adjoint pair with ♦ the lower adjoint and �
the upper adjoint if and only if the relation R dual to ♦ and the relation S dual
to � are converse to each other. That is, S = R−1. The interesting direction of
this fact is true because of the following string of equivalences:
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x Rx ′ ⇐⇒ x ≤ ♦δ(x ′)
⇐⇒ κ(x) � ♦δ(x ′)
⇐⇒ �δ(κ(x)) � x ′

⇐⇒ κ(x ′) ≥ �δ(κ(x)) ⇐⇒ x ′Sx .

Now we just need one more correspondence result before we can get the Esakia
duality for Heyting algebras. The following proposition is a generalisation of The-
orem 4.5 of Chap. III in Esakia’s book [14], which proves the same statement, but
just for Heyting algebras. In addition (the hard direction) is the algebraic dual of
the result needed in Priestley duality that each clopen downset comes from a lattice
element.

Proposition 8. Let B be a Boolean algebra with dual space X B , and let D be
a sublattice of B with corresponding compatible quasi-order � on X B . Then D
generatesB as a Boolean algebra if and only if � is antisymmetric and thus a partial
order.

Proof. Suppose D generates B as a Boolean algebra, and let x, x ′ ∈ X B with x �= x ′.
Since x and x ′ are filter elements of Bδ , there is b ∈ B with x ≤ b but x ′ � b.
Since D generates B as a Boolean algebra, b = ∨n

i=1(
∧mi

j=1 ai j ), where each ai j is
either an element of D or the complement of one. Now x ≤ b and x an atom implies
x ≤ ∧mi

j=1 ai j for some i . Rewriting the latter conjunction in the form (
∧k

j=1 a j ) ∧
(
∧mi

j=k+1 ¬a j ), we obtain from x ′ � b that x ′ � (
∧k

j=1 a j ) ∧ (
∧mi

j=k+1 ¬a j ) and
thus there is a j ∈ {1, . . . , k} with x ′ � a j or there is j ∈ {k + 1, . . . , mi } with
x ′ � ¬a j . In the first case we obtain x ≤ a j and x ′ � a j and in the second case we
obtain x � a j and x ′ ≤ a j . Thus, by the definition of �, either x ′ �� x or x �� x ′
and thus � is antisymmetric.

For the converse, fix first x ∈ X E . For each y ∈ X E with x �� y, there is ay ∈ D
with y ≤ ay but x � ay , and for each y ∈ X E with y �� x , there is cy ∈ D with
x ≤ cy but y � cy . And thus the equivalence classes of ≈ = � ∩ � are given by

∨
[x]≈ =

⎛

⎝
∧

x ��y∈X E

¬ay

⎞

⎠ ∧
⎛

⎝
∧

y ��x∈X E

cy

⎞

⎠

where the joins and meets are of course taken in Eδ .
Now suppose � is antisymmetric. Then [x]≈ = {x} and thus

∨[x]≈ = x for each
x ∈ X E . Thus, for b ∈ B and for each x ∈ X E with x ≤ b we get

b ≥ x =
⎛

⎝
∧

x ��y∈X E

¬ay

⎞

⎠ ∧
⎛

⎝
∧

y ��x∈X E

cy

⎞

⎠.
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Let <D> denote the Boolean subalgebra of B generated by D. Applying compact-

ness of Eδ to the fact that
(∧

x ��y∈X E
¬ay

)
∧

(∧
y ��x∈X E

cy

)
is below b, we conclude

that there is a finite submeet which gets below b. That is, there is bx ∈ <D> with
x ≤ bx ≤ b. Since X E is join-dense in B it follows that

b =
∨

b≥x∈X E

bx .

Again by compactness of Eδ , there are x1, . . . , xn ∈ X E with xi ≤ b and b ≤∨n
i=1 bxi . Since each bx ≤ b we actually have equality and thus b ∈ <D>. �

Theorem 5. (Priestley duality [41]) The category of bounded distributive lattices is
dually equivalent to the category whose objects are Boolean spaces each equipped
with a compatible partial order and whose morphisms are continuous and order
preserving maps.

Proof. This follows from the above results and the fact that the category of distributive
lattices is equivalent to the category of lattice embeddings D ↪→ B such that D
generates B with pairs of maps making commutative diagrams, e.g.

B1
h

B2

D1

e1

h
D2.

e2 with dual

X1

id

X2
f

id

X1/≤1 X2 / ≤2.
f

where the topology on the lower spaces are those that are downsets of the respective
partial orders that are open in the respective topologies of the upper spaces. Saying
that the diagram on the left commutes is equivalent to saying that the one on the right
commutes, and this in turn is the same as saying that the maps f and f ′ are equal
as set maps and that they are continuous both in the Boolean topology of the spaces
on the top and in the spectral topology of the spaces on the bottom. This in turn is
easily seen to be equivalent to saying that f = f ′ is both continuous in the Boolean
topology and order preserving. �

The ordered spaces (X,≤) where X is a Boolean space and ≤ is a compatible
partial order on X are of course well known by now as Priestley spaces and the maps
f : (X,≤) → (Y,≤) which are both continuous and order preserving are the Priestley
maps. For the Esakia duality we need also the notion of a bounded morphism. A map
f : X → Y between Priestley spaces is called a bounded morphism provided it is
continuous, order preserving, and for each x ∈ X and each y ∈ Y with y ≤ f (x),
there is z ∈ X with z ≤ x and y = f (z).

Theorem 6. (Esakia Duality [12]) The category of Heyting algebras is dually equiv-
alent to the category whose objects are Priestley spaces (X,≤) such that, for each
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clopen subset U of X , the set ↑U is also clopen and whose morphisms are the
bounded morphisms.

Proof. For objects, we use the fact that a Heyting algebra corresponds to an adjoint
pair e: D � B: g where e is an embedding whose image generates B. The dual
of these embeddings e are precisely the Priestley spaces (X,≤) and the relation R
corresponding to the quotient map X � (X,≤) is, as remarked above, the relation

x R{x ′}(= [x ′]≈) ⇐⇒ x ≤ x ′.

Accordingly, we think of R simply as being ≤ (identifying {x} with x for each x ∈ X ).
Note that, since the relation R =≤ is the relation corresponding to the embedding e
(as stated in item 1 in the beginning of this section), ≤ satisfies (D1) through (D3)
(this is a consequence of the requirements for being a compatible quasi-order). The
fact that e has an upper adjoint is, by the second item in the list at the beginning of this
section, equivalent to the fact that the reverse relation R−1 = ≥ satisfies conditions
(B1) through (B3). The condition (B1), ≥ ◦ ≥ ◦ = being equal to ≥, is vacuously
true. Condition (B2) states that ↓x is closed in X and this also always holds because

↓x =
⋂

{U | x ∈ U, U a clopen downset}

is compact saturated by (D3). Finally (B3) requires that for each clopen subset U of
X , the set (↑U )c is a clopen downset, and this is equivalent to saying that for each
clopen subset U of X , the set ↑U itself is clopen. Therefore this last condition is the
only additional condition on the Priestley space (X,≤).

Homomorphisms between Heyting algebras correspond to commutative diagrams

B1
h

g1

B2

g2

D1

e1

k
D2

e2 with dual

XB1

id

XB2

f

id

XD1

≥

XD2

f

≥

The commutativity on the algebraic side with respect to the maps ei is just the
Priestley map condition that f = f ′ is continuous in the Boolean topologies and is
order preserving. The commutativity of the diagram with respect to the maps gi is
precisely of the form treated at the very end of Sect. 2.5 for � operations. Thus the
additional requirements for this continuity are:

(�back) ∀z ∈ X D2∀x ∈ X B1

[
f ′(z) ≥1 x =⇒ ∃z′ ∈ X B2 (z ≥2 z′ and f (z′) = x)

]
.

(�forth) ∀z ∈ X D2∀z′ ∈ X B2

[
z ≥2 z′ =⇒ f ′(z) ≥1 f (z′)

]
.

Now replacing idi : X Bi → X Di by the corresponding Priestley space (Xi ,≤i ) and
using the fact that f ′ = f , we obtain the Esakia dual map
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which is order preserving and continuous and satisfies the conditions:

(�back) ∀z ∈ X2∀x ∈ X1
[

f (z) ≥1 x =⇒ ∃z′ ∈ X2 (z ≥2 z′ and f (z′) = x)
]
.

(�forth) f is order preserving.

However, since f is already required to be order preserving and continuous, all that
remains is the (�back) condition, which is precisely the condition defining bounded
morphisms. �
Remark 1. In the same manner as we have derived the Priestley and Esakia dualities
from our descriptions of the corresponding categories of maps, we could derive the
duality for S4 modal algebras as the duals of adjoint pairs h: D � B: e, that is,
Boolean spaces with a compatible quasi-order such that, for each clopen subset U ,
the set ↑U is also clopen with continuous quasi-order preserving (quasi)bounded
morphisms.

Remark 2. A more direct approach to duality for Heyting algebras is to take as dual
space for a Heyting algebra A, the dual of the underlying lattice equipped with the
ternary Kripke relation obtained from the binary implication operation with spectral
maps that are bounded morphisms for this ternary relation. This is not as nice a
presentation but is completely equivalent. We show here how to derive the ternary
relation corresponding to implication on a Heyting algebra. Let A be a Heyting
algebra and → : A∂ × A → A. Here A∂ stands for the order dual of A. With this flip
in the first coordinate, → is a dual operator and we can compute the corresponding
relation S = S→ using the π -canonical extension of →. As we’ve already seen in the
unary case we get the same relation, with some switching of the order of coordinates
as for its lower adjoint ∧. For the following computation, one needs to know that the
canonical extension of meet is the meet of the canonical extension [22, Lemma 4.4].
For all x, y, z ∈ X A we have

S(x, y, z) ⇐⇒ κ(x) ≥ y →π κ(z)

⇐⇒ x � y →π κ(z)

⇐⇒ x ∧σ y � κ(z)

⇐⇒ z ≤ x ∧ y

⇐⇒ z ≤ x and z ≤ y

which is of course interderivable with the binary relation ≤. We leave it as an exercise
for the reader to check bounded morphisms for this ternary relation are precisely the
same as those in the Esakia duality.

2.7 Esakia’s Lemma and Sahlqvist Theory

Esakia formulated and proved Esakia’s lemma in order to prove that the topological
dual of a Heyting algebra homomorphism is a bounded morphism. Esakia’s lemma
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has since played an important role in modal and intuitionistic model theory. In par-
ticular, it was used by Sambin and Vaccaro in their simplified proof of Sahlqvist’s
Theorem [44]. A generalisation of Esakia’s lemma, formulated in algebraic terms
[22, Lemma 3.8], was the key idea in our proof with Bjarni Jónsson of a fact regard-
ing compositionality of canonical extensions of maps. We then used this result to
prove the functoriality of canonical extension (this corresponds to Esakia’s applica-
tion of his lemma) as well as Sahlqvist-type theorems (corresponding to Sambin and
Vaccaro’s application of Esakia’s Lemma).

We begin by stating Esakia’s Lemma as Esakia stated it [12, Lemma 3].

Lemma 1. If (X, R) is an Esakia space and C is a downward directed family of
closed subsets of X , then

R−1
[⋂

C
]

=
⋂

R−1 [C ] .

In canonical extension language, this translates as follows. Let A be a Heyting
algebra and let B = A− be its Booleanisation. Let X = J∞(Aδ), then Aδ = D(X)

and Bδ = P(X). The subsets of X that are closed in topological terms are precisely
the filter elements of Bδ . The relation R on the Esakia space of A is, as we have seen
in the previous section, the relation S� dual to the box operation on B given by

�: B
g−→ A

e−→ B.

It is not hard to see that, on a Boolean algebra, a relation dual to a box operation is also
dual to a diamond operation. Indeed the relation R on the Boolean space underlying
the Esakia space of A is the relation S� for the above given box operation and it is also
the relation R♦ for the conjugate diamond operation, ♦ = ¬�¬. For this operation,
we saw in the previous section that ♦δ on Bδ is just the operation S 
→ R−1[S]
on P(X). Thus Esakia’s lemma says that for any down-directed family C of filter
elements we have that

♦δ
(∧

C
)

=
∧

{♦δ(c) | c ∈ C },

where the infima are taken in Bδ . That is, while ♦δ in general only preserves joins,
it also preserves down-directed meets of filter elements. Order dually, of course this
same statement also means that �δ preserves directed joins of ideal elements.

This lemma, which holds for the canonical extension of the box operation asso-
ciated with a Heyting algebra actually holds for canonical extensions of order pre-
serving maps between distributive lattices in general. That is the content of Lemma
3.8 in [22], which was stated as follows.

Lemma 2. Let A and B be bounded distributive lattices, and suppose f : A → B is
isotone. For any down-directed set D of filter elements of Aδ ,
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f σ
(∧

D
)

=
∧

{ f σ (x) | x ∈ D}.

In [22], we used this lemma to prove that, for every x ∈ X B and for every element
u ∈ Aδ that satisfies the inequality x ≤ f σ (u), there is a minimal such solution
below u. This is the crucial fact used in [22] to prove that if f is join preserving in
each coordinate, then f σ is Scott continuous. This, in conjunction with the following
theorem, then leads to a proof of functoriality of canonical extension and to Sahlqvist-
type results.

Theorem 7. [22, Theorem 4.3] Let g: A → B be order preserving and f : B → C
be such that f σ is continuous, then( f ◦ g)σ = f σ ◦ gσ .

In order to prove functoriality of canonical extension one must show that h ◦♦1 =
♦2 ◦ h implies that hδ ◦ ♦σ

1 = ♦σ
2 ◦ hδ . This is also crucial in the derivation of the

description of bounded morphisms as we saw at the end of Sect. 2.5. The argument,
on the basis of Theorem 7, goes as follows:

h ◦ ♦1 = ♦2 ◦ h

=⇒ (h ◦ ♦1)
σ = (♦2 ◦ h)σ

T h.7=⇒ hσ ◦ (♦1)
σ = (♦2)

σ ◦ hσ

=⇒ hδ ◦ (♦1)
σ = (♦2)

σ ◦ hδ.

The method for showing that equational properties holding on a lattice with addi-
tional operations lift to the canonical extension is similar, and this is the subject
of Sahlqvist theory. An equation may be seen as the equality of two compositions
of maps that are either basic operations or juxtapositions of such ( f : A → B and
g: C → D yield [ f, g]: A × C → B × D). Showing that the equation lifts is then
a matter of showing that canonical extension commutes with composition and jux-
taposition. In our paper [23] with Bjarni Jónsson, we no longer relied (directly) on
Esakia’s lemma for these kind of arguments, but developed a theory based on topol-
ogy which allows a more transparent and uniform treatment of issues concerning the
interaction of extending maps and composing them.

2.8 Esakia Spaces as Completions of Universal Models

One of the purposes of the dual space of a bounded distributive lattice is to supply
a representation theorem: every bounded distributive lattice may be realised as a
sublattice of a powerset lattice. For some lattices, one does not need something so
complicated as the dual space to obtain such a representation. This is true, for exam-
ple, in computer science in the study of classes of formal languages. By definition,
these are given as sublattices of the powerset of the set of all words A∗ in some
alphabet A. This is also true for lattices that have “enough" join prime elements in
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the sense that each element is a join of join prime elements. This is true, e.g., for free
bounded distributive lattices where the pure conjunctions of generators join generate
and are join prime. This is also true for (finitely generated) free Heyting algebras.
This latter fact is at the lattice theoretic origin of the so-called universal models of
intuitionistic propositional logic.

Let N ∈ N, N ≥ 1, and let A = FH A(N ) be the free Heyting algebra on N
generators. Then A is infinite, but, as a lattice, it may be built incrementally as the
direct limit (or colimit in categorical terms) of the finite sublattices An consisting
of all elements of implicational rank less than or equal to n (meaning that there is a
term describing such an element in terms of the generators in which the maximum
number of nested implications is less than or equal to n). This direct limit, and its
dual inverse limit of finite posets, have been studied extensively by Ghilardi [27–30]
and others [3, 7, 8]. The dual inverse limit may be built up in a uniform way as
follows.

Given a poset (X,≤), we say that a subset S of X is rooted if there exists p ∈ S
such that q ≤ p for each q ∈ S. In this case, we call p the root of S. It follows from
the definition that a root of a rooted set is unique. We denote by Pr (X) the set of all
rooted subsets of (X,≤). We also let root : Pr (X) → X be the map sending each
rooted subset S of X to its root. Now define the sequence {Xn}n∈N of finite posets
as follows:

X0 = J (FDL (N ))(= P(N )) X1 = Pr (X0)

For n ≥ 1 Xn+1 = {τ ∈ Pr (Xn) | ∀T ∈ τ ∀S ∈ Xn

(S ≤ T =⇒ ∃T ′ ∈ τ (T ′ ≤ T and root (S) = root (T ′))}.

The condition defining Xn+1, which was first given in [27] might seem strange but
it can be derived using correspondence theory in a straight forward way [3].

One can then show that the functions root :Pr (Xn) → Xn remain surjective
when one restricts the domains to Xn+1. We denote by ∇ the sequence

X0 �� root
X1 �� root

X2 . . .

The dual sequence

D0
� � i0 �� D1

� � i1 �� D2
� � i2 �� . . .

has (the lattice underlying) A = FH A(N ) as its direct limit, and the maps in are the
duals of the root maps and are thus the upper adjoints of the forward image maps of
the root maps. An observation, also dating back to Ghilardi, is that the maps in the
sequence ∇ have upper adjoints, or in other words that the maps in send join primes
to join primes and thus the join primes of the lattices Dn remain join prime all the
way up the chain and thus also in A, which is then join-generated by the set J (A) of
join prime elements of A.



36 M. Gehrke

The upper adjoint maps are the maps Xn → Xn+1, x 
→ ↓x . Thus ∇ is both an
inverse and a direct limit system

X0

↓( ) ��
X1

root
��

↓( ) ��
X2 . . .

root
��

From the above analysis of the sequence ∇, we see the following relationship:

The Esakia space of A is X = lim←− Xn

The set of join primes of A is J (A) = lim−→ Xn .

Here the inverse limit may be taken in topological spaces and we obtian the Esakia
space with its topology. The direct limit (or co-limit in category theoretic terms) may
be taken in posets to obtain the collection of all join-irreducibles in A with the induced
order. By the above analysis it is clear that A may be given a set representation in
J (A) via the embedding A ↪→ P(J (A)) where a ∈ A is sent to {x ∈ J (A) | x ≤ a}.
Note that the sets {x ∈ J (A) | x ≤ a} for a ∈ A are precisely the downsets of finite
antichains in the poset J (A). However, the poset J (A) is fairly complicated and a
smaller one suffices to obtain a set representation of A. This is the point of the so
called (N-)universal model. The universal model, U , was already anticipated in [9]
and originates with [43, 46]. See also [1, 33].The subject was revived in [2], where
it was, among other, shown that the poset underlying the universal model consists
of the finite height elements of the Esakia space of A (see [2, Theorem 3.2.9]). The
interpretation that is part of the universal model is precisely the map sending a ∈ A
to {x ∈ U | x ≤ a}. Also, the so-called de Jongh formulas show that the downset (in
our order) (as well as the completement of the upset) of such a finite height element
of the Esakia space X is (are) clopen (see [2, Theorem 3.3.2]). It is easy to see that the
downset of a point in a Priestley space is clopen if and only if the point corresponds
to a principal prime filter (and thus to a join prime element of the dual lattice). Thus
the poset underlying the universal model U is contained in J (A) and, as mentioned
above, already the points in U are enough to obtain a set representation of A (see,
e.g. [2, Theorem 3.2.20]). In this representation, an element a ∈ A is of course sent
to {x ∈ U | x ≤ a}, the so-called definable subsets of the universal model U . While
U is simpler than J (A), no characterisation of the definable sets, {x ∈ U | x ≤ a}
for a ∈ A, is known.

The fact that A is representable as a lattice of subsets of J (A) and of U yields
a connection between these posets and the Esakia space of A. This connection is
a special case of results presented in [19] and this is the last topic in this survey
of recent developments in duality theory as they relate to Esakia’s work. Thus we
will outline here those results of [19] that are concerned just with set representations
of lattices. For further details see [19, Sect. 1] and the forthcoming journal paper
[18]. The key initial observation of [19], relative to set representations of lattices,
is that a set representation D ↪→ P(X) may faithfully be seen as a special kind of
quasi-uniform space.
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A quasi-uniform space is a pair (X,U ), where X is a set, and U is a collection
of subsets of X × X having the following properties:

1. U is a filter of subsets of X × X contained in the up-set of the diagonal � =
{(x, x) | x ∈ X};

2. for each U ∈ U , there exists V ∈ U such that V ◦ V ⊆ U ;

The collection U is called a quasi-uniformity and its elements are called entourages
and should be thought of as the epsilon-neighboorhoods of the diagonal in a quasi-
metric space, i.e., sets of the form U ⊇ {(x, y) | d(x, y) < ε} for some ε > 0. The
condition (2) corresponds to the triangle inequality. A quasi-uniform space is said
to be a uniform space provided the converse, U−1, of each entourage U is again an
entourage of the space (this corresponds to the symmetry axiom for metrics).

A function f : (X,U ) → (Y,V ) between quasi-uniform spaces is uniformly con-
tinuous provided ( f × f )−1(V ) ∈ U for each V ∈ V . Sometimes we will write
f : X → Y is (U ,V )-uniformly continuous instead to express this fact. A quasi-
uniform space (X,U ) always gives rise to a topological space. This is the space
X with the induced topology, which is given by V ⊆ X is open provided, for each
x ∈ V , there is U ∈ U such that U (x) = {y ∈ X | (x, y) ∈ U } ⊆ V . In general, sev-
eral different quasi-uniformities on X give rise to the same topology. We will assume
that all spaces are Komolgorov, that is, the induced topology is T0. This requirement
is equivalent to the intersection of all the entourages in U being a partial order rather
than just a quasi-order on X . In case a quasi-uniform space (X,U ) is not separated,
it may be mapped to its so-called Komolgorov quotient which is given by the equiv-
alence relation obtained by intersecting all the U ∩U−1 for U ∈ U , or equivalently,
given by the partial order reflection of the quasi-order corresponding to U . For the
basic theory of uniform spaces and quasi-uniform spaces, we refer to [6, 16].

We are now ready to explain how set representations may be viewed, up to iso-
morphism, as certain quasi-uniform spaces, which we will call Pervin spaces. First
of all, instead of working with lattice representations e: D ↪→ P(X), we will work
with sublattices L ⊆ P(X). Now, given a set X , we denote, for each subset A ⊆ X ,
by UA the subset

(Ac × X) ∪ (X × A) = {(x, y) | x ∈ A =⇒ y ∈ A}

of X × X . Given a topology τ on X , the filter Uτ generated by the sets UA for
A ∈ τ is a quasi-uniformity on X . The quasi-uniform spaces (X,Uτ ) were first
introduced by Pervin [40] and are now known in the literature as Pervin spaces.
Given a sublattice, L ⊆ P(X), we define (X,UL ) to be the quasi-uniform space
whose quasi-uniformity is the filter generated by the entourages UL for L ∈ L .
Here we will call this more general class of quasi-uniform spaces Pervin spaces. The
lattice L may be recovered from (X,UL ) as the blocks of the space. The blocks of
a space (X,U ) are the subsets A ⊆ X such that UA is an entourage of the space,
or equivalently, those for which the characteristic function χA: X → 2 is uniformly
continuous with respect to the Sierpiński quasi-uniformity on 2, which is the one
containing just 22 and {(0, 0), (1, 1), (1, 0)}.
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The Pervin spaces are transitive, that is, they have a basis of transitive entourages.
In addition, they are totally bounded: for every entourage U , there exists a finite cover
C of the space X such that C ×C ⊆ U for each C ∈ C . It may also be shown that the
Pervin spaces (as we define them here) are exactly the transitive and totally bounded
quasi-uniform spaces. It is not hard to see that if M ⊆ P(X) and L ⊆ P(Y ) are
lattices of sets, then a map f : (X,UM ) → (Y,UL ) is uniformly continuous if and
only if f −1 induces a lattice homomorphism from L to M by restriction. Thus, the
category of lattices of sets with morphisms that are commuting diagrams

L
h ��

��

M

��
P(Y )

φ �� P(X),

where φ is a complete lattice homomorphism, is dually equivalent to the category of
Pervin spaces with uniformly continuous maps.

Now we are ready to state the main result of Sect. 1 of [19]: The set representation
of a lattice D given by Stone/Priestley duality is obtainable from any set represen-
tation e: D ↪→ P(X) by taking the so-called bicompletion of the corresponding
quasi-uniform Pervin space (X,UI m(e)).

To be more precise, we have:

Theorem 8. [19, Theorem 1.6] Let D be a bounded distributive lattice, and
lete: D ↪→ P(X) be any embedding of D in a power set lattice and denote by L the
image of the embedding e. Let X̃ be the bicompletion of the Pervin space (X,UL ).
Then X̃ with the induced topology is the dual space of D.

We give a few details on this theorem. For more details on bicompleteness see [16,
Chap. 3]. The theory of completions of uniform spaces is well-understood, see e.g. [6,
Chap. II.3]. However, for quasi-uniform spaces, the situation is much more delicate.
Two of the most accepted and well behaved completions, namely the bicompletion
[16] (which is equivalent to the pair completion and the strong completion) and the D-
completion [10], actually agree for Pervin spaces. The bicompletion is particularly
appropriate to the representation theory of distributive lattices since it relates the
representations of the lattice, its order dual, and its booleanisation. In addition, the
bicompletion is the simplest, as it mainly reduces to the completion theory of uniform
spaces.

Let (X,U ) be a quasi-uniform space. The converse,U −1, of the quasi-uniformity
U , consisting of the converses U−1 of the entourages U ∈ U , is again a quasi-
uniformity on X . Further, the symmetrisation U s , which is the filter generated by
the union of U and U −1, is a uniformity on X . It is easy to verify that if (X,UL )

is a Pervin space, then (X,U −1
L ) is the Pervin space corresponding to the order

dual of L as embedded in P(X) via L ∂ ↪→ P(X) obtained by taking comple-
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ments in P(X). Also (X,U s
L ) is the uniform Pervin space corresponding to the

representation L − ↪→ P(X) of the booleanisation L − of L .
Now, a quasi-uniform space (X,U ) is bicomplete if and only if (X,U s) is a

complete uniform space. It has been shown by Fletcher and Lindgren that the full
category of bicomplete quasi-uniform spaces forms a reflective subcategory of the
category of quasi-uniform spaces with uniformly continuous maps, and thus, for each
quasi-uniform space (X,U ), there is a bicomplete quasi-uniform space (X̃ , Ũ ) and
a uniformly continuous map ηX : (X,U ) → (X̃ , Ũ ) with a universal property:

Theorem 9. [16, Chap. 3.3], Let (X,U ) be a quasi-uniform space, (Y,V ) a bicom-
plete quasi-uniform space and let f : X → Y be a (U ,V )-uniformly continuous
function. Then there exists a unique f̃ : X̃ → Y which is(Ũ ,V )-uniformly continu-
ous such that f = f̃ ◦ ηX .

The bicompletion of a quasi-uniform space (X,U ) is closely related to that
of its symmetrisation in that the symmetrisation of the bicompletion is equal to
the (bi)completion of the symmetrisation. In the case of a quasi-uniform Pervin
space (X,UL ) the symmetrisation is the uniform Pervin space (X,UL −) of the
booleanisation L − of L . It is not too hard to show that the (uniform=bi) com-
pletion of (X,UL −) is the Boolean space dual to L − given as a uniform space.
That is, X̃ = XL − is the set of ultrafilters of L − (or equivalently the set of prime
filters of L ), and the uniformity corresponding to L − is generated by the sets
UB = (Bc × X̃) ∪ (X̃ × B) for B ⊆ X̃ clopen (in the topology for L −, or equiva-
lently, in the Priestley topology for L ). This is the unique uniformity inducing the
Boolean topology on X̃ since this space is compact Hausdorff, see [6, Chapter II.4,
Theorem 1]. Thus this uniform space carries no more information than that of the
topological dual space of L −.

The function ηX : X → X̃ underlying the embedding of (X,UL −) in (X̃ , ŨL −) is
the map which sends x ∈ X to the point of XL − corresponding to the homomorphism
χx :L − → 2 given by χx (L) = 1 if and only if x ∈ L . Also, the (UL − , ŨL −)-
uniform continuity of this map comes about in a particularly simple way as one can
show that η−1

X (UL̂) = UL for each L ∈ L −.
Now we can formulate, what the bicompletion of (X,UL ) is: It is based on the

map ηX : X → X̃ as given above, but the quasi-uniformity on X̃ is generated by
the sets UL̂ for L ∈ L rather than by all the sets ηX (UL) for L ∈ L −. Thus
the bicompletion of (X,UL ) is the Stone space of D ‘in quasi-uniform form’.
Alternatively, one can think of this space as an ordered uniform space and simply
equip the Boolean space (X̃ , ŨL −) with the order obtained by

⋂
L∈L UL̂ . This is

then a uniform version of Priestley duality.
In closing, we record what this theory yields in the setting of finitely freely gen-

erated Heyting algebras. We have the following corollary to Theorem 8.

Corollary 3. Let N be a positive natural number, and A the freeN -generated Heyting
algebra. Then the following statements hold:
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1. The Esakia spaceX dual toA is homeomorphic to the bicompletion of the quasi-
uniform Pervin space(J (A),UL ) whereJ (A) is the set of join prime elements
of A andL is the lattice of all downsets of finite antichains in J (A).

2. The Esakia spaceX dual toA is homeomorphic to the bicompletion of the quasi-
uniform Pervin space(U,UD )whereUis the frame underlying theN-universal
model of intuitionistic logic andD is the lattice of all definable subsets of U .
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