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Preface

This volume is dedicated to Leo Esakia’s contributions to the theory of modal and
intuitionistic systems. Leo Esakia was one of the pioneers in developing duality
theory for modal and intuitionistic logics, and masterfully utilizing it to obtain
some major results in the area. The volume consists of 10 chapters, written by
leading experts, that discuss Leo’s original contributions and consequent devel-
opments that have shaped the current state of the field.

I would like to express sincere gratitude to the authors as well as to the referees
without whose outstanding job the volume would not have been possible. It is my
belief that the volume will serve as an excellent tribute to Leo Esakia’s pioneering
achievements in developing algebraic and topological semantics of modal and
intuitionistic logics, which have paved the way for the next generations of
researchers interested in this area.

Guram Bezhanishvili
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Introduction

Leo Esakia’s lifelong passion for modal and intuitionistic logics started to develop
in the 1960s. Soon after it became apparent that Kripke semantics [28], although
very attractive and intuitive, was not adequate for handling large classes of modal
logics (the phenomenon of Kripke incompleteness). It was already understood that
Kripke frames provide a nice representation for modal algebras, but a modal
algebra can in general be realized only as a subalgebra of the modal algebra arising
from a Kripke frame.

Leo’s main interest at the time was Gödel’s translation [23] of the intuitionistic
propositional logic Int into Lewis’ modal system S4, and the corresponding
classes of Heyting algebras and S4-algebras. Influenced by the work of Stone [38,
39], Tarski (and his collaborators McKinsey and Jónsson) [26, 27, 30–32], and
Halmos [25], Leo realized that the missing link between the algebraic and
relational semantics of these systems is topology. This yielded the notion of what
we now call (quasi-ordered) Esakia spaces (namely quasi-ordered Stone spaces
with additional properties) and the representation of S4-algebras as the algebras of
clopen subsets of Esakia spaces. This representation extends to full duality
between the categories of S4-algebras and Esakia spaces. In his discussions with
Sikorski, Leo also realized an apparent need for duality for Heyting algebras. He
was able to obtain such a duality as a particular case of his duality for S4-algebras,
thus obtaining a powerful machinery to study modal logics over S4 and
superintuitionistic logics (extensions of Int). These ground-breaking results were
published in Esakia’s 1974 paper [10], which remains one of the most cited papers
by Leo.

Around the same time (mid 1970s), Goldblatt and Thomason came to the same
realization, and developed what later became known as the descriptive frame
semantics for modal logic. These findings were published in Goldblatt [21, 22].
Note that although Esakia worked with quasi-ordered Stone Spaces, replacing a
quasi-order with an arbitrary binary relation in an Esakia space yields the
descriptive frame semantics of Goldblatt and Thomason.

The machinery Leo developed was powerful in many respects. In particular,
what we now call the Esakia lemma was a consequence of his duality (in fact, Leo
developed the lemma to obtain the morphism correspondence of his duality). As
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was shown by Sambin and Vaccaro [35] it plays a crucial role in developing the
Sahlqvist completeness and correspondence in modal logic. Subsequently, many
generalizations of Sahlqvist’s theorem have been obtained that utilize Esakia’s
lemma.

The volume opens with the chapter by Mai Gehrke which discusses Esakia
duality for S4-algebras, and how to derive Esakia duality for Heyting algebras
from it. Gehrke provides a more general setting for this approach, which also
yields the celebrated Priestley duality for bounded distributive lattices [33, 34]. All
this is done utilizing the theory of canonical extensions, a very active field of
research of today. Gehrke also discusses Esakia’s lemma and gives a modern
account of how to construct free finitely generated Heyting algebras and their
Esakia duals.

The dual description of free finitely generated Heyting algebras and S4-algebras
was initiated by Esakia and his student Grigolia in the mid 1970s. They developed
the so-called coloring technique [19, 20] which became very useful in describing
‘‘upper-parts’’ of the dual spaces of the free finitely generated Heyting and modal
algebras. This important topic was further developed in the 1980s by Shehtman,
Rybakov, Grigolia, and Belissima. In the 1990s, Ghilardi published a series of
papers which gave a novel perspective on the topic. This paved the way for the
follow-on papers by N. Bezhanishvili, A. Kurz, M. Gehrke, D. Coumans, S. van
Gool, and others. An up-to-date survey of this topic is given in the chapter by Nick
Bezhanishvili, Silvio Ghilardi, and Mamuka Jibladze.

Over the years, several generalizations of Esakia duality have been developed.
To name a few, Leo himself generalized his duality to the setting of bi-Heyting
algebras and temporal algebras [11, 13] (see also F. Wolter [40]), G. Bezhanishvili
generalized Esakia duality to monadic Heyting algebras [1], S. Celani and
R. Jansana generalized it to weak Heyting algebras [9], and G. Bezhanishvili
and R. Jansana to implicative semilattices [3]. The chapter by Sergio Celani and
Ramon Jansana discusses Esakia duality for Heyting algebras and its generaliza-
tions to weak Heyting algebras and implicative semilattices. It also discusses how
to obtain the duals of maps between Heyting algebras that only preserve part of the
Heyting algebra structure. These turn out to be partial Esakia morphisms that play
a crucial role in developing Zakharyaschev’s canonical formulas, which provide
an axiomatization of superintuitionistic logics (as well as transitive modal logics).

Esakia spaces are closely related to the celebrated Vietoris construction. In fact,
originally Esakia defined his spaces by means of the Vietoris space of a Stone
space [10]. This was the precursor of the coalgebraic semantics for modal logic.
This topic and the related recent developments are discussed in the chapter by Yde
Venema and Jacob Vosmaer.

Another important result in modal logic associated with Esakia’s name is the
so-called Blok-Esakia theorem. It establishes that the lattice of normal extensions
of Grzegorczyk’s modal system S4.Grz and the lattice of superintuitionistic logics
are isomorphic. The modal system S4.Grz was introduced by Grzegorczyk [24],
who proved a topological completeness of S4.Grz, and showed that the Gödel
embedding of Int into S4 also embeds Int into S4.Grz. In Esakia’s terminology,
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both S4 and S4.Grz are modal companions of Int. Grezegorczyk’s modal system
S4.Grz was one of the favorite modal systems of Leo. He investigated it in great
detail. In particular, Esakia showed that S4.Grz is the largest modal companion of
Int. He also showed that each superintuitionistic logic L has the largest modal
companion, obtained by adding the Grzegorczyk axiom to the Gödel translation of
L. This yields the Blok-Esakia theorem, which was obtained independently by
Blok [8] and Esakia [12]. Several generalizations of the Blok-Esakia theorem were
obtained by A. Kuznetsov and A. Muravitsky [29], F. Wolter and M. Zakharyas-
chev [41–43], F. Wolter [40], and G. Bezhanishvili [2].

The chapter by Frank Wolter and Michael Zakharyaschev is dedicated to the
Blok-Esakia theorem, while the chapter by Alexei Muravitsky provides an outline
of the intuitionistic modal logic KM which is closely related to the Gödel-Löb
provability logic GL. In particular, it discusses the generalization of the Blok–
Esakia isomorphism to an isomorphism between the lattices of all normal
extensions of KM and GL, respectively. This isomorphism has a further
generalization. Namely, in [18] Esakia introduced the modalized Heyting
calculusmHC and announced that the isomorphism between the lattices of all
normal extensions of KM and GL extends to an isomorphism between the lattices
of all normal extensions of mHC and K4.Grz—the modal system obtained by
adding to the well-known modal system K4 a version of Grzegorczyk’s axiom.
The syntax and semantics of the intuitionistic modal logic mHC are discussed in
the chapter by Tadeusz Litak. The chapter also proves the isomorphism between
the lattices of all normal extensions of mHC and K4.Grz announced in [18], and
discusses the important related issues of well-foundedness, scatteredness, and
constructive fixed point theorems, as well as interpretations of constructive
modalities in scattered topoi.

Leo Esakia was also one of the pioneers in developing the topological
semantics for modal logic. In the 1970s he proved that if we interpret modal
diamond as the derivative of a topological space, then GL is the modal logic of all
scattered spaces [14, 15]. This result was obtained independently and slightly
earlier by Simmons [36]. Whether or not a given space is scattered depends on
whether or not the assembly (i.e., the frame of nuclei) of the frame of opens of the
space is Boolean [37]. This and related issues about the assembly tower of a given
frame are discussed in the chapter by Harold Simmons in the setting of point-free
topology. The topological semantics of the provability logic GL and the
polymodal provability logic GLP is reviewed in the chapter by Lev Beklemishev
and David Gabelaia, who also point out interesting connections between the
topological semantics of GLP, large cardinals, and consistency issues in set
theory.

As we pointed out, Esakia and Simmons were the first who developed the
topological semantics for the provability logic GL. In [16], Esakia introduced a
weakening of the modal system K4, which he termed weakK4 and denoted by
wK4. He showed that when interpreting modal diamond as the derivative of a
topological space, wK4 is the modal logic of all topological spaces, and that K4 is
the modal logic of all spaces satisfying the so-called Td-separation axiom (a lower
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separation axiom properly situated between T0 and T1, asserting that each point is
locally closed). These results were originally obtained by Leo in the 1970s, but
were published for the first time only in 2001. Further results in this direction were
obtained by Leo and his collaborators in the follow-up papers [17, 4–7], as well as
by Shehtman and his school, Joel Lucero-Bryan, and others. The last chapter in the
volume by Andrey Kudinov and Valentin Shehtman is dedicated to the
derivational semantics of modal logic and other related issues.
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Chapter 1
Esakia’s Biography and Bibliography

Esakia’s Biography

1934 Born on 14 November. Named after his father, who was
a famous movie director in Georgia. His mother was an
actress.

1953 Entered Tbilisi State University. Majored in Physics.
1958 Graduated from Tbilisi State University with the degree in

Physics.
1958 Joined Institute of Physics of the Georgian Academy of

Sciences.
1963 Moved to the newly founded Institute of Cybernetics of

the Georgian Academy of Sciences. Stayed at the institute
for 40 years.

1960s Main scientific ideas started to form.
1970s Started the famous Esakia seminar. Esakia run the semi-

nar for 40 years until his death. The seminar would be on
Wednesdays, and it would last the entire day. The seminar
continues to this day, and is now run by Mamuka Jibladze
and David Gabelaia.

Late 1960s–early 1970s Obtained dualities for the categories of Heyting algebras
and closure algebras by means of ordered Stone spaces,
which later were coined Esakia spaces.

1974 “Topological Kripke models” appeared in Soviet Math.
Doklady. The paper develops Esakia duality for closure
algebras and Heyting algebras. Esakia’s lemma also appears
in the paper. Later it became a primary tool in proving
Sahlqvist type correspondence results. The paper is one of
the most cited papers of Esakia.

1976 The Blok-Esakia theorem on the isomorphism between the
lattices of superintuitionistic logics and normal extensions

G. Bezhanishvili (ed.), Leo Esakia on Duality in Modal and Intuitionistic Logics, 1
Outstanding Contributions to Logic 4, DOI: 10.1007/978-94-017-8860-1_1,
© Springer Science+Business Media Dordrecht 2014



2 1 Esakia’s Biography and Bibliography

of Grzegorczyk’s modal system is established indepen-
dently by Blok and Esakia.

1985 The monograph “Heyting Algebras. Duality Theory”
appears in Russian.

Late 1980s–1990s Worked on extending the correspondence between the
intuitionistic propositional calculus, Grzegorczyk’s logic,
and the Gödel-Löb logic to the predicate case.

1990s The severe economic hardship period in Georgia after the
collapse of the Soviet Union. The Esakia seminar contin-
ued to thrive, but more often than not, the seminar was
held without electricity or heat.

1995 The first International Tbilisi Symposium on Logic, Lan-
guage and Computation (TbiLLC) was held in Gudauri,
Georgia. Esakia was instrumental in organizing the sym-
posium, as well as making it an extremely successful bi-
anneal conference series. The tenth TbiLLC was held in
2013.

2000s Worked on topological semantics of modal logic, prov-
ability logic, and related intuitionistic modal logics.

2002 Moved from Institute of Cybernetics to Institute of Math-
ematics of the Georgian Academy of Sciences. Remained
at the institute until his death.

2003 The first International Conference on Topological and
Algebraic Methods in Non-Classical Logics was held in
Tbilisi, Georgia. The conference was organized by Leo’s
group and Department of Mathematics of New Mexico
State University, and was funded by the Georgian-US bilat-
eral grant. This became one of the main conference series
in the area, and is now known as TACL (Topology, Alge-
bra and Categories in Logic). The sixth TACL was held in
2013.

2008 The first International Conference on Topological Meth-
ods in Logic (TOLO) was held in Tbilisi, Georgia. The
conference was organized by Leo’s group, and was funded
by the Georgian National Science Foundation. This also
became a very successful bi-anneal conference series,
which continues to thrive. The fourth TOLO will be held
in the summer of 2014.

2010 Esakia’s health started to fail. In spite of this, Esakia
remained active. Several days before his death he con-
ducted the last of his famous seminars, where he discussed
his latest findings and new ideas. Esakia passed away on
November 15. He is survived by a wife, two daughters,
and three grandchildren.
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Esakia’s work and personality have been a constant source of inspiration for a
logic community in general, and for the many generations of researchers he has
raised in particular. The 2011 installments of TACL and OGLAL (Ordered Groups
and Lattices in Algebraic Logic) were dedicated to Esakia’s memory, as well as the
2012 special issue of Studia Logica (Volume 100, Numbers 1–2). More biographical
notes on Leo Esakia can be found in the foreword to that issue.

Esakia’s Bibliography

1960s

1. L. Esakia, Functioning of finite automata, III Soviet Meeting in Probability
Theory and Mathematical Statistics, Tbilisi, 1963, 53–66 (Russian).

2. L. Esakia, Modal extensions of superintuitionistic logics, II Symposium in
Cybernetics, Tbilisi, 1965, 173 (Russian).

3. L. Esakia, A tense propositional calculus, II Symposium in Cybernetics, Tbilisi,
1965, 174–175 (Russian).

4. L. Esakia, The Δ-system and algebras with derivation, Georgian Math. Dokl.
40 (1965), 537–543 (Russian).

5. L. Esakia, On the structure of varieties of Brouwerian algebras, VIII Soviet
Algebraic Colloquium, Riga, 1967, 144–146 (Russian).

6. L. Esakia, On covers of Brouwerian algebras, IX Soviet Algebraic Colloquium,
Gomel, 1968, 222–223 (Russian).

7. L. Esakia, On semigroups generated by the operations of closure and pseudo-
complementation, IX Soviet Algebraic Colloquium, Gomel, 1968, 224–225
(Russian).

8. L. Esakia, On a class of topological structures, X Soviet Algebraic Colloquium,
Volume II, Novosibirsk, 1969, 137–138 (Russian).

9. L. Esakia, Brouwerian and their dual topological structures, II Tiraspol Sym-
posium in General Topology and Its Applications, Chisinau, 1969, 102–103
(Russian).

1970s

10. L. Esakia, On the structure of quasi-closed elements in closure algebras, Institute
of Applied Mathematics, Tbilisi State University, Tbilisi, 1970, 24–25 (Russian).

11. L. Esakia, Topological representation of some Brouwerian algebras, Conference
in Algebra and Mathematical Logic, Ivanovo, 1970, 134–135 (Russian).

12. L. Esakia, On Lukasiewicz algebras, IV Inter. Congress of Logic, Methodology
and Philosophy of Science, Romania, 1971, 25–26.

13. L. Esakia, On subdirect decomposability of Lukasiewicz algebras, Institute of
Applied Mathematics, Tbilisi State University, Tbilisi, 1971, 25–26 (Russian).

14. L. Esakia, On the category of quasi-ordered Stone spaces, VI Soviet Conference,
Tbilisi, 1971, 136–137 (Russian).
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cal extension and derive Priestley and Esakia duality from Stone duality for maps.
In preparation for this we show that the categories of Heyting and modal algebras
are both equivalent to certain categories of maps between distributive lattices and
Boolean algebras. Finally we relate the N-universal model of intuitionistic logic to
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uniform spaces.
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canonical extensions very early on [34, 35]. In this chapter we highlight some of the
main results of central importance for these works of Esakia, and Jónsson and Tarski,
and indicate some further developments in duality theory for lattices with additional
operations, mainly as they pertain to Heyting algebras.

The theory of canonical extensions, which recasts duality in a purely algebraic
setting of lattice completions, was initiated by Jónsson and Tarski in their two papers
[34, 35]. At first sight, one might think the purpose was to get rid of the topological
nature of Stone duality, but this aspect is actually still very much present, though in a
form more similar to the later developed point-free approach to topology. The main
purpose for Jónsson and Tarski in recasting duality in algebraic form was to make it
easier to identify what form the dual of an additional algebraic operation on a lattice
should take. Thus in the first paper [34] they proved a general theorem about the
extension of maps and preservation of equational properties, and the second paper
[35] then specified the ensuing dual structures in which one can represent the original
algebras.

The theory of canonical extensions has moved forward significantly since the
seminal work of Jónsson and Tarski and is now applicable far beyond the original
Boolean setting. It has the advantage of allowing a uniform and relatively transparent
treatment of duality issues concerning additional operations. Since Esakia’s work on
duality for Heyting and S4 modal algebras may be seen as special instances of duality
for lattices with additional operations, the theory of canonical extensions has in fact
allowed the generalisation of many of Esakia’s results and methods to a much wider
setting. In this chapter we will show this while focussing mainly on Heyting algebras.

In Sect. 2.2 we give a brief introduction to canonical extension and show that it
provides a point-free approach to duality for Heyting algebras. To this end, we show,
in a constructive manner, that the canonical extension of any distributive lattice is a
complete

⏐
-distributive lattice and thus also a Heyting algebra. Further, we show

that the canonical embedding of a lattice in its canonical extension is conditionally
Heyting and thus a Heyting algebra embedding if the original distributive lattice is a
Heyting algebra. In Sect. 2.3 we explain how additional operations are treated in the
theory of canonical extensions and illustrate this in the particular example of Heyting
implication, viewed as an additional operation on a lattice.

Section 2.4 is purely algebraic and is a preparation for the duality results for Heyt-
ing and S4 modal algebras. Here we discuss Booleanisation of distributive lattices. In
modern terms Booleanisation is the fact that the inclusion of the category of Boolean
algebras in the category of distributive lattices has a left adjoint. This means, among
other, that for any distributive lattice D, there is a unique Boolean algebra D− that
contains D as a sublattice, and that is generated by D as a Boolean algebra. This
implies that the category of distributive lattices is equivalent to the category of lattice
inclusions D ℘→ D− with commutative diagrams for which the maps between the
domains are lattice maps and the maps between the codomains are Boolean algebra
maps. One can then see Heyting algebras as the (non full) subcategory of those inclu-
sions D ℘→ D− which have an upper adjoint g: D− → D and with commutative
diagrams that also commute for the adjoint maps. Finally S4 modal algebras also
live inside the category of lattice embeddings from distributive lattices to Boolean
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algebras as those lattice embeddings e: D → B that have an upper adjoint, and the
maps are, as for Heyting algebras, the commutative diagrams that commute both for
the embeddings and for their upper adjoints. That is, in this setting, one may see the
category of Heyting algebras as the intersection of the category of distributive lattices
and the category of S4 modal algebras. This point of view on distributive lattices,
Heyting algebras, and S4 modal algebras allows one to see all of them as certain maps
between distributive lattices and Boolean algebras. Now applying Stone duality to
these maps yields Priestley duality for distributive lattices, and Esakia duality for
Heyting algebras and modal algebras.

In Sect. 2.5 we show how Stone duality may be derived from the canonical exten-
sion results by ‘adding points’ in the sense of point-free topology. Further, we give
an algebraic account of the duality for operators and the corresponding notion of
bisimulation. This last topic is treated further in Sect. 2.7 where we discuss Esakia’s
lemma and its generalisation as obtained in our paper [22] with Bjarni Jónsson.
Finally, in Sect. 2.6, we derive both Priestley and Esakia duality from Stone duality
with the help of the results of Sect. 2.4.

In Sect. 2.8, we briefly discuss set representations of distributive lattices and in
particular the representation of the free N -generated Heyting algebra in the so-called
N -universal model. In particular, we outline recent results from [19] which show that
the Stone or Priestley space of a distributive lattice is the bicompletion of any set
representation of the lattice, viewed as a quasi-uniform space.

I would like to thank the anonymous referee as well as Dion Coumans and Sam van
Gool for carefully reading a draft of the chapter and making many useful comments
which have improved the chapter greatly. I also want to thank Guram Bezhanishvili
for detailed historical comments pointing out how my view point of Esakia duality
here closely corresponds to Leo Esakia’s own derivation of the duality. These histor-
ical comments have been incorporated in Sects. 2.4 and 2.6 as appropriate. Finally I
would like to thank Dick de Jongh for helpful discussions about the universal models
for intuitionistic logic.

2.2 Canonical Extension

Canonical extensions were first introduced by Jónsson and Tarski [34] in order to
deal with additional operations such as modalities and relation algebraic operations
in the setting of Stone duality. The idea is the following: A topological space is a
pair, (X,O) where X is a set, and O is a collection of downsets of X (in the order on
X induced by O). Since the poset X and the complete lattice, D(X), of all downsets
of X are dual to each other via the discrete duality between posets and downset
lattices, the information in giving (X,O) is exactly the same as the information
in the embedding O ℘→ D(X). Further, in the case of Stone duality, since O is
generated by the dual lattice D, the data O ℘→ D(X), in turn, amounts to giving an
embedding D ℘→ D(X). This latter formulation brings the entire duality within the
setting of lattice theory, making the proper translation of additional structure such as
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operations on the lattice more transparent. The key insight needed here is that this
embedding may be uniquely characterised among the completions of D.

Definition 1. Let L be a lattice, a canonical extension of L is a lattice completion
L ℘→ Lδ of L with the following two properties:

density: L is
⏐ ∧

- and
∧ ⏐

-dense in Lδ , that is, every element of Lδ is both
a join of meets and a meet of joins of elements of L;

compactness: given any subsets S and T of L with
∧

S ≤ ⏐
T in Lδ , there

exist finite sets S′ ⊆ S and T ′ ⊆ T such that
∧

S′ ≤ ⏐
T ′ in L .

The fundamental facts about canonical extensions are the following.

Theorem 1. Every bounded lattice has a canonical extension and it is unique up to
an isomorphism which commutes with the embedding of the original lattice in the
extension.

Theorem 2. For any bounded distributive lattice D, the map η: D → D(X,≤) into
the lattice of all downsets of the dual space X of D which sends each element d ∈ D
to the corresponding clopen downset η(d) is a canonical extension of D.

In the original approach of Jónsson and Tarski for Boolean algebras [34] and
Gehrke and Jónsson for bounded distributive lattices [22], Theorem 2 provided the
existence part of Theorem 1. However, the canonical extension may also be obtained
directly from the lattice without the use of the axiom of choice. This was first identified
by Ghilardi and Meloni in the case of Heyting algebras in their work on intermediate
logics [31]. A similar choice-free approach was used in [20] where Theorem 1 was
first proved in the setting of arbitrary (i.e., not-necessarily-distributive) bounded
lattices. There, it was shown that the lattice of Galois closed sets of the polarity
(F ,I , R), where F is the collection of lattice filters of L and I is the collection
of lattice ideals of L , and F RI if and only if F ∩ I �= ∅, yields a canonical extension
of L . This is actually part of a more general representation theorem for so-called ι1-
completions of a lattice. These are the completions satisfying the density condition
in Definition 1. In [21] it was shown that any such completion may be obtained as
the Galois closed subsets of a certain kind of polarity between a closure system of
filters and a closure system of ideals of the original lattice. A different choice-free
approach to the existence of canonical extensions for lattices via dcpo presentations
was given in [26].

It follows from Theorem 2 that the canonical extension of any bounded distributive
lattice is a downset lattice and therefore a complete Heyting algebra. We show here,
in a choice-free manner, that the canonical extension of any bounded distributive
lattice is a frame and thus also a complete Heyting algebra. Further, we show that the
embedding of a bounded lattice in its canonical extension is conditionally Heyting,
meaning that it preserves the implication whenever defined. Thus canonical extension
also provides a constructive approach to Esakia duality.

We first need a few facts about canonical extensions. In working with topological
spaces, the closed and the open subsets, obtained for a Boolean space by taking
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arbitrary intersections and arbitrary unions of basic clopens, respectively, play a
very important role. For canonical extensions, the basic clopens are replaced by the
image of the embedding L ℘→ Lδ and the closures under infima and suprema play
roles similar to those of closed and open subsets in topology. Also, from a lattice
theoretic perspective, the density condition that is part of the abstract definition of
canonical extension makes it clear that the meet and the join closures of L in Lδ play
a central role.

Definition 2. Let L be a lattice, and Lδ a canonical extension of L . Define

F(Lδ) := { x ∈ Lδ | x is a meet of elements from L },

I (Lδ) := { y ∈ Lδ | y is a join of elements from L }.

We refer to the elements of F(Lδ) as filter elements and to the elements of I (Lδ) as
ideal elements.

The reason for this nomenclature is that the poset F(Lδ) of filter elements of Lδ

is reverse order isomorphic to the poset Filt(L) of lattice filters of L via the maps
x 
→ (↑x) ∩ L and F 
→ ∧

Lδ F , and, dually, the poset I (Lδ) of ideal elements
of Lδ is order isomorphic to the poset Idl(L) of lattice ideals of L via the maps
y 
→ (↓y) ∩ L and I 
→ ⏐

Lδ I . Establishing these isomorphisms is in fact the first
step in proving the uniqueness of the canonical extension, see e.g. [21, Theorem 5.10].
Note that now we can reformulate the density condition for canonical extensions by
saying that F(Lδ) is join dense in Lδ and I (Lδ) is meet dense in Lδ .

We are now ready to prove that the canonical extension of a bounded distributive
lattice satisfies the join-infinite distributive law.

Theorem 3. Let D be a bounded distributive lattice. Then Dδ is
⏐

-distributive.

Proof. As a first step we want to show for x ∈ F(Dδ) and X ⊆ F(Dδ) that

x ∧
∨

X ≤
∨

{ x ∧ x ′ | x ′ ∈ X }.

To this end, let z ∈ F(Dδ) with z ≤ x ∧ ⏐
X and y ∈ I (Dδ) with

⏐{ x ∧ x ′ | x ′ ∈
X } ≤ y. By the join density of F(Dδ) and the meet density of I (Dδ), it suffices to
show that we must have z ≤ y.

The condition on y implies that, for each x ′ ∈ X , we have x ∧ x ′ ≤ y, and thus,
by compactness, there are a, b ∈ D with x ≤ a, x ′ ≤ b and a ∧ b ≤ y. As a
consequence we have

∨
X ≤

∨
{ b ∈ D | ∃x ′ ∈ X ∃a ∈ D with x ≤ a, x ′ ≤ b, and a ∧ b ≤ y }.

This inequality, combined with z ≤ x ∧⏐
X ≤ ⏐

X and compactness, now implies
that there are b1, . . . , bn ∈ D, there are x ′

1, . . . , x ′
n ∈ X with x ′

i ≤ bi , and there
are a1, . . . , an ∈ D with x ≤ ai and ai ∧ bi ≤ y and z ≤ b1 ∨ . . . ∨ bn . Let
a = a1 ∧ . . . ∧ an then, since z ≤ x ∧ ⏐

X ≤ x , we have
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z ≤ x ∧ (b1 ∨ . . . ∨ bn)

≤ a ∧ (b1 ∨ . . . ∨ bn)

= (a ∧ b1) ∨ . . . ∨ (a ∧ bn)

≤ (a1 ∧ b1) ∨ . . . ∨ (an ∧ bn) ≤ y.

It follows that x ∧ ⏐
X ≤ ⏐{ x ∧ x ′ | x ′ ∈ X }as desired. In order to prove that Lδ

is
⏐

-distributive, it is enough to consider suprema of collections X of filter elements
since the filter elements are join dense in Lδ . However, we need to know that for any
u ∈ Lδ , we have u ∧ ⏐

X ≤ ⏐{ u ∧ x ′ | x ′ ∈ X }. To this end we have

u ∧
∨

X =
∨

{ x ∈ F(Lδ) | x ≤ u ∧
∨

X }
≤

∨
{ x ∧

∨
X | u ≥ x ∈ F(Lδ) }

≤
∨

{
∨

{ x ∧ x ′ | x ′ ∈ X } | u ≥ x ∈ F(Lδ) }
=

∨
{
∨

{ x ∧ x ′ | u ≥ x ∈ F(Lδ) } | x ′ ∈ X }
≤

∨
{ u ∧ x ′ | x ′ ∈ X }.

This completes the proof. �
Note that, by order duality, it follows that the canonical extension of a distributive

lattice also is
∧

-distributive, but this is not our focus here. Next we prove that the
canonical embedding is conditionally Heyting.

Proposition 1. Let L be a bounded lattice. The canonical extension η: L → Lδ

preserves any existing relative pseudocomplements.

Proof. Let a, b ∈ L and suppose a →L b = max{c ∈ L | a ∧ c ≤ b}exists. Let
x ∈ F(Lδ) with a ∧ x ≤ b, then, by compactness, there is c ∈ L with a ∧ c ≤ b
and x ≤ c. Thus x ≤ a →L b. Since F(Lδ) is join dense in Lδ , it follows that
a →L b = max{u ∈ Lδ | a ∧ u ≤ b}and thus a →Lδ b exists and is equal to
a →L b. �
Corollary 1. Let A be a Heyting algebra. The canonical extension of A as a bounded
lattice is a Heyting algebra embedding.

2.3 Implication as an Additional Operation

In the previous section, we saw that canonical extension, or equivalently, the rep-
resentation given by topological duality for bounded lattices, restricts to Heyting
algebras giving Heyting algebra representations. The theory of canonical extensions
was developed to deal with additional operations that may not be determined by the
order of the underlying lattice. As such, canonical extension for distributive lattices
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with additional operations may be seen as a generalisation (in algebraic form) of
Esakia duality.

In this section, we give the general definitions of extensions of maps and relate
these, in the case of Heyting algebras, to the Heyting implication on the canonical
extension.

Definition 3. Let K and L be lattices, f : K → L any function. We define maps f σ

and f π from K δ into Lδ by

f σ (u) :=
∨{∧

{ f (a) | a ∈ K and x ≤ a ≤ y } | F(K δ) � x ≤ u ≤ y ∈ I (K δ)
}

,

f π (u) :=
∧{∨

{ f (a) | a ∈ K and x ≤ a ≤ y } | F(K δ) � x ≤ u ≤ y ∈ I (K δ)
}

.

The above definition, for arbitrary maps, was first given in the setting of distributive
lattices and it was shown that these are in fact upper and lower envelopes with respect
to certain topologies [23]. This is not always true in the general lattice setting, but
it is still true for mono- and antitone maps and for arbitrary maps on lattices lying
in finitely generated lattice varieties. For details, see Sect. 4 of [25] and the Ph.D.
thesis of Jacob Vosmaer [47].

The two above extensions of a map f are not always equal, but for maps that are
join or meet preserving, or that turn joins into meets or vice versa, the two extensions
agree and we say such maps are smooth, see e.g. [23, Corollary 2.25]. However, for
binary operations, coordinate-wise preservation, or reversal, of join and/or meet is
not sufficient to imply smoothness. Example 1 below shows that implication, viewed
as an additional binary operation on the lattice underlying a Heyting algebra, need
not be smooth.

In the example we will make use of two basic facts about canonical extensions
of lattices which are useful when dealing with additional operations: First of all, the
canonical extension of a finite product is, up to isomorphism, the product of the canon-
ical extensions of the individual lattices. This allows one to compute coordinate-wise.
Secondly, the operation L 
→ L∂ which yields for each lattice the order dual lattice
also commutes with canonical extension and the filter elements of Lδ are precisely
the ideal elements of (L∂ )δ = (Lδ)∂ and vice versa.

Looking at the definitions of the extensions of maps, note that they are self dual in
the order on the domain of the map. Thus we can take the order dual of the domain,
or of any coordinate of the domain, and still obtain the same extension. Further note
that, if the map is order preserving, then the upper bounds of the intervals on which
we are taking meets, and the lower bounds of the intervals on which we are taking
joins play no role. Accordingly, for f : K → L order-preserving we have

f σ (u) =
∨ {∧

{ f (a) | x ≤ a ∈ K } | F(K δ) � x ≤ u
}

,

and, in particular, f σ (x) = ∧{ f (a) | x ≤ a ∈ K } for filter elements x ∈ F(K δ).
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Example 1. Let A be the Heyting algebra consisting of a countable decreasing chain
with a bottom added. Since A is a chain it is a Heyting algebra in which the implication
is given by

f (a, b) =
{

1 if a ≤ b,

b if a > b.

Since f is order-preserving in its second coordinate and order-reversing in its first,
it will be convenient to regard f as a map from A∂ × A to A; we then have an
order-preserving map to work with. We label the canonical extensions of the two
chains as in the figures below.

1

a1

a2

a3

x

0

Aδ

1

a1

a2

a3

x

0

A∂ δ
= Aδ ∂

In Aδ there is a single element which is not a lattice element, namely the filter
element x . The canonical extension of A∂ × A is the product shown below. The only
element which is neither a filter element nor an ideal element of the product is (x, x)

and this is where the two extensions take different values.

(1,0)

(c1,0)

(c2,0)

(1,z)

(z,0)

(0,0)(z,z)

(0,z)

(1,1)

(c1,1)

(c2,1)

(1,c1)

(0,c1)(z,1)

(0,1)

The value of f σ (x, x) is calculated by approaching (x, x) from below with filter
elements, and in the second coordinate x is itself a filter element, while it is an ideal
element of the dual lattice A∂ . Also, in A∂ , the only filter elements below x are the
actual lattice elements a ∈ A∂ . Thus we get:
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f σ (x, x) =
∨

{ f σ (a, x) | A∂ � a ≤∂ x }
=

∨{∧
{ f (a, b) | x ≤ b ∈ A } | A∂ � a ≤∂ x

}

=
∨{∧

{ b | x ≤ b ∈ A, b < a } | x ≤ a ∈ A
}

= x .

The value of f π (x, x) is calculated by approaching (x, x) from above

f π (x, x) =
∧

{ f π (x, b) | x ≤ b ∈ A }
=

∧ {∨
{ f (a, b) | A∂ � a ≤∂ x } | x ≤ b ∈ A

}

=
∧

{1 | x ≤ b ∈ A }
= 1.

We conclude that f is not smooth.
It is clear from the above computation, that, if one of the extensions of the impli-

cation on A is equal to the Heyting implication that exists on Aδ , then it must be
the π -extension, and that is indeed the case in general. This is actually just a special
instance of the fact that, for an order preserving map f , if g is the upper adjoint of
f with respect to some coordinate, then gπ is the upper adjoint of f σ with respect
to the same coordinate [24, Proposition 4.2].

Proposition 2. Let (A,→) be a Heyting algebra, then (Aδ, (→)π ) is a Heyting
algebra.

Proof. Let x, x ′ ∈ F(Aδ), and y ∈ I (Aδ). Using the fact that → is order preserving
as a map from A∂ × A, we have

x ′ →π y =
∨

{a′ → b | x ′ ≤ a′ ∈ A � b ≤ y}.

Using the compactness property and the definition of filter and ideal elements we
then obtain the following string of equivalences

x ∧ x ′ ≤ y ⇐⇒ ∃a, a′, b ∈ A (x ≤ a, x ′ ≤ a′, b ≤ y and a ∧ a′ ≤ b)

⇐⇒ ∃a, a′, b ∈ A (x ≤ a, x ′ ≤ a′, b ≤ y and a ≤ a′ → b)

⇐⇒ x ≤ x ′ →π y.

Now let u, v, w ∈ Aδ , then, using the density property, the fact that Aδ is
⏐

-
distributive, and the definition of extension for additional operations we have the
following string of equivalences
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u ∧ v ≤ w

⇐⇒ ∀x, x ′ ∈ F(Aδ)∀y ∈ I (Aδ)
[
(x ≤ u, x ′ ≤ v, and w ≤ y) ⇒ x ∧ x ′ ≤ y

]

⇐⇒ ∀x, x ′ ∈ F(Aδ)∀y ∈ I (Aδ)
[
(x ≤ u, x ′ ≤ v, and w ≤ y) ⇒ x ≤ x ′ →π y

]

⇐⇒ u ≤ v →π w.

�

2.4 The Connection Between Heyting Algebras
and S4 Modal Algebras

The well-known equivalence between Heyting algebras and certain S4 modal alge-
bras plays a fundamental role in Esakia duality, and in order to clarify the relationship
of Esakia’s duality to Stone and Priestley duality and to canonical extension, we need
a purely algebraic and categorical description of this classical connection. This is the
purpose of the current section.

McKinsey and Tarski [38] initiated the rigorous study of the connection between
Heyting algebras and S4 modal algebras. They worked with closed sets instead of
opens and thus with closure algebras and what we now call co-Heyting algebras.
In the 1950s, Rasiowa and Sikorski worked further in this area. Their work may
be found in their influential monograph [42]. They are the ones who switched to
working with the interior and open sets as it is done now. Another paper in the area
that was important to Leo Esakia was the 1959 paper by Dummet and Lemmon [11].
The next period of activity occurred in the 1970s with the work of Esakia and Blok,
the most relevant and important publications being [4, 5, 12–14]. In particular, one
may find a treatment of the results presented in this section in Sect. 5 of Chap. II
of Leo Esakia’s 1985 book [14]. This book is written in Russian, but it may soon
be available in English translation. Esakia called the S4-algebras corresponding to
Heyting algebras stencil algebras. These were also already studied by McKinsey-
Tarski and Rasiowa-Sikorski. Blok (and Dwinger) also payed special attention to
these. Finally, the fully categorical description of the relationship between S4 and
Heyting may be found in the paper [37] by Makkai and Reyes from 1995.

This equivalence between the category of Heyting algebras and the category of
what was called stencil S4-algebras is also at the heart of the Blok-Esakia theorem.
This theorem states that the lattice of subvarieties of the variety of Heyting algebras is
isomorphic to the lattice of subvarieties of the variety of Grzegorczyk algebras. In fact,
the reason that the Blok-Esakia theorem is true is that all varieties of Grzegorczyk
algebras are generated by the stencil algebras that they contain. The Blok-Esakia
theorem is treated in detail in the chapter by Frank Wolter and Michael Zakharyaschev
in this same volume.

Here we start from Booleanisation for distributive lattices in general, a theory
which dates back to Peremans’ 1957 paper [39]. This is already responsible for the
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fact that distributive lattices alternatively may be seen as embeddings of distributive
lattices into Boolean algebras that they generate. This fact is the algebraic counterpart
to Priestley duality. In categorical terms, Booleanisation is the left adjoint of the
inclusion of the category of Boolean algebras as a full subcategory of the category of
bounded distributive lattices. More concretely, given a bounded distributive lattice D,
its Booleanisation D− is the unique, up to isomorphism, Boolean algebra containing
D as a bounded sublattice and generated as a Boolean algebra by D. It may be
obtained algebraically by a free construction [15, 39] or via duality (or otherwise)
by embedding D in the power set of its dual space (or in any other Boolean algebra)
and generating a Boolean algebra with the image. The inclusion homomorphism
eD: D → D− is the unit of the adjunction and thus the Booleanisation of a bounded
lattice homomorphism h: D → E commutes with the inclusions eD and eE so that
h− extends h. Note that the elements of D− can be written in the form

∧n
i=1(¬ai ∨bi )

where the ai s and the bi s all belong to D.
Next, Heyting algebras may be seen as those distributive lattices for which

eD: D → D− has a left adjoint, and this extends to a categorical duality.

Proposition 3. A bounded distributive lattice A is the reduct of a Heyting algebra
if and only if the inclusion e: A → A− of A in its Booleanisation has an upper
adjoint g: A− → A. Furthermore, a lattice homomorphism h: A1 → A2 is a Heyting
algebra homomorphism if and only if the following diagram commutes

A−
1

h−

g1

A−
2

g2

A1
h

A2

where gi : A−
i → Ai is the upper adjoint of the embedding ei : Ai → A−

i for i =
1 and 2.

Proof. Suppose e: A → A− has an upper adjoint g: A− → A, and let a, b, c ∈ A.
We have

a ∧ b ≤ c

⇐⇒ e(a) ∧ e(b) ≤ e(c)

⇐⇒ e(a) ≤ ¬e(b) ∨ e(c)

⇐⇒ a ≤ g(¬e(b) ∨ e(c)).

Thus A is a Heyting algebra with b → c := g(¬e(b) ∨ e(c)).
Conversely, if A is a Heyting algebra, the following string of equivalences, tog-

gling carefully between the algebras A and A−, shows that the adjoint does exist and it
gives an explicit way of calculating it. Let a ∈ A and u = ∧n

i=1(¬e(bi )∨e(ci )) ∈ A−
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where bi , ci ∈ A for each i ∈ {1, . . . , n} , then we have

e(a) ≤
n∧

i=1

(¬e(bi ) ∨ e(ci ))

⇐⇒ e(a) ≤ ¬e(bi ) ∨ e(ci ) for all i ∈ {1, . . . , n}
⇐⇒ e(a) ∧ e(bi ) ≤ e(ci ) for all i ∈ {1, . . . , n}
⇐⇒ a ∧ bi ≤ ci for all i ∈ {1, . . . , n}
⇐⇒ a ≤ bi → ci for all i ∈ {1, . . . , n}

⇐⇒ a ≤
n∧

i=1

(bi → ci )

Finally, given the formulas relating the upper adjoint of the inclusion and the Heyting
implication, and using the fact that h− extends h, it is a simple calculation to see that
the statement about morphisms is true. �

On the other hand, this is closely related to S4 modal algebras via the following
observation.

Proposition 4. The category of S4 modal algebras is equivalent to the following
category: The objects of the category are adjoint pairs e : D � B : g where D is
a bounded distributive lattice, B is a Boolean algebra, and the lower adjoint eis a
lattice embedding; The morphisms of the category are pairs (h, k), where h: B → B ′
is a homomorphism of Boolean algebras, k: D → D′ is a bounded lattice homomor-
phism, and the resulting squares commute both for the upper and lower adjoints.

Proof. Given an S4 modal algebra (B,�), it is easy to check that Im(�) is a bounded
distributive sublattice of B, and that the map g: B → Im(�) defined by b 
→ �(b)

is upper adjoint to the inclusion map e: Im(�) → B. Conversely, given an object
e: D � B: g in the category as described above, it is also easy to see that (B, e ◦ g)

is an S4 modal algebra, as well as that the compositions of these two assignments
bring us back to an object equal or isomorphic to the one we started with. For the
morphisms the pertinent diagram is

B1
h

g1

B2

g2

D1

e1

k
D2

e2

Suppose the square commutes both up and down. We have
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h ◦ (e1 ◦ g1) = (h ◦ e1) ◦ g1

= (e2 ◦ k) ◦ g1

= e2 ◦ (k ◦ g1)

= e2 ◦ (g2 ◦ h)

= (e2 ◦ g2) ◦ h

so that h is a homomorphism for the corresponding modal algebras. Conversely,
suppose that h: B1 → B2 satisfies h◦(e1◦g1) = (e2◦g2)◦h. We define k: D1 → D2
by k = g2 ◦ h ◦ e1. Then we have

k ◦ g1 = (g2 ◦ h ◦ e1) ◦ g1 = g2 ◦ (e2 ◦ g2 ◦ h) = g2 ◦ h

and

e2 ◦ k = e2 ◦ (g2 ◦ h ◦ e1) = idD2 ◦ (h ◦ e1) = h ◦ e1

and thus both diagrams commute. �
Combining Proposition 3 and Proposition 4 we obtain the following corollary

which is the algebraic counterpart of the famous Gödel translation in logic.

Corollary 2. The category of Heyting algebras is equivalent to the full subcategory
of those S4 modal algebras (B,�) for which Im(�) generates B.

2.5 From Canonical Extensions to Stone Duality

Historically Jónsson and Tarski obtained canonical extension as an algebraic descrip-
tion of Stone duality. However, in retrospect, canonical extension can be obtained
directly and in a choice-free manner, and then the duality can be obtained from it by
adding points (via Stone’s Prime Filter Theorem). This point of view is particularly
advantageous when one wants to understand additional operations on lattices.

Given a distributive lattice D, the canonical extension Dδ is a complete distributive
lattice, and, using Stone’s Prime Filter Theorem, one can prove that it has enough
completely join prime elements. For completeness we give the argument here. Before
we do this, note that completely join and meet prime elements of a complete lattice
C come in splitting pairs (p, m) satisfying

∀u ∈ C
(

p � u ⇐⇒ u ≤ m
)

and thus the correspondence between completely join and meet prime elements is
given by p 
→ κ(p) = ⏐{u ∈ C | p � u}. We denote the poset of completely
join prime elements by J∞(C) and the poset of completely meet prime elements by
M∞(C). It then follows that κ : J∞(C) → M∞(C) is an isomorphism of posets.
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Proposition 5. Let D be a bounded distributive lattice and Dδ its canonical exten-
sion. Then every element of Dδ is a join of completely join prime elements and a
meet of completely meet prime elements.

Proof. It suffices to show that for u, v ∈ Dδ with u � v there is a splitting pair (p, m)

as described above with p ≤ u and v ≤ m. By the density condition for canonical
extensions, u � v implies that there are x ∈ F(Dδ) and y ∈ I (Dδ) with x ≤ u,
v ≤ y, and x � y. Let Fx = (↑x) ∩ D be the filter of D corresponding to x and
Iy = (↓y) ∩ D be the ideal corresponding to y. If a ∈ Fx ∩ Iy , then

x =
∧

Fx ≤ a ≤
∨

Iy = y

which contradicts the choice of x and y. Thus, by Stone’s Prime Filter Theorem,
there is a prime filter p of D with Fx ⊆ p and Ix ⊆ D \ p. Now, letting p = ∧

p
and m = ⏐

(D \ p), where the extrema are taken in Dδ , we see that p ≤ x ≤ u and
v ≤ y ≤ m.

It remains to show that (p, m) is a splitting pair. To this end, suppose u ∈ Dδ

and p � u, then there is y ∈ I (Dδ) with u ≤ y but p � y. Now p � y means
that p ∩ Iy = ∅ where Iy = (↓y) ∩ D. Thus we have Iy ⊆ D \ p and u ≤ y ≤ m
as required. Conversely, since p ∩ (D \ p) = ∅, we have p � m, and thus u ≤ m
implies p � u. �

Given the canonical extension of a bounded distributive lattice D, the Stone space
of D may be obtained by topologising the set X = J∞(Dδ) with the topology
given by the ‘shadows’ of the ideal elements on X , that is, by the sets y 
→ {p ∈
J∞(Dδ) | p ≤ y} for y ∈ I (Dδ). Since I (Dδ) is closed under finite meets and
arbitrary joins and the elements of X are completely join prime, it follows that these
sets form a topology. One can then show that the sets â = {p ∈ J∞(Dδ) | p ≤ a}
for a ∈ D are precisely the compact open subsets of this space and they generate the
topology. This yields a compact sober space in which the compact-open sets form
a basis, which is closed under finite intersection. These spaces are known as Stone
spaces or spectral spaces. In case the lattice is Boolean, all join primes are atoms and
the corresponding space is a compact Hausdorff space with a basis of clopen sets.
These spaces are (unfortunately) also known as Stone spaces or, for some authors,
as Boolean spaces. We call the spaces for distributive lattices Stone spaces and the
ones for Boolean algebras Boolean spaces. As mentioned above, the elements of D
correspond to the compact open subsets of the Stone space, the ideal elements of Dδ

correspond to the open subsets. Order dually, the filter elements of Dδ correspond,
again via the assignment x 
→ {p ∈ J∞(Dδ) | p ≤ x}, to the closed sets in the Stone
topology for the lattice D∂ that is order dual to D. One can also understand these sets
directly relative to the Stone space of D itself. For this purpose some concepts from
stably compact spaces are needed (see [36, Sect. 2] for further details): A subset S of
a space X is called saturated provided it is an intersection of opens (this will yield
precisely the downsets of X = J∞(Dδ)). Then the sets {p ∈ J∞(Dδ) | p ≤ x} for
x ∈ X are precisely the compact saturated subsets of of the Stone space of D.
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The specialisation order of a topology on a set X is usually defined by x ≤ y if
and only if x ∈ {y} if and only if for every open subset U ⊆ X , we have x ∈ U
implies y ∈ U . In this setting this yields the reverse order to the order on J∞(Dδ) as
inherited from Dδ . Since it is more convenient to work with the order that fits with
Dδ , we work with the dual definition of specialisation order: x ≤ y if and only if
y ∈ {x} if and only if for every open subset U ⊆ X , we have y ∈ U implies x ∈ U .
Thus opens are downsets here rather than upsets.

Given a modality �: D → E (that preserves 1 and ∧), the extension �σ =
�π : Dδ → Eδ (which we call �δ) is completely meet preserving, see [23, Theo-
rem 2.21]. Accordingly, it is completely determined by its action on the completely
meet prime elements of Dδ . This action is encoded using pairs from the Cartesian
product of X E = J∞(Eδ) and X D = J∞(Dδ) via the relation

x Sy ⇐⇒ κ(x) ≥ �δ(κ(y))

The relations thus obtained are characterised by three properties:

(B1) ≥ ◦ S ◦ ≥ = S;
(B2) S[x] = {y ∈ X D | x Sy} is compact saturated for each x ∈ X E ;
(B3) �S(U ): = (S−1[U c])c = {x ∈ X E | ∀y ∈ X D (x Sy =⇒ y ∈ U } is compact

open for each compact open subset U ⊆ X D .

The first property is clearly satisfied, the second corresponds to the fact that �δ

sends completely meet prime elements to ideal elements, and the third property
corresponds to the fact that �δ restricts to a map from D to E (we give the details of
the correspondence below in the order dual case of join and 0 preserving modality).

Recovering the modal operator from the relation is easily seen to work just as in
Kripke semantics. In fact, this approach via canonical extension makes clear why
the box operation given by a Kripke relation should be defined the way it is:

∅�δ(a) = {
x ∈ X E | x ≤ �δ(a)

}

=
{

x ∈ X E |
∧

{�δ(κ(y)) | a ≤ κ(y)} � κ(x)
}

= {
x ∈ X E | ∀y ∈ X (y � a =⇒ �δ(κ(y)) � κ(x))

}

= {
x ∈ X E | ∀y ∈ X (x Sy =⇒ y ∈ â)

}

= �S(â).

Dual statements of course hold for a modality ♦: D → E (that preserves 0 and ∨).
In particular, ♦σ = ♦π : Dδ → Eδ , which we call ♦δ , is completely join preserving
and the dual relation is given by R = {(x, y) ∈ X E × X D | x ≤ ♦δ(y)}. This relation
satisfies

(D1) ≤ ◦ R ◦ ≤ = R;
(D2) R[x] = {y ∈ X D | x Ry} is closed for each x ∈ X E ;
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(D3) ♦R(U ): = R−1[U ] = {x ∈ X E | ∃y (x Ry and y ∈ U )} is compact open
for each compact open U ⊆ X D .

Finally, we recover the operation from a relation R with these properties via

∅♦δ(a) = ♦R(â) = {
x ∈ X E | ∃y ∈ X D (x Ry and y ∈ â)

} = R−1[â].

The conditions given here are well-known to duality theorists and may be found, e.g.
in [32], but we give an algebraic derivation here based on the canonical extension.
To this end first note that it is a simple fact from discrete (Birkhoff) duality that⏐

-preserving maps on downset lattices, f :D(X) → D(Y ), are in one-to-one corre-
spondence with relations R ⊆ Y × X satisfying ≤ ◦R◦ ≤= R. Also, the canonical
extension of an operation preserving finite joins is completely join preserving [23,
Theorem 2.21]. Thus, it suffices to show that the extensions ♦δ: Dδ → Eδ of ∨ and
0 preserving maps ♦: D → E are characterised within the

⏐
-preserving maps from

Dδ to Eδ by the conditions (D2) and (D3).

Proposition 6. Let k: D → E be an order preserving map. Then kσ : Dδ → Eδ sends
filter elements to filter elements and consequently, if kσ has an upper adjoint, then
this upper adjoint sends ideal elements to ideal elements.

Proof. By definition

kσ (u) =
∨ {∧

{ k(a) | a ∈ D and x ≤ a ≤ y } | F(Dδ) � x ≤ u ≤ y ∈ I (Dδ)
}
.

Thus for u = x ∈ F(Dδ) this definition reduces to

kσ (x) =
∨ {∧

{ k(a) | a ∈ D and x ≤ a ≤ y } | x ≤ y ∈ I (Dδ)
}
,

and since k is order preserving and D ℘→ Dδ is compact this is the same as

kσ (x) =
∧

{ k(a) | a ∈ D and x ≤ a }.

Thus kσ (x) ∈ F(Dδ). Now suppose g: Eδ → Dδ is an upper adjoint to kσ and that
x ∈ J∞(Eδ) and y ∈ I (Dδ), then we have

x ≤ g(y) ⇐⇒ kσ (x) ≤ y

⇐⇒
∧

x≤a∈D

k(a) ≤ y

⇐⇒ ∃a ∈ D (x ≤ a and k(a) ≤ y)

=⇒ ∃a ∈ D (x ≤ a ≤ g(y)).
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Now since g(y) is the join of all the x ∈ J∞(Eδ) below it, it follows that it is the
join of all the a ∈ D below it and thus it is an ideal element. �

Theorem 4. Let f : Dδ → Eδ be a
⏐

-preserving map. Then f = ♦δ for some♦: D →
E if and only if the following conditions are met:

1. The upper adjoint of f sends completely meet prime elements to ideal elements;
2. f sends elements of D to elements of D.

Proof If f = ♦δ for some ♦: D → E , then it follows from Proposition 6 and
the fact that M∞(Dδ) ⊆ I (Dδ) that the upper adjoint of f sends completely meet
prime elements to ideal elements. The second condition is clearly also satisfied as f
restricted to D is ♦.

For the converse, suppose f : Dδ → Eδ is
⏐

-preserving and satisfies the two
conditions in the theorem. Define ♦: D → E by ♦(a): = f (a) for a ∈ D. Then
certainly ♦δ = f on D. Now let x ∈ F(Dδ). Then

♦δ(x) =
∧

{♦a | x ≤ a ∈ D} =
∧

{ f (a) | x ≤ a ∈ D} ≥ f (x)

since f is order preserving. On the other hand, if m ∈ M∞(Dδ) and f (x) ≤ m,
then x ≤ g(m) where g: Eδ → Dδ is the upper adjoint of f . Now since, by the
first condition, g(m) is an ideal element, there is a ∈ D with x ≤ a ≤ g(m). Thus
f (a) ≤ m and now, as ♦ is order-preserving

♦δ(x) ≤ ♦(a) = f (a) ≤ m.

By the meet density of M∞(Dδ) in Dδ , it follows that ♦δ(x) = f (x) and thus
♦δ = f on F(Dδ). Finally since both functions are

⏐
-preserving, it now follows

that ♦δ = f on all of Dδ . �
We are now ready to verify that the two conditions in the theorem correspond

dually to the conditions (D2) and (D3) given above.

Proposition 7. Let D and E be bounded distributive lattices with dual spaces
X D and X E , respectively. Let f : Dδ → Eδ be a

⏐
-preserving map and R ⊆

X E × X D the corresponding dual relation. Then the following hold:

1. The upper adjoint of f sends completely meet prime elements to ideal elements
if and only if R satisfies condition (D2);

2. f sends elements of D to elements of D if and only if R satisfies condition (D3).

Proof. Since the compact open subsets of X D are precisely the downsets in X D

of elements of D, and since f is obtained from R as the map U 
→ R−1[U ] on
downsets, or in other words as the map u 
→ ⏐

R−1[↓u ∩ J∞(Dδ)] on the canonical
extensions, it is clear that f sends elements of D to elements of D if and only if R
satisfies condition (D3). In order to prove the first equivalence, let m ∈ M∞(Eδ)

and take x ′ ∈ J∞(Eδ) with m = κ(x ′), then we have
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{x ∈ X D | x ≤ g(m)} = {x ∈ X D | x ≤ g(κ(x ′))}
= {x ∈ X D | f (x) ≤ κ(x ′)}
= {x ∈ X D | x ′ � f (x)} = (R[x])c.

Thus (R[x])c is the downset in X D of g(m) and this set is open if and only if g(m)

is an ideal element. �
The duality for homomorphisms is derivable in a similar manner. The pertinent

facts are the following. Let h: D → E be a map between bounded distributive lattices.
Then the following statements are equivalent:

1. h is a bounded lattice homomorphism;
2. hσ = hπ is a complete lattice homomorphism;
3. hσ = hπ has a lower adjoint which sends completely join primes to completely

join primes.

The dual of a bounded lattice homomorphism h: D → E is the map

(hδ)α � X E : X E → X D

and it is characterised by the property that, under this map, the pre-image of a compact
open is always compact open. Such maps are usually called spectral maps or Stone
maps. The dual of a spectral map f : X E → X D is given by inverse image and so is
the canonical extension of the dual map.

If a lattice homomorphism also preserves an additional operation on the lattice,
then one can derive, in the same way as we’ve done above, that the dual maps
will satisfy bisimulation conditions with respect to the relation corresponding to the
additional operation. We finish this section by considering this situation.

Consider a diagram

E1
h1

1

E2

2

D1
h2

D2

where Ei and Di are bounded distributive lattices, the hi are lattice homomorphisms,
and the maps ♦i are operators (the argument is similar for n-ary operators). We want
to obtain the dual condition to the diagram commuting. If D1 = D2, and h1 is
equal to h2, this is simply the statement that it is a homomorphism with respect
to the diamonds. To this end one may first show that the following statements are
equivalent:

1. h2 ◦ ♦1 = ♦2 ◦ h1;
2. hδ

2 ◦ ♦σ
1 = ♦σ

2 ◦ hδ
1;

3. ∀x ∈ X E1 hδ
2(♦σ

1 (x)) = ♦σ
2 (hδ

1(x))
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4. ∀x ∈ X E1∀z ∈ X D2 (z ≤ hδ
2(♦σ

1 (x)) ⇐⇒ z ≤ ♦σ
2 (hδ

1(x))).

The equivalence of (1) and (2) follows from the fact that the first map is an operator
and the second one order preserving on either side of the equality since this implies
that (h2 ◦ ♦1)

σ = hδ
2 ◦ ♦σ

1 and (♦2 ◦ h1)
σ = ♦σ

2 ◦ hδ
1, see [22, Theorem 4.3]. The

equivalence of (2) and (3) follows because all the extended functions are completely
join preserving and X E1 is join-dense in Eδ

1. The last two are equivalent because
X D2 is join-dense in Dδ

2. Now denoting the dual of hi by fi and the dual of ♦i by Ri

for i = 1 and 2, we get

z ≤ hδ
2(♦σ

1 (x)) ⇐⇒ f2(z) ≤ ♦σ
1 (x)

⇐⇒ f2(z)R1x

and

z ≤ ♦σ
2 (hδ

1(x)) ⇐⇒ ∃z′ ∈ X E2 (z ≤ ♦σ
2 (z′) and z′ ≤ hδ

1(x))

⇐⇒ ∃z′ ∈ X E2 (z R2z′ and f1(z
′) ≤ x)

So the above diagram commutes if and only if

∀z ∈ X D2∀x ∈ X E1

[
f2(z)R1x ⇐⇒ ∃z′ ∈ X E2 (z R2z′ and f1(z

′) ≤ x)
]
.

Note that the backward implication can be simplified as we can bring the quantifier
outside to get

∀z ∈ X D2∀z′ ∈ X E2∀x ∈ X E1

[
(z R2z′ and f1(z

′) ≤ x) =⇒ f2(z)R1x
]
.

A special case of this condition is the one obtained by choosing x = f1(z′):

∀z ∈ X D2∀z′ ∈ X E2

[
z R2z′ =⇒ f2(z)R1 f1(z

′)
]
.

On the other hand, since ≤ ◦ R1 ◦ ≤ = R1 the latter condition also implies the
previous one. So the diagram commutes if and only if the following two conditions
hold:

(♦back) ∀z ∈ X D2∀x ∈ X E1

[
f2(z)R1x =⇒ ∃z′ ∈ X E2 (z R2z′ and f1(z′) ≤ x)

]
.

(♦forth) ∀z ∈ X D2∀z′ ∈ X E2

[
z R2z′ =⇒ f2(z)R1 f1(z′)

]
.

In the case where h1 = h2 these are precisely the conditions dual to being a ♦-
homomorphism between bounded distributive lattices. For box operations �1 and
�2 with dual relations S1 and S2, respectively, we get order-dual dual conditions,
namely:

(�back) ∀z ∈ X D2∀x ∈ X E1

[
f2(z)S1x =⇒ ∃z′ ∈ X E2 (zS2z′ and f1(z′) ≥ x)

]
.

(�forth) ∀z ∈ X D2∀z′ ∈ X E2

[
zS2z′ =⇒ f2(z)S1 f1(z′)

]
.
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2.6 From Canonical Extensions to Esakia Spaces

As we have seen in Proposition 2 of Sect. 2.3, (π -)canonical extension provides
a choice free approach to duality for Heyting algebras. In Sect. 2.5 we have seen
how to obtain Stone duality from canonical extension. In this section we spell out
how to move between the canonical extension of a Heyting algebra and its Esakia
dual space. In order to witness the Heyting implication, we will make use of the
results of Sect. 2.4 relating Heyting algebras to pairs of adjoint maps. It can also be
done directly as we will indicate at the end of this section, however, we feel that the
approach via adjoint pairs of maps is the most transparent and reflects most directly
the spirit of the work of Leo Esakia.

Accordingly we need the following correspondence results:

1. Sublattices D ℘→ E of bounded distributive lattices E correspond dually to spec-
tral quotients, but these can most simply be described not as certain equivalence
relations but as certain quasi-orders on the dual Stone space [45]. A quasi-order
gives rise to an equivalence relation and to an order on the quotient which will be
the specialisation order of the spectral quotient space: Given a spectral space X ,
its spectral quotients are in one-to-one correspondence with the so-called com-
patible quasi-orders � ⊆ X × X [17, Theorem 6]. A compatible quasi-order
on a Stone space X is a quasi-order on X satisfying the following separation
condition for all x, y ∈ X

x �� y =⇒ ∃U ⊆ X (Ucompact open and a � -downset, y ∈ U and x �∈ U ).

Here U is a �-downset provided for all z, z′ ∈ X we have z � z′ ∈ U implies
z ∈ U . Given a sublattice D ℘→ E , the corresponding quasi-order is given
by �D = {(x, y) ∈ X E × X E | ∀a ∈ D (y ≤ a =⇒ x ≤ a)} where the
comparisons of x and y with a are made in Eδ (note D ⊆ Dδ ℘→ Eδ). Given a
compatible quasi-order, � on X E , the dual space of the corresponding sublattice
of E is the quotient space X D = (X E/≈, τ�), where ≈ = �∩⊗ and τ� is given
by those open subsets of the space X E which are also �-downsets. We will
denote the space (X/≈, τ�) given by a given compatible order � on a Stone
space X by X/�. The map dual to the embedding D ℘→ E is the quotient map
X E � X E/� and the relation R corresponding to D ℘→ E viewed as a 0 and
∨ preserving map from D to E is the relation x R[x ′]≈ iff x � x ′.

2. A pair of maps ♦: D � E : � is an adjoint pair with ♦ the lower adjoint and �
the upper adjoint if and only if the relation R dual to ♦ and the relation S dual
to � are converse to each other. That is, S = R−1. The interesting direction of
this fact is true because of the following string of equivalences:
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x Rx ′ ⇐⇒ x ≤ ♦δ(x ′)
⇐⇒ κ(x) � ♦δ(x ′)
⇐⇒ �δ(κ(x)) � x ′

⇐⇒ κ(x ′) ≥ �δ(κ(x)) ⇐⇒ x ′Sx .

Now we just need one more correspondence result before we can get the Esakia
duality for Heyting algebras. The following proposition is a generalisation of The-
orem 4.5 of Chap. III in Esakia’s book [14], which proves the same statement, but
just for Heyting algebras. In addition (the hard direction) is the algebraic dual of
the result needed in Priestley duality that each clopen downset comes from a lattice
element.

Proposition 8. Let B be a Boolean algebra with dual space X B , and let D be
a sublattice of B with corresponding compatible quasi-order � on X B . Then D
generatesB as a Boolean algebra if and only if � is antisymmetric and thus a partial
order.

Proof. Suppose D generates B as a Boolean algebra, and let x, x ′ ∈ X B with x �= x ′.
Since x and x ′ are filter elements of Bδ , there is b ∈ B with x ≤ b but x ′ � b.
Since D generates B as a Boolean algebra, b = ⏐n

i=1(
∧mi

j=1 ai j ), where each ai j is
either an element of D or the complement of one. Now x ≤ b and x an atom implies
x ≤ ∧mi

j=1 ai j for some i . Rewriting the latter conjunction in the form (
∧k

j=1 a j ) ∧
(
∧mi

j=k+1 ¬a j ), we obtain from x ′ � b that x ′ � (
∧k

j=1 a j ) ∧ (
∧mi

j=k+1 ¬a j ) and
thus there is a j ∈ {1, . . . , k} with x ′ � a j or there is j ∈ {k + 1, . . . , mi } with
x ′ � ¬a j . In the first case we obtain x ≤ a j and x ′ � a j and in the second case we
obtain x � a j and x ′ ≤ a j . Thus, by the definition of �, either x ′ �� x or x �� x ′
and thus � is antisymmetric.

For the converse, fix first x ∈ X E . For each y ∈ X E with x �� y, there is ay ∈ D
with y ≤ ay but x � ay , and for each y ∈ X E with y �� x , there is cy ∈ D with
x ≤ cy but y � cy . And thus the equivalence classes of ≈ = � ∩ ⊗ are given by

∨
[x]≈ =

⎛

⎝
∧

x ��y∈X E

¬ay

⎞

⎠ ∧
⎛

⎝
∧

y ��x∈X E

cy

⎞

⎠

where the joins and meets are of course taken in Eδ .
Now suppose � is antisymmetric. Then [x]≈ = {x} and thus

⏐[x]≈ = x for each
x ∈ X E . Thus, for b ∈ B and for each x ∈ X E with x ≤ b we get

b ≥ x =
⎛

⎝
∧

x ��y∈X E

¬ay

⎞

⎠ ∧
⎛

⎝
∧

y ��x∈X E

cy

⎞

⎠.
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Let <D> denote the Boolean subalgebra of B generated by D. Applying compact-

ness of Eδ to the fact that
(∧

x ��y∈X E
¬ay

)
∧

(∧
y ��x∈X E

cy

)
is below b, we conclude

that there is a finite submeet which gets below b. That is, there is bx ∈ <D> with
x ≤ bx ≤ b. Since X E is join-dense in B it follows that

b =
∨

b≥x∈X E

bx .

Again by compactness of Eδ , there are x1, . . . , xn ∈ X E with xi ≤ b and b ≤⏐n
i=1 bxi . Since each bx ≤ b we actually have equality and thus b ∈ <D>. �

Theorem 5. (Priestley duality [41]) The category of bounded distributive lattices is
dually equivalent to the category whose objects are Boolean spaces each equipped
with a compatible partial order and whose morphisms are continuous and order
preserving maps.

Proof. This follows from the above results and the fact that the category of distributive
lattices is equivalent to the category of lattice embeddings D ℘→ B such that D
generates B with pairs of maps making commutative diagrams, e.g.

B1
h

B2

D1

e1

h
D2.

e2 with dual

X1

id

X2
f

id

X1/≤1 X2 / ≤2.
f

where the topology on the lower spaces are those that are downsets of the respective
partial orders that are open in the respective topologies of the upper spaces. Saying
that the diagram on the left commutes is equivalent to saying that the one on the right
commutes, and this in turn is the same as saying that the maps f and f ′ are equal
as set maps and that they are continuous both in the Boolean topology of the spaces
on the top and in the spectral topology of the spaces on the bottom. This in turn is
easily seen to be equivalent to saying that f = f ′ is both continuous in the Boolean
topology and order preserving. �

The ordered spaces (X,≤) where X is a Boolean space and ≤ is a compatible
partial order on X are of course well known by now as Priestley spaces and the maps
f : (X,≤) → (Y,≤) which are both continuous and order preserving are the Priestley
maps. For the Esakia duality we need also the notion of a bounded morphism. A map
f : X → Y between Priestley spaces is called a bounded morphism provided it is
continuous, order preserving, and for each x ∈ X and each y ∈ Y with y ≤ f (x),
there is z ∈ X with z ≤ x and y = f (z).

Theorem 6. (Esakia Duality [12]) The category of Heyting algebras is dually equiv-
alent to the category whose objects are Priestley spaces (X,≤) such that, for each
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clopen subset U of X , the set ↑U is also clopen and whose morphisms are the
bounded morphisms.

Proof. For objects, we use the fact that a Heyting algebra corresponds to an adjoint
pair e: D � B: g where e is an embedding whose image generates B. The dual
of these embeddings e are precisely the Priestley spaces (X,≤) and the relation R
corresponding to the quotient map X � (X,≤) is, as remarked above, the relation

x R{x ′}(= [x ′]≈) ⇐⇒ x ≤ x ′.

Accordingly, we think of R simply as being ≤ (identifying {x} with x for each x ∈ X ).
Note that, since the relation R =≤ is the relation corresponding to the embedding e
(as stated in item 1 in the beginning of this section), ≤ satisfies (D1) through (D3)
(this is a consequence of the requirements for being a compatible quasi-order). The
fact that e has an upper adjoint is, by the second item in the list at the beginning of this
section, equivalent to the fact that the reverse relation R−1 = ≥ satisfies conditions
(B1) through (B3). The condition (B1), ≥ ◦ ≥ ◦ = being equal to ≥, is vacuously
true. Condition (B2) states that ↓x is closed in X and this also always holds because

↓x =
⋂

{U | x ∈ U, U a clopen downset}

is compact saturated by (D3). Finally (B3) requires that for each clopen subset U of
X , the set (↑U )c is a clopen downset, and this is equivalent to saying that for each
clopen subset U of X , the set ↑U itself is clopen. Therefore this last condition is the
only additional condition on the Priestley space (X,≤).

Homomorphisms between Heyting algebras correspond to commutative diagrams

B1
h

g1

B2

g2

D1

e1

k
D2

e2 with dual

XB1

id

XB2

f

id

XD1

≥

XD2

f

≥

The commutativity on the algebraic side with respect to the maps ei is just the
Priestley map condition that f = f ′ is continuous in the Boolean topologies and is
order preserving. The commutativity of the diagram with respect to the maps gi is
precisely of the form treated at the very end of Sect. 2.5 for � operations. Thus the
additional requirements for this continuity are:

(�back) ∀z ∈ X D2∀x ∈ X B1

[
f ′(z) ≥1 x =⇒ ∃z′ ∈ X B2 (z ≥2 z′ and f (z′) = x)

]
.

(�forth) ∀z ∈ X D2∀z′ ∈ X B2

[
z ≥2 z′ =⇒ f ′(z) ≥1 f (z′)

]
.

Now replacing idi : X Bi → X Di by the corresponding Priestley space (Xi ,≤i ) and
using the fact that f ′ = f , we obtain the Esakia dual map
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which is order preserving and continuous and satisfies the conditions:

(�back) ∀z ∈ X2∀x ∈ X1
[

f (z) ≥1 x =⇒ ∃z′ ∈ X2 (z ≥2 z′ and f (z′) = x)
]
.

(�forth) f is order preserving.

However, since f is already required to be order preserving and continuous, all that
remains is the (�back) condition, which is precisely the condition defining bounded
morphisms. �
Remark 1. In the same manner as we have derived the Priestley and Esakia dualities
from our descriptions of the corresponding categories of maps, we could derive the
duality for S4 modal algebras as the duals of adjoint pairs h: D � B: e, that is,
Boolean spaces with a compatible quasi-order such that, for each clopen subset U ,
the set ↑U is also clopen with continuous quasi-order preserving (quasi)bounded
morphisms.

Remark 2. A more direct approach to duality for Heyting algebras is to take as dual
space for a Heyting algebra A, the dual of the underlying lattice equipped with the
ternary Kripke relation obtained from the binary implication operation with spectral
maps that are bounded morphisms for this ternary relation. This is not as nice a
presentation but is completely equivalent. We show here how to derive the ternary
relation corresponding to implication on a Heyting algebra. Let A be a Heyting
algebra and → : A∂ × A → A. Here A∂ stands for the order dual of A. With this flip
in the first coordinate, → is a dual operator and we can compute the corresponding
relation S = S→ using the π -canonical extension of →. As we’ve already seen in the
unary case we get the same relation, with some switching of the order of coordinates
as for its lower adjoint ∧. For the following computation, one needs to know that the
canonical extension of meet is the meet of the canonical extension [22, Lemma 4.4].
For all x, y, z ∈ X A we have

S(x, y, z) ⇐⇒ κ(x) ≥ y →π κ(z)

⇐⇒ x � y →π κ(z)

⇐⇒ x ∧σ y � κ(z)

⇐⇒ z ≤ x ∧ y

⇐⇒ z ≤ x and z ≤ y

which is of course interderivable with the binary relation ≤. We leave it as an exercise
for the reader to check bounded morphisms for this ternary relation are precisely the
same as those in the Esakia duality.

2.7 Esakia’s Lemma and Sahlqvist Theory

Esakia formulated and proved Esakia’s lemma in order to prove that the topological
dual of a Heyting algebra homomorphism is a bounded morphism. Esakia’s lemma
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has since played an important role in modal and intuitionistic model theory. In par-
ticular, it was used by Sambin and Vaccaro in their simplified proof of Sahlqvist’s
Theorem [44]. A generalisation of Esakia’s lemma, formulated in algebraic terms
[22, Lemma 3.8], was the key idea in our proof with Bjarni Jónsson of a fact regard-
ing compositionality of canonical extensions of maps. We then used this result to
prove the functoriality of canonical extension (this corresponds to Esakia’s applica-
tion of his lemma) as well as Sahlqvist-type theorems (corresponding to Sambin and
Vaccaro’s application of Esakia’s Lemma).

We begin by stating Esakia’s Lemma as Esakia stated it [12, Lemma 3].

Lemma 1. If (X, R) is an Esakia space and C is a downward directed family of
closed subsets of X , then

R−1
[⋂

C
]

=
⋂

R−1 [C ] .

In canonical extension language, this translates as follows. Let A be a Heyting
algebra and let B = A− be its Booleanisation. Let X = J∞(Aδ), then Aδ = D(X)

and Bδ = P(X). The subsets of X that are closed in topological terms are precisely
the filter elements of Bδ . The relation R on the Esakia space of A is, as we have seen
in the previous section, the relation S� dual to the box operation on B given by

�: B
g−→ A

e−→ B.

It is not hard to see that, on a Boolean algebra, a relation dual to a box operation is also
dual to a diamond operation. Indeed the relation R on the Boolean space underlying
the Esakia space of A is the relation S� for the above given box operation and it is also
the relation R♦ for the conjugate diamond operation, ♦ = ¬�¬. For this operation,
we saw in the previous section that ♦δ on Bδ is just the operation S 
→ R−1[S]
on P(X). Thus Esakia’s lemma says that for any down-directed family C of filter
elements we have that

♦δ
(∧

C
)

=
∧

{♦δ(c) | c ∈ C },

where the infima are taken in Bδ . That is, while ♦δ in general only preserves joins,
it also preserves down-directed meets of filter elements. Order dually, of course this
same statement also means that �δ preserves directed joins of ideal elements.

This lemma, which holds for the canonical extension of the box operation asso-
ciated with a Heyting algebra actually holds for canonical extensions of order pre-
serving maps between distributive lattices in general. That is the content of Lemma
3.8 in [22], which was stated as follows.

Lemma 2. Let A and B be bounded distributive lattices, and suppose f : A → B is
isotone. For any down-directed set D of filter elements of Aδ ,
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f σ
(∧

D
)

=
∧

{ f σ (x) | x ∈ D}.

In [22], we used this lemma to prove that, for every x ∈ X B and for every element
u ∈ Aδ that satisfies the inequality x ≤ f σ (u), there is a minimal such solution
below u. This is the crucial fact used in [22] to prove that if f is join preserving in
each coordinate, then f σ is Scott continuous. This, in conjunction with the following
theorem, then leads to a proof of functoriality of canonical extension and to Sahlqvist-
type results.

Theorem 7. [22, Theorem 4.3] Let g: A → B be order preserving and f : B → C
be such that f σ is continuous, then( f ◦ g)σ = f σ ◦ gσ .

In order to prove functoriality of canonical extension one must show that h ◦♦1 =
♦2 ◦ h implies that hδ ◦ ♦σ

1 = ♦σ
2 ◦ hδ . This is also crucial in the derivation of the

description of bounded morphisms as we saw at the end of Sect. 2.5. The argument,
on the basis of Theorem 7, goes as follows:

h ◦ ♦1 = ♦2 ◦ h

=⇒ (h ◦ ♦1)
σ = (♦2 ◦ h)σ

T h.7=⇒ hσ ◦ (♦1)
σ = (♦2)

σ ◦ hσ

=⇒ hδ ◦ (♦1)
σ = (♦2)

σ ◦ hδ.

The method for showing that equational properties holding on a lattice with addi-
tional operations lift to the canonical extension is similar, and this is the subject
of Sahlqvist theory. An equation may be seen as the equality of two compositions
of maps that are either basic operations or juxtapositions of such ( f : A → B and
g: C → D yield [ f, g]: A × C → B × D). Showing that the equation lifts is then
a matter of showing that canonical extension commutes with composition and jux-
taposition. In our paper [23] with Bjarni Jónsson, we no longer relied (directly) on
Esakia’s lemma for these kind of arguments, but developed a theory based on topol-
ogy which allows a more transparent and uniform treatment of issues concerning the
interaction of extending maps and composing them.

2.8 Esakia Spaces as Completions of Universal Models

One of the purposes of the dual space of a bounded distributive lattice is to supply
a representation theorem: every bounded distributive lattice may be realised as a
sublattice of a powerset lattice. For some lattices, one does not need something so
complicated as the dual space to obtain such a representation. This is true, for exam-
ple, in computer science in the study of classes of formal languages. By definition,
these are given as sublattices of the powerset of the set of all words A∗ in some
alphabet A. This is also true for lattices that have “enough" join prime elements in
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the sense that each element is a join of join prime elements. This is true, e.g., for free
bounded distributive lattices where the pure conjunctions of generators join generate
and are join prime. This is also true for (finitely generated) free Heyting algebras.
This latter fact is at the lattice theoretic origin of the so-called universal models of
intuitionistic propositional logic.

Let N ∈ N, N ≥ 1, and let A = FH A(N ) be the free Heyting algebra on N
generators. Then A is infinite, but, as a lattice, it may be built incrementally as the
direct limit (or colimit in categorical terms) of the finite sublattices An consisting
of all elements of implicational rank less than or equal to n (meaning that there is a
term describing such an element in terms of the generators in which the maximum
number of nested implications is less than or equal to n). This direct limit, and its
dual inverse limit of finite posets, have been studied extensively by Ghilardi [27–30]
and others [3, 7, 8]. The dual inverse limit may be built up in a uniform way as
follows.

Given a poset (X,≤), we say that a subset S of X is rooted if there exists p ∈ S
such that q ≤ p for each q ∈ S. In this case, we call p the root of S. It follows from
the definition that a root of a rooted set is unique. We denote by Pr (X) the set of all
rooted subsets of (X,≤). We also let root : Pr (X) → X be the map sending each
rooted subset S of X to its root. Now define the sequence {Xn}n∈N of finite posets
as follows:

X0 = J (FDL (N ))(= P(N )) X1 = Pr (X0)

For n ≥ 1 Xn+1 = {τ ∈ Pr (Xn) | ∀T ∈ τ ∀S ∈ Xn

(S ≤ T =⇒ ∃T ′ ∈ τ (T ′ ≤ T and root (S) = root (T ′))}.

The condition defining Xn+1, which was first given in [27] might seem strange but
it can be derived using correspondence theory in a straight forward way [3].

One can then show that the functions root :Pr (Xn) → Xn remain surjective
when one restricts the domains to Xn+1. We denote by ∇ the sequence

X0 �� root
X1 �� root

X2 . . .

The dual sequence

D0
� � i0 �� D1

� � i1 �� D2
� � i2 �� . . .

has (the lattice underlying) A = FH A(N ) as its direct limit, and the maps in are the
duals of the root maps and are thus the upper adjoints of the forward image maps of
the root maps. An observation, also dating back to Ghilardi, is that the maps in the
sequence ∇ have upper adjoints, or in other words that the maps in send join primes
to join primes and thus the join primes of the lattices Dn remain join prime all the
way up the chain and thus also in A, which is then join-generated by the set J (A) of
join prime elements of A.
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The upper adjoint maps are the maps Xn → Xn+1, x 
→ ↓x . Thus ∇ is both an
inverse and a direct limit system

X0

↓( ) ��
X1

root
��

↓( ) ��
X2 . . .

root
��

From the above analysis of the sequence ∇, we see the following relationship:

The Esakia space of A is X = lim←− Xn

The set of join primes of A is J (A) = lim−→ Xn .

Here the inverse limit may be taken in topological spaces and we obtian the Esakia
space with its topology. The direct limit (or co-limit in category theoretic terms) may
be taken in posets to obtain the collection of all join-irreducibles in A with the induced
order. By the above analysis it is clear that A may be given a set representation in
J (A) via the embedding A ℘→ P(J (A)) where a ∈ A is sent to {x ∈ J (A) | x ≤ a}.
Note that the sets {x ∈ J (A) | x ≤ a} for a ∈ A are precisely the downsets of finite
antichains in the poset J (A). However, the poset J (A) is fairly complicated and a
smaller one suffices to obtain a set representation of A. This is the point of the so
called (N-)universal model. The universal model, U , was already anticipated in [9]
and originates with [43, 46]. See also [1, 33].The subject was revived in [2], where
it was, among other, shown that the poset underlying the universal model consists
of the finite height elements of the Esakia space of A (see [2, Theorem 3.2.9]). The
interpretation that is part of the universal model is precisely the map sending a ∈ A
to {x ∈ U | x ≤ a}. Also, the so-called de Jongh formulas show that the downset (in
our order) (as well as the completement of the upset) of such a finite height element
of the Esakia space X is (are) clopen (see [2, Theorem 3.3.2]). It is easy to see that the
downset of a point in a Priestley space is clopen if and only if the point corresponds
to a principal prime filter (and thus to a join prime element of the dual lattice). Thus
the poset underlying the universal model U is contained in J (A) and, as mentioned
above, already the points in U are enough to obtain a set representation of A (see,
e.g. [2, Theorem 3.2.20]). In this representation, an element a ∈ A is of course sent
to {x ∈ U | x ≤ a}, the so-called definable subsets of the universal model U . While
U is simpler than J (A), no characterisation of the definable sets, {x ∈ U | x ≤ a}
for a ∈ A, is known.

The fact that A is representable as a lattice of subsets of J (A) and of U yields
a connection between these posets and the Esakia space of A. This connection is
a special case of results presented in [19] and this is the last topic in this survey
of recent developments in duality theory as they relate to Esakia’s work. Thus we
will outline here those results of [19] that are concerned just with set representations
of lattices. For further details see [19, Sect. 1] and the forthcoming journal paper
[18]. The key initial observation of [19], relative to set representations of lattices,
is that a set representation D ℘→ P(X) may faithfully be seen as a special kind of
quasi-uniform space.
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A quasi-uniform space is a pair (X,U ), where X is a set, and U is a collection
of subsets of X × X having the following properties:

1. U is a filter of subsets of X × X contained in the up-set of the diagonal ι =
{(x, x) | x ∈ X};

2. for each U ∈ U , there exists V ∈ U such that V ◦ V ⊆ U ;

The collection U is called a quasi-uniformity and its elements are called entourages
and should be thought of as the epsilon-neighboorhoods of the diagonal in a quasi-
metric space, i.e., sets of the form U ⊇ {(x, y) | d(x, y) < ψ} for some ψ > 0. The
condition (2) corresponds to the triangle inequality. A quasi-uniform space is said
to be a uniform space provided the converse, U−1, of each entourage U is again an
entourage of the space (this corresponds to the symmetry axiom for metrics).

A function f : (X,U ) → (Y,V ) between quasi-uniform spaces is uniformly con-
tinuous provided ( f × f )−1(V ) ∈ U for each V ∈ V . Sometimes we will write
f : X → Y is (U ,V )-uniformly continuous instead to express this fact. A quasi-
uniform space (X,U ) always gives rise to a topological space. This is the space
X with the induced topology, which is given by V ⊆ X is open provided, for each
x ∈ V , there is U ∈ U such that U (x) = {y ∈ X | (x, y) ∈ U } ⊆ V . In general, sev-
eral different quasi-uniformities on X give rise to the same topology. We will assume
that all spaces are Komolgorov, that is, the induced topology is T0. This requirement
is equivalent to the intersection of all the entourages in U being a partial order rather
than just a quasi-order on X . In case a quasi-uniform space (X,U ) is not separated,
it may be mapped to its so-called Komolgorov quotient which is given by the equiv-
alence relation obtained by intersecting all the U ∩U−1 for U ∈ U , or equivalently,
given by the partial order reflection of the quasi-order corresponding to U . For the
basic theory of uniform spaces and quasi-uniform spaces, we refer to [6, 16].

We are now ready to explain how set representations may be viewed, up to iso-
morphism, as certain quasi-uniform spaces, which we will call Pervin spaces. First
of all, instead of working with lattice representations e: D ℘→ P(X), we will work
with sublattices L ⊆ P(X). Now, given a set X , we denote, for each subset A ⊆ X ,
by UA the subset

(Ac × X) ∪ (X × A) = {(x, y) | x ∈ A =⇒ y ∈ A}

of X × X . Given a topology τ on X , the filter Uτ generated by the sets UA for
A ∈ τ is a quasi-uniformity on X . The quasi-uniform spaces (X,Uτ ) were first
introduced by Pervin [40] and are now known in the literature as Pervin spaces.
Given a sublattice, L ⊆ P(X), we define (X,UL ) to be the quasi-uniform space
whose quasi-uniformity is the filter generated by the entourages UL for L ∈ L .
Here we will call this more general class of quasi-uniform spaces Pervin spaces. The
lattice L may be recovered from (X,UL ) as the blocks of the space. The blocks of
a space (X,U ) are the subsets A ⊆ X such that UA is an entourage of the space,
or equivalently, those for which the characteristic function χA: X → 2 is uniformly
continuous with respect to the Sierpiński quasi-uniformity on 2, which is the one
containing just 22 and {(0, 0), (1, 1), (1, 0)}.
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The Pervin spaces are transitive, that is, they have a basis of transitive entourages.
In addition, they are totally bounded: for every entourage U , there exists a finite cover
C of the space X such that C ×C ⊆ U for each C ∈ C . It may also be shown that the
Pervin spaces (as we define them here) are exactly the transitive and totally bounded
quasi-uniform spaces. It is not hard to see that if M ⊆ P(X) and L ⊆ P(Y ) are
lattices of sets, then a map f : (X,UM ) → (Y,UL ) is uniformly continuous if and
only if f −1 induces a lattice homomorphism from L to M by restriction. Thus, the
category of lattices of sets with morphisms that are commuting diagrams

L
h ��

��

M

��
P(Y )

φ �� P(X),

where φ is a complete lattice homomorphism, is dually equivalent to the category of
Pervin spaces with uniformly continuous maps.

Now we are ready to state the main result of Sect. 1 of [19]: The set representation
of a lattice D given by Stone/Priestley duality is obtainable from any set represen-
tation e: D ℘→ P(X) by taking the so-called bicompletion of the corresponding
quasi-uniform Pervin space (X,UI m(e)).

To be more precise, we have:

Theorem 8. [19, Theorem 1.6] Let D be a bounded distributive lattice, and
lete: D ℘→ P(X) be any embedding of D in a power set lattice and denote by L the
image of the embedding e. Let X̃ be the bicompletion of the Pervin space (X,UL ).
Then X̃ with the induced topology is the dual space of D.

We give a few details on this theorem. For more details on bicompleteness see [16,
Chap. 3]. The theory of completions of uniform spaces is well-understood, see e.g. [6,
Chap. II.3]. However, for quasi-uniform spaces, the situation is much more delicate.
Two of the most accepted and well behaved completions, namely the bicompletion
[16] (which is equivalent to the pair completion and the strong completion) and the D-
completion [10], actually agree for Pervin spaces. The bicompletion is particularly
appropriate to the representation theory of distributive lattices since it relates the
representations of the lattice, its order dual, and its booleanisation. In addition, the
bicompletion is the simplest, as it mainly reduces to the completion theory of uniform
spaces.

Let (X,U ) be a quasi-uniform space. The converse,U −1, of the quasi-uniformity
U , consisting of the converses U−1 of the entourages U ∈ U , is again a quasi-
uniformity on X . Further, the symmetrisation U s , which is the filter generated by
the union of U and U −1, is a uniformity on X . It is easy to verify that if (X,UL )

is a Pervin space, then (X,U −1
L ) is the Pervin space corresponding to the order

dual of L as embedded in P(X) via L ∂ ℘→ P(X) obtained by taking comple-
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ments in P(X). Also (X,U s
L ) is the uniform Pervin space corresponding to the

representation L − ℘→ P(X) of the booleanisation L − of L .
Now, a quasi-uniform space (X,U ) is bicomplete if and only if (X,U s) is a

complete uniform space. It has been shown by Fletcher and Lindgren that the full
category of bicomplete quasi-uniform spaces forms a reflective subcategory of the
category of quasi-uniform spaces with uniformly continuous maps, and thus, for each
quasi-uniform space (X,U ), there is a bicomplete quasi-uniform space (X̃ , Ũ ) and
a uniformly continuous map ηX : (X,U ) → (X̃ , Ũ ) with a universal property:

Theorem 9. [16, Chap. 3.3], Let (X,U ) be a quasi-uniform space, (Y,V ) a bicom-
plete quasi-uniform space and let f : X → Y be a (U ,V )-uniformly continuous
function. Then there exists a unique f̃ : X̃ → Y which is(Ũ ,V )-uniformly continu-
ous such that f = f̃ ◦ ηX .

The bicompletion of a quasi-uniform space (X,U ) is closely related to that
of its symmetrisation in that the symmetrisation of the bicompletion is equal to
the (bi)completion of the symmetrisation. In the case of a quasi-uniform Pervin
space (X,UL ) the symmetrisation is the uniform Pervin space (X,UL −) of the
booleanisation L − of L . It is not too hard to show that the (uniform=bi) com-
pletion of (X,UL −) is the Boolean space dual to L − given as a uniform space.
That is, X̃ = XL − is the set of ultrafilters of L − (or equivalently the set of prime
filters of L ), and the uniformity corresponding to L − is generated by the sets
UB = (Bc × X̃) ∪ (X̃ × B) for B ⊆ X̃ clopen (in the topology for L −, or equiva-
lently, in the Priestley topology for L ). This is the unique uniformity inducing the
Boolean topology on X̃ since this space is compact Hausdorff, see [6, Chapter II.4,
Theorem 1]. Thus this uniform space carries no more information than that of the
topological dual space of L −.

The function ηX : X → X̃ underlying the embedding of (X,UL −) in (X̃ , ŨL −) is
the map which sends x ∈ X to the point of XL − corresponding to the homomorphism
χx :L − → 2 given by χx (L) = 1 if and only if x ∈ L . Also, the (UL − , ŨL −)-
uniform continuity of this map comes about in a particularly simple way as one can
show that η−1

X (UL̂) = UL for each L ∈ L −.
Now we can formulate, what the bicompletion of (X,UL ) is: It is based on the

map ηX : X → X̃ as given above, but the quasi-uniformity on X̃ is generated by
the sets UL̂ for L ∈ L rather than by all the sets ηX (UL) for L ∈ L −. Thus
the bicompletion of (X,UL ) is the Stone space of D ‘in quasi-uniform form’.
Alternatively, one can think of this space as an ordered uniform space and simply
equip the Boolean space (X̃ , ŨL −) with the order obtained by

⋂
L∈L UL̂ . This is

then a uniform version of Priestley duality.
In closing, we record what this theory yields in the setting of finitely freely gen-

erated Heyting algebras. We have the following corollary to Theorem 8.

Corollary 3. Let N be a positive natural number, and A the freeN -generated Heyting
algebra. Then the following statements hold:
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1. The Esakia spaceX dual toA is homeomorphic to the bicompletion of the quasi-
uniform Pervin space(J (A),UL ) whereJ (A) is the set of join prime elements
of A andL is the lattice of all downsets of finite antichains in J (A).

2. The Esakia spaceX dual toA is homeomorphic to the bicompletion of the quasi-
uniform Pervin space(U,UD )whereUis the frame underlying theN-universal
model of intuitionistic logic andD is the lattice of all definable subsets of U .
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Abstract We review the step-by-step method of constructing finitely generated free
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3.1 Introduction

Having a good description of finitely generated free algebras is an important tool
for investigating propositional logics: free algebras give an insight on the shape
of formulae and on the deduction mechanism that is independent of the particular
syntactic methodology used for introducing a logical calculus. With a clear com-
binatorial and conceptual description of free algebras in mind, one can investigate
better metatheoretical properties like admissibility of inference rules, solvability of
equations, definability and interpretability matters, etc.

For modal logics (or some other non-classical logics such as intuitionistic logic),
one way to characterize finitely generated free algebras is to use the relevant proper-
ties of their dual spaces: many of these algebras are atomic [3, 4, 9], thus restricting
dual spaces to atoms still gives the possibility of having a representation theorem.
The spaces of the atoms become the so-called ‘universal models’ and finitely gen-
erated free algebras can be described as the algebras of definable subsets of these
models. Atoms, in turn, generate ‘irreducible’ or ‘definable’ finite models (along the
suggestions of [21, 27]): such models can be described inductively, using for instance
the height of the model. This line of research has been largely explored in a long
series of papers in the 1970s and 1980s by the Georgian school (see, e.g., [15, 16,
24]), the Russian school (see, e.g., [30, 31]), and the Italian logician F. Bellissima
(see, e.g., [3–5]). We refer to [6, 10] for an overview.

Still, duality can be used in another way to get descriptions of finitely generated
free algebras: formulae naturally come equipped with a complexity measure, the
measure counting maximum nested ‘intensional’ operators occurring in them. By
‘intensional’ operators we mean modal operators (or implication in the context of
intuitionistic or relevance logic); non-intensional operators are the Boolean connec-
tives (or a subset of them) and it is well known that only a finite number of combi-
nations of such operators can be applied (up to logical equivalence) to a finite set of
given formulae. Thus, finitely generated free algebras have a ‘dual profinite’ descrip-
tion as chain colimits of finite algebras defined by imposing complexity bounds. By
finite duality, these finite algebras admit a description as finite discrete spaces and
the intensional operators (which are only partially defined on them) induce a kind of
combinatorial structure. The investigation of such combinatorial structure paves the
way to a new, different description of finitely generated free algebras, a description
that we call a step-by-step description: its essence is in fact the dual explanation of
what it means to enrich a given set of formulae by one application of intensional oper-
ators followed by the finite closure with respect to the non-intensional operators. Of
course, the whole construction should not destroy previously introduced intensional
operators, that is why it applies to a ‘one-step algebra’ and results into an updated
‘one-step algebra’.

The origin of these step-by-step constructions is two-fold: from the logical point
of view they describe normal forms (in the sense of K. Fine [17]), and from the
coalgebraic point of view they correspond to free coalgebra constructions ([1, 2, 8,
11, 20]). However, coalgebraic constructions work well for rank one logics (e.g.,
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K and D in modal logic), but become unclear or quite involved when arbitrary
subvarieties/logics are involved. Our plan is to exploit discrete dualities and the step-
by-step combinatorics to illustrate potential applications of the method outside the
rank one case.

We start the chapter by reviewing the general idea of the step-by-step method
which, via duality, results in the dual description of free K-algebras and free algebras
for rank one modal logics. We then extend this method to logics of higher rank using
the new notion of a one-step algebra and its dual notion of a one-step frame. We adjust
these ideas to particular non-rank one logics such as T, K4 and S4 obtaining (duals
of) finitely generated free algebras of these logics in a transparent and modular way.
Our construction follows closely the method developed in [11] for various non-rank
one modal logics. We discuss the similarities and differences of our construction with
that of [11], as well as with those of [20, 22]. We also list a number of (challenging)
open problems.

In the chapter we discuss finitely generated free Heyting algebras only briefly, and
refer the interested reader to [7, 19] for details. However, we believe that one-step
algebras and one-step frames have a potential to play an important role in the theory
of free algebras in various varieties of Heyting algebras.

We conclude our introduction by pointing out that another co-author of this paper
was going to be Dito Pataraia. He developed interest towards the step-by-step method
after Leo Esakia drew his attention to [19] where free Heyting algebras were described
via this method. Both Dito and Leo were very interested in this method. Dito’s
interest towards this construction was mostly determined by its use in proving that
every Heyting algebra can be realized as the subobject classifier of an elementary
topos. Dito gave a few talks about this important theorem and his colleagues are now
trying to reconstruct his very involved and original proof, a part of which essentially
uses the step-by-step method. Dito had a number of deep observations on the step-
by-step construction for free Heyting and modal algebras, and many of them were
supposed to form part of this chapter. Leo was interested in this method as it gives
an alternative and useful perspective on Esakia spaces of free Heyting algebras (see
[18] for more details on this). In fact, Esakia duality for Heyting algebras plays a
prominent role in this and nearly all other approaches that apply the ideas of duality
to various constructions of Heyting algebras. With great sadness for their loss, but
with a lot of admiration for their outstanding scientific achievements, their unique
character and personality, we would like to dedicate this chapter to the memory of
Leo Esakia and Dito Pataraia.

3.2 The Global Step-by-Step Method

In this section we recall the global step-by-step method and construct free K-algebras.
As we will see, this method works nicely for rank one modal logics, but its extension
to arbitrary modal logics, although possible, is quite laborious and involved [20].
We recall that a modal formula is of rank one if each occurrence of atomic formulas
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(i.e., propositional variables or constants) is under the scope of exactly one modal
operator; moreover, the constants →, ≤, may appear in rank one formulae without
being under the scope of any modal operator. A modal logic is of rank one if it can
be axiomatized by rank one modal formulae. In Sect. 3.3 we will refine the global
step-by-step method to the local step-by-step method that works for modal logics of
higher rank. This will result in a neat description of finitely generated free algebras
for the well-known modal systems T, K4 and S4.

Recall that a modal algebra is a pair (B,♦), where B is a Boolean algebra and
♦ : B → B is a unary operation satisfying ♦0 = 0 and ♦(a ⊆b) = ♦a ⊆♦b for each
a, b ∈ B. A modal algebra (B,♦) is called a T-algebra if a ∩ ♦a and a K4-algebra
if ♦♦a ∩ ♦a for each a ∈ B. Finally, (B,♦) is an S4-algebra if it is both a T-algebra
and a K4-algebra.

3.2.1 Algebraic View

The method we discuss in this section is taken essentially from [1, 20] (see also [8]).
Thus, we only sketch the construction and refer the interested reader to any of [1, 8,
20] for details.

Given a Boolean algebra B, we let V (B) denote the free Boolean algebra generated
by the set {♦a : a ∈ B} and quotiented by the two axioms defining modal algebras.
Alternatively V (B) is the free Boolean algebra over the join-semilattice ⊆, 0-reduct
(equivalently ∧, 1-reduct) of B. That is, the map i B

♦ : B → V (B) (mapping a ∈ B
to ♦a ∈ V (B)) is such that it is a join-semilattice morphism (preserves ⊆ and 0),
and for any Boolean algebra A, any join-semilattice morphism h : B → A can be
extended uniquely to a Boolean homomorphism hT : V (B) → A so that hT ∅i B

♦ = h.
Actually, V can be turned into an endofunctor on the category of Boolean algebras
in a standard way: by letting V ( f ) (for f : B → C) be (iC

♦ ∅ f )T . Note that the

correspondence h 
→ hT is bijective and, as a consequence, modal algebras can be
equivalently defined as Boolean algebras B equipped with semilattice morphisms
♦T : V (B) → B (we shall exploit this fact below).

Let B0 be the free Boolean algebra on n-generators. For each k ↑ 0 we let

Bk+1 = B0 + V (Bk),

where + means the coproduct in the category of Boolean algebras. As Boolean
algebras are locally finite, the coproduct of two finite Boolean algebras is again
finite.

We define the maps ik : Bk → Bk+1 and ♦T
k : V (Bk) → Bk+1 as follows. Let

♦T
k be the second injection into the coproduct, and let ik be defined recursively as

follows: i0 is the first coproduct injection and ik+1 is id + V (ik). Let B↓ be the
colimit of the following diagram in the category of Boolean algebras and Boolean
homomorphisms
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B0
i0−→ B1 → · · · → Bk

ik−→ Bk+1 → · · · (3.1)

Proposition 1 For each k ↑ 0 we have ♦T
k+1 ∅ V (ik) = ik+1 ∅ ♦T

k . Therefore,
{♦T

k : k ↑ 0} can be extended to a map ♦T↓ : V (B↓) → B↓.

Proof (Sketch) That ♦T
k+1 ∅ V (ik) = ik+1 ∅ ♦T

k holds can be easily seen by a direct
computation (recall that the two diamonds are just the coproduct injections). To
define ♦T↓ one can then use the fact that V commutes with chain (more generally
with filtered) colimits: thus, we can assume that the domain of ♦T↓ is the colimit of

V (B0)
V (i0)−−−→ V (B1) → · · · → V (Bk)

V (ik )−−−→ V (Bk+1) → · · · (3.2)

in the category of Boolean algebras and Boolean homomorphisms. Now the maps
♦T

k : V (Bk) → Bk+1 form vertical maps from the chain (3.2) to the chain (3.1)
commuting the related squares, hence it induces a colimit map which is our ♦T↓. �

Let ♦k : Bk → Bk+1 be the map that corresponds to ♦T
k : V (Bk) → Bk+1 and

let ♦↓ : B↓ → B↓ be the map that corresponds to ♦T↓ : V (B↓) → B↓. Then we
have the following characterization of finitely generated free modal algebras.

Proposition 2 The algebra ∧B↓,♦↓∃ is the free modal algebra on n generators.

Proof See [1, 8, 20]. �

Let L be a normal modal logic and VL the corresponding variety of modal algebras.
We also let Ax(L) be a (finite or infinite) equational axiomatization of VL . We will
now briefly sketch how to extend the above method to obtain finitely generated free
VL -algebras.

If we try to quotient (3.1) by the axioms of Ax(L), we need to interpret modal
formulae into the steps of a chain colimit algebra and then take a quotient of the
algebras in the chain. The definition of such interpretation must take into account
the fact that the axioms have arbitrary modal rank, hence the interpretation involves
many algebras at a time. If the axioms have modal rank one, the situation simplifies
because we can modify uniformly the whole construction, by taking instead of V a
suitable quotient of it [8, 20]. Examples of logics of rank one include D = K+♦≤ =
K + �p → ♦p, K + ♦p → �p and K + �p ∨ ♦p.

3.2.2 Dual View

For the purposes of our paper it suffices to restrict ourselves to the discrete duality
between finite modal algebras and finite relational structures. Almost all the results
can be generalized to the infinite case by defining an appropriate Stone topology on
relational structures (see, e.g., [18]). We chose to stick to the finite duality to keep
the arguments simple.
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We recall that there is a one-to-one correspondence between join-preserving maps
between finite Boolean algebras and relations on their dual finite sets. In fact, the
category of finite Boolean algebras and ⊆, 0-preserving maps is dually equivalent to
the category of finite sets and binary relations (see, e.g., [25, 28]).

Let X be a set and ℘(X) its powerset. Then it is easy to see that for each Y ,
any relation R ≥ Y × X uniquely corresponds to a map f : Y → ℘(X) defined
by f (y) = R(y) = {x ∈ X : y Rx}. Throughout this paper we will use twofold
notations for binary relations interchangeably: as subsets of a cartesian product or
as maps into the powerset.

Given a finite set X , let � be the relation on ℘(X)× X defined by U � x iff x ∈ U
for each U ∈ ℘(X) and x ∈ X . Then X , ℘(X) and � have the following universal
property: for each finite Y and R ≥ Y × X , there exists a unique map f : Y → ℘(X)

(defined by f (y) = R(y)) such that we have R = � ∅ f . The last equation refers
to relational composition, i.e. it means that for each x ∈ X, y ∈ Y we have y Rx iff
(there is S ∈ ℘(X) such that x ∈ S and S = f (y)) iff x ∈ f (y).

Remark 1 In the general case we need to consider Stone spaces and continuous
relations and maps. But the same correspondence holds in this case as well. That
is, if Y is a Stone space (i.e., the dual of a Boolean algebra) and R is a continuous
relation (i.e., the dual of a join-preserving map), then f is also a continuous map
(i.e., the dual of a Boolean algebra homomorphism).

Translating this into algebraic terms gives us that the join-semilattice morphism
dual to � and the Boolean algebra dual to ℘(X) satisfy the universal property of V (B)

and i B
♦ discussed in the previous section. Thus, as the universal property defines an

object uniquely up to an isomorphism, we obtain the following theorem.

Proposition 3 ([20, Prop. 2.1], [32]) Let B be a finite Boolean algebra and X its dual
finite set. Then the algebra V (B) is dual to ℘(X). Moreover, the map i B

♦ : B → V (B)

is dual to the relation � ≥ ℘(X) × X.

Remark 2 We note that this result can be generalized to the infinite case by consider-
ing Stone spaces and continuous maps and relations, and by taking the Vietoris space
instead of the finite powerset. We also refer to [26, Chap. III.4] for generalizations
of this result to compact regular frames.

Now we are ready to construct the duals of free modal algebras. Let X0 be a 2n-
element set (the dual of B0) and (because of the duality of ℘ and V (Proposition 3)
and of × and +) let

Xk+1 = X0 × ℘(Xk).

Proposition 4 The sequence (Xk)k<δ with the maps ηk : X0 × ℘(Xk) → Xk

defined by
η0(x, U ) = x, ηk(x, U ) = (x, ηk−1[U ])

is dual to the sequence (Bk)k<δ with the maps ik : Bk → Bk+1. In particular, the
ηk are surjective. Moreover, the relation Rk ≥ (X0 × ℘(Xk)) × Xk defined by
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(x, U )Rk y iff y ∈ U

is dual to ♦k : Bk → Bk+1.

Theorem 1 Let Xδ be the limit in the category of Stone spaces and continuous
maps of the diagram (Xk)k∈δ with the maps ηk+1 : Xk+1 → Xk. Let also Rδ be the
limit of (Rk)k∈δ in the category of Stone spaces and continuous relations defined by
(xi )i∈δ Rδ(yi )i∈δ if xk+1 Rk yk for each k ∈ δ. Then (Xδ, Rδ) is (isomorphic in a
suitable category to) the dual of the free modal algebra (Bδ,♦δ).

Thus, via the global step-by-step method we described finitely generated free
modal algebras and their dual spaces.

3.3 The Local Step-by-Step Method

The construction presented in the previous section is very useful for logics axiom-
atized by rank one equations. It, however, also has some drawbacks. For example,
there is no manageable way to apply it to the well-known extensions of K such as
K4 and S4 (it works for T, but for the other systems the adaptation is involved,
see [20]). The point is that the definition of step k + 1 mentions not only step k
but also step 0, which is rather unnatural. In this section we introduce a refinement
of the construction. From an algebraic point of view, the new construction may be
considered as just a trivial variant of the former one. Nevertheless it induces better
constructions at the dual level. Its distinguishing feature is that the construction is
local in that it relies on the universal property of the one-step construction (see [11,
19, 22] for similar ideas).

3.3.1 Algebraic View

As we pointed out in the introduction, the essence of the method we propose is to
build free algebras in steps; a single step (taken independently on the whole chain
of steps needed to build the free algebra as a colimit) applies the modal operators
to the existing propositions and embeds the actual propositions into the new ones.
This leads naturally to a two-sorted viewpoint: we have one algebra for the actual
propositions and another one collecting actual and new propositions; moreover the
two algebras are connected by an embedding and a diamond. All this is formally
captured by the following definition.

Definition 1

1. A one-step modal algebra is a quadruple (A0, A1, i0,♦0), where A0, A1 are
Boolean algebras, i0 : A0 → A1 is a Boolean morphism, and ♦0 : A0 → A1 is
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a semilattice morphism. The algebras A0, A1 are called the source and the target
Boolean algebras of the one-step modal algebra (A0, A1, i0,♦0).

2. A one-step extension of the one-step modal algebra (A0, A1, i0,♦0) is a one-step
modal algebra (A1, A2, i1,♦1) (i.e., it is a one-step modal algebra whose source
is the same as the target of (A0, A1, i0,♦0)) satisfying i1♦0 = ♦1i0.

3. The universal one step-extension of (A0, A1, i0,♦0) is a one-step extension
(A1, A2, i1,♦1) such that for every other one-step extension (A1, A⇐

2, i ⇐1,♦⇐
1),

there is a unique Boolean morphism μ : A2 → A⇐
2 such that μ ∅ i1 = i ⇐1 and

μ∅♦1 = ♦⇐
1. The meaning of the universal one-step extension is that it represents

the general solution to the problem of adding ♦1a1 for all a1 ∈ A1 while keeping
(through i1) the ♦0a0 for a ∈ A0.

Universal one-step extensions exist and are easily built through pushouts:

Proposition 5 The universal one-step extension of (A0, A1, i0,♦0) is given by the
following pushout taken in the category of Boolean algebras and Boolean homomor-
phisms.

where A2 = A1 +V (A0) V (A1).

Proof Immediate by the universal property of pushouts. �

Let B0 be the free Boolean algebra on n-generators. We define a new sequence
Bk by using pushouts. In the new sequence, the algebras B ⇐

0, B ⇐
1 and the morphisms

i ⇐0,♦T
0 are as before; for k ↑ 1, we have instead

B ⇐
k+1 := B ⇐

k +V (B⇐
k−1)

V (B ⇐
k)

where i ⇐k,♦T
k are the canonical maps into the pushout

Let B ⇐↓ be the colimit of the diagram
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B0
i ⇐0−→ B ⇐

1 → ... → B ⇐
k

i ⇐k−→ B ⇐
k+1 → ... (3.3)

Then we have

Proposition 6 {♦T
k : k ↑ 0} can be extended to a map ♦T↓ : V (B ⇐↓) → B ⇐↓ such

that (B ⇐↓,♦↓) is the n-generated free modal algebra.

Proof (Sketch) That ♦T
k+1 ∅ V (i ⇐k) = i ⇐k+1 ∅ ♦T

k holds now comes directly from
the commutativity of the above pushout square. Thus, ♦T↓ can be defined in the
colimit like in the proof of Proposition 1. To show that the construction gives finitely
generated free modal algebras, one can use Proposition 5, along the lines of e.g. [22]
(alternatively, it is possible to show inductively that the construction is isomorphic
to the global step-by-step construction of Proposition 2). �

3.3.2 Dual View

The dual construction is described through the notion of a one-step frame.

Definition 2 A one-step frame is a quadruple (X, Y, f, R), where X, Y are sets,
f : X → Y is a map and R ≥ X × ℘(Y ) is a relation between X and Y .

The dual of a finite one-step frame (X, Y, f, R) is the one-step modal algebra
(℘ (Y ), ℘ (X), f ⇒,♦R), where f ⇒ is the inverse image operation and ♦R is the semi-
lattice morphism associated with R (for A ≥ Y , we have ♦R(A) = {x ∈ X |
R(x) ∀ A ◦= ∞}). Every finite one-step modal algebra is the dual of a finite one-step
frame (again, to extend this duality beyond the finite case, Stone spaces, continuous
maps, continuous relations and Vietoris spaces are needed).

We can now dualize the local construction of Proposition 6 as follows: the dual
of i ⇐k is given by a map fk : Xk+1 → Xk between finite sets; the dual of ♦k is a map
Rk : Xk+1 → ℘(Xk) (alternatively a relation Rk ≥ Xk+1 × Xk). Then the dual of
(B ⇐

k, B ⇐
k+1, i ⇐k,♦k) is determined by the following diagram:
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where the square is a pullback, and for each map f : X → Y , we assume that
℘( f ) = f [·] : ℘(X) → ℘(Y ) is the direct image of f . Thus, we have

Xk+1 = {(x, S) | x ∈ Xk, S ∈ ℘(Xk), Rk−1(x) = fk−1(S)},

with
fk(x, S) = x

and
Rk(x, S) = S.

We must also consider the dual of the first step of the chain leading to free modal
algebras. This is more simple, being just a coproduct not a pushout. In short, if X0 is
the finite set dual to the Boolean algebra B0, the dual of the one-step modal algebra
(B0, B0 + V (B0), i0,♦0) (where recall that i0,♦0 are the two coproduct injections)
is the one-step frame

(X0 × ℘(X0), X0, f0, R0) (3.4)

where f0 is the first projection and we have R0(x, S) = S for all x ∈ X0, S ≥ X0.

3.3.3 Adding Equations

The main advantage of the second method is that, when building B ⇐
k+1, it refers

only to B ⇐
k (and not also to B ⇐

0): this makes descriptions of quotients modulo further
equations easier. Suppose in fact that we are given some axioms Ax(L) for a logic
L . Following a suggestion by Coumans and van Gool [11], we can rewrite an axiom
in the form of a quasi-identity

t = 1 → v = 1 (3.5)

where the terms/formulae t, v have modal complexity less or equal to one (i.e.,
nested modal operators do not occur). To achieve this, one can repeat the following
‘flattening’ of quasi-equations E → v = 1 sufficiently many times (we start with
E = ∞): take a subterm ♦v⇐ of v, pick a fresh variable x and replace E → v = 1 with
E ∪{x = ♦v⇐} → v(x/♦v⇐) = 1. Finally, quasi-identities having many premises can
be turned into single-premise quasi-identities by taking conjunctions.

The quasi-equations of this kind can be interpreted in a one-step modal algebra
(A0, A1, i0,♦0): once an assignment a of variables to members of A0 is given, we
can recursively define the element ta ∈ A1 for every term t having modal complexity
0 or 1. An equation t = 1 of modal complexity at most 1 is valid in (A0, A1, i0,♦0) iff
ta = 1 holds in A1 for every a; similarly one can define validity of quasi-equations.
Thus, an Ax(L)-one-step modal algebra is a one-step modal algebra where all quasi-
equations belonging to Ax(L) are valid; notice that this notion is relative not just to
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a logic L , but to a set Ax(L) of quasi-equations (i.e. of inference rules) chosen in
order to axiomatize L .

Validity of conditions such as (3.5) can be forced by taking a quotient; since (3.5) is
a quasi-equation (and not just an equation), we need a quotient which is iterated: one
just quotients A1 by the filter generated by all va such that ta = 1 holds in A1 (varying
a) and then repeats this procedure δ-times (or just sufficiently many finite times if
A1 is finite). In the end, one gets a one-step modal algebra (A0, A1/F, q ∅ i0, q ∅♦0)

(where F is the filter obtained in the end of the iteration and q : A1 → A1/F is
the canonical map onto the quotient) that satisfies (3.5) and is universal with this
property.

We define a chain

B0
i ⇐⇐0−→ B ⇐⇐

1 → · · · → B ⇐⇐
k

i ⇐⇐k−→ B ⇐⇐
k+1 → · · · (3.6)

of Boolean algebras equipped with semilattice morphisms

B0
♦0−→ B ⇐⇐

1 → · · · → B ⇐⇐
k

♦k−→ B ⇐⇐
k+1 → · · · (3.7)

satisfying the conditions ♦k+1 ∅ i ⇐⇐k = i ⇐⇐k+1 ∅♦k (equivalently, ♦T
k+1 ∅ V (i ⇐⇐k ) = i ⇐⇐k+1 ∅

♦T
k ) and such that for every k ↑ 0, the one-step modal algebra (B ⇐⇐

k , B ⇐⇐
k+1, i ⇐⇐k ,♦k)

satisfies Ax(L). This is done by the same construction as in Proposition 6, with the
only difference that we also apply the aforementioned quotient by Ax(L); that is, we
define B ⇐⇐

k+1 by taking a pushout

B ⇐⇐
k +V (B⇐⇐

k−1)
V (B ⇐⇐

k )

followed by a quotient by Ax(L). Let B ⇐⇐↓ be the colimit of this diagram. Then:

Proposition 7 For each k ↑ 0, we have that ♦T
k+1 ∅ i ⇐⇐k = i ⇐⇐k+1 ∅ ♦T

k . Therefore,
{♦T

k : k ↑ 0} can be extended to a map ♦T↓ : V (B ⇐⇐↓) → B ⇐⇐↓, so that the algebra
(B ⇐⇐↓,♦↓) is the n-generated free VL-algebra.

Proof That (B ⇐⇐↓,♦↓) is free is proved in the same way as in Proposition 6. That
we quotient each approximant by Ax(L) guarantees that (B ⇐⇐↓,♦↓) satisfies Ax(L),
and hence is a VL -algebra. �

What is not guaranteed in general here is that the maps i ⇐⇐k are injective; this is
unavoidable, giving the fact that there are undecidable logics:

Proposition 8 If for each k ↑ 0 the maps i ⇐⇐k : B ⇐⇐
k → B ⇐⇐

k+1 are injective, then
B ⇐⇐

k is isomorphic to a Boolean subalgebra of all terms of complexity k of the free
VL-algebra, and moreover the logic L is decidable.

Proof Given terms t, u whose complexity is less than, say k, we can define their
canonical realizations [t], [u] ∈ B ⇐⇐↓ and [t]k, [u]k ∈ B ⇐⇐

k (this is quite straightforward



54 N. Bezhanishvili et al.

and intuitive, see, e.g., [20]); notice also that we have ιk([t]k) = [t] and ιk([u]k) =
[u]. Under the obvious indentification of terms and propositional formulae, it is
evident that (since B ⇐⇐↓ is the free VL -algebra) [t] = [u] holds iff t ∨ u is provable
in the logic L . Since ιk is a function, we have that [t]k = [u]k implies [t] = [u];
according to the standard algebraic colimit construction, the converse is true in case
the maps i ⇐⇐∪k for k ∩ ∪k are all injective, whence the claim of the proposition. The
statement about decidability is clear: to check whether an identity t = 1 holds, it is
sufficient to inspect whether [t]k = 1 holds, where k is the complexity of t . �

The above relation [t]k = [u]k is quite interesting from the proof-theoretic point
of view: it means that it is possible to establish t ∨ u via a proof involving formulae
whose complexity does not exceed k. The existence of a proof whose complexity
is bounded by the size of the formula to be proved is an evidence for a nice proof-
theoretic behavior of the given axiomatization for a logic. It is also quite a desirable
property sufficient to entail decidability. Thus the above one-step algebraic approach
provides an intersting tool also from a purely proof-theoretic perspective.

From the dual point of view, one should try to understand in terms of dual one-step
frames what it means for a one-step algebra (A0, A1, i0,♦0) to satisfy a set of quasi-
equations (3.5). For this, one needs to develop the one-step correspondence theory.
The goal of this one-step correspondence theory is to characterize in the two-sorted
predicate language for one-step frames what it means for a one-step frame that the
dual one-step modal algebra satisfies Ax(L) (ideally, the characterization should be
manageable and possibly first-order).

Once this is understood, one has to understand further what it means from the
dual point of view to build a quotient making a one-step algebra (A0, A1, i0,♦0)

an algebra satisfying the quasi-equations (3.5) occurring in Ax(L). In view of the
applications, it is sufficient to characterize the case in which A0, A1 are both finite.
Armed by this characterization, if one is able to prove that the duals of the i ⇐⇐k are
surjective, one can conclude that the logic is decidable. If the duals of the i ⇐⇐k are not
surjective, one can try with a different axiomatization of the logic L . In conclusion,
the duality task is threefold:

(dt1) develop one-step correspondence theory;
(dt2) have a nice characterization of the dual of the following operation: take a finite

one-step algebra (A0, A1, i0,♦0) satisfying Ax(L), build the universal one-
step extension of it and make it a one-step algebra satisfying Ax(L) again (we
call this the one step-Ax(L)-extension of (A0, A1, i0,♦0));

(dt3) have a nice characterization of the dual of the following operation: take a finite
set X0, build the one-step modal algebra dual to the one-step frame (3.4) and
make it a one-step algebra satisfying Ax(L).

Usually (dt3) is quite easy, while (dt1)-(dt2) are different for each particular logic.
We will discuss some cases in detail below.
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3.4 Free K4-Algebras

We start by considering task (dt1) for K4. As we will see, it is accomplished by
Proposition 9 below. We say that a one step-frame validates a quasi-equation if the
corresponding one-step modal algebra (℘ (Y ), ℘ (X), f ⇒,♦R) validates this quasi
equation.

Definition 3 A one-step frame (X, Y, f, R) is transitive if it validates the K4-quasi-
equation

a ∩ ♦b ≈ ♦a ∩ ♦b (3.8)

i.e., if
f ⇒(A) ≥ ♦R(B) ≈ ♦R(A) ≥ ♦R(B) (3.9)

holds for all A, B ≥ Y .

For S ≥ X and x ∈ X , define Sx := { ∪x ∈ S | R( ∪x) ≥ R(x)}.
Proposition 9 A one-step frame (X, Y, f, R) is transitive iff

y ∈ R(x) ≈ f ⇒(y) ∀ Xx ◦= ∞ (3.10)

holds for all x ∈ X, y ∈ Y .

Proof Assume (3.10) and pick, A, B, x such that f ⇒(A) ≥ ♦R(B) and x ∈ ♦R(A).
The goal is to show that x ∈ ♦R(B). From x ∈ ♦R(A), we obtain a y ∈ R(x) ∀ A.
Pick z ∈ f ⇒(y) ∀ Xx . Since f (z) = y ∈ A, we have z ∈ f ⇒(A) ≥ ♦R(B), hence
R(z) ∀ B ◦= ∞, giving also R(x) ∀ B ◦= ∞ (because z ∈ Xx ). Thus, x ∈ ♦R(B), as
desired. Conversely, assume (3.9) and pick y ∈ R(x). If f ⇒(y) ∀ Xx is empty, then
for every z ∈ f ⇒(y), there is w ∈ R(z) such that w ◦∈ R(x). Let A := {y} and let B
be the complement of R(x). Then f ⇒(A) ≥ ♦R(B), hence ♦R(A) ≥ ♦R(B). Since
y ∈ R(x), it follows that x ∈ ♦R(B), i.e. that R(x)∀ B is not empty, a contradiction
because B is the complement of R(x). �

If (X, Y, f, R) is a one-step frame, there is the largest Xσ ≥ X such that
(X σ, Y, f, R) is transitive: in fact, the set of all ∪X ≥ X such that for all x ∈ ∪X

⊗y ∈ Y (y ∈ R(x) ≈ f ⇒(y) ∀ ∪Xx ◦= ∞)

(with f, R restricted to ∪X in the domain) is closed under unions and hence has
the largest element X σ. A subframe of a one-step frame is obtained by restricting
functions and relations to some subset of a given frame. The largest subset Xσ gives
rise to the one-step subframe (X σ, Y, f|Xσ , R|Xσ ) (obtained by restricting f, R to X σ

in the domain) that corresponds to the quotient modulo the quasi-equation (3.8). In
general, one cannot say more than that: we just need to characterize the one-step
subframe arising in tasks (dt2)–(dt3).
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For (dt3) the situation is trivial: given any finite set X0, the one-step frame (3.4)
is already transitive, so the one-step transitive subframe we are looking for is the
whole one-step frame in this case.

Task (dt2) requires to characterize the universal one-step K4-extension of a finite
transitive one-step frame (the universal one-step extension of a finite transitive one-
step frame is obviously defined to be the dual of the universal one-step K4-extension
of the corresponding dual finite one-step K4-algebra).

In short, we get the following notion. Given a transitive finite one-step frame
(X, Y, f, R), the universal one-step K4-extension of it is the largest transitive one-
step frame (X σ, X, f ⇐, R⇐) ≥ (X ⇐, X, f ⇐, R⇐), where X ⇐, f ⇐, R⇐ are defined as follows

• X ⇐ = {(x, S) ∈ X × ℘(X) | R(x) = f (S)};
• f ⇐(x, S) = x ;
• R⇐(x, S) = S.

According to the above definitions, X σ is the largest X̂ ≥ X ⇐ such that

(x, S) ∈ X̂ ≈ (⊗y ∈ S ˆS⇐ ≥ S (y, S⇐) ∈ X̂). (3.11)

To fully accomplish task (dt2), we need here a better explicit characterization of Xσ.
A subset S ≥ X of a one-step frame (X, Y, f, R) is said to be transitive (abbre-

viated T r(S)) if (S, Y, f|S, R|S) is a transitive one-step frame (by (−)|S we denote
the restriction of a relation or of a function to a subset S of its domain).

Proposition 10 X σ = {(x, S) | R(x) = f (S) & R(S) ≥ R(x) & T r(S)}.
Proof We must show that (1) X σ satisfies condition (3.11); (2) if X̂ satisfies condi-
tion (3.11), then X̂ ≥ X σ.

Ad (1): Take (x, S) ∈ X σ and y ∈ S. Define

S⇐ = {ŷ ∈ S | f (ŷ) ∈ R(y) & R(ŷ) ≥ R(y)}. (3.12)

We show that (y, S⇐) ∈ X σ. First, R(S⇐) ≥ R(y) and f (S⇐) ≥ R(y) are immediate
from the definition of S⇐. To show that R(y) ≥ f (S⇐), notice that since S is transitive,
for all z ∈ R(y) there is yz ∈ S such that f (yz) = z and R(yz) ≥ R(y). This
shows that z ∈ f (S⇐). It remains to show that S⇐ is transitive. Let ŷ ∈ S⇐ and
w ∈ R(ŷ). Since S⇐ ≥ S and S is transitive, there is s ∈ S such that f (s) = w and
R(s) ≥ R(ŷ). We only need to prove that s ∈ S⇐, i.e. that (a) f (s) ∈ R(y) and (b)
R(s) ≥ R(y). Since ŷ ∈ S⇐, we have R(ŷ) ≥ R(y) and this implies f (s) ∈ R(y)

(because f (s) = w ∈ R(ŷ)). Thus, (a) holds. For (b), observe that ŷ ∈ S⇐ implies
R(ŷ) ≥ R(y). Since we also have R(s) ≥ R(ŷ), we obtain R(s) ≥ R(y), i.e. (b)
holds.

Ad (2): Let X̂ satisfy (3.11) and let (x, S) ∈ X̂ . We show that (x, S) ∈ Xσ. To
show that R(S) ≥ R(x), take y ∈ S. Then, according to (3.11), there is S⇐ ≥ S
such that (y, S⇐) ∈ X̂ . Thus, R(y) = f (S⇐) ≥ f (S) = R(x), and consequently,
R(y) ≥ R(x). So R(S) ≥ R(x) (y ∈ S is arbitrary), as required. It remains to
verify that S is transitive. Consider y ∈ S and z ∈ R(y). Then there is S⇐ such that
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(y, S⇐) ∈ X̂ , which implies R(y) = f (S⇐). Therefore, there is s ∈ S⇐ such that
f (s) = z. However, R(S⇐) ≥ R(y) follows from (y, S⇐) ∈ X̂ (we just proved that
this applies to all members of X̂ ), hence R(s) ≥ R(y). �

The following proposition says that we can also apply Proposition 8 in this case.

Proposition 11 If (X, Y, f, R) is a transitive finite one-step frame, then f ⇐ restricted
to X σ is surjective.

Proof It is sufficient to show that for every x ∈ X , we have that the pair (x, S)

belongs to X σ, where S is given by

S = {ŷ ∈ X | f (ŷ) ∈ R(x) & R(ŷ) ≥ R(x)}.

This follows from the fact that X is transitive (in the same way as case (i) above).�

Let X0 be a 2n-element set and let

X1 = X0 × ℘(X0), Xk+1 = X σ
k (k ↑ 1).

We also let fk : Xk+1 → Xk and Rk : Xk+1 → ℘(Xk) be defined by fk(x, S) = x
and Rk(x, S) = S. Then using duality and Propositions 7, 8, 10, and 11 we arrive at
the following result (we refer to the statement of Theorem 1 for the indication of the
appropriate categories where limits below are taken in):

Theorem 2 The limit (Xδ, Rδ) of the sequence {(Xk, Xk+1, fk, Rk) : k < δ} is
(isomorphic to) the dual of the free n-generated K4-algebra. Moreover, each Xk is
dual to the algebra of all K4-equivalent terms of complexity k.

3.5 Free S4-Algebras

We first deal with the T-case.

Definition 4 A one-step frame (X, Y, f, R) is reflexive if it validates the T-equation

a ∩ ♦a

i.e., if
f ⇒(A) ≥ ♦R(A) (3.13)

holds for all A ≥ Y .

Task (dt1) is accomplished by the following easy proposition:
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Proposition 12 A one-step frame (X, Y, f, R) is reflexive iff

f (x) ∈ R(x) (3.14)

holds for all x ∈ X.

Proof Suppose x ∈ f ⇒(A) for some A ≥ Y . By (3.14), f (x) ∈ R(x) and so
R(x) ∀ A ◦= ∞. Thus, x ∈ ♦R(A), satisfying (3.13). Conversely, suppose x ∈ X is
such that f (x) /∈ R(x). Let A = X \ R(x). Then f (x) ∈ A and R(x) ∀ A = ∞. So
x ∈ f ⇒(A) and x /∈ ♦R(A). Therefore, f ⇒(A) ◦≥ ♦R(A), refuting (3.13). �

Clearly the largest reflexive one-step subframe of a one-step frame (X, Y, f, R)

is obtained by taking the subset of X formed by those x such that f (x) ∈ R(x)

and by restricting f and R to it. This observation accomplishes also task (dt3).
For (dt2), we have an obvious notion of the universal one-step T-extension of a
reflexive one-step frame (X, Y, f, R). This is the largest reflexive one-step frame
(X σ, X, f ⇐, R⇐) ≥ (X ⇐, X, f ⇐, R⇐), where X ⇐, f ⇐, R⇐ are defined as follows

• X ⇐ = {(x, S) ∈ X × ℘(X) | R(x) = f (S)};
• f ⇐(x, S) = x ;
• R⇐(x, S) = S.

We immediately have that

Proposition 13 X σ = {(x, S) | R(x) = f (S) & x ∈ S}.
Proof The proof is similar to the proof of Proposition 10. We must show that X σ is
the largest subset X̂ ≥ X ⇐ satisfying the condition

(x, S) ∈ X̂ ≈ x ∈ S. (3.15)

But this immediately follows from the definition of X σ. �

As a consequence, we obtain:

Proposition 14 If (X, Y, f, R) is a reflexive finite one-step frame such that f is
surjective, then f ⇐ restricted to X σ is surjective.

Proof Let x ∈ X . We need to find S ≥ X such that R(x) = f (S) and x ∈ S. Let
S = f ⇒(R(x)). Then, as f is surjective, we have f (S) = f ( f ⇒(R(x))) = R(x). As
X is reflexive, by Proposition 12, f (x) ∈ R(x). So x ∈ f ⇒(R(x)) = S. Therefore,
(x, S) ∈ X σ and f ⇐(x, S) = x . Thus, f ⇐ is surjective. �

Then if Xk’s, fk’s and Rk’s are as in the previous section (of course X σ is as in
Proposition 13), we have the following:

Theorem 3 The limit (Xδ, Rδ) of the sequence {(Xk, Xk+1, fk, Rk) : k < δ} is
(isomorphic to) the dual of the free n-generated T-algebra. Moreover, each Xk is
dual to the algebra of all T-equivalent terms of complexity k.
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Finally, the relevant tasks for S4 are obtained by combining the above results
for T and K4. The combination is not entirely straightforward because we need
to carefully revisit all proofs. More precisely, the universal one-step S4-extension
of a reflexive and transitive one-step frame (X, Y, f, R) is the largest reflexive and
transitive one-step frame (X σ, X, f ⇐, R⇐) ≥ (X ⇐, X, f ⇐, R⇐), where X ⇐, f ⇐, R⇐ are
defined as follows

• X ⇐ = {(x, S) ∈ X × ℘(X) | R(x) = f (S)};
• f ⇐(x, S) = x ;
• R⇐(x, S) = S.

We have:

Proposition 15 X σ = {(x, S) | R(x) = f (S) & R(S) ≥ R(x) & T r(S) & x ∈ S}.
Proof We can repeat word by word the proof of Proposition 10 (we only need to
observe that if (X, Y, f, R) is reflexive, then S⇐ as defined in (3.12) is such that
y ∈ S⇐). �

Next we let the Xk’s, fk’s and Rk’s be the same as in the previous section with
X σ as in Proposition 15. Then, since we can prove surjectivity by the same argument
used in Proposition 11, we obtain the following:

Theorem 4 The limit (Xδ, Rδ) of the sequence {(Xk, Xk+1, fk, Rk) : k < δ} is
(isomorphic to) the dual of the free n-generated S4-algebra. Moreover, each Xk is
dual to the algebra of all S4-equivalent terms of complexity k.

3.6 Comparison to Other Approaches

In the recent literature, various approaches have been proposed in order to build free
modal algebras as chain colimits iterating some one-step construction. In the end, all
constructions must be isomorphic, however the differences they induce in the dual
combinatorics of finite frames might be significant, especially from the point of view
of concrete manageability and ease of manipulation. This is why it is worth trying
to make a closer comparison. The origins of the global step-by-step method for the
basic modal logic K go back to Abramsky’s 1988 British Logic Colloquium talk
(the paper [1] based on this talk appeared a decade later). In [20] a detailed account
of the global step-by-step method for K is given and, moreover, it is extended to
other modal logics. In [8] the same construction is put in the context of coalgebra,
underlying direct applications to rank one modal logics and is generalized to the
basic positive modal logic.

In [22] the step-by-step approach to the construction of free algebras is applied
to the S4 case. The solution adopted there is to build a chain of finite S4-algebras

(B0,♦0)
i0−→ (B1,♦1) → · · · → (Bk,♦k)

ik−→ (Bk+1,♦k+1) → · · · (3.16)
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where the morphisms ik are continuous and relatively open, which means that they
fully preserve ‘old’ diamonds (i.e. diamonds of the kind ♦kik−1(a)) and just semi-
preserve ‘last’ (i.e. the other) diamonds. In essence, this means that in each algebra
there are ‘core’ diamonds that are defined once and for all and some other diamonds
that are defined ‘by completion’ in a temporary fashion. The merit of this construction
is that the duals of the (Bk,♦k) are relatively nicely defined preordered sets. However,
it is not clear how far this technique (implicitly relying on the existence of a kind
of ‘S4-completion by continuity’) can be pushed because its adaptation to general
logics looks unclear.

To overcome this potential problem, in [11] free algebras are built up from a
chain such as (3.16), where the algebras (Bk,♦k) are partial, i.e. diamonds are only
partially defined there. In addition, it is required that the image of ik is in the domain
of the next diamond ♦k+1. If we view a partial algebra (B,♦) as a pair

B0 ≥ B, B0
♦−→ B

(where B0 is the Boolean subalgebra of B which is the domain of ♦), then it is clear
that

(B0, B, i,♦)

is a one-step modal algebra in our sense (here i is the inclusion morphism). This is
essentially the alternative description of partial algebras as described in [11, Remark
2.2]. The only difference is that our definition of a one-step modal algebra does not
require injectivity of i . This difference might be considered quite immaterial – and in
fact it is whenever one is able to prove that in the end the duals of the ik are surjective
maps (see Propositions 11,14). However, taking the injectivity requirement out is
essential for our recipe based on the tasks (dt1)-(dt2)-(dt3) to be formulated and
applied. Thus, this approach supplies an algebraic tool to investigate proof-theoretic
aspects, as explained in Proposition 8.

The step-by-step method for free Heyting algebras was first introduced in [19].
As an application of this method, it was shown that free finitely generated Heyting
algebras are in fact bi-Heyting algebras. In [7] a modular approach to this construction
was developed. It is similar to the local step-by-step approach of [11] and of the
current paper. It is our understanding that the technique of [7] can be rephrased in
terms of one-step Heyting algebras and the corresponding one-step frames.

3.7 Open Problems

We conclude by listing some open problems. The basic question is whether the local
step-by-step method applies (or can be adjusted) to other important modal logics. As
possible candidates we suggest the logic wK4 = K + (♦♦p → p ⊆ ♦p) of weakly
transitive frames [13] or, more generally, the logics of n-transitive frames [29].
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Another challenging test case is the provability logic GL. It is known that GL is
axiomatized over K4 by a one-step rule

(�p ∩ p) → (p = 1),

see [12, 23]. Thus, the technique developed in Sect. 3.3 can be applied to GL. Also
[12, 14] give a similar axiomatization of the logic Grz over K4 by the rule

(�(p → �p) ∩ p) → (p = 1).

Strictly speaking this is not a one-step rule, but we can up to equivalence flatten the
rule to

(q = p → �p) & (�q ∩ p) → (p = 1)

so that it fits our purposes. We leave it as an open problem whether free GL and
Grz-algebras could be described using the technique developed in this paper.

Finally, our results (Proposition 9 and 12) suggest that there might exist some
Sahlqvist-like correspondence for one-step frames. An investigation of this corre-
spondence is an interesting topic on its own, but it will also undoubtedly shed a new
light on the problem of obtaining free algebras for modal logics via the step-by-step
method.
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Chapter 4
Easkia Duality and Its Extensions

Sergio A. Celani and Ramon Jansana

In memory of Leo Esakia

Abstract In recent years Esakia duality for Heyting algebras has been extended
in two directions. First to weak Heyting algebras, namely distributive lattices with
an implication with weaker properties than that of the implication of a Heyting
algebra, and secondly to implicative semilattices. The first algebras correspond to
subintuitionistic logics, the second ones to the conjunction and implication fragment
of intuitionistic logic. Esakia duality has also been complemented with dualities for
categories whose objects are Heyting algebras and whose morphisms are maps that
preserve less structure than homomorphisms of Heyting algebras. In this chapter we
survey these developments.

Keywords Weak Heyting algebras, Distributive semilattices, Implicative semilat-
tices, Priestley duality, Esakia duality

4.1 Introduction

In 1937 Marshall H. Stone published what in the mathematical language of our days
can be described as the first duality between the category BDL of bounded distributive
lattices and the category of certain topological spaces [52]. The dual space of a
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bounded distributive lattice is nowadays known as a spectral space [19, 38] or as
a coherent space [39]. Later, in 1970 Hilary Priestley developed a different duality
between BDL and the category of certain ordered topological spaces whose objects
are ordered Boolean spaces satisfying a separation condition relating the order with
the clopen sets of the space. Since then these spaces are known as Priestley spaces
and this duality is known as Priestley duality [47, 48]. In [19] William H. Cornish
showed that the category of spectral spaces and the category of Priestley spaces are
isomorphic. For a book exposition of Priestley duality the reader is referred to [21]
and for a book exposition of Stone duality for bounded distributive lattices to [4, 39].

In 1974 Leo Esakia published the paper [25] where first a duality for S4-algebras
is presented and then a duality for Heyting algebras is derived from it. When Esakia
published [25] he was unaware of Priestley’s work and only later, after becoming
familiar with it, he realized that his duality for Heyting algebras is a restricted version
of Priestley duality. For a nice exposition of Esakia duality for Heyting algebras and
how it is related to the duality for S4-algebras we address the reader to Mai Gehrke’s
paper [28] in the present volume.

In recent years Esakia duality for Heyting algebras has been generalized in two
directions. In [16] Esakia duality has been generalized to algebras that, like Heyting
algebras, are bounded distributive lattices with an implication but the implication
has weaker properties than the implication of a Heyting algebra. Because of this
fact, these algebras are called weak Heyting algebras. In [8, 11] Esakia duality has
been generalized to implicative semilattices and bounded implicative semilattices;
that is, to subalgebras of the (→,≤, 1)-reducts and of the (→,≤, 0, 1)-reducts of
Heyting algebras, respectively. From both dualities, for weak Heyting algebras and
for implicative semilattices, Esakia duality can be obtained as a special case.

Both generalizations are interesting from the logical point of view. As it is well-
known, Heyting algebras provide the algebraic semantics for intuitionistic logic and
this logic has also a well-understood relational semantics. Esakia duality establishes
the link between these two semantics. In an analogous way, implicative semilattices
[45], also known as Brouwerian semilattices [40], provide the algebraic semantics
for the (→,≤, 1)-fragment of intuitionistic logic. Therefore, the generalization of
Esakia duality to implicative semilattices provides a relational semantics for this
fragment. Implicative semilatices also play an important role in universal algebra, as
shown by Köhler and Pigozzi [41].

To show the logical interest in weak Heyting algebras and the topological duality
for them, let {→,∨,≤, 0, 1} be the algebraic similarity type of Heyting algebras,
which is also the set of connectives for the propositional languageLI of intuitionistic
logic. In this language some fragments of modal logic can be formalized by inter-
preting ≤ as strict implication and defining �ϕ as 1 ≤ ϕ. From this perspective it
is a sensible query to find a propositional logic that has as natural extensions both
the intuitionistic logic and different strict implication fragments of normal modal
logics. This logic was introduced as a consequence relation in [15], under the name
wKσ . Previously K. Dǒsen studied it as a set of theorems in [22]. In [15] it was
provided with a complete relational semantics. The logic wKσ belongs to the family
of logics called subintuitionistic; see [15] and the references therein for information
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on the logics of this family. To give a precise (and useful) definition of wKσ we can
proceed by first defining the translation (.)† from the formulas of LI to the formulas
of the usual language of modal logic with connectives →,∨,⊆,�, 0, 1, where ⊆ is
classical implication. The definition of (.)† is as follows: (.)† commutes with con-
junction and disjunction, maps 0 to 0, 1 to 1 and (ϕ ≤ ψ)† = �(ϕ ⊆ ψ). Then the
logic wKσ can be defined by:

℘ ∈wKσ ϕ iff (℘ )† |= (ϕ)†,

where |= denotes the local consequence relation associated with the class of all Kripke
frames and ℘ ∩{φ} is a set of formulas of LI . The class of algebras that corresponds
to wKσ is the variety of weak Heyting algebras introduced in [16] and the topological
duality for these algebras presented in [16] establishes the link between the algebraic
and relational semantics for wKσ . From the duality for weak Heyting algebras one
can obtain the dualities for modal algebras and for Heyting algebras as particular
cases. It is interesting to point out that there are varieties of weak Heyting algebras
that can not be seen neither as varieties of Heyting algebras nor as varieties of modal
algebras, for example the variety of Basic algebras introduced in [3].

In recent years there also has been an interest in dualities for categories whose
objects are Heyting algebras but whose morphisms are maps that only preserve
some of, instead of all, the operations of a Heyting algebra, see [5, 8, 11]. The
dual categories also have as objects Esakia spaces but the morphisms are partial
maps. These dualities have been applied in [5] to provide an algebraic proof of
M. Zacharyashev’s result [60, 62] that all superintuitionistic (or intermediate) logics
are axiomatizable by canonical formulas (in Zacharyashev’s sense).

In this chapter we survey both generalizations of Esakia duality discussed above,
as well as the dualities for categories of Heyting algebras whose morphisms are
weaker than Heyting algebra homomorphisms. There is some work related to the
material presented in this chapter that we do not survey but is worth pointing out. We
do not survey the specialization to Heyting algebras of Stone duality for bounded
distributive lattices and the Stone type duality for implicative semilattices obtained in
[13]. We also do not survey the bitopological duality for bounded distributive lattices
and for Heyting algebras obtained in [6], strongly related to Esakia duality.

In order to make the chapter as self contained as possible, we start in Sect. 4.2 by
presenting first, and very concisely, Priestley duality and then, in Sect. 4.3, Esakia
duality. We assume the reader is familiar with the algebraic notions of distributive
lattice, relative pseudo-complement and Heyting algebra (see [4]), as well as modal
algebras and their dual spaces (see [30, 51, 54]). The structure of the rest of the chapter
is as follows. In Sect. 4.4 we introduce weak Heyting algebras and in Sect. 4.5 we
present the Priestley style duality for these algebras developed in [16]. Section 4.6
describes the duality for implicative semilattices obtained in [8, 11]. Finally, Sect. 4.7
expounds the categories of Esakia spaces with partial maps as morphisms.
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4.2 Preliminaries on Priestley Duality

We use the following notational conventions. Let X be a set. If U ⊆ X , then U c

denotes the complement of U w.r.t. X, namely X − U . The power set of X will be
denoted by P(X). If R is a binary relation on X and U ⊆ X we let

R−1[U ] := {x ∅ X : (∃y ∅ U )(x Ry)},
R[U ] := {y ∅ X : (∃x ∅ U )(x Ry)}.

If U is a singleton, say {x}, we will write R[x] and R−1[x] instead. A set U ⊆ X
is R-closed, or an R-up-set, if for every x ∅ U , R[x] ⊆ U .

Let ↑X,↓∧ be a poset. A set Y ⊆ X is an up-set if it is ↓-closed; that is, if for
every x ∅ Y and every y ∅ X such that x ↓ y, we have y ∅ Y . Dually, we have the
notion of down-set. Given a set U ⊆ X , let ∃U denote the down-set generated by
U ; that is, ∃U = {x ∅ X : (∃y ∅ U ) x ↓ y}. Dually, ∨U is the up-set generated
by U . Given x ∅ X , we abbreviate ∃{x} and ∨{x} by ∃x and ∨x , respectively.
The set of all up-sets of X will be denoted by P∨(X). This set together with set-
theoretic union,

⋃
, and intersection,

⋂
, is a complete distributive lattice which

is relatively pseudo-complemented; that is, for every U, V ∅ P∨(X) there exists
a unique U ≤X V ∅ P∨(X) such that for every W ∅ P∨(X),

U ≥ W ⊆ V iff W ⊆ U ≤X V .

Thus, the binary operation ≤X on P∨(X) when added to the lattice P∨(X) turns
it into a Heyting algebra. The operation ≤X satisfies

U ≤X V = {x ∅ X : ∨x ≥ U ⊆ V )} = (∃(U − V ))c.

Definition 1 A Priestley space is a triple X = ↑X,↓, τ ∧ where ↑X,↓∧ is a poset,
↑X, τ ∧ is a compact topological space and the following separation condition is
satisfied: for every x, y ∅ X , if x �↓ y, then there exists a clopen up-set U such that
x ∅ U and y /∅ U .

It follows that for every Priestley space ↑X,↓, τ ∧, the space ↑X, τ ∧ is a Boolean
space (compact, Hausdorff and 0-dimensional). If Y is a subset of a Priestley space
X , the topological closure of Y in X will be denoted by ClX (Y ); the subscript
will be omitted if no confusion is likely to arise. If ↑X1,↓1, τ1∧ and ↑X2,↓2, τ2∧
are Priestley spaces, a map f : X1 ≤ X2 is order preserving when for every
x, y ∅ X1, if x ↓1 y then f (x) ↓2 f (y), and it is continuous when for every
U ∅ τ2, f −1[U ] ∅ τ1. Note that f : X1 ≤ X2 is order preserving if and only if
for every x ∅ X1, f [∨x] ⊆ ∨ f (x). The Priestley spaces, taken as objects, together
with the continuous and order preserving maps between them, taken as morphisms,
constitute the category of Priestley spaces that we denote by PriSp. We call the
morphisms of this category Priestley morphisms.
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The contravariant functors D : PriSp ≤ BDL and X : BDL ≤ PriSp that
establish Priestley duality between the categories BDL and PriSp are defined as
follows.

If X is a Priestley space, let D(X) be the set of all clopen up-sets of X . This set
is a ring of sets and D(X) = ↑D(X),∩,≥,⇐, X∧ is a bounded distributive lattice.
This distributive lattice is the dual of X and it is, by definition, the image of X by
the functor D.

If f : X ≤ Y is a continuous and order preserving map between Priestley spaces
X and Y , then the map D( f ) : D(Y ) ≤ D(X) defined by

D( f ) = f −1(U ),

for every U ∅ D(Y ), is a bounded lattice homomorphism. This map is the image of
f by the functor D and has the following properties: D( f ) is onto D(X) if and only
if f is one-to-one, and D( f ) is one-to-one if and only if f is onto Y . Moreover, D is
indeed a functor. If X , Y and Z are Priestley spaces and f : X ≤ Y and g : Y ≤ Z
are continuous and order preserving maps, then D(g ⇒ f ) = D( f ) ⇒ D(g). Also,
if idX : X ≤ X is the identity morphism from a Priestley space X to itself, then
D(idX ) is the identity homomorphism from D(X) to D(X).

Let L = ↑L ,∨,→, 0, 1∧ be a bounded distributive lattice and let X (L) be the set
of prime filters of L . For every a ∅ L , let

σ(a) := {x ∅ X (L) : a ∅ x} .

The topology τL on X (L) is the topology generated by the subbasis

{σ(a) : a ∅ L} ∩ {σ(a)c : a ∅ L}.

The space X (L) = ↑X (L),⊆, τL ∧ is a Priestley space and is the dual space of
L; that is, it is by definition the image of L by the functor X .

If L1 and L2 are bounded distributive lattices and h : L1 ≤ L2 is a bounded
lattice homomorphism, then the map X (h) : X (L2) ≤ X (L1) defined by

X (h)(x) = h−1(x),

for every x ∅ X (L2), is continuous and order preserving. It is the image of h by the
functor X . Moreover, h is one-to-one if and only if X (h) is onto X (L1), and h is
onto L2 if and only if X (h) is one-to-one. X is indeed a functor because if L1, L2
and L3 are bounded distributive lattices and h : L1 ≤ L2 and h∀ : L2 ≤ L3 are
bounded lattice homomorphisms, then X (h∀ ⇒ h) = X (h) ⇒ X (h∀); and obviously, if
idL : L ≤ L is the identity homomorphism from a bounded distributive lattice to
itself, then X (idL) is the identity Priestley morphism from X (L) to X (L).

The natural transformations that justify that the functors X : BDL ≤ PriSp
and D : PriSp ≤ BDL establish a dual equivalence between BDL and PriSp are
given by the maps σL and εX , defined as follows. Let L be a bounded distributive
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lattice. The map σL : L ≤ D(X (L)) is defined by σL(a) := σ(a), for every a ∅ L .
This map is a bounded lattice isomorphism. Moreover, for every Priestley space
X = ↑X,↓, τ ∧, the map εX : X ≤ X (D(X)) is defined by

εX (x) := {U ∅ D (X) : x ∅ U } ,

for every x ∅ X . This map is a homeomorphism and an order-isomorphism.
Stone duality for Boolean algebras follows easily from Priestley duality. The full

subcategory of BDL whose objects are the Boolean lattices has as dual category the
full subcategory of PriSp whose objects are the Priestley spaces ↑X,↓, τ ∧ where ↓ is
the identity relation; in this situation D(X) is the Boolean lattice of the clopen subsets
of the space. Since the category of Boolean lattices is isomorphic to the category of
Boolean algebras, this last category is dually equivalent to the subcategory of PriSp
that is isomorphic to the category of Boolean spaces under the identification of a
Priestley space ↑X,↓, τ ∧, where ↓ is the identity relation, with the Boolean space
↑X, τ ∧. From this, Stone duality for Boolean algebras follows at once.

There exists a correspondence between algebraic concepts for bounded distrib-
utive lattices and order-topological concepts for Priestley spaces. We mention the
correspondence between the most basic ones.

Let L be a bounded distributive lattice and X (L) be its dual space. The lattice
of filters of L ordered by inclusion is dually isomorphic to the lattice of closed up-
sets of X (L), also order by inclusion. The dual isomorphism is given by the map
δ defined by

δ(F) :=
⋂

{σ(a) : a ∅ F}

for every filter F of L . The inverse of δ is such that δ−1(U ) = {a ∅ L : U ⊆ σ(a)}
for every closed up-set U of X (L). The image by δ of a prime filter x of L is the
principal up-set ∨x of X (L). In a similar manner, the map η that sends an ideal I
of L to the set

⋃{σ(a) : a ∅ I } establishes an isomorphism between the lattice of
ideals of L ordered by inclusion and the lattice of open up-sets of X (L) also order by
inclusion. A prime ideal I of L is mapped to the up-set (∃x)c of X (L), where x is the
prime filter L − I . If L is a Boolean lattice, we have the well-known correspondence
between filters of L and closed sets of its Boolean space and between ideals of
L and open sets.

The lattice of congruences of L ordered by inclusion is dually isomorphic to the
lattice of closed subsets of X (L) also ordered by inclusion. The isomorphism is given
by the map ι from the set of closed subsets of X (L) to the set of congruences of
L given by

ι(Y ) := {(a, b) ∅ L × L : σ(a) ≥ Y = σ(b) ≥ Y }

for every closed set Y of X (L). The inverse of ι can be defined as follows. Let us
first say that a congruence θ of L is compatible with x ∅ X (A) if for all a, b ∅ L ,
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if aθb and a ∅ x , then b ∅ x . Then,

ι−1(θ) = {x ∅ X (L) : θ is compatible with x}.

Finally, the subalgebras of L are in one-to-one correspondence with the Priestley
quasi-orders of X (L) [1, 18, 53]. Let X = ↑X,↓, τ ∧ be a Priestley space. A Priestley
quasi-order on X is a quasi-order R on X that extends ↓ and such that for every
x, y ∅ X , if x �Ry, then there exists a clopen R-up-set U ⊆ X such that x ∅ U and
y �∅ U .1 The map H from the lattice of universes of subalgebras of L to the lattice
of Priestley quasi-orders defined by

H(M) := {(x, y) ∅ X (L) × X (L) : x ≥ M ⊆ y}

for every universe M of a subalgebra of L , establishes a dual isomorphism between
these two lattices. Its inverse is the map that sends a Priestley quasi-order R on X (L)

to the set
MR := {a ∅ L : R[σ(a)] ⊆ σ(a)} .

4.3 Esakia Duality

The duality between bounded distributive lattices and Priestley spaces specializes
to Heyting algebras giving what is now with full justice known as Esakia duality.
Although, as was pointed out in the Introduction, L. Esakia derived in [25] his duality
for Heyting algebras from a duality for S4-algebras, and only later realized that it is a
restricted version of Priestley duality, it is better for our purposes to describe Esakia
duality as such a restriction. We do this in this section. It should be mention that M.
Adams independently obtained the duality in an unpublished paper, as it is pointed
out in [20].

Recall that a Heyting algebra is an algebra A = ↑A,∨,→,≤, 0, 1∧ where
↑A,∨,→, 0, 1∧ is a bounded and relatively pseudo-complemented distributive lattice
and ≤ is the operation of relative pseudo-complementation (or residuation); that is,

a → b ↓ c iff a ↓ b ≤ c,

for every a, b, c ∅ A.
The category HA of Heyting algebras has as objects Heyting algebras and as

morphisms the homomorphisms between them. This category is isomorphic to the
category of bounded and relatively pseudo-complemented distributive lattices with
morphisms the bounded lattice homomorphisms that in addition preserve the relative

1 The term ‘Priestley quasi-order’ is introduced in [6, 10].
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pseudo-complementation, or residuation.2 This category is not a full subcategory of
BDL. So, to obtain a duality for Heyting algebras using Priestley spaces as the dual
objects, one not only needs to characterize the dual Priestley space of a bounded
relatively pseudo-complemented distributive lattice, but also the dual of a homomor-
phism between bounded relatively pseudo-complemented distributive lattices that in
addition preserves relative pseudo-complementation.

Definition 2 An Esakia space is a Priestley space ↑X,↓, τ ∧ with the additional
property that for every clopen set U ⊆ X , ∃U is clopen.

An Esakia morphism between two Esakia spaces ↑X1,↓1, τ1∧ and ↑X2,↓2, τ2∧ is
an order preserving and continuous map f from X1 to X2 such that for every x ∅ X1
and every z ∅ X2, f (x) ↓2 z implies that there exists y ∅ X1 such that x ↓1 y and
f (y) = z; in other words, it is an order preserving and continuous map such that for
every x ∅ X1, ∨ f (x) ⊆ f [∨x].3

The Esakia spaces with Esakia morphisms between them constitute a subcategory
of PriSp which is not a full subcategory.4 It is denoted in this chapter by EsSp. The
functors that establish the duality between HA and EsSp are in essence the functors
D and X of Priestley duality suitably restricted and modified.

Recall that the operation ≤X defined in the lattice P∨(X) of up-sets of X by

U ≤X V := {x ∅ X : ∨x ≥ U ⊆ V )}

is the residual of the intersection operation between up-sets; that is,

U ≥ V ⊆ W iff U ⊆ V ≤X W,

for every U, V, W ∅ P∨(X); and the bounded distributive lattice P∨(X) endowed
with the operation ≤X is a Heyting algebra.

The fundamental fact about Esakia spaces is the following:

Proposition 1 A Priestley space X = ↑X,↓, τ ∧ is an Esakia space if and only if
D(X) is closed under the operation ≤X .

From this proposition Esakia duality follows easily. The dual of an Esakia space X
is the Heyting algebra D(X) = ↑D(X),∩,≥,≤X ,⇐, X∧ and the dual of a Heyting
algebra A = ↑A,∨,→,≤, 0, 1∧ is the Priestley space X (A) of the lattice reduct
↑A,∨,→, 0, 1∧. This space is an Esakia space and the map σA is an isomorphism

2 Note that if L and L ∀ are bounded relatively pseudo-complemented distributive lattices (the
residuation operation, or implication, is not part of the signature) and h : L ≤ L ∀ is a bounded
lattice homomorphism, then we only have that for a, b ∅ L , h(a ≤ b) ↓ h(a) ≤∀ h(b).
3 In [25] the maps between Esakia spaces that are order preserving and satisfy that for every x ∅ X1,
∨ f (x) ⊆ f [∨x] are called strongly isotone. That is, they are the maps such that for every x ∅ X1,
∨ f (x) = f [∨x].
4 The full subcategory with Esakia spaces as objects has as morphisms the continuous and order
preserving maps between them, but not all of them satisfy that for every x ∅ X1, ∨ f (x) ⊆ f [∨x].
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between A and the Heyting algebra ↑D(X (A)),∩,≥,≤X (A),⇐, X∧. Moreover, if
h : A1 ≤ A2 is a homomorphism from a Heyting algebra A1 to a Heyting algebra
A2, then the map X (h) from X (A2) to X (A1) is an Esakia morphism and if f is
an Esakia morphism from an Esakia space X1 to an Esakia space X2, then the map
D( f ) is a Heyting algebra homomorphism from D(X2) to D(X1).

It is worth pointing out that L. Esakia proved the lemma that came to be known as
Esakia’s lemma precisely to establish the correspondence between Heyting algebra
homomorphisms and Esakia morphisms. This lemma has proved to be very useful
in proving Shalqvist style correspondence results for modal logic using topological
arguments.

The correspondence between the algebraic concepts for bounded distributive lat-
tices and order-topological concepts for Priestley spaces presented in the previous
section specializes to Heyting algebras and Esakia spaces as follows.

Let A be a Heyting algebra and X (A) its dual Esakia space. Filters of A correspond
to closed up-sets of X (A) as in the case of bounded distributive lattices; here the
presence of the implication does not play any role. Similarly, ideals of A correspond
to open up-sets of X (A).

The dual isomorphism ι between the lattice of congruences of the bounded
distributive lattice reduct of A and the lattice of closed sets of its Priestley space,
when restricted to the congruences of A provides an isomorphism between that lattice
of congruences of A and the lattice of closed up-sets of the dual Esakia space X (A).
One way to prove this result is to use the well-known fact that in any Heyting algebra
A the lattice of congruences of A is isomorphic to the lattice of filters of A.

The isomorphism H between the lattice of the universes of bounded sublattices of
A and the lattice of Priestley quasi-orders of X (A), when restricted to the universes
of subalgebras of A, provides an isomorphism between the lattice of these universes
and the lattice of the Priestley quasi-orders of X (A) that satisfy an extra condition.
These Priestley quasi-orders are characterized in [6, 10] where they are called Esakia
quasi-orders. They are defined as follows. A binary relation R on the set of points
of an Esakia space ↑X,↓, τ ∧ is an Esakia quasi-order if it is a Priestley quasi-order
that in addition satisfies that for all x, y ∅ X , if x Ry, then there exists z ∅ X such
that x ↓ z and ↑z, y∧ ∅ R ≥ R−1.

Another way to characterize subalgebras of a Heyting algebra is by means of
Esakia equivalence relations of the dual space. Let X be an Esakia space and let ◦
be an equivalence relation on X . For x ∅ X let [x] := {y ∅ X : x ◦ y}, and for
Y ⊆ X let [Y ] := ⋃{[y] : y ∅ Y }. We call Y ⊆ X saturated if Y = [Y ]. An
equivalence relation ◦ is an Esakia equivalence relation if ◦ satisfies the following
two conditions:

1. x �◦ y implies there exists a saturated clopen set U of X such that x ∅ U and
y /∅ U .

2. (∞x, y, z ∅ X)[(x ◦ y & y ↓ z) ⇒ (∃z∀ ∅ X)(x ↓ z∀ & z∀ ◦ z)].
If E satisfies only condition (1), then E is an equivalence relation which is a Priest-
ley quasi-order. We call such equivalence relations Priestley equivalence relations.
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Thus, an Esakia equivalence relation is a Priestley equivalence relation satisfying
condition (2).

There is an order-isomorphism between the set of Esakia quasi-orders of an Esakia
space X, ordered by inclusion, and the set of Esakia equivalence relations on X also
ordered by inclusion. The correspondence is obtained as follows [6, 10]. If R is an
Esakia quasi-order on X , then ◦R := R ≥ R−1 is an Esakia equivalence relation on
X ; conversely, if ◦ is an Esakia equivalence relation on X , then R◦ := (↓ ⇒ ◦)

is an Esakia quasi-order on X . Moreover, R◦R = R and ◦R◦= ◦. It follows that
for a Heyting algebra A, the complete lattice of universes of subalgebras of A is
dually order isomorphic to the poset of Esakia equivalence relations on X (A). In
particular, if A is a Boolean algebra, since in the Priestley space of A the relation ↓
becomes =, Esakia equivalence relations become Priestley equivalence relations, and
so we obtain the following well-known characterization of subalgebras of a Boolean
algebra. For a Boolean algebra A, the complete lattice of subalgebras of A is dually
isomorphic to the poset of Priestley equivalence relations on X (A) (ordered by ⊆).

The lattices of subalgebras of distributive lattices and of Heyting algebras using
duality have been studied in [2, 6, 10, 25, 34, 37, 53, 57, 58].

4.4 Weak Heyting Algebras

The notion of weak Heyting algebra introduced in [16] is a weakening of the concept
of Heyting algebra.5 As we mentioned in the Introduction, weak Heyting algebras are
the variety of algebras that corresponds to the subintuitionistic logic wKσ introduced
in [15].

The algebraic similarity type of weak Heyting algebras is the same as the algebraic
similarity type of Heyting algebras, namely {→,∨,≤, 0, 1}. As we mentioned in the
Introduction, one can interpret the symbol ≤ as the strict implication of modal logic
and define �ϕ as 1 ≤ ϕ. From this perspective, weak Heyting algebras encompass
(in a sense that we make precise shortly) both modal algebras and Heyting algebras.
From the duality for weak Heyting algebras one can obtain the dualities for modal
algebras and Heyting algebras as particular cases.

In this section we present the definition and basic algebraic facts about weak
Heyting algebras, as well as examples of varieties of weak Heyting algebras; some
of them already appeared in the literature before the notion of weak Heyting algebra
was introduced. In the next section we present a Priestley style duality for weak
Heyting algebras. The proofs of all the results we mention in this and next section
can be found in [16].

Definition 3 An algebra ↑A,∨,→,≤, 0, 1∧ is a weak Heyting algebra, or a WH-
algebra, if its {→,∨, 0, 1}-reduct ↑A,∨,→, 0, 1∧ is a bounded distributive lattice

5 In [16] they are called weakly Heyting, but weak Heyting appears to be a better terminology.
It comes from [12].
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and ≤ is a binary operation on A satisfying the following conditions for every
a, b, c ∅ A:

C1 (a ≤ b) → (a ≤ c) = a ≤ (b → c).
C2 (a ≤ c) → (b ≤ c) = (a ∨ b) ≤ c.
C3 (a ≤ b) → (b ≤ c) ↓ a ≤ c.
C4 a ≤ a = 1.

From the definition it is immediate that the class of WH-algebras is a variety.
We denote by WH this variety as well as the category with objets WH-algebras and
morphisms the homomorphisms between them.

The following elementary facts about WH-algebras are useful.

Proposition 2 Let A be a WH-algebra. For every a, b, c ∅ A,

1. if a ↓ b, then c ≤ a ↓ c ≤ b and b ≤ c ↓ a ≤ c;
2. if a ↓ b, then a ≤ b = 1;
3. (a ≤ b) → (a ≤ c) ↓ a ≤ (c ∨ b).

It is also useful to point out that the converses of conditions 2 and 3 of the
proposition above, which hold in Heyting algebras, do not necessarily hold in WH-
algebras.

Heyting algebras are obviously WH-algebras. Other examples of WH-algebras
arise in a natural way from modal algebras. Let B = ↑B,→,∨, −,♦, 0, 1∧ be a modal
algebra, that is, a Boolean algebra ↑B,→,∨, −, 0, 1∧ together with an operator ♦ on
B, namely, a unary operation ♦ : B ≤ B that distributes over nonempty finite joins
and such that ♦0 = 0. As usual, one defines �a = ♦a. The strict implication ≤ on
B is the binary operation defined by

a ≤ b = ♦(a → b),

for all a, b ∅ B. Thus,

a ≤ b = �(a ∨ b) and �a = 1 ≤ a.

It is easy to see that the algebra ↑B,→,∨,≤, 0, 1∧ is a WH-algebra. In fact, all
the WH-algebras whose lattice reduct is a Boolean lattice are obtainable in this
way. Let A = ↑A,→,∨,≤, 0, 1∧ be a WH-algebra such that ↑A,→,∨, 0, 1∧ is
a Boolean lattice (i.e. a complemented bounded distributive lattice). The algebra
↑A,→,∨, −,♦, 0, 1∧, where − is the complement operation and ♦ is defined by
♦a = 1 ≤ a, is a modal algebra and its strict implication operation is the original
≤. We will say that a WH-algebra is a WH-modal algebra if its lattice reduct is a
Boolean lattice.

Other examples of WH-algebras that appeared in the literature before the intro-
duction of the concept of weak Heyting algebra are the basic algebras introduced by
Ardeshir and Ruitenburg [3] and the subresiduated lattices of Epstein and Horn [24].
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Basic algebras correspond to the Basic Propositional Logic introduced by Visser
[55, 56] as a logic in the language of intuitionistic logic that has the same relation
to the modal logic K 4 as intuitionistic logic has to S4. Subresiduated lattices were
introduced in [24] as the algebras that correspond to the strict implication fragment
(in the sense made precise in the Introduction) of the modal logic S4.

Definition 4 A basic algebra is a WH-algebra that in addition satisfies the inequality

(I) x ↓ 1 ≤ x

and a subresiduated lattice is a WH-algebra that in addition satisfies the inequalities

(T) x ≤ y ↓ z ≤ (x ≤ y),

(R) x → (x ≤ y) ↓ y.

Remark 1 Theorem 1 of [24] shows that a subresiduated lattice is an algebra
A = ↑A,→,∨,≤, 0, 1∧ where ↑A,→,∨, 0, 1∧ is a bounded distributive lattice and
the following four inequalities hold: 1 ↓ (x → y) ≤ y, x ≤ y ↓ z ≤ (x ≤ y),
(R) and (T). From this theorem and some properties of subresiduated lattices proved
in [24] it is easy to see that an algebra A = ↑A,→,∨,≤, 0, 1∧ is a subresiduated
lattice if and only if it is a WH-algebra satisfying the inequalities (R) and (T). This
fact justifies our definition.

In every WH-algebra the inequality (I) implies (T). Indeed, on the one hand
(I) implies x ≤ y ↓ 1 ≤ (x ≤ y) and, on the other hand, 1 ≤ (x ≤ y) ↓ z ≤
(x ≤ y) holds in every WH-algebra. Therefore, if we combine conditions (I), (T)
and (R) to obtain subvarieties of WH we end up with at most five subvarieties. In
fact there are exactly five obtainable in this way: the variety of subresiduated lattices,
denoted SRL, the variety of basic algebras, denoted B, the variety of WH-algebras
that satisfy (R), these will be called RWH-algebras, the variety of WH-algebras that
satisfy (T), these will be called TWH-algebras, and finally the variety of Heyting
algebras (which are the WH-algebras that satisfy the three inequalities (R), (T) and
(I)). The variety of RWH-algebras will be denoted by RWH and the variety of TWH-
algebras by TWH. If in addition we denote by HA the variety of Heyting algebras,
the relation between all these varieties is depicted in Fig. 4.1.

Other varieties of weak Heyting algebras have been considered in the literature;
for example, [14] studies n-linear weak Heyting algebras and [12] introduces the
notion of pre-Heyting algebra.

4.5 Priestley Style Duality for WH-Algebras

A fundamental difference between Heyting algebras and WH-algebras is that WH-
algebras cannot be defined as special distributive lattices in which the implication
operation is uniquely determined. For example, if L is a bounded distributive lattice,
the map f : L ×L ≤ L such that f (a, b) = 1 for every a, b ∅ L satisfies conditions
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Fig. 4.1 The subvarieties of the variety of WH-algebras

C1-C4 in the definition of a weak Heyting algebra. Because of this, when developing
a Priestley style duality for WH-algebras, in order to account for the implication,
we have to add an extra structure to the dual Priestley space of the distributive
lattice reduct of a WH-algebra. Unlike the case of Heyting algebras, simply adding
additional conditions that the dual space of the distributive lattice reduct has to satisfy
is not enough.

In this section we introduce a category dual to the category of WH-algebras
whose objects are Priestley spaces with an additional binary relation that dualizes
the implication. This section is based on [16] where all the results we present here
can be found with their proofs.

Let X be a set and let R be a binary relation on X . The binary operation ≤R on
P(X) is defined as follows:

U ≤R V = {x ∅ X : R[x] ≥ U ⊆ V } ,

for every U, V ⊆ X . It is easy to see that

U ≤R V = X − R−1[U − V ].

Note that if R is the partial order ↓ of a Priestley space X , then the operation ≤R

is exactly the residuation operation ≤X considered before to obtain the Heyting
algebra of the up-sets of X .

It is not difficult to see that if X = ↑X,↓, τ ∧ is a Priestley space and R is a binary
relation on X , then the set D(X) of clopen up-sets is closed under the operation ≤R

if and only if for all U, V ∅ D(X), R−1[U − V ] is a clopen down-set.
Moreover, it is also not difficult to see that in any structure X = ↑X,↓, R, τ ∧

where ↑X,↓, τ ∧ is a Priestley space and R is a binary relation such that (i) R[x] is
a closed subset of X for every x ∅ X and (ii) R−1[U − V ] is a clopen down-set for
all U, V ∅ D(X), it holds that (↓ ⇒ R) ⊆ R.

Let ↑X,↓, R∧ be a poset endowed with a binary relation R satisfying the condition
(↓ ⇒ R) ⊆ R. This implies that for every U, V ∅ P∨(X), U ≤R V ∅ P∨(X).
Therefore, the bounded distributive lattice of up-sets of ↑X,↓∧ can be expanded to
an algebra of the type of a WH-algebra by adding the operation ≤R . It is easy to
show that the obtained algebra is a WH-algebra.
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Let X = ↑X,↓, R, τ ∧ be a Priestley space with a binary relation R satisfying
(↓ ⇒ R) ⊆ R. That the dual bounded distributive lattice D(X) of ↑X,↓, τ ∧ is closed
under the operation ≤R can be characterized by a topological condition that does
not involve D(X).

Lemma 1 Let X = ↑X,↓, R, τ ∧be a Priestley space endowed with a binary relation
R on X such that (↓ ⇒ R) ⊆ R. Then D(X) is closed under the operation ≤R on
P∨(X) if and only if for every clopen set Y , R−1[Y ] is clopen.

The considerations above justify the following definition of WH-spaces. These
spaces are the objects of the category dual to the category of WH-algebras, which
will be defined shortly.

Definition 5 A WH-space is a structure ↑X,↓, R, τ ∧ such that

1. ↑X,↓, τ ∧ is a Priestley space,
2. (↓ ⇒ R) ⊆ R,

3. R[x] is a closed subset of X for all x ∅ X ,
4. for every clopen subset Y of X , R−1[Y ] is clopen.

In [32] Paul Halmos introduced Boolean relations on a Boolean space as the
binary relations on the set of points of the space that satisfy properties (3) and (4)
above. These relations are also studied in [59]. The spaces ↑X, R, τ ∧ where ↑X, τ ∧ is a
Boolean space and R is a Boolean relation are the duals of modal algebras according
to the duality theory for these algebras. We call them modal spaces. Similarly, a WH-
space is a structure that combines in a very natural way being a Priestley space and
a modal space; that is, it is a structure ↑X,↓, R, τ ∧ such that (i) ↑X, R, τ ∧ is a modal
space, (ii) ↑X,↓, τ ∧ is a Priestley space and (iii) (↓ ⇒ R) ⊆ R. For information
on the topological duality for modal algebras we address the reader to [51]. A brief
description can be found in [7]. It is also worth to consult [54].

Definition 6 Let ↑X,↓, τ ∧ be a Priestley space. We say that a binary relation R on
X is a WH-relation if it is a Boolean relation on the Stone space ↑X, τ ∧ that satisfies
(↓ ⇒ R) ⊆ R. Note that the empty relation and X × X are WH-relations.

From Lemma 1 and the considerations that precede it, it immediately follows
that WH-spaces can be defined equivalently as the structures ↑X,↓, R, τ ∧ where
↑X,↓, τ ∧ is a Priestley space, R[x] is a closed subset of X for every x ∅ X , and for all
U, V ∅ D(X), R−1[U − V ] is a clopen down-set. Therefore, if X = ↑X,↓, R, τ ∧ is
a WH-space, then the lattice D(X) is closed under the operation ≤R , and augmented
with the restriction of this operation to the domain of D(X), it is a subalgebra of the
WH-algebra P∨(X). Thus, it is a WH-algebra. This algebra is, by definition, the
dual WH-algebra of the WH-space X . Slightly abusing the notation, we also denote
it by D(X).

We proceed to obtain the dual of a WH-algebra. Let A be a WH-algebra. We
define the binary relation RA on the set X (A) of prime filters of A as follows:
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(x, y) ∅ RA iff (∞a, b ∅ A)(a ≤ b ∅ x & a ∅ y =⇒ b ∅ y).

Let us consider the structure X (A) = ↑X (A),⊆, τA, RA∧, where ↑X (A),⊆, τA∧ is
the Priestley space dual of the lattice reduct of A.

The following extension of the prime filter lemma for distributive lattices to
WH-algebras is fundamental to obtain the duality for WH-algebras. Let A be a WH-
algebra. To state the lemma, we extend the relation RA between prime filters defined
above to arbitrary filters by using the same defining condition, but now applied to all
filters. Moreover, if F is a filter of A and X is a nonempty subset of A, we define the
set DF (X) as follows:

DF (X) := {b ∅ A : there is a nonempty and finite Y ⊆ X with
∧

Y ≤ b ∅ F}.

Lemma 2 (Existence of Prime Filters) Let A be a WH-algebra, F a filter and I
an ideal of A and let X ⊆ A be nonempty. If DF (X) ≥ I = ⇐, then there exists a
prime filter x such that

DF (X) ⊆ x, (F, x) ∅ RA and x ≥ I = ⇐.

The next lemma is crucial in establishing the desired duality.

Lemma 3 For every WH-algebra A and every a, b ∅ A,

σ(a ≤ b) = σ(a) ≤RA σ(b).

Hence, σ(A) is closed under the operation ≤RA .

Proof Suppose that a ≤ b /∅ x . We will prove that there is y ∅ X (A) such that
(x, y) ∅ RA, a ∅ y and b /∅ y. Consider the set Dx ({a}) = {c ∅ A : a ≤ c ∅ x}.
This set is disjoint from the ideal ∃b because otherwise there would exist c ↓ b
such that a ≤ c ∅ x . But then a ≤ b ∅ x , which contradicts the assumption. By
Lemma 2, there exists y ∅ X (A) such that (x, y) ∅ RA, a ∅ y and b /∅ y. Thus,
y /∅ σ (a) ≤RA σ (b). The other inclusion is immediate. �

Proposition 3 For every WH-algebra A, X (A) = ↑X (A),⊆, τA, RA∧ is a WH-
space.

Proof The proof of condition (2) of Definition 5 is easy. Condition (4) follows from
the fact that D(X (A)) is σ(A) using lemmas 3 and 1. It remains to prove condition
(3). Let x, y ∅ X (A) be such that y �∅ RA[x]. Then, by the definition of RA, there
are a, b ∅ A with a ≤ b ∅ x , a ∅ y and b �∅ y. Therefore, x ∅ σ(a) ≤RA σ(b)

and y ∅ σ(a) − σ(b). So, since RA[x] ≥ (σ(a) − σ(b)) = ⇐, y is not in the closure
of RA[x]. Thus, RA[x] is closed. �

A consequence of Lemma 3 is that for every WH-algebra A, the map σA is a WH-
algebra isomorphism between A and D(X (A)). Note that the domain of D(X (A))

is the set σ[A].
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Recall from Priestley duality that for every Priestley space ↑X,↓, τ ∧, the map εX

from X to the set X (D(X)), which is defined by the condition

εX (x) = {U ∅ D(X) : x ∅ U },

for every x ∅ X , is a homeomorphism and an order isomorphism between the space
↑X,↓, τ ∧ and the Priestley dual of D(X). For every WH-space ↑X,↓, R, τ ∧, the
map εX , in addition to being a homeomorphism and an order isomorphism between
↑X,↓, τ ∧ and ↑X (D(X)),⊆, τD(X)∧, is also an isomorphism between the relational
structures ↑X, R∧ and ↑X (D(X)), RD(X)∧. This follows from the proposition below.

Proposition 4 Let ↑X,↓, τ ∧ be a Priestley space endowed with a binary relation R
such that for all U, V ∅ D, R−1[U − V ] is a clopen down-set. Then the following
conditions are equivalent:

1. For all x ∅ X, R[x] is a closed subset of X.
2. For all x, y ∅ X, if (εX (x), εX (y)) ∅ RD, then (x, y) ∅ R, where RD is the

relation associated with the WH-algebra D(X).

Proof To prove that (1) implies (2), let x, y ∅ X be such that (εX (x), εX (y)) ∅ RD

and suppose that (x, y) /∅ R. Since R[x] is closed, there exist U, V ∅ D such that
R[x] ≥ (U − V ) = ⇐ and y ∅ U − V . Then x ∅ U ≤R V and y ∅ U . As
(εX (x), εX (y)) ∅ RD , it follows that y ∅ V , which is impossible. To prove the other
implication, let x, y ∅ X be such that y ∅ Cl(R[x]) and suppose that y /∅ R[x]. Then
(εX (x), εX (y)) /∅ RD . It follows that there exist U, V ∅ D such that x ∅ U ≤R V
and y ∅ U − V . Since y ∅ Cl(R[x]), we have R[x] ≥ (U − V ) �= ⇐, which is a
contradiction. �

Consequently, we obtain that if X = ↑X,↓, R, τ ∧ is a WH-space, the lattice D(X)

with the operation ≤R is a WH-algebra whose associated WH-space X (D(X)) is
isomorphic to ↑X,↓, R, τ ∧.

The morphisms between WH-spaces are the maps defined as follows.

Definition 7 Let X1 and X2 be WH-spaces. A map f : X1 −≤ X2 is a WH-
morphism if it is a morphism between Priestley spaces (i.e., it is continuous and
order preserving), and it is in addition a bounded morphism (or p-morphism) between
↑X1, R1∧ and ↑X2, R2∧, which means that it satisfies the following two conditions:

1. if (x, y) ∅ R1, then ( f (x), f (y)) ∅ R2,
2. if ( f (x), z) ∅ R2, then there is y ∅ X1 such that (x, y) ∅ R1 and f (y) = z.

More concisely stated, f is a bounded morphism if it satisfies f [R1[x]] = R2[ f (x)]
for every x ∅ X1.

Notice that if the WH-spaces are modal spaces, then the morphisms between them
are the usual bounded morphisms.
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Theorem 1 Let X1, X2 be WH-spaces and A1, A2 be WH-algebras.

1. If f : X1 ≤ X2 is a WH-morphism, the dual map D ( f ) : D(X1) ≤ D(X2),
defined by D ( f ) (U ) = f −1 (U ) , for everyU ∅ D(X2), is a WH-homomorphism.

2. If h : A1 ≤ A2 is a WH-homomorphism, the dual function X (h) : X (A2)

≤ X (A1), defined by X (h) (x) = h−1 (x) , for every x ∅ X (A2), is a WH-
morphism.

The next theorem follows from the above results and Priestley duality for bounded
distributive lattices.

Theorem 2 The category WH of WH-algebras is dually equivalent to the category
WHS whose objects are WH-spaces and whose morphisms are WH-morphisms.

Remark 2 If we add the trivial partial ordering, namely the identity relation, to a
modal space ↑X, R, τ ∧, we obtain the WH-space ↑X,=, R, τ ∧. In this way modal
spaces can be seen as the WH-spaces whose partial order is the identity relation, and
the well-known duality between modal algebras and modal spaces can be obtained by
restricting the duality between WH-algebras and WH-spaces to these objects. Let us
call the WH-spaces of the form ↑X,=, R, τ ∧ WH-modal spaces. The bounded distrib-
utive lattice reduct of the dual WH-algebra D(X) of a WH-modal space ↑X,=, R, τ ∧
is the Boolean lattice B(X) = ↑D(X),∩,≥,⇐, X∧ of the clopen subsets of ↑X, τ ∧.
Augmented with the complement operation, the WH-algebra D(X) of ↑X,=, R, τ ∧
is term-wise definitionally equivalent6 to the modal algebra ↑B(X),♦R∧, where ♦R

is defined by ♦R(U ) = R−1[U ] for every U ∅ D(X). Accordingly we can say that
the WH-algebras which are the duals of the WH-modal spaces are modal algebras.

When we restrict Theorem 2 to the full subcategory of WH-modal algebras, we
obtain the dual equivalence between the category of WH-modal algebras and the
category of WH-modal spaces. By the above considerations, these categories are
isomorphic to the category of modal algebras and to the category of modal spaces,
respectively. Therefore, we obtain the well-known duality between these two cate-
gories as a corollary.

Moreover, as we already mentioned, for a Heyting algebra A, RA is the inclusion
relation onP(A) and, as we will see below, the dual WH-spaces of Heyting algebras
are the WH-spaces where ↓ = R. Thus, these spaces can be identified with Esakia
spaces and the morphisms between them are exactly the Esakia morphisms between
Esakia spaces. Consequently, the above theorem also implies Esakia duality for
Heyting algebras.

It is worth mentioning that the WH-relations on the dual Priestley space of a
bounded distributive lattice L correspond to the binary operations on L that expand
L to a WH-algebra. This correspondence is obtained as follows.

Let L be a bounded distributive lattice. We refer to its partial ordering by ↓L . Let
≈L be the relation between binary operations on L defined by

6 Two algebras of different similarity type are term-wise definitionally equivalent if every principal
operation of one is definable by a term of the other.
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f ≈L g ⊗⇒ ∞a, b ∅ L , f (a, b) ↓L g(a, b).

Let WHI(L) be the set of binary operations f on L such that the expansion ↑L , f ∧ is
a WH-algebra and let WHR(X (L)) be the set of WH-relations on the dual Priestley
space X (L) of L .

Theorem 3 Let L be a bounded distributive lattice and let ↑X (L),⊆, τL ∧ be its dual
Priestley space. There is a dual isomorphism δ between the posets ↑WHI(L),≈L∧
and ↑WHR(X (L)),⊆∧, given by δ( f ) := R↑L , f ∧.

The Priestley spaces that correspond to finite bounded distributive lattices are
customarily identified with their partial order reducts because their topology is the
discrete topology. In this way one obtains Birkhoff’s duality between finite distrib-
utive lattices and finite posets. A similar situation holds for finite WH-algebras.

Theorem 4 Let L be a finite bounded distributive lattice and let ↑X,↓∧ be its asso-
ciated dual partial ordering. There is a dual isomorphism between the ordered set
↑WHI(L),≈L∧ and the set, ordered by inclusion, of the binary relations R on X such
that ↓ ⇒ R ⊆ R. Moreover, this last ordered set is a lattice whose infimum operation
is intersection and whose supremum operation is union.

Before discussing the dual categories of some subvarieties of WH-algebras, we
mention that [12] describes finitely generated free weak Heyting algebras and pro-
vides a coalgebraic perspective on WH-spaces. Namely, it is shown that the category
of WH-spaces is isomorphic to the category of Vietoris coalgebras on the category
of Priestley spaces, a result analogous to the well-known isomorphism between the
category of modal algebras and the category of Vietoris coalgebras on Stone spaces
[42].

The duality for WH-algebras just described specializes to the five subviarieties of
WH considered in Sect. 4.4:

• The category of subresiduated lattices is dually equivalent to the category of WH-
spaces ↑X,↓, R, τ ∧ with R reflexive and transitive.

• The category of RWH-algebras is dually equivalent to the category of WH-spaces
↑X,↓, R, τ ∧ with R reflexive.

• The category of TWH-algebras is dually equivalent to the category of WH-spaces
↑X,↓, R, τ ∧ with R transitive.

• The category of basic algebras is dually equivalent to the category of WH-spaces
↑X,↓, R, τ ∧ with R ⊆ ↓.

Basic algebras and RWH-algebras have interesting characterizations, related to
the condition

a → b ↓ c iff a ↓ b ≤ c, (4.1)

expressing that the implication is the residual of the meet. This condition character-
izes the WH-algebras that are Heyting algebras. A WH-algebra A is a basic algebra
if and only if the implication from left to right of (4.1) holds, and it is a RWH-algebra
if and only if the other implication of (4.1) holds. Therefore, the implication from left
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to right is satisfied in A if and only if in the dual WH-space X (A) of A it holds that
RA is contained in the inclusion relation. It is easily shown that the other implication
holds if and only if the inclusion relation on X (A) is contained in RA. As a corollary,
it follows from the duality between the categories of WH-algebras and of WH-spaces
that for every WH-space ↑X,↓, R, τ ∧, D(X) is a RWH-algebra if and only if the
relation ↓ is contained in the relation R, and that the category of RWH-algebras is
dually equivalent to the category of WH-spaces ↑X,↓, R, τ ∧ such that ↓ ⊆ R.

The above considerations imply that Heyting algebras, as WH-algebras, can be
characterized in terms of their dual WH-spaces in an easy way. Since a WH-algebra
A is a Heyting algebra if and only if condition (4.1) holds, a WH-algebra A is a
Heyting algebra if and only if the WH-relation RA on the set X (A) is the inclusion
relation. Therefore, a WH-space ↑X,↓, R, τ ∧ is (isomorphic to) the WH-space of a
Heyting algebra if and only if ↓ = R. Thus, as we already mentioned, Esakia duality
follows from the duality between the category of WH-algebras and the category of
WH-spaces.

The correspondence between the algebraic concepts for WH-algebras and order-
topological concepts for WH-spaces goes in parallel with the correspondence
between the algebraic concepts for bounded distributive lattices and order-topological
concepts for Priestley spaces we presented in Sect. 4.2.

Let A be a WH-algebra. The map ι defined in Sect. 4.2, whose domain is the
set of closed subsets of X (A), establishes a dual isomorphism between the lattice of
closed RA-up-sets of X (A) and the lattice Con(A) of congruences of A.

The duals of filters of A are the duals of filters of its lattice reduct, namely the
closed up-sets of X (A). In modal algebras, the open filters are the filters that are
closed under the dual operator �. In every modal algebra, the lattice of open filters
is isomorphic to the lattice of congruences. A similar notion of filter can be defined
for a WH-algebra A. A filter F of A is an open filter if for every a ∅ F , 1 ≤ a ∅ F .
The closed up-sets that correspond to open filters are the closed up-sets of X (A)

which are also RA-up-sets. Moreover, these closed sets correspond to the increasing
congruences of A, where a congruence θ of A is increasing if for every x, y ∅ X (A),
if θ is compatible with x and x ⊆ y, then θ is compatible with y.

Let A be a WH-algebra and M the universe of a bounded sublattice of A. Then M

is the universe of a subalgebra of A if and only if H(M)⇒ RA ⊆ RA ⇒
(
⊆−1

M ≥ ⊆M

)
,

where H is the map defined in Sect. 4.2. Moreover, the map H establishes a dual
isomorphism between the lattice of universes of subalgebras of A and the lattice of the
Priestley quasi-orders R on X (A) with the property that R ⇒ RA ⊆ RA ⇒ (

R−1 ≥ R
)
.

Applying this result to Heyting algebras, we obtain the well-known theorem that says
that for every Heyting algebra A, the map H establishes a dual isomorphism between
the lattice of universes of subalgebras of A and the lattice of Esakia quasi-orders on
X (A). The reason is that RA is the inclusion relation and for a Priestley quasi-order
R, we have R ⇒ ⊆ = R.
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4.6 Duality for Bounded Implicative Semilattices

In this section we expound the duality for bounded implicative semilattices developed
in [8, 11], where it is called generalized Esakia duality. Bounded implicative semilat-
tices can be described as the subalgebras of the (→,≤, 0, 1)-reducts of Heyting alge-
bras. As we mentioned in the Introduction, bounded implicative semilattices provide
an algebraic semantics for the fragment of intuitionistic logic with the connectives
→,≤, 0, 1. As we will see, the dual space of a bounded implicative semilattice is a
Priestley space augmented with a dense subset that satisfies certain conditions. When
the bounded implicative semilattice happens to be a Heyting algebra, that is, when
every two elements have a supremum in the semilattice order, then its dual space is
an Esakia space. Thus, Esakia duality easily follows from the duality we present in
this section.

The structure of the section is as follows. First we recall the definition of a
(bounded) implicative semilattice and then we proceed to expound the Priestley
style duality for these algebras. To do so, we first need to describe the Priestley style
duality for distributive meet-semilattices developed in [8, 9] and for their order duals
in [35, 36]. The reader can find proofs of all the results we present in this section in
[8, 9, 11].

Definition 8 An implicative semilattice is an algebra A = ↑A,→,≤, 1∧ where
↑A,→, 1∧ is a relatively pseudo-complemented meet-semilattice with greatest, or top,
element 1 and ≤ is the binary operation on A of relative pseudo-complementation
(or residuation); that is, for all a, b, c,

a → c ↓ b iff c ↓ a ≤ b.

A bounded implicative semilattice is an algebra A = ↑A,→,≤, 0, 1∧ where
↑A,→,≤, 1∧ is an implicative semilattice and 0 is a least, or bottom, element.

The meet-semilattice order ↓ of an implicative semilattice ↑A,→,≤, 1∧ satisfies

a ↓ b iff a ≤ b = 1,

for all a, b ∅ A. The class of implicative semilattices forms a variety and so does the
class of bounded implicative semilattices. An axiomatization can be found in [44].

The meet-semilattice reduct of a bounded implicative semilattice is a bounded
distributive meet-semilattice, where we recall that a bounded meet-semilattice
L = ↑L ,→, 0, 1∧ is distributive if for every a, b1, b2 ∅ L with b1 → b2 ↓ a there
exist c1, c2 ∅ L such that b1 ↓ c1, b2 ↓ c2 and a = c1 → c2.

Generalized Esakia duality for bounded implicative semilattices is built on gen-
eralized Priestley duality for bounded distributive meet-semilattices in a similar
way Esakia duality builds on Priestley duality. Therefore, before expounding it
we need to recall briefly the generalized Priestley duality for bounded distribu-
tive meet-semilattices. This duality was developed for bounded join-semilattices
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and homomorphisms between bounded join-semilattices that in addition preserve
existing finite meets in [35, 36], and for bounded distributive meet-semilattices and
all homomorphisms between them in [8, 9]. The main difference between the duality
for the category whose morphisms are the homomorphism that also preserve existing
finite joins (or dually, existing finite meets, if we consider join-semilattices) and the
duality for the category with all homomorphisms is that in the first case the dual of a
morphism is a function and in the second case it is a relation. The idea of consider-
ing relations as duals of homomorphisms in the context of topological dualities for
implicative semilattices originates in [13]. But it can be traced back to the work of
Halmos [32, 33], where hemimorphisms between Boolean algebras (i.e. maps that
preserve join and 0) are described dually by means of ceratin relations between their
dual spaces, an idea also exploited in [51] and [18].7 This is closely related to the
duality for modal algebras because in a modal algebra A the operator ♦ is a hemi-
morphism of the Booelan reduct of A to itself, and so in the dual Boolean space of A
the operator ♦ corresponds to a binary relation. All this is in accordance with recent
discoveries of the need of using relations as duals of morphisms in the general theory
of dualities and canonical extensions, for example in the discrete dualities presented
in [23], and also in the theory of RS-frames given in [27].

4.6.1 Generalized Priestley Duality

Let L = ↑L ,→, 0, 1∧ be a bounded meet-semilattice. A filter of L is a nonempty set
F ⊆ L which is an up-set w.r.t. ↓ and is closed under finite meets. The set of all
filters of L ordered by set-theoretic inclusion is a complete lattice where the infimum
of a set of filters is their intersection. A filter is proper if it is not L . A filter is prime
if it is a prime element of the lattice of filters; that is, if it is proper and for all filters
F1, F2 of L , whenever F1 ≥ F2 ⊆ F , then F1 ⊆ F or F2 ⊆ F . It is well known that
a bounded meet-semilattice is distributive if and only if the lattice of its filters is a
distributive lattice.

The notions of filter, proper filter and prime filter for bounded meet-semilattices
extend to bounded implicative semilattices; they are just filters, proper filters and
prime filters of the bounded meet-semilattice reduct. In any bounded implicative
semilattice A it holds that a set F ⊆ A is a filter if and only if 1 ∅ F and for every
a, b ∅ A, if a, a ≤ b ∅ F , then b ∅ F .

For a bounded distributive meet-semilattice L , if we define a topology on the set
Pr(L) of prime filters of L as we do in the case of bounded distributive lattices to
obtain the dual Priestley space, that is, by considering the topology generated by the
subbasis

{σ(a) : a ∅ L} ∩ {σ(a)c : a ∅ L},

7 Halmos introduced the term ‘hemimorphism’ in the above sense, but in the literature we find
‘hemimorphism’ applied to the meet and top preserving maps as well, see e.g. [51].
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where σ(a) := {P ∅ Pr(L) : a ∅ P} for every a ∅ L , we may end up with a non
compact space, and the same holds for bounded implicative semilattices, as the
following example shows.

Example 1 Let L be the bounded distributive meet-semilattice shown in Fig. 4.2,
which is an implicative semilattice because the meet operation is residuated. The
prime filters of L are the principal up-sets ∨1, ∨a, ∨b and ∨cn for each n. Thus, the
set Pr(L) of prime filters of L , ordered by set-inclusion, looks as shown in Fig. 4.2.
Clearly Pr(L) with the topology just considered is not compact because the sequence
{∨cn : n ∅ ω} has no limit point. In order to make Pr(L) compact, we need to add
to Pr(L) the limit of this sequence. Therefore, we need to add to Pr(L) the filter
{1, c1, c2, . . . }, which is not a prime filter.

This indicates that to obtain a Priestley style duality for bounded distributive meet-
semilattices we need to work with a collection of filters that in many cases includes
properly the collection of prime filters. The filters of that collection are called optimal
filters in [9]. They can be introduced through the distributive envelope of a bounded
distributive meet-semilattice that we proceed to define.

Let L be a bounded distributive meet-semilattice. Let X = Pr(L) be the set
of prime filters of L and let ↓ be set-theoretic inclusion. Then ↑X,↓∧ is a poset.
Moreover, let σ[L] = {σ(a) : a ∅ L}, where σ(a) = {F ∅ Pr(L) : a ∅ F} for every
a ∅ L . The map σ is a bounded meet-semilattice homomorphism from L to P∨(X);
that is, it preserves the bounds and meet. Let De(L) denote the sublattice of P∨(X)

generated by σ[L]. This lattice is the distributive envelope of L . For several equivalent
characterizations of De(L) and more information on the distributive envelope, we
refer to [8, 9, 36]. Here we need to know that σ : L ≤ De(L) is in addition
one-to-one and preserves all existing finite joins in L .

A filter F of L is optimal if there exists a prime filter P of De(L) such that
F = σ−1[P]. As was shown in [8, Lem. 4.20], each prime filter of L is optimal,
but there are optimal filters of L which may not be prime. Indeed, the distributive
envelope of the meet-semilattice L shown in Fig. 4.2 is shown in Fig. 4.3. Obviously
P = ∨(σ(a) ∩ σ(b)) is a prime filter of De(L), so F = σ−1[P] = {1, c1, c2, . . . } is
an optimal filter of L , which is not a prime filter of L .
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The optimal filters of a bounded distributive meet-semilattice L correspond to
the weakly prime ideals of the dual join-semilattice L∂ of L; this ideals are the key
ingredients of the duality developed in [35, 36]. The optimal filters of L are exactly
the pseudoprime elements (joins of prime ideals) [29, Def. I-3.24] of the lattice of
filters of L . Moreover, the optimal filters turn out to be the filters that are complements
of prime Frink ideals. Recall that a Frink ideal [26] is a set I ⊆ L such that for every
finite A ⊆ I the set of all upper bounds of the set of all lower bounds of A is
included in I , and that a Frink ideal I is prime if a ∅ I or b ∅ I whenever a → b ∅ I .
If L is a bounded distributive lattice, then the Frink ideals are the ideals of L and so
the optimal filters of L are exactly the prime filters of L .

The basic category of bounded distributive meet-semilattices for which we
present a duality is the category BDM whose objects are bounded distributive meet-
semilattices and whose morphisms are meet-semilattice homomorphisms between
them that preserve the top element. If L1, L2 are bounded distributive meet-
semilattices, a map h : L1 ≤ L2 is a meet-semilattice homomorphism preserving
the top element if for every a, b ∅ L1, h(a →1 b) = h(a) →2 h(b) and h(1) = 1.

Some facts on optimal and prime filters of a bounded distributive meet-semilattice
that are important to obtain the duality are listed in the two propositions below.

Let L be a distributive meet-semilattice. We denote by Lˆ the set of optimal
filters of L and by L+ the set of prime filters. Moreover, for every a ∅ L , we set
φL(a) := {x ∅ Lˆ : a ∅ x}.
Proposition 5 1. L+ ⊆ Lˆ, and the equality holds whenever L is a lattice,
2. for every x ∅ Lˆ there exists y ∅ L+ such that x ⊆ y; i.e. in the poset ↑Lˆ,⊆∧,

∃L+ = Lˆ,
3. for every x ∅ Lˆ, x ∅ L+ if and only if the set {ϕL(a) : a �∅ x} is updirected

(under inclusion).

The topology τ on Lˆ that we consider is the topology generated by the subbasis

{ϕL(a) : a ∅ L} ∩ {ϕL(b)c : b ∅ L}.
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Then:

Proposition 6 4. ↑Lˆ,⊆, τ ∧ is a Priestley space and is homeomorphic and order
isomorphic to the Priestley space of the distributive envelope De(L) of L,

5. L+ is a dense subset of Lˆ,
6. the maximal elements of ϕL(a)c are prime filters,
7. if U is a clopen up-set with the property that the maximal elements of U c are

prime filters, then there is a ∅ L such that U = ϕL(a).

The seven facts just mentioned in Propositions 5 and 6 motivate the definition
of the objects of the dual category of BDM we are going to introduce. To define
these objects we need some notions and notation. Let X be a Priestley space and let
X0 be a dense subset of X . A clopen up-set U of X is said to be X0-admissible if
max(U c) ⊆ X0.8 This condition holds if and only if U is a clopen up-set such that
U c = ∃(X0 − U ). Let Xˆ denote the set of X0-admissible clopen up-sets of X . For
x ∅ X we let Ix = {U ∅ Xˆ : x /∅ U }.
Definition 9 A quadruple X = ↑X, τ ,↓, X0∧ is a generalized Priestley space if:

1. ↑X, τ ,↓∧ is a Priestley space,
2. X0 is a dense subset of X ,
3. X = ∃X0,
4. for every x ∅ X , x ∅ X0 iff Ix is updirected,
5. for every x, y ∅ X , we have x ↓ y iff (∞U ∅ Xˆ)(x ∅ U ⇒ y ∅ U ).

If X is a generalized Priestley space, then Xˆ is a bounded distributive meet-
semilattice, where meet is intersection and ⇐ and X are the bounds. Conversely,
for a bounded distributive meet-semilattice L , facts (1)–(7) in Propositions 5 and 6
above show the quadruple Lˆ = ↑Lˆ, τ ,⊆, L+∧ is a generalized Priestley space and
the map ϕL : L ≤ Lˆˆ is an order-isomorphism. Moreover, if X is a generalized
Priestley space, then the map ψ : X ≤ Xˆˆ defined by

ψX (x) = {U ∅ Xˆ : x ∅ U },

for every x ∅ X , is a homeomorphism and an order isomorphism such that
ψX [X0] = Xˆ+.

Now we define the morphisms of our category, which are relations between gen-
eralized Priestley spaces.

Definition 10 Let X and Y be generalized Priestley spaces and let R ⊆ X × Y . For
every Z ⊆ Y we define

Rˆ[Z ] = {x ∅ X : R[x] ⊆ Z}.

8 If X = ↑X, τ ,↓∧ is a Priestley space and Y ⊆ X , max(Y ) denotes the set of ↓-maximal elements
of Y .
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A relation R ⊆ X × Y is a generalized Priestley morphism if:

1. R[x] = ⋂{U ∅ Y ˆ : R[x] ⊆ U } for every x ∅ X ,
2. if U ∅ Y ˆ, then Rˆ[U ] ∅ Xˆ.

Thus, if R ⊆ X × Y is a generalized Priestley morphism, then Rˆ can be turned into
a meet-semilattice homomorphism Rˆ : Y ˆ ≤ Xˆ preserving the top element by
letting Rˆ(U ) = Rˆ[U ] [9, Lem. 6.5]; this map is the dual of R.

The dual of a meet-semilattice homomorphism h : L1 ≤ L2 preserving the top
element is the relation hˆ ⊆ (L2)ˆ × (L1)ˆ defined by

y hˆx iff h−1[y] ⊆ x

for every y ∅ (L2)ˆ and every x ∅ (L1)ˆ. This relation is a generalized Priestley
morphism.

The usual relational composition of two generalized Priestley morphisms may
not be a generalized Priestley morphism. To obtain the category GPS of generalized
Priestley spaces and generalized Priestley morphisms, a composition operation of
two generalized Priestley morphisms has to be defined. This is done in [8, 9]. Let
X, Y and Z be generalized Priestley spaces, and let R ⊆ X × Y and S ⊆ Y × Z
be generalized Priestley morphisms. The composition is the relation SˆR ⊆ X × Z
defined by

x(SˆR)z iff (∞U ∅ Zˆ)((R ⇒ S)[x] ⊆ U ⇒ z ∅ U ),

where R ⇒ S is the usual relational composition of R and S. Then

x(SˆR)z iff (∞U ∅ Zˆ)(x ∅ Rˆ[Sˆ[U ]] ⇒ z ∅ U ).

It holds [9, Lem. 6.8] that if R and S are generalized Priestley morphisms, then so
is S ˆ R and (S ˆ R)ˆ = Rˆ ⇒ Sˆ. Moreover, the operation ˆ is associative and
for every generalized Priestley space X , the relation ↓X is the identity morphism
of GPS. Also, if L1, L2 and L3 are bounded distributive meet-semilattices and
h : L1 ≤ L2, k : L2 ≤ L3 are meet-semilattice homomorphisms preserving top,
then (k ⇒ h)ˆ = hˆ ˆ kˆ.

In [8, 9] it is shown that the maps (.)ˆ : BDM ≤ GPS and (.)ˆ : GPS ≤
BDM that arise from the definitions above are indeed functors that establish a dual
equivalence between BDM and GPS with natural transformations the maps ϕL and
the generalized Priestley relations RX defined as follows. Let X be a generalized
Priestley space. The relation RX ⊆ X × Xˆˆ is defined from the map ψX by

x RX P iff ψX (x) ⊆ P

for every x ∅ X and every P ∅ Xˆˆ.
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Theorem 5 The categories BDM and GPS are dually equivalent.

Recall that in Priestley duality for bounded distributive lattices the dual of a
homomorphism h is onto if and only if h is one-to-one, and it is one-to-one if and
only if h is onto. There are nice characterizations of the duals in GPS of onto and of
one-to-one morphisms in BDM. Let X and Y be generalized Priestley spaces. We say
that a generalized Priestley morphism R ⊆ X ×Y is 1-1 if for every x ∅ X and every
U ∅ Xˆ with x �∅ U there exists V ∅ Y ˆ such that R[U ] ⊆ V and R[x] �⊆ V , and we
say that it is onto if for every y ∅ Y there exists x ∅ X such that R[x] = ∨y. It holds
that R is 1-1 if and only if its dual h R : Y ˆ ≤ Xˆ is an onto meet-homomorphism
preserving top; and also that R is onto if and only if h R : Y ˆ ≤ Xˆ is a one-to-one
meet-homomorphism preserving top. Dually, if L1 and L2 are bounded distributive
meet-semilattices and h : L1 ≤ L2 is a meet-homomorphism preserving top, then
h is one-to-one if and only if its dual hˆ is onto; and also h is onto if and only if hˆ
is 1-1.

In [8, 9] other categories of generalized Priestley spaces are considered by
restricting the class of morphisms. Let X and Y be generalized Priestley spaces.
A generalized Priestley morphism R ⊆ X × Y is total if R−1[Y ] = X and it is
functional if for every x ∅ X there exists y ∅ X such that R[x] = ∨y. So, every func-
tional generalized Priestley morphism is total. It is easy to see that the composition
ˆ of two total generalized Priestley morphisms is total and the composition ˆ of two
generalized functional Priestley morphisms is functional.

If L1 and L2 are distributive meet-semilattices and h : L1 ≤ L2 is a meet-
semilattice homomorphism preserving top, then h preserves bottom if and only if hˆ
is total, and h preserves all existing finite joins in L1 if and only if hˆ is functional.
It follows from these facts that the category BDMB of all bounded meet-semilattices
with the meet-semilattice homomorphisms preserving the bounds is dually equiva-
lent to the category of generalized Priestley spaces with the total generalized Priest-
ley morphisms, and the category BDMJ of all bounded meet-semilattices with the
meet-semilattice homomorphisms preserving the bounds and the existing finite joins
is dually equivalent to the category of generalized Priestley spaces and functional
generalized Priestley morphisms.

4.6.2 Generalized Esakia Duality

Before specializing generalized Priestley duality to bounded implicative semilattices
to obtain generalized Esakia duality, let us see how the map ϕL behaves with respect
to the relative pseudo-complements that may exist in a bounded distributive meet-
semilattice L .

Let L be a bounded distributive meet-semilattice. We consider the poset ↑Lˆ,⊆∧
and the relative pseudo-complement, or residuation, operation ≤Lˆ on the lattice of
up-sets of Lˆ. Recall that this operation satisfies
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U ≤Lˆ V := {x ∅ Lˆ : ∨x ≥ U ⊆ V }.

Lemma 4 Let L be a bounded distributive meet-semilattice. Then ϕL : L ≤ Lˆˆ
preserves existing relative pseudo-complements; that is, if the relative pseudo-
complement of a, b ∅ L exists in L and we denote it by a ≤ b, then

ϕL(a ≤ b) = ϕL(a) ≤Lˆ ϕL(b).

Proof Let a, b ∅ L . Since ϕL(a → b) = ϕL(a) ≥ ϕL(b), we have ϕL(a) ≥ ϕL(a ≤
b) = ϕL(a → (a ≤ b)) ⊆ ϕL(b), and so ϕL(a ≤ b) ⊆ ϕL(a) ≤Lˆ ϕL(b). If
x /∅ ϕL(a ≤ b), then a ≤ b /∅ x . Let F be the filter of L generated by {a} ∩ x .
If there is c ∅ F ≥ ∃b, then there is d ∅ x such that a → d ↓ c ↓ b. Therefore,
d ↓ a ≤ b, and so a ≤ b ∅ x , a contradiction. Thus, F ≥∃b = ⇐, and by the prime
filter lemma (see, e.g., [31, Sect. II.5, Lem. 2]), there is y ∅ L+ ⊆ Lˆ such that F ⊆ y
and b /∅ y. It follows that x ⊆ y, a ∅ y and b /∅ y. Therefore, y ∅ ∨x ≥ ϕL(a)

and y /∅ ϕL(b). Thus, ∨x ≥ ϕL(a) �⊆ ϕL(b), and so x /∅ ϕL(a) ≤Lˆ ϕL(b).
Consequently, ϕL(a ≤ b) = ϕL(a) ≤Lˆ ϕL(b). �

Let X be a generalized Priestley space. By [8, Cor. 6.16], Xˆ ∩{U c : U ∅ Xˆ} is a
subbasis of X , and as Xˆ is closed under finite intersections, we can write each clopen
subset U of X in the form U = ⋃n

i=1(Ui ≥ ⋂m
j=1 V c

j ) = ⋃n
i=1(Ui − ⋃m

j=1 Vj ) for
some Ui , Vj ∅ Xˆ.

Definition 11 Let X be a generalized Priestley space. A clopen subset U of X is
called Esakia clopen if U = ⋃n

i=1(Ui ≥V c
i ) = ⋃n

i=1(Ui −Vi ) for some U1, . . . , Un,

V1, . . . , Vn ∅ Xˆ.

It is not difficult to see [11, Lem. 3.5] that if U is an Esakia clopen set of a
generalized Priestley space X , then max(U ) ⊆ X0. And it is worth pointing out that
the converse of this implication is not true in general; see Example 2 below.

Definition 12 We call a generalized Priestley space X a generalized Esakia space
if ∃U is clopen for each Esakia clopen U of X .

Proposition 7 1. If A is a bounded implicative semilattice, then Aˆ = ↑Aˆ, τ ,⊆,

A+∧ is a generalized Esakia space.
2. If X is a generalized Esakia space, then Xˆ is closed under the operation ≤X

and Xˆ = ↑Xˆ,≥,≤X ,⇐, X∧ is a bounded implicative semilattice.

Proof (1) Suppose that A is a bounded implicative semilattice. Then A is a bounded
distributive meet-semilattice, and so Aˆ is a generalized Priestley space. Let U be
Esakia clopen in Aˆ. Then U = ⋃n

i=1(ϕA(ai ) − ϕA(bi )) for some ai , b j ∅ A.
By Lemma 4, ϕA(ai ) ≤ ϕA(bi ) = [∃(ϕA(ai ) − ϕA(bi ))]c ∅ Aˆˆ. Therefore,
∃(ϕA(ai ) − ϕA(bi )) is clopen in Aˆ for each i ↓ n. Thus, ∃U = ⋃n

i=1 ∃(ϕA(ai ) −
ϕA(bi )) is clopen in Aˆ, and so Aˆ is a generalized Esakia space.

(2) Suppose that X is a generalized Esakia space. Then X is a generalized
Priestley space, and so ↑Xˆ,≥, X,⇐∧ is a bounded distributive meet-semilattice. Let
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Fig. 4.4 A, De(A), Aˆ, De(A)ˆ

U, V ∅ Xˆ. Then U − V is Esakia clopen. Therefore, ∃(U − V ) is clopen in X and
max∃(U − V ) = max(U − V ) ⊆ max(V c) ⊆ X0. As (U ≤ V )c = ∃(U − V ), it
follows that U ≤X V ∅ Xˆ. Consequently, ↑Xˆ,≥,≤, X,⇐∧ is a subalgebra of the
(≥,≤, X,⇐)-reduct of the Heyting algebra P∨(X). So it is a bounded implicative
semilattice. �

If X = ↑X, τ ,↓, X0∧ is a generalized Esakia space, one may expect that ↑X, τ ,↓∧
is not only a Priestley space but an Esakia space. The next example shows that this
may not be the case in general. Algebraically it means that the distributive envelope
De(A) of a bounded implicative semilattice A may not be a Heyting algebra.

Example 2 Consider the implicative semilattice A shown in Fig. 4.4. The distributive
envelope De(A) of A and the dual space Aˆ of A are also shown in Fig. 4.4. Note
that the black circles indicate the elements of A and the white circles indicate the
elements of De(A)− A. Then Aˆ is a generalized Esakia space order-homeomorphic
to the dual space De(A)ˆ of De(A). We denote by P the filter {1, g1, g2, . . .} and
by Q the filter ∨a ∩ ⋃{∨ fn : n ∅ ω}. It is easy to see that Q is the only optimal
filter of A which is not prime. Thus, A+ = Aˆ − {Q}. It is also easy to calculate
that a ≤ b = b and a ≤ c = c in A, but that σ(a) ≤ (σ(b) ∩ σ(c)) does
not exist in De(A). Consequently, De(A) is not a Heyting algebra. Stated dually,
U = {∨a,∨ f1,∨ f2, . . . , Q} is clopen in Aˆ, but ∃U = U ∩ {P} is not clopen in
Aˆ. Thus, Aˆ is not an Esakia space. Of course, U is not Esakia clopen because
Aˆ is a generalized Esakia space. Note that V = U ∩ {∨d1} is an example of non-
Esakia clopen in Aˆ such that max(V ) ⊆ X0. showing that to be Esakia clopen is
not equivalent to having the maximal elements in X0.
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The morphisms between generalized Esakia spaces are defined as follows.

Definition 13 Let X and Y be generalized Esakia spaces. We call a generalized
Priestley morphism R ⊆ X × Y a generalized Esakia morphism if

(∞x ∅ X)(∞y ∅ Y0)(x Ry ⇒ (∃z ∅ X0)(x ↓ z & R[z] = ∨y)).

Equivalently, R ⊆ X ×Y is a generalized Esakia morphism if and only if R[x]≥Y0 =
R[∨x ≥ X0] ≥ Y0 for every x ∅ X . A generalized Esakia morphism is total if it is
total as a generalized Priestley morphism and it is functional if it is functional as a
generalized Priestley morphism.

Similar to the generalized Priestley morphism case, we have that if R and S are
generalized Esakia morphisms, then so is the composition S ˆ R.

The duals of implicative semilattice homomorphisms are generalized Esakia mor-
phisms and the duals of generalized Esakia morphisms are implicative semilattice
homomorphisms.

Proposition 8 1. Let A and B be bounded implicative semilattices and let h : A ≤
B be an implicative semilattice homomorphism. Then the relation hˆ ⊆ Bˆ× Aˆ
is a generalized Esakia morphism. Moreover, if h is a bounded homomorphism,
then hˆ is total, and if h preserve all existing finite joins, then hˆ is functional.

2. Let X and Y be generalized Esakia spaces and let R ⊆ X × Y be a generalized
Esakia morphism. Then Rˆ : Y ˆ ≤ Xˆ is an implicative semilattice homomor-
phism. Moreover, if R is total, then Rˆ is a bounded homomorphism, and if R is
functional, then Rˆ preserves all existing finite joins.

It is important to notice that the condition in the definition of generalized Esakia
morphism can not be strengthened to

(∞x ∅ X)(∞y ∅ Y )(x Ry ⇒ (∃z ∅ X)(x ↓ z & R[z] = ∨y))

as Example 4.5 in [11] shows.
Let GES denote the category of generalized Esakia spaces and generalized Esakia

morphisms, in which ˆ is the composition of two morphisms and ↓X is the identity
morphism for each object X . Let also GEST denote the subcategory of GES whose
objects are the generalized Esakia spaces and whose morphisms are the total gen-
eralized Esakia morphisms, and let GESF denote the subcategory of GEST whose
objects are the generalized Esakia spaces and whose morphisms are the functional
generalized Esakia morphisms. The category GESF is a non-full subcategory of
GEST and GEST is a non-full subcategory of GES.

Let BIM denote the category of bounded implicative semilattices and implicative
semilattice homomorphisms, BIMB the category of bounded implicative semilat-
tices and bounded implicative semilattice homomorphisms, and BIMJ the category
of bounded implicative semilattices and implicative semilattice homomorphisms
preserving all existing finite joins. We have that BIMJ is a non-full subcategory
of BIMB and BIMB is a non-full subcategory of BIM.
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Theorem 6 The categories BIM, BIMB and BIMJ are dually equivalent to the cat-
egories GES, GEST and GESF, respectively.

There is a category of generalized Esakia spaces dual to BIMJ whose morphisms
are functions instead of relations. To describe it we first deal with the bounded
distributive meet-semilattice case.

Let X and Y be generalized Priestley spaces. A map f : X ≤ Y is a strong
Priestley morphism if it is order preserving and for every U ∅ Y ˆ, f −1[U ] ∅
Xˆ. Note that any strong Priestley morphism is a Priestley morphism between the
corresponding Priestley spaces, but the converse may not be true. Now let X and Y
be generalized Esakia spaces. A map f : X ≤ Y is a strong Esakia morphism if it
is a strong Priestley morphism that in addition satisfies:

(∞x ∅ X)(∞y ∅ Y0)( f (x) ↓ y ⇒ (∃z ∅ X0)(x ↓ z & f (z) = y)).

Let X and Y be generalized Priestley spaces and R ⊆ X × Y a functional gener-
alized Priestley morphism. The map f R : X ≤ Y defined by

f R(x) = the least element of R[x]

is a strong Priestley morphism. And if X, Y, Z are generalized Priestley spaces and
R ⊆ X×Y and S ⊆ Y ×Z are functional Priestley morphisms, then f SˆR = f S⇒ f R .
In case X and Y are generalized Esakia spaces and R ⊆ X × Y is a functional
generalized Esakia morphism, f R is a strong Esakia morphism.

Let X and Y be generalized Priestley spaces and f : X ≤ Y a strong Priestley
morphism. The relation R f ⊆ X × Y defined by

x R f y iff f (x) ↓ y,

for every x ∅ X and every y ∅ Y , is a functional generalized Priestley morphism.
Moreover, if X, Y, Z are generalized Priestley spaces and f : X ≤ Y and g : Y ≤ Z
are strong Priestley morphisms, then Rg⇒ f = Rg ˆ R f . If X and Y are generalized
Esakia spaces and f : X ≤ Y is a strong Esakia morphism, then R f is a functional
generalized Esakia morphism.

It is easy to see that if X, Y are generalized Priestley spaces, R ⊆ X × Y is a
functional generalized Priestley morphism and f : X ≤ Y is a strong Priestley
morphism, then R f R = R and f R f = f .

Let GPSS be the category of generalized Priestley spaces and strong Priestley
morphisms and let GESS be the category of generalized Esakia spaces and strong
Esakia morphisms. From the comments above, it is easy to see that the categories
GPSS and GPSF are isomorphic and so are the categories GESS and GPSF. Thus:

Theorem 7 The categories GESS and BIMJ are dually equivalent.

This theorem implies Esakia duality for Heyting algebras. Esakia spaces can
be identified with the generalized Esakia spaces X where X0 = X . Under this
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identification, Esakia morphisms are strong Esakia morphisms. So, the category of
Esakia spaces is isomorphic to the full subcategory of GESS whose objects are the
generalized Esakia spaces X where X0 = X . The dual category of this category
is a subcategory of BIMJ whose objects are the bounded implicative semilattices
that are the (→,≤, 0, 1)-reducts of Heyting algebras. Therefore, it is isomorphic to
the category of Heyting algebras. Thus, this last category is dually equivalent to the
category of Esakia spaces.

Moreover, in the present setting it is very natural to consider categories whose
objects are Heyting algebras but whose morphisms preserve less structure than homo-
morphisms of Heyting algebras. Let A and B be Heyting algebras. We say that a
map h : A ≤ B is a (→,≤)-homomorphism if h(a → b) = h(a) → h(b) and
h(a ≤ b) = h(a) ≤ h(b) for all a, b ∅ A; this implies that h(1) = 1. We say
that it is a (→,≤, 0)-homomorphism if in addition it preserves the bottom element,
and we say that it is a (→,∨,≤)-homomorphism if it is a (→,≤)-homomorphism
that preserves nonempty finite joins. Note that if h : A ≤ B is an onto (→,≤)-
homomorphism, then it is an onto Heyting algebra homomorphism.

Let HA→,≤, HA→,≤,0 and HA→,∨,≤,0 be the categories with objects Heyting alge-
bras and with morphisms (→,≤)-homomorphisms, (→,≤, 0)-homomorphisms and
(→,∨,≤, 0)-homomorphisms, respectively. Then identifying again Esakia spaces
with the generalized Esakia spaces X where X0 = X , Theorem 6 allows us to
obtain categories with Esakia spaces as objects and generalized Esakia morphisms,
total generalized Esakia morphisms and functional generalized Esakia morphisms
as morphisms that are dual to the categories HA→,≤, HA→,≤,0 and HA→,∨,≤,0,
respectively.

Although we only dealt with implicative semilattices with bottom, the duality for
bounded implicative semilattices we presented can be extended easily to the category
of all implicative semilattices in the same way it is done in [9, Sect. 9] for distributive
meet-semilattices possibly without a bottom element.

We conclude this section by a brief discussion of the dual concepts of filters,
ideals, Frink ideals and congruences.

The filters, ideals and Frink ideals of a bounded implicative semilattice are the
filters, ideals and Frink ideals of its meet-semilattice reduct. So, to obtain their duals
it is enough to describe the duals of this notions for bounded distributive meet-
semilattices. The maps δ and σ that we defined in Sect. 4.2 from the lattice of
filters and ideals of a bounded distributive lattice have their analogues for bounded
distributive meet-semilattices.

Let L be a bounded distributive meet-semilattice. We define the map δ with
domain the lattice of filters of L and the map σ with domain the set of Frink ideals
of L as follows:

δ(F) :=
⋂

{ϕL(a) : a ∅ F} σ (I ) :=
⋃

{ϕL(a) : a ∅ I }

for every filter F of L and every Frink ideal I of L . The map σ sets an isomorphism
between the lattice of Frink ideals of L and the lattice of open up-sets of Lˆ, and an
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isomorphism of the ordered set of ideals of L with the ordered set of open up-sets U
of Lˆ such that Lˆ − U = ∃(L+ − U ). And the the map δ sets a dual isomorphism
between the lattice of filters of L and the lattice of closed up-sets C of Lˆ satisfying
Lˆ − C = ∃(L+ − C). In particular, prime Frink ideals of L correspond to the open
upsets of Lˆ of the form (∃x)c for some x ∅ Lˆ, and prime ideals of L correspond
to the open upsets of Lˆ of the form (∃x)c for some x ∅ L+. Similarly, since there
are 1-1 correspondences between prime filters and prime ideals of L and between
optimal filters and prime Frink ideals of L , optimal filters of L correspond to the
closed upsets of Lˆ of the form ∨x for some x ∅ Lˆ, and prime filters of L correspond
to the closed upsets of Lˆ of the form ∨x for some x ∅ L+.

In each implicative semilattice, the lattice of its filters is dually isomorphic to the
lattice of its congruences. So, it follows from the just stated correspondence that if
A is an implicative semilattice, then there is an isomorphism between the lattice of
congruences of A and the lattice of closed up-sets C of the dual Esakia space Aˆ
such that Aˆ − C = ∃(A+ − C).

The dual characterization of subalgebras of bounded distributive meet-semilattices
and of bounded implicative semilattices is rather involved. We address the interested
reader to [10] where the dual characterization of homomorphic images of bounded
distributive meet-semilattices and of bounded implicative semilattices can also be
found.

4.7 Categories of Esakia Spaces with Partial Maps
as Morphisms

In [11] a different duality for the categories HA→,≤, HA→,≤,0 and HA→,∨,≤,0 is
also proved, where objects of the dual categories are Esakia spaces but morphisms
are partial maps instead of relations. Slightly different dualities for these categories
are obtained in [5], where morphisms are also partial maps. These last dualities are
used in [5] to obtain an enlightening algebraic approach to Zakhariaschev’s results
on canonical formulas for intuitionistic logic. M. Zakharyaschev [60, 62] introduced
canonical formulas and proved that every superintuitionistic (or intermediate) logic
can be axiomatized by canonical formulas. He later generalized the result to cover
all extensions of the modal logic K4. Zakharyaschev’s theorem has many useful
consequences. For instance, it was used by him to prove that the disjunction-free
fragment of a superintuitionistic logic with the disjunction property coincides with
the disjunction-free fragment of intuitionistic propositional logic [61] (a result proved
independently and by a different technique by Minari [43]). Zakharyaschev’s proof
is rather complicated and uses model-theoretic techniques, but [5] provides a more
simple proof using algebraic techniques and duality in a way that also provides an
algebraic explanation of some of the concepts used in Zakharyaschev’s proof.

We expound in this section the dualities in [5]. The reader can find the results and
their proofs there.
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Recall that a partial map f from a set X to a set Y is a map from a subset of
X to Y . Let X and Y be Esakia spaces. A partial map f : X ≤ Y is a partial Esakia
morphism if

1. for all x, y ∅ dom( f ), if x ↓ y, then f (x) ↓ f (y),
2. if x ∅ dom( f ), y ∅ Y and f (x) ↓ y, then there exists z ∅ dom( f ) such that

x ↓ z and f (z) = y,
3. f [∨x] is closed for every x ∅ X ,
4. if U is a clopen up-set of Y , then X − ∃ f −1[Y − U ] is a clopen up-set of X ,
5. for every x ∅ X , x ∅ dom( f ) if and only if there exists y ∅ Y such that

f [∨x] = ∨y.

The following fact is important to mention. If f : X ≤ Y is a partial Esakia
morphism from an Esakia space X to an Esakia space Y , then dom( f ) is a closed
subset of X . Thus, dom( f ) with the subspace topology is a Boolean space. It then
follows that f : dom( f ) ≤ Y is a continuous (total) function. It also follows that if
U is a closed subset of X , then f (U ) is a closed subset of Y .

Let A and B be Heyting algebras and let h : A ≤ B be a (→,≤)-homomorphism.
The partial map h• : X (A) ≤ X (B) with

dom(h•) := {x ∅ X (B) : h−1[x] ∅ X (A)}

and such that for every x ∅ dom(h•),

h•(x) = h−1[x]

is a partial Esakia morphism from X (B) to X (A).
Now let X and Y be Esakia spaces and let f : X ≤ Y be a partial Esakia

morphism. The map f • : D(Y ) ≤ D(X) defined by

f •(U ) := X − ∃ f −1[Y − U ],

for every U ∅ D(Y ), is a (→,≤)-homomorphism from D(Y ) to D(X).
The set-theoretic composition of composable partial Esakia morphisms need not

be an Esakia morphism as shown in Example 3.18 of [5]. So to obtain a category with
morphisms partial Esakia morphism between Esakia spaces, a composition operation
has to be defined.

Let X, Y, Z be Esakia spaces and f : X ≤ Y, g : Y ≤ Z be partial Esakia
morphisms. The map g π f : X ≤ Z is defined as follows. First we set

dom(g π f ) := {x ∅ X : g( f [∨x]) = ∨z for some z ∅ Z}

and then we set for each x ∅ dom(g π f ),

(g π f )(x) := the unique z such that ∨z = g( f [∨x]).
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This map is a partial Esakia morphism and (gπ f )• = f •⇒g•. Moreover, the operation
π between composable partial Esakia morphisms is associative, and the identity map
on an Esakia space is a partial Esakia morphism. Thus, we have that Esakia spaces and
partial Esakia morphisms with the composition operation π form a category, denoted
ESp. Furthermore, if we assign to every Esakia space X its dual Heyting algebra
D(X) and to every partial Esakia morphism f : X ≤ Y the (→,≤)-homomorphism
f • : D(Y ) ≤ D(X), we obtain a contravariant functor from ESp to HA→,≤.
To obtain a contravariant functor in the reverse direction that assigns to every Heyting
algebra A its dual Esakia space and to every (→,≤)-homomorphism h : A ≤ B
between Heyting algebras the partial Esakia morphism h• : X (B) ≤ X (A), we
need to know that if A, B, C are Heyting algebras and h : A ≤ B, k : B ≤ C are
(→,≤)-homomorphisms, then (k ⇒ h)• = h• π k•. This is indeed the case as shown
in [5]. These two contravariant functors establish an equivalence between HA→,≤
and ESp. The natural transformations are the same as for Esakia duality.

A partial Esakia morphism f : X ≤ Y from an Esakia space X to an Esakia
space Y is well if X = ∃dom( f ). The dual f• : D(Y ) ≤ D(X) of a well partial
Esakia morphism f : X ≤ Y is a (→,≤, 0)-homomorphism. Moreover, if A and
B are Heyting algebras and h : A ≤ B is a (→,≤, 0)-homomorphism, then the
dual partial Esakia morphism h• : X (B) ≤ X (A) is well. Also, the composition
π of two composable well partial Esakia morphisms is well and the identity map from
an Esakia space to itself is also well. These facts imply that the category HA→,≤,0

is dually equivalent to the subcategory of ESp whose objects are Esakia spaces and
whose morphisms are well partial Esakia morphisms.

Let X, Y be Esakia spaces. A partial Esakia morphism f : X ≤ Y is strong
if for every x ∅ X such that f [∨x] �= ⇐, we have x ∅ dom( f ). The dual
f• : D(Y ) ≤ D(X) of a strong partial Esakia morphism f : X ≤ Y is
a (→,∨,≤)-homomorphism. Moreover, if A and B are Heyting algebras and
h : A ≤ B is a (→,∨,≤)-homomorphism, then the dual partial Esakia morphism
h• : X (B) ≤ X (A) is strong. It follows that the category HA→,∨,≤ of Heyting
algebras and (→,∨,≤)-homomorphisms is dually equivalent to the subcategory of
ESp whose objects are Esakia spaces and whose morphisms are strong partial Esakia
morphisms.
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Chapter 5
On the Blok-Esakia Theorem

Frank Wolter and Michael Zakharyaschev

In memory of Leo Esakia

Abstract We discuss the celebrated Blok-Esakia theorem on the isomorphism
between the lattices of extensions of intuitionistic propositional logic and the Grze-
gorczyk modal system. In particular, we present the original algebraic proof of this
theorem found by Blok, and give a brief survey of generalisations of the Blok-Esakia
theorem to extensions of intuitionistic logic with modal operators and coimplication.

Keywords Modal logic · Intuitionistic logic · Modal algebra · Heyting algebra ·
Intermediate logics

5.1 Introduction

The Blok-Esakia theorem, which was proved independently by the Dutch logician
Wim Blok [6] and the Georgian logician Leo Esakia [13] in 1976, is a jewel of
non-classical mathematical logic. It can be regarded as a culmination of a long
sequence of results, which started in the 1920–1930s with attempts to understand
the logical aspects of Brouwer’s intuitionism by means of classical modal logic and
involved such big names in mathematics and logic as K. Gödel, A.N. Kolmogorov,
P.S. Novikov and A. Tarski. Arguably, it was this direction of research that attracted
mathematical logicians to modal logic rather than the philosophical analysis of
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modalities by Lewis and Langford [43]. Moreover, it contributed to establishing
close connections between logic, algebra and topology. (It may be of interest to note
that Blok and Esakia were rather an algebraist and, respectively, a topologist who
applied their results in logic.)

Blok’s and Esakia’s aims were to understand and describe the structure of
the extremely complex lattices of modal and superintuitionistic (aka intermediate)
logics—or, in algebraic terms, the lattices of varieties of topological Boolean and
Heyting algebras.1 Their theorem provided means for a comparative study of these
lattices and gave a ‘superintuitionistic classification’ of the lattice of modal logics
containing S4. Esakia [16] believed that one could give a complete description of
the structure of all modal companions of an arbitrary superintuitionistic logic. In
particular, he aimed to describe the structure of all modal companions of intuition-
istic propositional logic Int, discovered that the McKinsey system S4.1 was one of
them and that the Grzegorczyk [33] system Grz was the largest one. It is to be noted
that the first to observe and investigate the close relationship between the lattices of
extensions of Int and S4 were Dummett and Lemmon [11], who—in 1959—used
the relational representations of topological Boolean and Heyting algebras that are
known to us as Kripke frames. Maksimova and Rybakov [47] in 1974 laid a solid
algebraic foundation to the area.

This chapter is a brief overview of results related to the Blok-Esakia theorem,
which supplements the earlier survey [10]. In Sect. 5.2, we discuss the role and place
of the Blok-Esakia theorem in the theory of modal and superintuitionistic logics. In
Sect. 5.3, we give Blok’s original algebraic proof of this theorem, which has never
been properly published. Section 5.4 surveys generalisations of the Blok-Esakia
theorem to intuitionistic modal logics, and, in Sect. 5.5, we discuss its extension to
intuitionistic logic with coimplication.

5.2 Modal Companions of Superintuitionistic Logics

According to the (informal) Brouwer-Heyting-Kolmogorov semantics of intuition-
istic logic, a statement is true if it has a proof. Orlov [57] and Gödel [25] formalised
this semantics by means of a modal logic where the formula �ϕ stands for ‘ϕ is prov-
able.’ (Novikov [55] read �ϕ as ‘ϕ is establishable.’) Their modal logic contained
classical propositional logic,2 Cl, three properly modal axioms

�(p → q) → (�p → �q), �p → p, �p → ��p,

1 Topological Boolean algebras [60] are also known as closure algebras [48], interior algebras [6]
and S4-algebras. Heyting algebras are called pseudo-Boolean algebras in [60].
2 Actually, Orlov [57] considered a somewhat weaker logic, which can be regarded as the first
relevant system.
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and the inference rules ϕ/�ϕ (if we have derived ϕ, then ϕ is provable), modus
ponens and substitution. Gödel [25] observed that the resulting logic is equivalent
to one of the systems in the Lewis and Langford [43] nomenclature, namely S4, and
conjectured that propositional intuitionistic logic Int, as axiomatised by Heyting [35],
can be defined by taking

ϕ ≤ Int iff T (ϕ) ≤ S4, (5.1)

where T (ϕ) is the modal formula obtained by prefixing � to every subformula3 of the
intuitionistic formula ϕ. This conjecture was proved by McKinsey and Tarski [49] in
1948; many other proofs of this fundamental result were given later by Maehara [44],
Hacking [34], Schütte [67], Novikov [55], et al.

It has been known since Gödel’s [24] that there are infinitely many (more precisely,
continuum-many [36]) logics between Int and Cl. Moreover, some of them are
‘constructive’ in the same way as Int, for instance, the Kleene realisability logic [38,
54, 65] or the Medvedev logic of finite problems [50]. The logics sitting between
Int and Cl were called intermediate logics by Umezawa [72, 73]; in the 1960s,
Kuznetsov suggested the name superintuitionistic logics (si-logics, for short) for all
extensions of Int. We denote the class of si-logics by ExtInt. The class of normal
(that is, closed under the necessitation rule ϕ/�ϕ) extensions of S4 will be denoted
by NExtS4. Thus,

ExtInt = {Int + Γ | Γ ⊆ LI },
NExtS4 = {S4 ⊆ Σ | Σ ⊆ LM },

where LI is the set of propositional (intuitionistic) formulas, LM is the set of modal
formulas, + stands for ‘add the formulas in Γ and take the closure under modus
ponens and substitution,’ while ⊆ also requires the closure under necessitation.

Dummett and Lemmon [11] extended the translation T to the whole class of
si-logics. More precisely, with every si-logic L = Int+Γ they associated the modal
logic τ L = S4 ⊆ {T (ϕ) | ϕ ≤ Γ } and showed that L is embedded in τ L by T : for
every ϕ ≤ LI , we have

ϕ ≤ L iff T (ϕ) ≤ τ L . (5.2)

It turned out, in particular, that τCl = S5, τKC = S4.2, τLC = S4.3, where

Cl = Int + p ∈ ¬p, S5 = S4 ⊆ p → �♦p,

KC = Int + ¬p ∈ ¬¬p, S4.2 = S4 ⊆ ♦�p → �♦p,

LC = Int + (p → q) ∈ (q → p), S4.3 = S4 ⊆ �(�p → q) ∈ �(�q → p).

3 There are different variants of the translation T ; in fact, it is enough to prefix � to propositional
variables, implications and negations only.
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One of the questions considered in [11] was to identify those properties of logics that
were preserved under the map τ .

Grzegorczyk [33] found a proper extension of S4 into which Int can also be
embedded by T . His logic is known now as the Grzegorczyk logic

Grz = S4 ⊆ �(�(p → �p) → p) → p.

Thus, we have, for every ϕ ≤ LI :

ϕ ≤ Int iff T (ϕ) ≤ Grz. (5.3)

In fact, according to the Blok-Esakia theorem, Grz is the largest extension of
S4 into which Int is embeddable by T . Esakia [13] observed that Int was also
embeddable into the McKinsey logic S4.1 = S4 ⊆ �♦p → ♦�p.

A systematic study of the embeddings of si-logics into modal logics was launched
by Maksimova and Rybakov [47], Blok [6] and Esakia [13, 15, 16]. Maksimova and
Rybakov introduced two more maps:

ρ : NExtS4 → ExtInt and σ : ExtInt → NExtS4

where

– ρM = {ϕ ≤ LI | T (ϕ) ≤ M}, for every M ≤ NExtS4; Esakia called ρM the
superintuitionistic fragment of M , and M a modal companion of ρM ;

– σ L = τ L ⊆ Grz, for every L ≤ ExtInt (Maksimova and Rybakov [47] used a
somewhat different map, which was later shown to be equivalent to σ by Blok and
Esakia).

Thus, for example, ρGrz = ρS4.1 = Int, τ Int = S4, and σ Int = Grz.
The results of Maksimova and Rybakov [47], Blok [6] and Esakia [13, 15, 16]

on the relationship between ExtInt and NExtS4 can be summarised as follows:

1. The set of all modal companions of any si-logic L forms the interval

ρ−1(L) = {M ≤ NExtS4 | τ L ⊆ M ⊆ σ L},

with τ L being the smallest and σ L the greatest modal companions of L in
NExtS4.4 Note that this interval always contains an infinite descending chain
of logics; for some si-logics, it may contain continuum-many modal logics.

2. The map ρ is a lattice homomorphism from NExtS4 onto ExtInt, τ is a lattice
isomorphism from ExtInt into NExtS4, and all the three maps ρ, τ and σ preserve
infinite sums and intersections of logics [47].

4 That every si-logic L has a greatest modal companion was first established by Maksimova and
Rybakov [47], who gave an answer to an open question by R. Bull; however, they did not observe
that greatest modal companion is actually τ L ⊆ Grz.
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3. (The Blok-Esakia Theorem) The map σ is a lattice isomorphism from ExtInt
onto NExtGrz.

4. Rybakov [66] also observed that, for any L ≤ ExtInt, the lattice ExtL is isomor-
phically embeddable intoρ−1 L . It follows, for example, that there are a continuum
of modal companions of Int.

The emerging relationship between the lattices ExtInt and NExtS4 can be described
semantically. Recall (see, e.g., [9, 27] for details and further references) that general
frames for Int are structures of the form F = (W, R, P), where W is a non-empty
set, R a partial order on W and P is a collection of upward closed subsets of W (with
respect to R) that contains ∩ and is closed under ∩, ∅ and the operation → defined
by taking

X → Y = {x ≤ W | ∀y (x Ry ↑ y ≤ X → y ≤ Y )}.

If P contains all upward closed subsets in W , then F is called a Kripke frame and
denoted by F = (W, R). Every si-logic L is characterised by the class FrL of general
frames validating L . General frames for S4 are triples of the form F = (W, R, P),
where R a quasi-order on W ↓= ∩ and P ⊆ 2W is a Boolean algebra of subsets of
W closed under the operation � defined by taking

�X = {x ≤ W | ∀y (x Ry → y ≤ X)}.

General frames of the form F = (W, R, 2W ) are called Kripke frames and denoted
by F = (W, R). Every logic M ≤ NExtS4 is characterised by the class FrM of
general frames validating M . For example, a Kripke frame F = (W, R) is in FrGrz
iff F does not contain an infinite ascending chain of the form x1 Rx2 Rx3 . . . with
xi ↓= xi+1, i ∧ 1. We call such frames Noetherian. The smallest non-Noetherian
frame contains two distinct points accessible from each other; we denote this frame
by C2.

Given a frame F = (W, R, P) for S4 and a point x ≤ W , we denote by C(x) the
cluster generated by x in F, that is, the set

C(x) = {y ≤ W | x Ry and y Rx}.

(Thus, the frame C2 above is just a two-point cluster.) The skeleton of F is the general
frame ρF = (ρW, ρR, ρ P) for Int defined by taking ρX = {C(x) | x ≤ X}, for
X ≤ P , C(x)ρRC(y) iff x Ry, and

ρ P = {ρX | X ≤ P and X = �X}.

Conversely, given a frame F = (W, R, P) for Int, denote by σF the frame
(W, R, σ P) for S4, where σ P is the Boolean closure of P in 2W . Note that the
operator σ does not preserve Kripke frames as, for example, σ(ω,∃) is not a Kripke
frame. Another way of converting an intuitionistic frameF = (W, R, P) into a modal
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one is by expanding its points into clusters. Given a cardinal κ , 0 < κ ∃ ω, define
τκF = (κW, κ R, κ P) by replacing every x ≤ W with a κ-cluster with the points xi ,
for i ≤ κ , and taking κ P to be the Boolean closure of {X I | I ⊆ κ and X ≤ σ P},
where X I = {xi | i ≤ I and x ≤ X} [79]. One can show that both ρσF and ρτκF
are isomorphic to F.

Given a class K of frames, we set ρK = {ρF | F ≤ K }; a similar notation
will be used for the operators σ and τκ . The logic determined by K is denoted by
LogK (it will always be clear from the context whether it is a si- or modal logic).
Now, we have:

(ρ) for any M ≤ NExtS4 and K , M = LogK iff ρM = LogρK ,
(τ ) for any L ≤ ExtInt and K , L = LogK iff τ L = Log{τκK | κ < ω},
(σ ) for any L ≤ ExtInt and K , L = LogK iff σ L = LogσK .

Thus, we can think of NExtS4 as a two-dimensional structure: in one dimension,
we can change the skeleton of frames and thereby change the si-fragment ρM of
a modal logic M ; in the other, we can change the size of clusters in frames, which
keeps the same si-fragment ρM but varies the logic between τρM and σρM .

A little bit different perspective can be obtained by employing the machinery of
canonical formulas (see [4, 9, 80] for details and further references). For simplicity,
let us imagine that all logics in ExtInt and NExtS4 are subframe logics, that is, their
classes of frames are closed under taking (not necessarily generated) subframes. All
such logics are Kripke complete [17, 78], so we can only deal with Kripke frames.
Given a finite rooted quasi-order F, one can construct a modal formula, α(F), such
that, for any frame G, we have G ↓|= α(F) iff F is a p-morphic image of a subframe
of G; in this case we also say that G is sub-reducible to F. A similar intuitionistic
formula, β(F), can be associated with any finite rooted partial order F. The formulas
of the form α(F) and β(F) are called subframe formulas. As shown in [17, 78],
all subframe modal and si-logics can be axiomatised by the respective subframe
formulas. (We note in passing that the subframe si-logics are precisely those logics
in ExtInt that can be axiomatised by purely implicative formulas [78, 81].)

Given a si-logic L = Int + {β(Fi ) | i ≤ I }, every logic M ≤ ρ−1L can be
represented in the form

M = S4 ⊆ {α(Fi ) | i ≤ I } ⊆ {α(F j ) | j ≤ J }, (5.4)

where every frame F j , j ≤ J , contains a cluster with at least two points. The logic
S4 ⊆ {α(Fi ) | i ≤ I } is obviously τ L , while σ L = τ L ⊆ α(C2). The lattice ρ−1Cl
of modal companions of classical logic Cl looks as follows:

τCl = S5 ∨ · · · ∨ S5 ⊆ α(Cn) ∨ · · · ∨ S5 ⊆ α(C2) = Log{C1},

where Cn is a cluster with n points. However, for other si-logics L , the lattice ρ−1L
may be very complex.
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Every M ≤ NExtS4 can be represented as

M = M≥ ⊆ τρM, with M≥ ⊆ Grz.

Muravitsky [53] called the logic M≥ a modal component of M and observed that
the modal components of M form a dense sublattice of NExtS4 with M ∩ Grz as
its greatest element. The problem whether this sublattice always has a least element
was left open in [53]. We only note here that a least element does exist if M is a
subframe logic.

The semantic characterisations given above can be used to investigate whether
this or that property of logics is preserved under the maps ρ, τ and σ . For example,
all the three maps preserve decidability, the finite model property and the disjunction
property [47, 79]; Kripke completeness is preserved by ρ, τ but not by σ [47, 68,
79]; interpolation is preserved only under ρ [46]. (For more preservation results and
further references consult [9, 10].)

In this chapter, we do not consider embeddings of Int and its extensions into
the logic of formal provability (in Peano Arthmetic) GL, found by Boolos [7],
Goldblatt [26] and Kuznetsov and Muravitskij [42]. A discussion of these results
can be found in [10]; see also the chapters in this volume written by T. Litak and
A. Muravitsky. Artemov [1] analyses the Brouwer-Heyting-Kolmogorov interpreta-
tion of intuitionistic logic in the context of his logics of proofs LP closely related to
S4. Relationships between first-order si- and modal logics are investigated in [23].

5.3 An Algebraic Proof of the Blok-Esakia Theorem

In this section, we give a sketch of the algebraic proof of the Blok-Esakia theorem
that was found by Blok in his PhD thesis [6] but never published in a journal. (A proof
using the machinery of canonical formulas was given in [9]; Jerabek [37] considered
modal companions of si-logics from the point of view of inference rules and also
gave a proof of the Blok-Esakia theorem.)

We remind the reader that si- and modal logics are determined by varieties of
Heyting and, respectively, topological Boolean algebras. A Heyting algebra A =
(A,↑,∈,→,⊥,⇐) extends a bounded distributive lattice (A,↑,∈,⊥,⇐) with a
binary operator a → b for the relative pseudo-complement of a with respect to b;
that is, for all c ≤ A, we have a ↑ c ∃ b iff c ∃ a → b. The class of all Heyting
algebras is a variety (equationally definable); we denote it by H . Subvarieties V of
H are in 1–1 correspondence to si-logics: for any class V of Heyting algebras, the
set

L(V ) = {ϕ ≤ LI | ∀A ≤ V A |= (ϕ = ⇐)}

is a si-logic and, conversely, for every si-logic L ,
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V (L) = {A | ∀ϕ ≤ L A |= (ϕ = ⇐)}

is a variety of Heyting algebras. Moreover, L(V (L)) = L and V (L(V )) = V for
any si-logic L and any variety V of Heyting algebras. These results can be proved
directly or using duality between Heyting algebras and general frames for Int: for any
such general frame F = (W, R, P), the set P with operations ∩, ∅, and → defined
above forms a Heyting algebra denoted byF+. Conversely, for every Heyting algebra
A, one can construct a general frame A+ = (W, R, P) whose domain W consists of
all prime filters X in A with X RY iff X ⊆ Y , and V ≤ P iff there exists a ≤ A with
V = {X ≤ W | a ≤ X}. Moreover, A is isomorphic to (A+)+.

A topological Boolean algebra, or an S4-algebra, A = (A,↑,∈,¬,⊥,⇐,�)

extends a Boolean algebra (A,↑,∈,¬,⊥,⇐) with a unary operator � satisfying
the following equations, for all a, b ≤ A:

�⇐ = ⇐, �(a ↑ b) = �a ↑ �b, �a ∃ a, �a ∃ ��a.

The class of all S4-algebras is a variety; we denote it by V (S4). Subvarieties V of
V (S4) are in 1–1 correspondence to normal extensions of S4: for any class V of
S4-algebras, the set

L(V ) = {ϕ ≤ LM | ∀A ≤ V A |= (ϕ = ⇐)}

is a logic in NExtS4 and, conversely, for every logic L ≤ NExtS4,

V (L) = {A | ∀ϕ ≤ L A |= (ϕ = ⇐)}

is a variety of S4-algebras. Moreover, L(V (L)) = L and V (L(V )) = V for any
L ≤ NExtS4 and any variety V of S4-algebras. Similarly to the representation of
Heyting algebras by frames for Int above, one can represent S4-algebras by general
frames for S4. For any such general frame F = (W, R, P) for S4, the set P with
the operations intersection, union, complement, and � defined above forms an S4-
algebra denoted by F+. Conversely, for every S4-algebra A, one can construct a
general frame A+ = (W, R, P) whose domain W consists of all ultrafilters X in
A with X RY iff {a | �a ≤ X} ⊆ Y , and V ≤ P iff there exists a ≤ A with
V = {X ≤ W | a ≤ X}. And again, A is isomorphic to (A+)+.

We are in the position now to describe the relationship between si-logics and
normal extensions of S4 at the level of Heyting and S4-algebras.

From S4-algebras to Heyting algebras. For any S4-algebra A = (A,↑,∈,

¬,⊥,⇐,�), we define a Heyting algebra ρA by taking

ρA = (ρ A,↑,∈,→,⊥,⇐),



5 On the Blok-Esakia Theorem 107

where ρ A = {�a | a ≤ A} and a → b = �(¬a ∈ b). Alternatively, one can obtain
(an isomorphic copy of) ρA by applying the operation ρ defined for general frames
to A+ and then taking the induced algebra; that is, ρA is isomorphic to (ρ(A+))+.

From Heyting algebras to S4-algebras. Conversely, with every Heyting algebra
A one can associate an S4-algebra σA in the following way. First, given a bounded
distributive lattice D = (D,↑,∈,⊥,⇐), we construct the free Boolean extension
B of D with domain B = σ D ⇒ D, which is the (uniquely determined) Boolean
algebra generated by D such that, for any bounded lattice homomorphism f : D → C
into a Boolean algebra C, there exists a unique Boolean homomorphism h : B → C
with h♦D = f . Now, given a Heyting algebra A = (A,↑,∈,→,⊥,⇐), we obtain
the S4-algebra σA by setting in the free Boolean extension of its underlying bounded
distributive lattice

�a =
n∧

i=1

(ai → bi ), for a =
n∧

i=1

(¬ai ∈ bi ).

One can show that σA ≤ V (Grz) and thatA |= (ϕ = ⇐) iff σA |= (T (ϕ) = ⇐). σA
can also be obtained by first formingA+ = (W, R, P) and then taking the S4-algebra
(W, R, σ P)+ induced by (W, R, σ P), where σ P has been defined above.

Given classes K and H of S4- and Heyting algebras, respectively, we set

ρK = {ρA | A ≤ K } and σH = {σA | A ≤ H }.

We denote by HK , SK , PK , and PUK the classes of subalgebras, homomorphic
images, products, and ultraproducts of algebras inK , respectively. Recall that a class
K of algebras (of the same signature) is a variety if, and only if, it is closed under
subalgebras, homomorphic images, and products. Every first-order definable class
(and, hence, every variety) is closed under ultraproducts. The following lemma can
be proved by showing that ρV is closed under subalgebras, homomorphic images,
and products [5, 6]:

Lemma 1. For any variety V of S4-algebras, ρV is a variety of Heyting algebras.

For a variety V of Heyting algebras, σV is not always a variety. We denote by
σ ≥V the variety of S4-algebras generated by σV . The following result implies the
Blok-Esakia Theorem:

Theorem 1. (i) For every variety V of Heyting algebras, ρσ ≥V = V .
(ii) For every variety V of Grz-algebras, σ ≥ρV = V .

For a detailed and instructive exposition of the main steps of the proof of Theorem
1, we refer the reader to [3]. Here we focus on (ii) and, in particular, the following
technical lemma from Blok’s PhD thesis, which is the key to the algebraic proof of
the Blok-Esakia theorem.
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Lemma 2. Let A ≤ V (Grz) be a countable algebra and let B be a subalgebra of
A such that

– ρ A ⊆ B;
– there exists c ≤ A such that A is the Boolean closure of B ∅ {c} in A (denoted,

slightly abusing notation, A = [B ∅ {c}]B A).

Then A ≤ SPUB.

Proof (sketch). We follow the proof given in Blok’s PhD thesis [6]. Suppose that
B = {bi | i < ω} and let U be a non-principal ultrafilter onω. We remind the reader of
the definition of the ultraproduct

∏
i<ω B/U . First, we define an equivalence relation

∀U by taking g ∀U g◦ iff {i < ω | g(i) = g◦(i)} ≤ U , for any g, g◦ ≤ ∏
i<ω B,

and set [g] = {g◦ | g ∀U g◦}. The domain of
∏

i<ω B/U is {[g] | g ≤ ∏
i<ω B}.

For b ≤ B, let b̂ = (b, b, . . . ) ≤ ∏
i<ω B. The map f : B → ∏

i<ω B/U defined
by taking f (b) = [̂b] is an embedding of the S4-algebra B into the S4-algebra∏

i<ω B/U . We show that f extends to an embedding f̂ of the S4-algebra A into
the S4-algebra

∏
i<ω B/U .

For n ∧ 0, let

Cn = {bi ≤ B | bi ∃ c, i ∃ n}, cn =
∨

b≤Cn

b, ĉ = (cn)n<ω.

First, using a Lemma on the existence of Boolean embeddings from [31, p. 84] one
can show that f can be extended to a Boolean embedding f̂ : A → ∏

i<ω B/U with
f̂ (c) = [̂c]. The next, and crucial, part of the proof is to show that f̂ commutes with
the �-operator. Then A ≤ SPUB, as required. To show that f̂ commutes with �,
let a ≤ A. Then

a = (c ∈ d1) ↑ (¬c ∈ d2) ↑ d3,

for some d1, d2, d3 ≤ B. It suffices to show that

(a) f̂ (�(c ∈ d1)) = � f̂ (c ∈ d1),
(b) f̂ (�(¬c ∈ d2)) = � f̂ (¬c ∈ d2),
(c) f̂ (�d3) = � f̂ d3,

since then we shall have:

f̂ (�a) = f̂ (�((c ∈ d1) ↑ (¬c ∈ d2) ↑ d3))

= f̂ (�(c ∈ d1) ↑ �(¬c ∈ d2) ↑ �d3)

= f̂ (�(c ∈ d1)) ↑ f̂ (�(¬c ∈ d2)) ↑ f̂ (�d3)

= � f̂ (c ∈ d1) ↑ � f̂ (¬c ∈ d2) ↑ � f̂ d3

= � f̂ (a).

Now, (c) follows from d3 ≤ B and the condition that f is a homomorphism. For (a),
let b = d1. We observe that
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�(c ∈ b) = �((�(c ∈ b) ↑ ¬b) ∈ b)

because �(c ∈ b)↑¬b ∃ c. We have �(c ∈ b)↑¬b ≤ B since �(c ∈ b) ≤ ρ A ⊆ B
and b ≤ B. Hence �(c ∈ b) ↑ ¬b = bn for some n < ω. We obtain cn ∧ bn and, for
all m ∧ n,

�(c ∈ b) = �((�(c ∈ b) ↑ ¬b) ∈ b) ∃ �(cm ∈ b) ∃ �(c ∈ b).

Thus, �(c ∈ b) = �(cm ∈ b) for all m ∧ n. The equation f̂ (�(c ∈ b)) = � f̂ (c ∈ b)

follows.
To show (b), let b = d2, p = �(¬c ∈ b), and q = �((c ↑¬b)∈ p). We note that

q = �(¬(¬c ∈ b) ∈ �(¬c ∈ b)). We obtain ¬p ↑ q ∃ c ↑ ¬b. Since A ≤ V (Grz),
we obtain, for all x ,

A |= �(¬�(¬x ∈ �x) ∈ �x) = �x

and, therefore,

�(¬q ∈ p) = �(¬�(¬(¬c ∈ b) ∈ �(¬c ∈ b)) ∈ �(¬c ∈ b))

= �(¬c ∈ b).

We have ¬p ↑ q ≤ B since ρ A ⊆ B, and so ¬p ↑ q = bn for some n < ω.
From ¬p ↑ q ∃ c ↑ ¬b we obtain bn ∃ cm ↑ ¬b for all m ∧ n, and therefore
¬bn ∧ ¬cm ∈ b, for all m ∧ n. Hence

�(¬c ∈ b) = �(¬q ∈ p) = �¬bn ∧ �(¬cm ∈ b) ∧ �(¬c ∈ b).

Thus, we obtain �(¬c ∈ b) = �(¬cm ∈ b) for all m ∧ n. The required equation
f̂ (�(¬c ∈ b)) = � f̂ (¬c ∈ b) follows. �

We are now in the position to show that σ ≥ρV = V , for any variety V of Grz-
algebras. The inclusion σ ≥ρV ⊆ V is clear. Since any variety is generated by its
finitely generated members, to prove V ⊆ σ ≥ρV it is sufficient to show that all
finitely generated A ≤ V are in the variety generated by σρV . Let A ≤ V be
generated by {a1, . . . , an}. σρA is (isomorphic to) a subalgebra of A. Consider the
sequence

[σρA ∅ {a1}]B A, . . . , [σρA ∅ {a1, . . . , an}]B A = A.

By Lemma 2, it follows by induction that

[σρA ∅ {a1, . . . , ai }]B A ≤ V (σρA) ⊆ σ ≥ρV ,

for 1 ∃ i ∃ n. Thus, A ≤ σ ≥ρV , as required.
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Intuitionistic logic and its extensions can be embedded in modal logics different
from normal extensions of S4 using different translations; for details and references,
the reader can consult [10]. In the remainder of this chapter, we briefly consider
extensions of Int with extra operators.

5.4 Blok-Esakia Theorems for Intuitionistic Modal Logics

Modal extensions of intuitionistic propositional logic are notoriously much harder
to investigate than si-logics and standard (uni)modal logics. In fact, it is already non-
trivial to define what an intuitionistic analogue of a given modal logic should be—for
intuitionistic � and ♦ are not supposed to be dual. Servi [18, 20], for instance, used a
generalisation of the translation T to argue that her systems were ‘true’ intuitionistic
analogues of classical modal logics. In this section, we briefly discuss two extensions
of the Blok-Esakia theorem to intuitionistic modal logics.

We begin by considering the most obvious basic system IntK�, which is obtained
by adding to Int the standard axiom �(p ↑ q) ∞ (�p ↑ �q) and the necessita-
tion inference rule ϕ/�ϕ of the minimal modal logic K (♦ϕ can be defined as
¬�¬ϕ; note, however, that this ♦ does not distribute over disjunction). As before,
NExtIntK� denotes the family of logics of the form IntK� ⊆ Γ , where Γ is a
set of modal formulas. An example of a logic in this family is Kuznetsov’s [41]
intuitionistic provability logic

I� = IntK� ⊆ p → �p ⊆ (�p → p) → p ⊆ ((p → q) → p) → (�q → p),

an intuitionistic analogue of the provability logic GL. (Esakia suggested the name
KM for this logic; see Muravitsky’s chapter in this volume for a detailed account.)
Muravitskij [51, 52] actually proved that the lattices NExtI� and NExtGL are iso-
morphic (this result and some generalisations are discussed in Litak’s chapter).

A Kripke frame for IntK� is a structure of the form F = (W, R, R�), where R
is a partial order and R� a binary relation on W such that R ≈ R� ≈ R = R�. The
intuitionistic connectives are interpreted in F by means of R, while � is interpreted
via R�. Algebraically, every logic L ≤ NExtIntK� corresponds to the variety of
Heyting algebras with modal operators validating L . For more details on algebraic
and relational semantics of these logics and their duality, the reader is referred to
[71, 76].

We embed logics in NExtIntK� into extensions of the fusion (aka independent
join) S4 ⊗ K of the modal logics S4 and K. Assuming that the necessity operators
in S4 and K are denoted by �I and �, respectively, we consider the translation T
which prefixes �I to every subformula of a given formula in the language of IntK�.
As before, we say that T embeds L ≤ NExtIntK� into M ≤ NExt(S4 ⊗ K) if, for
every (unimodal) formula ϕ,
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ϕ ≤ L iff T (ϕ) ≤ M.

In this case M is called a bimodal companion of L .
For every logic M ≤ NExt(S4 ⊗ K), let

ρM = {ϕ | T (ϕ) ≤ M},

and let σ be the map from NExtIntK� into NExt(S4 ⊗ K) defined by taking

σ(IntK�⊆Γ ) = (Grz⊗K) ⊆ mix ⊆ T (Γ ), where mix = �I ��I p ∞ �p.

Here, the axiom mix reflects the condition R ≈ R� ≈ R = R� on frames for IntK�.
The following extension of the embedding results discussed in Sect. 5.2 was proved
in [76, 77]:

Theorem 2. (i) The map ρ is a lattice homomorphism from NExt(S4 ⊗ K) onto
NExtIntK�, which preservs decidability, Kripke completeness, tabularity and the
finite model property.

(ii) Each logic IntK� ⊆ Γ is embedded by T into any logic M in the interval

(S4 ⊗ K) ⊆ T (Γ ) ⊆ M ⊆ (Grz ⊗ K) ⊆ mix ⊆ T (Γ ).

(iii) The map σ is an isomorphism from NExtIntK� onto NExt((Grz⊗K)⊆mix)

preserving the finite model property and tabularity.

Very few general completeness and decidability results are known for intuitionistic
modal logics. The theorem above provides means for obtaining such results for logics
in NExtIntK�. For example, one can show that if a si-logic Int + Γ is decidable
(Kripke complete or has the finite model property) then the logic IntK� ⊆Γ enjoys
the same property (for details and more results, the reader is referred to [76, 77]).

Intuitionistic modal logics with independent � and ♦ can be defined as extensions
of the basic system IntK�♦, which contains the axioms and rules of IntK� as well
as the following axioms for ♦:

♦(p ∈ q) ∞ ♦p ∈ ♦q and ¬♦⊥.

Kripke frames for IntK�♦ are of the form (W, R, R�, R♦), where R is a partial order
(interpreting the intuitionistic connectives), while R� and R♦ are binary relations
on W (interpreting, respectively, � and ♦) such that the following conditions hold:
R ≈ R� ≈ R = R� and R−1 ≈ R♦ ≈ R−1 = R♦.

Perhaps the most prominent logics in NExtIntK�♦ were constructed by Prior [59]
and Fischer Servi [19, 20]. Fischer Servi introduced a weak connection between the
necessity and possibility operators in her system

FS = IntK�♦ ⊆ ♦(p → q) → (�p → ♦q) ⊆ (♦p → �q) → �(p → q).
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Frames for FS satisfy the following conditions:

x R♦y → ˆz (y Rz ↑ x R�z ↑ x R♦z),

x R�y → ˆz (x Rz ↑ x R�y ↑ z R♦y).

A remarkable feature of FS is that the standard first-order translation not only
embeds K into classical first-order logic but also FS into intuitionistic first-order
logic; for details, consult [32, 70]. Another important extension of IntK�♦ is the
logic

MIPC = FS ⊆ �p → p ⊆ �p → ��p ⊆ ♦p → �♦p ⊆
p → ♦p ⊆ ♦♦p → ♦p ⊆ ♦�p → �p

introduced by Prior [59]. MIPC is an intuitionistic analogue of the modal logic
S5 in the sense that it is equivalent to the one-variable fragment of intuitionistic
first-order logic in the same way as S5 is equivalent to the one-variable fragment
of classical first-order logic. (Note, by the way, that the two-variable intuition-
istic logic is undecidable [40], unlike the corresponding classical logic, which is
NExpTime-complete [30].) MIPC is determined by the class of its Kripke frames
(W, R, R�, R♦), where R� is a quasi-order, R♦ = R−1

� and R� = R ≈ (R� ∩ R♦).
The extension of MIPC with the duality axiom ¬�¬p → ♦p [21, 56, 64]

is known as weak S5 and denoted by WS5. Bezhanishvili [2] showed that, for
every formula ϕ, we have ϕ ≤ WS5 iff ¬¬ϕ ≤ MIPC (remember that, accord-
ing to Glivenko’s theorem, ϕ ≤ Cl iff ¬¬ϕ ≤ Int). Kripke frames (W, R, R�, R♦),
characterising WS5, are frames for MIPC such that R� is an equivalence relation
on W .

Bezhanishvili [3] proved an analogue of the Blok-Esakia theorem for WS5 and
the extension of Grz (in the language with �I ) with universal modalities. Modal
logics with universal modalities were introduced by Goranko and Passy [28] who,
for any (classical) modal logic L with �I , defined the (classical) bimodal logic Lu

with two boxes, �I and ∀, by taking

Lu = L ⊆ {axioms of S5 for ∀} ⊆ ∀p → �I p.

For example, the logic S4u can be interpreted in topological spaces by regarding
�I as the interior operator and ∀ as ‘for all points in the space.’ Because of this,
S4u plays a prominent role in spatial representation and reasoning; see [22] and
references therein. By adding to S4u the axiom ∀(♦I p → �I p) → ∀p ∈ ∀¬p, we
obtain the logic S4uC which is characterised by connected topological spaces [69].

Bezhanishvili [3] defined a translation T from the language of WS5 to the lan-
guage of S4u by extending the standard Gödel translation of Int into S4 with two
more clauses T (�ϕ) = ∀T (ϕ) and T (♦ϕ) = ˆT (ϕ), and showed that this translation
is an embedding of WS5 into both S4u and Grzu . It also embeds the logic



5 On the Blok-Esakia Theorem 113

WS5C = WS5 ⊆ �(p ∈ ¬p) → (p → �p)

into both S4uC and GrzuC = Grzu ⊆ ∀(♦I p → �I p) → ∀p ∈ ∀¬p. Moreover,
the following extension of the Blok-Esakia theorem holds for T :

– the lattice NExtWS5 is isomorphic to the lattice NExtGrzu , and
– the lattice NExtWS5C is isomorphic to the lattice NExtGrzuC.

A Blok-Esakia theorem for the lattice of all extensions of IntK�♦ is obtained
in [76]. In contrast to the target classical modal logics considered above, the modal
logic constructed in [76] has, in addition to the S4/Grz-modality, a modal operator
that is not normal (but still has a natural Kripke semantics).

5.5 The Blok-Esakia Theorem for the Heyting-Brouwer Logic

In the 1970s, Cecylia Rauszer suggested the extension of the signature of intuitionistic
logic by means of a new binary operator for coimplication, which we denote here
by ∗→. Algebraically, ∗→ is defined in terms of intuitionistic disjunction in the same
way as the intuitionistic implication is defined in terms of intuitionistic conjunction
and thus re-establishes, in an extension of intuitionistic logic, the symmetry between
classical disjunction and conjunction that is given up in the signature of intuitionistic
logic. The translation T of intuitionistic formulas to modal formulas can be extended
by setting

T (ϕ ∗→ψ) = ♦P (T (ψ) ↑ ¬T (ϕ)),

where ♦P is the basic Priorean tense operator for ‘at some time in the past’ that is
interpreted by the inverse of the accessibility relation for the modal �. To emphasise
symmetry, in this section, we denote the modal operator � by �F for ‘always in
the future.’ It turns out that many properties of the translation T still hold for this
translation of coimplication in Priorean tense logic. In particular, a natural Blok-
Esakia theorem holds. Interestingly, Leo Esakia [12, 14] considered both logics and
made significant contributions to the study of algebras and their dual Kripke frames
for both tense logics and intuitionistic logic extended by coimplication.

The basic logic in the extended language is called Heyting-Brouwer logic, HB,
and is axiomatised by adding to any standard Hilbert-style axiomatisation of Int the
axioms (we set ∗¬ = p ∗→⇐)

p → (q ∈ (q ∗→p)), (q ∗→p) → ∗¬(p → q),

(r ∗→(q ∗→p)) → ((p ∈ q) ∗→p), ¬(q ∗→p) → (p → q), ¬(p ∗→p),

and the rule (RN): p/¬ ∗¬p. HB and its first-order extensions have been investigated
in [61–63].
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In the same way as intuitionistic logic, HB is determined by Kripke frames that
are partial orders and in which

– w |= ϕ ∗→ψ iff there exists v with vRw, v |= ψ , and v ↓|= ϕ.

An algebraic semantics for HB is given by Heyting-Brouwer algebras (aka double
Heyting algebras, biHeyting-algebras, and Semi-Boolean algebras) which have been
investigated in, for example, [39, 45, 62]. For recent progress in proof theory for
HB we refer the reader to [8, 29, 58] (where, mostly, HB is called bi-intuitionistic
logic).

The basic tense logic into which HB is embedded by T is called S4.t. It is the
normal bimodal logic with operators �F and �P (and their duals ♦F and ♦P ) which
both satisfy the axioms for S4 and the Priorean tense axioms

p → �P♦F p and p → �F♦P p.

In the same way as S4, the tense logic S4.t is determined by Kripke frames that are
quasi-orders. The following equivalence follows directly from completeness with
respect to Kripke semantics: for all ϕ,

ϕ ≤ HB iff T (ϕ) ≤ S4.t.

We now extend the mappings τ , ρ, and σ between si-logics and normal extensions
of S4 to normal extensions of HB and S4.t. A normal super-Heyting-Brouwer logic
(shb-logic) is an extension of HB that is closed under modus ponens, substitution,
and (RN). By NExtL we denote the lattice of shb-logics containing a shb-logic L .
For a set Γ of intuitionistic formulas with coimplication, we denote by HB ⊆ Γ the
smallest shb-logic containing Γ . Similarly, a normal extension of S4.t is an extension
of S4.t closed under substitution, modus ponens, p/�P p, and p/�F p. By NExtL
we denote the lattice of normal tense logics containing a normal tense logic L and
by L ⊆ Γ we denote the smallest normal extension of L containing Γ .

The analogue of Grz in tense logic is given by Grz.t, which is obtained from S4.t
by setting

Grz.t = S4.t ⊆ {�F (�F (p → �F p) → p) → p, �P (�P (p → �P p) → p) → p}.

Note that we use the axiom for Grz for the future and the past. Using it for the future
only would give a weaker logic without the finite model property [74] which is a
tense companion of HB but not sufficiently strong for a Blok-Esakia theorem. We
set

– for L = HB ⊆ Γ , τ L = S4.t ⊆ {T (ϕ) | ϕ ≤ Γ },
– for M ≤ NExtS4.t, ρM = {ϕ | T (ϕ) ≤ M},
– for L ≤ NExtHB, σ L = Grz.t ⊆ τ L .

Now, using an extension of the algebraic methods used in Blok’s thesis, the following
is shown in [75]:
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1. The map ρ is a lattice homomorphism from NExtS4.t onto NExtHB; τ is a lattice
isomorphism from NExtHB into NExtS4.t. The three maps ρ, τ and σ preserve
infinite sums and intersections of logics.

2. The map σ is a lattice isomorphism from NExtHB onto NExtS4.t.

Wolter [75] also considers extensions of those mappings and the Blok-Esakia theorem
to non-normal super Heyting-Brouwer logics [logics that are not closed under (RN)]
and modal extensions of super Heyting-Brouwer logic. However, in contrast to the
situation for si-logics, the preservation properties of those mappings have not yet
been investigated in any detail.
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Chapter 6
Modal Logic and the Vietoris Functor

Yde Venema and Jacob Vosmaer

Dedicated to the memory of Leo Esakia, who was and will
remain a great source of inspiration, both as a logician
and as a person

Abstract In [16], Esakia uses the Vietoris topology to give a coalgebra-flavored
definition of topological Kripke frames, thus relating the Vietoris topology, modal
logic and coalgebra. In this chapter, we sketch some of the thematically related
mathematical developments that followed. Specifically, we look at Stone duality for
the Vietoris hyperspace and the Vietoris powerlocale, and at recent work combining
coalgebraic modal logic and the Vietoris functor.

Keywords Modal logic · Vietoris topology · Stone duality · Coalgebra

6.1 Introduction

The Vietoris hyperspace is a topological construction on compact Hausdorff spaces,
which was introduced in 1922 by Leopold Vietoris [41] as a generalization of the
Hausdorff metric. Given a compact Hausdorff space X , one can obtain the Vietoris
topology on K X , the set of compact subsets of X , by generating a topology from a
basis, consisting of all sets of the form

→{U1, . . . , Un} := {F ≤ K X | F ⊆⋃n
i=1Ui and ⊆i ∈ n, F ∩Ui �= ∅},
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where {U1, . . . , Un} ranges over the collection of finite sets of opens in X .
Alternatively, one can generate the Vietoris topology from a subbasis, consisting
of open sets

[U ] := {F ≤ K X | F ⊆ U } and 〈U ↑ := {F ≤ K X | F ∩U �= ∅},

where U ranges over the open subsets of X . This construction can be seen as
a functor on the category of compact Hausdorff spaces and continuous functions: if
f : X ↓ Y is continuous, then so is V f : V X ↓ V Y , where V f : F ∧↓ f [F] is
taking forward images.

With his 1974 paper [16], Leo Esakia was the first to point out that there is
a connection between the Vietoris topology and modal logic: he defines his topolog-
ical Kripke frames using the Vietoris topology, and links these structures to modal
algebras via a Stone-type duality. In fact, from a modern viewpoint, Esakia’s topo-
logical Kripke frames are coalgebras, and his duality is a key example of a nontrivial
algebra/coalgebra duality. This chapter will explore some of the further connections
within this picture—comprising the Vietoris topology, modal logic and coalgebra—
that have since been discovered in the mathematical landscape. In particular, we will
look at how modal logic can help one to understand the Vietoris construction.

Generally, modal logicians think of topological structures and Stone-type dualities
as tools for understanding modal logics; tools that are of interest primarily or at least
partly because the standard Kripke semantics is too coarse a tool for bringing out
subtle differences between modal logics. In this chapter, we take an opposite view,
namely of modal logic, and coalgebraic logic, as a tool for understanding the Vietoris
topology. In Sect. 6.2 we consider the basic case. We discuss the use of Boolean
modal logic for describing the Stone dual of the Vietoris functor on Stone spaces,
and the relation of this idea to coalgebra and Esakia’s work [16]. In Sect. 6.3 we see
that the relation between the Vietoris construction and modal logic generalizes from
Stone spaces to compact Hausdorff spaces. This takes us into locale theory, where
the modal logic approach has been used to generalize the Vietoris construction even
beyond compact Hausdorff spaces, to stably locally compact spaces. As examples
of situations where we find spaces which are not compact Hausdorff, we consider
distributive lattices and algebraic domains. Finally, in Sect. 6.4, we investigate a
recent perspective on the Vietoris construction, namely, via the nabla modality and
Moss’ coalgebraic logic. This leads to a new presentation of the Vietoris construction
in locale theory, as well as a new direction of generalization.

This chapter can serve as a first guide through the mathematical landscape that
we just sketched, by providing a tour along some well-known results, and relat-
ing these to new work. Throughout, we have assumed that the reader has at least
some basic familiarity with the following subjects: propositional modal logic and
its Kripke semantics, basic general topology and category theory, Stone duality for
Boolean algebras, and frames and locales as used in point-free topology. At the end
of each (sub)section we provide some historical notes and pointers to the literature
(in particular we provide references for facts that are mentioned without proof in the
main text).
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6.2 The Main Ideas in the Boolean Case

In his 1974 paper [16], Esakia presented duality results for topological Kripke frames
and modal algebras by building on Stone duality for Boolean algebras. Topological
Kripke frames, more commonly known as descriptive general frames, play an impor-
tant role in the model theory of modal logic, because unlike “ordinary” (discrete)
Kripke frames, they provide a complete semantics for modal logic. In his definition
of a topological Kripke frame, Esakia interestingly uses the Vietoris topology and
the idea that Kripke frames can be seen as what we nowadays call coalgebras. These
choices together foreshadow two influential ideas, which can be seen as red threads
running through the research we discuss in this chapter:

1. Modal logic can be used to present the Stone dual of the Vietoris functor;
2. Certain “modal variants” of Stone duality can be categorically separated into

dualities for their base logics and their modalities by stating them as alge-
bra/coalgebra duality results.

In this section we will discuss the above two ideas in the “basic” case of
Boolean algebras and Stone spaces. Our givens are the contravariant functors
K℘ : Stone ↓ BA and spec : BA ↓ Stone, which constitute the dual equiva-
lence BA ∃ Stoneop, and the covariant endofunctor V : Stone ↓ Stone. We can
present these three functors in one picture as follows:

BA
spec

��∃ Stone
K℘

��
V��

(6.1)

Can we do something about the asymmetry in this picture? Can we define a functor
on Boolean algebras, in “algebraic” terms, which is dual to V? In Sect. 6.2.1, we will
see that this is indeed the case. Specifically, we can use modal logic to describe a
functor Mf : BA ↓ BA, which can be seen as the Stone dual of V : Stone ↓ Stone.

BA
Mf ��

spec
��∃ Stone

K℘
��

V��
(6.2)

We can do two things with the resulting picture: we can use it to frame Esakia’s
duality as an algebra/coalgebra duality, which is what we will do in Sect. 6.2.2,
but we can also view it as an archetype, and ask ourselves: can we generalize this
picture? In Sect. 6.3, we will see that Mf is essentially a restriction of the Vietoris
powerlocale, a more general construction on locales, and that one can also prove
various duality results for Mf .



122 Y. Venema and J. Vosmaer

6.2.1 The Stone Dual of the Vietoris Functor

Our goal in this subsection is to present the fact that the functor Mf , which is presented
using modal logic, is the Stone dual of V : Stone ↓ Stone. To visualize this we pull
apart diagram (6.2), which gives us the following:

BA
spec

��

Mf

��

∃ Stone
K℘

��

V
��

BA
spec

��∃ Stone
K℘

��

(6.3)

What we mean by saying that Mf is the Stone dual of V is that the above diagram
commutes up to isomorphism. We will make this claim more precise shortly. The
subscript “f” on Mf denotes that this is a construction which constructs finitary
algebras; we will see an infinitary version of Mf in Sect. 6.3.

Starting from a Boolean algebra A = 〈A; ∨,≥,¬, 0, 1↑, we can define a new
Boolean algebra “based on” A using the following presentation by generators and
relations:

Definition 1. Let A be a Boolean algebra. We define Mf A to be the Boolean algebra
generated by the set {� a | a ≤ A}∪{♦ a | a ≤ A}, subject to the following relations:

� 1 = 1; ♦ 0 = 0;
�(a ∨ b) = � a ∨� b; ♦(a ≥ b) = ♦ a ≥ ♦ b;
�(a ≥ b) ∈ � a ≥ ♦ b; � a ∨ ♦ b ∈ ♦(a ∨ b).

One may obtain Mf A by taking the quotient, over the relations listed, of the free
Boolean algebra generated by the set {� a | a ≤ A} and {♦ a | a ≤ A}. In this
definition, the sets {� a | a ≤ A} and {♦ a | a ≤ A} represent two distinct copies
of A; we use boxes and diamonds to denote the respective elements of these sets in
order to underline the connection with modal logic. Observe that the relations are
nothing more than an algebraic axiomatization of the Boolean modal logic K; the last
two relations (the interaction axioms) imply that ♦¬a is the Boolean complement
of �a: simply substitute ¬a for b (also see Remark 1).

The action of Mf on Boolean algebra homomorphisms is defined as follows: given
a Boolean algebra homomorphism f : A ↓ B, we can map the generators of Mf A
into Mf B in the straightforward way, namely by sending

� a ∧↓ � f (a) and ♦ a ∧↓ ♦ f (a).

Since this mapping respects the relations on Mf A, we obtain a unique Boolean
algebra homomorphism Mf f : Mf A ↓ Mf B. This completes our description of
the functor Mf : BA ↓ BA.
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We will now state more precisely what we mean by saying that diagram
(6.3) commutes.

Fact 1. There exist natural isomorphisms such that for any Boolean algebra A and
any Stone space X, we have

1. Mf(K℘ X) ∃ K℘(V X), and
2. spec(Mf A) ∃ V(spec A).

Proof Sketch It follows from the fact that K℘ and spec form a dual equivalence of
categories that statements (1) and (2) are in fact equivalent. Below we will sketch a
proof of the fact that spec(Mf A) ∃ V(spec A) for any Boolean algebra A. We leave
the proof of the naturality of this isomorphism to the reader, and use without warning
the fact that in this setting, the compact sets coincide with the closed ones.

1. The elements of V(spec A), i.e., the closed subsets of spec A, are in a 1-1 corre-
spondence with Filt A, the filters of A. We can topologize Filt A by generating a
topology from

[a] := {F ≤ Filt A | a ≤ F}, and

〈a↑ := {F ≤ Filt A | ⊆b ≤ F, a ∨ b > 0},

where a ranges over the elements of A. Using this topology, Filt A is homeomor-
phic to V(spec A).

2. We view the elements of spec(Mf A), i.e., the ultrafilters of Mf A, as Boolean
homomorphisms p : Mf A ↓ 2, where 2 is the two-element Boolean algebra.
Given a homomorphism p : Mf A ↓ 2, we define

Fp := {a ≤ A | p(� a) = 1}.

This gives us a map from spec(Mf A) to Filt A.
3. Conversely, given a filter F ≤ Filt A, we define a map pF from the generators of

Mf A to 2 by specifying

pF (� a) =
{

1 if a ≤ F;
0 otherwise,

for the � -generators, and

pF (♦ a) =
{

1 if⊆b ≤ F, a ∨ b > 0;
0 otherwise,

for the ♦-generators. One can verify that this mapping extends to a Boolean
homomorphism pF : Mf A ↓ 2 by checking the relations from Definition 1.
Thus, we have defined a map from Filt A to spec(Mf A).

4. Finally, we must show that the assignments p ∧↓ Fp and F ∧↓ pF are both
continuous, and that for all F ≤ Filt A, F = FpF and for all p : Mf A ↓ 2,
p = pFp . �
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Remark 1. In Boolean modal logic, the modalities � and ♦ are interdefinable. For
the functor Mf : BA ↓ BA, this is reflected by the following fact. Given a Boolean
algebra A, we define M� A to be the Boolean algebra generated by the set {� a |
a ≤ A}, subject to the relations � 1 = 1 and �(a ∨ b) = � a ∨� b. One can easily
show that M� is a functor on the category of Boolean algebras; moreover, there
exists a natural isomorphism such that for any Boolean algebra A, Mf A ∃ M� A;
this isomorphism can be obtained by sending each � a-generator of Mf A to the
corresponding � a in M� A, and each ♦ a of Mf A to ¬�¬a in M� A. Indeed, all
of the narrative in Sect. 6.2.1 above could have been stated in terms of the functor
M� rather than Mf .

Notes

The Boolean case of Stone duality for the Vietoris functor, as discussed above, is discussed in more
detail by Kupke et al. [26]. See the notes for Sect. 6.3.1 for more sources.

6.2.2 Algebra/Coalgebra Duality

In this subsection we will use our new knowledge of the functor Mf : BA ↓ BA to
state an archetypical algebra/coalgebra duality result: the duality between Vietoris
coalgebras over Stone spaces and Mf -algebras over Boolean algebras. We then
discuss the relation of this duality with the original results of Esakia, and its impact
on the completeness theory of modal logic.

6.2.2.1 Algebras and Coalgebras

First, we recall the categorical notions of F-algebras and coalgebras. Let F : C ↓ C
be an endofunctor on a category C. The category AlgC(F), of F-algebras over
C has as its objects all C-morphisms of the shape h : F X ↓ X , where X , the
‘carrier set’ of the algebra, ranges over the objects of C. A morphism between
F-algebras h : F X ↓ X and h⇐ : F X ⇐ ↓ X ⇐ is a C-morphism f : X ↓ X ⇐ such
that f ⇒ h = h⇐ ⇒ F f , i.e., such that the following square commutes:

F X
h ��

F f
��

X

f
��

F X ⇐
h⇐

�� X ⇐
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Below we will see that the category of modal algebras and modal algebra
homomorphisms can be presented as a category of F-algebras over BA, the cate-
gory of Boolean algebras.

The category CoalgC(F), of F-coalgebras over C, is defined dually: F-coalgebras
are morphisms h : X ↓ F X , and morphisms of F-coalgebras must make a similar
square commute:

X
h ��

f
��

F X

F f
��

X ⇐
h⇐

�� F X ⇐

An important example of F-coalgebras is given by Kripke frames. If P : Set ↓ Set
is the covariant powerset functor, then the category of Kripke frames and bounded
morphisms can be presented as CoalgSet(P), the category of P-coalgebras over Set. If
〈X, R↑ is a Kripke frame, then we can equivalently present the accessibility relation
R ⊆ X × X as the successor map δR : X ↓ P X , where δR : x ∧↓ {y ≤ X | Rxy}.
Moreover, one can easily verify that coalgebra morphisms between P-coalgebras are
precisely bounded morphisms.

In [16], Esakia defined topological Kripke frames in a similar way: a topological
Kripke frame consists of a Stone space X and a binary relation R ⊆ X × X such
that δR : X ↓ V X is continuous as a map into the Vietoris hyperspace of X . This
is noteworthy because the idea to view Kripke frames as P-coalgebras only started
to gain popularity through the work of Aczel in the late 1980s [5].

6.2.2.2 Duality for Vietoris Coalgebras

Using Stone duality and Fact 1, it is now an elementary exercise in category theory
to see that the category of Mf -algebras over BA is dually equivalent to the category
of V-coalgebras over Stone.

Fact 2. AlgBA(Mf) ∃
(

CoalgStone(V)
)op

.

In order to relate this fact to Esakia’s results, we need to do a little more work.
Particularly, on the algebraic side, Esakia is not working with algebras for the functor
Mf , but with the category MA of modal algebras and modal algebra homomorphisms.
Interestingly, the categories AlgBA(Mf) and MA are isomorphic:

Fact 3. AlgBA(Mf) ∀= MA.

Proof Sketch Let A be a Boolean algebra with underlying set A, and let ( f, g) be a
pair of functions f, g : A ↓ A. We call ( f, g) a modal expansion of A if the algebraic
structure 〈A, f, g↑ is a modal algebra, i.e. f preserves ∨ and 1, g preserves ≥ and
0, and ¬ ⇒ f = g ⇒ ¬. The key insight underlying the proof of Fact 3 concerns the
existence, for a given Boolean algebra A, of a 1-1 correspondence between the modal
expansions of A and the set HomBA(Mf A, A) of Boolean algebra homomorphisms
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from Mf A to A: if ( f, g) is a modal expansion of A, then the assignment � a ∧↓ f (a)

and ♦ a ∧↓ g(a) uniquely determines a Boolean homomorphism from Mf A to
A, and conversely, if h : Mf A ↓ A is a Boolean homomorphism, then the maps
a ∧↓ h(� a) and a ∧↓ h(♦ a) define a modal expansion of A. �

From Facts 1 and 2, we can now deduce the following modern version of Esakia’s
duality result, which states that modal algebras are dually equivalent to Vietoris
coalgebras over Stone spaces:

Fact 4. MA ∃ (
CoalgStone(V)

)op
.

To conclude this subsection, we briefly indicate how the duality between modal
algebras and Vietoris coalgebras is used in the completeness theory of modal logic.
Again, the key insight here is that Vietoris coalgebras can be seen as topological
Kripke frames; in particular, by forgetting the topology of this structure, we obtain
an ordinary Kripke frame. This ‘forgetting’ can be formalized as a functor U from the
category CoalgStone(V) to the category CoalgSet(P) of P-coalgebras over Set, which
as we know is isomorphic to the category of Kripke frames and bounded morphisms.
The completeness of modal logic can then be proved by showing that every modal
algebra A can be embedded into the full complex algebra of the underlying Kripke
frame of the dual Vietoris coalgebra of A. We will briefly revisit the relation between
modal logic and coalgebra in Sect. 6.4.2.1.

Notes

There are many good introductions to Stone duality; our notation stems from [22]. More detailed
discussions of duality for modal algebras and Vietoris coalgebras can be found in the work of
Abramsky [3] and Kupke et al. [26].

Regarding Esakia’s duality for topological Kripke frames, it should be noted that in his paper
[16], Esakia is mainly interested in the duality between closure algebras and reflexive, transitive
topological Kripke frames, and the duality between Heyting algebras and (what are now called)
Esakia spaces: reflexive, transitive and anti-symmetric topological Kripke frames. The coalgebraic
view of Esakia spaces, already present in Esakia’s original paper, has also been discussed by Davey
and Galati [15].

6.3 Varying the Base Categories

In Sect. 6.2.1, we have seen that the functor V : Stone ↓ Stone, the Vietoris hyper-
space construction restricted to Stone spaces, is dual to the functor Mf : BA ↓ BA,
which is presented using Boolean modal logic. In this section we will see that in the
compact Hausdorff case, the Vietoris hyperspace is dual to a construction on locales
which uses geometric modal logic: the Vietoris powerlocale.

In Sect. 6.3.1, we will see how the duality from Sect. 6.2.1 can be extended
to compact regular locales and compact Hausdorff spaces, and how this locale-
theoretic approach suggests a generalization of the Vietoris hyperspace from compact
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Hausdorff spaces to a hyperspace construction on stable locally compact spaces.
In Sect. 6.3.2, we look at an important example which is not covered by the compact
Hausdorff case, namely Stone duality for distributive lattices and both coherent and
Priestley spaces. Finally, in Sect. 6.3.3, we will see how the locale-theoretic Vietoris
construction also is the Stone dual of the Plotkin powerdomain construction on
algebraic domains.

6.3.1 The Vietoris Powerlocale

Vietoris introduced his hyperspace construction to topologize the set of all closed
subsets of a compact Hausdorff space. To extend the duality result from Sect. 6.2.1
beyond Stone spaces, we can use Stone duality as it is used in locale theory: as the
categorical equivalence between spatial locales and sober spaces.

6.3.1.1 Compact Hausdorff Spaces and Compact Regular Locales

Using the Axiom of Choice, the equivalence between spatial locales and sober spaces
restricts to an equivalence between compact regular locales and compact Hausdorff
spaces. Recall that if A is a locale and a, b ≤ A, we say a is well inside b (a ♦ b) if
there is a c such that a ∨ c = 0 and b ≥ c = 1. Equivalently, a ♦ b iff a◦ ≥ b = 1,
where a◦ is the pseudo-complement of a. If U, V ≤ ℘ X are open subsets of a
topological space X , then U ♦ V iff cl(U ) ⊆ V . We say A is regular if for every
a ≤ A, a = ∨{b | b ♦ a}. Furthermore, A is compact if for every non-empty
directed set S, 1 ∈∨

S implies 1 ≤ S.
Knowing that ℘, the functor sending a space to its locale of opens, and pt, the

functor sending a locale to its space of points, constitute an equivalence between
KRegLoc, the category of compact regular locales, and KHaus, the category of
compact Hausdorff spaces and continuous maps, we can now draw the following
picture:

KRegLoc
pt

��∃ KHaus
℘�� V��

(6.4)

Again, the question is: can we find an endofunctor on KRegLoc, defined in “alge-
braic” terms, corresponding to V : KHaus ↓ KHaus? Indeed we can, using the
following modification of Definition 1.

Definition 2. Let A be a locale. We define M A, the Vietoris powerlocale of A, to
be the locale generated by the set {� a | a ≤ A} ∪ {♦ a | a ≤ A}, subject to the
following relations:
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� 1 = 1; ♦ 0 = 0;
�(a ∨ b) = � a ∨� b; ♦(a ≥ b) = ♦ a ≥ ♦ b;

� preserves directed joins; ♦ preserves directed joins;
�(a ≥ b) ∈ � a ≥ ♦ b; � a ∨ ♦ b ∈ ♦(a ∨ b).

The action of M on frame homomorphisms is defined as in the case of BA.

Readers who raise their eyebrows at the above definition, worrying about the fact
that we are using generators and relations to define an algebra with an infinitary
signature, can rest assured: for locales, this is not a problem; see [22, Sect. II.1]
or [38]. Observe that the only difference between Definitions 1 and 2, apart from
the shift from Boolean algebras to locales, is the additional stipulation that � and
♦ preserve directed joins. From a logical viewpoint, this amounts to a shift from
Boolean propositional logic to geometric propositional logic, i.e., the logic of finite
conjunctions and infinite disjunctions which is preeminent in locale theory and topos
theory. Also note that although we are currently interested in the restriction of M to
compact regular locales, Definition 2 is stated for arbitrary locales.

We can draw the following diagram now that we have our functor M on locales;
as before, we will see that the diagram commutes up to natural isomorphism.

KRegLoc
pt

��

M
��

∃ KHaus
℘��

V
��

KRegLoc
pt

��∃ KHaus
℘��

(6.5)

In other words, M restricted to compact regular locales is the Stone dual of V on
compact Hausdorff spaces:

Fact 5. The functor M : Loc ↓ Loc restricts to an endofunctor on compact regu-
lar locales. Moreover, there exist natural isomorphisms such that for any compact
Hausdorff space X and for any compact regular locale A, we have

1. M(℘ X) ∃ ℘(V X), and
2. pt(M A) ∃ V(pt A).

6.3.1.2 Beyond Compact Hausdorff: Stably Locally Compact Spaces

Recall that in Sect. 6.3.1.1 we asked ourselves what the Stone dual of the Vietoris
hyperspace construction on compact Hausdorff spaces is. Now that we have defined
the Vietoris powerlocale construction for arbitrary locales, we can ask ourselves:
what is the Stone dual of the Vietoris powerlocale, beyond the compact Hausdorff
case? In other words, if A is a spatial locale and X = pt A is its equivalent sober space
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of points, can we define a hyperspace V X based on X , such that M A is equivalent
to V X?

In its full generality, this question is ill posed. For example, if we take A to be the
open-set lattice of Q, the set of rational numbers equipped with their usual topology,
then M A does not have a Stone dual because it is not spatial, i.e., M A �∃ ℘ ⇒ pt(M A)

(see p. 177 of [23]). Below we will see, however, that we can ask and affirmatively
answer this question in the case of stably locally compact spaces.

Recall that a topological space is sober if it is T0 and if every irreducibly closed
set is the closure of a singleton. A subset U of a topological space X is saturated if
it is an intersection of opens; equivalently, U is saturated if it is an upper set in the
specialization order of X . A topological space is stably locally compact if X is sober,
locally compact, and binary intersections of compact saturated sets are compact.

Definition 3. Let X be a stably locally compact space. A lens is an intersection of
a saturated set with a closed set. We define V X , the Vietoris hyperspace of X , to
be the collection of compact lenses of X with the topology generated by the usual
subbasic opens,

[U ] = {L ≤ V X | L ⊆ U } and

〈U ↑ = {L ≤ V X | L ∩U �= ∅},

where U ranges over the opens of X .

The choice of compact lenses, rather than arbitrary compact subsets of X , is dictated
by the desideratum that V X is again T0: the original space X may have too many
compact subsets.

What are the localic analogs of stably locally compact spaces? Recall that the way-
below relation on a dcpo (directed complete partial order) D is defined as follows:
we say that a is way below b (a ∞ b) if for every directed set S with b ∈ ∨

S,
there is a c ≤ S such that a ∈ c. A dcpo D is continuous if for every a ≤ D, the set
{b ≤ D | b ∞ a} is directed and a = ∨{b ≤ L | b ∞ a}. Now let A be a locale.
We say A is stably locally compact if the dcpo reduct of A is continuous and for all
a, b, c ≤ A, if a ∞ b and a ∞ c then a ∞ b ∨ c.

Fact 6. 1. Both M and V preserve stable local compactness;
2. If A is a stably locally compact locale and X is a stably locally compact space,

then both M(℘ X) ∃ ℘(V X) and V(pt A) ∃ pt(M A).

Notes

The equivalence between the categories KRegLoc and KHaus was established by Isbell [20], see
also [6]. The Vietoris powerlocale was first introduced by Johnstone [22, Chap. III, Sect. 4], where
he also proves the results contained in Fact 5. We also recommend [22] as an introduction to locale
theory and the duality between compact regular locales and compact Hausdorff spaces. For an
introduction to stably locally compact spaces, we refer to Gierz et al. [18].
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The results contained in Fact 6 are also due to Johnstone [23]. For a discussion of the equivalence
between stably locally compact locales and stably locally compact spaces, we suggest reading
[25, Sects. 1.2 and 1.3]. An alternative account of the Vietoris construction in both localic and
spatial form is given by Simmons [35].

Finally, we would like to point out two alternative approaches to the question “What is the Stone
dual of the Vietoris powerlocale?”. Firstly, this question has often been approached by (more)
constructive means, diverging from the “classical” perspective we take in this chapter. This is the
case in the work of Johnstone [23] we referred to in Sect. 6.3.1 and of Vickers [39]. Secondly we
would like to point out the work of Palmigiano and Venema [32], who use Chu spaces to find the
Stone dual of the Vietoris powerlocale, taking inspiration from the success of relation lifting (see
Sect. 6.4) in coalgebraic logic. Yet another approach uses so-called de Vries algebras [9].

6.3.2 Distributive Lattices and the Vietoris Construction

We will now look at the Vietoris functor in relation to an important example of stably
locally compact spaces which are not necessarily Hausdorff, namely, the Stone duals
of distributive lattices: coherent spaces and Priestley spaces. In this subsection we
will look at four different versions of the Vietoris functor, each of which acts on a
category (dually) equivalent to DL, the category of bounded distributive lattices and
(bounded) lattice homomorphisms (throughout this chapter, lattices are assumed to
be bounded). The final aim is to show that the three squares in diagram (6.6) commute
up to isomorphism.

DL
Idl

		

Mf

��

∃ CohLoc
K

��

pt
��

M

��

∃ CohSp
℘��

Patch
		

V

��

∀= Priestley
OpenUpper





Vc

��
DL

Idl
		∃ CohLoc

K
��

pt
��∃ CohSp

℘��

Patch
		∀= Priestley

OpenUpper




(6.6)

In Sect. 6.3.2.1, we look at a distributive lattice version of the functor Mf and
its relation to M. In Sect. 6.3.2.2, we will see how M restricted to coherent locales
corresponds to the compact lens hyperspace of Definition 3. Finally, in Sect. 6.3.2.3,
we will see how to construct the convex Vietoris hyperspace of a Priestley space.

6.3.2.1 Distributive Lattices and Coherent Locales

We start by looking closer at the left square in diagram (6.6).
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DL
Idl

		

Mf

��

∃ CohLoc
K

��

M

��
DL

Idl
		∃ CohLoc

K
��

By CohLoc we denote the category of coherent locales and coherent maps. A locale
A is coherent if A is algebraic, meaning that every a ≤ A is a directed join of
finite (also called compact) elements, and if additionally K A, the poset of finite
elements of A, forms a (distributive) lattice. Equivalently, A has to be the ideal
completion of a distributive lattice. In fact, the ideal completion functor Idl is one
half of a dual equivalence between the category DL of distributive lattices and lattice
homomorphisms, and CohLoc of coherent locales and coherent maps; the other half
is the functor K which sends a coherent locale to its distributive lattice of finite
elements.

To understand the vertical arrows in the left square of diagram (6.6) we need to
introduce the functor Mf on distributive lattices.

Definition 4. Let A be a distributive lattice. We define Mf A to be the distributive
lattice generated by the set {� a | a ≤ A} ∪ {♦ a | a ≤ A}, subject to the following
relations:

� 1 = 1; ♦ 0 = 0;
�(a ∨ b) = � a ∨� b; ♦(a ≥ b) = ♦ a ≥ ♦ b;
�(a ≥ b) ∈ � a ≥ ♦ b; � a ∨ ♦ b ∈ ♦(a ∨ b).

The action of M on lattice homomorphisms is defined as before: given f : A ↓ B,
we let M f be the extension of � a ∧↓ � f (a) and ♦ a ∧↓ ♦ f (a).

Note that Definition 4 differs from Definition 1 only because we are generating
a distributive lattice rather than a Boolean algebra. This difference is quite subtle due
to the following fact.

Fact 7. Let U : BA ↓ DL denote the forgetful functor that sends a Boolean algebra
to its underlying (distributive) lattice. Then there exists a natural isomorphism such
that for any Boolean algebra A, we have U(Mf A) ∃ Mf(U A).

The above fact corresponds to the well-known fact in Boolean modal logic that any
modal formula containing arbitrary negations is equivalent to a modal formula in
which negations are only applied to proposition letters—this observation can also be
used in a proof of Fact 7.

We can now explicitly state the content of the first square of diagram (6.6), namely,
that the functor Mf on distributive lattices is equivalent to the Vietoris powerlocale
M restricted to coherent locales.
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Fact 8. The Vietoris powerlocale functor M : Loc ↓ Loc restricts to an endofunctor
on coherent locales. Moreover, there exist natural isomorphisms such that for any
coherent locale A and for any distributive lattice L, we have

1. M(Idl L) ∃ Idl(Mf L), and
2. Mf(K A) ∃ K(M A).

6.3.2.2 Coherent Locales and Coherent Spaces

We move on to the middle square of diagram (6.6), in which we encounter the Vietoris
functor on coherent spaces.

CohLoc
pt

��

M

��

∃ CohSp
℘��

V

��
CohLoc

pt
��∃ CohSp

℘��

By CohSp we denote the category of coherent spaces and coherent maps. Recall
that a coherent space is a (compact) sober space with a basis of compact opens,
with the additional property that any finite intersection of compact opens is compact.
(Coherent spaces/maps are also known as spectral spaces/maps.) A continuous map
between coherent spaces is called coherent if the inverse image of a compact open
set is compact.

Definition 5. Let X be a coherent space. We define V X to be the Vietoris hyperspace
of compact lenses introduced in Definition 3. Moreover, if f : X ↓ Y is a coherent
map between coherent spaces, we define V f : V X ↓ V Y as follows:

V f : L ∧↓ ↑ f [L] ∩ cl( f [L]),

where ↑ f [L] is the saturation of f [L], i.e., its upward closure in the specialization
order, and cl( f [L]) is the closure of f [L].
The reason we need to take a “lens closure” in the definition of V f above is that
unlike compactness, the property of being a lens is not stable under forward images
of continuous functions.

Fact 9. The construction V described above is well-defined, and it is an endofunctor
on the category of coherent spaces and coherent maps. Moreover, there exist natural
isomorphisms such that for any coherent locale A and for any coherent space X, we
have
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1. V(pt A) ∃ pt(M A), and
2. ℘(V X) ∃ M(℘ X).

We can refine Definition 5 by exploiting the special role of compact open sets in
coherent spaces:

Fact 10. Let X be a coherent space. If U ⊆ X is compact open in X, then so are
[U ] and 〈U ↑ in V X. In fact, the sets of the form [U ] and 〈U ↑, with U ranging over
the compact opens of X, form a sub-base for the topology on V X.

Here we are essentially using the fact that Mf : DL ↓ DL is the Stone dual of
V : CohSp ↓ CohSp.

6.3.2.3 Coherent Spaces and Priestley Spaces

We will now discuss the final square of diagram (6.6), and learn about the Vietoris
construction for Priestley spaces.

CohSp
Patch

		

V

��

∀= Priestley
OpenUpper





Vc

��
CohSp

Patch
		∀= Priestley

OpenUpper




(6.7)

By Priestley we denote the category of Priestley spaces and order-preserving con-
tinuous maps. A Priestley space is a partially ordered compact space 〈X,∈, η ↑, with
the additional property that if x, y ≤ X such that x � y, then there exists a clopen
upper set U ⊆ X such that x ≤ U �≈ y. As a consequence, Priestley spaces are
Hausdorff. The categories CohSp and Priestley are isomorphic: we can transform
coherent spaces into Priestley spaces and vice versa, and these transformations are
mutually inverse. If 〈X, η ↑ is a coherent space, then 〈X,∈η , patch(η )↑ is a Priestley
space, where ∈η is the specialization order of η and patch(η ) is the patch topology
of η , i.e., the topology generated by the open sets of η and the complements of com-
pact saturated sets. This allows one to define a functor Patch : CohSp ↓ Priestley,
which leaves the set-theoretic functions underlying coherent maps unchanged. We
can also go from Priestley spaces to coherent spaces: if 〈X,∈, ι ↑ is a Priestley space,
then 〈X, ι↑↑ is a coherent space, where ι↑ is the collection of open upper sets of
〈X,∈, ι ↑. This gives us a functor OpenUpper : Priestley ↓ CohSp, which again
leaves the functions underlying the morphisms unchanged. The functors OpenUpper
and Patch form an isomorphism of categories: if X is a coherent space and if Y is a
Priestley space, then

OpenUpper
(

Patch X
) = X and Patch

(
OpenUpper Y

) = Y.
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For a detailed account of this connection, see Cornish [14].
Before we introduce the Vietoris construction on Priestley spaces, we will take a

closer look at the patch topology, and in particular the patch topology of V X when
X is a coherent space.

Fact 11. Let 〈X, η ↑ be a coherent space. The patch topology patch(η ) of η is gen-
erated by the following base:

{
U \ V | U, V compact open in η

}
.

Topological properties with respect to η often correspond to order-topological
properties with respect to patch(η ).

Fact 12. Let 〈X, η ↑ be a coherent space, and let ∈ be its specialization order.

1. The open subsets of X are precisely the patch-open upper subsets of X.
2. The closed subsets of X are precisely the patch-closed lower subsets of X.
3. The compact saturated subsets of X are precisely the patch-closed upper subsets

of X.
4. The compact open subsets of X are precisely the patch-clopen upper subsets of

X.

Lemma 1. Let 〈X, η ↑ be a coherent space, let ∈ be its specialization order, and let
L be a compact lens. Then (1) L is patch-compact; and (2) ⊗ L is closed.

Proof. Let L be a compact lens. Since L is a lens, L = ↑ L ∩ cl(L). Because all
opens are upper sets, a subset C ⊆ η covers L iff it covers ↑ L; it follows that L is
compact iff ↑ L is compact. Since we assumed that L is compact, so is ↑ L , whence
by Fact 12(3) above, ↑ L must be patch-closed. By Fact 12(2), cl(L) is also patch-
closed. It follows that L = ↑ L ∩ cl(L) is patch-closed, and because patch(η ) is a
compact Hausdorff topology, L is also patch-compact. This proves statement (1); as
for the second statement, since 〈X,∈, patch(η )↑ is a Priestley space, it follows from
e.g. [22, Chap. 7, Sect. 1] that ⊗ L is patch-closed. By Fact 12(2), ⊗ L is also closed
w.r.t. η . �

A subset U of a poset P is called convex if U = ↑U ∩⊗U . If U, V are subsets of
P, we say that U is below V in the Egli-Milner order (U ∈E M V ) if both U ⊆ ⊗ V
and ↑U ⊆ V . In other words, U ∈E M V iff

⊆x ≤ U, ˆy ≤ V such that x ∈ y, and ⊆y ≤ V, ˆx ≤ U such that x ∈ y. (6.8)

Proposition 1. Let 〈X, η ↑ be a coherent space and let ∈ be its specialization order.

1. The compact lenses of X are precisely the patch-compact convex subsets of X.
2. The specialization order of V X is ∈E M .
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3. The patch topology of V X is generated by sets of the form

[U ], 〈U ↑, [X \U ], 〈X \U ↑,

where U ranges over the compact opens of X.

Proof. 1. Suppose L ⊆ X is a compact lens. Then by Lemma 1(1), L is patch-
compact. Since L = ↑ L ∩ cl(L) and cl(L) is always a lower set, it is easy to see that
L is convex. For the converse, suppose that L is a patch-compact convex set. Because
η ⊆ patch(η ), L must also be compact w.r.t. η . Moreover, since L = ↑ L ∩⊗ L , and
⊗ L is closed by Lemma 1(2), we see that L is a lens.

2. Let L and M be points of V X , i.e., compact lenses of X . Observe that L is
below M in the specialization order of V X iff

⊆U ≤ η, L ≤ [U ] ∗ M ≤ [U ], and ⊆U ≤ η, L ≤ 〈U ↑ ∗ M ≤ 〈U ↑. (6.9)

Suppose that (6.9) holds for L and M . Then since ↑ L = ⋂{U ≤ η | L ⊆ U }, it
follows from the left half of (6.9) that M ⊆ ↑ L . Moreover, if we take U = X \⊗M ,
then by Lemma 1(2), U is open. Now M /≤ 〈U ↑, so by the right side of (6.9), L /≤ 〈U ↑,
i.e., L ∩ (X \ ⊗M) = ∅, so that L ⊆ ⊗M . We conclude that L ∈E M M .

Conversely, suppose that L ∈E M M , so that M ⊆ ↑ L and L ⊆ ⊗M . If U is
an open set such that L ≤ [U ], i.e., such that L ⊆ U , then ↑ L ⊆ U so since we
assumed M ⊆ ↑ L , M ≤ [U ]. And if U is an open set such that M /≤ 〈U ↑, i.e., such
that M ∩U = ∅, then since U is an upper set, it is also the case that ⊗M ∩U = ∅.
But then since we assumed that L ⊆ ⊗M , we see that L ∩U = ∅, so that L /≤ 〈U ↑.
It follows that (6.9) holds.

3. Observe that if U is a compact open set, then since

[X \U ] = V X \ 〈U ↑ and 〈X \U ↑ = V X \ [U ], (6.10)

it follows from Fact 11 that [X \U ] and 〈X \U ↑ are patch-open sets in V X .
It follows from Fact 10 that every compact open of V X can be expressed as a

finite union of finite intersections of sets of the form [U ] and 〈U ↑, where U ranges
over compact opens of X . Using De Morgan’s laws and the distributive laws, one
can see that the complement of a compact open set in V X can therefore be expressed
as a finite union of finite intersections of sets V X \ [U ] and V X \ 〈U ↑, with U still
ranging over compact opens. Using (6.10), we see therefore that the complements of
compact opens of V X can be obtained as finite unions of finite intersections of sets
[X \ U ] and 〈X \ U ↑. It now follows by Fact 11 that the patch topology of V X is
generated by sets of the form [U ], 〈U ↑, [X \ U ], 〈X \ U ↑, with U ranging over the
compact opens of X . �

We will now define the Vietoris construction on Priestley spaces.

Definition 6. Let X be a Priestley space. We define Vc X , the Vietoris convex hyper-
space of X , to be the collection of compact convex subsets of X , ordered by the
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Egli-Milner order ∈E M and topologized by the usual subbasic opens [U ] and 〈U ↑,
with U ranging over the clopen upper and clopen lower sets. If f : X ↓ Y is a
morphism of Priestley spaces, i.e., if f is a continuous order-preserving map, then
we define

Vc f : F ∧↓ ↑ f [F] ∩ ⊗ f [F].

In other words, Vc f sends each compact set F to the “convex closure” of its forward
image f [F].

In light of Proposition 1, the following should come as no surprise:

Theorem 13. The construction Vc described above is an endofunctor on the cate-
gory of Priestley spaces and continuous order-preserving maps.

In fact, the Vietoris convex hyperspace on Priestley spaces coincides with the
Vietoris hyperspace of compact lenses on coherent spaces, i.e., diagram (6.7) com-
mutes:

Vc ⇒Patch = Patch ⇒V and V ⇒OpenUpper = OpenUpper ⇒Vc.

Notes

Facts 8 and 9 can be found (implicitly) in Johnstone’s [23]; we do not know a reference for Fact 7,
which corresponds to a well-known fact in modal logic.

The origins of Definition 6 and Theorem 13 are not entirely clear to us. Definition 6 is mentioned
by Palmigiano in a paper [31] which focuses on a different kind of Vietoris construction for Priestley
spaces. Theorem 13 is stated by Bezhanishvili and Kurz [10], who then refer to [23] and [31]. None
of these sources spells out a proof however, so we decided to include one here.

A detailed discussion of Facts 11 and 12, and the isomorphism between the categories of coherent
spaces and Priestley spaces, both in relation to bitopological spaces, can be found in [8]. An earlier
discussion of the patch topology can be found in [19].

6.3.3 Algebraic Domains and the Plotkin Powerdomain

In this final subsection of Sect. 6.3, we will look at Stone duality for the Vietoris
powerlocale from an opposite perspective. Namely, we will look at algebraic domains
and the Plotkin powerdomain, and we will see that the Stone dual of the Plotkin
powerdomain is the Vietoris powerlocale.

Domains, the structures which are studied in domain theory for applications such
as semantics for programming languages, are ordered structures which one can
simultaneously regard as topological spaces. Crucially, the topology of a domain
is uniquely determined by its order (namely, it is the Scott topology), and conversely,
the order on a domain is uniquely determined by its topology (namely, it is the
specialization order). From a topological viewpoint, one could say that domains
are classes of T0 spaces which are defined using order-theoretic properties of their
specialization orders.
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In several important cases, the natural topology of a domain (the Scott topology)
can be understood via Stone duality. In this subsection we will consider algebraic
domains, a class of directed complete partial orders (dcpo’s) which happen to have
the property that they are sober in their Scott topologies. Consequently, algebraic
domains can be understood in three different ways: (1) as dcpo’s, (2) as topological
spaces, and (3) dually, as locales.

First, we recall the definition of algebraic domains. An element p of a dcpo
D is called finite if for all directed S such that p ∈ ∨

S, there is a c ≤ S such that
p ∈ c. We denote the poset of finite elements of D by K D. We say D is an algebraic
domain if D is a dcpo such that for all a ≤ D, the set {b ≤ K D | b ∈ a} is directed
and a = ∨{b ≤ K D | b ∈ a}. Every algebraic domain D is completely determined
by its finite elements; specifically, D ∃ Idl(K D), where Idl stands for taking the
ideal completion. (Note that K D is a join semilattice, so that ideals can be defined
as usual.)

The Scott topology on a domain D is defined as the collection of all upper sets
which are inaccessible by directed joins; we denote this topology (and also the locale
it induces) by σD. This allows us to transform domains into locales. Moreover, if
we convert the locale σD back into a space of points using Stone duality, we find
that pt(σD), viewed as a dcpo, is isomorphic to D, assuming D is algebraic. (The
order on pt(σD) is the specialization order.)

Powerdomain constructions were introduced in domain theory to model branch-
ing of computational processes. One particular powerdomain construction is the
so-called Plotkin powerdomain, which is defined as a free dcpo semi-lattice con-
struction. For algebraic domains, the following surprising characterization of the
Plotkin powerdomains is known: if D is an algebraic domain, then its Plotkin pow-
erdomain can be presented as the ideal completion of the convex subsets of K D,
ordered by the Egli-Milner order (see 6.8).

Given the Plotkin powerdomain construction on algebraic domains, and the fact
that algebraic domains can be seen as the dual spaces of locales, we can now ask
ourselves the question: what is the Stone dual of the Plotkin powerdomain? The
answer is that the formation of the Plotkin powerdomain corresponds exactly to the
formation of the Vietoris powerlocale.

Fact 14. Let D be an algebraic domain and let Pl D be its Plotkin powerdomain.
Then M(σD) ∃ σ(Pl D).

Notes

For a general introduction to domain theory we refer to [18], or to [4] in connection with power
constructions. Fact 14 is due to Robinson [33]. A natural generalization of it would be to consider
continuous rather than algebraic domains. Vickers [40] discusses powerdomains and powerlocales
in the context of continuous lattices, but he does not address the specific problem of generalizing
Fact 14.

Above, we have left out a discussion of Abramsky’s Domain theory in logical form [2], for lack
of space. In a nutshell, Abramsky exploits Stone duality for the intersection of algebraic domains
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(Sect. 6.3.3) and coherent spaces. Within this context, the Plotkin powerdomain is Stone dual to
the functor Mf on distributive lattices, a fact which is used to study bisimulation in [1]. For an
introduction to the very powerful framework of “Domain theory in logical form” we refer the
reader to [2] or [4].

6.4 The Vietoris Construction and the Nabla Modality

If we look at our discussion of Stone duality for the Vietoris functor in Sect. 6.2.1,
we see an asymmetry in the presentations of the hyperspace topology on the one
hand and the logical/algebraic powerlocale constructions on the other hand. The
hyperspace of a compact Hausdorff space X can be topologized in two equivalent
ways, namely using basic opens of the shape

→{U1, . . . , Un} := {F ≤ K X | F ⊆⋃n
i=1Ui and ⊆i ∈ n, F ∩Ui �= ∅},

(→ is pronounced “nabla”) versus using subbasic opens of the shape

[U ] := {F ≤ K X | F ⊆ U } and

〈U ↑ := {F ≤ K X | F ∩U �= ∅},

where U and the Ui range over the opens of X . The powerlocales M A and Mf A, on
the other hand, we only presented using box (�) and diamond (♦) in combination
with positive modal logic.

The co-existence of these two distinct definitions of the Vietoris construction on
topological spaces naturally raises the question, how to give a presentation of the
Vietoris powerlocale directly in terms of nabla (→); similarly, it is an interesting prob-
lem how to axiomatize modal logic in terms of the nabla modality. In this section we
will see how ideas from the theory of coalgebra, and more specifically, coalgebraic
modal logic may be used to address and solve these problems. As a by-product of
this coalgebraic approach, we will see that the Vietoris construction V can be seen
as an instance of a more general construction which is parametrized by a ‘coalgebra
functor’ on the category Set: Given such a functor T we will define the notion of
a T -powerlocale functor on the category of locales, in such a way that the Vietoris
construction corresponds to the case where T is the power set functor P.

We will first have a brief look at the nabla modality as a derived connective in
Sect. 6.4.1. In Sect. 6.4.2, we will introduce the syntax and semantics of Moss’
coalgebraic modal logic. In Sect. 6.4.3, we introduce the Carioca axiom system,
which is sound and complete with respect to Moss’ coalgebraic logic. In Sect. 6.4.4
we will then show how these axioms can be applied to the Vietoris powerlocale, and
how they even lead to a notion of generalized powerlocale.
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6.4.1 Nabla-Expressions

In this subsection, we will look at the nabla modality as a derived connective. From
this point of view, the nabla modality is simply an expression consisting of � and ♦
modalities. The main result we discuss is the fact that every element of a powerlocale
can be expressed as a disjunction of nabla expressions.

Definition 7. Let A be a locale, distributive lattice or Boolean algebra. A nabla-
expression over A is a term of the shape

�
(∨

π
) ∨∧

a≤π ♦ a,

where π ⊆ A is a finite subset of A.

It is not hard to see that if A = ℘ X , then the nabla-expressions over A correspond
precisely to the basic open subsets →{U1, . . . , Un} of the Vietoris hyperspace V X .
The fact that the sets →{U1, . . . , Un} form a basis for the Vietoris topology, rather
than a subbasis, can also be expressed algebraically:

Fact 15. 1. If A is a locale then every element of M A can be expressed as a join
of nabla-expressions over A;

2. If A is a distributive lattice or a Boolean algebra, then every element of Mf A
can be expressed as a finite join of nabla-expressions over A.

Proof Sketch We will briefly discuss the case where A is a distributive lattice. Sup-
pose x ≤ Mf A. Because Mf A is generated by (equivalence classes of) elements of
the shape � a and ♦ b, we may assume that x is a disjunction of terms of the shape

∧
I � ai ∨∧

J ♦ b j ,

where I, J are finite index sets and the ai , b j come from A. It will suffice to show
that such conjunctions can be obtained as disjunctions of nabla-expressions.

Because � preserves finite meets, we will assume we have a single �-conjunct
� a (if I = ∅, this will be the term � 1). We will now show that the following term
can be obtained as a disjunction of at most two nabla-expressions:

� a ∨∧
J ♦ b j .

For the case that |J | = 0, we leave it as an exercise for the reader to show that

� a = (� a ∨ ♦ a) ≥ (
�(

∨∅) ∨∧∅),

which is a binary disjunction of nabla-expressions.
We will now assume that |J | > 0, and we will show that in this case we get just

one nabla-expression. To do this, we will use the following equations, which can be
easily derived from the axioms in Definition 4:
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� c ∨ ♦ d = � c ∨ ♦(c ∨ d); (6.11)

� c ∨ ♦ d = � c ∨ ♦ c ∨ ♦ d. (6.12)

We now see that

� a ∨∧
J ♦ b j

= � a ∨∧
J ♦(b j ∨ a) by (11)(|J |times),

= � a ∨ ♦ a ∨∧
J ♦(b j ∨ a) by (12) since|J | > 0,

= �
(
a ≥∨

J (b j ∨ a)
) ∨ ♦ a ∨∧

J ♦(b j ∨ a) by order theory.

The final expression above is now indeed a nabla-expression, for

π = {a} ∪ {b j ∨ a | j ≤ J }.

Since we assumed x ≤ Mf A to be a finite disjunction of conjunctions of � a’s and
♦ b j ’s, and since each such conjunction is the disjunction of at most two nabla-
expressions, it follows that x itself is also a finite disjunction of nabla-expressions.
The same argument can be applied in the locale case. �

Notes

What we call “nabla expressions” above have been used, in one form or another, both in modal
logic and in locale/domain-theoretic investigations of the powerlocale. For modal logic, see e.g. the
normal forms used by Fine [17]; for locale theory, see e.g. Johnstone [22, 23] and Robinson [33].
None of these sources, however, explicitly state or prove Fact 15.

6.4.2 Moss’ Coalgebraic Logic

In this subsection we introduce the syntax and semantics of Moss’ coalgebraic logic.
We start with an observation about the semantics of nabla-expressions in Kripke
frames. We will then very briefly review some of the background of coalgebra and
coalgebraic logic in Sect. 6.4.2.1. In Sect. 6.4.2.2, we introduce relation lifting, a
technique which sits at the heart of Moss’ coalgebraic logic. In Sect. 6.4.2.3, we then
introduce the syntax and semantics of Moss’ coalgebraic logic.

Suppose that F = 〈X, R↑ is a Kripke frame, where R ⊆ X × X , and suppose we
have a nabla-expression

�
(∨n

i=1∂i
) ∨∧n

i=1 ♦ ∂i .

For simplicity, we assume ∂1, . . . , ∂n are closed formulas, i.e., they contain no propo-
sition letters. What is the semantics of our nabla-expression? If x ≤ X , then
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x �F �
(∨n

i=1∂i
) ∨∧n

i=1 ♦ ∂i

if and only if

⊆y ≤ R[x], ˆi ∈ n, y �F ∂i and ⊆i ∈ n, ˆy ≤ R[x], y �F ∂i , (6.13)

where R[x] is the set of R-successors of x . If we view �F as a binary relation between
X and the set of all closed modal formulas, then we can abbreviate (6.13) as follows:

R[x] (�F)E M {∂1, . . . , ∂n},

where (·)E M stands for taking the Egli-Milner lifting of a binary relation (see 6.8 in
Sect. 6.3.2.3).

Guided by this observation, we now consider a variant of the standard modal
language in which we take the → modality to be a primitive modality, with the
following semantics on a given Kripke frame F:

x �F →{∂1, . . . , ∂n} iff R[x] (�F)E M {∂1, . . . , ∂n}. (6.14)

It is not hard to verify that using (6.14),

x �F �∂ iff x �F →{∂} ≥ →∅,

and that
x �F ♦ ∂ iff x �F →{∂,∇}.

What makes the reformulation interesting is that the semantics (6.14) allows for
coalgebraic generalizations. As we will see, the key for turning the above obser-
vation about Kripke frames into a logical language and semantics for more general
coalgebras is to use relation lifting.

6.4.2.1 Coalgebra and Coalgebraic Modal Logic

The theory of coalgebra aims to provide a general mathematical framework for the
study of state-based evolving systems. Given an endofunctor T on the category Set
of sets with functions, we already saw the definition of a coalgebra of type T, or
briefly: a T-coalgebra is a pair (S, ι ) where S is some set and ι : S ↓ T S. The
set S is called the carrier of the coalgebra, elements of which are called states;
ι is called the transition map of the coalgebra. A T-coalgebra morphism between
coalgebras ι : S ↓ T S and ι ⇐ : S⇐ ↓ T S⇐ is simply a function f : S ↓ S⇐ such
that T f ⇒ ι = ι ⇐ ⇒ f .
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S
ι ��

f
��

T S

T f
��

S⇐
ι ⇐

�� T S⇐

The coalgebraic approach to state-based systems combines mathematical sim-
plicity with wide applicability: many features of computation, such as input, output,
non-determinism, probability or interaction between agents, can be encoded in the
functor T. Examples of coalgebras are Kripke frames, Kripke models, deterministic
automata, topologies (with continuous open maps), and Markov chains.

The key notion of equivalence in coalgebra is that of two states s and s⇐ in
coalgebras (S, ι ) and (S⇐, ι ⇐) being behaviorally equivalent, notation: (S, ι ), s ∃
(S⇐, ι ⇐), s⇐; this relation holds if there are coalgebra morphisms f, f ⇐ with a common
codomain such that f (s) = f ⇐(s⇐). As the name suggests, behaviorally equivalent
states are considered to display the same behavior, and hence, to be essentially the
same.

Coalgebraic logics are designed and studied in order to reason formally about
coalgebras and their behavior; one of the main applications of this approach is the
design of specification and verification languages for coalgebras. An (abstract) coal-
gebraic logic is a pair (L ,�L ) such thatL is a set of formulas and� is a collection of
relations associating with each T-coalgebra (S, ι ) a binary relation �L

(S,ι ) ⊆ S×L .

If s �L
(S,ι ) ∂ we say that the formula ∂ is true or satisfied at s in (S, ι ), and we will

often write (S, ι ), s � ∂.
A natural criterion for a coalgebraic logic is that it cannot make a distinction

between behaviorally equivalent states. A formula ∂ is behaviorally invariant if for
all pairs of behaviorally equivalent pointed coalgebras (S, ι ), s ∃ (S⇐, ι ⇐), s⇐ it holds
that (S, ι ), s � ∂ ←∗ (S⇐, ι ⇐), s⇐ � ∂. A coalgebraic language is adequate if all
of its formulas are behaviorally invariant. An example of an adequate language is
the classical modal logic interpreted on P-coalgebras, i.e., on Kripke frames.

Given the prominence of Kripke frames and models as examples of coalgebras,
it is not surprising to see that standard modal logic can be suitably generalized to
provide adequate coalgebraic logics for coalgebras of arbitrary type. There are in
fact distinct ways to do this; here we will focus on the approach based on the notion
of relation lifting.

6.4.2.2 Relation Lifting

Relation lifting is nothing more than a particular way of extending a coalgebra type
functor T : Set ↓ Set to a functor T : Rel ↓ Rel on the category of sets and binary
relations. For our purposes, we restrict attention to transition types that preserve weak
pullbacks.

A weak pullback of two morphisms f : X ↓ Z and g : Y ↓ Z with a shared
codomain Z is a pair of morphisms pX : P ↓ X and pY : P ↓ Y with a
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shared domain P , such that (1) f ⇒ pX = g ⇒ pY , and (2) for any other pair of
morphisms qX : Q ↓ X and qY : Q ↓ Y with f ⇒qX = g ⇒qY , there is a morphism
q : Q ↓ P such that pX ⇒ q = qX and pY ⇒ q = qY . This pullback is “weak”
because we are not requiring q to be unique.

Q qY

��

qX

��

q


P

pY ��

pX

��

Y

g

��
X

f
�� Z

Saying that T : Set ↓ Set preserves weak pullbacks means that if pX : P ↓ X
and pY : P ↓ Y form a weak pullback of f : X ↓ Z and g : Y ↓ Z , then
T pX : T P ↓ T X and T pY : T P ↓ T Y form a weak pullback of T f : T X ↓
T Z and T g : T Y ↓ T Z . Examples of weak pullback-preserving endofunctors
on the category of sets include the identity functor, constant functors, the covariant
powerset functor, the multiset functor, the distribution functor, and finite products
and sums of such functors.

We will now define the notion of relation lifting.

Definition 8. Let T : Set ↓ Set be a weak pullback-preserving functor, and let
R ⊆ X × Y be a binary relation between sets X and Y . We denote the left and right
projections of R as κX : R ↓ X and κY : R ↓ Y , respectively. Let π ≤ T X and
α ≤ T Y ; we now define

π T R α :⊇ ˆτ ≤ T R, T κX (τ) = π and T κY (τ) = α.

We call T R the T-lifting of R.

Observe that T R is simply the binary relation between T X and T Y induced by
the span

T X
T κX∪−− T R

T κY−−↓ T Y.

Example 1. Recall that the covariant powerset functor is an example of a weak
pullback-preserving functor. Now for any binary relation R ⊆ X × Y , the P-lifting
of R is precisely the Egli-Milner lifting RE M⊆ P X×P Y . In other words, if π ≤ P X
and α ≤ P Y , then π P R α iff

⊆x ≤ π, ˆy ≤ α s.t. x R y and ⊆y ≤ α, ˆx ≤ X s.t. x R y.

Recall that Set can be embedded in the category Rel of sets and binary relations,
using the functor Graph : Set ↓ Rel, defined as Graph : X ∧↓ X and
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Graph : X
f−↓ Y ∧↓ {(x, f (x)) | x ≤ X},

where we view the right-hand-side above as a binary relation between X and Y . The
desired property that turns T into a lifting is that it makes the following diagram
commute:

Rel
T �� Rel

Set

Graph

��

T
�� Set

Graph

��

The condition that the functor T preserves weak pullbacks is needed to ensure that
T is indeed a functor.

Fact 16. Let T : Set ↓ Set be a functor. Then T is a lifting in the sense described
above, that is:

Graph ⇒T = T ⇒Graph .

Moreover, T is a functor on Rel, the category of sets and binary relations, iff T
preserves weak pullbacks.

6.4.2.3 Syntax and Semantics of Moss’ Coalgebraic Logic

We will now present the syntax and semantics of Moss’ coalgebraic logic for an
arbitrary weak pullback-preserving functor T : Set ↓ Set. We will make additional
assumptions about T. Firstly, we assume that T is standard; in the case that T pre-
serves weak pullbacks we can take this to mean that T preserves inclusions (that is, if
ψ : X χ↓ Y is an inclusion map, then T ψ : T X χ↓ T Y is the inclusion map witness-
ing that T X is a subset of T Y ). This assumption is innocuous from the viewpoint
of Set-coalgebras, because for any T : Set ↓ Set there is a standard T⇐ : Set ↓ Set
such that the category of T-coalgebras is equivalent to the category of T⇐-coalgebras.

If we would leave it at this, only assuming T : Set ↓ Set is standard and weak
pullback-preserving, we could already define Moss’ language, and indeed this is
what he does in [30]. A downside of this approach is, however, that one might obtain
formulas with infinitely many subformulas. This can be avoided by requiring that T
satisfies the following condition for all sets X :

T X =
⋃
{T X ⇐ | X ⇐ ⊆ X, X ⇐finite}. (6.15)

We say T is finitary if it satisfies (6.15).
If the coalgebra functor T : Set ↓ Set one happens to be interested in is not

finitary, this can be remedied. For each set X , we can define

Tφ X :=
⋃
{T X ⇐ | X ⇐ ⊆ X, X ⇐finite}.
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Using the assumption that T is standard, this gives us a functor Tφ : Set ↓ Set.
For the covariant powerset functor P : Set ↓ Set, the above definition of Tφ yields
precisely the finite powerset functor Pφ : Set ↓ Set.

From the general viewpoint of coalgebraic logic, one would want to consider
both T and Tφ when understanding Moss’ logic. Our current viewpoint, however,
is focused on the Carioca derivation system, and there we only really need Tφ. To
simplify our presentation and notation, we will therefore assume from here on that
T = Tφ, i.e., that T is finitary.

We will now define the finitary, Boolean version of Moss’ coalgebraic language.
Note that again for simplicity, we are working with the closed fragment.

Definition 9. Let T : Set ↓ Set be a finitary, standard, weak pullback-preserving
functor. We defineLT, the closed (0-variable) Moss language for T, to be the smallest
set such that (1) ∇,⊥ ≤ LT, (2) if ∂ ≤ LT then also ¬∂ ≤ LT, (3) if ∂,ψ ≤ LT
then also ∂ ∨ ψ ≤ LT and ∂ ≥ ψ ≤ LT, and (4) if π ≤ TLT, then →π ≤ LT.

The coalgebraic semantics of LT is defined as follows. Suppose we have a
T-coalgebra ι : S ↓ T S; we will define a satisfaction relation �ι between S (the
set of states of our coalgebra) and LT. Let x ≤ S; then we inductively define

1. x �ι ∇ and x ��ι ⊥;
2. For all ∂,ψ ≤ LT, x �ι ∂ ∨ψ iff x �ι ∂ and x �ι ψ (and similarly for ∂ ≥ψ

and ¬∂);
3. For all π ≤ T

(
LT

)
, x �ι →π iff ι(x) T (�ι ) π.

Note that if we choose T = Pφ, the finite powerset functor, then the semantics in
Definition 9 gives us precisely the syntax and semantics for the nabla we saw above
in (6.14), since Pφ

(
LPφ

)
is the collection of finite sets of LPφ -formulas, and the

Pφ-lifting of �ι is precisely the Egli-Milner lifting of �ι .

Notes

A classic reference for the theory of coalgebras is Rutten [34]. For a recent overview to the area of
coalgebraic logic, with pointers to introductory literature, we suggest [12] or [29]. The idea to use
nabla as a primitive modality plays an important role in the work of both Barwise and Moss [7]
and Janin and Walukiewicz [21]. The idea to use nabla as a coalgebraic modality is due to Moss
[30]. For a more detailed discussion of the material in this subsection, including detailed proofs of
the technical results, we refer to [28]. The observation in Fact 16, that T is a functor on Rel iff T
preserves weak pullbacks, goes back to Trnková [36].

6.4.3 The Carioca Derivation System

We will now introduce the Carioca derivation system. The aim of this derivation
system is to enable us to derive exactly those inequalities of formulas in Moss’
language that are valid on all T-coalgebras. In order to state the axioms and rules of the
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Carioca system, we will first have to introduce two new concepts: lifted conjunctions
and disjunctions, and slim redistributions.

The inequalities we are considering are those of the form ∂ � ψ , for ∂,ψ ≤ LT.
We say ∂ � ψ is valid on a coalgebra ι : S ↓ T S if for all x ≤ S such that x �ι ∂,
it is also the case that x �ι ψ . If ∂ � ψ is valid on all T-coalgebras, we write
∂ �T ψ .

When writing the Carioca axioms, we think of the formation of disjunctions
and conjunctions as functions from Pφ LT to LT, i.e., one can consider the maps∨ : Pφ LT ↓ LT and

∧ : Pφ LT ↓ LT as maps in Set. Consequently, we can
also apply T to

∨
and

∧
, which gives us maps

T
∨ : T Pφ LT ↓ TLT and T

∧ : T Pφ LT ↓ TLT.

If Φ ≤ T Pφ LT, we call T
∨

(Φ) and T
∧

(Φ) a T-lifted disjunction and conjunction,
respectively.

Example 2. If T = Pφ and we apply the Pφ-lifted disjunction operation Pφ

∨
to an

element Φ = {S1, . . . , Sn} ≤ Pφ Pφ(LPφ), we obtain a forward image:

Pφ

∨({S1, . . . , Sn}
) = {∨S1, . . . ,

∨
Sn}.

The final concept we will now introduce is that of slim redistributions.

Definition 10. Let T : Set ↓ Set be a finitary, standard, weak pullback-preserving
functor and let X be a set. If π ≤ T X , then we define the base of π to be the following
intersection:

Base(π) :=
⋂{

X ⇐ ⊆ X | π ≤ T X ⇐
}
.

Now if C ≤ Pφ T X is a finite collection of elements of T X , then we define a slim
redistribution of C to be an element Ψ such that

Ψ ≤ T Pφ

(⋃
π≤C Base(π)

)
and for all π ≤ C, π T≤ Ψ.

We denote the set of all slim redistributions of C by SRDT(C).

Intuitively, the idea is that Base(π) is the smallest set X ⇐ ⊆ X such that π ≤ T X ⇐.

Fact 17. Let T : Set ↓ Set be a finitary, standard, weak pullback-preserving func-
tor and let X be a set. Then for all π ≤ T X and all sets Y it holds that π ≤ T Y iff
Base(π) ⊆ Y . In fact, Base is a natural transformation from T to Pφ.

Example 3. In the case that T = Pφ, Definition 10 can be simplified as follows.
Firstly, if T = Pφ and π ≤ Pφ X is simply a finite subset of X , then the smallest
subset X ⇐ ⊆ X such that π ≤ T X ⇐ is π itself; in other words, Base is the identity
if T = Pφ.

Secondly, if C ≤ Pφ Pφ X is a finite collection of finite subsets of X , then
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SRDPφ(C) = {
Ψ ≤ Pφ Pφ(

⋃
C) | ⊆π ≤ C, π P≤ Ψ

}
,

where P≤ is the Egli-Milner lifting of the element relation, viewed as a binary relation
≤ ⊆ X × Pφ X . It is now not hard to see that if Ψ = {S1, . . . , Sm} then

π P≤ {S1, . . . , Sm} iff π ⊆⋃m
i=1Si and ⊆i ∈ m, π ∩ Si �= ∅.

Thus, for T = Pφ, we see that Ψ is a slim redistribution of C ≤ Pφ Pφ X iff

Ψ ≤ Pφ Pφ X such that
⋃

C =⋃
Ψ and ⊆π ≤ C, ⊆S ≤ Ψ, π ∩ S �= ∅. (6.16)

We are now ready to define the Carioca derivation system. For the sake of simplic-
ity, we will present a simplified version in which all disjunctions and conjunctions
are finite. The simplification we use to achieve this, is to assume that T maps finite
sets to finite sets.

Definition 11. Let T : Set ↓ Set be a standard, finitary, weak pullback-preserving
functor. Additionally, we assume that T X is finite whenever X is finite. The Carioca
derivation system !T consists of a complete set of axioms and rules for all Boolean
inequalities, combined with the following rule and axioms:

(→1) π T � α ∗ !T →π � →α (π, α ≤ TLT);
(→2) !T

∧
π≤C→π �

∨ {→ T
∧

(Ψ ) | Ψ ≤ SRDT(C)
}

(C ≤ Pφ TLT);
(→3. f ) !T → T

∨
(Φ) �

∨ {→α | α T≤ Φ
}

(Φ ≤ T Pφ LT).

(Note that it is provable in !T that (→2) and (→3) are in fact equations rather than
inequalities.)

Example 4. We will make the rule and axioms above more concrete for the case
T = Pφ.

Starting with (→1), suppose that π, α ≤ Pφ LPφ are finite sets of formulas. Rule
(→1) says that in case that π P � α, i.e., in case that π �E M α, then !Pφ →π � →α.
In other words, if

⊆∂ ≤ π, ˆψ ≤ α s.t. !Pφ ∂ � ψ and ⊆ψ ≤ α, ˆ∂ ≤ π s.t. !Pφ ∂ � ψ, (6.17)

then !Pφ →π � →α. Intuitively, this means that we can derive that →α is �-related
to (follows from) →π, provided that the elements of α are �-related to those of π in
an “Egli-Milner” way.

Moving on to (→2), we see that if C ≤ Pφ Pφ LPφ is a finite collection of finite
sets of formulas, then

!Pφ

∧
π≤C→π �

∨ {→{∧S1, . . . ,
∧

Sn} | {S1, . . . , Sn} ≤ SRDPφ(C)
}
, (6.18)
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where we refer the reader to (6.16) for a description of SRDPφ(C). Intuitively, this
means that any conjunction of →-formulas is equivalent to a disjunction of nablas of
lifted conjunctions.

Finally, (→3. f ) can be simplified as follows. Suppose we have Φ = {S1, . . . , Sn}
≤ Pφ Pφ(LPφ); then (→3. f ) boils down to the axiom

!Pφ →{
∨

S1, . . . ,
∨

Sn} �
∨{→α | α ⊆⋃n

i=1Si and ⊆i ∈ n, α ∩ Si �= ∅
}
.

(6.19)
As a further simplification, one could also write the following:

!Pφ →(π ∪ {∨S}) �
∨{→(π ∪ α) | α ⊆ S and α �= ∅}. (6.20)

One can inductively derive (6.19) from (6.20). Regardless of how we look at (→3. f ),
the intuitive content of this axiom is that finite disjunctions “under” nablas distribute
to disjunctions of nablas.

Fact 18. Let T : Set ↓ Set be a standard, finitary, weak pullback-preserving func-
tor, with the added property that T X is finite whenever X is finite.

The Carioca derivation system for T is sound and complete with respect to
T-validity: for all ∂,ψ ≤ LT,

!T ∂ � ψ iff ∂ �T ψ.

Notes

A first axiomatization of the nabla modality (in the power set case) was given by Palmigiano and
Venema [32]; this calculus was streamlined by Bílková et al. [11] into a formulation admitting a
generalization to the arbitrary case in the Carioca system. (The name ‘Carioca’ refers to the fact that
this version of the axiomatization was formulated in Rio de Janeiro.) Fact 18, the completeness of
the Carioca system, was proved by Kupke et al. [27, 28]; the latter work also contains a discussion
(with proof) of Fact 17.

6.4.4 The T-Powerlocale

Having acquainted ourselves with Moss’ coalgebraic logic and the Carioca derivation
system, we now introduce the T-powerlocale construction. This is a generalization
of the Vietoris powerlocale construction, using techniques from coalgebraic logic.
Because the Carioca axioms are parametric in their coalgebra type functor T, so is the
T-powerlocale construction. We will see that certain properties of the Vietoris functor
can be proved at the more general level of the T-powerlocale, and as a corollary, we
show how the Vietoris powerlocale can be presented using nablas as generators,
rather than boxes and diamonds. Recall that locales have finite meets and arbitrary
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joins; in a locale A we represent these maps as
∧ : Pφ A ↓ A and

∨ : P A ↓ A,
respectively.

Definition 12. Let T : Set ↓ Set be a standard, finitary, weak pullback-preserving
functor and let A be a locale with an underlying set of opens A. We define VT A, the
T-powerlocale of A, to be the locale generated by the set {→π | π ≤ T A}, subject
to the following relations:

(→1) →π ∈ →α if π T∈ α (π, α ≤ T A);
(→2)

∧
π≤C→π ∈

∨ {→ T
∧

(Ψ ) | Ψ ≤ SRDT(C)
}

(C ≤ Pφ T A);
(→3) → T

∨
(Φ) ∈

∨ {→α | α T≤ Φ
}

(Φ ≤ T P A).

Note that the only real difference between the Carioca axioms in Definition 11 and
the relations in Definition 12 above is the difference between (→3. f ) and (→3).
We will later see how this corresponds to the difference between finite disjunctions
(as found in Boolean algebras and distributive lattices) and infinite disjunctions (as
found in locales).

Fact 19. The construction described in Definition 12 defines a functor VT : Loc ↓
Loc.

The functor VT we have just introduced has several additional properties which
can be proved at an abstract level. As an example, note the following fact.

Fact 20. Let T : Set ↓ Set be a standard, finitary, weak pullback-preserving func-
tor.

1. The functor VT : Loc ↓ Loc preserves regularity.
2. If we further assume that T X is finite for every finite set X, then VT preserves

the combination of compactness and zero-dimensionality.

In the introduction to Sect. 6.4, we motivated our discussion of nabla expressions
and Moss’ coalgebraic logic with the question of whether we could describe the
Vietoris powerlocale using nabla. The following fact asserts that the Carioca axioms
indeed allow us to do this.

Fact 21. The Pφ-powerlocale is the Vietoris powerlocale.

Proof Sketch Suppose that A is a locale; we must show that V A ∃ VPφ A. This is
achieved by defining frame morphisms in both directions, and showing that these
morphisms are mutually inverse. From VPφ A to V A, we send

→π ∧↓ �
(∨

π
) ∨∧

a≤π ♦ a.

From V A to VPφ A, we use the following assignments:

♦ a ∧↓ →{a, 1} and � a ∧↓ →{a} ≥ →∅.
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For details about the rest of the proof, we refer the reader to [32] or [37]. �

Below in Fact 23 we will look in more detail at nabla presentations of the Vietoris
powerlocale. Before we do so, however, we will introduce an alternative presentation
of VT, in which we exploit the fact that in the language of locales we can use infinite
disjunctions.

Fact 22. The relation (→2) in Definition 12 can equivalently be replaced by the
following pair of relations:

(→2.0) 1 ∈
∨ {→π | π ≤ T A

};
(→2.2) →π ∨ →α ∈

∨ {→γ | γ T∈ π and γ T∈ α
}
.

Note that the suffixes “.0” and “.2” indicate nullary and binary conjunctions, respec-
tively. Returning to the case T = Pφ, we will now give a concrete nabla-presentation
of V.

Fact 23. Let A be a locale. We can present V A, the Vietoris powerlocale of A, as
the locale generated by the set {→π | π ≤ Pφ A}, subject to the following relations:

(→1) →π ∈ →α (ifπ ∈E M α);
(→2)

∧
π≤C→π ∈

∨{→{∧S1, . . . ,
∧

Sn} | {S1, . . . , Sn} ≤ SRDPφ(C)
}
,

where C ranges over the finite subsets of Pφ A, also see (6.16); and

(→3) →{∨S1, . . . ,
∨

Sn} ∈
∨ {→α | α ⊆⋃

i∈n Si and ⊆i ∈ n, α ∩ Si �= ∅
}
,

where the Si range over (possibly infinite) subsets of A. Moreover, the (→2) relation
can be replaced by the following pair of relations:

(→2.0) 1 ∈∨{→π | π ≤ Pφ A
};

(→2.2) →π ∨ →α ∈∨{→γ | γ ∈E M π and γ ∈E M α
}
,

and the (→3) relation can be replaced by the following inductive version:

(→3.ind) →(π ∪ {∨S}) ∈
∨{→(π ∪ α) | α ≤ Pφ S and α �= ∅} (S ≤ P A).

We have now seen how to present the Vietoris powerlocale, and more generally the
T-powerlocale, using nablas. We can improve on this still, by showing that “every
element of VT A is a disjunction of nablas” in a rather strong sense. Recall that
a suplattice is a complete join-semilattice, and that any locale has an underlying
suplattice.
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Definition 13. Let T : Set ↓ Set be a standard, finitary, weak pullback-preserving
functor and let L be a suplattice. We define WT L, the T-powerlattice of L, to be the
suplattice generated by the {→π | π ≤ T L}, subject to the following relations:

(→1) →π ∈ →α if π T∈ α (π, α ≤ T L);
(→3) → T

∨
(Φ) ∈

∨{→α | α T≤ Φ
}

(Φ ≤ T P L).

If we now let U denote the (contravariant) forgetful functor from Loc to SupLat,
the category of suplattices and suplattice morphisms, we can draw the following
picture:

Loc

U
��

VT �� Loc

U
��

SupLat
WT

�� SupLat

We would like to emphasize that the following result, like Facts 19, 20 and 21, holds
not only for the Vietoris powerlocale but for the T-powerlocale in general.

Fact 24. Let T : Set ↓ Set be a standard, finitary, weak pullback-preserving func-
tor. Then there exists a natural transformation such that for all locales
A, U(VT A) ∃ WT(U A).

The proof of Fact 24 uses flat sites, a technique from formal topology [13], which is
meant to capture the notion of a basis of a topological space. From a logical viewpoint,
Fact 24 tells us that (1) any (∨,

∨
)-formula in Moss’ coalgebraic language for T

is ((→1), (→2), (→3))-equivalent to a
∨

-formula, and that (2) for any inequality
between

∨
-formulas derived using ((→1), (→2), (→3)), there is a ((→1), (→3))-

derivation which proves that inequality.

Notes

The T-powerlocale was introduced by Venema et al. [37]; this is also where one can find the above
results. (An early version can be found in [42, Ch. 5].) For more information on the method of using
sup-lattices to obtain results like our Fact 24 the reader is referred to [24].
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Chapter 7
Logic KM: A Biography

Alexei Muravitsky

To the memory of my esteemed friend, Leo Esakia

Abstract This chapter is an attempt to collect under one roof all currently available
facts related to logic KM. Discovered as an equational class of the corresponding
algebras, it has been developed as a natural intuitionistic counterpart of provability
logic GL. We also outline the background, the work of thought, which had preceded
and eventually had led to the birth of KM. Where the results are new, the proofs are
provided. Sometimes we derive conclusions, if they can be easily obtained from key
results.

Keywords Intuitionistic logic ·Provability logic ·Logic KM ·KM-algebra ·Lattice
of normal extensions of a propositional calculus

7.1 Introduction

Logic KM belongs to the numerous group of propositional modal logics on intu-
itionistic base.1 Born in the late 1970s, at first KM was hardly noticeable among the
members of the group. She was not among the first logics introduced into consider-
ation, nor was she among the most attractive ones in the group. This should not be
surprising, for the pioneers of the field, on the one hand, were taking into account
axiomatic similarities with classical counterparts and, on the other, were investigat-
ing plausible correlations between two relations in a Kripke-style semantics—one
that governs intuitionistic implication and the other that governs modality. If for the
former researchers KM might not have been attractive, or even striking, because of

1 See the following comprehensive surveys [47, 71, 77, 80], as well as [82].
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the axiom A → �A, for the latter group the Kripke semantics of KM (see Sect. 7.4.2)
might have seemed too simple, or, to put it better, not expressive enough.2

The above axiom by itself does not cause a problem, for �A could be renamed
as �A. However, this move hardly leads to a rescue, since another axiom of KM is
(�A → A) → A. The reader will find a full axiomatization of KM in Sect. 7.3, as
well as in Sect. 7.4.1.

Thus it is clear that these formulae in one axiomatic system must be well moti-
vated. For better or for worse, KM has not had a good philosophical motivation as
a system of propositional monomodal logic, where modality meets requirements of
the intuitionistic standpoint. (A brief discussion of this issue is deferred to Sect. 7.5,
when enough information about KM will be available to the reader.) However, the
very birth of KM was not due to good or bad “philosophical life” (expression of
Harvey Friedman) in the field, but due to a close relationship between intuitionistic
propositional logic and provability logic, which was discovered in the late 1970s.

My late teacher Alexander Kuznetsov used to say that a logic is more fully under-
stood if it is considered along with its extensions. Continuing this thought, we can
say that the relationship between two logics is more fully understood if the rela-
tionship between the families of their extensions is understood. It turned out that
the lattices of the extensions of KM and of those of provability logic are isomor-
phic. This isomorphism and other mappings involving other lattices are discussed in
Sect. 7.4.8.

In addition to the interconnection between KM and provability logic, there
has been found an interconnection between KM and intuitionistic logic known as
Kuznetsov’s Theorem. The latter is just an extension of the conservativity of KM
over intuitionistic logic. This conservativity can be obtained in a relatively simple
way. Kuznetsov’s Theorem prolongs it to any modal-free extension of KM and the
corresponding intermediate logic. On the other hand, Kuznetsov’s Theorem has an
interesting interpretation in terms of enrichable Heyting algebras. This theorem also
establishes an interesting mapping of the lattice of extensions of KM onto the lattice
of intermediate logics, thereby it had been shown that each intermediate logic can be
regarded as the superintuitionistic fragment of some extension of provability logic.
All this will be explained in Sect. 7.4.6.

Thus, even if not motivated well philosophically, KM has a strong mathemat-
ical support. In this light, its relatively simple Kripke semantics is a plus. Other
properties of KM such as the separation property (Sect. 7.4.1), the finite model
property (Sect. 7.4.2), the disjunction property (Sect. 7.4.3), the fixed point property
(Sect. 7.4.4), in its stronger form (existence and strong uniqueness), and the Craig
interpolation property (Sect. 7.4.7) will be also presented. Section 7.4.5 is devoted
to topological semantics of KM. Here we have to note the main contribution of Leo
Esakia in discovering that scattered topological spaces are an adequate semantics for
provability logic. Then, this semantics was easily transmitted to KM due to a close

2 Although unrelated to the subject matter, which will be discussed below, the axiom A → �A had
been used by Gödel in his ontological proof; see [32], pp. 431 and 435.
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relationship between Magari algebras, an algebraic semantics for provability logic,
and KM-algebras, which is shown in Sect. 7.3.

In conclusion, we want to briefly discuss KM’s nearest neighbors. If we ignore for
now the only common consistent extension of KM and provability logic, which will
appear in Sect. 7.3, there remains only one candidate that should not be missed—
the system mHC defined by Leo Esakia in [26]. Since mHC can be obtained from
the axioms of KM simply by replacing the second formula mentioned above with
�(A → B) → (�A → �B), which is a theorem of KM, the latter is clearly
a proper extension of mHC. (It should be noted that Extensionality Conditional,
(A → B) → (�A → �B), is derivable in KM but not in mHC.) Esakia has observed
([26], Proposition 3) that, among the extensions of mHC, only the extensions of
KM have the fixed point property (existence). Also, he established ([26], Corollary
III.14) that mHC is embedded fully and faithfully into modal logic K4.Grz. This
property is somewhat weaker in comparison to an analogous embedding of KM
and its extensions, which will be discussed briefly in Sect. 7.4.8. More information
about the interconnection of mHC with other logics can be found in Sect. 7.4.6 and
especially in another chapter of this book, [47, Sect. 4].

Besides the topics listed above, we will outline the history of the thought work
that has led to the birth of KM (Sect. 7.3).

7.2 Preliminaries

In what follows, we present an exposition of relations radiating from modal logic
KM. Although an interesting star in our galaxy, KM is not located in its focus, two
of which are occupied by intuitionistic propositional logic Int and provability logic
GL.3

We set off with defining a propositional modal language L� based on a denumer-
able set of propositional variables, Var, denoting them by p, q, . . . (with or without
indices) and connectives ≤ (conjunction), ∨ (disjunction), ¬ (negation), → (condi-
tional) and � (necessity). Well-formed formulae, or simply formulae, in L� will
be denoted by letters A, B, . . . (with or without indices). Omitting modality � from
L�, we obtain assertoric language La. Formulae of La will be denoted by letters
a, b, . . .. Also, we will need another modal language, L⊆, which differs from L�
in only one respect—modality ⊆ of L⊆ replaces modality � of L�. Finally, we
will use language L�⊆ which is the extension of L� with modality ⊆. Arbitrary
formulae of L⊆ and L�⊆ will be denoted by ℘, δ, . . . . Occasionally, we will use
in definitions the last notation for formulae of unspecified (propositional) language.
Context will allow to avoid confusion. Finally, in all the languages under consider-
ation, we denote

℘ ∈ δ = (℘ → δ) ≤ (δ → ℘),

for any formulae ℘ and δ, and

3 See a comprehensive account of provability logic in [4].
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∩ = p → p.

Given two languages L and L ′, we call the latter a restriction of the former,
symbolically L ′ ∅ L , if all L ′-connectives are included in the set of the L -
connectives with the same Var for both languages. For example, La is a restriction
of both L� and L⊆, i.e. La ∅ L� and La ∅ L⊆.

Before getting started, we advise the reader that all calculi that will be under
consideration have postulated rule of (uniform) substitution. Also, we remind the
reader that a normal extension of a logic L is such a set of formulae which contains
all the formulae of L and is closed under all rules of inference postulated in L. In
other words, for a normal extension of L, it matters by which calculus L is defined.
We write L 
 ℘ if formula ℘ is derivable in L. Here we have to make the following
remark. Given a formal proof, say L 
 ℘, where substitution is allowed, there is a
reduced formal proof (of the same formula) which we denote by L 
r ℘ and in which
substitution applies only to axioms of L, and then only the other postulated rules of
inference may apply.4 This property was used in Kuznetsov’s proof of Proposition 16.

Our basis system is K4. Actually, we need two K4 systems—one formulated in
language L� and the other in L⊆. The first will be denoted by K4� and the second
by K4⊆. Both systems have substitution and modus ponens as their postulated rules
of inference. In addition, they have necessitation rule—the former has 
A


�A and the

latter has 
℘

⊆℘

. Then, we define

S4 = K4⊆ ↑ ⊆p → p.

Intuitionistic logic will also be formulated in two languages—Int in language La

and Int� in language L�. Changing language we do not need to change the axioms
and rules of inference of Int. For the axioms we take the formulae corresponding to
the schemata for Int in [37]; for the postulated rules we take substitution and modus
ponens. Other systems will be appearing as the story goes on.

7.3 Background

The birth of KM was accidental. It is worth telling the story of who her parents are
and how they met.

The modal logic community knows that the year of 1976 was marked, among
other wonderful events, with the birth of provability logic GL. However, as it often
happens in the development of a scientific discipline, GL’s story has not been going
straightforward. And this story, as any other, will be understood better if we put right
accents in right places in its exposition. Since provability logic GL is defined as

4 This was observed by Lindenbaum in 1934; see [75] for the proof of this property in a general
setting. Church in his discussion [16], §29, on the history of substitution rule from Frege (1879) to
von Neumann (1927), who proposed axiom schemata, does not mention this fact. However, see [16],
§27, propositions ↓270 and ↓271.
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GL = K4� ↑ �(�p → p) → �p, (Gödel-Löb Logic)

the formula

gl = �(�p → p) → �p (Löb Formula)

is the key one in the story of GL.
George Boolos and Giovanni Sambin note in [14] (see also [12]) that gl had already

appeared in print in Smiley [72]. It seems that, when Krister Segerberg discussed
his system K4W in the volume 2 of his doctoral thesis [66], using name W for gl,
he did not know about Smiley’s work, as well as did he not know about the interest
in gl in the philosophical circle of Cambridge, Massachusetts, in the mid 1960s
with Boolos and Kripke among the main participants. To be more precise, according
to [14], Boolos and Kripke talked about interconnection between Gödel’s second
incompleteness theorem and Löb’s theorem,5 the modal counterpart of which is the
following rule:


 �A → A


 A
. (Löb′s Rule)

The equivalence of gl and Löb’s Rule was proved later in the 1970s (see below).6

In the first half of the next decade, two groups in Europe, one in Italy with a strong
algebraic background under the direction of Roberto Magari (“the Siena group”) and
the other group of mathematical logicians in Amsterdam, including Löb, de Jongh
and Smoryǹski who visited Amsterdam at the time, got involved in issues of self-
reference exemplified by Gödel’s incompleteness theorems. The idea was to work
with arithmetic provability predicate as modality. This approach was clearly sug-
gested by Derivability Conditions.7 As Smoryński [73] puts it, “Gödel’s Theorems
and Löb’s Theorem were propositional in character, that is they used propositional
logic with an additional operator and some familiar laws—i.e. modal logic.”

In the spring of 1973 Giovanni Sambin (of Siena at the time) came up with gl,
while working on an example of what would be called later Magari (or diagonalizable)
algebra. For his part, Dick de Jongh witnesses:

The crucial point [...] was to see that Löb’s theorem holds not only as a rule, but also as the
fully formalized statement.

(cf. [14, pp. 14 and 17], respectively).
To the best of our knowledge, the self-reference issues were grouped around two

main goals. The first was the fixpoint theorem for GL and the second was arithmetical
completeness for it. Sambin and de Jongh succeeded in the former, Robert Solovay
published in [76] a proof of the latter, thereby having certified the birth of GL.

5 Kripke’s result about this interconnection was reproduced in [13].
6 In the sequel, we will be omitting the sign 
 while formulating a rule of inference.
7 See [74], Section 0.1, about the transformation of Hilbert-Bernays Derivability Conditions to Löb
Derivability Conditions.
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At this point it is worth reminding that Gödel was perhaps the first who proposed in
1933 to interpret a unary modality as provability. More than that, he meant to interpret
intuitionistic logic in terms of provability, known today as the Gödel-McKinsey-
Tarski translation of modal-free, i.e. assertoric, propositional language into a modal
one. By means of such a translation, Gödel expected to obtain an embedding, known
nowadays as the Gödel-McKinsey-Tarski embedding, of intuitionistic logic into a
modal system, which was assumed to be an axiomatic definition of provability. It
was desirable to have for such a definition also a sound interpretation of the modality
through the provability predicate of a sufficiently powerful first order theory, for
example, Peano Arithmetic. However, for the modal system Gödel introduced in his
1933 note, S4, and Peano Arithmetic, this turned out to be impossible, as he himself
mentioned at the end of his note, because of Gödel’s second incompleteness theorem
(cf. [31, pp. 296–303]). As we can comment on Gödel’s observation today, the reason
is that Löb’s rule is not admissible in S4� = K4� ↑ �p → p, or equivalently gl is
not derivable in it.

It seems that no one of the groups mentioned above thought of connecting intu-
itionistic logic and provability logic, yet unborn. Here is where Chisinau’s story of
GL starts.

In 1955 Petr S. Novikov taught at Moscow State University (MGU) a course on
constructive mathematical logic, under which he meant intuitionistic propositional
logic. Most of the course was devoted to proving the Gödel-McKinsey-Tarski embed-
ding theorem [54]. The idea goes back to Gödel’s 1933 historic note [29], where he
proposed to interpret Int in S4. Also, he proposed to read modality B of the latter
as provability. However, as Gödel himself had noted, a direct interpretation of B
via arithmetical provability predicate failed. To emphasize the distinction between
modality B and provability predicate, we will be using modality � with the intended
interpretation as this predicate and formulate modal logic S4 and its extensions in
language L⊆. In the sequel we will be dealing with several embeddings. So we
proceed with the following definition.

Definition 1 (Gödel-McKinsey-Tarski translation) Translation t: La → L⊆ is
defined as follows.

(1) t(p) = ⊆p, for any p ∧ Var
(2) t(a � b) = t(a) � t(b), for any connective �∧ {≤,∨}
(3) t(¬a) = ⊆¬t(a)

(4) t(a → b) = ⊆(t(a) → t(b))

Then what Gödel envisaged and McKinsey and Tarski proved is:

Int 
 a ∃ S4 
 t(a), (7.1)

for any assertoric formula a.
In 1955, Moscow’s story towards relationship between intuitionistic and modal

deduction machineries, which is an indispensable part of Chisinau’s story, might have
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started (but did not), if the question were raised, whether the following equivalence
is also true:

Int + a 
 b ∃ S4 + t(a) 
 t(b), (7.2)

for any assertoric formulae a and b. However, it is not the last equivalence above,
which was proved to be true (see e.g. [15, 19]), but its spirit that plays an essential
role in Chisinau’s story.

Martin Löb announced his solution of Henkin’s problem at the International
Congress of Mathematicians in Amsterdam in 1954 with a subsequent publication of
a two-page abstract in the proceedings of the congress, where Löb’s Rule, though in
arithmetical context, appeared in print for the first time. In 1955, a short article [48]
with a full proof was published. It seems very likely that Novikov was not familiar
with Löb’s result, while teaching the 1955 course. The latter was published posthu-
mously as a book [63]. However, the book was not based on Novikov’s manuscript
but on the notes of some of those who attended the course, among which Kuznetsov’s
notes were perhaps the most complete scores.8 Apparently, Novikov was not con-
cerned with the problem of interpreting ⊆ as provability in arithmetic, but rather
drew audience’s attention to the question of finding a constructive interpretation of
Int through constructively interpreted ⊆ and (7.1). Taking as an example the process
of finding approximations of values of amounts such as weights, Novikov proposed to
interpret “provability” of a correlation p of amount values, e.g. weights, symbolically
⊆p, if the truth value of p is stable in an experimental course of measurement.9

Having in mind interpretation of Int through the notion of provability, Kuznetsov
and Muravitsky had formulated in the spring of 1975 the following calculi: GL, as
well as

GL− = K4� ↑ �A → A

A
,

GL+ = K4� ↑ �A → A

A
↑ �A

A
(Reflexivity Rule),

GL↓ = GL ↑ �A

A
.

(cf. [42] and the footnote on p. 211 of [44]).

Definition 2 (equivalence and equipollence of two calculi)10 Given two langua-
ges L1 ∅ L2 and two calculi C1 in L1 and C2 in L2, we say that C1 and C2 are
L1-equivalent if for any L1-formula ℘,

C1 
 ℘ ∃ C2 
 ℘.

8 Kuznetsov was not formally a student at MGU and attended classes there as a freelance; see [61].
9 Unfortunately, Novikov’s approach along this line had been merely outlined in Kuztnetsov’s notes
and was not included in the book at all.
10 All calculi in this chapter are assumed to define structural monotonic consequence operator.
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The calculi C1 and C2 are L1-equipollent if for any two L1-formulae ℘ and δ,

C1 + ℘ 
 δ ∃ C2 + ℘ 
 δ.

IfL1 = L2, we simply say that the calculi are equivalent or equipollent, respectively.

We note that if calculi C1 and C2 are equipollent and there is a formula ℘ such
that both C1 
 ℘ and C2 
 ℘ are true then C1 and C2 are also equivalent.

In view of the observation that GL− 
 gl (it follows from the fact that K4 

�(�(�p → p) → �p) → (�(�p → p) → �p), cf. [44]) and the remark above,
we obtain the following.

Proposition 1 ([44]) The following statements hold.

(a) GL and GL− are equipollent and equivalent.
(b) GL↓ and GL+ are equipollent and equivalent.
(c) GL and GL↓ are equivalent but not equipollent.

On the ground of (a) and (b) of Proposition 1, calculi GL− and GL+ can be
abandoned. Being equivalent to one another, all these GL-calculi are sound and
complete with respect to arithmetic interpretation. Also, they are complete with
respect to relational, alias Kripke, semantics, which is the class of irreflexive transitive
frames with the ascending chain condition, GL-frames. (Cf. [10, 66, 74, 76].) As
to extensions of GL, there are those which are not Kripke complete; see Sect. 7.4.8
below. Therefore, it makes sense to employ algebraic semantics into consideration.
As we will see below, the class of algebraic models of GL↓ as a calculus is more
complicated than that of GL.

To comprise all the systems being considered here, we take for algebraic seman-
tics bounded relatively pseudo-complemented lattices, [34] enriching them, when
necessary, with additional unary operations. In particular, in case of GL and GL↓
we need ¬ and �, where the former is complementation. (This makes the algebras
for all GL-systems above Boolean.) Since each such algebra A has a top element,
1, we can define validity of a formula in the algebra as usual, that is a formula ℘ is
valid in A, symbolically A |= ℘, if for each valuation v on A, v(℘) = 1. Also, given
class of algebras M, we write M |= ℘ if A |= ℘, for any A ∧ M. The logic of an
algebra A, in symbols L(A), is the set of formulae valid in A.

Now following [44], with a calculus C (which is an extension of Int) we associate
two classes of algebras, MC and ηC, where the former is the class of all algebras on
which all formulae derivable in C are valid, and the latter is all the algebras whose
logics are normal extensions of C. Given C, it is obvious that ηC ∅ MC.

Definition 3 (on correspondence; cf. [44]) We say that a class of algebras M cor-
responds to a calculus C if for any formula ℘,

C 
 ℘ ∃ M |= ℘,
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and M fully corresponds to C if for any two formulae ℘ and δ,

C + ℘ 
 δ

if and only if for any A ∧ M,

A |= ℘ ∨ A |= δ.

These two notions of correspondence are supposed to capture from an algebraic
point of view the distinction between two understandings of 
, on the one hand, as a
unary predicate of deducibility and, on the other, as a consequence (binary) relation.
As we will see below, applying these notions to GL and GL↓, this algebraic view is
especially interesting, when one and the same logic can be defined via two distinct
calculi.

It is obvious that if a class M fully corresponds to a calculus C and there is a
formula ℘ such that both C 
 ℘ and M |= ℘ are true, then M also corresponds to
C. However, the converse may not be the case. For instance, we show below that the
class of Magari algebras corresponds, though not fully, to the calculus GL↓.

Definition 4 (Lindenbaum-Tarski algebra; cf. [64]) We say that a calculus C in
a language with → admits the Lindenbaum-Tarski algebra if the binary relation
“C 
 ℘ → δ and C 
 δ → ℘” is a congruence on the algebra of all formulae and
all the formulae derivable in C form a congruence class. Then the quotient algebra
of the algebra of formulae is called the Lindenbaum-Tarski algebra of C.

It is easy to notice the following.

Proposition 2 ([44, p. 215]) Let a calculus C be an extension of Int. Then the
following hold.

(a) If C admits the Lindenbaum-Tarski algebra, then MC corresponds
to C and is a variety.

(b) ηC fully corresponds to C and if M fully corresponds to C then
M ∅ ηC.

(c) If a variety M fully corresponds to C then M = MC = ηC.

Taking into account that both GL and GL↓ admit the Lindenbaum-Tarski algebra
and applying Proposition 2, when necessary, we obtain the following.

Proposition 3 The following statements hold.

(a) MGL = ηGL = MGL↓. This class is a variety and fully corresponds to GL
(Cf . [44]).

(b) ηGL↓ ≥ ηGL (Cf . [44]).
(c) The classηGL↓is not universally axiomatizable(Cf . [56]).
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Algebras of class MGL are called Magari algebras. More exactly we define them
as follows.

Definition 5 (modal algebra, [15, 46] Magari algebra [15, 49]) An algebra (A ,

≤,∨,→,¬, 1,�) is called modal if with respect to assertoric operations it is a
Boolean algebra, and a unary operation � is subject to the following conditions:

(a) �(x ≤ y) = �x ≤ �y
(b) �1 = 1.

A modal algebra is called a Magari (ordiagonalizable) algebra if, in addition, the
identity

(c) �(�x → x) = �x

holds on it.11

Thus the class of Magari algebras corresponds to GL↓ and fully corresponds to GL.
This correlation will be preserved for all normal extensions of GL, on the one hand,
and for the corresponding subvarieties of MGL on the other. The picture for the
normal extensions of GL↓ is more complicated. As an obvious observation, one can
note that the quasivariety of Magari algebras satisfying the quasi-identity

�x = 1 ⊃ x = 1

fully corresponds to GL↓.
On this note Chisinau’s story of GL↓ almost comes to an end. In the sequel we

will mention GL↓ merely two more times. Here we only observe [42, 44] that the
modal logic Dι of the frame (σ,>) is the largest consistent extension of GL↓.12

Let us return to Gödel’s original idea of interpreting Int through provability in
some sense of this notion. At this point we can see the two alternatives. Either we
continue searching for another provability interpretation of � axiomatized by S4
and then use (7.1) to interpret Int in terms of provability or we explicitly distinguish
two provabilities, one provability that is axiomatized by GL and another one which
we would like to understand in a more general sense of the word, namely in the
sense of informal deducibility. Gödel himself realized [30] how the first task could
be conducted. This approach has been materialized independently by Artemov [3,
4] in his logic of proofs.

Here we want to examine an alternative path. Since modality � axiomatized
by GL cannot serve for the purpose of interpretation of Int, one can assume that
another modality will do. However, the following question can be raised: How does
the new modality correlate with � in GL? Addressing this question, as a first step of

11 Sambin proved that the identity �x ⇐ ��x is derivable from (7.1)–(7.3) (cf. [50]). Compare
this with the elimination of �p → ��p as an axiom of GL in [12], Theorem 1.18.
12 Compare Dι with D↓ of [51].
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investigation, we can suggest that not a new modality but a formula ⊆p of a single
variable p of language L� can play this role.13

Proposition 4 ([44, 45]) Let ⇒p denote a formula of a single variable p of language
L� satisfying the following conditions:

(a) GL 
 ⇒p → p
(b) GL 
 ⇒p → �p
(c) GL 
 ⇒∩.

Then GL 
 ⇒p ∈ (p ≤ �p). The converse is also true.

The last theorem inspires one to propose the following definitions.

Definition 6 (splitting) Splitting s: L�⊆ → L� is defined as follows.

(a) s(p) = p, for any p ∧ Var
(b) s(℘ � δ) = s(a) � s(b), for any connective �∧ {≤,∨,→}
(c) s(¬℘) = ¬s(℘)

(d) s(�℘) = �s(℘)

(e) s(⊆℘) = s(℘) ≤ �s(℘)

This definition suggests, among other things, to regard GL as a fragment of a
bimodal logic.14

The next definition perhaps is not important by itself but is important as an inter-
mediate step.

Definition 7 (⊆-Magari algebra An algebra (A ,≤,∨,→,¬, 1,⊆) is called ⊆-
Magari algebra if it is obtained from the Magari algebra (A ,≤,∨,→,¬, 1,�) by
replacement of the signature operation �x in the latter with

⊆ x = x ≤ �x. (7.3)

To explain the part that ⊆-Magari algebras play in Chisinau’s story we have to
remind successively the following two-in-one definitions.

Definition 8 (S4-algebra, Grz-algebra) A modal algebra (with modal operation
⊆) is called an S4-algebra (alias interior algebra) if it satisfies the identities:

(a) ⊆x ≤ x = ⊆x
(b) ⊆ ⊆ x = ⊆x.

An S4-algebra is called a Grz-algebra if, in addition, the identity

13 Compare with Basic Working Hypothesis in [44, 45].
14 Indeed, one can prove that for any L�⊆-formula ℘, GL 
 s(℘) if and only if GL⊆ 
 ℘, where
GL⊆ = GL�⊆ ↑ ⊆p ∈ (p ≤ �p).
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(c) ⊆(⊆(x → ⊆x) → x) = ⊆x

holds.

Proposition 5 ([43, 44]) Any ⊆-Magari algebra is a Grz-algebra.15

Let us denote by Grz the modal calculus (known as Grzegorczyk logic) in the
language L⊆, obtained from the system S4, understood also in L⊆, by endowing
it with the new axiom:

grz = ⊆(⊆(p → ⊆p) → p) → p. (Grzegorczyk Formula)

Corollary 1 ([11, 12, 33, 43, 44]) For any formula ℘ of L⊆,

Grz 
 ℘ ∃ GL 
 s(℘).

For any formula a,
Int 
 a ∃ GL 
 s(t(a)).

The last equivalence can be refined as follows. Let us define in the language L�

GLi = Int� ↑ �(p → q) → (�p → �q) ↑ gl ↑ A

�A
.

Taking into account that GLi 
 �p → ��p (see [65], Lemma 0.2), GLi is
simply GL on intuitionistic basis.16 Then

Int 
 a ∃ GLi 
 s(t(a)), (7.4)

for any formula a ∧ La (cf. [44, p. 222]).
Corollary 1 immediately raises the question: Are the following two equivalencies

true?
Grz + ℘ 
 δ ∃ GL + s(℘) 
 s(δ) (7.5)

Int + a 
 b ∃ GL + s(t(a)) 
 s(t(b)) (7.6)

We address this question in Sect. 7.4.8. Now let us turn again to ⊆-Magari alge-
bras.

15 This result was obtained in 1976 and first was announced in the abstract [43] with a subsequent
publication in full detail in [44]. The preparation of the article [44] took eight months from October
1976 to June 1977, mainly due to Kuznetsov’s health instability and in part due to obtaining new
results in the course of writing. Thus [44] had been submitted for publication in the summer of
1977; however, it took three more years for the editor of the collection to get it printed.
16 This system first had been considered by Sambin [65] in relation to effective fixed points in
Magari algebras.
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Given a Magari algebra A = (B,�), where B is the Boolean reduct of A, we
denote by A∀ the Heyting algebra of the open elements of (B,⊆). Now the next
observation was a key one, though accidental. Given an open element ⊆x ∧ A, we
notice that

� ⊆ x = �(x ≤ �x) = �x ≤ ��x = ⊆�x,

that is A∀ is closed under operation �. Thus, endowing the Heyting algebra A∀
with operation � that was first defined on Magari algebra A, we define the algebra
A� = (A∀,�). This definition can be extended over any class η of Magari algebras:

�η = {A� | A ∧ η}. (7.7)

By using Birkhoff’s criterion, it was pointed out in [44], Footnote on p. 224, that
all algebras A� form a variety axiomatized by the identities:

(a) x ⇐ �x
(b) �x → x = x
(c) �x ⇐ y ∨ (y → x).

The identities (7.1) and (7.2) were induced by the transitivity axiom, �p → ��p,
and Löb’s Formula of GL, respectively. The identity (7.3) is a result of transformation
of the formula �p → (q ∨¬q) which was borrowed by Kuznetsov and me from [6].

This inspired Kuznetsov [39] to formulate in language L� the “proof-intuitionis-
tic calculus” I�,17 nowadays known as the logic KM:

KM = Int� ↑ p → �p ↑ (�p → p) → p ↑ �p → (q ∨ (q → p)).

Thus, if GL is the mother of KM, her father is Int.18

One can easily prove that

GLi = GL ◦ KM.

On the other hand, defining

KMc = Cl� ↑ p → �p ↑ (�p → p) → p ↑ A

�A
,

one can observe that
KMc = GL ↑ KM

and KMc is the greatest consistent extension of both GL and KM (cf. [60]).

17 This notation was adapted by Kuznetsov from [6].
18 After having learned the story behind the footnote on p. 224 of [44], Leo Esakia began using the
new name, KM, instead of I� , the first time in [26]. Thus Esakia can be regarded as the godfather
of this logic.
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Definition 9 (KM-algebra) An algebra (A ,≤,∨,→,¬, 1,�) is called a
KM-algebra if it is a Heyting algebra according to its assertoric operations and
also satisfies the identities (a)–(c) above.

The following observation will be useful in Sect. 7.4.5

Proposition 6 ([41]) In the above definition, identity (b) can be replaced by

(d) �(x ≤ y) = �x ≤ �y and
(e) �x = x ∨ x = 1.

We conclude this section with the following.

Proposition 7 The variety of KM-algebras fully corresponds to KM. Hence, this
class coincides with MKM and ηKM.

Proof is obvious, since for any formula A, the calculus KM ↑ A admits the
Lindenbaum-Tarski algebra which belongs to MKM. Then we apply Proposition 2.
�

7.4 Other Axiomatizations and Some Properties

In this section we consider the properties that are usually asked about a logic or
calculus.

7.4.1 The Separation Property

As a calculus the logic KM was formulated originally as follows:

I� = Int� ↑ p → �p ↑ (�p → p) → p ↑ ((p → q) → p) → (�q → p)

(cf. [39, 41, 45]). The reason for such an axiomatization was the possibility to raise
the question about the separation property for I�, that is whether for any formula
a, if I� 
 a then there is a derivation, which uses only those axioms that contain →
and the connectives actually occurring in a.19 The positive answer to the question
was given in [58, 68, 70].20

There is another axiomatization proposed by Kuznetsov [41], though implicitly:

KM+ = Int� ↑ �(p → q) → (�p → �q) ↑ p → �p ↑ �p → (q ∨ (q → p)) ↑ �A → A

A
.

19 A general setting for the separation property can be found in [17].
20 All these proofs were obtained independently and about the same time. The proof in [58] is
algebraic, while the proof in [68, 70] uses syntactic means. Two last papers differ only in style.
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This axiomatization will be illustrated in Sect. 7.4.5. We merely note here that the
last axiomatization is in accordance with Proposition 6.

7.4.2 Kripke Semantics and the Finite Model Property

As the reader has seen, KM came out of the flash of GL, more precisely from the
algebraic interpretation for the latter. Thus Kripke semantics has not been a matter
of justification for KM. However, the question of Kripke semantics for KM can be
and has been considered.

Definition 10 (KM-frame, KM-model) Let W be a nonempty set, ⇐ be a partial
ordering on W with the ascending chain condition [34] and < be the reflexive reduc-
tion [79] of ⇐. Then F = (W ,⇐,<) is called a KM-frame. If, in addition, (W ,⇐)

is a tree, the corresponding frame is called a KM-tree-frame. (F, v), where F is a
KM-frame, is a KM-model if (W ⇐, v) is an intuitionistic model with a valuation v
(see [15]) and forcing relation |= is stipulated for � in the following way:

(v, x) |= �A ∃ ∞y. x < y ∨ (v, y) |= A.

It is easily seen that KM is sound with respect to KM-frames. On the other hand,
we have the following.

Proposition 8 ([55]) Logic KM is determined by finite KM-frames, that is, enjoys
the finite model property and hence is decidable.

In 1984 Guram Darjania gave a sequential formalization of KM and proved the
completeness of KM with respect to the finite KM-tree-frames [18].

7.4.3 The Disjunction Property

In view of Proposition 8, it is clear that KM is determined by the finite rooted
KM-frames. This implies that KM enjoys the disjunction property:

KM 
 A ∨ B ∃ KM 
 A or KM 
 B.

Proof is based on the fact that each KM-frame is irreflexive.

Darjania also proved the disjunction property for KM. His proof is proof-theoretic;
see [18], Proposition 3.



170 A. Muravitsky

7.4.4 The Fixed Point Property

We start with the following definition.

Definition 11 (relative fixed point property)21 Let π(q) be a set of propositional
formulae containing variable q. A propositional logic L enjoys the fixed point prop-
erty relative to π(q) if for any formula ℘(p1, . . . , q) ∧ π(q), there is a formula δ

(a fixed point of ℘ with respect to q), which contains only variables that occur in ℘,
does not contain q, and such that

(a) L 
 δ ∈ ℘(p1, . . . , δ) (existence)
(b) L 
 ∂ ∈ ℘(p1, . . . , ∂ ) for some ∂, ∨ L 
 ∂ ∈ δ. (uniqueness)

The fixed point property is called strong if (b) above can be replaced with

(c)L 
 (∂ ∈ ℘(p1, . . . , ∂ )) → (∂ ∈ δ) for any∂. (strong uniqueness)

Also, we call the fixed point property effective if a fixed point δ can be obtained
for any ℘(p1, . . . , q) ∧ π(q) by an algorithm.

In this section we will be considering logics GLi, GL and KM, that is logics of
language L�. Let us define the following classes of formulae.

Definition 12 (sentences modalized in a variable; [12]) Given a propositional
variable q, a formula A is called modalized in q if every occurrence of q in A is in the
scope of an occurrence of �. The class of all formulae modalized in q is denoted
by π(�q).

Proposition 9 ([65], Theorem 3.5 (existence) and Corollary 2.5 (uniqueness))
Given a variable q, logic GLi has the effective fixed point property relative to π(�q).

We note that the rule A
�A is obviously admissible in KM. Let us define

KM++ = KM ↑ A

�A
.

Next we observe that GLi is a normal extension of KM++. This is because
KM 
 (p → q) → (�p → �q). (See [45].) Therefore, KM 
 gl. On the other
hand, �(p → q) → (�p → �q) cannot be refuted on a KM-frame and hence, in
view of Proposition 8, is derivable in KM.22

Next we consider language L� as a language of first order logic with connectives
of L� as functional constants. This allows to read the statement of uniqueness
in [65], Theorem 2.4, as a quasi-identity:

21 Compare the fixed point property relative to all formulae with the Beth definability property for
propositional logic (see e.g. [28]).
22 This is also a straightforward consequence of Lemma 2 in [60]: For any KM-algebra A, there is
a Magari algebra B such that A= B� .
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A = ∩ ⊃ B = ∩.

Now let M and N be the varieties of KM- and GLi-algebras, respectively.
It is clear that M ∅ N. Sambin proves that N |= A = ∩ ⊃ B = ∩. Therefore,
M |= A = ∩ ⊃ B = ∩. However,

M |= A = ∩ ⊃ B = ∩ ∃ M |= A → B = ∩.

The latter holds because of the correspondence between Heyting filters and congru-
ences on each KM-algebra, for each Heyting filter on a KM-algbera is closed under
�. Therefore, when A �|= A → B = ∩, for some A ∧ M, there is a homomorphic
image B of A such that B �|= A = ∩ ⊃ B = ∩.23 This leads to the following
conclusion.

Proposition 10 Given variable q, logic KM has the effective strong fixed point
property relative to π(�q).

The fixed point property for GL has been discussed in detail in [74, Chap. 1,
Sect. 3], and [12, Chap. 8]. In the latter, the fixed point property for GL is presented
in a very elegant form: For any formula A ∧ π(�q), there is a formula A↓ containing
variables contained in A, not containing variable q, and such that GL 
 ((q ∈
A) ≤ �(q ∈ A)) ∈ ((q ∈ A↓) ≤ �(q ∈ A↓)). Smoryński [74, Chap. 1, Theorem
3.5], gives another variant of the fixed point property for GL. In both cases it is not
the strong form of uniqueness as indicated above.

7.4.5 Topological Semantics

First we consider topological interpretations of GL and KM, which are intercon-
nected. Topological notions used in this section can be found in any textbook on
point-set topology. Consult e.g. [20].

Topological semantics of KM, as well as GL, uses scattered topological spaces. It
is customary to define a topological space (or simply space) as a pair (X,O), where
X is a nonempty set and O is a family of its subsets, called open, that is subject to
some well-known conditions. Given x ∧ X, by Ux we denote an open neighborhood
of x, that is an open subset of X, which contains x. Given a set Y ∅ X, a point x ∧ X
is called a limit point (or cluster point) of Y if for any Ux , (Ux ◦ Y) \ {x} �= ≈.
By d(Y) we denote the set of all limit points of Y .24 We have Y ∧ O if and only if
d(X \ Y) ∅ X \ Y .

23 This property for the varieties of Heyting algebras has been known since the 1970s; see it
implicitly (and with the use of Zorn’s lemma) in [83], Lemma 1, or explicitly (and without Zorn’s
lemma) in [52], Lemma 1.
24 d(Y) is called the derived set of Y .
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A topological space (X,O) is called scattered if X is a scattered set in (X,O), that
is X does not contain any nonempty subset that is dense-in-itself. If ∂ is an ordinal
then the space T(∂ ) of the ordinals not exceeding ∂ with its interval topology is
scattered. A finite space is scattered if and only if it is a T0-space (cf. [78] and
also [5]).25

Given a topological space (X,O), let us define:

�Y = X \ d(X \ Y),

for any Y ∅ X. It is clear that

x ∧ �Y ∃ ⊗Ux. Ux \ {x} ∅ Y .

Kuznetsov [40] had noted that a space (X,O) is scattered if and only if for any
Y ∧ O ,

�Y = Y ∨ Y = X. (7.8)

With any space (X,O) we associate the algebra (P(X),�), where P(X) is the
Boolean algebra of all subsets of X and � is the operation defined above.

A comprehensive account of topological interpretation of GL the reader can find
in [5]. Here we mention merely some of them which will be used for topological
interpretation of KM.

Proposition 11 ([22–24, 67]) Given a space (X,O), (P(X),�) is a Magari alge-
bra if and only if the space is scattered.

Corollary 2 ([22, 23]) Logic GL is determined by the algebras (P(X),�) of scat-
tered spaces.

Proposition 12 ([1, 2, 7]) The algebra (P(T(σσ)),�) is an adequate model for
GL.

Corollary 3 ([1, 2]) If a formula A is unprovable in GL, then it is invalid in
(P(T(σn)) for some n ∧ σ.

Given a space (X,O), we associate the Heyting algebra of the open sets O along
with additional operation � defined as above, denoting this expansion by (H (X),�)

Proposition 13 ([40]) Given a space (X,O), (H (X),�) is a KM-algebra if and
only if the space is scattered.

The last proposition shows that the axiomatization KM+ is in accordance with
(7.8).

Corollary 4 ([40]) Logic KM is determined by algebras (H (X),�) of scattered
spaces.

25 This observation can be used in the proof of Corollaries 4.4.1 and 4.6.1.
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More about KM and scattered spaces can be found in [47], Sect. 4.2.

Corollary 5 The algebra (H (T(σσ)),�) is an adequate model for KM.

Proof By virtue of Proposition 4.6, if KM 
 A then A is valid in (H (T(σσ)),�).
On the other hand, if A is valid in (H (T(σσ)),�) then s(t(A)) is valid in
(P(T(σσ)),�). Then, according to Corollary 4.5, GL 
 s(t(A)). By virtue of
Proposition 20 below, KM 
 A. �

A topos-theoretic interpretation of KM is considered in [27]; also, see [47],
Sect. 5.2, for detail.

7.4.6 The La-equipollence of KM and Int

In this section we will discuss Kuznetsov’s Theorem on the La-equipollence of KM
and Int and related issues. We start with the following observation.

Proposition 14 Let A be a Heyting algebra and a ∧ A. Suppose for some element
b ∧ A, the following inequalities hold:

(a) a ⇐ b,

(b) b → a ⇐ a,

(c) b ⇐ x ∨ (x → a), for any x ∧ A.

Then the element b satisfying the properties (a)–(c) is unique.

Proof Indeed, suppose an element b′ also satisfies (a)–(c). Then we obtain:

b ⇐ b′ ∨ (b′ → a) = b′ ∨ a = b′.

Similarly, we get b′ ⇐ b. �

The last proposition suggests the following definition.

Definition 13 (enrichable Heyting algebras) An element a of a Heyting algebra
A is called enriched by an element a↓, or a↓ enriches a, if the following conditions
are fulfilled:

(a) a ⇐ a↓,
(b) a↓ → a ⇐ a,

(c) a↓ ⇐ x ∨ (x → a), for any x ∧ A.

A Heyting algebra is called enrichable if each element is enrichable.

Thus “forgetting” operation � in a KM-algebra, we obtain an enrichable Heyt-
ing algebra. On the other hand, each finite Heyting algebra is enrichable. This is a
consequence of the following.
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Given a Heyting algebra A and an element a ∧ A, we define:

Fa = {x ∨ (x → a) | x ∧ A}.

Lemma 1 Given a Heyting algebra A and an element a ∧ A, the following condi-
tions are equivalent:

(a) y ∧ Fa;
(b) y → a = a and a ⇐ y;
(c) y → a ⇐ y.

Proof We prove that (a) ∨ (b) ∨ (c) ∨ (a).
(a) ∨ (b). Let y ∧ Fa. Then for some x ∧ A, y = x ∨ (x → a). It is clear that

a ⇐ y. Also,
y → a = (x → a) ≤ ((x → a) → a)

= (x → a) ≤ a
= a.

(b) ∨ (c). Obvious, by transitivity of ⇐.
(c) ∨ (a). Obvious again, for y → a ⇐ y implies y = y ∨ (y → a). �

Proposition 15 Let A be a Heyting algebra and [a) be the filter in A generated by
a ∧ A. If [a) is an atomic lattice with a finite set of atoms, say a1, . . . , an, then a is
enriched by a↓ = a1 ∨ . . . ∨ an. If a = 1 then a is enriched by 1.

Proof The last statement of the proposition is readily seen.
Next assume that a �= 1. It is obvious that a ⇐ a↓ → a. For contradiction, assume

that a < a↓ → a. Then for some i, ai ⇐ a↓ → a. The latter implies ai ≤ a↓ ⇐ a and
hence ai ⇐ a. A contradiction. As a = a↓ → a, we have a↓ = a↓ ∨ (a↓ → a), so
a↓ ∧ Fa. Now let x be any element of Fa. We have to prove that a↓ ⇐ x. According to
Lemma 1, a ⇐ x and x → a = a. For contradiction, assume that for some i, ai �⇐ x.
Then ai ≤ x ⇐ a. The latter implies ai ⇐ x → a = a. A contradiction. Therefore,
a↓ ⇐ x. �

Corollary 6 Any finite Heyting algebra is enrichable.

Corollary 7 Logic KM is a conservative extension of Int. In other words, KM and
Int are La-equivalent.

Proof Suppose for some formula A, Int �
 A. Then A can be refuted on a finite
Heyting algebra, say A. Since A is enrichable (Corollary 6), we define � on A to
make it a KM-algebra.

The remaining part of the proof is obvious. �

The last corollary allows the following generalization.

Proposition 16 (Kuznetsov’s Theorem, [41]) Logics KM and Int are La-equipo-
llent.
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In [26] Esakia introduced

mHC = Int� ↑ �(p → q) → (�p → �q) ↑ p → �p ↑ �p → (q ∨ (q → (q → p))

and proved that Int and mHC are La-equivalent. Since

KM 
 (p → q) → (�p → �q),

(see [45]) we conclude that

KM = mHC ↑ (�p → p) → p.

Thus the following question seems natural to ask.

Problem 1 Are Int and mHC also La-equipollent?

When Kuznetsov was working on a “thin” paper, where Proposition 16 appeared in
print for the first time, the author pointed out to him that this proposition is equivalent
to the following.26

Proposition 17 ([41]) Any Heyting algebra is embedded into some enrichable Heyt-
ing algebra so that both generate the same variety.

The proof of the equivalence of Propositions 16 and 17 can be found in
[62, p. 53].

7.4.7 The Craig Interpolation Property

Jónsson [36] perhaps was the first who drew attention to connection between the
interpolation property in logic (in the form of the interpolation principle for equal-
ities of terms [28]) and the amalgamation property of the corresponding variety of
algebras. Maksimova [52] (see also [28]) established the equivalence between the
two properties for all intermediate (alias superintuitionistic) logics, on the one hand,
and the corresponding varieties of Heyting algebras, on the other.

By the Craig interpolation property, or simply the interpolation property, for a
logic L, is meant the following: If ℘ → δ is valid in L, that is L 
 ℘ → δ, and the
set of common variables of ℘ and δ is not empty, then there is a formula ∂ such that
both ℘ → ∂ and ∂ → δ are valid in L and ∂ contains only those variables which
occur in both ℘ and δ.

A class η of similar algebras has the amalgamation property if given A,B,C ∧
η and embeddings f : A → B, g : A → C, there exists D ∧ η and embeddings
f ′ : B → D, g′ : C → D such that f ′f = g′g. Often, it is convenient to regard

26 The next proposition appeared as Corollary 2 in [41].
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A as a common subalgebra of B and C, symbolically A ∅ B ◦ C, in which case
the triple (A,B,C) is called an amalgam (in η). The amalgam (A,B,C) can be
amalgamated if there is an algebra D ∧ η and two embeddings f : B → D and
g : C → D such that f � A = g � A. It is obvious that a class η satisfies the
amalgamation property if and only if each amalgam in η can be amalgamated.

Proposition 18 Any normal extension L of KM enjoys the interpolation property if
and only if the corresponding variety ηL has the amalgamation property.

Proof literally repeats the proof of Theorem 1 in [52], since the theory of filters
and ideals for KM-algebras is the same as for Heyting algebras. �

Proposition 19 The variety of KM-algebras has the amalgamation property. There-
fore, KM has the interpolation property.

Proof Let (A,B1,B2) be an amalgam in the variety of KM-algebras. We denote by
SBi , where i ∧ {1, 2}, the set of all prime filters of the algebra Bi. Then we define:

Fi = {κ ∧ SBi | ∞κ ′ ∧ SBi . κ ≥ κ ′ ∨ κ ′ ◦ A �= κ ◦ A}, where i ∧ {1, 2},
S = {(κ1, κ2) ∧ F1 × F2 | κ1 ◦ A = κ2 ◦ A},
(κ1, κ2) ⇐ (κ ′

1, κ
′
2) ∃ κ1 ∅ κ ′

1 and κ2 ∅ κ ′
2, where (κ1, κ2), (κ

′
1, κ

′
2) ∧ S,

H (S) is the Heyting algebra of subsets of S, upward closed w.r.t. ⇐ . �

We observe:

Given i, j ∧ {1, 2}, where i �= j,
(a) ∞κi ∧ Fi⊗κj ∧ Fj. (κ1, κ2) ∧ S.

(b) (κ1, κ2) ∧ S and κi ∅ κ ′
i ∨ ⊗κ ′

j ∧ Fj. (κ ′
1, κ

′
2) ∧ S and κj ∅ κ ′

j .

(7.9)

We prove (7.9), following routinely the proof of Lemma 7 in [52].
Now, given i ∧ {1, 2}, we define αi : Bi → H (S) as follows:

αi(x) = {(κ1, κ2) ∧ S | x ∧ κi}

and then,

�αi(x) = {(κ1, κ2) ∧ S | ∞κ ′
i ∧ SBi . κi ≥ κ ′

i ∨ x ∧ κ ′
i }.

It is clear that, given x ∧ Bi, �αi(x) ∧ H (S).

Next, given x ∧ B1 (or x ∧ B2), we further define:

Ax = {κ ∧ SB1 | x ∧ κ},
Ax = {κ ∧ SB1 | x �∧ κ},
maxAx = {κ ∧ Ax | ∞κ ′ ∧ SB1 . κ ≥ κ ′ ∨ κ ′ ∧ Ax}.
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We will need the following property.

If an element x of a Heyting algebraB is enriched by an element y,
thenAy = Ax ˆ maxAx. ([58], Lemma 4)

(7.10)

Now let us fix i ∧ {1, 2}, for instance i = 1, and prove that for any x ∧ B1,

α1(�x) = �α1(x). (7.11)

Indeed, assume first that (κ1, κ2) ∧ α1(�x). Then �x ∧ κ1. Let κ ′
1 ∧ SB1 with

κ1 ≥ κ ′
1. Since �x enriches x in B1, by virtute of (7.10), κ1 ∧ Ax ˆ maxAx .

Therefore, x ∧ κ ′
1. Thus we conclude that (κ1, κ2) ∧ �α1(x).

Now suppose (κ1, κ2) ∧ �α1(x). For contradiction, assume that �x �∧ κ1. Then,
according to (7.10), κ1 �∧ Ax ˆ maxAx . Then there is κ ′

1 ∧ maxAx such that κ1 ∅
κ ′

1. More precisely, κ1 ≥ κ ′
1, since κ1 �∧ maxAx . But then (κ1, κ2) �∧ �α1(x). A

contradiction.
Next we show that for Y ∧ H (S) and x ∧ B1,

�α1(x) ∅ Y ˆ (Y → α1(x)). (7.12)

Indeed, let (κ1, κ2) ∧ �α1(x) and (κ1, κ2) �∧ Y . Also, assume for some
(κ ′

1, κ
′
2) ∧ S, (κ1, κ2) ⇐ (κ1′ , κ ′

2) and (κ ′
1, κ

′
2) ∧ Y . We have to consider

two cases.
Case 1: κ1 ≥ κ ′

1. It implies that x ∧ κ ′
1, i.e. (κ ′

1, κ
′
2) ∧ α1(x).

Case 2: κ1 = κ ′
1 and κ2 ≥ κ ′

2. Then, if κ2 ◦ A = κ ′
2 ◦ A then κ2 �∧ F2. If

κ2 ◦ A ≥ κ ′
2 ◦ A then κ ′

1 ◦ A �= κ ′
2 ◦ A, i.e. (κ ′

1, κ
′
2) �∧ S.

We conclude that, according to [52], Lemma 6, (7.9) ensures that the maps αi are
Heyting embeddings of each B1 and B2 into H (S) so that α1(x) = α2(x), for any
x ∧ A.

On the other hand, (7.11) and (7.12) ensure that the images of the elements of B1
and B2 are enrichable in H (S). Further, by virtue of [58], Proposition 1, H (S) can
be embedded into an enrichable Heyting algebra, in which, according to [58], Corol-
lary 2, if y enriches x in H (S), this relation will be preserved for the corresponding
images.

Simonova [69] had constructed a continuum of normal extensions of KM having
the interpolation property, as well as an example of an extension without it.

7.4.8 The Lattice of Normal Extensions

Comparing Kuznetsov’s Theorem with (7.6), we raise the question: Is the following
equivalence true?

KM + a 
 b ∃ GL + s(t(a)) 
 s(t(b))
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Before answering this question, first we extend the Gödel-McKinsey-Tarski trans-
lation as follows.

Definition 14 (translation T: L� → L�⊆)

(a) T(p) = ⊆p, for any p ∧ Var
(b) T(A � B) = T(A) � T(B), for any connective �∧ {≤,∨}
(c) T(¬A) = ⊆¬T(A)

(d) T(A → B) = ⊆(T(A) → T(B))

(e) T(�A) = ⊆�T(A).

This definition, among other things, leads to an embedding of KM into the bimodal
logic GL⊆ of Footnote 13.27

The next proposition answers the question above.

Proposition 20 ([45, 57, 60]) For any set π of L�-formulae and a formula B,

KM + π 
 B ∃ GL + π↓ 
 s(T(B)),

where π↓ = {s(T(A)) | A ∧ π}.
Corollary 8 The equivalence (7.6) holds.

Eventually, Proposition 20 leads to the following conclusion. We define:

τ : KM ↑ π ∗→ GL ↑ π↓.

Proposition 21 ([45, 57, 60]) The map τ establishes an isomorphism between the
lattices of normal extensions of KM and GL.

Let H, S and P be as usual the class-operators of forming homomorphic images,
subalgebras and direct products. Then the map τ can be interpreted in algebraic terms
as follows.

Proposition 22 ([57, 60]) For any class η of Magari algebras, the following equal-
ities hold:

�H(η)= H(�η),

�S(η)= S(�η),

�P(η)= P(�η).

Therefore, �HSP(η) = HSP(�η), where operation � is defined in (7.7).

Definition 15 (tabular, pretabular logic) A logic is called tabular if it is the logic
of a finite algebra. A logic is pretabular if it is not tabular but all its proper normal
extensions are tabular.

27 Indeed, one can prove that KM 
 A if and only if GL⊆ 
 T(A).
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By using Propositions 4.14 and 4.15 we derive the following properties which we
include in one proposition.

Proposition 23 ([57, 60]) The following properties hold: For any L = KM ↑ π,

(a) L is finitely axiomatizable ∃ τ (L) is finitely axiomatizable;
(b) L is tabular ∃ τ (L) is tabular;
(c) L is pretabular ∃ τ (L) is pretabular;
(d) L is complete w.r.t. KM − frames ∃ τ (L) is complete w.r.t. GL − frames;
(e) Reflexivity Rule (Sect. 3) is admissible in L ∃ this rule is admissible

in τ (L).

From the fact that there are exactly countably many pretabular normal extension
of GL, (cf. [9]) we derive the following.

Corollary 9 ([57, 60]) There are exactly countably many pretabular normal exten-
sions of KM.

Since there exists a finitely axiomatizable extension of KM, which is incomplete
with respect to KM-frames, (cf. [55]) we obtain the following.

Corollary 10 ([57, 60]) There is a finitely axiomatizable normal extension of GL
which is incomplete with respect to GL-frames.

(Chagrov and Zakharyaschev [15], Sect. 6.5, give a somewhat systematic way for
obtaining examples of incomplete extensions of GL.)

Since there is a continuum of normal extensions of GL, in which the Reflexivity
Rule is admissible, (cf. [56]) we have the following.

Corollary 11 ([57, 60]) There is a continuum of normal extensions of KM, where
the Reflexivity Rule is admissible.

Let us introduce the following maps.

ψ : Int ↑ χ ∗→ Grz ↑ χ ∀,

where χ is any set of La-formulae and χ ∀ = {t(a) | a ∧ χ }, is known to be an
isomorphism of NExtInt onto NExtGrz (cf. [8, 15, 21, 82]).

Also, let NExtGL and NExtKM be the lattices of normal extensions of GL and
KM, respectively. Next we define:

φ: KM ↑ π ∗→ {A ∧ L� | KM ↑ π 
 A},
μ: GL ↑ π ∗→ {℘ ∧ L⊆ | GL ↑ π 
 s(℘)},

where π is any set of L�-formulae.
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Proposition 24 ([45]) The diagram below, in which φ and μ are join-epimor-
phisms, is commutative.

NExtKM
τ−−−−→ NExtGL

φ

⏐
⏐
� μ

⏐
⏐
�

NExtInt
ψ−−−−→ NExtGrz

Taking into account Proposition 24, the next proposition does not seem surprising;
also, it is a generalization of equivalence (7.5).

Proposition 25 ([59]) For any set � of L⊆-formulae,

Grz ↑ Θ 
 δ ∃ GL ↑ {s(℘) | ℘ ∧ Θ} 
 s(δ).

From Proposition 4.17 it follows that for any L ∧ NExtInt, there is M ∧ NExtGL
such that L = φ∀τ−1(M); cf. [45], Corollary 3. Also, since it is well known [35] that
NExtInt forms a continuum and that there is a continuum of normal extensions of
GL↓ [56], the following question can be raised: If we restrict τ−1 ∀ φ to NExtGL↓,
which is a subsemilattice (with respect to join) of NExtGL, will the range of this
mapping be all NExtInt? The answer is negative [44], since

φ ∀ τ−1(d) = LC,

where Dι is the logic of the frame (σ,>), which was briefly discussed in Sect. 7.3,
and LC = Int ↑ (p → q) ∨ (q → p).

In [26] Esakia introduced the system

K4.Grz = K4� ↑ �(�(p → �p) → p) → �p.

It has been announced in [26], Sect. 3, and proved in [47], Corollary 6, that the lattices
NExtmHC and NExtK4.Grz are isomorphic. Thus the diagram in Proposition 4.17
can be extended as follows:

NExtmHC
τ ′−−−−→ NExtK4.Grz

φ′
⏐
⏐
� μ′

⏐
⏐
�

NExtInt
ψ−−−−→ NExtGrz

Here τ ′ is the isomorphism mentioned above and φ′ and μ′ are defined as follows:

φ′ : mHC ↑ π ∗→ {A ∧ L� | mHC ↑ π 
 A},
μ′ : K4.Grz ↑ π ∗→ {℘ ∧ L⊆ | K4.Grz ↑ π 
 s(℘)},

where, as above, π is any set of L�-formulae.
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Now the question in Problem 1 acquires its importance. If the answer to it is
positive, then φ′ and μ′ are surjective join-homomorphisms and the last diagram is
commutative.

Problem 2 Are the maps φ′ and μ′ surjective join-homomorphisms?

7.5 Conclusion

The last touch in the presented biography of KM is the following. In [26] Esakia
made an attempt to embed mHC into intuitionistic propositional quantification logic
IntQ. As he pointed out, interpreting � as

�A = ∞p(p ∨ (p → A)), (7.13)

where p does not occur freely in A, all axioms of mHC are derivable in IntQ and
modus ponens preserves this derivability. Thus the embedding is sound with respect
to the above translation. The question about faithfulness remains open.

For KM however this embedding is not even sound. Indeed, let us consider the
instance of the KM-axiom

(�A → A) → A

when A = ∇, that is
(�∇ → ∇) → ∇.

The translation of the last formula is equivalent in IntQ to the formula

¬¬∞p(p ∨ ¬p).

In his 1969 abstract [38], Kuznetsov noted that the last formula, although is valid in
all finite Heyting algebras with two additional operations for quantifiers, is invalid
in any segment of rational numbers and hence, by virtue Theorem 1 of [38], is not
derivable in IntQ. In the light of the Kuznetsov observation, we conclude with the
following.

Problem 3 Does the translation (7.13) generate an embedding of KM into the
fragment of those formulas of IntQ which are valid in all finite Heyting algebras
endowed with operations for quantifiers?

Acknowledgments Over all period of the preparation of this text I have been in close contact with
Alex Citkin. Discussions with him helped me understand better some key points and he provided
me with useful references. Also, I am indebted to Grigori Mints for informing me that the last
formula in Sect. 7.5 is not derivable in IntQ. It happened before I noticed Kuznetsov’s remark
in [38]. Also, I am grateful to Srećko Kovač for drawing my attention to Gödel’s ontological proof
(see Footnote 2).
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75. Sobociński B (1974) A theorem concerning a restricted rule of substitution in the field of

propositional calculi, I, II. Notre Dame J Formal Logic 15:465–476; ibid. 15:589–597 (1974)
76. Solovay R (1976) Provability interpretations of modal logic. Israel J Math 25(3–4):287–304
77. Sotirov V (1980) Modal theories with intuitionistic logic. Mathematical Logic (Sofia, 1980).

Publishing House of the Bulgarian Academy of Science, Sofia, pp 139–171
78. Steen L, Seebach J Jr (1970) Counterexamples in topology. Holt, Rinehart and Winston Inc.,

New York
79. Weisstein E (2003) CRC concise encyclopaedia of mathematics. CRC Press, Boca Raton



7 Logic KM: A Biography 185

80. Wolter F, Zakharyaschev M, (1999) Intuitionistic modal logic. In: Logic and foundations of
mathematics (Florence (1995) Synthese library, vol 280. Kluwer Academic Publishers, Dor-
drecht, pp 227–238

81. Wolter F, Zakharyaschev M (1999) Intuitionistic modal logics as fragments of classical bimodal
logics. In: Orlowska E (ed) Logic at Work. Springer, New York, pp 168–186

82. Wolter F, Zakharyaschev M (2014) On the Blok-Esakia theorem (this volume)
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Chapter 8
Constructive Modalities with Provability Smack

Tadeusz Litak

To the memory of Leo Esakia and Dito Pataraia

Abstract I overview the work of the Tbilisi school on intuitionistic modal logics of
well-founded/scattered structures and its connections with contemporary Theoretical
Computer Science. Fixed-point theorems and their consequences are of particular
interest.

Keywords Constructive fixpoints · Intuitionistic modal logic ·Point-free derivative ·
Topos of trees · Scattered toposes

8.1 Introduction

Readers of this volume are probably aware that much of Leo Esakia’s research
concentrated on semantics for the intuitionistic logic IPC, the modal logic GLcl of
Löb, its weakening wGrzcl and intuitionistic-modal systems like the logic KM or its
weakening mHC; see Table 8.2 for all definitions. GLcl is also known as the Gödel-
Löb logic, but this name may suggest more personal involvement with the system
than Gödel ever had; KM or mHC will be discussed in Sect. 8.4. A central feature of
semantics for such systems is well-foundedness or scatteredness. While in the case
of IPC well-foundedness is a sufficient, but not necessary condition—intuitionistic
logic is complete wrt well-founded or even finite partial orders, but sound wrt much
bigger class of structures—GLcl and KM require it even for soundness. This is due
to the fact that the latter two systems include a form of an explicit induction axiom:
in the case of GLcl the well-known Löb axiom (which here will be called the weak
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Löb axiom) and in the case of KM the strong Löb axiom—less well-known to modal
logicians, but as we are going to see, better known to type theorists. Scatteredness
is the topological generalization of well-foundedness; Simmons [69] provided tools
necessary to define its point-free counterpart and the Tbilisi school noted that this
notion also makes sense in the topos setting. In fact, the most generic way of defining
scateredness is via modal syntax: as validity of the Löb principle for a suitable
“later” modality.

The interplay of relational, topological, point-free and algebraic aspects in the
above paragraph should not feel unnatural to anybody familiar with Leo’s attitude
to research. Let us look at an important example how results can travel from one
setting to another. In the mid-1970s, it was established that Löb-like logics enjoy
the so-called Fixpoint Theorem. At first, the intention was to grasp the algebraic
content of Gödel’s Diagonalization Lemma. Yet in its own right it turned out to
be one of the most fascinating results ever proved about such systems. Section 8.3
gives an overview of some of its applications and consequences. For now, let us
just mention that Leo Esakia used it, e.g., to characterize algebras for KM, see
Theorem 4 and Corollary 1 here. Furthermore, it seems to have inspired the work
on scattered toposes: [30, Sect. 3] claims to present its topos-theoretic counterpart.
However, as the result central for the topos version (Theorem 8 here) does not even
include modalities in its formulation, the word counterpart has to be understood
rather loosely.

As we will see, in hindsight [30] turns out to be closely connected to very recent
developments in Theoretical Computer Science, in particular the work of Birkedal
et al. on the topos of trees [14], itself an example of a scattered topos. Thus, it seems
particularly regrettable that the spadework of the Tbilisi school has not been carried
further and is not more widely known.

The chapter is structured as follows. Section 8.2 recalls syntactic and semantic
basics of intuitionistic normal modal logics. Section 8.3 focuses on fixpoint results
for Löb-like systems. Section 8.4 introduces the work of the Georgian school on
extensions of mHC. Finally, Sect. 8.5 discusses scattered toposes, beginning with an
overview of the topos logic.

While the chapter is intended as an overview and claims to novelty are minimal,
they are perhaps not entirely non-existent. Theorem 4 is the most general form of
[31, Proposition 3] I could think of and Sect. 8.4.3 reproves results on extensions
of mHC using the framework of [81, 82]; in fact, it seems that Corollary 6 is the
first published proof of the corresponding extension of the Blok-Esakia Theorem
announced in [31].

Remark 1 As a part of a larger project, I formalized most of syntactic derivations in
the paper—in particular those relevant for Sect. 8.5.2— in the Coq proof assistant.
Readers interested in this ongoing project are welcome to contact me.
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Table 8.1 Axioms for Ki

Axioms of the intuitionistic propositional calculus, see, e.g., [23, Sect. 1.3, (A1)–(A9)]
Axiom for �

(nrm) �(A → B) → (�A → �B)

Inference rule for Lint-fragment Inference rule for modality
MP A→B, A

B NEC A
�A

8.2 A Primer on Intuitionistic Modalities

Modal formulas over a supply of propositional variables ℘ are defined by

A, B ::=≤ | p | A → B | A ∧ B | A ⊆ B | �A

where p ∈ ℘. The set is denoted by L�int℘, but unless explicitly stated otherwise,
I will keep ℘ fixed throughout and drop it from the notation. The purely intuitionistic
language (i.e., without 2) will be denoted by Lint. Note that the syntax extended with
a � operator, intuitionistically not definable from �, is of no interest for us here.

δ ∩ L�int is a normal L�int-logic or an intuitionistic normal modal logic if it is
closed under rules and axioms from Table 8.1 plus the rule of substitution. For any
δ,η ∩ L�int, δ ⊕ η will denote the closure of δ ∅ η under substitution and the
rules MP and NEC. In the case of η = {α}, I will also write δ ⊕ α. Occasionally,
I will write δ + η for the closure under substitution and MP, but without NEC.

This notation is analogous to the one used in [23].
Ki is the smallest intuitionistic normal modal logic, i.e., IPC ⊕ (nrm). IPC—

the intuitionistic propositional calculus—can be thus defined as the intersection of
Ki and Lint. Table 8.2 provides a list of additional axioms and logics which will
be of interest to us. GLi, SLi, mHC and KM are of particular importance. As we
see in Table 8.2, there are several ways in which these and related systems can be
axiomatized. In particular, we have

Theorem 1 (Ursini [77], following Smorynski for the classical case) The follow-
ing formalisms have the same set of theorems:

1. GLi as defined in Table 8.2
2. K4i ⊕ �A→A

A
3. K4i ⊕ �A→A�A
4. K4i ⊕ (ufp) = �(B ↔ A[B/p]) → (�(C ↔ A[C/p]) → (B ↔ C))

5. K4i ⊕ (henk) = �(A ↔ �A) → A

A variable p ∈ ℘ is �-guarded in A ∈ L�int if all its occurrences are within
the scope of �. This notion will be used repeatedly in connection with GLi and its
extensions.
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Table 8.2 L�int axioms and logics. See, e.g., [75, 81, 82] for more (also in the syntax extended
with a � operator). �A below abbreviates A ∧ �A

(cl) ((B → A) → B) → B (em) A ⊆ ¬A
Cl = IPC + (cl) = IPC + (em)

(nrm) �(A → B) → (�A → �B) (opr) �(A ∧ B) ↔ (�A ∧ �B)

Ki = IPC ⊕ (nrm) = IPC ⊕ (opr) Kcl = Ki ⊕ Cl
(trns) �A → ��A

K4i = Ki ⊕ (trns) K4cl = K4i ⊕ Cl
(bind) ��A → �A C4i = Ki ⊕ (bind)

(r) A → �A (fmap) (A → B) → (�A → �B)

Ri = Ki ⊕ (r) = Ki ⊕ (fmap) Note that above Ri, ⊕ is the same as +
In using the symbol R, I follow [32]

(refl) �A → A S4i = Ti ⊕ K4i

Ti = Ki ⊕ (refl) Trivi = Ti + Ri

(pll) (A ⊆ ��A) → �A
PLLi = Ki ⊕ (pll) = C4i ⊕ Ri

(wlöb) �(�A → A) → �A (henk) �(A ↔ �A) → A
(ufp) �(B ↔ A[B/p]) → (�(C ↔ A[C/p]) → (B ↔ C))

GLi = Ki ⊕ (wlöb) = K4i ⊕ (henk) = K4i ⊕ (ufp)

(see Theorem 1 below) GLcl = GLi ⊕ Cl
(slöb) (�A → A) → A (glb) (�A → A) → �A

SLi = Ki ⊕ (slöb) = Ki ⊕ (glb) = GLi + Ri

The form (glb) comes from Goldblatt [42]
(grz) �(�(A → �A) → A) → �A (sgrz) �(�(A → �A) → A) → A

wGrzcl = K4cl ⊕ (grz) sGrzcl = Kcl ⊕ (sgrz)
Note we only consider here classical variants of (grz)

(next) �A → (((B → A) → B) → B) (derv) �A → ((B → A) ⊆ B)

CBi = Ki ⊕ (next) = Ki ⊕ (derv)

CBi stands for Cantor-Bendixson, see Sect. 8.4 mHC = Ri + CBi

CBLi = CBi ⊕ GLi KM = CBi ⊕ SLi

KM = SLi + CBi = SLi + mHC
(ver) �A (boxbot) �≤

Veri = Ki ⊕ (ver) = Ki ⊕ (boxbot)
(nnv) ¬¬�≤ (nv) ¬�≤

NNVi = Ki ⊕ (nnv) NVi = Ki ⊕ (nv)

Remark 2 Equalities in Table 8.2 should be in fact treated as a large lemma on inter-
derivability for a number of intuitionistic normal modal axioms. Of particular interest
for this chapter are: the derivability of (r) from (slöb), which mirrors derivability of
(trns) from (wlöb); interderivability between (glb) and (slöb); equivalence between
either of these and the conjunction of (wlöb) and (r); two different ways of axiom-
atizing CBi by using (next) and (derv). All these statements are made assuming
Ki.

All normal �int-logics as defined above—more precisely, their associated global
consequence relations—are strongly finitely algebraizable; see standard references
like [17, 34–36, 67] for basic notions of algebraic logic and a more detailed
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discussion. Strong finite algebraizability also applies to normal logics in any fragment
of �int containing → . This is due to the fact that all these systems are implica-
tive logics in the sense of Rasiowa [67]. Given a normal logic δ, I will call the
corresponding class of algebras obtained via the algebraization process δ -algebras,
e.g., Ki-algebras, GLi-algebras, wGrzcl-algebras etc. Ki-algebras are obviously spe-
cial cases of HAOs—Heyting algebras with operators—namely HAOs with a sin-
gle unary operator. Recall that an operator on a Heyting algebra is an operation
preserving ↑ and finite meets. An operator on a Heyting algebra which turns it into
a δ -algebra will be called a δ -operator.

Finally, recall that for any algebra H, a H-polynomial is a term in the similarity
type of H enriched with a separate constant for each element of H [21, Definition
13.3]. In my notation for polynomials, I will not distinguish between an element of
H and its corresponding constant. Moreover, I will use elements of ℘ (i.e., propo-
sitional variables) as variables of polynomials, consistent with the general policy
of blurring the distinction between logical formulas and algebraic terms. The notion
of �-guardedness for polynomials will be used in the same way as for formulas.

A Kripke frame or a relational structure is of the form (W, � , ↓ ), where

• � is a poset order used to interpret intuitionistic connectives
• ↓ is the modal accessibility relation used to interpret � and
• � ; ↓ ∩ ↓ , where; is relation composition.

A valuation is a mapping V :℘ → Up� (W ), where Up� (W ) is the Heyting
algebra of upward closed sets of W and the inductive extension toL�int℘ is standard.
See [20, 22, 42, 75, 81, 82] and in particular [71, Sect. 3.3] for more on the subject
of necessary and sufficient conditions to be imposed on the interplay of ↓ and� . In brief: even a weaker interplay condition found first in [20] would suffice to
ensure that denotations of all modal formulas are upward closed. However, one is
lead to the condition assumed above and standard in most references by, for example,
the canonical model construction, see [20, 75]. Furthermore, this condition has the
advantage of simplifying correspondence theory and yet is harmless from the point
of view of validity, see [20, 42]. The situation would be different if our language
included �.

Remark 3 When at least one of lattice connectives is removed, the situation at first
sight appears more complicated. While the papers proving the separation property of
IPC [44, 58, 66] showed that its reducts remain complete wrt relational semantics, a
Stone-type representation theorem for arbitrary algebras would seem more problem-
atic; the one for Heyting algebras relies crucially on the fact that they have distributive
lattice reducts. However, a series of papers beginning with [48] and finishing with
[12] established that Brouwerian semilattices enjoy in fact Stone-, Priestley- and
Esakia-type dualities.

Table 8.3 lists semantic conditions corresponding to modal axioms. For GLi in
particular, we have:
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Table 8.3 Semantic counterparts of intuitionistic modal axioms. See, e.g., [29, 75, 81, 82] for more.
η := {(w,w) | w ∈ W } and � := � −η, i.e., it is the strict version of the intuitionistic poset order.
For R ∈ {↓ , � }, V ∩ W, V R∧:= {w ∈ W | ∃v ∈ V .vRw} and V R∨:= {w ∈ W | ∃v ∈ V .wRv}

Axiom Semantic condition Axiom Semantic condition Axiom Semantic condition

(cl) � = η (trns) ↓ ; ↓ ∩ ↓ (bind) ↓ ∩ ↓ ; ↓
(r) ↓ ∩ � (refl) � ∩ ↓ (wlöb) see Theorem 5
(next) � ∩ ↓ (ver) ↓ = ≥ (nv) W ↓ ∨= W
(nnv) (W − W ↓ ∨)�∨= W

Theorem 2 ([77]) A structure (W, � , ↓ ) validates GLi iff

• ↓ is transitive, i.e., ↓ ; ↓ ∩ ↓ and
• ↓ is Up� (W )-Noetherian: for any A ∈ Up� (W ), if A �= W, then there is

w ∈ �A − A, i.e., a �-maximal non-A point.

Proof (Sketch) We show only the “if” direction. Assuming (wlöb) fails under a
valuation V, take B to be the extension of (wlöb) under V and show that �B ∩ B.

This means that W − B witnesses the failure of Noetherianity. �
Reference [77] provides an interesting motivation for this semantics of GLi in

terms of projects and streamlines in a research. It also provides other important
results, such as the finite model property and decidability.

8.3 The Fixpoint Theorem

Theorem 1 above gave us several equivalent axiomatizations of GLi. In particular,
(ufp) forces uniqueness of fixed points.

Definition 1 Let B be a formula of L�int (its denotation in a given algebra and
under a given valuation). B is a fixed point of (the term function associated with)
A ∈ L�int relative to p in a given normal logic δ (here always an extension of GLi)
if B ↔ A[B/p] ∈ δ and p does not occur in B.

According to [73], the fact that (ufp) holds in GLcl was discovered independently
by Bernardi, Sambin and de Jongh. We know thus that, surprisingly, in GLi a syn-
tactic fixed point of an expression is unique up to equivalence whenever it exists;
same applies to all of its extensions, such as SLi or KM. But do they exist at all?
An even more amazing fact is that they not only do exist—under the assumption of�-guardedness on p—but are effectively computable. This is guaranteed by the fol-
lowing algebraic (or propositional, if one prefers) variant of Gödel’s Diagonalization
Lemma. Sambin [68] proved it for GLi itself and de Jongh proved it for GLcl build-
ing on an earlier result by Smorynski, another proof being found soon afterwards
by Boolos; the reader is referred to [18, 19, 61, 73] for more on its history and the
connection with Gödel’s result:
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Theorem 3 (Diagonalization) For any A and p, there exists a constructively
obtained formula diagp A s.t.

1. diagp A ↔ B ∈ GLi, where B is obtained from A by replacing all occurrences
of p under � by diagp A

2. A and diagp A have provably the same fixed points with respect to p, that is, for
any C not containing p we have

�(C ↔ A[C/p]) ↔ �(C ↔ diagp A[C/p]) ∈ GLi

Clearly, if p is �-guarded in A, then B in the first clause is precisely A[diagp A/p]
and diagp A does not contain p, hence being trivially its own fixed point wrt p. Thus,
in such a situation diagp A itself is also the unique fixed-point of A with respect to p!

Proof (of Theorem 3, sketch) We only give a sketch of how diagp A is con-
structed. Any formula A(p, q) ∈ L�int in variables p, q ∈ ℘ can be written as
B(�C1(p, q), . . . ,�Ck(p, q), p, q), where B ∈ Lint (i.e., is a formula without �)
and C ∈ L�int. Clearly, if k = 0, then A itself belongs to Lint and, in particular,
there are no occurrences of p under �. Hence we can take diagp A to be A itself.
Otherwise, the proof can be conducted by induction on k, as we already have the
base step. For any i ⇐ k, set

Ai := B(�C1(p, q), . . . ,�Ci−1(p, q),↑,�Ci+1(p, q), . . . ,�Ck(p, q), p, q).

By definition, the inductive hypothesis applies to Ai . Now we set

diagp A := B(�C1(diagp A1/p, q), . . . ,�Ck(diagp Ak/p, q), p, q). �
Remark 4 In fact, extensions of SLi—in particular KM—allow a much simpler
proof of Theorem 3 and a much simpler algorithm for computing these fixpoints:
it is enough to substitute ↑ for p. This follows already from observations made by
Smorynski in [73, Lemma 2.3] and has been discussed explicitly in [26, Propositions
4.2–4.6]. De Jongh and Visser describe SLi as a kind of Kindergarten Theory in which
all the well-known syntactical results of Provability Logic have extremely simple
versions.

Remark 5 It is known that at least in the case of GLcl a non-constructive and non-
explict form of Theorem 3 can be obtained already from uniqueness of fixed-points
combined with the Beth definability theorem for GLcl, see, e.g., [18, 73] for more
information. However, as should be clear from the discussion below, the very fact
that fixed points are obtained explicitly and constructively seems an advantage not
to be given up lightly.

Theorem 3 has a nice algebraic corollary. I present it here as a more general
version of [31, Proposition 3].

Theorem 4 A K4i-algebra H is a GLi-algebra iff every H-polynomial t (p) in one�-guarded variable p ∈ ℘ has a fixed point.
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Proof The “only if” direction. This is a direct corollary of Theorem 3.
The “if” direction. Given any h ∈ H, consider the polynomial t (p) = �p → h.

As p is �-guarded in it, it has a fixed point ih ∈ H; that is, ih = �ih → h. By the
fact that → is conjugate (or residual) to ∧, one half of this equality is equivalent to
ih ∧ �ih ⇐ h. On the other hand, h ⇐ �ih → h = ih by general implication laws.
Taken together, these two inequalities imply ih ∧�ih = h∧�h: the ⇐ direction from
the first inequality, normality and (trns), the ⇒ direction from the second inequality
and monotonicity of �. Using normality again, we get �ih ∧��ih = �h∧��h and
using (trns) again, we arrive at �ih = �h. Then we get �(�h → h) = �(�ih →
h) = �ih = �h. As h ∈ H was chosen arbitrarily, we have that H is a GLi-algebra.�

There is an analogy between the above result and alternative axiomatizations for
GLi presented in [77].

Corollary 1

• A Ri-algebra H is a SLi-algebra iff every H-polynomial t (p) in one �-guarded
variable p ∈ ℘ has a fixed point.

• [31, Proposition 3] A mHC-algebra H is a KM-algebra iff every H-polynomial
t (p) in one �-guarded variablep ∈ ℘ has a fixed point.

As stated above, Theorem 3 occurred first as an algebraization of Gödel’s Diag-
onalization Lemma. While the connection between GLi and Heyting Arithmetic
HA is not as tight as the one between GLcl and Peano Arithmetic PA established
by the completeness result of Solovay [74] (see also [18, Chap. 9]), Sambin [68]
notes that Theorem 3 yields a counterpart of the Diagonalization Lemma for any
intuitionistic first-order theory with a canonical derivability predicate, including
obviously HA. At any rate, the relevance of fixpoint results for Löb-like logics is not
limited to arithmetic.

Remark 6 It is worth mentioning here that—unlike the case of PA—the search for
a complete axiomatization of the provability logic of HA is not over yet; [45] gives
a fascinating account. Regarding the arithmetical interpretation of SLi, see the dis-
cussion of HA∀ in [26, Sect. 4–5].

To begin with, in the classical case one can use Theorem 7 to show that explicit
smallest or greatest fixed-point operators are eliminable over GLcl. In other words,
adding μ or ν does not increase the expressive power of the classical modal logic
of transitive and conversely well-founded structures; see [4, 79, 80]. Note that this
includes all correctly formed expressions with μ, without assuming that all occur-
rences of p are �-guarded: as usual, they only have to be positive. ten Cate [76, Sect.
3] discusses an application in the context of expressivity of navigational fragments
of XML query languages.

While I am not aware of an exact analogue of the results in [4, 79, 80] in the
intuitionistic context, Löb-like modalities—more specifically, variants of systems
GLi and SLi—have recently become rather popular in type theory. Examples include:
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• modality for recursion [63, 64]
• approximation modality [7]
• tomorrow idiom [8]
• next-step modality/next clock tick [49, 50]
• later operator [11, 14, 15, 46].

One of reasons is precisely that such modalities guarantee existence and unique-
ness of fixed-points of suitably guarded type expressions. However, the modal spade-
work of 1970’s seems rarely acknowledged. In [63], which may be credited with
introducing intuitionistic Löb-like modalities to the attention of this community, we
find the following statement:

Similar results concerning the existence of fixed points of proper type expressions … could
historically go back to the fixed point theorem of the logic of provability … The difference is
that our logic is intuitionistic, and fixed points are treated as sets of realizers [the emphasis
is mine–T.L.].

This formulation suggests that Nakano was not aware that the intuitionistic fixed-
point theorem had been already proved in [68], not to mention improvements possible
above SLi (cf. Remark 4). The only related references quoted in [63] focus on classical
GLcl—e.g, [18]—and in later papers even these are omitted. A valuable part of the
logical tradition seems lost this way. Let us see what insights can be found in the
work of the Tbilisi school.

8.4 Leo Esakia and Extensions of mHC

8.4.1 mHC and Topological Derivative

Leo Esakia and collaborators devoted special attention to the system mHC and its
extensions. Reference [31] is an excellent overview. The abbreviation mHC stood
for modalized Heyting calculus. The reader may find the name surprising; after
all, many natural intuitionistic modal systems are not subsystems of mHC. Esakia
[31] was perfectly aware of that:

The postulate (r) is not typical, while the postulate (derv) stresses even more “nonstan-
dardness” of the chosen basic system mHC and of its extension KM, which enables one
to draw a conventional “demarcation line” between mHC and the standard intuitionistic
modal logics.

Remark 7 Both axioms seem “nonstandard” mostly if one focuses on these intuition-
istic modal logics which are obtained from popular classical systems. It is enough
to look at Table 8.3 to realize why it must be so: (derv) is trivially derivable in Kcl

(its consequent being a classical tautology), while the combination of (cl) and (r)
yields that ↓ ∩ η. That is, the only classical frames for Rcl are disjoint unions of
reflexive and irreflexive points. However, (r) is nowhere as pathological in a properly
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intuitionistic setting. There are many references on systems different from mHC and
KM where nevertheless (r) is still derivable or even explicitly included as an axiom.
A short and inexhaustive list includes [1, 2, 10, 14, 25, 32, 37, 38, 42, 43, 50, 56,
63, 64]. They can be split roughly into two main groups. The first one—e.g., [14,
50, 63, 64]—concerns SLi and has already been mentioned in Sect. 8.3. The second
one—e.g., [2, 10, 25, 32, 37, 38, 42, 43]—concerns the system which is denoted
here as PLLi (a.k.a. CL, see [10]). Reference [40, Sect. 7.6] and [43] are good if
incomplete overviews of most relevant papers on this system—the most important
omissions being perhaps [65, Sect. 7] and [1, 38]. See also [56] for a discussion of
type systems with Ri modalities from programmer’s point of view.

Reference [31] gives the following reasons for the importance of mHC:

• Its connection to KM: mHC is KM minus the Löb axiom (slöb). Note that (wlöb)

and (slöb) are equivalent in the presence of (r)
• The connection with intuitionistic temporal logic “Always & Before” possessing

rich expressive possibilities
• The fact that mHC can be obtained as a fragment of QINT (or, in Esakia’s nota-

tion, QHC)—quantified intuitionistic propositional calculus. This is similar to the
encoding of mHC in the internal language of a topos, see the last point

• The topological connection with Cantor’s scattered spaces, notions of the limit
and isolated point. This will be discussed at length in this section

• Finally, as mentioned above, mHC turns out to be a natural fragment of the logic
of toposes. This last point builds on all the preceding ones and will be discussed
in Sect. 8.5.

As we can see in Table 8.3, the conditions on the accessibility relation ↓ imposed
by the axioms of mHC—the combination of (r) and (derv)—is � ∩ ↓ ∩ � . A
natural question to ask is whether it is possible to enforce syntactically that ↓ is
even more closely determined by � as one of the two borderline cases, i.e., either
↓ = � or ↓ = � .

For ↓ = � , the answer is obviously positive. This is achieved precisely by the
axioms of the logic Trivi, strengthening (derv) to (refl). In fact, this is a semantic
counterpart of an observation in [31] that enriching any Heyting algebra with a
trivial operator �Trivi

x := x yields an mHC-algebra. Note here that whenever � is
an mHC- or even Ri-operator, its associated � is a Trivi-operator.

For ↓ = � , the answer is obviously negative. Irreflexivity is a typical example
of a condition which cannot be defined by any purely modal axiom, see [16]. Here
is perhaps the most natural proof.

Example 1 Consider a frame for mHC defined as (ω, � , � ) where � is the
natural order ⇐ on ω. The dual algebra contains as a subalgebra the two-element
Boolean algebra with �≤ = ≤, which is the dual of a single ↓ -reflexive point.
Hence, no modal axiom can define the class of ↓ -irreflexive frames over the class of
frames for mHC.
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However, an “irreflexive” mHC-operator is clearly definable on any Heyting
algebra obtained as the dual of an intuitionistic Kripke frame (W, � ): for any
A ∈ Up� (W ), we take �A := {w ∈ W | {w}� ∧ −{w} ∩ A}; again, see
Table 8.3 for notation. It is straightforward to note that for any w ∈ W, w ∈ �A
iff for any B ∈ Up� (W ), w ∈ (B → A) ∅ B. This observation actually explains
the shape of axiom (derv). Hence, given any complete Heyting algebra H, define its
point-free coderivative [30, 69, 70] as �h := ∧

i∈H
(i ⊆ (i → h)).

Proposition 1 For any complete Heyting algebra, its point-free coderivative is an
mHC-operator.

Proof A rather easy exercise for the reader; can be also extracted from the proof of
[31, Proposition 5]. �

There is a slightly different description of �. Take a Heyting algebraH and h, i ∈ H
s.t. i ⇐ h. h is i-dense or dense in [i,↑] if for any j ∈ H, we get that h ∧ j = i implies
j = i. Note that the standard topological notion of density can be considered a special
case: an open set is topologically dense iff it is ≤-dense in the Heyting algebra of
open sets of the space. The following was observed, e.g., in [30]:

Fact 1 For any Heyting algebra H and any h ⇒ i ∈ H, h is i-dense iff there exists
j ∈ H s.t. h = j ⊆ (j → i).

Corollary 2 For any complete Heyting algebra H and any i ∈ H,

�i =
∧

{h ∈ H | h ⇒ i and h is i − dense}.

Why coderivative? The reader is referred to a detailed account by Simmons
[70] in this volume. Briefly, recall that in topology the Cantor-Bendixson deriva-
tive of a set A is the set of those x whose every neighbourhood contains a point of
A other than x ; the dual operator (hence co-derivative) consists of those x which
have an open neighbourhood entirely contained in A ∅ {x} [31]. As it turns out, this
indeed coincides with � for practically all sensible topological spaces:

Theorem 5 (Simmons) For any T0-space, its co-derivative operator coincides with
the point-free coderivative � on the Heyting algebra of open sets.

Proof For � defined as in Corollary 17, this was proved in [69]. �
Obviously, as any intuitionistic Kripke frame with the Alexandroff topology given

by Up� (W ) is T0, we get that � coincides with the dual of topological derivative
of this topology. It is, in fact, easier to prove directly than by Simmons’ result.

Remark 8 One observation from [69] is worth quoting here:

for non-T0-spaces the usual definition of isolated point does not quite capture the intended notion
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and hence for arbitrary spaces, the point-free definition of derivative given by �
seems in fact more adequate than the standard one. The reader can verify this by
extending the definition of intuitionistic Kripke frames to qosets rather than just
posets and checking how both notions would fare in such a setting.

8.4.2 KM and Scatteredness

A complete Heyting algebra will be called scattered if its coderivative � is not only
an mHC-operator, but a KM-operator. Recall Corollary 1 as an algebraic character-
ization of such a situation.

Proposition 2

• For any topological space, its point-free coderivative is a KM-operator if the
space is scattered in the usual sense: that is, if each non-empty subset has an
isolated point.

• For any T0 topological space, its point-free coderivative is a KM-operator only
if the space is scattered.

Proof A non-T0-space can never be scattered, and for T0-spaces, the point-free
coderivative coincides with ordinary one as stated in Theorem 5. The remaining
calculations are an exercise in point-set topology; in fact, the point-set part of this
result has been shown first by Kuznetsov [52, 61]. One can use an alternative char-
acterization of scatteredness here: for any open set A distinct from the whole space,
�A − A is non-empty. �

Let us summarize some of the results above:

Corollary 3 A topological space T is scattered iff in the complete Heyting algebra
of open sets of T, every polynomial in one �-guarded variable has a fixed point.

Corollary 4 The following are equivalent for any (W, � , ↓ ):

• ↓ = � and the Alexandroff topology (W,Up� (W )) is scattered
• (W, � , ↓ ) is a frame for KM
• ↓ = � and � contains no infinite ascending chains.

Proof We only need to prove the equivalence of the last two conditions. � ∩↓ is, as
observed, enforced by mHC. Theorem 2 gives the corresponding semantic condition
for (wlöb). Quite obviously,Up� (W )-Noetherianity forces irreflexivity of ↓ . Thus,
whenever (W, � , ↓ ) is a frame for KM (that is, the join of mHC and GLi), we
have ↓ = � . Moreover, rewriting the condition of Up� (W )-Noetherianity for
mHC-frames, we obtain that for any A ∈ Up� (W )−{W }, there is w ∈ A � ∧ −A.

Rewriting further, we obtain that any B �= ≥ s.t. B = B �∨ has a maximal element
wrt � . But this means that any nonempty subset of W has a maximal � -element. �
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8.4.3 Completeness, Lattice Isomorphisms and Bimodal
Translations

Two important kinds of results have been missing from this overview so far. First,
while I discussed Kripke correspondence for modal logics (Table 8.3, Theorem 2
and Corollary 4), I have not discussed completeness. Second, I have not said much
about lattices of extensions of Löb-like logics and their relatives—in particular, about
generalizations of the Blok-Esakia Theorem.

This section fixes both oversights. Rather than using original proofs of Kuznetsov,
Muravitsky (for KM) and Esakia (for mHC), we are going to use corollaries of Wolter
and Zakharyaschev’s results on bimodal translations [81, 82], briefly discussed also
in this very volume [83, Sect. 4]. Their techniques allow to interpret intuitionistic
modal logics as fragments of classical polymodal ones (cf. the discussion of implict
vs. explicit epistemics in [78]). In the case of the Blok-Esakia theorem for mHC, we
will be able to see why axioms of mHC and wGrzcl have to look the way they look
in order to allow the classical counterpart to be unimodal rather than polymodal, as
it happens in the more general framework of [81, 82].

Take the bimodal language Li,m with operators [ i ] and [m]. For any formula
A ∈ L�int, I will write A[ i ] (respectively A[m]) for A with all occurrences of �
replaced with [ i ] (respectively [m]). [m] is the default counterpart of the original
modality � and [ i ] encodes the intuitionistic poset order, hence the notation.1 The
logic S4cl

i,m is the normal logic axiomatized by the following axioms: (cl), (nrm)[ i ],
(refl)[ i ], (trns)[ i ] and (nrm)[m]; in other words, it is what modal logicians would
describe as the fusion of S4cl

i and Kcl
m. The logic S4Mcl

i,m is S4cl
i,m extended with

(mix) : [m]A ↔ [ i ][m][ i ]A.

The logic sGrzMcl
i,m is S4cl

i,m extended with (mix) and (sgrz)[ i ]. The translation
ι : L�int → Li,m prefixes every subformula in (·)[m] with [ i ]. Of course, many
occurrences of [ i ] in the translation ιA can be removed relative to logics defined
above:

Fact 2 The following equivalences belong to S4cl
i,m: ιA ↔ [ i ]ιA, ι(A ∧ B) ↔

(ιA∧ιB), ι(A⊆ B) ↔ (ιA⊆ιB); in S4Mcl
i,m, we moreover have ι(�A) ↔ [m]ιA.

For any intuitionistic normal modal logic δ ◦ S4cl
i,m and any bimodal normal

logic η ∩ Li,m, let

• τmixδ := S4Mcl
i,m ⊕ {ιA | A ∈ δ }

• σmixδ := τmixδ ⊕ (sgrz)[ i ]
• ρinη := {A ∈ L�int | ιA ∈ η}.

1 The reader has to be warned that the notation in this section differs somewhat from that in references
like [81–83].
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η is a Li,m-companion of δ if for any A ∈ L�int, A ∈ δ iff ιA ∈ η, i.e., iff
ρinη = δ.

Theorem 6 ([81–83]) Let η ◦ S4cl
i,m be a normal bimodal logic and δ ∩ L�int be

an intuitionistic normal logic. Then

(A) ρinη is an intuitionistic normal modal logic
(B) τmixδ and σmixδ are, respectively, the smallest and the greatestLi,m-companions

of δ containing (mix)

(C) ρin preserves decidability, Kripke completeness and the finite model property.
If (mix) ∈ η, ρin also preserves canonicity

(D) τmix preserves canonicity
(E) σmix preserves the finite model property
(F) σmix is an isomorphism from the lattice of normal extensions of Ki onto the

lattice of normal extensions of sGrzMcl
i,m

(G) δ ◦ K4i has the finite model property whenever its Li,m-companions over
S4Mcl

i,m ⊕ (trns)[m] include a canonical subframe logic.

Proof (A) can be easily proved from Fact 2; note that we need the assumption we
are above S4cl

i,m. (B) is a consequence of Theorem 27 in [81]. (C) , (D) and (E) are
consequences of Proposition 29 and Theorem 30 in [81] and Theorems 11 and 12 in
[82].(F) is a consequence of Corollary 28 in [81]. (G) is a consequence of Corollary
18 in [82]. �

References [81, 82] illustrate on many examples how powerful these results are.
As it turns out, they also have corollaries of immediate interest for us.

Corollary 5 mHC is canonical and has the finite model property.

Proof First, note that

S4Mcl
i,m ⊕ ι(r) = S4Mcl

i,m ⊕ ([ i ]A → [m]A) ◦ S4Mcl
i,m ⊕ (trns)[m].

Clearly, [ i ]A → [m]A is a Sahlqvist formula with an universal FO counterpart.
Furthermore, S4Mcl

i,m ⊕ ι(derv) is the same logic as the extension of S4Mcl
i,m with

[m]B ∧ ∞ i 〉C → [ i ](∞ i 〉C ⊆ [ i ]B). (8.1)

The latter is a simple Sahlqvist implication (cf. e.g., [16, Definition 3.47]). Applying
the algorithm in the proof of Theorem 3.49 in [16] and doing some FO-preprocessing,
we get an universal formula

≈y, z, w.(x � y ∧ x � z → (z � y ⊆ (z � w → x ↓ w))) (8.2)

(where � is the accessibility relation corresponding to [ i ] and ↓ is the accessibility
relation corresponding to [m]). Thus, τmixmHC is a canonical subframe logic over
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S4Mcl
i,m ⊕ (trns)[m]. Now, canonicity of mHC follows from (C) and the fmp from

(G) of Theorem 6. �
Remark 9 It is worth noting that the semantic counterpart of (next) from Table 8.3,
i.e., � ∩ ↓ is equivalent to 8.2 above. For one direction, substitute x = y in 8.2 and
use poset properties. For the other direction, note that whenever x � y and x � z
but ¬(z � y), then x � z, ergo x ↓ z. Now whenever z � w, we can use the
interaction between ↓ and � as expressed by (mix) (in fact, even a weaker axiom
would do).

Canonicity of mHC has been noted , e.g., in [31, 42]. I was unable to locate
references where the finite model property has been explicitly claimed. The following
corollary can appear more surprising, as bimodal logics over Li,m do not even occur
in its statement.

Corollary 6 The lattice of normal extensions of mHC is isomorphic to the lattice
of normal extensions of wGrzcl. The sublattice of normal extensions of KM is iso-
morphic to the lattice of normal extensions ofGLcl.

Proof The heart of the proof is to notice that [ i ]A ↔ [m]A ∧ A and (grz)[m]
are derivable in σmixmHC; in fact, these two formulas axiomatize this logic over
Li,m ⊕ (trns)[m]. Let us derive the first of them. For convenience, we will do it in
the algebraic setting:

[m]A ∧ A ∧ ∞ i 〉¬A ⇐ by (refl)[ i ]
[m]A ∧ ∞ i 〉(A ∧ ∞ i 〉¬A) ⇐ by (1)

[ i ](∞ i 〉(A ∧ ∞ i 〉¬A) ⊆ [ i ]A) ⇐ by (refl)[ i ]
[ i ](∞ i 〉(A ∧ ∞ i 〉¬A) ⊆ A) =
[ i ]([ i ](A → [ i ]A) → A) ⇐ [ i ]A by (grz)[ i ].

We get that σmixmHC is just a notational variant of σmixwGrzcl, with [m] being �
and [ i ] being �. This yields the first statement by clause (F) of Theorem 24. For the
second, it is enough to add the observation that over σmixmHC, adding ι(slöb) is
equivalent to adding (wlöb)[m]. �

The second statement of Corollary 6 above was first proved by Kuznetsov and
Muravitsky in mid-1980’s, see [51, 61]. The first statement was announced in [31]
as follows:

Finally let us note that …the lattice Lat(mHC) of all extensions of mHC is isomorphic to the
lattice Lat(K4.Grz) of all normal extensions of the modal system K4.Grz. However, a proof
of this result requires additional considerations as the above algebraic machinery does not
suffice for it.

It seems that the proof has not been published so far.

Corollary 7 ([42, 51, 60]) KM has the finite model property.
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Proof The proof of Corollary 6 has established that σmixKM is just a notational
variant of GLcl, with [m] being � and [ i ] being �. Now use clause (C) of Theorem 6
and the finite model property for GLcl (see, e.g., [16, 18, 23, 33, 59] for references).�
Remark 10 Note that we could also prove Corollary 5 in an analogous way to Corol-
lary 7, using the fmp of wGrzcl established explicitly by Amerbauer [6]. The latter is
actually a direct consequence of wGrzcl being a transitive subframe logic [33, 54].
However, I believe that the proof of Corollary 5 provided above has some additional
value: we obtained a convenient form of ι(derv)—which we actually used in the
proof of Corollary 6—together with its FO translation, which also provides some
additional insight, as discussed in Remark 9.

Remark 11 It could be an interesting exercise—and very much in the spirit
of the Tbilisi school—to show that the above-discussed results of [81–83]
survive when the base bimodal logic is weakened from S4cl

i,m to the fusion of

Kcl
i ⊕ (A ∧ [ i ]A → [ i ][ i ]A) with Kcl

m and the translation ι is modified to ι∀
replacing every subformula A with ι∀ A ∧ [ i ]ι∀ A. On the other hand, it is not obvi-
ous how much generality would be really gained in this way. Note that using Wolter
and Zakharyaschev’s original results we were able to investigate lattices of logics
which are not extensions of S4cl, such as wGrzcl in Corollary 6 above.

8.5 Scattered Toposes

We are ready to discuss the topos of trees of [14], scattered toposes of [30] and the
relationship between fixpoint results in both papers.

8.5.1 Preliminaries on the Logic of a Topos

Just like Sect. 8.4.3 assumed certain familiarity with technicalities of modal logic, this
section in turn assumes some familiarity with basics of category theory—mostly with
the notions of a ccc (cartesian closed category), a functor and a natural transformation.
Those readers who know more than that, in particular understand well the internal
logic of a topos, can probably skip this subsection. Due to obvious space constraints,
the presentation has to be rather abstract and example-free; see [41, 47, 55] for
more examples and motivation. Furthermore, like any presentation of topos theory
by logicians and for logicians, it can be accused of neglecting spatial intuitions.
See, e.g., [57] for a passionate polemic with the view that toposes were invented to
generalize set-theoretical foundations of mathematics.2 Nevertheless, applications

2 Speaking of [57], footnote 4 provides an argument that the plural form intended by Grothendieck
was toposes rather than topoi. I stick to the same convention, also because—as a quick Google
search shows—the form toposes is used mostly by mathematicians, whereas topoi seems prevalent
for unrelated notions in the humanities. Besides, this was the form used by Leo, Mamuka and Dito.



8 Constructive Modalities with Provability Smack 203

of toposes in fields like algebraic geometry or foundations of physics or their actual
historical origins are not directly relevant here. My aim is a minimalist presentation
focusing on the contrast between the logic of a topos and that of a ccc, but also
making clear how the Beth-Kripke-Joyal semantics is related to more familiar ones
for the intuitionistic predicate logic. Of all accounts in the literature, the one in [53]
is probably closest to this goal.

Let E be a ccc with the terminal object 1 and for any Y ∈ E , let fin!Y be the
unique element ofE [Y, 1]. I use the obvious notation for (finite) products, coproducts
(whenever they exist, but in a topos they always do), their associated morphisms and
I denote the ccc evaluation mapping B A × A → B as evalA,B . Recall that E is an

elementary topos if there exists an object σ ∈ E s.t. (σ, 1
true→ σ) is a subobject

classifier, i.e., for any monic (left-cancellable morphism) Y
f

� X there exists exactly

one mapping X
χ f→ σ s.t. we have a pullback diagram:

As observed by C. Juul Mikkelsen, this definition already implies thatE is bicarte-
sian closed, where the latter notion is defined as in, e.g., [53]; see [41, Sect. 4.3]
for references.

Before we proceed with formal definitions, some general discussion can be help-
ful. In every category, topos or not, (equivalence classes of) monics into X are abstract
counterparts of subsets of X ; in fact, they are called subobjects of X, just like mor-
phisms 1 → X are global elements of X. Global elements (or equivalence classes
thereof) can be considered as special cases of subobjects: think of the usual identi-
fication of an element x ∈ X with the subset {x}3. We can go further and define a
generalized element of X as any morphism A → X, which is then called A-based
or defined over A. See [55, Sect. V] for a lucid and brief discussion of those notions.

In particular, the global elements of σ can be identified with logical constants,
X -based generalized elements of σ with predicates over X (i.e., formulas with a
single free variable from X ) and n-ary propositional connectives with morphisms
σn → σ. Set false := χfin!0 , ¬ := χfalse, ∧ := χ∞true,true〉 and ⊆ :=
χ[∞trueσ,idσ 〉,∞idσ,trueσ 〉]. Recall that for any X ∈ E , trueX stands for true ⊗
fin!X and eqX stands for χ∞idX ,idX 〉. The latter allows to define internal equality

for generalized elements of type X as σ ˆ τ := eqX ⊗ ∞σ, τ 〉. That is, if A
σ→ X

and B
τ→ X are generalized elements of X, then σ ˆ τ is a generalized element

of σ defined over A × B. For σ, we can define not only eqσ, but also leqσ as

the equalizer of σ × σ
∧ ��

π1

�� σ . Implication, the only remaining intuitionistic

connective, can be now defined as →:= χleqσ
.

3 Note that toposes very rarely happen to mimic sets in having enough global elements to determine
all subobjects; such special toposes are called well-pointed.
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Thus, in toposes one can reduce reasoning about the poset of subobjects of any
given object X ∈ E (in fact, whenever E is a topos, this poset is always a lattice and
even a Heyting algebra—see [55, Theorem IV.8.1]) to reasoning about E [X,σ] and
further still to reasoning about an internal Heyting algebra provided by a suitable
exponential object. What this means is: in any category, monics into X have a natural
preorder defined as f ∩ g if f factors through g, i.e., there is a morphism h s.t.
f = g ⊗ h. Dividing by equivalence classes with respect to ∩, we get a category-
theoretic generalization of the poset of subsets of X ordered by inclusion. In general,
without understanding the global structure ofE , we are not likely to learn much about
these posets of subobjects. But in a topos, the poset of subobjects of X is isomorphic
to something more tangible: namely, to E [X,σ], i.e., X -based generalized elements
of σ. Think of the usual identification of subsets of X with elements of 2X . Here is
also where first- and higher-order aspects of the internal logic come into play.

If E is a category with products, a power object of X ∈ E is a pair

(PX,�∗ X �� ∗X �� PX × X) s.t. for any (Y, R �� r �� Y × X) there exists exactly

one Y
fr �� PX for which there is a pullback

As shown, e.g., in [41, Theorem 4.7.1], in any topos we can takePX to be σ X and

the subobject �∗ X �� ∗X �� σ X × X can be obtained by pulling back true along

σ X ×X
evalX,σ→ σ. Thus, we see that in a topos, the notions of power object, subobject

classifier and exponential object are indeed well-matched and we can define the
membership predicate σ ∈ τ for a pair of generalized elements (A

σ→ X, B
τ→ PX)

as evalX,σ ⊗ ∞τ ,σ〉. We are now ready for a single definition formalizing the whole
discussion above and more (see [55, Sect. VI.5–7] and also [24, 53]):

Definition 2 (The Mitchell-Bènabou languague) Consider a topos E . The collec-
tion of ground types and the signature of the Mitchell-Bènabou language of E are
defined, respectively, as

Ground(E ) :={E | E ∈ E }
Sg(E ) :={ f : F1, . . . , Fn → E | f ∈ E [F1 × · · · × Fn, E]}

(instead of k : 1 → E I will write k : E) and the full collection of types Types(E )

is A, B ::= E | 1 | σ | A×B | B A where E ∈ Ground(E ). σ A can be also written
as PA. Fix, moreover, a supply of term variables x, y, z · · · ∈ tVar. The collection
of terms Terms(E ) over Sg(E ) is defined as

M, N ::= x | f M | fin! | M ˆ N | ∞M, N 〉 | π1 M | π2 M | λx : A.M | M ∇N
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where x ∈ tVar and f ∈ Sg(E ) is of suitable arity. The typing rules and some
standard abbreviations (including all logical connectives) of the language are
defined in Table 8.4. Interpretation of types, contexts and terms-in-context in E is
given in Table 8.5.

Definition 3 (Forcing for an elementary topos) Assume δ = x1 : F1, . . . , xn : Fn

and δ ←. φ : σ. By {∞x1 . . . xn〉 ∈ F1 × · · · × Fn | φ}, I will denote the pullback of
the following diagram:

[[δ ]]
[[δ ←φ:σ]]

��
1

true �� σ

Now for F
f1→ F1, . . . , F

fn→ Fn write F, f1, . . . , fn � φ if F
∞ f1,..., fn〉→ [[δ ]]

factors through {∞x1 . . . xn〉 ∈ F1 × · · · × Fn | φ} → [[δ ]]. In what follows, f1 ⊗
g, . . . , fn ⊗ g will be denoted by f ⊗ g. Moreover, let [[δ ← φ : σ]] = true[[δ ]] be
written as δ �E φ.

Fact 3

• F, f � φ iff [[δ ← φ : σ]] ⊗ f = trueF

• δ �E φ iff for any F
f→ [[δ ]], it holds that F, f � φ

The following result, which can be found as Theorem VI.6.1 in [55] or Theorem
II.8.4 in [53], connects the definition of forcing given above with more standard
intuitionistic semantics:

Theorem 7 (Beth-Kripke-Joyal semantics in an elementary topos) Assume F
f1→

E1, . . . , F
fn→ En and δ = x1 : E1 . . . xn : En .

• F, f � φ ∧ ψ iff F, f � φ and F, f � ψ

• F, f � φ ⊆ ψ iff there are arrows G
g→ F and H

h→ F s.t. G + H
[g,h]
� F is epi,

G, f ⊗ g � φ and H, f ⊗ h � ψ

• F, f � φ � ψ iff for any G
g→ F it holds that G, f ⊗g � ψ whenever G, f ⊗g � φ

• F, f � ¬φ iff for any G
g→ F, it holds that G ⊇= 0 whenever G, f ⊗ g � φ

For the case of quantified formulas, note that δ ← ≈xn+1 : En+1.φ iff δ, xn+1 :
En+1 ← φ. Same holds for δ ← ∃xn+1 : En+1.φ. Then we have:

• F, f � ≈xn+1 : En+1.φ iff for every G
g→ F and every G

g∪
→ En+1 it holds that

G, f1 ⊗ g, . . . , fn ⊗ g, g∪ � φ

• F, f � ∃xn+1 : En+1.φ iff there exist G
g∪
→ En+1 and an epi G

g
� F s.t.

G, f1 ⊗ g, . . . , fn ⊗ g, g∪ � φ
• F, f � σ ˆ τ iff [[δ ← σ : E]] ⊗ f = [[δ ← τ : E]] ⊗ f
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Table 8.5 Interpretation of types, contexts and terms-in-context

[[E]] := E [[1]] := 1 [[σ]] := σ [[A×B]] := [[A]] × [[B]] [[B A]] := [[B]][[A]]
[[x1 : A1, . . . , xn : An]] := [[A1]] × · · · × [[An]]

[[δ, x : A ← x : A]] = π : [[δ ]] × [[A]] → [[A]] [[δ ← fin! : 1]] = fin![[δ ]]
f ∈E [A1×···×An ,B] [[δ ← M1:A1]] = σ1:[[δ ]]→[[A1]]...[[δ ← Mn :An ]] = σn :[[δ ]]→ [[An ]]

[[δ ← f M1...Mn :B]]:= f ⊗ ∞σ1,...,σn 〉:[[δ ]]→B
[[δ ← M :A]] = σ:[[δ ]]→[[A]] [[δ ← N :A]] = τ :[[δ ]]→ [[A]]

[[δ ← MˆN :σ]]:= ← m∞id[[δ ]],id[[δ ]]〉⊗∞σ,τ 〉
[[δ ← M :A]] = σ:[[δ ]]→ [[A]] [[δ ← N :B]] = τ :[[δ ]]→ [[B]]

[[δ ← ∞M,N 〉:A×B]]:=∞σ,τ 〉:[[δ ]]→ [[A]]×[[B]]
[[δ ← M :A×B]] = σ:[[δ ]]→ [[A]]×[[B]]
[[δ ←π1 M :A]]:=π1 ⊗ σ:[[δ ]]→ [[A]]

[[δ ← M :A×B]] = σ:[[δ ]]→[[A]]×[[B]]
[[δ ←π2 M :B]]:=π2 ⊗ σ:[[δ ]]→ [[B]]

[[δ,x :A ← M :B]] = σ:[[δ ]]×[[A]]→ [[B]]
[[δ ←λx :A.M :B A]]:=curry[[δ ]]×[[A]],[[B]](σ):[[δ ]]→ [[B]][[A]]

[[δ ← M :B A]] = σ:[[δ ]]→ [[B]][[A]] [[δ ←N :A]] = τ :[[δ ]]→ [[A]]
[[δ ←M ∇ N :B]]:=eval[[A]],[[B]] ⊗ ∞τ ,σ〉

The clauses for ∃ and ⊆ above resemble those of intuitionistic Beth semantics.
This is why “Beth-Kripke-Joyal” seems a more appropriate name in the general
case of an arbitrary elementary topos; see, e.g., [41, Sect. 14.6]. However, when the
topos happens to be the topos of presheaves, i.e., covariant functors into Set, on a
given small category R—in particular, a poset taken as a category—the definition
of forcing can be significantly simplified.4

Perhaps the most straightforward account of this simplification can be found
in [53]. First, the clause for disjunction can be “kripkefied” for indecomposable
objects and the clause for existential quantifiers—for projective ones [53, Proposition
8.7]. Second, the second clause of Fact 3 suggests that to check validity of a given
judgement-in-context δ ← φ : σ in a topos, it is enough to restrict attention to
those F which belong to a generating set for a given topos. Third, by the Yoneda
Lemma, in a topos of presheaves SetR for an arbitrary small category R, objects
of the form homC

R := R[C,−] for any given C ∈ R satisfy all these conditions:
they are projective, indecomposable and do form a generating set. Moreover, also by
the Yoneda Lemma, elements of SetR[homC

R , F] are in 1 − 1 correspondence with
elements of F(C):

SetR[homC
R , F] ∗ f → f̆ := fC (idC )

F(C) × homC
R ∗ (c, h) → ℵc(h) := Fh(c)

Note also that in clauses like the one for �, we can restrict attention to those G
g→ F

whose source G lies in the generating set. In the case of SetR , this means replacing

G
g→ homC

R with elements of SetR[homD
R , homC

R ]. But, by the Yoneda Lemma
again, these can be replaced with arrows in R[C, D] (note the change of direction!).

4 Reader should be warned that in most of categorical literature, presheaves are assumed to be
contravariant, but see, e.g., [39] for an example of the covariant convention.
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Taking all this into account, we can obtain the following modified version of the
semantics—this time properly “Kripkean” (see [53, Proposition 9.3]).

Corollary 8 (Kripke-Joyal semantics in a topos of presheaves) Let R be a small
category, F1, . . . , Fn ∈ SetR , C ∈ R, c1 ∈ F1(C), …cn ∈ Fn(C) , δ = c1 :
F1, . . . , cn : Fn and δ ← φ : σ. Write C, c � φ for homC

R , ℵc1, . . . , ℵcn � φ. Given
any f ∈ R[C, D], write f (c) for ℵc1( f ), . . . , ℵcn( f )—that is, F f (c1), . . . , F f (cn).

Then we have:

• C, c � φ ∧ ψ iff C, c � φ and C, c � ψ
• C, c � φ ⊆ ψ iff C, c � φ or C, c � ψ
• C, c � φ � ψ iff for any f ∈ R[C, D], D, f (c) � ψ whenever D, f (c) � φ
• C, c � ¬φ iff for any f ∈ R[C, D], it does not hold that D, f (c) � φ
• C, c � ≈xn+1 : Fn+1.φ iff for every f ∈ R[C, D] and d ∈ Fn+1(D), it holds that

D, f (c), d � φ
• C, c � ∃xn+1 : Fn+1.φ iff there exist d ∈ Fn+1(C) s.t. C, c, d � φ.

Reference [39] uses toposes of presheaves as a generalization of Kripke semantics
for the intuitionistic first-order logic to prove incompleteness results. Of numerous
follow-ups of that work, let me just mention [62, 72]. Let us also note that the
derivation of Corollary 8 from Theorem 7 takes a somewhat more roundabout route
in [55]: toposes of presheaves are handled there as a subclass of toposes of sheaves
on a site.

8.5.2 Non-expansive Morphisms, Fixed Points and Scattered
Toposes

Let E be an elementary topos. Call an endomorphism f ∈ E [X, X ] unchanging [30]
or non-expansive if

�E ≈x, y : X .( f x ˆ f y � x ˆ y) � x ˆ y.

As noted in [30], in a boolean setting non-expansive means just constant: negate
the sentence and play with boolean laws. Obviously then a classical proof that a
non-expansive endomorphism on a non-empty set has a unique fixed point does not
carry much computational content. In a constructive setting, however, the situation
is different.

Assume ← φ,ψ : σ X and f ∈ E [X, X ] and define:

SubTe(φ) :=≈x, y : X(φ∇x ∧ φ∇y � x ˆ y)

φ ∩ ψ :=≈x : X .(φ∇x � ψ∇x)

MaxST(φ) :=SubTe(φ) ∧ ≈α : σ X .(SubTe(α) ∧ φ ∩ α � α ∩ φ)

Non_exp( f ) :=≈x, y : X .( f x ˆ f y � x ˆ y) � x ˆ y

fix_so f :=λx : X .(x ˆ f x)
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With this apparatus, we can state the main Theorem of Section 3 of [30]:

Theorem 8 Assume E is an elementary topos and f ∈ E [X, X ] . Then

�E Non_exp( f ) � MaxST(fix_so f ).

Remark 12 A proof formalized in the Coq proof assistant is available from the
author, see Remark 1. Those who would like to try a manual yet rigorous proof in
the Mitchell-Bènabou language should do first Exercise 5 in [53, p. 139] and then
formalize the proof in [30, p. 105] using all the abbreviations given above.

In words, this result says: the fixpoints of a non-expansive endomorphism form
a maximal subterminal subobject.5 The syntactic shape of SubTe f easily suggests
that subterminality is the internal counterpart of “being of cardinality at most one”,
i.e., uniqueness of fixpoints. However, the situation with existence is more compli-
cated. First of all, toposes of presheaves can differ significantly from the topos of
sets in having non-trivial objects with no global elements whatsoever. More impor-
tanly, even being inhabited is not enough to ensure maximal subterminal objects are
global elements.

Example 2 ([30]) Consider the topos of presheaves on (ω + 1,�), where � is
the converse of the standard ordinal order. Presheaf X defined as X (n) = n + 1
and X (ω) = ω with X (β � α)(n) = min(n,α) is clearly inhabited. Furthermore,
f : X → X defined as fn(i) = min(i + 1, n) and fω(i) = i + 1 is a non-expansive
endomorphism. Yet it fails to have a fixpoint—i.e., a global element 1

c→ X s.t.
f ⊗ c = c.

Of course, we can do better in special cases.

Corollary 9 Whenever X ∈ E is s.t. any maximal subterminal subobject of X is a

global element (for example, X is an injective object), there exists fin! c→ X s.t.
f ⊗ c = c for any non-expansive f ∈ E [X, X ].
We could try to express unique existence in the internal logic using the standard
abbreviation ∃! for “exists exactly one”. However, as kindly pointed out by Thomas
Streicher, this abbreviation works as intended in toposes of presheaves, but not nec-
essarily in arbitrary ones.

But where is the place for a modality in all this? Say that � : σ → σ is a strong
Löb operator if �E ≈p : σ.(�p � p) � p. Also, call a morphism f ∈ E [X, Z ]
�-contractive if �E ≈x, y : X .�(x ˆ y) � ( f x ˆ f y):

Corollary 10 Let � : σ → σ be a strong Löb operator, f ∈ E [X, X, ] and
assume that f is �-contractive. Then f is non-expansive and hence its subobject of
fixed points is a maximal subterminal one.

5 The corresponding theorem in [30] contained also an additional statement about density of the
support of the fixed-point subobject, but this does not seem essential for us here.
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Proof We have that �E ≈p, q : σ.(�p � (p ⊆ q)) � ((q � p) � p). In fact,
this is an equivalent form of (slöb)—cf. the proof of Theorem 2(iv) in [30]. Now
substitute x ˆ y for p and f x ˆ f y for q to get the result. �

Reference [30] states the result only for a special case of contractiveness and a
special subclass of toposes (introduced below) but this generalization is straightfor-
ward. As before, we can derive the conclusion about the existence of unique fixed
points whenever every maximal subterminal object of X happens to be a global
element—e.g., whenever X is injective.

Define #φ := ≈t : σ.(t ⊆ (t � φ)), i.e., an internalized coderivative. We have
the following counterpart of Proposition 1:

Proposition 3 In any elementary topos E , we have �E ≈p : σ.p � #p and
�E ≈p, q : σ.#p � (q ⊆ (q � p)).

A scattered topos is defined analogously to scattered locales or Heyting algebras
in Sect. 8.4.2 by the validity of the only remaining KM law, i.e., the axiom ≈p :
σ.(#p � p) � p. Thus, scattered toposes are those where # is a strong Löb
operator. This notion turns out to have several equivalent characterizations, see [30].
Let us discuss in detail here another one for the special case of SetR :

Theorem 9 Let R = (W, � ) be a poset. Then SetR is scattered iff (W, � , � )

satisfies any of the equivalent conditions in Corollary 4.

Proof For a direct proof , it is useful to compute the semantic meaning of #. Define
# : σ → σ as [[p : σ ← #p : σ]]. Recall also that in a topos of the form SetR

for R = (W, � ), σ(w) is equal to {A ∩ {w}� ∧| A ∈ Up� (W )}. A morphism
f : σ → σ is a natural transformation: a family of mappings { fw : σ(w) →
σ(w) | w ∈ W } satisfying

fz(A ∩ {z}�∧) = fw(A) ∩ {z}�∧ for any A ∈ σ(w), z � w.

Now let us note the following

Fact 4 For any topos of the form SetR where R = (W, � ), for any w ∈ W and
for any A ∈ σ(w) (i.e., A an upward closed subset of {w}�∧),

#w(A) = {z � w | {z} � ∧∩ A}.

The reader may want to consult Sect. 8.4 and Table 8.3 for the notation used
above; in particular, recall that {z} � ∧= {z}�∧ −{z}. Note also that we can add an
atomic clause to Corollary 8 in the preceding section:

Fact 5 w, A � t (where δ = t : σ and A ∈ σ(w)) iff A = {w}�∧ .

This fact, while rather basic, is worth an explicit proof, as it helps to put together
several definitions and propositions above:
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Proof (of Fact 5) w, A � t is an abbreviation for homw
R , ℵA � t, while this in turn

can be reformulated as ℵA = true ⊗ fin!homw
R

(Fact 3). In particular, ℵA(w � w) =
{w}�∧ . But ℵA(w � w) = A. �

Fact 5 can be generalized with variable t on the right hand side of the turnstile
replaced with arbitrary φ(t). Somewhat informally speaking, w, A � φ(t) iff the
value of φ(A) contains {w}� ∧ (think of φ here as a polynomial on the Heyting
algebra of upward closed subsets of {w}�∧).

Putting all this together, we get that w, A � (#p � p) � p iff for any z � w,

it holds that z, A ∩ {z}� ∧� (#p � p) implies {z}� ∧∩ A. That is, {z∪ � z |
{z∪} � ∧∩ A} ∩ A only if {z}� ∧∩ A and in order for Set(W,� ) to be scattered
this has to hold for any w ∈ W, any z � w and any A ∈ σ(w). But then the
reasoning can be completed just like in the case of Corollary 4. This finishes the proof
of Theorem 9. �

Theorem 9 shows that the topos of trees (or forests) S in [14]—i.e., the topos of
presheaves on (ω,�), where � is the converse of usual order on ω—is scattered.
σ-endomorphism “�” (this notation here would risk clashing with the one for a
strict partial order and its converse) defined in [14] is easily seen to coincide with
# interpreting # in Set(ω,�) as specified by Fact 4 above. The Internal Banach Fix-
point Theorem 2.9 of [14] shows that #-contractive mappings on arbitrary inhabited
objects in S do have (unique) fixpoints.

Now, Example 2 above shows that such a strong statement is not valid in arbitrary
scattered toposes of presheaves, even quite similar to S. The crucial Lemma 2.10 in
[14] is not amenable to far-reaching generalizations.

However, [14, Sect. 8] discusses a whole class of toposes together with a notion
of a contractiveness guaranteeing fixpoint’s existence. The class in question are
sheaves on complete Heyting algebras with a well-founded basis [28] rather than
just presheaves on Noetherian partial orders—crucially, S can be also seen as such
a sheaf topos—and the required notion of contractiveness is stronger than the one
expressible in the internal logic.

Let us elaborate on the last point. As we saw, toposes allow an internal inter-
pretation of modalities as morphisms σ → σ. Actually, from the “propositions as
predicates” perspective, any operation on subobjects of a given object is a “local”
candidate for a modality. However, constructive or categorical logic is mostly about
“propositions as types”; see, e.g., [5, 9, 13, 27, 65] for modal aspects. This perspec-
tive works even with mild assumptions about the underlying category. In particular,
algebraic type theories require only finite products, whereas ccc’s correspond to
functional type theories [24]: those whose type system is in fact that of Brouwerian
semilattices of Remark 3 above. To see the details of this correspondence, just remove
the rules for σ, ˆ and all abbreviations using these from Tables 8.4 and 8.5, then
interpret conjunctions as products and implication as exponentation.

From this perspective, modalities correspond to endofunctors. In particular, ND
systems for PLLi and S4i are interpreted by, respectively, monads and comonads—
see, e.g., references in Remark 7—and SLi yields a special subclass of pointed
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or applicative functors [56]. More precisely, one obtains a variant of [14, Defini-
tion 6.1]. Possible differences are: the modal assumption of normality forces only
being monoidal wrt cartesian structure (cf. [9, 27]) rather than preservation of all
finite limits as in the second clause of that definition; furthermore, the assump-
tion of uniqueness in the first clause would rely on exact reduction and conversion
rules of the proof system. Possible names for such endofunctors include contraction,
delay, (strong) Löb, SLi and MGRT, the last being an abbreviation of the original
name in [14].

One can relate these two views on modalities. Whenever F : E → E is monic-
preserving and E has pullbacks, associate with a F-coalgebra C

γ→ FC a modality

[F.γ] on subobjects M
m
� C :

(see [3] for the history of this diagram in papers on well-founded coalgebras). Further-
more, whenever F is pointed (applicative), i.e., a Ri-endofunctor with ((F)) : 1 → F

being the point or unit of F, ((F))M is a subcoalgebra of ((F))C for any M
m
� C and

hence m ⇐ [F.((F))C ]m, i.e., the “local” translation of (r) is universally valid. Birkedal
et al. [14, Theorem 6.8] allows to extract additional assumptions needed to ensure
that [F.((F))C ] is a SLi-modality for F a SLi-endofunctor: F has to preserve pullbacks
and, importantly, E has to be a topos. Otherwise, there are natural counterexamples.

The operation on subobjects of C ∈ S induced by # : σ → σ from Fact 4 is
defined in an alternative way in [14]: as [�.((�))C ] for a delay endofunctor � : S → S,

whose action on objects is (�C)(0) := 1 and (�C)(n+1) := (�C)(n). In a sense, �
can be called the Cantor-Bendixson endofunctor. Factoring through it is the desired
“external” notion of contractivity ensuring fixpoint’s existence. Both notions nicely
complement each other:

…the external notion provides for a simple algebraic theory of fixed points for not only
morphisms but also functors (see Sect. 2.6), whereas the internal notion is useful when
working in the internal logic [14].

Could [30] have had more impact if the authors had (a) employed the external
perspective on modalities in addition to the internal one and (b) had the hindsight
of [28]? This is rather too counterfactual a question to consider. Note also that what
matters from the point of view of [14]—and Theoretical CS in general—is the use
made of these external and internal Löb modalities. Birkedal et al. [14, Sect. 3]
constructs a model of a programming language with higher-order store and recursive
types entirely inside the internal logic of S. Birkedal et al. [14, Sect. 4] provides
semantic foundation for dependent type theories extended with a SLi modality and
guarded recursive types; this can be regarded as an extension of fixpoint results
along the lines of Sect. 8.3 above to predicate and higher-order constructive logics.
Birkedal et al. [14, Sect. 5] shows that a class of (ultra-)metric spaces commonly
used in modelling corecursion on streams is equivalent to a subcategory of S.

http://dx.doi.org/10.1007/978-94-017-8860-1_2
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Clearly, this is a large area rather overlooked by researchers on (intuitionistic)
modal logic side. There is no space here to discuss my own work in progress, e.g., on
the Curry-Howard interpretation of mHC, but let us conclude with two other ques-
tions. The first was posed to me by Lars Birkedal: what are additional logical princi-
ples which would allow a scattered topos to model not only guarded (co-)recursion,
but also, e.g., countable nondeterminism? The second comes from participants of
ToLo III: is there a natural subclass of internal modalities in toposes (endomorphisms
σ → σ) inducing external modalities (endofunctors) in a generic way?
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Chapter 9
Cantor-Bendixson Properties
of the Assembly of a Frame

Harold Simmons

In memory of Leo Esakia

Abstract In the sense used here a frame A is the algebraic generalization of a
topology, the family of open sets of a topological space. It is a complete Heyting
algebra, although from that perspective frame morphisms are not quite what you
expect. The category of complete Boolean algebras sits inside the category of frames.
However, a frame need not have a Boolean reflection. It seems that it does have
a Boolean reflection precisely when it is ‘nearly pathological’ in some sense. For
instance, the topology of a T0 space has Boolean reflection precisely when the space is
scattered. Each frame A has an assembly NA which collects together all the quotients
of A, and this assembly is itself a frame. Since NA is a frame it has its own assembly
N 2 A, which has its assembly N 3 A, and so on. This generates the assembly tower
of A. It is known that A has Boolean reflection precisely when some member of this
tower is Boolean, and then that is the Boolean reflection. It seems that the nature
of this tower is somehow connected with a generalization of the Cantor-Bendixson
process on a topological space. In this chapter I investigate this idea.

Keywords Frame · Nucleus · Assembly · Ranking

9.1 Introduction

In various parts of mathematics we come across a 1-placed operation d carried by a
lattice (which is often a Boolean algebra) for which one side of
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d(a → b) = d(a) → d(b) d(a ≤ b) = d(a) ≤ d(b)

nearly d2(a) ≤ d(a) nearly d2(a) ⊆ d(a)

holds for all elements a, b. Here the ‘nearly’ means that the comparison doesn’t quite
hold, but some minor modification does make it true. For instance, with a topological
space S the

closure operation interior operation

on the power set of S satisfy the indicated side, exactly. The Cantor-Bendixson
derivative almost satisfies the left hand condition. In the study of modules there are
several dimension devices that satisfy the right hand condition. These include the
gadgets for measuring socle length, the Krull and the Gabriel dimension, as well as
other less well known measuring devices. The localization of module categories and
the sheafifying of presheaf categories also make use of the right hand gadgets. These
properties also occur in various modal logics, especially those concerning the modal
logic related to Gödel’s incompleteness of arithmetic.

When first seen such a gadget may look like a mere curiosity and hardly worth
thinking about. However, the examples mentioned suggest that perhaps there is some-
thing more general going on, and perhaps such gadgets should be investigated in more
depth.

Leo Esakia instigated such an investigation, and built up a school with this and
other objectives in mind. Together with several collaborators he uncovered many
unexpected results. The papers [4–9] record some of these investigations. A full
bibliography is given in [10].

For many years I have been looking at one small part of the wide investigation.
The way the Cantor-Bendixson gadget appears in point-free topology. This chapter
is a survey of much of what I know. I haven’t done much on the modal and proof
theoretic aspects. The two papers [15, 16] are all I can offer.

9.2 Preamble

After some pre-history, the study of frames began in the Ehresmann seminar in Paris
during the 1950s. I should say that as used here a frame is nothing to do with a
Kripke frame as used in modal logic. The idea for this kind of frame was to study the
algebraic properties of the topology of a topological space. The topic was taken up by
Dowker and Papert (Strauss) who in [3] proved the first fundamental result, namely
that the set of quotients of a frame is itself a frame. Because they used congruences
they got the frame of quotients upside-down but that was corrected later. The gadgets
controlling the quotients of a frame A are the nuclei on A. These form the assembly
N A of A, and this is itself a frame. Each frame A is canonically embedded into its
assembly N A. Since this assembly is also a frame it has its own assembly, and this
construction can be iterated to generate the assembly tower of A.
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A −∈ N A −∈ N 2 A −∈ N 3 A −∈ · · · (9.1)

This tower can go on for ever, even ‘beyond the infinite’.
Most of the early work was done in an entirely algebraic fashion. In [11] Isbell

started to ‘organize’ the categorical aspects. He showed that the assembly tower need
never stabilize. The tower stabilizes if, and only if, some level is a complete Boolean
algebra. For some frames the tower does stabilize, for others it doesn’t. In [18]
I showed that for a T0 topological space S the assembly of the topology is Boolean
(and hence the tower stabilizes at that level) precisely when S is scattered. In [19]
I observed that there is a Cantor-Bendixson ranking technique that can be applied to
any frame and the various levels of the assembly. This was developed in a bit more
detail in [20, 21]. Further analysis can be found in [26] and, with some effort, in
[13].

In this chapter I try to uncover the Cantor-Bendixson properties of the first few
levels of the tower. There is some kind of natural extension as we move up the tower,
and this provides new ranking techniques for the parent frame. It becomes clear
that there is something going on, which should be investigated in greater depth (or
perhaps I mean height).

Section 9.3 contains the various algebraic information that we need. In Sect. 9.4
I show how the point-sensitive, that is standard topological, Cantor-Bendixson
process can be extended to a point-free version, that is to the frame-theoretic setting.
Section 9.5 shows how this gadget can be lifted all the way up the assembly tower,
although what is happening from N 3 A is a complete mystery. Section 9.6 investigates
the nature of this lifted Cantor-Bendixson gadget on N A, and then Sect. 9.7 begins
to investigate what is happening on N 2 A. One of the main results of the section is
that N 2 A is Boolean precisely when N A is Artinian relative to a certain comparison.
The proof of that result uses a rather intricate construction which is developed and
investigated in Sect. 9.8. Finally, in Sect. 9.9 I make a few remarks on what all this
may mean and perhaps what could happen in the future.

9.3 Background Material

A frame
(A, ≤, ∩,

∨
, ⊥)

is a complete lattice with the distinguished attributes, as indicated, and which satisfies
the Frame Distributive Law (FDL)

a ≤ ∨
X = ∨ {a ≤ x | x ∅ X}

for each a ∅ A and X ⊆ A. A frame morphism between frames is
a function that respects the distinguished attributes. In this section we gather together
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the relevant background material. The book [12] is about frames and their various
ramifications. It is now a little old. A more recent, but shorter, account is given in
[14]. Sections 2 and 3 of [22] contain material relevant to the analysis given here.

As well as its distinguished attributes each frame A also carries an implication, a
2-placed operations (· ↑ ·) such that

x ≤ (b ↑ a) ↓∧ x ≤ b ≤ a

for all a, b, x ∅ A. The symbol ∈ is often used for the implication on a frame, but
that can be confused with other notions, so here I will use ↑ instead.

As a particular case we set
¬b = (b ↑ ⊥)

to obtain the 1-placed negation operation on A. These operations need not be pre-
served by morphisms, but play a major part in many calculations.

For each topological space S the topology OS (of open sets) is a frame. These are
the initial examples of frames. Each complete Boolean algebra is a frame, and need
not be a topology. There are also other examples which are nothing like topologies.

The FDL immediately gives the following.

Lemma 1. For each frame A we have

(
∨

X) ↑ a = ∧ {x ↑ a | x ∅ X}

for each subset X ⊆ A and element a ∅ A.

Each quotient of a frame (surjective frame morphism) can be controlled by a kind
of congruence on the frame. There is also a neater controlling gadget.

Definition 1. Let A be a frame.
An inflator on A is a inflationary and monotone function f : A −∈ A that is

x ≤ f (x) ≤ f (y)

for all comparable elements x ≤ y of A.
A pre-nucleus on A is an inflator f for which

f (x ≤ y) = f (x) ≤ f (y)

for all x, y ∅ A.
A nucleus on A is a pre-nucleus j which is idempotent, that is j2 = j .

In fact, there are two kinds of pre-nuclei that are used, but rarely in the same place.
I tend to call the one above a binary pre-nucleus. There is also a unary pre-nucleus
which has the weaker property
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f (x ≤ y) = x ≤ f (y)

for all x, y ∅ A. Fortunately, only the binary version is needed here, so I will call it
a pre-nucleus, as above.

There are three standard examples of nuclei.

Definition 2. For each frame A and element a ∅ A we set

ua(x) = (a → x) va(x) = (a ↑ x) wa(x) = ((x ↑ a) ↑ a)

for each x ∅ A.

The nuclei and inflators on a frame A are partially ordered pointwise.

f ≤ g ↓∧ (∃x ∅ A)[ f (x) ≤ g(x)]

Both nuclei and inflators form complete posets (with infima easy to compute). We
let

N A

be the complete poset of all nuclei on A. This is the assembly of A.
The fact that the assembly N A is a complete lattice with pointwise infima is almost

immediate. However, N A has a much better property. A proof of the following well-
known fact can be found in the notes on frames on my web-page [25]. I hope to
organize those notes into a coherent account in the near future.

Theorem 1. For each frame A the assembly N A is also a frame and the following
assignment is a frame embedding.

This embedding is an isomorphism precisely when A is Boolean.

Since the assembly N A is a frame, it has its own assembly N 2 A, and this has
its assembly N 3 A, and so on. This gives the assembly tower (9.1) of A. The tower
stabilizes precisely when the parent frame has a Boolean reflection. For set theoretic
reasons, some frames don’t have such a reflection. At the other extreme, for some
frames the tower stabilizes quickly. We attempt to gain some understanding of the
first few levels of the tower.

The next two lemmas are well known. Their proofs can be found in the notes on
my web-page.

Lemma 2. For each frame A, nucleus j ∅ N A, element a ∅ A, with b = j (⊥), we
have

ua ≤ j ↓∧ a ≤ j (⊥) va ≤ j ↓∧ j (a) = ∩
j ≤ wa ↓∧ j (a) = a wa ≤ j =∧ j = wb

and ua and va are complementary elements of N A.
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The nuclei u(·), v(·), w(·) produce all nuclei, in one of two ways.

Lemma 3. For each frame A we have

∨ {
u j (a) ≤ va | a ∅ A

} = j = ∧ {wa | a ∅ A j }

for each nucleus j ∅ N A.

We need a refinement of the left hand construction, and this does provide a proof
of that equality.

Consider any inflator f on the frame A. We may iterate this through the ordinals
to produce an ascending chain of inflators

id = f 0 ≤ f = f 1 ≤ f 2 ≤ · · · ≤ f α ≤ · · ·

under the pointwise comparison. Thus we set

f 0 = id f α+1 = f ∨ f α f λ(a) = ∨ { f α(a) | α < λ}

for each ordinal α, each limit ordinal λ and each element a ∅ A at the limit stage.
Here, and below, id is the identity function on A. This generates an ascending chain
of inflators. On cardinality ground this must stabilize at some level. In other words
there is some ordinal θ such that

f α = f θ

for each ordinal α ⊆ θ . It doesn’t take too long to see that f θ is the smallest closure
operation (idempotent inflator) above f . For what we do here we don’t need the
value of θ , thus we write f ≥ for this closure. In other words we think of ≥ as a
sufficiently large ordinal. (In a more delicate analysis we would need to determine
θ . That takes us into the realm of ranking or dimension techniques which is why
ordinals were first invented.)

Construction 1. Let j be a given nucleus, and suppose j = f ≥ for some inflator
f . For a given a ∅ A let

a(α) = f α(a)

for each ordinal α. Thus

a(0) = a a(α + 1) = f (a(α)) a(λ) = ∨ {a(α) | α < λ}

for each ordinal α and limit ordinal λ. Similarly set

ja,0 = id ja,α+1 = (
ua(α+1) ≤ va(α)

) → ja,α ja,λ = ∨ { ja,α | α < λ}

for each ordinal α and limit ordinal λ.
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This construction produces an ascending chain of elements

a = a(0) ≤ · · · ≤ a(α) ≤ · · · id = ja,0 ≤ · · · ≤ ja,α ≤ · · · ≤ j

and an ascending chain of nuclei attached to j and a. Each will stabilize at a suffi-
ciently large ordinal. We know that

a(≥) = f ≥(a) = j (a)

but we need some information about

ja = ∨ { ja,α | α ∅ Ord} = ∨ {
ua(α+1) ≤ va(α) | α ∅ Ord

}

the stable limit of the ascending chain of nuclei. This second equality holds since for
each sufficiently large ordinal α we have a(α + 1) = a(α) = j (a) so that

ua(α+1) ≤ va(α) = id

and hence ja,α+1 = ja,α . The whole family of nuclei ja combine as follows.

Lemma 4. We have

∨ { ja | a ∅ A} = ∨ {u f (a) ≤ va | a ∅ A}

for the chain of nuclei given by Construction 1.

Proof. From the description of ja given just above we have

∨ { ja | a ∅ A} = ∨ {
ua(α+1) ≤ va(α) | α ∅ Ord, a ∅ A

}

= ∨ {
u f (a(α)) ≤ va(α) | α ∅ Ord, a ∅ A

}

where the second equality follows by the definition of a(α + 1). Each compound

u f (a(α)) ≤ va(α) has the form u f (a) ≤ va

for some a ∅ A, so we may forget the indexing by ordinals, to obtain the required
result. �

Since f ≤ j this result shows that

∨ { ja | a ∅ A} = ∨ {u f (a) ≤ va | a ∅ A} ≤ ∨ {u j (a) ≤ va | a ∅ A} = j

and our aim is to improve this comparison to an equality. To do that we look at the
components ja,α that build up ja .
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Lemma 5. For the chain of nuclei given by Construction 1 we have

ja,α = ua(α) ≤ va

for each ordinal α.

Proof. We proceed by induction on α.
For the base case, α = 0, we have a(0) = a and ja,0 = id.
For the induction step, α �∈ α + 1, since a ≤ a(α) ≤ a(α + 1), we have

ja,α+1 = (
ua(α+1) ≤ va(α)

) → ja,α

= (
ua(α+1) ≤ va(α)

) → (
ua(α) ≤ va

)

= (
ua(α+1) → ua(α)

) ≤ (
ua(α+1) → va

) ≤ (
va(α) → ua(α)

) ≤ (
va(α) → va

)

= ua(α+1) ≤ (
ua(α+1) → va

) ≤ ∩N ≤ va

= (
ua(α+1) → va

)

as required. The second equality uses the induction hypothesis, and the others various
(finitary) distributive laws.

For the induction leap to a limit ordinal λ we see that ja,λ is

∨{
jα | α < λ} =

∨ {
ua(α) ≤ va | α < λ} =

∨ {
ua(α) | α < λ} ≤ va = ua(λ) ≤ va

as required. This follows by the induction hypothesis, the frame distributive law (on
N A), and the morphism properties of u(·). �

This result gives

ja = ∨ { ja,α | α ∅ Ord} = ∨ {
ua(α) ≤ va | α ∅ Ord

}

which improve the earlier description of ja . For all sufficiently large ordinals α we
have a(α) = j (a) so that

ja = u j (a) ≤ va so that j = ∨ { ja | a ∅ A}

by the standard decomposition of j given by Lemma 3.
We combine these various parts to obtain the main result of this section.

Theorem 2. For a nucleus j and inflator f on A with j = f ≥ we have

j =
∨ {

u f (a) ≤ va | a ∅ A
}

Proof. We have just seen that

j = ∨ { ja | a ∅ A}

so that Lemma 4 give the required result. �
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Table 9.1 The point-sensitive and point-free Cantor-Bendixson gadgets

(Point-sensitive) Let S be a topological (Point-free) Let A be a frame. For
space. For closed sets Y, X of S we write elements a, x ∅ A we write

Y ⇐· X a ∅ x
and say Y is an inessential part of X if and say x is essentially above a if
Y ⊆ X and a ≤ x and

X = (X − Y )− (x ↑ a) = a
holds. For each X ∅ C S we set holds. For each a ∅ A we set

limS(X) = (⋃{
Y ∅ C S | Y ⇐· X

})− derA(a) = ∧{
x ∅ A | a ∅ x

}

to produce an operation limS on C S to produce an operation derA on A
We call limS the CB-process on S We call derA the CB-derivative on A

9.4 The CB-Derivative

We set up the CB-derivatives on a frame and its assemblies. Although our approach
here is slightly different, this section is much the same as Sect. 3 of [22]. We cite that
document for details of various proofs. We set up two related gadgets, a relation �
and a pre-nucleus der on an arbitrary frame A. These have point-sensitive ancestors,
and it is instructive to look at the point-sensitive and the point-free version in parallel.

Let S be an arbitrary topological space. We write OS and C S for the families
of open subsets U and closed subsets X of S. We also write (·)−, (·)∨, (·)⇒ for the
closure operation, interior operation, and complementation operation on subsets of
S.

Definition 3. The CB-process limS for a space S and the CB-derivative derA on a
frame A are defined in Table 9.1.

Remembering that (·)−⇒ = (·)⇒∨ we obtain the following.

Lemma 6. For a space S the two relations ⇐· and � and the two operators limS

and derOS, are connected by

Y ⇐· X ↓∧ X ⇒ � Y ⇒ U � V ↓∧ V ⇒ ⇐· U ⇒

limS(X)⇒ = derOS(X ⇒) derOS(U )⇒ = limS(U ⇒)

for each X ∅ C S and U ∅ OS.

The operation lim is standard but is not usually introduced in this way. A proof
of the following can be found in [22].

Lemma 7. (Point-sensitive) Let S be a T0 space. For each closed set X ∅ C S the
subset limS(X) ⊆ X is the set of limit points of X.

(Point-free) Let A be a frame. For each element a of A the interval [a, derA(a)]
is the largest Boolean interval above a.
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The operation derA has been investigated by Esakia and his collaborators, but
from a slightly different perspective. For instance it appears as τ in [6–8]. It also
appears in [16] which I still find a little curious.

The following simple result will motivate a construction in Sect. 9.9.

Lemma 8. For each frame A both

b ≤ a � x ≤ y =∧ b � y
a � x
b � y

}

=∧ a ≤ b � x ≤ y

hold for all elements a, b, x, y.

Proof. For the left hand implication we are given

b ≤ a ≤ x ≤ y =∧ b � y with x ↑ a ≤ a

and we require y ↑ b ≤ b. To this end let

z = (y ↑ b) so that z ≤ y ≤ b

and we required z ≤ b. We have

z ≤ x ≤ z ≤ y ≤ b ≤ a and hence z ≤ a ≤ y

since a � x . But now
z = z ≤ y ≤ b

as required.
For the second implication we are given

a � x b � y that is x ↑ a ≤ a y ↑ b ≤ b

with a ≤ x and b ≤ y. Let

z = (
(x ≤ y) ↑ (a ≤ b)

)

so that z ≤ a ≤ b is required. We have

z ≤ x ≤ y ≤ a ≤ b ≤ b so that z ≤ x ≤ b ≤ y

since b � y. But now

z ≤ x ≤ z ≤ x ≤ y ≤ a so that z ≤ a ≤ x

since a � x . But now
z ≤ a and z = z ≤ x ≤ b
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to give the required result. �

To analyse the CB-derivative derA we produce a generalization of its construction.
For a nucleus j ∅ N A consider the induced quotient

to the fixed set of j . We have two CB-derivatives

derA derA j

on the source frame and target frame respectively. Remember that infima computed
in A j agree with those computed in A. Consider the composite function

using the CB-derivative on A j as the central component, and the insertion of A j into
A as the right hand component. This gives us a new operation on A.

Definition 4. For each frame A and nucleus j on A the operator

derA
j : A −∈ A

is given by
derA

j (a) = derA j ( j (a)) = ∧ {x ∅ A j | j (a) � x}

for each a ∅ A.

This gives two distinct operations.

derA
j derA j

The left hand one is on A and the right hand one is on A j . We need not distinguish
between the relation �A on A and the relation �A j on A j since they agree on A j .

A proof of the following crucial result is given by Lemma 3.3 of [22].

Theorem 3. For each nucleus j ∅ N A, the inflator derA
j is a pre-nucleus on A.

The assembly N A of a frame is also a frame, and so carries an implication oper-
ation. This is used in the following important property of der, as given by Lemma
3.5 of [22].

Lemma 9. For each frame A we have

derA
j (a) = (

w j (a) ↑ j
)
(a)

for each nucleus j ∅ N A and element a ∅ A.
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Each frame A carries its CB-derivative derA. The assembly N A carries its own
CB-derivative derN A. Once we have fixed the frame A we write

der for derA Der for derN A

to avoid too many affixes. Each nucleus j ∅ N A gives us a refined version der j =
derA

j of der, where again we may drop the affix A. This is also a pre-nucleus, and
so its closure der≥

j is a nucleus on A. The following fundamental result is proved as
Theorem 3.6 of [22].

Theorem 4. For each frame A we have

der≥
j = Der( j)

for each j ∅ N A.

The gadget der j , the relative point-free Cantor-Bendixson derivative, its lifting
Der to the assembly, and the connection given by Theorem 4 was first investigated
in [20, 21].

9.5 The Battery of Derivatives

For a frame A consider the assembly tower and the carried CB-derivatives.

(T ) A N A N 2 A N 3 A . . .

(D) derA derN A derN 2 A derN 3 A . . .

In this chapter we do not get beyond level 3, so we let

derA = derA DerA = derN A DERA = DerN A = derN 2 A

and even drop the affix when the parent frame is known. We let

δA = (derA)≥ ΔA = (DerA)≥ ΔA = (DERA)≥

to obtain derivatives and nuclei on levels 0, 1, and 2.

der, δ on A Der, Δ on N A DER, Δ on N 2 A . . .

With the decorations we have the following.

δA = δA ΔA = δN A ΔA = ΔN A = δN 2 A
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Theorem 4 shows that for an arbitrary frame A we have

δA = DerA(id A)

so we may apply this all the way up the assembly tower. We write

A N A N 2 A
id A Id A = idN A IDA = IdN A = idN 2 A

for the identity function on the indicated level. Each of these is the bottom of the
assembly at the next level up. Theorem 4 gives

δ = der≥ = Der(id) Δ = Der≥ = DER(Id) Δ = DER≥ = · · ·

and so on. Since Der is a pre-nucleus on N A it can be iterated to obtain

id ≤ δ = Der(id) ≤ Der2(id) ≤ Der3(id) ≤ · · · ≤ Derα(id) ≤ · · ·

all of which are nuclei on A. Eventually this process closes off at some nucleus

θ = Der≥(id) = Δ(id)

above δ. Even in the spatial case the closure ordinal of Der can be arbitrarily large.
Examples are given in [22]. Continuing with this trick we set

N A N 2 A N 3 A · · ·
δ = Der(id) Δ = DER(Id) Δ = · · · · · ·
θ = Δ(id) Θ = Δ(Id) Θ = · · · · · ·
ξ = Θ(id) Ξ = Θ(Id) Ξ = · · · · · ·
...

...
... · · ·

to obtain nuclei on A together with higher level analogues.

δ ≤ θ ≤ ξ ≤ Ξ(id) ≤ Ξ(Id)(id) ≤ · · ·

These nuclei are a better version of the obstructions used in [13]. Each of the generated
nuclei on A can be evaluated at ⊥, the bottom of the parent frame, to produce an
ascending chain of elements of the frame.

d0 = der(⊥) ≤ d1 = δ(⊥) ≤ d2 = θ(⊥) ≤ d3 = ξ(⊥) ≤ d4 = Ξ(id)(⊥) ≤ d5

In [19–21] I called this the backbone of the frame.

Theorem 5. For each frame A we have a chain of equivalences.
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(0) A is Boolean ↓∧ der(⊥) = ∩
(1) N A is Boolean ↓∧ δ =∩N ↓∧ δ(⊥) = ∩
(2) N 2 A is Boolean ↓∧ θ =∩N ↓∧ θ(⊥) = ∩
(3) N 3 A is Boolean ↓∧ ξ =∩N ↓∧ ξ(⊥) = ∩

...

Proof. (0) Lemma 7 ensures that [⊥, der(⊥)] is the largest Boolean lower section
of A. Thus A is Boolean precisely when this interval is all of A.

(1, 2, 3, …) Applying the previous part to N A gives

N A is Boolean ↓∧ δ = Der(id) = ∩N ↓∧ δ(⊥) = ∩
N 2 A is Boolean ↓∧ θ = Δ(id) = ∩N ↓∧ θ(⊥) = ∩
N 3 A is Boolean ↓∧

and so on. �

This result shows that the generated gadgets have some intrinsic interest. We
gather together some information about the first few of these.

Theorem 6. For each frame A and j ∅ N A the following are equivalent.

(i) der j = j (i i) Der( j) = j (i i i) Δ( j) = j

Proof. Since Der( j) = der≥
j , the two inflators der j and Der( j) fix the same ele-

ments. For each a ∅ A we have the following.

der j (a) = a ↓∧ Der( j)(a) = a

(i)∧(ii). This is an immediate consequence of the above equivalence.
(ii)∧(iii). Applying the above equivalence to N A with j replaced by id and a

replaced by j we have the following.

Der( j) = j =∧ Δ( j) = DER(id)( j) = j

(iii)∧(i). Since der j ≤ Der( j) ≤ Δ( j), this is immediate. �

Setting j = id gives the following.

Corollary 1. For each frame A the following conditions are equivalent.

(i) der = id (i i) δ = id (i i i) θ = id

In the spatial case we are familiar with der and δ. For some spaces Der seems a
natural gadget. In [23] there are examples of spaces with

DER(Id)(id) = θ = id DER2(Id)(id) = ∩N



9 Cantor-Bendixson Properties of the Assembly of a Frame 231

to show that Corollary 1 does not extend in the obvious way.

9.6 First Level

The first characterization of when N A is Boolean was given by Beazer and Macnab
as Theorem 2 in [1]. The topological content was extracted in [18]. The topology of
a T0 space has a Boolean assembly precisely when the space is scattered. This led to
the notion of the CB-derivative der on an arbitrary frame, first presented in [17, 19]
and developed later in [20–22].

Since Der is a pre-nucleus on N A, the set of nuclei j with Der( j) = ∩N is a filter
on N A. By Lemma 7, a nucleus j belongs to this filter precisely when the interval
[ j,∩N ] of N A is Boolean. In general this filter is quite big.

Lemma 10. For each frame A and element a ∅ A we have Der(wa) = ∩N .

Proof. For a ∅ A, let j = wa , so that j (⊥) = a and Lemma 9 gives

Der( j)(⊥) ⊆ der j (⊥) = (
wa ↑ j

)
(⊥) = ∩

for the required result. �

Anything true about every frame is true about every assembly. By the lifting of
Corollary 1, if Der = Id then for each element a ∅ A we have

wa = Id(wa) = Der(wa) = ∩N

and hence a = ∩ by evaluation at a (or at any element below a). This proved the
non-obvious part of the following.

Corollary 2. For a frame A we have Der = Id if and only if A is trivial.

By Lemma 3 we have

Der( j) = ∧ {wa | a ∅ ADer( j)}

where the indexing ranges over a ∅ A with Der( j) ≤ wa . Each frame A carries its
essentially above relation �, so each assembly N A carries its own essentially above
relation.

Lemma 11. For a frame A, nucleus j ∅ N A, and element a ∅ A, the four conditions
are equivalent.

(i) der j (a) = a (i i) der j ≤ wa (i i i) Der( j) ≤ wa (iv) j � wa
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Proof. (i) ∧ (i i). This is immediate.
(i i) ∧ (i i i). Assuming (ii) a use of Theorem 4 gives the required result.

Der( j) = der≥
j ≤ wa

(i i i) ∧ (iv). Assuming (iii) we have j ≤ Der( j) ≤ wa so that j (a) = a. Let

k = (wa ↑ j)

so that j ≤ k and we required k ≤ j to give k = j . By Lemma 9 we have

k(a) = (wa ↑ j)(a) = der j (a) ≤ Der( j)(a) ≤ a

so that k ≤ wa , and hence we obtain the required result.

k ≤ wa ≤ (wa ↑ j) ≤ j

(iv) ∧ (i). Assuming (iv) we have j (a) = a (since j ≤ wa) and

(wa ↑ j) = j

so that Lemma 9 gives

der j (a) = (wa ↑ j)(a) = j (a) = a

as required. �

Of these conditions it is the equivalence of (iii, iv) which is most useful, but other
parts do have some applications. We have

der(⊥) = ⊥ ↓∧ δ ≤ ¬¬

by setting j = id and a = ⊥ in (i) ∀ (i i i). Lifting this adds to Corollary 1.

Corollary 3. For each frame A the four conditions are equivalent.

(i) der = id (i i) δ = id (i i i) θ = id (iv) Δ ≤ ¬¬(1)

Proof. The equivalence of (i, i i, i i i) is just Corollary 1. From the lift of the obser-
vation above we have

δ = Der(id) = id ↓∧ Δ ≤ ¬¬(1)

which gives (i i) ∀ (iv). �

Lemma 11 also suggests we might want to characterize a comparison
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J ( j) ≤ wa

where J is a given derivative on N A. We look at the particular case J = Δ in
Sect. 9.9.

The implication operation on A is used to define the relation � on A, and this
is used to obtain the family of derivatives der j (for j ∅ N A). By Lemma 9 these
gadgets can be evaluated using the implication operation on the assembly. Conversely,
knowing how to evaluate these derivatives helps us to calculate certain implications
on N A.

Lemma 12. Let j, k be nuclei on a frame A. With l = (k ↑ j) we have

va ≤ ud ≤ l ≤ wa → ud

where a = k(⊥) and d = l(a).

Proof. For each x ∅ A we have

ud(x) = d → x ≤ l(a → x) = (
l → ua

)
(x)

so that ud ≤ l → ua for the left hand comparison. For the other we have

(
l ≤ vd

)
(a) = d ≤ (d ↑ a) ≤ a

so that l ≤ vd ≤ wa and hence l ≤ wa → ud . �

When k = wa we can take these calculations quite a bit further.

Lemma 13. For a frame A, nucleus j ∅ N A, and element a ∅ A j with

d = der j (a) = (
wa ↑ j

)
(a) b = wa(d)

we have the following.

(a)
(
wa ↑ j

) = (
va ≤ ud

) → j = (
va → j

) ≤ (
j → ud

)

(b)
((

wa ↑ j
) ↑ j

)
= vd → j → ua = wd↑a

(c) wa → (
wa ↑ j

) = wa → ud = wb

Proof. (a) We use Lemma 12 with k = wa . We have a = k(⊥) and l = (
wa ↑ j

)
,

so that d = l(a) = der j (a) (by Lemma 9). Lemma 12 gives

va ≤ ud ≤ l ≤ wa → ud

and j ≤ l, so that the left hand comparison gives

(
va → j

) ≤ (
j → ud

) = (
va ≤ ud

) → j ≤ l
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so the converse comparison will suffice. The right hand comparison gives

l ≤ l ≤ (
wa → ud

) = (
l ≤ wa

) → (
l ≤ ud

) ≤ j → ud

which is halfway there. But ua ≤ wa so that l ≤ ua ≤ j to give l ≤ va → j .
(b) By part (a) we have

((
wa ↑ j

) ↑ j
)

=
((

ud ≤ va
) → j

)
↑ j = (

ud ≤ va
) ↑ j = vd → ua → j

for the first equality. But wa ≤
((

wa ↑ j
) ↑ j

)
so that Lemma 2 gives

((
wa ↑ j

) ↑ j
)

= wb

with b as follows.

b =
((

wa ↑ j
) ↑ j

)
(⊥) = (

vd → ua → j
)
(⊥) = (d ↑ j (a)) = (d ↑ a)

(c) From part (a) we have

wa → (
wa ↑ j

) = (
ud ≤ va

) → wa = (
ud → wa

) ≤ (
va → wa

)

since j ≤ wa . But (
va → wa

) ⊆ (
va → ua

) = ∩N

to give the first equality. The second follows by Lemma 2. �

The
∧

-closure of the filter of nuclei j where [ j,∩N ] is Boolean is the whole of
the assembly. What about those nuclei j where [ j,∩N ] is not Boolean?

Definition 5. Let A be a frame and let j be some nucleus on A. We say a nucleus
k ∅ N A is, respectively,

j-complemented j-regular

if j ≤ k and
k → (k ↑ j) = ∩N k = ((k ↑ j) ↑ j)

as appropriate.

In other words, we first locate the complemented or regular members of N A j ,
and then view these as members of the interval [ j,∩N ] of N A.

Lemma 14. For each frame A, each nucleus j ∅ N A, and each element a ∅ A with
j ≤ wa and d = der j (a), the following conditions are equivalent.
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(i) a � d
(ii) The nucleus wa is j -complemented.

(iii) The nucleus wa is j -regular.

Furthermore, when these hold we have wa = vd → j → ua = wd↑a.

Proof. (i)∧(ii). Assuming (i) a use of Lemma 13(c) leads to (ii).

(
wa → (

wa ↑ j
))

(⊥) = wa(d) = ∩

(ii)∧(iii). This is trivial.
(iii)∧(i). Assuming (iii) a use of Lemma 13(b) gives

wa = ((
wa ↑ j

) ↑ j
) = wd↑a

so evaluation at ⊥ gives a = (d ↑ a).
The final description of wa follows by Lemma 13(b). �

Setting j = id in Lemma 14 gives Lemma 10 of [1]. To go further we introduce
some notation.

Definition 6. For a frame A and nucleus j ∅ N A we use

a ∅ B j ↓∧ j (a) = a a ∅ C j ↓∧ j (a) = a � der j (a)

B j = {
wa | a ∅ B j

}
C j = {

wa | a ∅ C j
}

to extract subsets of A with C j ⊆ B j and subsets of N A with C j ⊆ B j .

Of course, B j = A j and B j is the corresponding final section of N A. These sets
are named to give a comparison with the sets C j and C j . We know that

a ∅ B j ↓∧ j ≤ wa a ∅ C j ↓∧ wa is j-complemented

where the first is routine and the second is Lemma 14.

Theorem 7. For each nucleus j ∅ N A the following conditions are equivalent.

(i) Der( j) = ∩N .
(ii) B j = C j .

(iii) For each a ∅ A j we have a � der j (a).

Proof. (i)∧(ii). Assuming (i), the interval [ j,∩N ] of N A is Boolean. Since C j ⊆
B j , it suffices to show the converse. Consider any a ∅ B j . Then j (a) = a, so that
j ≤ wa , and hence wa is j-complemented, to give a ∅ C j .

(ii)∧(iii). This follows by Lemma 14.
(iii)∧(i). Assuming (iii) let a = Der( j)(⊥), so that j (a) = a. By (iii)
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a � der j (a) ≤ Der( j)(a) = a

so that a � a, and hence a = ∩, as required. �

By setting j = id we get the Beazer-Macnab characterization.

Theorem 8. For each frame A the following conditions are equivalent.

(i) N A is Boolean.
(ii) Each w-nucleus is complemented.

(iii) For each a ∅ A we have a � der(a).

9.7 Second Level

The Beazer-Macnab methods analyse the first assembly N A. Similar methods give
information about the second assembly N 2 A. By Definition 6 and Lemma 3 we have
j = ∧

B j ≤ ∧
C j and the infimum

∧
C j is worth looking at. By Lemma 14 we

have
C j = {

vd → j → ua | a ∅ A j , d = der j (a)
}

which we use towards the end of the proof of the following.

Theorem 9. For each frame A and nucleus j ∅ N A we have the following.

(Der( j) ↑ j) = ∧
C j

Proof. By Theorem 4 we have Der( j) = der≥
j so Theorem 2 gives

Der( j) = ∨ {
ud ≤ va | a ∅ A, d = der j (a)

}

and hence Lemma 1 gives

(
Der( j) ↑ j

) = ∧ {(
ud ≤ va

) ↑ j | a ∅ A, d = der j (a)
}

so that ((
ud ≤ va

) ↑ j
) = vd → j → ua

where, as yet, a is an arbitrary member of A. Since

d = der j (a) = der j ( j (a)) j → ua = j → u j (a)

we may restrict to a ∅ A j . By the observation above this infimum is
∧

C j . �

We have j = ∧
B j = ∧

C j when B j = C j , in other words when Der( j) = ∩N

by Theorem 7. By Theorem 9 this happens more generally.
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Corollary 4. For j ∅ N A we have j = ∧
C j precisely when j � Der( j).

For a nucleus j the set C j can be quite large, but for one particular nucleus it is
always small. Recall that θ is the least nucleus with Der(θ) = θ .

Lemma 15. For each frame A we have Cθ = {∩}.
Proof. Consider any a ∅ Cθ . By definition, we have a � derθ (a), so that

a � derθ (a) ≤ Der(θ)(a) = θ(a) = a

to give a � a, and hence a = ∩. �

With this we obtain a kind of lifted analogue of Theorem 8.

Theorem 10. For each frame A the three conditions are equivalent.

(i) N 2 A is Boolean.
(ii) For each j ∅ N A we have j = ∧

C j .
(iii) For each j ∅ N A if C j = {∩} then j = ∩N .

Proof. (i)∧(ii). Assuming (i), for j ∅ N A Theorem 8 applied to N A gives j �
Der( j). Thus Theorem 9 gives

j = (Der( j) ↑ j) =
∧

C j

as required.
(ii)∧(iii). This is immediate.
(iii)∧(i). This follows by Lemma 15. �

We now need a specialization of Lemma 14.

Lemma 16. For each frame A we have

¬d = ⊥ ↓∧ w⊥ = vd

where d = der(⊥).

Proof. With this d we have

¬d = ⊥ ↓∧ ⊥ � d ↓∧ w⊥ is complemented ↓∧ w⊥ = vd → u⊥ = vd

where the second and third equivalences use Definition 6 (for j = id). �

This result says that

¬d = ⊥ ↓∧ (∃x)[(¬¬)(x) = (d ↑ x)]



238 H. Simmons

and lifting this to the assembly gives the following.

¬1δ = id ↓∧ (∃ j)[(¬¬)1( j) = (δ ↑ j)]

Using

D = Cid = {(¬¬)1wa | a ∅ A} = {ua → vd | a ∅ A, d = der(a)}

we may set j = id in Theorem 9 to obtain the following.

Lemma 17. For each frame A we have ¬1δ = ∧
D .

We lift Lemmas 16 and 17 to the second level assembly. To prepare for this we
do a calculation using Lemma 17. We have

¬1δ = ∧
D = ∧ {ua → vd | a ∅ A, d = der(a)} ≤ ∧ {ua | a ∅ A, der(a) = ∩}

and hence

(¬1δ)(x) ≤ ∧ {a → x | a ∅ A, der(a) = ∩} ≤ ∧ {a | a ∅ A, x ≤ a, der(a) = ∩}

for each x ∅ A. We now lift this up a level.

Theorem 11. For each frame A and J ∅ N 2 A we have the following.

¬(2)Δ = Id (¬¬)(2) J = (Δ ↑ J )

Proof. Consider any j ∅ N A and any a ∅ A with j ≤ wa (any a ∅ A j ). By Lemma
10 we have Der(wa) = ∩N , and hence

(¬(2)Δ)( j) ≤
∧

{wa | a ∅ A j } = j

where the left hand comparison comes from the calculations above, and the right
hand equality is standard. This gives ¬(2)Δ = Id, the first part of the required result.
The second part follows by Lemma 16 applied to N 2 A. �

This result says that (N 2 A)¬¬ is canonically isomorphic to the interval [Id,Δ] of
N 2 A, and so the second level assembly is a special kind of frame. A lot of information
about (N 2 A)¬¬ is in [26].

Each nucleus j on A has a fixed set of A j , and this is closed under arbitrary infima.
A fixed set arising from Δ( j) has a stronger closure property.

Definition 7. A subset K of a frame A is cohesive if for each a ∅ K there is some
X ⊆ K with a = ∧

X and a � x for each x ∅ X .

The fixed set {∩} is cohesive and can be the only cohesive set.
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Lemma 18. Let A be a frame where � has the Ascending Chain Condition (ACC).
Then {∩} is the only cohesive subset.

Proof. Suppose the frame A has ACC and, by way of contradiction, suppose K is
a non-trivial cohesive set, that is K ◦= {∩}. There is some a ∅ K with a ◦= ∩. But
now, since K is cohesive, we have

a = ∧
X

for some X ⊆ K with a � x for each x ∅ X . We can not have X = {∩} for otherwise

a = ∧
X = ∧ {∩} = ∩

which is not the case. Thus there is some a⇒ ∅ K − {∩} with a � a⇒.
By iterating this construction we obtain an ascending chain

a = a0 � a1 � a2 � · · ·

of members of K − {∩}. Since A has ACC this chain is eventually constant, so we
obtain some b ∅ K − {∩} with b � b. But now, by the definition of �, we have

b = b ↑ b = ∩

which is the contradiction. �

The union of any family of cohesive sets is itself cohesive. Thus each quotient A j

includes a largest cohesive subset. We locate this set.

Lemma 19. Consider a frame A and nucleus k ∅ N A with Der(k) = k. Then the
fixed set Ak is cohesive.

Proof. Consider a ∅ Ak . Let X be the set of all x ∅ Ak with a � x . Then

a ≤ ∧
X = derk(a) ≤ Der(k)(a) = k(a) = a

to give the required result. �

This result can be rephrased as follows.

Corollary 5. Consider any j ∅ N A and let k = Δ( j). Then Ak is cohesive.

Next we look at an arbitrary cohesive subset.

Lemma 20. Suppose K is cohesive in A. Then we have

K ⊆ A j =∧ K ⊆ AΔ( j)

for each nucleus j ∅ N A.
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Proof. We observe four implications of increasing strength

(1) K ⊆ A j =∧ (∃a ∅ K )[der j (a) = a]
(2) K ⊆ A j =∧ (∃a ∅ K )[derα

j (a) = a]
(3) K ⊆ A j =∧ (∃a ∅ K )[Der( j)(a) = a]
(4) K ⊆ A j =∧ (∃a ∅ K )[Derα( j)(a) = a]

and then setting α = ≥ in (4) gives the required result. In (2) and (4) the α is an
arbitrary ordinal, over which we proceed by induction. The proofs of (2, 3, 4) are
routine. To prove (1) consider any j ∅ N A with K ⊆ A j . Consider any a ∅ K . We
have

der j (a) = ∧ {x ∅ A j | a � x} ≤ ∧ {x ∅ K | a � x} = a

where the left hand equality is the definition of der j and the right hand equality uses
the cohesive property of K . �

With this we obtain the following.

Theorem 12. For each frame A and j ∅ N A we have the following.

(∞) Δ( j) = ∩N ↓∧ {∩} is the only cohesive subset of A j .

(↔) AΔ( j) is the largest cohesive subset of A j .

(≈) Δ( j) = j ↓∧ A j is cohesive.

Proof. Let k = Δ( j).
(∞) Suppose first that k = ∩N and consider a cohesive K ⊆ A j . Then by Lemma

20 we have K ⊆ Ak = {∩}. Conversely, by Lemma 19, the fixed set Ak is cohesive
and so, if this must be {∩}, then K = ∩N .

(↔) By Corollary 5 we see that Ak ⊆ A j is cohesive. Conversely, Lemma 20
ensures that each cohesive subset of A j is included in Ak .

(≈) If k = j then A j is cohesive by Lemma 19. Conversely, if A j is cohesive then
A j ⊆ Ak , by Lemma 20, to give k ≤ j . �

Part (≈) adds to Theorem 6, and gives a slight extension of Lemma 18.

Corollary 6. For each frame A and nucleus j ∅ N A, if the relation � on A j has
ACC then Δ( j) = ∩N .

For each frame A, nucleus j ∅ N A, and element a ∅ A, Lemma 11 gives

Der( j) ≤ wa ↓∧ j � wa

and we now replace Der by Δ. We strengthen the essentially above relation.

Definition 8. Let A be a frame. For elements b, a ∅ A we write b ⊗· a and say a is
substantially above b if there is a descending ω-chain {xr | r < ω} of elements with
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b ≤ xr+1 � xr ≤ a

for each r < ω.

Trivially we have

b ⊗· a =∧ b � a a ⊗· a ∧ a = ∩

and ⊗· has some simple properties. Here is the analogue of Lemma 8.

Lemma 21. For each frame A and a, b, x, y ∅ A we have the following.

y ≤ b ⊗· a ≤ x =∧ y ⊗· x
x ⊗· a
y ⊗· b

}

=∧ x ≤ y ⊗· a ≤ b

Proof. The left hand implication follows from Lemma 8. For the right hand impli-
cation suppose x ⊗· a and y ⊗· b where the two chains

X = {xr | r < ω} Y = {yr | r < ω}

witness these separations. For each r < ω let

zr = xr ≤ yr and set Z = {zr | r < ω}

to produce a third chain. For each r < ω we have

x ≤ xr+1 � xr ≤ a y ≤ yr+1 � yr ≤ b

so that Lemma 8 gives
x ≤ y ≤ zr+1 � zr ≤ a ≤ b

and hence x ≤ y ⊗· a ≤ b. �

The descending chains give the relation ⊗· its power.

Lemma 22. For each frame A and a, b ∅ A we have the following.

b ⊗· a =∧ δ(b) ⊗· a

Proof. Suppose b ⊗· a and consider

x = ∧ {xr | r < ω}

using the witnessing chain between b and a. For each r < ω we have

x ≤ xr+1 � xr
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so that der(x) ≤ xr , and hence der(x) = x . But now δ(b) ≤ δ(x) = x which, since
x ⊗· a, gives the required result. �

We may apply this result to the assembly to get

j ⊗· wa =∧ Δ( j) ≤ wa

for each j ∅ N A and a ∅ A. The next result is a strengthening of this.

Theorem 13. For each frame A, element a ∅ A, and nucleus j ∅ N A, the following
three conditions are equivalent.

(i) Δ( j) ≤ wa (i i) Δ( j) ⊗· wa (i i i) j ⊗· wa

The implication (i i) ∧ (i i i) is trivial, and the implication (i i i) ∧ (i) is the
observation above. Thus the content of the result is the implication (i) ∧ (i i).
The proof of that uses a splitting technique and takes some time. That is the topic of
Sect. 9.8. For the remainder of this section we obtain some consequences of Theorem
13.

First we combine parts of Lemmas 2 and 11 with Theorem 13.

Theorem 14. For each frame A we have

j ≤ wa ↓∧ j (a) = a
j � wa ↓∧ Der( j) ≤ wa

j ⊗· wa ↓∧ Δ( j) ≤ wa

for each j ∅ N A and a ∅ A.

The result can be rephrased differently. By Lemma 3 we have

j = ∧ {wa | a ∅ A with j ≤ wa}

for each j ∅ N A. We apply this to Der( j) and Δ( j) to obtain the following.

Corollary 7. For each frame A and j ∅ N A we have the following.

j =
∧

{wa | a ∅ A with j ≤ wa}
Der( j) =

∧
{wa | a ∅ A with j � wa}

Δ( j) =
∧

{wa | a ∅ A with j ⊗· wa}

By definition Δ = Der≥. The use of ⊗· leads to an explicit construction.

Theorem 15. For each frame A and j ∅ N A we have the following.

Der( j) = ∧ {k ∅ N A | j � k} Δ( j) = ∧ {k ∅ N A | j ⊗· k}
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Proof. The first part is just the definition of Der. For the second part let

Π( j) = ∧ {k ∅ N A | j ⊗· k}

so that Π( j) = Δ( j) is required. But Π( j) is

∧ {k ∅ N A | j ⊗· k} ≤ ∧ {wa | j ⊗· wa} = ∧ {wa | Δ( j) ≤ wa} = Δ( j)

using Theorem 13 and the general representation of nuclei. For the converse compar-
ison consider any nucleus k with j ⊗· k. By the lift of Lemma 22 we have Δ( j) ⊗· k
and hence Δ( j) ≤ Π( j) since k is arbitrary. �

This gives the following.

Theorem 16. For each nucleus j on a frame A we have Δ( j) = ∩N precisely when
the relation � on the interval [ j,∩N ] of N A has the Descending Chain Condition.

The particular case j = id gives a characterization of θ = Δ(id) = ∩N in other
words a characterization of when N 2 A is Boolean.

Corollary 8. For each frame A the second level assembly N 2 A is Boolean precisely
when the relation � on N A has the Descending Chain Condition.

9.8 A Splitting Technique

In this section we prove the implication (i) ∧ (i i) of Theorem 13 using a splitting
technique. The proof is rather long so we begin with an overview.

We work in a fixed, but arbitrary frame A. We set up a 3-placed relation

l ˆ j ∗ b

between a pair of nuclei j, l ∅ N A and an element b ∅ A. By the construction of
this relation we have

j = ∧ {wa(r) | r ∅ R}

over some index set R where a(r) ∅ Al for each index r . In particular, we have
l ≤ wa(r), so that l ≤ j . The set {a(r) | r ∅ R} is wide in the sense that

wa(r) → wa(s) = ∩N

for distinct r, s ∅ R. It is part of a spread as in Definition 9. In due course we prove
the following.
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Lemma 23. Working in a frame A suppose

Δ(l) = l b ∅ Al

for some nucleus l and element b. For each a ∅ Al with (b ↑ a) = a we have

l ˆ j ∗ b j � wa j (⊥) = a

for at least one nucleus j .

We merge many spreads by an intricate construction and then we prove the fol-
lowing.

Lemma 24. Working in a frame A suppose

Δ(l) = l b ∅ Al l ˆ j ∗ b

for some nuclei l, j and element b. Then

l ˆ k ∗ b k � j

for some nucleus k.

By an iterated use of Lemma 24 we obtain the following.

Corollary 9. Working in a frame A suppose

Δ(l) = l b ∅ Al

for some nucleus l and element b. Then

l ˆ j ∗ b =∧ l ⊗· j

for each nucleus j ∅ N A.

Proof. We fix the nucleus l and the element b with the two given properties. Consider
any nucleus j such that

l ˆ j ∗ b

holds. We must generate a certain descending chain of nuclei between j and l. By a
use of Lemma 24 we obtain

l ˆ j ⇒ ˆ b j ⇒ � j

for some nucleus j ⇒ (the nucleus k of the Lemma). The global conditions still hold,
so a second application gives
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l ˆ j ⇒⇒ ∗ b j ⇒⇒ � j ⇒ � j

for some nucleus j ⇒⇒. By iteration, we generate a descending sequence

(i ∅ N) · · · � ji+1 � ji � · · · � j2 � j1 � j0 = j

where
l ˆ ji ∗ b

for each i ∅ N. This gives the required result. �

In the 3-placed relation the element b is merely a convenience, and it is always
possible to take b = ∩, so we obtain the following.

Theorem 17. For each frame A we have

l ≤ wa =∧ l ⊗· wa

for all nuclei l with Δ(l) = l and all a ∅ A.

Proof. Assuming Δ(l) = l and l ≤ wa , we may take b = ∩ to get

Δ(l) = l a, b ∅ Al (b ↑ a) = a

so that Lemma 23 gives
l ˆ j ∗ b j � wa

for some nucleus j . But now Corollary 9 gives

l ⊗· j � wa

and hence l ⊗· wa , as required. �

This leads to a proof of Theorem 13.

Corollary 10. For each frame A we have

Δ( j) ≤ wa =∧ Δ( j) ⊗· wa

for all nuclei j ∅ N A and elements a ∅ A.

Proof. Let l = Δ( j), so that Δ(l) = l. Then

Δ( j) ≤ wa =∧ l ≤ wa =∧ l ⊗· wa

by Theorem 17. �



246 H. Simmons

That completes the overview, we now begin the harder work.
The following notion is a refinement of that of coheight used in [13].

Definition 9. For a frame A a spread is a pair

a = (a(r) | r ∅ R) b = (b(r) | r ∅ R)

of indexed families of elements of A, over the same index set R, such that

(sp 1) (b(r) ↑ a(r)) = a(r) equivalently vb(r) ≤ wa(r)

(sp 2) b(r) ≤ b(s) ≤ a(r) → a(s)

for all r, s ∅ R with r ◦= s for (sp 2).

Condition (sp 1) can be expressed in different ways. Both are useful.
The important components of a spread are the elements of a. The elements of b

play a secondary role. Their main job is to ensure wideness.

Lemma 25. For a frame A let (a, b) be a spread indexed by R. Then

wa(r) → w(a(s) = ua(r) → ua(s) → vb(r) → vb(s) = ∩N

for each pair r ◦= s of distinct indexes.

Proof. Let
a = a(r) → a(s) b = b(r) ≤ b(s)

using the given distinct indexes r ◦= s. By (sp 2) we have b ≤ a, so that

ua(r) → ua(s) → vb(r) → vb(s) = ua → vb ⊆ ub → vb = ∩N

by the properties of u- and v-nuclei. Now (sp 1) gives the equality. �

The job of a spread is to produce a nucleus.

Definition 10. For a frame A let (a, b) be a spread indexed by R. We set

j = ∧ {wa(r) | r ∅ R}

to obtain the nucleus induced by the spread.

This depends only on a. The b is there to ensure Lemma 25.
The official definition of a spread uses an arbitrary index set R. By well ordering

this we may assume that R is an initial stretch of the ordinals Ord. Thus we may
assume that the two witnessing families of elements are

(a(α) | α < κ) (b(α) | α < κ)
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for some ordinal κ . For what we do here the size of κ doesn’t matter, thus it is
convenient to hide κ . We do this by extending the two families to ordinal indexed
families

(a(α) | α ∅ Ord) (b(α) |, α ∅ Ord)

both of which are eventually constant. Of course, we must ensure that the spread
conditions (sp 1) and (sp 2) still hold (for all ordinals). To do this we first set a(α) = ∩
for all sufficiently large α (that is α ⊆ κ). We also take b(α) sufficiently small for
all large α.

Sometimes it is convenient to use an arbitrary index set R, sometimes it is conve-
nient to use an ordinal indexing, and sometimes it is convenient to use a more exotic
indexing. We see an example of this in the proof of Lemma 24.

There are trivial examples of spreads, and more interesting examples.
Consider any representation a = ∧

X of an element a of the parent frame. By
well-ordering X we may write

X = (x(α) | α < κ)

for some ordinal κ . We now set x(α) = ∩ for each ordinal α ⊆ κ , and use the ordinal
indexed family

X = (x(α) | α ∅ Ord)

which still satisfies a = ∧
X .

Construction 2. Let A be a frame, let a, b ∅ A, and suppose

a = ∧
X X = (x(α) | α ∅ Ord)

where the indexed family X is eventually ∩. We set

b(0) = b
b(α + 1) = b(α) ≤ x(α) a(α) = (b(α) ↑ x(α))

b(λ) = ∧ {b(α) | α < λ}

for each ordinal α and limit ordinal λ.

This construction first generates a descending chain of elements of A

b = b(0) ⊆ b(1) ⊆ · · · ⊆ b(α) ⊆ · · · (α ∅ Ord)

and then produces the chain a(·). The chain b(·) will be eventually constant, and the
chain a(·) will be eventually ∩. Notice that

b(α) = b ≤
∧

{x(β) | β < α}
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for each ordinal α. This is sometimes useful, as in the later part of the proof of Lemma
26. In particular

b(≥) = b ≤ a

where ≥ is any sufficiently large ordinal.
Observe that if l is a nucleus on A with

X ⊆ Al b ∅ Al

then a ∅ Al and the components of a and b are in Al , since Al is closed under
implication and arbitrary infima. Later we use this to modify the following.

Lemma 26. For a frame A, elements a, b ∅ A, and a representation a = ∧
X, the

Construction 2 produces a spread (a, b) with

b(0) = b b(α + 1) = b(α) ≤ a(α) b(λ) =
∧

{b(α) | α < λ}

for each ordinal α and limit ordinal λ. Furthermore, we have

a ≤ j (⊥) ≤ (b ↑ a)

where j is the nucleus induced by the spread.

Proof. We first verify (sp 1) and (sp 2) to show that we do have a spread.
(sp 1) For each ordinal α we have the following.

(b(α) ↑ a(α)) = (b(α) ↑ (b(α) ↑ x(α))) = (b(α) ↑ x(α)) = a(α)

(sp 2) Consider distinct ordinals α, β. By symmetry we may suppose α < β.
Observe that b(β) ≤ b(α + 1) ≤ x(α), so that we have the following.

b(α) ≤ b(β) = b(β) ≤ x(α) ≤ a(α) ≤ a(α) → a(β)

For the alternative description of b consider the chain c(·) generated by

c(0) = b c(α + 1) = c(α) ≤ a(α) c(λ) = ∧ {c(α) | α < λ}

for each ordinal α and limit ordinal λ. We require b(α) = c(α) and the obvious
ordinal induction works. The base case, α = 0, is trivial. For the induction step,
α �∈ α + 1, we see that c(α + 1) is

c(α) ≤ a(α) = b(α) ≤ a(α) = b(α) ≤ (b(α) ↑ x(α)) = b(α) ≤ x(α) = b(α + 1)

as required. The induction leap to a limit ordinal λ is immediate.
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The induced nucleus is

j = ∧ {wa(α) | α ∅ Ord} so that j (⊥) = ∧ {a(α) | α ∅ Ord}

for its least value. We have x(α) ≤ a(α) for each ordinal α ∅ Ord, and hence

a = ∧
X ≤ ∧ {a(α) | α ∅ Ord} = j (⊥)

for one of the required comparisons. For the other comparison observe that

b ≤ ∧ {a(β) | β < α} = b(α) = b ≤ ∧ {x(β) | β < α}

for each ordinal α. The right hand equality is a consequence of the original con-
struction of b, and the left hand equality follows in the same way from the modified
construction given here. By taking α sufficiently large, we have

b ≤ j (⊥) = b(≥) = b ≤ ∧
X = b ≤ a ≤ a

which leads to the required result. �

Suppose we start from a pair of elements a, b ∅ A and a representation.

(b ↑ a) = a = ∧
X

Construction 2 gives us a spread (a, b), and the second part of Lemma 26 shows we
have a second representation of a.

a = j (⊥) = ∧ {a(α) | α ∅ Ord}

We could now take this through Construction 2 to produce a second spread, but the
first part of Lemma 26 shows that it is exactly the same spread.

We now begin to refine Lemma 26.

Lemma 27. Consider a frame A and elements a, b ∅ A where

(b ↑ a) = a der(a) = a

hold. Then Construction 2 produces a spread (a, b) with

j � wa j (⊥) = a

where j is the induced nucleus.

Proof. Construction 2 requires a representation a = ∧
X of the element a. Since

der(a) = a there is such a representation where a � x for each x ∅ X . We may
assume that
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X = (x(α) | α ∅ Ord)

where the sequence x(·) is eventually ∩. We now use Construction 2 to produce a
spread and then the induced nucleus j . By Lemma 26 we have

a ≤ j (⊥) ≤ (b ↑ a) = a

and hence j (⊥) = a. We have j ≤ wa , and it remains to show j � wa .
To this end let k = (wa ↑ j) so that j ≤ k, and we require k ≤ j . We have

k ≤ wa ≤ j . We show that k(a) = a, so that k ≤ wa , and hence k = k ≤ wa ≤ j .
Consider any x ∅ X . We have x = x(α) for some ordinal α. Let c = a(α) be the

corresponding element of the constructed sequence a(·). We have a � x ≤ c so that
wa(x) = ∩ and

k(a) ≤ k(x) ≤ wa(x) ≤ j (x) ≤ wc(x) = c = a(α)

for each ordinal α. This gives

k(a) ≤ ∧ {a(α) | α ∅ Ord} = j (⊥) = a

as required. �
We can now introduce the 3-placed relation of Lemmas 23 and 24.

Definition 11. For a frame A with nuclei l, j ∅ N A and an element b ∅ A, we write

l ˆ j ∗ b

to indicate that j is induced by some spread (a, b) where

a(r) ∅ Al b(r) ∅ Al b(r) ≤ b

for each index r .

Since a(r) ∅ Al we have

l ≤ ∧ {wa(r) | r ∅ R} = j

and we have a lower bound for j . We are going to show that in the appropriate
circumstances the nucleus j is some way above l. In the end we take b = ∩. The
parameter b is in Definition 11 to help with various constructions.

Proof of Lemma 23. Since Δ(l) = l, the fixed set Al is cohesive. Since a ∅ Al

we have
a = ∧

X

for some X ⊆ Al where a � x for each x ∅ X . With b ∅ Al , Construction 2 produces
a spread (a, b) with a nucleus j . As in Lemma 27 we have
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j � wa j (⊥) = a

for this induced nucleus. We have

X ⊆ Al b ∅ Al

and the fixed set is closed under implication and arbitrary infima. Thus, as observed
just before Lemma 26, each component of a and b belongs to Al . Finally each
component of b is below b, so we have l ˆ j ∗ b as required. �

The proof of Lemma 24 is not so straight forward. We meld many sandwich
spreads into one. The following holds for any frame, but we apply it to an assembly,
which explains the notation.

Lemma 28. Suppose we have an indexed family of elements of a frame

pr ≤ kr � jr (r ∅ R)

where each pr is complemented. Suppose pr → ps = ∩ for distinct r, s ∅ R. Then
with

k = ∧ {kr | r ∅ R} j = ∧ { jr | r ∅ R}

we have k � j .

Proof. Let l = ( j ↑ k), so that we have l ≤ j ≤ k, and we required l ≤ k. We show
l ≤ kr for each r . Let

jr = ∧ { js | r ◦= s ∅ R}

so that j = jr ≤ jr . For distinct indexes r, s we have

pr → js ⊆ pr → ps = ∩

and hence ¬pr ≤ js (since pr is complemented), to give ¬pr ≤ jr . Thus

l ≤ ¬pr ≤ jr ≤ l ≤ jr ≤ jr = l ≤ j ≤ k ≤ kr

so that since kr � jr we have

l ≤ ¬pr ≤ ( jr ↑ kr ) = kr and hence l ≤ pr → kr = kr

as required. �

We are now ready to obtain our main construction result, Lemma 24.

Proof of Lemma 24. We use Construction 2, in refined form, many times to produce
a family of spreads. We then merge these into one spread, and use this to induce k.
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Table 9.2 Various conditions used in the proof of Lemma 24

(1) a(r) ∅ Al (2) b(r) ∅ Al (3) b(r) ≤ b
(4) (b(r) ↑ a(r)) = a(r) equivalently vb(r) ≤ wa(r) (5) b(r) ≤ b(s) ≤ a(r) → a(s)
(6) j = ∧ {wa(r) | r ∅ R} (7) l ˆ kr ∗ b(r)

(8) kr ∅ wa(r) (9) kr (⊥) = a(r) (10) a(r) ≤ a(r, α)

(11) a(r, α) ∅ Al (12) b(r, α) ∅ Al (13) b(r, α) ≤ b(r)

(14) (b(r, α) ↑ a(r, α)) = a(r, α) equivalently vb(r,α) ≤ wa(r,α)

(15) b(r, α) ≤ b(r, β) ≤ a(r, α) → a(r, β) (16) kr = ∧ {wa(r,α) | α ∅ Ord}

We need to take some care with the various conditions. These are listed in Table 9.2.
Of course, there are some hidden quantifiers.

The given condition l ˆ j ∗ b is witnessed by a spread

a = (a(r) | r ∅ R) b = (b(r) | r ∅ R)

over some index set R. This is not an arbitrary spread for it satisfies (1, 2, 3) for all
r ∅ R. As a spread it also satisfies (4, 5) for all r, s ∅ R with r ◦= s. Of course, the
induced nucleus is given by (6).

For the time being fix r ∅ R.
For this r ∅ R we are given Δ(l) = l and (1, 2, 4). Thus Lemma 23 provides a

nucleus kr where (7, 8, 9) hold.
Condition (7) is witnessed by an auxiliary spread

(a(r, α) | α ∅ Ord) (b(r, α) | α ∅ Ord)

where (10, 11, 12, 13) hold for all α ∅ Ord. Condition (10) holds since

a(r) = kr (⊥) ≤ a(r, α)

for all α ∅ Ord. As a spread it also satisfies (14, 15) for all α, β ∅ Ord with α ◦= β.
The induced nucleus is given by (16).

We now release r ∅ R. By (11, 12) we have families of elements of Al

a(r, α) b(r, α)

indexed by pairs (r, α) ∅ R × Ord.
By (13, 3) we have

(!0) b(r, α) ≤ b(r) ≤ b

for all (r, α) ∅ R × Ord. We show that the two (R × Ord)-indexed families form a
spread, that is

(!1) (b(r, α) ↑ a(r, α)) = a(r, α)
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(!2) b(r, α) ≤ b(s, β) ≤ a(r, α) → a(s, β)

for all r, s ∅ R and α, β ∅ Ord with (r, α) ◦= (s, β).
Condition (!1) is just (14).
To verify (!2) consider distinct pairs (r, α) ◦= (s, β) from R × Ord. If r = s then

α ◦= β, and then (15) gives (!2). If r ◦= s then we have

b(r, α) ≤ b(s, β) ≤ b(r) ≤ b(s) ≤ a(r) → a(s) ≤ a(r, α) → a(s, β)

by (13, 5, 10). We now have a spread indexed by R × Ord. Let

k = ∧ {wa(r,α) | (r, α) ∅ R × Ord}

be the induced nucleus. By (11, 12, 13) we have l ˆ k ∗ b so it remains to show
k � j . By uncoupling the indexing pair we see that k is

∧ {wa(r,α) | (r, α) ∅ R × Ord} = ∧ {∧ {wa(r,α) | α ∅ Ord} | r ∅ R}

which is
∧ {kr | r ∅ R} by (16). We now use Lemma 28. For each r ∅ R let

pr = ua(r) → vb(r) so that pr ≤ wa(r)

by (4). For distinct r, s ∅ R a use of (5) gives

pr → ps = ua(r) → vb(r) → ua(s) → vb(s) = ua(r)→a(s) → vb(r)≤b(s) = ∩N

(as in the proof of Lemma 25). From (9) we have ua(r) ≤ kr and (13, 14) give

vb(r) ≤ vb(r,α) ≤ wa(r,α) so that vb(r) ≤ kr

and hence pr ≤ kr and we are almost there. We remember (8), and then apply Lemma
28.

This completes the proof of Theorem 13.

9.9 Final Remarks

I think we all understand that from a point-sensitive perspective the Cantor-Bendixson
process is a way of measuring a certain kind of ‘pathology’ of a topological space,
or a way of locating the ‘useful’ part of the space. In this chapter I describe a
point-free version of the process, an analogous construction on an arbitrary frame.
As I mentioned earlier the point-free operation der also occurs in other areas of
mathematics such as the analysis of the modal systems connected with the ‘formal
provability’ notion first used by Gödel. However I don’t investigate that here.
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In this chapter I indicate how the CB-process for frames has more potential. For
a given frame A the operation der on A can be lifted up to each finite level of the
assembly tower of A (and probably can be lifted even further). This lifting is described
in Sect. 9.5, and then in remaining sections I show how it can be used to measure a
certain ‘pathology’ of the tower. I believe there is much more that can be done here.

Of course, each space gives a frame, its topology, and so this point-free analysis
can be applied to the point-sensitive case. In [22, 23] I look at this application for
certain rather simple spaces. In [23] I show there are spaces S such that

OS NOS N 2OS N 3OS

are different, and N 3OS turns out to be the power set PS of the carrying set. I
haven’t been able to determine the structure of N 2OS. This seems to depend on a
certain problem in infinite combinatorics.

What is more important is that I have almost no information about what happens
beyond level three. There is much to be investigated here.

There is also another direction that I have taken. By slightly weakening the Frame
Distributive Law we obtain a larger class of complete lattices. For each module
M over an arbitrary ring the lattice of sub-modules of M is a concrete example in
this larger class. We then find that certain ranking techniques for modules can be
investigated by methods analogous to the ones described here. These include the
socle length, the Gabriel dimension, and a less well-know dimension due to Boyle.
This last is nothing more than the CB-dimension of the assembly of the parent lattice.
This idea first appeared in [20, 21], but a fuller account will appear in [24].
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Chapter 10
Topological Interpretations of Provability Logic

Lev Beklemishev and David Gabelaia

In memory of Leo Esakia

Abstract Provability logic concerns the study of modality � as provability in formal
systems such as Peano Arithmetic. A natural, albeit quite surprising, topological
interpretation of provability logic has been found in the 1970s by Harold Simmons
and Leo Esakia. They have observed that the dual � modality, corresponding to
consistency in the context of formal arithmetic, has all the basic properties of the
topological derivative operator acting on a scattered space. The topic has become a
long-term project for the Georgian school of logic led by Esakia, with occasional
contributions from elsewhere. More recently, a new impetus came from the study of
polymodal provability logic GLP that was known to be Kripke incomplete and, in
general, to have a more complicated behavior than its unimodal counterpart. Topo-
logical semantics provided a better alternative to Kripke models in the sense that
GLP was shown to be topologically complete. At the same time, new fascinating
connections with set theory and large cardinals have emerged. We give a survey of the
results on topological semantics of provability logic starting from first contributions
by Esakia. However, a special emphasis is put on the recent work on topological
models of polymodal provability logic. We also include a few results that have not
been published so far, most notably the results of Sect. 10.4 (due to the second author)
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10.1 Provability Logics and Magari Algebras

Provability logics and algebras emerge from, respectively, a modal logical and an
algebraic point of view on the proof-theoretic phenomena around Gödel’s incom-
pleteness theorems. These theorems are usually perceived as putting fundamental
restrictions on what can be formally proved in a given axiomatic system (satisfying
modest natural requirements). For the sake of a discussion, we call a formal theory
T gödelian if

• T is a first order theory in which the natural numbers along with the operations +
and · are interpretable;

• T proves some basic properties of these operations and a modicum of induction
(it is sufficient to assume that T contains Elementary Arithmetic EA, see [7]);

• T has a recursively enumerable (r.e.) set of axioms.

The Second Incompleteness Theorem of Kurt Gödel (G2) states that a gödelian theory
T cannot prove its own consistency provided it is indeed consistent. More accurately,
for any r.e. presentation of such a theory T , Gödel has shown how to write down
an arithmetical formula ProvT (x) expressing that x is (a natural number coding)
a formula provable in T . Then the statement Con(T ) := ¬ProvT (�→�) naturally
expresses that the theory T is consistent. G2 states that T � Con(T ) provided T is
consistent.

Provability logic emerged from the question of what properties of formal prov-
ability ProvT can be verified in T , even if the consistency of T cannot. Several such
properties have been stated by Gödel himself [33]. Hilbert and Bernays [36] and
then Löb [44] stated them in the form of conditions any adequate formalization of
a provability predicate in T must satisfy. After Gödel’s and Löb’s work it was clear
that the formal provability predicate calls for a treatment as a modality. It led to the
formulation of the Gödel–Löb provability logic GL and eventually to the celebrated
arithmetical completeness theorem due to Solovay [55].

Independently, Macintyre and Simmons [45] and Magari [46] took a very natural
algebraic perspective on the phenomenon of formal provability which led to the
concept of diagonalizable algebra. Such algebras are now more commonly called
Magari algebras. This point of view is more convenient for our present purposes.

Recall that the Lindenbaum–Tarski algebra of a theory T is the set of all T -
sentences SentT modulo provable equivalence in T , that is, the structure LT =
SentT /≤T where, for all ℘,δ ∈ SentT ,

℘ ≤T δ ⊆∈ T ∩ (℘ ↔ δ).

Since we assume T to be based on classical propositional logic, LT is a boolean
algebra with operations ∅, ∨, ¬. Constants → and ↑ are identified with the sets of
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refutable and provable sentences of T , respectively. The standard ordering on LT is
defined by

[℘] ↓ [δ] ⊆∈ T ∩ ℘ ∧ δ ⊆∈ [℘ ∅ δ] = [℘],

where [℘] denotes the equivalence class of ℘.
It is well known that for consistent gödelian theories T all such algebras are

isomorphic to the unique countable atomless boolean algebra. (This is a consequence
of a strengthening of Gödel’s First Incompleteness Theorem due to Rosser.) We
obtain more interesting algebras by enriching the structure of the boolean algebra
LT by additional operation(s).

Gödel’s consistency formula induces a unary operator �T acting on LT :

�T : [℘] ∃−∧ [Con(T + ℘)].

The sentence Con(T + ℘) expressing the consistency of T extended by ℘ can be
defined as ¬ProvT (�¬℘�). The dual operator is �T : [℘] ∃−∧ [ProvT (�℘�)], thus
�T x = ¬�T ¬x for all x ∈ LT .

Hilbert–Bernays–Löb derivability conditions ensure that �T is correctly defined
on the equivalence classes of the Lindenbaum–Tarski algebra of T . Moreover, it
satisfies the following identities (where we write �T simply as � and the variables
range over arbitrary elements of LT ):

M1. �→ = →; �(x ∨ y) = �x ∨ �y;
M2. �x = �(x ∅ ¬�x).

Notice that Axiom M2 is a formalization of G2 stated for the theory T ∨ = T + ℘,
where [℘] = x . In fact, the left hand side states that T ∨ is consistent, whereas the
right hand side states that T ∨ + ¬Con(T ∨) is consistent, that is, T ∨ � Con(T ∨). The
dual form of Axiom M2, �(�x ∧ x) = �x, expresses the formalization of Löb’s
theorem [44].

A Boolean algebra with an operator M = (M,�) satisfying M1, M2 is called
Magari algebra. Thus, the main example of a Magari algebra is the structure
(LT ,�T ) for any consistent gödelian theory T .

Notice that M1 induces � to be monotone: if x ↓ y then �x ↓ �y. The tran-
sitivity inequality ��x ↓ �x is often postulated as an additional axiom of Magari
algebras, however, as discovered independently by de Jongh, Kripke and Sambin in
the 1970s, it follows from M1 and M2.

Proposition 1. In any Magari algebra M it holds that ��x ↓ �x for all x ∈ M.

Proof Given any x ∈ M , consider y := x ∨ �x . On the one hand, we have

��x ↓ (�x ∨ ��x) = �y.

On the other hand, since �x ∅ ¬�y = → we obtain
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�y ↓ �(y ∅ ¬�y) ↓ �((x ∨ �x) ∅ ¬�y) = �(x ∅ ¬�y) ∨ �→ ↓ �x .

Hence, ��x ↓ �x . �

In general, we call an identity of an algebraic structure M a formula of the form
t (x) = u(x), where t, u are terms, such that M � ≥x (t (x) = u(x)). Identities of
Maragi algebras can be described in terms of modal logic as follows. Any term (built
from the variables using boolean operations and �) is naturally identified with a
formula in the language of propositional logic with a new unary connective �. If
℘(x) is such a formula and M a Magari algebra, we write M � ℘ iff ≥x (t℘(x) =
↑) is valid in M , where t℘ is the term corresponding to ℘. Since any identity in
Magari algebras can be equivalently written in the form t = ↑ for some term t , the
axiomatization of identities of M amounts to axiomatizing modal formulas valid in
M . The logic of M , Log(M ), is the set of all modal formulas valid in M , that is,
Log(M ) := {℘ : M � ℘}, and the logic of a class of modal algebras is defined
similarly.

One of the main parameters of a Magari algebraM is its characteristic ch(M ) :=
min{k ∈ η : �k↑ = →} and ch(M ) := ∞ if no such k exists. If T is arithmetically
sound, that is, if the arithmetical consequences of T are valid in the standard model,
then ch(LT ) = ∞. Theories (whose algebras are) of finite characteristics are, in a
sense, close to being inconsistent and may be considered a pathology.

Solovay [55] proved that any identity valid in the structure (LT ,�T ) follows from
the boolean identities together with M1–M2, provided T is arithmetically sound. This
has been generalized by Visser [58] to arbitrary theories of infinite characteristic.

Theorem 1. (Solovay, Visser) Suppose ch(LT ,�T ) = ∞. An identity holds in
(LT ,�T ) iff it holds in all Magari algebras.

Apart from the equational characterization by M1, M2 above, the identities of
Magari algebras can be axiomatized modal-logically. In fact, the logic of all Magari
algebras, and by the Solovay theorem the logic Log(LT ,�T ) of the Magari algebra
of T , for any fixed theory T of infinite characteristic, coincides with the familiar
Gödel–Löb logic GL. Abusing the language we will often identify GL with the set
of identities of Magari algebras.1

A Hilbert-style axiomatization of GL is usually given in the modal language
where � rather than � is taken as basic and the latter is treated as an abbreviation
for ¬�¬. The axioms and inference rules of GL are as follows.

Axiom schemata:

L1. All instances of propositional tautologies;
L2. �(℘ ∧ δ) ∧ (�℘ ∧ �δ);

1 For normal modal logics, going from an equational to a Hilbert-style axiomatization and back
is automatic, as they are known to be strongly finitely algebraizable (see [19, 31]). We do not
assume the reader’s familiarity with algebraic logic and prefer to give explicit axiomatizations for
the systems at hand.
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L3. �(�℘ ∧ ℘) ∧ �℘.

Rules: ℘, ℘ ∧ δ/δ (modus ponens), ℘/�℘ (necessitation).

By a well-known result of Segerberg [51], GL is sound and complete w.r.t. the
class of all transitive and upwards well-founded Kripke frames. In fact, it is sufficient
to restrict the attention to frames that are finite irreflexive trees. Thus, summarizing
various characterizations above, we have

Theorem 2. Let T be a gödelian theory of infinite characteristic. For any modal
formula ℘, the following statements are equivalent:

(i) GL ∩ ℘;
(ii) ℘ is valid in all Magari algebras;

(iii) (LT ,�T ) � ℘;
(iv) ℘ is valid in all finite irreflexive tree-like Kripke frames.

10.2 Topological Interpretation

A natural, albeit quite surprising, topological interpretation of provability logic was
found by Simmons [53]. He observed that the topological derivative operator act-
ing on a scattered topological space satisfies all the identities of Magari algebras.
Esakia [28], working independently, considered a more general problem of set-
theoretic interpretations of Magari algebras.

Let X be a nonempty set and let P(X) the boolean algebra of subsets of X .
Consider any operator ι : P(X) ∧ P(X) and the structure (P(X), ι). Can
(P(X), ι) be a Magari algebra and, if yes, when? Esakia [28] found what may be
called a canonical answer to this question (Theorem 4 below).

Let (X, σ ) be a topological space, where σ denotes the set of open subsets of X ,
and let A ⇐ X . Topological derivative dσ (A) of A is the set of limit points of A:

x ∈ dσ (A) ⊆∈ ≥U ∈ σ (x ∈ U ∈ ⇒y ∀= x (y ∈ U ◦ A)).

Notice that cσ (A) := A ∞ dσ (A) is the closure of A and isoσ (A) := A \ dσ (A) is the
set of isolated points of A.

The classical notion of a scattered topological space is due to Georg Cantor. (X, σ )

is called scattered if every nonempty subspace A ⇐ X has an isolated point.

Theorem 3. (Simmons, Esakia) The following statements are equivalent:

(i) (X, σ ) is scattered;
(ii) (P(X), dσ ) is a Magari algebra, that is, for all A ⇐ X, dσ (A) = dσ (A\dσ (A)).

Notice that dσ (A) = dσ (A\dσ (A)) means that each limit point of A is a limit point of
its isolated points. The algebra of the form (P(X), dσ ) associated with a topological
space (X, σ ) will be called the derivative algebra of X . Thus, this theorem states
that the derivative algebra of (X, σ ) is Magari iff (X, σ ) is scattered.
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Proof Suppose (X, σ ) is scattered, A ⇐ X and x ∈ dσ (A). Consider any open
neighborhood U of x . Since (U ◦ A) \ {x} is nonempty, it has an isolated point
y ∀= x . Since U is open, y is an isolated point of A, that is, y ∈ A \ dσ (A).
Hence, x ∈ dσ (A \ dσ (A)). The inclusion dσ (A \ dσ (A)) ⇐ dσ (A) follows from the
monotonicity of dσ . Therefore Statement (ii) holds.

Suppose that (ii) holds and let A ⇐ X be nonempty. We show that A has an
isolated point. If dσ A is empty, we are done. Otherwise, take any x ∈ dσ A. Since x
is a limit of isolated points of A, there must be at least one such point. �

We notice that the transitivity principle dσ dσ A ⇐ dσ A topologically means that
the set dσ A, for any A ⇐ X , is closed. We recall the following standard equivalent
characterization an easy proof of which we shall omit.

Proposition 2. For any topological space (X, σ ), the following statements are equiv-
alent:

(i) Every x ∈ X is an intersection of an open and a closed set;
(ii) For each A ⇐ X, the set dσ A is closed.

Topological spaces satisfying either of these conditions are called Td-spaces.
Condition (i) shows that Td is a weak separation property located between T0 and
T1. Thus, Proposition 1 yields, as a corollary, the modal proof of the following well-
known fact.

Corollary 1. All scattered spaces are Td .

We have seen in Theorem 3 that each scattered space equipped with a topological
derivative operator is a Magari algebra. The following result by Esakia [28] shows
that any Magari algebra on P(X) can be described in this way.

Theorem 4. (Esakia) If (P(X), ι) is a Magari algebra, then X bears a unique
topology σ for which ι = dσ . Moreover, σ is scattered.

Proof We first remark that if (P(X), ι) is a Magari algebra, then the operator
c(A) := A∞ιA satisfies the Kuratowski axioms of the topological closure: c∅ = ∅,
c(A ∞ B) = cA ∞ cB, A ⇐ cA, ccA = cA. This defines a topology σ on X in which
a set A is σ -closed iff A = c(A) iff ιA ⇐ A. If π is any topology such that ι = dπ ,
then π has the same closed sets, that is, π = σ . So if the required topology exists, it
is unique. To show that ι = dσ we need an auxiliary lemma. �

Lemma 1. Suppose (P(X), ι) is Magari. Then, for all x ∈ X,

(i) x /∈ ι({x});
(ii) x ∈ ιA ⊆∈ x ∈ ι(A \ {x}).
Proof (i) By Axiom M2 we have ι{x} ⇐ ι({x} \ ι{x}). If x ∈ ι{x} then ι({x} \
ι{x}) = ι∅ = ∅. Hence, ι{x} = ∅, a contradiction.

(ii) x ∈ ιA implies x ∈ ι((A \ {x}) ∞ {x}) = ι(A \ {x}) ∞ ι{x}. By (i), x /∈ ι{x},
hence x ∈ ι(A \ {x}). The other implication follows from the monotonicity of ι. �
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Lemma 2. Suppose (P(X), ι) is Magari and σ is the associated topology. Then
ι = dσ .

Proof Let d = dσ ; we show that for any set A ⇐ X d A = ιA. Notice that for any
B, cB = d B ∞ B = ιB ∞ B. Assume x ∈ ιA. Then x ∈ ι(A \ {x}) ⇐ c(A \ {x}) ⇐
d(A \ {x}) ∞ (A \ {x}). Since x /∈ A \ {x}, we obtain x ∈ d(A \ {x}). By the
monotonicity of d, x ∈ d A. Similarly, if x ∈ d A then x ∈ d(A \ {x}). Hence,
x ∈ c(A \ {x}) = ι(A \ {x}) ∞ (A \ {x}). Since x /∈ A \ {x} we obtain x ∈ ιA. �

From this lemma and Theorem 3 we also infer that σ is a scattered topology.
Theorem 4 shows that to study a natural set-theoretic interpretation of provability

logic means to study the semantics of � as a derivative operation on a scattered
topological space. Derivative semantics of modality was first suggested in the fun-
damental paper by McKinsey and Tarski [48]. See [43] for a detailed survey of such
semantics for arbitrary topological spaces. The emphasis in this chapter is on the
logics related to formal provability and scattered topological spaces.

10.3 Topological Completeness Theorems

Natural examples of scattered topological spaces come from orderings. Two exam-
ples will play an important role below.

Let (X,≺) be a strict partial ordering. The left topology or the downset topology
σ≈ on (X,≺) is given by all sets A ⇐ X such that ≥x, y (y ≺ x ∈ A ∈ y ∈ A).
We obviously have that (X,≺) is well-founded iff (X, σ≈) is scattered. The right
topology or the upset topology is defined similarly.

The left topology is, in general, non-Hausdorff. More natural is the interval
topology on a linear ordering (X,<), which is generated by all open intervals
(∂, κ) = {x ∈ X | ∂ < x < κ} such that ∂, κ ∈ X ∞ {±∞} and ∂ < κ. The
interval topology refines both the left topology and the right topology and is scat-
tered on any ordinal [52].

Given a topological space (X, σ ), we denote the logic of its derivative algebra
(P(X), dσ ) by Log(X, σ ), and we let Log(C ) denote the logic of (the class of
derivative algebras associated with) a class C of topological spaces. Thus, if C is a
class of scattered spaces, Log(C ) is a normal modal logic extending GL.

Esakia [28] has noted that the completeness theorem for GL w.r.t. its Kripke
semantics (see [22, 51]) implies that GL is the modal logic of scattered spaces. In
fact, if (X,≺) is a strict partial ordering, then the modal algebra associated with the
Kripke frame (X,≺) is the same as the derivative algebra of (X, σ ) where σ is its
upset topology. This implies that any modal logic of a class of strict partial orders,
including GL, is complete w.r.t. topological derivative semantics.

We can also note that GL is the logic of a single countable scattered space.
Abashidze [1] and Blass [18] independently proved a stronger completeness result.

Theorem 5. (Abashidze, Blass) Let ∂ ⊗ ηη be any ordinal equipped with the
interval topology. Then Log(∂) = GL.
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Thus, GL is complete w.r.t. a natural scattered topological space. The rest of this
section is devoted to a new proof of this result. We need some technical prerequisites
that will be also useful later in this chapter.

Ranks and d-maps. An equivalent characterization of scattered spaces is often
given in terms of the following transfinite Cantor–Bendixson sequence of subsets of
a topological space (X, σ ):

• d0
σ X = X ; d∂+1

σ X = dσ (d∂
σ X) and

• d∂
σ X = ⋂

κ<∂

dκ
σ X if ∂ is a limit ordinal.

It is easy to show by transfinite induction that for any (X, σ ), all sets d∂
σ X are

closed and that d∂
σ X ˆ dκ

σ X whenever ∂ ↓ κ.

Theorem 6. (Cantor) (X, σ ) is scattered iff d∂
σ X = ∅ for some ordinal ∂.

Proof Let d = dσ . If (X, σ ) is scattered then we have d∂ X ∗ d∂+1 X for each ∂

such that d∂ X ∀= ∅. By cardinality arguments this yields an ∂ such that d∂ X = ∅.
Conversely, suppose A ⇐ X is nonempty. Let ∂ be the least ordinal such that

A � d∂ X . Obviously, ∂ cannot be a limit ordinal, hence ∂ = κ + 1 for some κ

and there is an x ∈ A \ dκ+1 X . Since A ⇐ dκ X , we also have x ∈ dκ X . Since
x /∈ dκ+1 X = d(dκ X), x is isolated in the relative topology of dκ X , and hence in
the relative topology of A ⇐ dκ X . �

Call the least ∂ such that d∂
σ X = ∅ the Cantor–Bendixson rank of X and denote

it by ασ (X). Let On denote the class of all ordinals. Then the rank function ασ : X ∧
On is defined by

ασ (x) := min{∂ : x /∈ d∂+1
σ (X)}.

Notice that ασ maps X onto ασ (X) = {∂ : ∂ < ασ (X)}. Also, ασ (x) ⊗ ∂ iff
x ∈ d∂

σ X . We omit the subscript σ whenever there is no danger of confusion.

Example 1. For an ordinal equipped with its left topology, α(∂) = ∂ for all ∂. When
the same ordinal is equipped with its interval topology, α is the function τ defined
by τ(0) = 0; τ(∂) = κ if ∂ = ψ + ηκ for some ψ, κ. By the Cantor normal form
theorem for any ∂ > 0, such a κ is uniquely determined, thus τ is well-defined.
Notice that τ(∂) = 0 iff ∂ is a non-limit ordinal.

Let (X, σX ) and (Y, σY ) be topological spaces, and let dX , dY denote the cor-
responding derivative operators. A map f : X ∧ Y is called a d-map if f is
continuous, open and pointwise discrete, that is, f −1(y) is a discrete subspace of X
for each y ∈ Y . d-maps are well known to satisfy the properties expressed in the
following lemma (see [16]).

Lemma 3.

(i) f −1(dY (A)) = dX ( f −1(A)) for any A ⇐ Y ;
(ii) f −1 : (P(Y ), dY ) ∧ (P(X), dX ) is a homomorphism of derivative algebras;
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(iii) If f is onto, then Log(X, σX ) ⇐ Log(Y, σY ).

Property (i) is easy to check directly; (ii) follows from (i), and (iii) follows from
(ii). Each of the conditions (i) and (ii) is equivalent to f being a d-map.

A proof of the following lemma can be found in [5].

Lemma 4. Let χ be the ordinal ασ (X) taken with its left topology. Then

(i) ασ : X � χ is an onto d-map;
(ii) If f : X ∧ φ is a d-map, where φ is an ordinal with its left topology, then

f (X) = χ and f = ασ .

An immediate corollary is that the rank function is preserved under d-maps.

The d-sum construction. The constructions of summing up structures, in par-
ticular, topological spaces or orderings ‘along’ another structure play an important
role in various branches of logic and mathematics (see, e.g., [34]). Here we present
another construction of this type, called d-sum, which can be used to recursively
build both finite trees and ordinals. Given a tree T , one can construct a new tree by
‘plugging in’ other trees in place of the leaves of T . Similarly, given an ordinal ∂,
one can ‘plug in’ new ordinals ∂i for each isolated point i ∈ ∂ to obtain another
ordinal. The d-sum construction turned out to be rather useful for proving topological
completeness theorems. Its particular case called d-product serves as a tool in the
proof of topological completeness of GLP in [5].

Definition 1 Let X be a topological space and let {Y j | j ∈ iso(X)} be a collection
of spaces indexed by the set iso(X) of isolated points of X . We uniquely extend it
to the collection {Y j | j ∈ X} by letting Y j = { j} for all j ∈ d X .

We define the d-sum (Z , σZ ) of {Y j } over X (denoted
∑d

j∈X Y j ) as follows. The
base set is the disjoint union Z := ⊔

j∈X Y j . Define the map π : Z ∧ X by putting

π(y) = j whenever y ∈ Y j . Now let the topology σZ consist of the sets V ∞π−1(U )

where V is open in the topological sum
⊔

j∈iso(X) Y j and U is open in X . It is not
difficult to check that σZ qualifies for a topology.

Example 2. (trees) Consider finite irreflexive trees equipped with the upset topology.
Note that the leaves of a tree are the isolated points in the topology. Therefore, taking
the d-sum of trees Ti over a tree T simply means plugging in Ti ’s in place of the
leaves of T .

Let us call an n-fork a tree Fn = (Wn, Rn), where Wn = {r, w0, w1, . . . , wn−1}
and Rn = {(r, wi ) | 0 ↓ i < n}. Observe that any finite tree is either an irreflexive
point, or an n-fork, or can be obtained (possibly in several ways) as a d-sum of trees
of smaller depth.

Example 3. (ordinals) Consider ordinals equipped with the interval topology. If
(∂i )i∈κ is a family of ordinals such that ∂i = 1 for limit i , then the d-sum

∑d
i∈κ ∂i is

homeomorphic to the ordinal sum
∑

i∈κ ∂i . This can be checked directly by examin-
ing the descriptions of neighborhoods in respective spaces. Thus, a d-sum of ordinals
along another ordinal is homeomorphic to an ordinal.
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The following lemma shows that d-sums, in a way, commute with d-maps.

Lemma 5. Let X and X ∨ be two spaces and let {Y j | j ∈ iso(X)} and {Y ∨
k |

k ∈ iso(X ∨)} be collections of spaces indexed by iso(X) and iso(X ∨), respectively.
Suppose further that f : X ∧ X ∨ is an onto d-map, and for each j ∈ iso(X) there
is an onto d-map f j : Y j ∧ Y ∨

f ( j). Then there exists an onto d-map g : ∑d
j∈X Y j ∧

∑d
k∈X ∨ Y ∨

k .

Proof First note that since f is a d-map, f ( j) is isolated in X ∨ iff j is isolated in
X . Indeed, by openness of f , if { j} ∈ σ , then { f ( j)} ∈ σ ∨. Conversely, if f ( j)
is isolated, then f −1 f ( j) is both open and discrete by continuity and pointwise
discreteness of f . Hence, any point in f −1 f ( j), and j in particular, is isolated in
X . For convenience, let us denote f∇ ← f �dσ X and f ∇ ← f �iso(X). It follows that
f ∇ : iso(X) ∧ iso(X ∨) and f∇ : dσ X ∧ dσ ∨ X ∨ are well-defined onto maps and
f = f ∇ ∞ f∇. Thus, in particular, the space Y ∨

f ( j) in the formulation of the theorem
is well-defined.

Take g to be the set-theoretic union g = f∇ ∞ ⋃
j∈iso(X) f j . We show that g

is a d-map. Let π and π ∨ be the ‘projection’ maps associated with
∑d

j∈X Y j and
∑d

k∈X ∨ Y ∨
k , respectively. To show that g is open, take W = V ∞ π−1(U ) ∈ σZ . Then

g(W ) = g(V )∞ g(π−1(U )). That g(V ) is open in the topological sum of Y ∨
k is clear

from the openness of the maps f j . Moreover, from the definition of g and the fact
that all f j are onto it can be easily deduced that g(π−1(U )) = π ∨−1( f (U )). Since
f is an open map, it follows that g(W ) is open in σ ∨

Z . To see that g is continuous,
take W ∨ = V ∨ ∞ π ∨−1(U ∨) ∈ σ ∨

Z . Then g−1(W ∨) = g−1(U ∨) ∞ g−1(π ∨−1(U ∨)).
Again, the openness of g−1(U ∨) is trivial. It is also easily seen that g−1(π ∨−1(U ∨)) =
π−1( f −1(U ∨)). It follows that g−1(W ∨) is open in σZ . To see that g is pointwise
discrete is straightforward, given that f and all the f j are pointwise discrete. �

The following lemma is crucial for a proof of Theorem 5.

Lemma 6. For each finite irreflexive tree T there exists a countable ordinal ∂ < ηη

and an onto d-map f : ∂ � T .

Proof The proof proceeds by induction on the depth of T . It is clear that the claim
is true for a one-point tree. If T is an n-fork Fn we define a d-map f : η + 1 � Fn

by letting f (x) := wx mod n for x < η and f (η) := r .
Now consider a tree T of depth n > 1 and suppose the claim is true for all trees of

depth less than n. Clearly T can be presented as a d-sum of trees of strictly smaller
depth in various ways. Using the induction hypothesis, each of the smaller trees is an
image of a countable ordinal under a d-map. Applying Lemma 5 and observing that
a countable d-sum of countable ordinals is a countable ordinal produces a countable
ordinal ∂ and an onto d-map f : ∂ � T . Since the rank function is preserved under
d-maps, the rank of ∂ is equal to the rank of T , that is, to n. It follows that ∂ < ηη,
which completes the proof. �
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Now we prove Theorem 5.

Proof Take a non-theorem ℘ of GL. Then ℘ can be refuted on a finite irreflexive tree
T by theorem 2. By Lemma 6, there exists an ordinal κ < ηη that maps onto T via
a d-map. By Lemma 3 (iii), ℘ can be refuted on κ. But κ is an open subspace of ∂.
It follows that ℘ can be refuted on ∂. �

Another, perhaps the simplest, proof of Theorem 5 appeared recently in [17, The-
orem 3.5]. It relied on a direct proof of Lemma 6 rather than on Lemma 5. However,
we believe that our approach illuminates the underlying recursive mechanism and
may lead to additional insights in more complicated situations (see [5]).

10.4 Topological Semantics of Linearity Axioms

For a gödelian theory T consider the 0-generated subalgebra L 0
T of (LT ,�T ), that

is, the subalgebra generated by ↑. If ch(LT ,�T ) = ∞, then also ch(L 0
T ,�T ) = ∞.

In fact, the modal logic of the Magari algebra (L 0
T ,�T ) is known (see [37]) to be

GL.3 which is obtained from GL by adding the following axiom:

(.3) �p ∅ �q ∧ �(p ∅ q) ∨ �(p ∅ �q) ∨ �(�p ∅ q).

This is the so called ‘linearity axiom’ and, as the name suggests, its finite rooted
Kripke frames are precisely the finite strict linear orders. Since GL.3 is Kripke
complete (see, e.g., [24]), its topological completeness is immediate. However, it
is not immediately clear what kind of scattered spaces does the linearity axiom
isolate. To characterize GL.3-spaces, let us first simplify the axiom (.3). Consider
the following formula:

(lin) �(�+ p ∨ �+q) ∧ �p ∨ �q,

where �+℘ is a shorthand for ℘ ∅ �℘.

Lemma 7. In GL the schema (.3) is equivalent to (lin).

Proof To show that (lin) ∩GL (.3), witness the following syntactic argument.
Observe that the dual form of (lin) looks as follows:

�p ∅ �q ∧ �(�+ p ∅ �+q) (∇)

where �+℘ := ℘ ∨�℘. Furthermore, an instance of the GL axiom looks as follows:

�(�+ p ∅ �+q) ∧ �(�+ p ∅ �+q ∅ �(�+¬p ∨ �+¬q)).

By the axiom (lin) we also have: �(�+¬p ∨ �+¬q) ∧ (�¬p ∨ �¬q). So, using
the monotonicity of � we obtain:
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�p ∅ �q ∧ �(�+ p ∅ �+q ∅ (�¬p ∨ �¬q)).

By boolean logic

�+ p ∅ �+q ↔ (p ∅ q) ∨ (p ∅ �q) ∨ (�p ∅ q) ∨ (�p ∅ �q) (∇∇)

and
(�¬p ∨ �¬q) ↔ ¬(�p ∅ �q).

Using these, together with the monotonicity of � we finally arrive at:

�p ∅ �q ∧ �((p ∅ q) ∨ (p ∅ �q) ∨ (�p ∅ q)),

which is equivalent to (.3) since � distributes over ∨.
To show the converse, we observe that (.3) implies (lin) even in the system K.

Indeed, the formula (∇), which is the dual form of (lin), can be rewritten, using (∇∇)

and the distribution of � over ∨ as follows:

�p ∅ �q ∧ �(p ∅ q) ∨ �(p ∅ �q) ∨ �(�p ∅ q) ∨ �(�p ∅ �q),

which is clearly a weakening of (.3). Therefore (.3) ∩GL (lin). �

It follows that a scattered space is a GL.3-space iff it validates (lin). To charac-
terize such spaces, consider the following definition.

Definition 2 Call a scattered space primal if for each x ∈ X and U, V ∈ σ , {x} ∞
U ∞ V ∈ σ implies {x} ∞ U ∈ σ or {x} ∞ V ∈ σ .

It can be shown that X is primal iff the collection of punctured open neighborhoods
of each non-isolated point is a prime filter in the Heyting algebra σ .

Theorem 7. Let X be a scattered space. Then X � (lin) iff X is primal.

Proof Let X be a scattered space together with a valuation π. Let P := π(p) and
Q := π(q) denote the truth-sets of p and q, respectively. Then the truth sets of �+ p
and �+q are Iσ P and Iσ Q, where Iσ is the interior operator of X . We write x � ℘

for X, x �π ℘.
Suppose X is primal and for some valuation x � �(�+ p ∨ �+q). Then there

exists an open neighborhood W of x such that W \ {x} � �+ p ∨ �+q. In other
words, W \ {x} ⇐ Iσ P ∞ Iσ Q. Let U = W ◦ Iσ P ∈ σ and V = W ◦ Iσ Q ∈ σ . Then
{x} ∞ U ∞ V = W ∈ σ . It follows that either {x} ∞ U ∈ σ or {x} ∞ V ∈ σ . Hence
x � �p or x � �q. This proves that X � (lin).

Suppose now X is not primal. Then there exist x ∈ X and U, V ∈ σ such that
{x} ∞ U ∞ V ∈ σ , but {x} ∞ U ∀∈ σ and {x} ∞ V ∀∈ σ . Take a valuation such that
P = U and Q = V . Then clearly x � �(�+ p ∨ �+q). However, neither x � �p
nor x � �q is true. Indeed, if, for example, x � �p, then there exists an open
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neighborhood W of x such that W \ {x} ⇐ P = U . But then {x} ∞ U = W ∞ U ∈ σ ,
which is a contradiction. This shows that X ∀� (lin). �

Example 4. (primal spaces) The left topology of any well-founded linear order is
clearly primal. To give an example of a primal space not coming from order, consider
any countable set A, a point b /∈ A and a free ultrafilter u over A. Then the set A∞{b}
with the topology ℘(A) ∞ {U ∞ {b} | U ∈ u} is easily seen to be primal. This space
is homeomorphic to a subspace of the Stone-Čech compactification of a countable
discrete space A defined by A ∞ {u}.

The primal scattered spaces are closely related to maximal scattered spaces of [5].
A scattered space is called maximal if it does not have any proper refinements with
the same rank function. It is easy to see that each maximal scattered space is primal,
but there are primal spaces which are not maximal. The two notions do coincide
for the scattered spaces of finite rank. It follows that the logic of maximal scattered
spaces is GL.3.

10.5 GLP-Algebras and Polymodal Provability Logic

A natural generalization of provability logic GL to a language with infinitely many
modal diamonds ⊇0∪, ⊇1∪, … has been introduced in 1986 by Japaridze [40]. He
interpreted ⊇1∪℘ as an arithmetical statement expressing the η-consistency of ℘ over
a given gödelian theory T .2 Similarly, ⊇n∪℘ was interpreted as the consistency of the
extension of T + ℘ by n nested applications of the η-rule.

While the logic of each of the individual modalities ⊇n∪ over Peano Arithmetic was
known to coincide with GL by a relatively straightforward extension of the Solovay
theorem [20], Japaridze found a complete axiomatization of the joint logic of the
modalities ⊇n∪ for all n ∈ η. This result involved considerable technical difficulties
and lead to one of the first genuine extensions of Solovay’s arithmetical fixed-point
construction. Later, Japaridze’s work has been simplified and extended by Ignatiev
[39] and Boolos [21]. In particular, Ignatiev showed that GLP is complete for more
general sequences of ‘strong’ provability predicates in arithmetic and analyzed the
variable-free fragment of GLP. Boolos included a treatment of GLB (the fragment
of GLP with just two modalities) in his popular book on provability logic [22].

More recently, GLP has found interesting applications in proof-theoretic analysis
of arithmetic [2, 6, 7, 9] which stimulated some further interest in the study of modal-
logical properties of GLP [11, 15, 23, 38]. For such applications, the algebraic
language appears to be more natural and a different choice of the interpretation of
the provability predicates is needed. The relevant structures have been introduced in
[6] under the name of graded provability algebras.

2 A gödelian theory U is η-consistent if its extension by unnested applications of the η-rule
U ∨ := U + {≥x ℘(x) : ≥n U ∩ ℘(n)} is consistent.



270 L. Beklemishev and D. Gabelaia

Recall that an arithmetical formula is called Πn if it can be obtained from a formula
containing only bounded quantifiers ≥x ↓ t and ⇒x ↓ t by a prefix of n alternating
blocks of quantifiers starting from ≥. Arithmetical γn-formulas are defined dually.

Let T be a gödelian theory. T is called n-consistent if T together with all true
arithmetical Πn-sentences is consistent. (Alternatively, T is n-consistent iff every
γn-sentence provable in T is true.) Let n-Con(T ) denote an arithmetical formula
expressing the n-consistency of T (it can be defined using the standard Πn-definition
of truth for Πn-sentences in arithmetic). Since we assume T to be recursively enu-
merable, it is easy to check that the formula n-Con(T ) itself belongs to the class
Πn+1.

The n-consistency formula induces an operator ⊇n∪T acting on the Lindenbaum–
Tarski algebra LT :

⊇n∪T : [℘] ∃−∧ [n-Con(T + ℘)].

The dual n-provability operators are defined by [n]T x = ¬⊇n∪T ¬x for all x ∈
LT . Since every true Πn-sentence is assumed to be an axiom for n-provability, we
notice that every true γn+1-sentence must be n-provable. Moreover, this latter fact
is formalizable in T , so we obtain the following lemma (see [54]). (By the abuse of
notation we denote by [n]T ℘ the arithmetical formula expressing the n-provability
of ℘ in T .)

Lemma 8. For each true γn+1-formula σ(x), T ∩ ≥x (σ (x) ∧ [n]T σ(x)).

As a corollary we obtain a basic observation probably due to Smorynski [54].

Proposition 3. For each n ∈ η, the structure (LT , ⊇n∪T ) is a Magari algebra.

A proof of this fact consists of verifying the Hilbert–Bernays–Löb derivability con-
ditions for [n]T in T and of deducing from them, in the usual way, an analog of Löb’s
theorem for [n]T .

The structure (LT , {⊇n∪T : n ∈ η}) is called the graded provability algebra of T
or the GLP-algebra of T . Apart from the identities inherited from the structure of
Magari algebras for each ⊇n∪, it satisfies the following principles for all m < n:

P1. ⊇m∪x ↓ [n]⊇m∪x ;
P2. ⊇n∪x ↓ ⊇m∪x .

The validity of P1 follows from Lemma 8 because the formula ⊇m∪T ℘, for any ℘,
belongs to the class Πm+1. P2 holds since ⊇n∪T ℘ asserts the consistency of a stronger
theory than ⊇m∪T ℘ for m < n.

In general, we call a GLP-algebra a structure (M, {⊇n∪ : n ∈ η}) such that each
(M, ⊇n∪) is a Magari algebra and conditions P1, P2 (that are equivalent to identities)
are satisfied for all x ∈ M .

At this point it is worth noticing that condition P1 has an equivalent form that has
proved to be quite useful in the study of GLP-algebras.



10 Topological Interpretations of Provability Logic 271

Lemma 9. Modulo the other identities of GLP-algebras, P1 is equivalent to

P1’. ⊇n∪y ∅ ⊇m∪x = ⊇n∪(y ∅ ⊇m∪x) for all m < n.

Proof First, we prove P1∨. We have y ∅ ⊇m∪x ↓ y, hence ⊇n∪(y ∅ ⊇m∪x) ↓ ⊇n∪y.

Similarly, by P2 and transitivity, ⊇n∪(y ∅ ⊇m∪x) ↓ ⊇n∪⊇m∪x ↓ ⊇m∪⊇m∪x ↓ ⊇m∪x .

Hence, ⊇n∪(y ∅ ⊇m∪x) ↓ ⊇n∪y ∅ ⊇m∪x . In the other direction, by P1, ⊇n∪y ∅ ⊇m∪x ↓
⊇n∪y ∅ [n]⊇m∪x . However, as in any modal algebra, we also have ⊇n∪y ∅ [n]z ↓
⊇n∪(y ∅ z). It follows that ⊇n∪y ∅ [n]⊇m∪x ↓ ⊇n∪(y ∅ ⊇m∪x). Thus, P1∨ is proved.

To infer P1 from P1∨ it is sufficient to prove that ⊇m∪x ∅¬[n]⊇m∪x = →. We have
that ¬[n]⊇m∪x = ⊇n∪¬⊇m∪x . Therefore, by P1∨, ⊇m∪x ∅ ⊇n∪¬⊇m∪x = ⊇n∪(¬⊇m∪x ∅
⊇m∪x) = ⊇n∪→ = →, as required. �

An equivalent formulation of Japaridze’s arithmetical completeness theorem is
that any identity of (LT , {⊇n∪T : n ∈ η}) follows from the identities of GLP-algebras
[40]. It is somewhat strengthened to the current formulation in [13, 39].

Theorem 8. (Japaridze) Suppose T is gödelian, T contains Peano Arithmetic, and
ch(LT , ⊇n∪T ) = ∞ for each n < η. Then, an identity holds in (LT , {⊇n∪T : n ∈ η})
iff it holds in all GLP-algebras.

We note that the condition ch(LT , ⊇n∪T ) = ∞, for each n ∈ η, is equivalent
to T + n-Con(T ) being consistent for each n ∈ η, and is clearly necessary for the
validity of Japaridze’s theorem.

The logic of all GLP-algebras can also be axiomatized as a Hilbert-style calculus
(see the footnote in Sect. 10.1). The corresponding system GLP was originally
introduced by Japaridze. GLP is formulated in the language of propositional logic
enriched by modalities [n] for all n ∈ η. The axioms of GLP are those of GL,
formulated for each [n], as well as the two analogs of P1 and P2 for all m < n:

P1. ⊇m∪℘ ∧ [n]⊇m∪℘;
P2. [m]℘ ∧ [n]℘.

The inference rules of GLP are modus ponens and ℘/[n]℘ for each n ∈ η.
We let GLPn denote the fragment of GLP in the language with the first n modal-

ities; thus GLB is GLP2.
For any modal formula ℘, GLP ∩ ℘ iff the identity t℘ = ↑ holds in all GLP-

algebras. Hence, GLP coincides with the logic of all GLP-algebras as well as with
the logic of the GLP-algebra of T for any theory T such that T + n-Con(T ) is
consistent for each n < η.

10.6 GLP-Spaces

Topological semantics for GLP has been first considered in [14]. The main diffi-
culty in the modal-logical study of GLP comes from the fact that it is incomplete
with respect to its relational semantics; that is, GLP is the logic of no class of
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frames [22]. Even though a suitable class of relational models for which GLP is
sound and complete was developed in [11], these models are not so easy to handle.
So, it is natural to consider a generalization of the topological semantics we have for
GL. As it turns out, topological semantics provides another natural class of GLP-
algebras which is interesting in its own right, and also due to its analogy with the
proof-theoretic GLP-algebras.

As before, we are interested in GLP-algebras of the form (P(X), {⊇n∪ : n ∈
η}), where P(X) is the boolean algebra of subsets of a given set X . Since each
(P(X), ⊇n∪) is a Magari algebra, the operator ⊇n∪ is the derivative operator with
respect to some uniquely defined scattered topology on X . Thus, we come to the
following definition [14].

A polytopological space (X, {σn : n ∈ η}) is called a GLP-space if the following
conditions hold for each n ∈ η:

D0. (X, σn) is a scattered space;
D1. For each A ⇐ X , dσn (A) is σn+1-open;
D2. σn ⇐ σn+1.

We notice that the last two conditions directly correspond to conditions P1 and P2
of GLP-algebras. By a GLPm-space we mean a space (X, {σn : n < m}) satisfying
conditions D0–D2 for the first m topologies.

Proposition 4. (i) If (X, {σn : n ∈ η}) is a GLP-space, then the structure
(P(X), {dσn : n ∈ η}) is a GLP-algebra.

(ii) If (P(X), {⊇n∪ : n ∈ η}) is a GLP-algebra, then there are uniquely defined
topologies {σn : n ∈ η} on X such that (X, {σn : n ∈ η}) is a GLP-space and
⊇n∪ = dσn for each n < η.

Proof (i) Suppose (X, {σn : n ∈ η}) is a GLP-space. Let dn := dσn denote the
corresponding derivative operators and let d̃n denote its dual d̃n(A) := X\dn(X\A).3

By Theorem 3 (P(X), dn) is a Magari algebra for each n ∈ η. Notice that A ∈ σn

iff A ⇐ d̃n A. If m < n, then dm A ∈ σn , so dm A ⇐ d̃ndm A, hence P1 holds. Since
σn ⇐ σn+1, we have dn+1 A ⇐ dn A, thus P2 holds.

(ii) Let (P(X), {⊇n∪ : n ∈ η}) be a GLP-algebra. Since each of the algebras
(P(X), ⊇n∪) is Magari, by Theorem 4 a scattered topology σn on X is defined for
which ⊇n∪ = dσn . In fact, we have U ∈ σn iff U ⇐ [n]U . We check that conditions
D1 and D2 are met.

Suppose A is σn-closed, that is, ⊇n∪A ⇐ A. Then ⊇n + 1∪A ⇐ ⊇n∪A ⇐ A by P2.
Hence, A is σn+1-closed. Thus, σn ⇐ σn+1.

By P1 for any set A we have ⊇n∪A ⇐ [n +1]⊇n∪A. Hence, dσn (A) = ⊇n∪A ∈ σn+1.
Thus, (X, {σn : n ∈ η}) is a GLP-space. �

To obtain examples of GLP-spaces let us first consider the case of two modalities.
The following basic example is due to Esakia (private communication, see [14]).

3 There is no conventional name for the dual of the derivative operator. Sometimes it is denoted by
t . Here we choose the notation d̃ to emphasize its connection with d.
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Example 5. Consider a bitopological space (χ; σ0, σ1), where χ is an ordinal, σ0
is its left topology, and σ1 is its interval topology. Esakia noticed that this space is a
model of GLB, that is, in our terminology, a GLP2-space. In fact, for any A ⇐ χ the
set d0(A) = (min A,χ) is an open interval, whenever A is not empty. Hence, D1
holds (the other two conditions are immediate). Esakia also noticed that such spaces
can never be complete for GLP as the linearity axiom (.3) holds for ⊇0∪.

In general, to define GLPn-spaces for n > 1, we introduce an operation σ ∃−∧ σ+
on topologies on a given set X . This operation plays a central role in the study of
GLP-spaces.

Given a topological space (X, σ ), let σ+ be the coarsest topology containing σ

such that each set of the form dσ (A), with A ⇐ X , is open in σ+. Thus, σ+ is
generated by σ and {dσ (A) : A ⇐ X}. Clearly, σ+ is the coarsest topology on X such
that (X; σ, σ+) is a GLP2-space. Sometimes we call σ+ the derivative topology of
(X, σ ).

Getting back to Esakia’s example, it is easy to verify that, on any ordinal χ , the
derivative topology of the left topology coincides with the interval topology. (In fact,
any open interval is an intersection of a downset and an open upset.)

Example 6. Even though we are mainly interested in scattered spaces, the derivative
topology makes sense for arbitrary spaces. The reader can check that if σ is the
coarsest topology on a set X (whose open sets are just X and ∅), then σ+ is the
cofinite topology on X (whose open sets are exactly the cofinite subsets of X together
with ∅). On the other hand, if σ is the cofinite topology, then σ+ = σ . We note that
the logic of the cofinite topology on an infinite set is KD45 (see [57]).

For scattered spaces, σ+ is always strictly finer than σ , unless σ is discrete. We
present a proof using the language of Magari algebras.

Proposition 5. If (X, σ ) is scattered, then dσ (X) is not open, unless dσ (X) = ∅.

Proof The set dσ (X) corresponds to the element �↑ in the associated Magari alge-
bra; dσ (X) being open means �↑ ↓ ��↑. By M2 we have ��↑ ↓ �→ = ¬�↑.
Hence, �↑ ↓ ¬�↑, that is, �↑ = →. This means dσ (X) = ∅. �

We will see later that σ+ can be much finer than σ . Notice that if σ is Td , then
each set of the form dσ (A) is σ -closed. Hence, it will be clopen in σ+. Thus, σ+ is
obtained by adding to σ new clopen sets. In particular, σ+ will be zero-dimensional
if so is σ .4

Iterating the plus operation yields a GLP-space. Let (X, σ ) be a scattered space.
Define: σ0 := σ and σn+1 := σ+

n . Then (X, {σn : n ∈ η}) is a GLP-space that will be
called the GLP-space generated from (X, σ ) or simply the generated GLP-space.

Thus, from any scattered space we can always produce a GLP-space in a natural
way. The question is whether this space will be nontrivial, that is, whether we can
guarantee that the topologies σn are non-discrete.

4 Recall that a topological space is zero-dimensional if it has a base of clopen sets.
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In fact, the next observation from [14] shows that for many natural σ already the
topology σ+ will be discrete. Recall that a topological space X is first-countable if
every point x ∈ X has a countable basis of open neighborhoods.

Proposition 6. If (X, σ ) is Hausdorff and first-countable, then σ+ is discrete.

Proof It is easy to see that if (X, σ ) is first-countable and Hausdorff, then every point
a ∈ dσ (X) is a (unique) limit point of a countable sequence of points A = {an}n∈η.
Hence, there is a set A ⇐ X such that dσ (A) = {a}. By D1 this means that {a} is
σ+-open. �

Thus, if σ is the interval topology on a countable ordinal, then σ+ is discrete. The
same holds, for example, if σ is the (non-scattered) topology of the real line.

We remark that the left topology σ on any countable ordinal > η yields an example
of a non-Hausdorff first-countable space such that σ+ is non-discrete. In the following
section we will also see that if σ is the interval topology on any ordinal > η1, then
σ+ is non-discrete (η1 is its least non-isolated point). However, we do not have any
topological characterization of spaces (X, σ ) such that σ+ is discrete. (See, however,
Proposition 8, which provides a characterization in terms of d-reflection.)

Given an arbitrary scattered topology σ , it is natural to ask about the separation
properties of σ+. In fact, for σ+ we can infer a bit more separation than for an arbitrary
scattered topology. Recall that a topological space X is T1 if for any two different
points a, b ∈ X there is an open set U such that a ∈ U and b /∈ U .

Proposition 7. Let (X, σ ) be any topological space. Then (X, σ+) is T1.

Proof Let a, b ∈ X , a ∀= b. Consider the set B := dσ ({b}), which is open in σ+. We
either have a ∈ B (and b /∈ B by definition) or a belongs to the complement of the
closure of {b}. �

The following example shows that, in general, σ+ need not always be Hausdorff.

Example 7. Let (X,≺) be a strict partial ordering on X := η ∞ {a, b}, where η is
taken with its natural order, a and b are ≺-incomparable, and n ≺ a, b for all n ∈ η.
Let σ be the left topology on (X,≺). Since ≺ is well-founded, σ is scattered.

Notice that for any A ⇐ X we have dσ (A) = {x ∈ X : ⇒y ∈ A y ≺ x}. Hence,
if A intersects η, then dσ (A) contains an end-segment of η. Otherwise, dσ (A) = ∅.
It follows that a base of open neighborhoods of a in σ+ consists of sets of the form
I ∞{a}, where I is an end-segment of η. Similarly, sets of the form I ∞{b} are a base
of open neighborhoods of b. But any two such sets have a non-empty intersection.

10.7 d-Reflection

In the next section we are going to describe in some detail the GLP-space generated
from the left topology on the ordinals. Strikingly, we will see that it naturally leads
to some of the central notions of combinatorial set theory, such as Mahlo operation



10 Topological Interpretations of Provability Logic 275

and stationary reflection. In fact, part of our analysis can be easily stated using
the language of modal logic for arbitrary generated GLP-spaces. In this section we
provide a necessary setup and characterize the topologies of a generated GLP-space
in terms of what we call d-reflection.5

Throughout this section we fix a topological space (X, σ ) and let d = dσ .

Definition 3 A point a ∈ X is called d-reflexive if a ∈ d X and, for each A ⇐ X ,

a ∈ d A ∈ a ∈ d(d A).

In modal logic terms this means that the formula �↑ ∅ (�p ∧ ��p) is valid at
a ∈ X for any evaluation of the variable p in (X, σ ).

Similarly, a point a ∈ X is called m-fold d-reflexive if a ∈ d X and for each
A1, . . . , Am ⇐ X ,

a ∈ d A1 ◦ · · · ◦ d Am ∈ a ∈ d(d A1 ◦ · · · ◦ d Am).

2-fold d-reflexive points will also be called doubly d-reflexive points. Expressed
with the help of the modal language, a ∈ X is doubly d-reflexive iff the formula
�↑ ∅ (�p ∅ �q ∧ �(�p ∅ �q)) is valid at a for any evaluation of p, q.

Lemma 10. Let (X, σ ) be a Td-space. Each doubly d-reflexive point x ∈ X is m-fold
d-reflexive for any finite m.

Proof The argument goes by induction on m ⊗ 2. Suppose x ∈ d A1 ◦· · ·◦d Am+1,
then x ∈ d A1 ◦ · · · ◦ d Am and x ∈ d Am+1. By induction hypothesis, x ∈ d(d A1 ◦
· · ·◦d Am) and by 2-fold reflection x ∈ d(d(d A1 ◦· · ·◦d Am)◦d Am+1). However,
by Td property d(d A1 ◦ · · · ◦ d Am) ⇐ d A1 ◦ · · · ◦ d Am, hence x ∈ d(d A1 ◦ · · · ◦
d Am ◦ d Am+1), as required. �

Proposition 8. Let (X, σ ) be a Td-space. A point x ∈ X is doubly d-reflexive iff x
is a limit point of (X, σ+).

Proof For the (if) direction, we give an argument in the algebraic format. In fact, it is
sufficient to show the following inequality in the algebra of (X, σ ) for any elements
p, q ⇐ X :

⊇1∪↑ ∅ ⊇0∪p ∅ ⊇0∪q ↓ ⊇0∪(⊇0∪p ∅ ⊇0∪q).

Notice that by Lemma 9, ⊇1∪↑∅ ⊇0∪p = ⊇1∪(↑∅⊇0∪p) = ⊇1∪⊇0∪p. Hence, using
P1∨ once again, we obtain: ⊇1∪↑∅⊇0∪p∅⊇0∪q = ⊇1∪⊇0∪p∅⊇0∪q = ⊇1∪(⊇0∪p∅⊇0∪q).

The latter formula can be weakened to ⊇0∪(⊇0∪p ∅ ⊇0∪q) by P2, as required.

5 Curiously, the reader may notice that the notion of reflection principle as used in provability logic
and formal arithmetic matches very nicely the notions such as stationary reflection in set theory.
(As far as we know, the two terms have evolved completely independently from one another.)
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For the (only if) direction, it is sufficient to show that each doubly d-reflexive point
of (X, σ ) is a limit point of σ+. Suppose x is doubly d-reflexive. By Lemma 10, x is m-
fold d-reflexive. Any basic open subset of σ+ has the formU := A0◦d A1◦· · ·◦d Am,

where A0 ∈ σ . Assume x ∈ U , we have to find a point y ∀= x such that y ∈ U .
Since x ∈ d A1 ◦· · ·◦d Am, by m-fold d-reflexivity we obtain x ∈ d(d A1 ◦· · ·◦

d Am). Since A0 is an open neighborhood of x , there is a y ∈ A0 such that y ∀= x
and y ∈ d A1 ◦ · · · ◦ d Am . Hence, y ∈ U and y ∀= x , as required. �

Let d+ denote the derivative operator associated with σ+. We obtain the following
characterization of derived topology in terms of neighborhoods.

Proposition 9. Let (X, σ ) be a Td-space. A subset U ⇐ X contains a σ+-
neighborhood of x ∈ X iff one of the following two cases holds:

(i) x is not doubly d-reflexive and x ∈ U;
(ii) x is doubly d-reflexive and there is an A ∈ σ and a B such that x ∈ A◦d B ⇐ U.

Proof Since (i) ensures that x is σ+-isolated by Proposition 8, each condition is
clearly sufficient for U to contain a σ+-neighborhood of x . To prove the converse,
assume that U contains a σ+-neighborhood of x . This means x ∈ A ◦ d A1 ◦ · · · ◦
d Am ⇐ U for some A, A1, . . . , Am with A ∈ σ . If x is σ+-isolated, condition (i)
holds. Otherwise, x ∈ d+ X . Let B := d A1 ◦ · · · ◦ d Am . Since B is closed in σ we
have d B ⇐ B, hence A ◦ d B ⇐ U . It remains to show that x ∈ A ◦ d B. By Lemma
9, B ◦ d+ X = d+ B ⇐ d B. Hence, x ∈ A ◦ B ◦ d+ X ⇐ A ◦ d B. �

Remark 1. Since in clause (ii) of Proposition 9 the set A is open, we have A ◦d B =
A ◦ d(A ◦ B) for any B. Hence, we may assume B ⇐ A.

Corollary 2. Let (X, σ ) be a Td-space. Then, for all x ∈ X and A ⇐ X, x ∈ d+ A
iff the following two conditions hold:

(i) x is doubly d-reflexive;
(ii) For all B ⇐ X, x ∈ d B ∈ x ∈ d(A ◦ d B).

Proof The fact that (i) and (ii) are necessary is proved using Proposition 8 and the
inequality d+ A ◦ d B = d+(A ◦ d B) ⇐ d(A ◦ d B). We prove that (i) and (ii) are
sufficient. Assume x ∈ U ∈ σ+. By Proposition 9 we may assume that U has the
form V ◦ d B, where V ∈ σ . By (ii), from x ∈ d B we obtain x ∈ d(A ◦ d B).
Hence, there is a y ∀= x such that y ∈ V and y ∈ A ◦ d B. It follows that y ∈ A and
y ∈ V ◦ d B = U . ! �

10.8 The Ordinal GLP-Space

Here we discuss the GLP-space generated from the left topology on the ordinals,
that is, the GLP-space (χ; {σn : n ∈ η}), where χ is a fixed ordinal, σ0 is the left
topology on χ and σn+1 = σ+

n for each n ∈ η. The material in this section comes
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from a so far unpublished manuscript of the first author [10]. Our basic findings are
summarized in the following table, to which we provide extended comments below.

The rows of the table correspond to topologies σn . The first column contains the
name of the topology (the first two are standard, the third one is introduced in [14],
the fourth one is introduced here). The second column indicates the first limit point of
σn , which is denoted θn . The last column describes the derivative operator associated
with σn . We note that θ3 is a large cardinal which is sometimes referred to as the first
cardinal reflecting for pairs of stationary sets (see below), but we know no special
notation for this cardinal.

Name θn dn(A)

σ0 Left 1 {∂ : A ◦ ∂ ∀= ∅}
σ1 Interval η {∂ ∈ Lim : A ◦ ∂ is unbounded in ∂}
σ2 Club η1 {∂ : cf(∂) > η and A ◦ ∂ is stationary in ∂}
σ3 Mahlo θ3 … …

We have already seen that the derivative topology of the left topology is exactly
the interval topology. Therefore, basic facts related to the first two rows of the table
are rather clear. We turn to the next topology σ2.

Club topology. Recall that the cofinality cf(∂) of a limit ordinal ∂ is the least
order type of a cofinal subset of ∂; cf(∂) := 0 if ∂ /∈ Lim. (We use the words cofinal
in ∂ and unbounded in ∂ as synonyms.) An ordinal ∂ is regular if cf(∂) = ∂.

To characterize σ2 we apply Proposition 9, hence it is useful to see what corre-
sponds to the notion of doubly d-reflexive point of the interval topology.

Lemma 11. For any ordinal ∂, ∂ is d1-reflexive iff ∂ is doubly d1-reflexive iff cf(∂) >

η.

Proof d1-reflexivity of ∂ means that ∂ ∈ Lim and, for all A ⇐ ∂, if A is cofinal in ∂,
then d1(A) is cofinal in ∂. If cf(∂) = η, then there is an increasing sequence (∂n)n∈η

such that sup{∂n : n ∈ η} = ∂. Then, for A := {∂n : n ∈ η} we obviously have
d1(A) = {∂}, hence A violates the reflexivity property. Therefore, d1-reflexivity of
∂ implies cf(∂) > η.

Now we show that cf(∂) > η implies ∂ is doubly d1-reflexive. Suppose cf(∂) > η

and A, B ⇐ ∂ are both cofinal in ∂. We show that d1 A ◦d1 B is cofinal in ∂. Assume
κ < ∂. Using the cofinality of A, B we can construct an increasing sequence (ψn)n∈η

above κ such that ψn ∈ A for even n, and ψn ∈ B for odd n. Let ψ := sup{ψn : n < η}.
Obviously, both A and B are cofinal in ψ whence ψ ∈ d1 A ◦ d1 B. Since cf(∂) > η

and cf(ψ ) = η, we have ψ < ∂. �

Corollary 3. Limit points of σ2 are exactly the ordinals of uncountable cofinality.

It turns out that topology σ2 is strongly related to the well-known concept of a
club filter, i.e., the filter generated by all clubs on a limit ordinal. Recall that a subset
C ⇐ ∂ is called a club in ∂ if C is closed in the interval topology of ∂ and unbounded
in ∂.
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Proposition 10. Assume cf(∂) > η. The following statements are equivalent:

(i) U contains a σ2-neighborhood of ∂;
(ii) There is a B ⇐ ∂ such that ∂ ∈ d1 B ⇐ U;

(iii) ∂ ∈ U and U contains a club in ∂;
(iv) ∂ ∈ U and U ◦ ∂ belongs to the club filter on ∂.

Proof Statement (ii) implies (iii) since ∂ ◦ d1 B is a club in ∂ whenever ∂ ∈ d1 B.
Statement (iii) implies (iv) for obvious reasons.

Statement (iv) implies (i). If C is a club in ∂, then C ∞ {∂} contains a σ2-
neighborhood d1C of ∂. Indeed, d1C is σ2-open, contains ∂, and d1C ⇐ C ∞ {∂}
since C is σ1-closed in ∂.

Statement (i) implies (ii). Assume U contains a σ2-neighborhood of ∂. Since
cf(∂) > η, by Lemma 11 and Proposition 9 there is an A ∈ σ1 and a B1 such that
∂ ∈ A ◦ d1 B1 ⇐ U . Since A is a σ1-neighborhood of ∂, by Proposition 9 again
there are A0 ∈ σ0 and B0 such that ∂ ∈ A0 ◦ d0 B0. Since σ0 is the left topology, we
may assume that A0 is the minimal σ0-neighborhood [0, ∂] of ∂. Besides, we have
∂ ∈ d0 B0 ◦ d1 B1 = d1(B1 ◦ d0 B0) ⇐ U . Since [0, ∂] is σ1-clopen, d1(C ◦ ∂) =
[0, ∂] ◦ d1C for any C , so we can take B1 ◦ d0 B0 ◦ ∂ for B. �

Corollary 4. σ2 is the unique topology on χ such that

• If cf(∂) ↓ η, then ∂ is an isolated point;
• If cf(∂) > η, then, for any U ⇐ χ , U contains a neighborhood of ∂ iff ∂ ∈ U

and U contains a club in ∂.

Hence, we may call σ2 the club topology.
The derivative operation for the club topology is also well known in set theory.

Recall the following definition for cf(∂) > η.
A subset A ⇐ ∂ is called stationary in ∂ if A intersects every club in ∂. Observe

that this happens exactly when ∂ is a limit point of A in σ2, so

d2(A) = {∂ : cf(∂) > η and A ◦ ∂ is stationary in ∂}.

The map d2 is usually called the Mahlo operation (see [41], where d2 is denoted
Tr). Its main significance is associated with the notion of Mahlo cardinal, one of the
basic examples of large cardinals in set theory. Let Reg denote the class of regular
cardinals; the ordinals in d2(Reg) are called weakly Mahlo cardinals. Their existence
implies the consistency of ZFC, as well as the consistency of ZFC together with the
assertion ‘inaccessible cardinals exist.’

Now we turn to topology σ3.

Stationary reflection and Mahlo topology. Since the open sets of σ3 are gener-
ated by the Mahlo operation, we call σ3 Mahlo topology. It turns out to be intrinsically
connected with stationary reflection, an extensively studied phenomenon in set the-
ory (see [32, Chaps. 1, 15]).

We adopt the following terminology. An ordinal φ is called reflecting if cf(φ) > η

and, whenever A is stationary in φ, there is an ∂ < φ such that A ◦ ∂ is stationary in
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∂. Similarly, φ is doubly reflecting if cf(φ) > η and whenever A, B are stationary
in φ there is an ∂ < φ such that both A ◦ ∂ and B ◦ ∂ are stationary in ∂.

Mekler and Shelah’s notion of reflection cardinal [49] is somewhat more general
than the one given here, however it has the same consistency strength. Reflection
for pairs of stationary sets has been introduced by Magidor [47]. Since d2 coincides
with the Mahlo operation, we immediately obtain the following statement.

Proposition 11. (i) φ is reflecting iff φ is d2-reflexive;
(ii) φ is doubly reflecting iff φ is doubly d2-reflexive;

(iii) φ is a non-isolated point in σ3 iff φ is doubly reflecting.

Together with the next proposition this yields a characterization of Mahlo topology
in terms of neighborhoods.

Proposition 12. Suppose φ is doubly reflecting. For any subset U ⇐ χ , the follow-
ing conditions are equivalent:

(i) U contains a σ3-neighborhood of φ;
(ii) φ ∈ U and there is a B ⇐ φ such that φ ∈ d2 B ⇐ U;

(iii) φ ∈ U and there is a σ2-closed (in the relative topology of φ) stationary C ⇐ φ

such that C ⇐ U.

Notice that the notion of σ2-closed stationary C in (iii) is the analog of the notion
of club for the σ2-topology.

Proof Condition (ii) implies (iii). Since φ is reflecting, if φ ∈ d2 B, then φ ∈ d2d2 B,
that is, φ ◦ d2 B is stationary in φ. So we may take C := φ ◦ d2 B.

Condition (iii) implies (ii). If C is σ2-closed and stationary in φ, then d2C ⇐
C ∞ {φ} ⇐ U and φ ∈ d2C . Thus, φ ◦ d2C can be taken for B.

Condition (ii) implies (i). If (ii) holds, U contains a subset of the form d2 B. The
latter is σ3-open and contains φ, thus it is a neighborhood of φ.

For the converse direction, we note that by Proposition 9 U contains a subset of the
form A◦d2 B, where A ∈ σ2, B ⇐ A and φ ∈ A◦d2 B. Since A is a σ2-neighborhood
of φ, by Proposition 10 there is a set B1 such that φ ∈ [0, φ] ◦ d1 B1 ⇐ A. Then

φ ∈ [0, φ] ◦ d1 B1 ◦ d2 B = [0, φ] ◦ d2(B ◦ d1 B1).

Since [0, φ] is clopen, we obtain φ ∈ d2C with C := B ◦ d1 B1 ◦ φ. �

Reflecting and doubly reflecting cardinals are large cardinals in the sense that their
existence implies consistency of ZFC. They have been studied by Mekler and Shelah
[49] and Magidor [47] who investigated their consistency strength and related them
to some other well-known large cardinals. By a result of Magidor, the existence of a
doubly reflecting cardinal is equiconsistent with the existence of a weakly compact
cardinal.6 More precisely, the following proposition holds.

6 Weakly compact cardinals are the same as Π1
1 -indescribable cardinals, see below.
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Proposition 13. (i) If φ is weakly compact, then φ is doubly reflecting.
(ii) (Magidor) If φ is doubly reflecting, then φ is weakly compact in L.

Here, the first item is well known and easy. Magidor originally proved the analog
of the second item for φ = ℵ2 and stationary sets of ordinals of countable cofinality
in ℵ2. However, it has been remarked by Mekler and Shelah [49] that essentially the
same proof yields the stated claim.7

Corollary 5. Assertion “σ3 is non-discrete” is equiconsistent with the existence of
a weakly compact cardinal.

Corollary 6. If ZFC is consistent, then it is consistent with ZFC that σ3 is discrete
and hence that GLP3 is incomplete w.r.t. any ordinal space.

Recall that θn denotes the first non-isolated point of σn (in the space of all ordinals).
We have: θ0 = 1, θ1 = η, θ2 = η1, θ3 is the first doubly reflecting cardinal.

ZFC does not know much about the location of θ3, however the following facts
are interesting.

• θ3 is regular, but not a successor of a regular cardinal;
• While weakly compact cardinals are non-isolated, θ3 need not be weakly compact:

If infinitely many supercompact cardinals exist, then there is a model, where ℵη+1
is doubly reflecting [47];

• If θ3 is a successor of a singular strong limit cardinal, then it is consistent that
infinitely many Woodin cardinals exist, see [56].8

Further topologies. Further topologies of the ordinal GLP-space do not seem
to have prominently occurred in set-theoretic work. They yield some large cardinal
notions, for the statement that σn is non-discrete (equivalently, θn exists) implies the
existence of a doubly reflecting cardinal for any n > 2. We do not know whether
cardinals θn coincide with any of the standard large cardinal notions.

Here we give a sufficient condition for the topology σn+2 to be non-discrete. We
show that if there exists a Π1

n -indescribable cardinal, then σn+2 is non-discrete.
Let Q be a class of second order formulas over the standard first order set-theoretic

language enriched by a unary predicate R. We assume Q to contain at least the class
of all first order formulas (denoted Π1

0 ). We shall consider standard models of that
language of the form (V∂,∈, R), where ∂ is an ordinal, V∂ is the ∂-th class in the
cumulative hierarchy, and R is a subset of V∂ .

We would like to give a definition of Q-indescribable cardinals in topological
terms. They can then be defined as follows.

Definition 4 For any sentence ℘ ∈ Q and any R ⇐ Vκ , let Uκ(℘, R) denote the set
{∂ ↓ κ : (V∂,∈, R ◦ V∂) � ℘}. The Q-describable topology σQ on χ is generated
by a subbase consisting of sets Uκ(℘, R) for all κ ∈ χ , ℘ ∈ Q, and R ⇐ Vκ .

7 The first author thanks J. Cummings for clarifying this.
8 Stronger results have been announced, see [50].
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As an exercise, the reader can check that the intervals (∂, κ] are open in any σQ

(consider R = {∂} and ℘ = ⇒x (x ∈ R)). The main strength of the Q-describable
topology, however, comes from the fact that a second order variable R is allowed to
occur in ℘. So, all subsets of χ that can be ‘described’ in this way are open in σQ .

Let dQ denote the derivative operator for σQ . An ordinal κ < χ is called Q-
indescribable if it is a limit point of σQ . In other words, κ is Q-indescribable iff
κ ∈ dQ(χ) iff κ ∈ dQ(κ).

It is not difficult to show that, whenever Q is any of the classes Π1
n , the sets

Uκ(℘, R) actually form a base for σQ . Hence, our definition of Π1
n -indescribable

cardinals is equivalent to the standard one given in [42]: κ is Q-indescribable iff, for
all R ⇐ Vκ and all sentences ℘ ∈ Q,

(Vκ ,∈, R) � ℘ ∈ ⇒∂ < κ (V∂,∈, R ◦ V∂) � ℘.

It is well known that weakly compact cardinals coincide with theΠ1
1 -indescribable

ones (see [41]). From this it is easy to conclude that the Mahlo topology σ3 is contained
in σΠ1

1
. The following more general proposition was suggested to the first author by

Philipp Schlicht (see [10]).

Proposition 14. For any n ⊗ 0, σn+2 is contained in σΠ1
n
.

Proof We shall show that for each n, there is a Π1
n -formula ℘n+1(R) such that

κ ∈ dn+1(A) ⊆∈ (Vκ ,∈, A ◦ κ) � ℘n+1(R). (∇∇)

This implies that for each κ ∈ dn+1(A), the set Uκ(℘n+1, A◦κ) is a σΠ1
n
-open subset

of dn+1(A) containing κ . Hence, each dn+1(A) is σΠ1
n
-open. Since σn+2 is generated

over σn+1 by the open sets of the form dn+1(A) for various A, we have σn+2 ⇐ σΠ1
n
.

We prove (∇∇) by induction on n. For n = 0, notice that κ ∈ d1(A) iff (κ ∈ Lim
and A ◦ κ is unbounded in κ) iff

(Vκ ,∈, A ◦ κ) � ≥∂ ⇒κ (R(κ) ∅ ∂ < κ).

For the induction step recall that by Corollary 2, κ ∈ dn+1(A) iff

(i) κ is doubly dn-reflexive;
(ii) ≥Y ⇐ κ (κ ∈ dn(Y ) ∧ ⇒∂ < κ (∂ ∈ A ∅ ∂ ∈ dn(Y )).

By the induction hypothesis, for some ℘n(R) ∈ Π1
n−1, we have

∂ ∈ dn(A) ⊆∈ (V∂,∈, A ◦ ∂) � ℘n(R).

Hence, part (ii) is equivalent to

(Vκ ,∈, A ◦ κ) � ≥Y ⇐ On (℘n(Y ) ∧ ⇒∂ (R(∂) ∅ ℘V∂
n (Y ◦ ∂))).
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Here, ℘V∂ means the relativization of all quantifiers in ℘ to V∂ . We notice that V∂ is
first order definable, hence the complexity of ℘

V∂
n remains in the class Π1

n−1. So, the
resulting formula is Π1

n .
To treat part (i) we recall that κ < χ is doubly dn-reflexive iff κ ∈ dn(χ) and

≥Y1, Y2 ⇐ κ (κ ∈ dn(Y1) ◦ dn(Y2) ∧ ⇒∂ < κ ∂ ∈ dn(Y1) ◦ dn(Y2)).

Similarly to the above, using the induction hypothesis this can be rewritten as a
Π1

n -formula. �

Corollary 7. If there is a Π1
n -indescribable cardinal κ < χ , then σn+2 has a non-

isolated point.

Corollary 8. If for each n there is a Π1
n -indescribable cardinal κ < χ , then all σn

are non-discrete.

By the result of Magidor [47] we know that θ3 need not be weakly compact in
some models of ZFC (e.g. in a model, where θ3 = ℵη+1). Hence, in general, the
condition of the existence of Π1

n -indescribable cardinals is not a necessary one for
the nontriviality of the topologies σn+2. However, Bagaria et al. [4] prove that in L
the Π1

n -indescribable cardinals coincide with the limit points of σn+2.

10.9 Topological Completeness Results for GLP

As in the case of the unimodal language (cf. Sect. 10.3), one can ask two basic
questions: Is GLP complete w.r.t. the class of all GLP-spaces? Is GLP complete
w.r.t. some fixed natural GLP-space?

In the unimodal case, both questions received positive answers due to Esakia and
Abashidze–Blass, respectively. Now the situation is more complicated.

The first question was initially studied by Beklemishev et al. in [14], where only
some partial results were obtained. It was proved that the bimodal system GLB
is complete w.r.t. GLP2-spaces of the form (X, σ, σ+), where X is a well-founded
partial ordering and σ is its left topology. A proof of this result was based on the
Kripke model techniques coming from [11].

Already at that time it was clear that these techniques cannot be immediately
generalized to GLP3-spaces since the third topology σ++ on such orderings is suffi-
ciently similar to the club topology. From the results of Blass [18] (see Theorem 10
below) it was known that some stronger set-theoretic assumptions would be needed
to prove completeness w.r.t. such topologies. Moreover, without any large cardinal
assumptions it was not even known whether a GLP-space with a non-discrete third
topology could exist at all.

First examples of GLP-spaces in which all topologies are non-discrete are con-
structed in [5], where also the stronger fact of topological completeness of GLP
w.r.t. the class of all (countable, Hausdorff) GLP-spaces is established.
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Theorem 9. (i) Log(C ) = GLP, where C is the class of all GLP-spaces.
(ii) There is a countable Hausdorff GLP-space X such that Log(X) = GLP.

In fact, X is the ordinal ε0 = sup{η,ηη, ηηη
, . . .} equipped with a sequence of

topologies refining the interval topology. However, these topologies cannot be first-
countable and are, in fact, defined using non-constructive methods such as Zorn’s
lemma.9 In this sense, it is not an example of a natural GLP-space. The proof of
this theorem introduces the techniques of maximal and limit-maximal extensions of
scattered spaces. It falls outside the present survey (see [5]).

The question whether GLP is complete w.r.t. some natural GLP-space is still
open. Some partial results concerning the GLP-space generated from the interval
topology on the ordinals (in the sense of the plus operation) are described below.
Here, we call this space the ordinal GLP-space. (The space described in Sect. 10.8
is not an exact model of GLP as the left topology validates the linearity axiom.)

As we know from Corollary 6, it is consistent with ZFC that the Mahlo topology
is discrete. Hence, it is consistent that GLP is incomplete w.r.t. the ordinal GLP-
space. However, is it consistent with ZFC that GLP is complete w.r.t. the ordinal
GLP-space? To this question we do not know a full answer. A pioneering work has
been done by Blass [18] who studied the question of completeness of the Gödel–Löb
logic GL w.r.t. a semantics equivalent to the topological interpretation w.r.t. the club
topology σ2. He used the language of filters rather than that of topological spaces as
is more common in set theory.

Theorem 10. (Blass)

(i) If V = L and χ ⊗ ℵη, then GL is complete w.r.t. (χ, σ2).
(ii) If there is a weakly Mahlo cardinal, there is a model of ZFC in which GL is

incomplete w.r.t. (χ, σ2) for any χ .

A corollary of (i) is that the statement “GL is complete w.r.t. σ2” is consistent
with ZFC (provided ZFC is consistent). In fact, instead of V = L Blass used the
so-called square principle for all ℵn , n < η, which holds in L by the results of
Ronald Jensen. A proof of (i) is based on an interesting combinatorial construction
using the techniques of splitting stationary sets.

A proof of (ii) is much easier. It uses a model of Harrington and Shelah in which
ℵ2 is reflecting for stationary sets of ordinals of countable cofinality [35]. Assuming
Mahlo cardinals exist, they have shown that the following statement holds in some
model of ZFC:

If S is a stationary subset of ℵ2 such that ≥∂ ∈ S cf(∂) = η, then there is a κ < ∂ (of
cofinality η1) such that S ◦ κ is stationary in κ.

In fact, this statement can be expressed in the language of modal logic. First, we
remark that this principle implies its generalization to all ordinals φ of cofinality ℵ2
(consider an increasing continuous function mapping ℵ2 to a club in φ). Second, we

9 It seems to be interesting to study the question of topological completeness of GLP in the absence
of the full axiom of choice, possibly with the axiom of determinacy.
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remark that for the club topology the formula �n↑ represents the class of ordinals of
cofinality at least ℵn . This is a straightforward generalization of Lemma 11. Thus, the
formula �3→∅�2↑ represents the subclass of χ consisting of ordinals of cofinality
η2.

Hence, the above reflection principle amounts to the validity of the following
modal formula:

�3→ ∅ �2↑ ∅ �(p ∅ �→) ∧ �2(p ∅ �→). (∇)

In fact, if the antecedent is valid in φ, then cf(φ) = η2 and the interpretation of
p ∅ �→ is a set S consisting of ordinals of countable cofinality such that S ◦ φ is
stationary in φ. The consequent just states that this set reflects. Thus, formula (∇)

is valid in (χ, σ2) for any χ . Since this formula is clearly not provable in GL, the
topological completeness fails for (χ, σ2).

Thus, Blass managed to give an exact consistency strength of the statement “ GL
is incomplete w.r.t. σ2”.

Corollary 9. “GL is incomplete w.r.t. σ2” is consistent iff it is consistent that Mahlo
cardinals exist.

It is possible to generalize these results to the case of bimodal logic GLB [12].
The situation remains essentially unchanged, although a proof of Statement (i) of
Theorem 10 needs considerable adaptation.

Theorem 11. If V = L and χ ⊗ ℵη, then GLB is complete w.r.t. (χ; σ1, σ2).

10.10 Topologies for the Variable-Free Fragment of GLP

A natural topological model for the variable-free fragment of GLP has been intro-
duced by Icard [38]. It is not a GLP-space and thus it is not a model of the full
GLP (nor even of GLB). However, it is sound and complete for the variable-free
fragment of GLP. It gives a convenient tool for the study of this fragment, which
plays an important role in proof-theoretic applications of the polymodal provability
logic. Here we give a simplified presentation of Icard’s polytopological space.

Let χ be an ordinal and let τ : χ ∧ χ denote the rank function for the interval
topology on χ (see Example 1). We define τ0(∂) = ∂ and τk+1(∂) = ττk(∂).

Icard’s topologies υn , for each n ∈ η, are defined as follows. Let υ0 be the left
topology, and let υn be generated by υ0 and all sets of the form

U m
κ := {∂ ∈ χ : τm(∂) > κ}

for m < n and κ < χ .
Clearly, υn is an increasing sequence of topologies. In fact, υ1 is the interval

topology. We let dn and αn denote the derivative operator and the rank function for
υn , respectively. We have the following characterizations.
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Lemma 12. (i) τ : (χ, υn+1) ∧ (χ, υn) is a d-map;
(ii) υn+1 is the coarsest topology π on χ such that π contains the interval topology

and τ : (χ, π) ∧ (χ, υn) is continuous;
(iii) τn is the rank function of υn, that is, αn = τn;
(iv) υn+1 is generated by υn and {d∂+1

n (χ) : ∂ < αn(χ)}.
Proof (i) The map τ : (χ, υn+1) ∧ (χ, υn) is continuous. In fact, τ−1[0, κ) is
open in the interval topology υ1 since τ : (χ, υ1) ∧ (χ, υ0) is its rank function,
hence a d-map. Also, if m < n, then τ−1(U m

κ ) = U m+1
κ , hence it is open in υn+1.

The map τ is open. Notice that υn+1 is generated by υ1 and some sets of the form
τ−1(U ), where U ∈ υn . A base of υn+1 consists of sets of the form V ◦ τ−1(U ) for
some V ∈ υ1 and U ∈ υn . We have τ(V ◦ τ−1(U )) = τ(V ) ◦ U . τ(V ) is υ0-open
since τ : (χ, υ1) ∧ (χ, υ0) is a d-map and V ∈ υ1. Hence, the image of any basic
open in υn+1 is open in υn .

The map τ is pointwise discrete since τ−1{∂} is discrete in the interval topology
υ1, hence in υn+1.

(ii) By (i), τ : (χ, υn+1) ∧ (χ, υn) is continuous, hence π ⇐ υn+1. On the other
hand, if τ : (χ, π) ∧ (χ, υn) is continuous, then τ−1(U m

κ ) ∈ π for each m < n.
Therefore, U m

κ ∈ π for all m such that 1 ↓ m ↓ n. Since π also contains the interval
topology, we have υn+1 ⇐ π.

(iii) By (i), we have that αn ◦ τ is a d-map from (χ, υn+1) to (χ, υ0). Hence, it
coincides with the rank function for υn+1, αn+1 = αn ◦ τ. The claim follows by an
easy induction on n.

(iv) By (iii),

dκ+1
n (χ) = {∂ ∈ χ : αn(∂) > κ} = {∂ ∈ χ : τn(∂) > κ} = U n

κ .

Obviously, υn+1 is generated by υn and U n
κ for all κ. Hence, the claim. �

We call an Icard space a polytopological space of the form (χ;υ0, υ1, . . .). Icard
originally considered just χ = ε0. We are going to give an alternative proof of the
following theorem [38].

Theorem 12. (Icard) Let ℘ be a variable-free GLP-formula.

(i) If GLP ∩ ℘, then (χ;υ0, υ1, . . .) � ℘.
(ii) If χ ⊗ ε0 and GLP � ℘, then (χ;υ0, υ1, . . .) � ℘.

Proof Within this proof we abbreviate (χ;υ0, υ1, . . .) by χ . To prove part (i) we
first remark that all topologies υn are scattered, hence all axioms of GLP except for
P1 are valid in χ . Moreover, Log(χ) is closed under the inference rules of GLP.
Thus, we only have to show that the variable-free instances of axiom P1 are valid in
χ . This is sufficient because any derivation of a variable-free formula in GLP can
be replaced by a derivation in which only the variable-free formulas occur (replace
all the variables by the constant ↑).

Let ℘ be a variable-free formula. We denote by ℘∇ its uniquely defined interpre-
tation in χ . The validity of an instance of P1 for ℘ amounts to the fact that dm(℘∇)
is open in υn , whenever m < n. Thus, we have to prove the following proposition.�
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Proposition 15. For any variable-free formula ℘, dn(℘∇) is open in υn+1.

Let ℘+ denote the result of replacing in ℘ each modality ⊇n∪ by ⊇n + 1∪. We need
the following auxiliary claim.

Lemma 13. If ℘ is variable-free, then τ−1(℘∇) = (℘+)∇.

Proof This goes by induction on the build-up of ℘. The cases of constants and boolean
connectives are easy. Suppose ℘ = ⊇n∪δ . We notice that since τ : (χ, υn+1) ∧
(χ, υn) is a d-map, we have τ−1(dn(A)) = dn+1(τ

−1(A)) for any A ⇐ χ . There-
fore, τ−1(℘∇) = τ−1(dn(δ∇)) = dn+1(τ

−1(δ∇)) = dn+1((δ
+)∇) = (℘+)∇, as

required. �

We prove Proposition 15 in two steps. First, we show that it holds for a subclass of
variable-free formulas called ordered formulas. Then we show that any variable-free
formula is equivalent in χ to an ordered one.

A formula ℘ is called ordered if no modality ⊇m∪ occurs within the scope of ⊇n∪
in ℘ for any m < n. The height of ℘ is the index of its maximal modality.

Lemma 14. If ⊇n∪℘ is ordered, then dn(℘∇) is open in υn+1.

Proof This goes by induction on the height of ⊇n∪℘. If it is 0, then n = 0. If n = 0,
the claim is obvious since d0(A) is open in υ1 for any A ⇐ χ . If n > 0, since ⊇n∪℘ is
ordered, we observe that ⊇n∪℘ has the form (⊇n − 1∪δ)+ for some δ . The height of
⊇n −1∪δ is less than that of ⊇n∪℘. Hence, by the induction hypothesis, (⊇n −1∪δ)∇ ∈
υn . Since τ : (χ, υn+1) ∧ (χ, υn) is continuous, we conclude that τ−1(⊇n −1∪δ)∇
is open in υn+1. By Lemma 13, this set coincides with (⊇n∪℘)∇ = dn(℘∇). �

Lemma 15. Any variable-free formula ℘ is equivalent in χ to an ordered one.

Proof We argue by induction on the complexity of ℘. The cases of boolean connec-
tives and constants are easy. Suppose ℘ has the form ⊇n∪δ , where we may assume δ

to be in disjunctive normal form δ = ∨
i
∧

j ±⊇ni j ∪δi j . By the induction hypothe-
sis, we may assume all the subformulas ⊇ni j ∪δi j (and δ itself) are ordered. Since ⊇n∪
commutes with disjunction, it will be sufficient to show that for each i the formula
θi := ⊇n∪∧

j ±⊇ni j ∪δi j can be ordered.
By Lemma 14 each set (⊇ni j ∪δi j )

∇ is open in υn whenever ni j < n. Being a
derived set, it is also closed in υni j and hence in υn . Thus, all such sets are clopen.

If U is open, then d(A ◦ U ) = d(A) ◦ U for any topological space. In particular,
for any A ⇐ χ and ni j < n, dn(A ◦ (±⊇ni j ∪δi j )

∇) = dn(A) ◦ (±⊇ni j ∪δi j )
∇. This

allows us to bring all the conjuncts ±⊇ni j ∪δi j from under the ⊇n∪ modality in θi . The
resulting conjunction is ordered. �

This concludes the proof of Proposition 15 and thereby of Part (i).
A variable-free formula A is called a word if it is built-up from ↑ only using

connectives of the form ⊇n∪ for any n ∈ η. We write A ∩ B for GLP ∩ A ∧ B.
To prove Part (ii), we shall rely on the following fundamental lemma about the

variable-free fragment of GLP. For a proof of this lemma we refer to [6, 8].
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Lemma 16. (i) Every variable-free formula is equivalent in GLP to a boolean
combination of words;

(ii) For any words A and B, either A ∩ ⊇0∪B, or B ∩ ⊇0∪A, or A and B are
equivalent;

(iii) Conjunction of words is equivalent to a word.

We prove Part (ii) of Theorem 12 in a series of lemmas. First, we show that any
word is true at some point in χ provided χ ⊗ ε0.

Lemma 17. For any word A, ε0 ∈ A∇.

Proof We know that αn(ε0) = τn(ε0) = ε0. Hence, ε0 ∈ dn(χ) for each n. Assume
n exceeds all the indices of modalities in A and A = ⊇m∪B. By Proposition 15 the
set B∇ is open in υn . By the induction hypothesis ε0 ∈ B∇. Hence, ε0 ∈ dn(B∇) ⇐
dm(B∇) = A∇. This proves the claim. �

Applying this lemma to the word ⊇0∪A we obtain the following corollary.

Corollary 10. For every word A, there is an ∂ < ε0 such that ∂ ∈ A∇.

Let min(A∇) denote the least ordinal ∂ ∈ χ such that ∂ ∈ A∇.

Lemma 18. For any words A, B, if A � B, then min(A∇) /∈ B∇.

Proof If A � B, then, by Lemma 16 (ii), B ∩ ⊇0∪A. Therefore, by the soundness of
GLP in χ , B∇ ⇐ d0(A∇). It follows that for each κ ∈ B∇ there is an ∂ ∈ A∇ such
that ∂ < κ. Thus, min(A∇) /∈ B∇. �

Now we are ready to prove Part (ii). Assume ℘ is variable-free and GLP � ℘. By
Lemma 16 (i) we may assume that ℘ is a boolean combination of words. Writing ℘

in conjunctive normal form we observe that it is sufficient to prove the claim only
for formulas ℘ of the form

∧
i Ai ∧ ∨

j B j , where Ai and B j are words. Moreover,∧
i Ai is equivalent to a single word A.
Since GLP � ℘ we have A � B j for each j . Let ∂ = min(A∇). By Lemma 18 we

have ∂ /∈ B∇
j for each j . Hence, ∂ /∈ (

∨
j B j )

∇ and ∂ /∈ ℘∇. This means that χ � ℘∇.

10.11 Further Results

Topological semantics of polymodal provability logic has been extended to the lan-
guage with transfinitely many modalities. A logic GLPΛ having modalities [∂] for all
ordinals ∂ < Λ is introduced in [8]. It was intended for the proof-theoretic analysis
of predicative theories and is currently being actively investigated for that purpose.

David Fernandez and Joost Joosten undertook a thorough study of the variable-
free fragment of that logic mostly in connection with the arising ordinal notation
systems (see [25, 27] for a sample). In particular, they found a suitable generalization



288 L. Beklemishev and D. Gabelaia

of Icard’s polytopological space and showed that it is complete for that fragment
[26]. Fernandez [30] also proved topological completeness of the full GLPΛ by
generalizing the results of [5].

The ordinal GLP-space is easily generalized to transfinitely many topologies
(σ∂)∂<Λ by letting σ0 be the left topology, σ∂+1 := σ+

∂ and, for limit ordinals φ,
σφ be the topology generated by all σ∂ such that ∂ < φ. This space is a natural model
of GLPΛ and has been studied quite recently by Bagaria [3] and further by Bagaria et
al. [4]. In particular, the three authors proved that in L the limit points of σn+2 are Π1

n -
indescribable cardinals. The question posed in [14] whether the non-discreteness of
σn+2 is equiconsistent with the existence of Π1

n -indescribable cardinals still appears
to be open.
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11.1 Introduction

Topological modal logic was initiated by the works of A. Tarski and J.C.C. McKinsey
in the 1940s. They were first to consider both topological interpretations of the
diamond modality: one as closure, and another as derivative

Their studies of closure modal logics were rather detailed and profound. In par-
ticular, in the fundamental paper [32] they have shown that the logic of any metric
separable dense-in-itself space is S4. This remarkable result also demonstrates a
relative weakness of the closure operator to distinguish between interesting topolog-
ical properties.

The derivational interpretation gives more expressive power. For example, the real
line can be distinguished from the real plane (the observation made by K. Kuratowski
as early as in 1920s, cf. [27]); the real line can be distinguished from the rational line
[36]; T0 and TD separation axioms become expressible [8, 15]. In [32] McKinsey and
Tarski only gave basic definitions for derivational modal logics and stated several
open problems which were solved much later.

The derivational semantics also has its limitations (for example, it is still impossi-
ble to distinguish R2 from R3). Further increase of expressive power can be provided
by the well-known methods of adding universal or difference modalities [18, 19].
In the context of topological semantics this approach also has proved fruitful—for
example, connectedness is expressible in modal logic with the closure and universal
modalities [37], and the T1 separation axiom in modal logic with the closure and
difference modalities [17, 22].

Until the early 1990s, when the connections between topological modal logic and
Computer Science were established, the interest in that subject was moderate. Leo
Esakia was one of the enthusiasts of the modal logic approach to topology, and he
was probably the first to appreciate the role of the derivational modality, in particular,
in modal logics of provability [14]. Another strong motivation for further studies of
derivational modal logics (‘d-logics’) were the axiomatization problems left open in
[32].1 In recent years d-logics have been studied rather intensively, a brief summary
of results can be found in Sect. 11.3.

In this chapter the first thorough investigation is provided for logics in the most
expressive language in this context,2 namely the derivational modal logics with the
difference modality (‘dd-logics’). It unifies earlier studies by the first author in closure
modal logics with the difference modality (‘cd-logics’) and by the second author in
d-logics.

The diagram in Sect. 11.12 compares the expressive power of different kinds
of topomodal logics. Our conjecture is that dd-logics are strictly more expressive
than the others, but it is still an open question if the dd-language is stronger than
the cd-language. Speaking informally, it is more convenient—for example, Kura-

1 The early works of the second author in this field were greatly influenced by Leo Esakia.
2 Some other kinds of topomodal logics arise when we deal with topological spaces with additional
structures, e.g. spaces with two topologies, spaces with a homeomorphism etc. (cf. [3]).
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towski’s axiom for R2 (Definition 21) is expressible in cd-logic as well, but in a
more complicated form [23].

We show that still in many cases properties of dd-logics are similar to those of
d-logics: finite axiomatizability, decidability and the finite model property (fmp).
Besides specific results characterizing logics of some particular spaces, our goal was
to propose some general methods. In fact, nowadays in topomodal logic there are
many technical proofs, but few general methods. In this chapter we propose only two
simplifying novelties—dd-morphisms (Sect. 11.6) and the Glueing lemma 16, but
we hope that much more can be done in this direction, cf. the recent paper [20].

In more detail, the plan of the chapter is as follows. Preliminary Sects. 11.2, 11.3
and 11.4 include standard definitions and basic facts about modal logics and their
semantics. Some general completeness results for dd-logics can be found in Sects.
11.5 and 11.7. In Sect. 11.5 we show that every extension of the minimal logic
K4≤D+ by variable-free axioms is topologically complete. In Sect. 11.8 we prove
the same for extensions of DT1 (the logic of dense-in-themselves T1-spaces); the
proof is based on a construction of d-morphisms from the recent paper [9].

In Sect. 11.6 we consider validity-preserving maps from topological to Kripke
frames (d-morphisms and dd-morphisms) and prove a modified version of McKinsey–
Tarski’s lemma on dissectable spaces. In Sect. 11.7 we prove that DT1 is complete
w.r.t. an arbitrary zero-dimensional dense-in-itself separable metric space by the
method from [36, 38].

Sections 11.8, 11.9 and 11.10 study the axiom of connectedness AC and Kura-
towski’s axiom Ku related to local 1-componency. In particular we prove that the
logic DT1CK with both these axioms has the fmp. This is a refinement of an earlier
result [36, 38] on the fmp of the d-logic D4 + Ku (the new proof uses a simpler
construction).

Section 11.11 contains our central result: DT1CK is the dd-logic of Rn for n > 1.

The proof uses an inductive construction of dd-morphisms onto finite frames of the
corresponding logic, and it combines methods from [23, 36, 38], with an essential
improvement motivated by [31] and based on the Glueing lemma.

The final section discusses some further directions and open questions. The
Appendix contains technical details of some proofs.

11.2 Basic Notions

The material of this section is quite standard, and most of it can be found in [12].
We consider n-modal (propositional) formulas constructed from a countable set of
propositional variables PV and the connectives ⊥, ⊆, �1, . . . ,�n. The derived
connectives are ∈, ∩, ¬, �, ∅, ♦1, . . . ,♦n. A formula without occurrences of
propositional variables is called closed.

A (normal) n-modal logic is a set of modal formulas containing the classical tau-
tologies, the axioms �i(p ⊆ q) ⊆ (�ip ⊆ �iq) and closed under the standard
inference rules: Modus Ponens (A, A ⊆ B/B), Necessitation (A/�iA), and Substi-
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tution (A(pj)/A(Bj)). To be more specific, we use the terms ‘(�1, . . . ,�n)-modal
formula’ and ‘(�1, . . . ,�n)-modal logic’.

Kn denotes the minimal n-modal logic (and K = K1). An n-modal logic contain-
ing a certain n-modal logic ℘ is called an extension of ℘ or a ℘-logic. The minimal
℘-logic containing a set of n-modal formulas δ is denoted by ℘+ δ. In particular,

K4 := K +�p ⊆ ��p, S4 := K4+�p ⊆ p, D4 := K4+ ♦�,

K4≤ := wK4 := K + p ∈�p ⊆ ��p.

The fusion L1 ∗ L2 of modal logics L1, L2 with distinct modalities is the smallest
modal logic in the joined language containing L1 ↑ L2.

A (normal) n-modal algebra is a Boolean algebra with extra n unary operations
preserving 1 (the unit) and distributing over↓; they are often denoted by �1, . . . ,�n

as the modal connectives. A valuation in a modal algebra A is a set-theoretic map
η : PV −⊆ A. It extends to all n-modal formulas by induction:

η(⊥) = ∅, η(A ⊆ B) = −η(A) ↑ η(B), η(�iA) = �iη(A).

A formula A is true in A (in symbols: A ♦ A) if η(A) = 1 for any valuation η. The
set L(A) of all n-modal formulas true in an n-modal algebra A is an n-modal logic
called the logic of A.

An n-modal Kripke frame is a tuple F = (W , R1, . . . , Rn), where W is a nonempty
set (of worlds), Ri are binary relations on W . We often write x ∧ F instead of x ∧ W .

In this chapter (except for Sect. 11.2) all 1-modal frames are assumed to be transitive.
The associated n-modal algebra MA(F) is 2W (the Boolean algebra of all subsets of
W ) with the operations �1, . . . ,�n such that �iV = {x | Ri(x) ∃ V} for any V ∃ W .

A valuation in F is the same as in MA(F), i.e., it is a map from PV to P(W)

(the power set of W ). A (Kripke) model over F is a pair M = (F, η), where η is a
valuation in F. The notation M, x ♦ A means x ∧ η(A), which is also read as ‘A is
true in M at x’. A (modal) formula A is true in M (in symbols: M ♦ A) if A is true in
M at all worlds. A formula A is called valid in a Kripke frame F (in symbols: F ♦ A)
if A is true in all Kripke models over F; this is obviously equivalent to MA(F) ♦ A.

The modal logic L(F) of a Kripke frame F is the set of all modal formulas valid
in F, i.e., L(MA(F)). For a class of n-modal frames C , the modal logic of C (or the
modal logic determined by C ) is L(C ) := ⏐{L(F) | F ∧ C }. Logics determined by
classes of Kripke frames are called Kripke complete. An n-modal frame validating
an n-modal logic ℘ is called a ℘-frame. A modal logic has the finite model property
(fmp) if it is determined by some class of finite frames.

It is well known that (W , R) ♦ K4 iff R is transitive; (W , R) ♦ S4 iff R is reflexive
transitive (a quasi-order).

A cluster in a transitive frame (W , R) is an equivalence class under the relation
∨R:= (R↓R−1)↑ IW , where IW is the equality relation on W . A degenerate cluster
is an irreflexive singleton. A cluster that is a reflexive singleton is called trivial or
simple. A chain is a frame (W , R) with R transitive, antisymmetric and linear, i.e.,
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it satisfies ≥x≥y (xRy ∩ yRx ∩ x = y). A point x ∧ W is strictly (R-)minimal if
R−1(x) = ∅.

A subframe of a frame F = (W , R1, . . . , Rn) obtained by restriction to V ∃ W
is F|V := (V , R1|V , . . . , Rn|V). Then for any Kripke model M = (F, η) we have
a submodel M|V := (F|V , η |V), where (η |V)(q) := η(q) ↓ V for each q ∧ PV . If
Ri(V) ∃ V for any i, the subframe F|V and the submodel M|V are called generated.

The union of subframes Fj = F|Wj, j ∧ J, is the subframe
⋃

j∧J
Fj := F|⋃

j∧J
Wj.

A generated subframe (cone) with the root x is Fx := F|R∗(x), where R∗ is the
reflexive transitive closure of R1 ↑ . . . ↑ Rn; so for a transitive frame (W , R), R∗ =
R↑ IW is the reflexive closure of R (which is also denoted by R). A frame F is called
rooted with the root u if F = Fu. Similarly we define a cone Mx of a Kripke model
M.

Every finite rooted transitive frame F = (W , R) can be presented as the union
(F|C)↑Fx1↑ . . .↑Fxm (m → 0), where C is the root cluster, xi are its successors (i.e.,

xi �∧ C, R
−1

(xi) =∨R(xi) ↑ C). If C is non-degenerate, the frame F|C is (C, C2),
which we usually denote just by C. If C = {a} is degenerate, F|C is ({a}, ∅), which
we denote by ≈a.

For the rest of the section we fix the propositional language (and the number n).

Lemma 1 (Generation Lemma)

(1) L(F) = ⏐{L(Fx) | x ∧ F}.
(2) If F is a generated subframe of G, then L(G) ∃ L(F).
(3) If M is a generated submodel of N, then for any formula A and for any x in M

N, x ♦ A iff M, x ♦ A.

Lemma 2 For any Kripke complete modal logic ℘,

℘ = L(all ℘-frames) = L(all rooted ℘-frames).

A p-morphism from a frame (W , R1, . . . , Rn) onto a frame (W ⇐, R⇐1, . . . , R⇐n) is a
surjective map f : W −⊆ W ⇐ satisfying the following conditions (for any i):

(1) ≥x≥y (xRiy ⇒ f (x)R⇐if (y)) (monotonicity);
(2) ≥x≥z (f (x)R⇐iz ⇒ ∀y(f (y) = z & xRiy)) (the lift property).

If xRiy and f (x)R⇐if (y), we say that xRiy lifts f (x)R⇐if (y).
Note that (1) & (2) is equivalent to

≥x f (Ri(x)) = R⇐i(f (x)).

f : F � F ⇐ denotes that f is a p-morphism from F onto F ⇐.
Every set-theoretic map f : W −⊆ W ⇐ gives rise to the dual morphism of Boolean

algebras 2f : 2W ⇐ −⊆ 2W sending every subset V ∃ W ⇐ to its inverse image
f−1(V) ∃ W .
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Lemma 3 (P-morphism Lemma)

(1) f : F � F ⇐ iff 2f is an embedding of MA(F ⇐) into MA(F).
(2) f : F � F ⇐ implies L(F) ∃ L(F ⇐).
(3) If f : F � F ⇐, then F ♦ A ◦ F ⇐ ♦ A for any closed formula A.

In this chapter in the proofs of the fmp we will use the well-known filtration
method [12]. Let us recall the construction we need.

Let ι be a set of modal formulas closed under subformulas. For a Kripke model
M = (F,ϕ) over a frame F = (W , R1, . . . , Rn), define an equivalence relation on
W by

x ∞ι y ⇐⇒ ≥A ∧ ι(M, x ♦ A ◦ M, y ♦ A).

Put W ⇐ := W/ ∞ι; x∨ := ∞ι (x) (the equivalence class of x), ϕ⇐(q) :=
{x∨ | x ∧ ϕ(q)} for q ∧ PV ↓ι (and let ϕ⇐(q) be arbitrary for q ∧ PV −ι).

Lemma 4 (Filtration Lemma) Under the above assumptions, consider the relations
Ri, R⇐i on W ⇐ such that

aRib iff ∀x ∧ a ∀y ∧ b xRiy,

R⇐i =
{

the transitive closure of Ri if Ri is transitive,

Ri otherwise.

Put M ⇐ := (W ⇐, R⇐1, . . . , R⇐n,ϕ⇐). Then for any x ∧ W , A ∧ ι :

M, x ♦ A iff M ⇐, x∨ ♦ A.

Definition 1 An m-formula is a modal formula in propositional variables
{p1, . . . , pm}. For a modal logic ℘ we define the m-weak (or m-restricted) canon-
ical frame F℘⊗m := (W , R1, . . . , Rn) and canonical model M℘⊗m := (F℘⊗m,ϕ),
where W is the set of all maximal ℘-consistent sets of m-formulas, xRiy iff for any
m-formula A (�iA ∧ x ⇒ A ∧ y),

ϕ(pi) :=
{
{x | pi ∧ x} if i ˆ m,

∅ if i > m.

℘ is called weakly canonical if F℘⊗m ♦ ℘ for any finite m.

Proposition 1 For any m-formula A and a modal logic ℘

(1) M℘⊗m, x ♦ A iff A ∧ x;
(2) M℘⊗m ♦ A iff A ∧ ℘;
(3) if ℘ is weakly canonical, then it is Kripke complete.

Corollary 1 If for any m-formula A, M℘⊗m, x ♦ A◦M℘⊗m, y ♦ A, then x = y.

Definition 2 A cluster C in a transitive frame (W , R) is called maximal if R(C) = C.
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Lemma 5 Let F℘⊗m = (W , R1, . . . , Rn) and suppose ℘ ∗ �1p ⊆ �1�1p (i.e., R1
is transitive). Then every generated subframe of (W , R1) contains a maximal cluster.

The proof is based on the fact that the general Kripke frame corresponding to a
canonical model is descriptive; cf. [12, 16] for further details.3

11.3 Derivational Modal Logics

We denote topological spaces by X,Y, . . . and the corresponding sets by X, Y , . . . .4

The interior operation in a space X is denoted by IX and the closure operation by CX ,
but we often omit the subscript X. A set S is a neighbourhood of a point x if x ∧ IS;
then S − {x} is called a punctured neighbourhood of x.

Definition 3 Let X be a topological space, V ∃ X. A point x ∧ X is said to be limit
for V if x ∧ C(V − {x}); a non-limit point of V is called isolated.

The derived set of V (denoted by dV , or by dXV ) is the set of all limit points of
V . The unary operation V ∇⊆ dV on P(X) is called the derivation (in X).

A set without isolated points is called dense-in-itself.

Lemma 6 [28] For a subspace Y ∃ X and V ∃ X, dY (V ↓ Y) = dX(V ↓ Y) ↓ Y;
if Y is open, then dY (V ↓ Y) = dXV ↓ Y.

Definition 4 The derivational algebra of a topological space X is DA(X) :=
(2X , ∪d), where 2X is the Boolean algebra of all subsets of X, ∪dV := −d(−V).5

The closure algebra of a space X is CA(X) := (2X , I).

Remark 1 In [32] the derivational algebra of X is defined as (2X , d), and the closure
algebra as (2X , C), but here we adopt equivalent dual definitions.

It is well known that CA(X), DA(X) are modal algebras, CA(X) ♦ S4 and
DA(X) ♦ K4≤ (the latter is due to Esakia).

Every Kripke S4-frame F = (W , R) is associated with a topological space N(F)

on W , with the Alexandrov (or right) topology {V ∃ W | R(V) ∃ V}. In N(F) we
have CV = R−1(V), IV = {x | R(x) ∃ V}; thus MA(F) = CA(N(F)).

Definition 5 A modal formula A is called d-valid in a topological space X (in
symbols, X ♦d A) if it is true in the algebra DA(X). The logic L(DA(X)) is called
the derivational modal logic (or the d-logic) of X and denoted by Ld(X).

A formula A is called c-valid in X (in symbols, X ♦c A) if it is true in CA(X).
Lc(X) := L(CA(X)) is called the closure modal logic, or the c-logic of X.

3 For the 1-modal case this lemma has been known as folklore since the 1970s; the second author
learned it from Leo Esakia in 1975.
4 Sometimes we neglect this difference.
5 There is no common notation for this operation; some authors use τ.
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Definition 6 For a class of topological spacesC we also define the d-logic Ld(C ) :=⏐{Ld(X) | X ∧ C } and the c-logic Lc(C ) := ⏐{Lc(X) | X ∧ C }. Logics of this
form are called d-complete (respectively, c-complete ).

Definition 7 A valuation in a topological space X is a map ϕ : PV −⊆ P(X).
Then (X,ϕ) is called a topological model over X.

So valuations in X, CA(X), and DA(X) are the same. Every valuation ϕ can be
prolonged to all formulas in two ways, according either to CA(X) or DA(X). The
corresponding maps are denoted respectively by ϕc or ϕd . Thus

ϕd(�A) = d̃ϕd(A), ϕd(♦A) = dϕd(A),

ϕc(�A) = Iϕc(A), ϕc(♦A) = Cϕc(A).

A formula A is called d-true (respectively, c-true) in (X,ϕ) if ϕd(A) = X (respec-
tively, ϕc(A) = X ). So A is d-valid in X iff A is d-true in every topological model
over X, and similarly for c-validity.

Definition 8 A modal formula A is called d-true at a point x in a topological model
(X,ϕ) if x ∧ ϕd(A).

Instead of x ∧ ϕd(A), we write x ♦d A if the model is clear from the context.
Similarly we define the c-truth at a point and use the corresponding notation. From
the definitions we obtain.

Lemma 7 [15] For a topological model over a space X

• x ♦d �A iff ∀U ← x (U is open in X & ≥y ∧ U − {x} y ♦d A);
• x ♦d ♦A iff ≥U ← x (U is open in X ⇒ ∀y ∧ U − {x} y ♦d A).

Definition 9 A local T1-space (or a TD-space [5]) is a topological space in which
every point is locally closed, i.e, closed in some neighbourhood.

Note that a point x in an Alexandrov space N(W , R) is closed iff it is minimal
(i.e., R−1(x) = {x}); x is locally closed iff R(x) ↓ R−1(x) = {x}. Thus N(F) is local
T1 iff F is a poset.

Lemma 8 [15] For a topological space X

(1) X ♦d K4 iff X is local T1;
(2) X ♦d ♦� iff X is dense-in-itself.
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Definition 10 A Kripke frame (W, R) is called weakly transitive if R ≤ R ∃ R.

It is obvious that the weak transitivity of R is equivalent to the transitivity of R.

Proposition 2 [15] (1) (W , R) ♦ K4≤ iff (W , R) is weakly transitive;
(2) K4≤ is Kripke-complete.

Lemma 9 [15] (1) Let F = (W , R) be a Kripke S4-frame, and let R≤ := R − IW ,
F≤ := (W , R≤). Then Ld(N(F)) = L(F≤).
(2) Let F = (W , R) be a weakly transitive irreflexive Kripke frame, and let F =:
(W , R) be its reflexive closure. Then Ld(N(F)) = L(F).
(3) If ℘ = L(C ), for some class C of weakly transitive irreflexive Kripke frames,
then ℘ is d-complete.

Definition 11 For a 1-modal formula A we define Aσ as the formula obtained by
replacing every occurrence of every subformula �B with �B := �B ∈ B. For a
1-modal logic ℘ its reflexive fragment is σ℘ := {A | ℘ ∗ Aσ}.
Proposition 3 [6] (1) If ℘ is a K4≤-logic, then σ℘ is an S4-logic.
(2) For any topological space X, Lc(X) = σLd(X),
(3) For any weakly transitive Kripke frame F, L(F) = σL(F).

Let us give some examples of d-complete logics.

(1) Ld(all topological spaces) = K4≤. This was proved by L. Esakia in the 1970s
and published in [15].

(2) Ld(all local T1-spaces) = K4. This is also a result from [15].
(3) Ld(all T0-spaces) = K4≤ + p ∈ ♦(q ∈ ♦p) ⊆ ♦p ∩ ♦(q ∈ ♦q). This result is

from [8].
(4) Esakia [14] also proved that Gödel - Löb logic GL := K +�(�p ⊇ p) ⊇ �p

is the derivational logic of the class of all scattered spaces (a space is scattered
if each of its nonempty subsets has an isolated point).

(5) The papers [1, 2, 10] give a complete description of d-logics of ordinals with
the interval topology: Ld(π) is either GL (if π → ∂∂), or GL + �n⊥ (if
∂n−1 ˆ π < ∂n). In particular, Ver := K + �⊥ is the d-logic of any finite
ordinal (and of any discrete space).

(6) The well-known “difference logic” [13, 35] DL := K4≤ + ♦�p ⊇ p is
determined by Kripke frames with the difference relation: DL =
L({(W , �=W ) | W �= ∅}), where �=W := W2−IW ; hence by Lemma 9, DL is the
d-logic of the class of all trivial topological spaces. However, for any particular
trivial space X, Ld(X) �= DL. Moreover, Ld(X) is not finitely axiomatizable
for any infinite trivialX [26]; this surprising result is easily proved by a standard
technique using Jankov formulas (cf. [25]).

(7) In [38] it was proved that Ld(all zero-dimensional separable metric spaces) =
K4. All these spaces are embeddable in R [28].

(8) In [38] it was also proved that for any dense-in-itself zero-dimensional separable
metric space X, Ld(X) = D4; this was a generalization of an earlier proof [36]
for X = Q. A more elegant proof for Q is in [30].
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(9) Every extension of K4 by a set of closed axioms is a d-logic of some subspace
of Q [9]. This gives us a continuum of d-logics of countable metric spaces.

(10) In [36] Ld(R2) was axiomatized and it was also proved that the d-logics of
Rn for n → 2 coincide. We will simplify and extend that proof in the present
chapter.

(11) Ld(R) was described in [38]; for a simpler completeness proof cf. [31].
(12) Ld(all Stone spaces) = K4 and Ld(all weakly scattered Stone spaces) =

K4+ ♦�⊆ ♦� ⊥, cf. [7].
(13) d-logics of special types of spaces were studied in [6, 9, 30]. They include

submaximal, perfectly disconnected, maximal, weakly scattered and some other
spaces.

However, not all extensions of K4≤ are d-complete. In fact, the formula p ⊇ ♦p
never can be d-valid because dY = ∅ for a singleton Y . So every extension of S4 is
d-incomplete, and thus Kripke completeness does not imply d-completeness.

Proposition 4 Let F = (∂∗,≺) be the “standard irreflexive transitive tree”, where
∂∗ is the set of all finite sequences in ∂; π ≺ κ iff π is a proper initial segment of κ.
Then

D4 = L(F) = Ld(N(F)) = Ld(D),

where D denotes the class of all dense-in-themselves local T1-spaces.

Proof The first equality is well known [39]; the second one holds by Lemma 9. By
Lemma 8, D4 is d-valid exactly in spaces from D . So N(F) ∧ D , D4 ∃ Ld(D), and
the third equality follows. �

11.4 Adding the Universal Modality and the Difference Modality

Recall that the universal modality [≥] and the difference modality [�=] correspond to
Kripke frames with the universal and difference relations. So (under a valuation in a
set W ) these modalities are interpreted in the standard way:

x ♦ [≥]A iff ≥y ∧ W y ♦ A; x ♦ [�=]A iff ≥y ∧ W (y �= x ⇒ y ♦ A).

The corresponding dual modalities are denoted by !∀ℵ and !�=ℵ.
Definition 12 For a [≥]-modal formula A we define the [�=]-modal formula Au by
induction:

Au := A for A atomic, (A ⊇ B)u := Au ⊇ Bu, ([≥]B)u := [�=]Bu ∈ Bu.

We can consider 2-modal topological logics obtained from Lc(X) or Ld(X) by
adding the universal or difference modalities.6 Thus for a topological space X we

6 So we extend the definitions of the d-truth or the c-truth by adding the item for [≥] or [�=].
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obtain four 2-modal logics : Lc≥(X) (the closure universal (cu-) logic), Ld≥(X)

(the derivational universal (du-) logic), Lc �=(X) (the closure difference (cd-) logic),
Ld �=(X) (the derivational difference (dd-) logic). Similar notations (Lc≥(C ) etc.) are
used for logics of a class of spaces C , and we can define four kinds of topological
completeness (cu-, du-, cd-, dd-) for 2-modal logics.

cd-logics were first studied in [17], cu-logics in [37], du-logics in [31], but dd-
logics have never been addressed so far.

For a �-modal logic L we define the 2-modal logics

LD := L ∗ DL+ [�=]p ∈ p ⊆ �p, LD+ := L ∗ DL+ [�=]p ⊆ �p,

LU := L ∗ S5+ [≥]p ⊆ �p.

Here we suppose that S5 is formulated in the language with [≥] and DL in the
language with [�=]. The following is checked easily:

Lemma 10 For any topological space X,

Lc≥(X) ⊇ S4U, Ld≥(X) ⊇ K4≤U, Lc �=(X) ⊇ S4D, Ld �=(X) ⊇ K4≤D+.

Definition 13 For a 1-modal Kripke frame F = (W , R) we define 2-modal frames
F≥ := (F, W2), F�= := (F, �=W ) and modal logics L≥(F) := L(F≥), L�=(F) :=
L(F�=).

Sahlqvist theorem [12] implies

Proposition 5 The logics S4U, K4≤U, S4D, K4≤D+ are Kripke complete.

Using the first-order equivalents of the modal axioms for these logics (in particular,
Proposition 2) we obtain

Lemma 11 For a rooted Kripke frame G = (W , R, S)

(1) G ♦ S4U iff R is a quasi-order & S = W2,

(2) G ♦ K4≤U iff R is weakly transitive & S = W2,

(3) G ♦ S4D iff R is a quasi-order & S = W2,

(4) G ♦ K4≤D+ iff R is weakly transitive & S = W2& R ∃ S.

Also note that S = W2 iff �=W∃ S.

Definition 14 A rooted Kripke K4≤D+-frame described by Lemma 11 (4) is called
basic. The class of these frames is denoted by F0.

Next, we easily obtain the 2-modal analogue to Lemma 9.

Lemma 12 (1) Let F be an S4-frame. Then

Ld �=(N(F)) = L�=(F≤), Ld≥(N(F)) = L≥(F≤).
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(2) Let F be a weakly transitive irreflexive Kripke frame. Then

Ld �=(N(F)) = L�=(F), Ld≥(N(F)) = L≥(F).

(3) Let C be a class of weakly transitive irreflexive Kripke 1-frames. Then L�=(C ) is
dd-complete, L≥(C ) is du-complete.

Let us extend the translations (−)σ, (−)u to 2-modal formulas.

Definition 15 (−)u translates (�, [≥])-modal formulas to (�, [�=])-modal formulas
so that ([≥]B)u = [�=]Bu ∈ Bu and (−)u distributes over the other connectives.

Similarly, (−)σ translates (�, [�=])-modal formulas and (�, [≥])-modal formulas
to formulas of the same kind, so that (� B)σ = � Bσ ∈ Bσ and (−)σ distributes over
the other connectives.

u℘ := {A | Au ∧ ℘} for a (�, [≥])-modal logic ℘ (the universal fragment),
σ℘ := {A | Aσ ∧ ℘} for a (�, [�=])- or a (�, [≥])-modal ℘ (the reflexive fragment),

σu℘ := σ(u℘) for a (�, [�=])-modal ℘(the reflexive universal fragment).

Proposition 6 (1) The map ℘ ∇⊆ σ℘ sends K4≤D+-logics to S4U-logics.
(2) The map ℘ ∇⊆ u℘ sends K4≤D+-logics to K4≤U-logics and S4D-logics to S4U-
logics.
(3) The map ℘ ∇⊆ σu℘ sends K4≤D+-logics to S4U-logics.
(4) For a topological space X

Lc�=(X) = σLd�=(X), Ld≥(X) = uLd�=(X), Lc≥(X) = uLc�=(X) = σLd≥(X).

(5) For a weakly transitive Kripke frame F

L�=(F) = σL�=(F), L≥(F) = uL�=(F), L≥(F) = σL≥(F) = σ uL�=(F).

Proposition 6 (4) implies that dd-logics are the most expressive of all the kinds of
logics that we consider.

Corollary 2 If Ld�=(X) = Ld�=(Y) for spaces X,Y, then all the other logics (du-,
cu-, cd-, d-, c-) of these spaces coincide.

Let

AT1 := [�=]p ⊆ [�=]�p, AC := [≥] (�p ∩�¬p) ⊆ [≥] p ∩ [≥]¬p.

Proposition 7 For a topological space X

(1) X |=d ♦� iff X is dense-in-itself;
(2) X |=d AT1 iff X |=c AT1 iff X is a T1-space;
(3) X ♦d ACσ iff X |=c AC iff X is connected.
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Proof (1) and the first equivalence in (2) are trivial. The first equivalence in (3)
follows from Proposition 6 (4). The remaining ones are checked easily, cf. [23, 37].

�

For a �-modal logic L put

LD+T1 := LD+ + AT1, LD+T1C := LD+ + AT1 + ACσu.

Also put

KT1 := K4D+T1, DT1 := D4D+T1, DT1C := D4D+T1C.

Proposition 8 [23] If F = (W , R, RD) is basic, then F |= AT1 iff all RD-irreflexive
points are strictly R-minimal iff RD ≤ R ∃ RD.

Remark 2 Density-in-itself is expressible in cd-logic and dd-logic by the formula
DS := [�=]p ⊇ ♦p. So for any space X, X ♦c DS iff X ♦d DS iff X ♦d ♦�. It
is known that DS axiomatizes dense-in-themselves spaces in cd-logic [23]. How-
ever, in dd-logic this axiom is insufficient: Ld �=(all dense-in-themselves spaces)
= D4≤D+ = K4≤D+ + ♦�, and it is stronger than K4≤D+ + DS. (To see the
latter, consider a singleton Kripke frame, which is RD-reflexive, but R-irreflexive.)
Therefore, K4≤D+ + DS is dd-incomplete.

Remark 3 Every T1-space is a local T1-space, so the dd-logic of all T1-spaces con-
tains �p ⊆ ��p. However, K4≤D+T1 �∗�p ⊆ ��p. In fact, consider a 2-point
frame F := (W , �=W , W2). It is clear that F ♦ K4≤D+. Also F ♦ AT1 by Proposi-
tion 8, but F �♦ �p ⊆ ��p since �=W is not transitive.

It follows that K4≤D+T1 is dd-incomplete; T1-spaces are actually axiomatized
by KT1 (Corollary 4).

Let us give some examples of du-, cu- and cd-complete logics.

(1) Lc≥(all spaces) = S4U.
(2) Lc≥(all connected spaces) = Lc≥(Rn) = S4U+ AC for any n → 1 [37].7

(3) Ld≥(all spaces) = S4D [13].
(4) Lc�=(X) = S4DT1 + DS, where X is a zero-dimensional separable metric space

[23].
(5) Lc�=(Rn) for any n → 2 is finitely axiomatized in [22]; all these logics coincide.
(6) Ld≥(R) is finitely axiomatized in [31].

7 Shehtman [37] contains a stronger claim: Lc≥(X) = S4U+AC for any connected dense-in-itself
separable metric X. However, recently we found a gap in the proof of Lemma 17 from that paper.
Now we state the main result only for the case X = Rn; a proof can be obtained by applying the
methods of the present chapter, but we are planning to publish it separately.
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11.5 dd-Completeness of K4◦D+ and Some of its Extensions

This section contains some simple arguments showing that there are many
dd-complete bimodal logics.

All formulas and logics in this section are (�, [�=])-modal. An arbitrary Kripke
frame for (�, [�=])-formulas is often denoted by (W , R, RD).

Lemma 13 (1) Every weakly transitive Kripke 1-frame is a p-morphic image of
some irreflexive weakly transitive Kripke 1-frame.
(2) Every rooted K4≤D+-frame is a p-morphic image of some R- and RD-irreflexive
rooted K4≤D+-frame.

Proof (1) Cf. [15].
(2) Similar to the proof of (1). For F = (W , R, RD) ∧ F0 put

Wr := {a | aRDa}, Wi = W −Wr, ∪W := Wi ↑ (Wr × {0, 1}).

Then we define the relation ∪R on ∪W such that

(b, j) ∪Ra iff bRa, a ∪R(b, j) iff aRb,

(b, j) ∪R(b⇐, k) iff bRb⇐ & b �= b⇐ ∩ b = b⇐ & j �= k, a ∪Ra⇐ iff aRa⇐.

Here a, a⇐ ∧ Wi; b, b⇐ ∧ Wr; j, k ∧ {0, 1}. So we duplicate all RD-reflexive points
making them irreflexive (under both relations). It follows that ∪F := ( ∪W , ∪R, �= ∪W ) ∧ F0

and ∪R is irreflexive; the map f : ∪W ⊆ W sending (b, j) to b and a to itself (for
b ∧ Wr, a ∧ Wi) is a p-morphism ∪F � F. �

Proposition 9 Let δ be a set of closed 2-modal formulas, ℘ := K4≤D+ + δ. Then

(1) ℘ is Kripke complete.
(2) ℘ is dd-complete.

Proof (1) K4≤D+ is axiomatized by Sahlqvist formulas. One can easily check that
(in the minimal modal logic) every closed formula is equivalent to a positive formula,
so we can apply Sahlqvist theorem.

(2) Suppose A �∧ ℘. By (1) and the Generation lemma there exists a rooted
Kripke 2-frame F such that F ♦ L and F �♦ A. Then by Lemma 13, for some irreflex-
ive weakly transitive 1-frame G = (W , R) there is a p-morphism (G, �=W ) � F.
By the p-morphism lemma (G, �=W ) �♦ A and (G, �=W ) ♦ ℘ (since δ consists of
closed formulas). Hence by Lemma 12, ℘ ∃ Ld �=(N(G)), A �∧ Ld �=(N(G)). �

Remark 4 Using Proposition 9 and the construction from [9], one can prove that
there is a continuum of dd-complete logics. Such a claim is rather weak because
Proposition 9 deals only with Alexandrov spaces. In Sect. 11.7 we will show how to
construct many dd-complete logics of metric spaces.
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11.6 d-Morphisms and dd-Morphisms; Extended
McKinsey–Tarski’s Lemma

In this section we recall the notion of a d-morphism (a validity-preserving map for
d-logics) and introduce dd-morphisms, the analogues of d-morphisms for dd-logics.
This is the main technical tool in the present chapter. Two basic lemmas are proved
here, an analogue of McKinsey–Tarski’s lemma on dissectability for d-morphisms
and the Glueing lemma.

The original McKinsey–Tarski’s lemma [32] states the existence of a c-morphism
(cf. Remark 5) from an arbitrary separable dense-in-itself metric space onto a certain
quasi-tree of depth 2. The separability condition is actually redundant [33, Chap. 3]
(note that the latter proof is quite different from [32]8). But c-morphisms preserve
validity only for c-logics, and unfortunately, the constructions by McKinsey–Tarski
and Rasiowa–Sikorski cannot be used for d-morphisms. So we need another con-
struction to prove a stronger form of McKinsey–Tarski’s lemma.

Definition 16 Let X be a topological space, F = (W , R) a transitive Kripke frame.
A map f : X −⊆ W is called a d-morphism from X to F if f is open and continuous
as a map X −⊆ N(F) and also satisfies

r-density : ≥w ∧ W(wRw ⇒ f−1(w) ∃ df−1(w)),

i-discreteness : ≥w ∧ W(¬wRw ⇒ f−1(w) ↓ df−1(w) = ∅).

If f is surjective, we write f : X �d F.

Proposition 10 [6] (1) f is a d-morphism from X to F iff 2f is a homomorphism
from MA(F) to DA(X).
(2) If f : X �d F, then Ld(X) ∃ L(F).

Corollary 3 [36] A map f from a topological space X to a finite transitive Kripke
frame F is a d-morphism iff

≥w ∧ W df−1(w) = f−1(R−1(w)).

Remark 5 For a space X and a Kripke S4-frame F = (W , R) one can also define a
c-morphism X −⊆ F just as an open and continuous map f : X −⊆ N(F). So every
d-morphism to an S4-frame is a c-morphism. It is well known [33] that f : X −⊆ W
is a c-morphism iff 2f is a homomorphism MA(F) −⊆ CA(X). Again for a finite F
this is equivalent to

≥w ∧ W Cf−1(w) = f−1(R−1(w)).

Lemma 14 If f : X �d F for a finite frame F and Y ∃ X is an open subspace,
then f |Y is a d-morphism.

8 Recently Kremer [21] has showed that S4 is strongly complete w.r.t. any dense-in-itself metric
space. His proof uses much of the construction from [33].
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Fig. 11.1 Frame αml

Proof We apply Proposition 10. Note that f |Y is the composition f · j, where j : Y τ⊆
X is the inclusion map. Then 2f |Y = 2j ·2f . Since 2f is a homomorphism MA(F) −⊆
DA(X), it remains to show that 2j is a homomorphism DA(X) −⊆ DA(Y ), i.e., it
preserves the derivation: j−1(dV) = dY j−1(V), or dV ↓ Y = dY (V ↓ Y), which
follows from Lemma 6. �

Definition 17 A set γ of subsets of a topological space X is called dense at x ∧ X if
every neighbourhood of x contains a member of γ.

Proposition 11 For m, l > 0 let αml be a “quasi-tree” of height 2, with singleton
maximal clusters and an m-element root cluster (Fig. 11.1). For l = 0, m > 0, αml
denotes an m-element cluster.

Let X be a dense-in-itself separable metric space, B ⊂ X a closed nowhere dense
set. Then there exists a d-morphism g : X �d αml with the following properties:

(1) B ∃ g−1(b1);
(2) every g−1(ai) (for i ˆ l ) is a union of a set πi of disjoint open balls, which is

dense at any point of g−1({b1, . . . , bm}).
For the proof see Appendix.

Lemma 15 Assume that

(1) X is a dense-in-itself separable metric space,
(2) B ⊂ X is closed nowhere dense,
(3) F = C↑F1↑· · ·↑Fl is a D4-frame, where C = {b1, . . . , bm} is a non-degenerate

root cluster, F1, . . . , Fl are the subframes generated by the successors of C,
(4) for any nonempty open ball U in X, for any i ∧ {1, . . . , l} there exists a

d-morphism f U
i : U �d Fi.

Then there exists f : X �d F such that f (B) = {b1}.
Proof First, we construct g : X �d αml according to Proposition 11. Then B ∃
g−1(b1) and Ai = g−1(ai) is the union of a set πi of disjoint open balls. Put

f (x) :=
{

g(x) if g(x) ∧ C,

f U
i (x) if x ∧ U, U ∧ πi.

(11.1)
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Since g and f U
i are surjective, the same holds for f . So let us show

df−1(a) = f−1(R−1(a))

(R is the accessibility relation on F). First suppose a ∧ C. Then (since g is a
d-morphism)

df−1(a) = dg−1(a) = g−1(C) = f−1(C) = f−1(R−1(a)).

Now suppose a �∧ C, I = {i|a ∧ Fi} and let Ri be the accessibility relation on Fi. We
have:

f−1(a) =
⋃

i∧I

⋃

U∧πi

(f U
i )−1(a), R−1(a) =C ↑

⋃

i∧I

R−1
i (a),

and so f−1(R−1(a)) = g−1(C)↑⋃

i∧I

⋃

U∧πi

(f U
i )−1(R−1

i (a)). Since f U
i is a d-morphism,

f−1(R−1(a)) = g−1(C) ↑
⋃

i∧I

⋃

U∧πi

dU((f U
i )−1(a)) ∃ g−1(C) ↑ df−1(a). (11.2)

Let us show that
g−1(C) ∃ df−1(a). (11.3)

Let x ∧ g−1(C). Since πi is dense at x, every neighbourhood of x contains some
U ∧ πi. Since f U

i is surjective, f (u) = f U
i (u) = a for some u ∧ U. Therefore,

x ∧ df−1(a).
Equations (11.2) and (11.3) imply f−1(R−1(a)) ∃ df−1(a). Let us prove the

converse:
df−1(a) ∃ f−1(R−1(a)). (11.4)

We have Aj ↓ f−1(a) = ∅ for j �∧ I and Aj is open, hence Aj ↓ df−1(a) = ∅. Thus
df−1(a) ∃ g−1(C) ↑ Ai. Now g−1(C) ∃ f−1(R−1(a)) by (11.2), so it remains to
show that for any i ∧ I

df−1(a) ↓ Ai ∃ f−1(R−1(a)). (11.5)

To check this, consider any x ∧ df−1(a)↓Ai. Then x ∧ U for some U ∧ πi, and thus
by Lemma 6 and (11.2), x ∧ df−1(a) ↓ U = dU(f−1(a) ↓ U) = dU(f U

i )−1(a) ∃
f−1(R−1(a)). This implies (11.5) and completes the proof of (11.4). �

Recall that ψ denotes the boundary of a set in a topological space: ψA := CA−IA.
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Fig. 11.2 Case (a)

Lemma 16 (Glueing lemma) Let X be a local T1-space satisfying
(a) X = X1 ↑ Y ↑ X2 for closed nonempty subsets X1, Y , X2 such that

• X1 ↓ X2 = X1 ↓ IY = X2 ↓ IY = ∅,
• ψX1 ↑ ψX2 = ψY,
• dIY = Y (i.e., Y is regular and dense in-itself).

or
(b) X = X1 ↑ X2 is a nontrivial closed partition.

Let F = (W , R) be a finite K4-frame, F1 = (W1, R1), F2 = (W2, R2) its
generated subframes such that W = W1 ↑W2 and suppose there are d-morphisms
fi : Xi �d Fi, i = 1, 2, where Xi is the subspace of X corresponding to Xi.

In case (a) we also assume that F1, F2 have a common maximal cluster C,
fi(ψXi) ∃ R−1(C) for i = 1, 2 and there is g : IY �d C (where C is regarded as a
frame with the universal relation, IY as a subspace of X). Then f1 ↑ f2 ↑ g : X �d F
in case (a), f1 ↑ f2 : X �d F in case (b).9

Proof Let f := f1 ↑ f2 ↑ g (or f = f1 ↑ f2), Fi = (Wi, Ri), d := dX , di := dXi . For
w ∧ W there are four options.

(1) w ∧ W1−W2. Then df−1(w) = df−1
1 (w) = d1f−1

1 (w) = f−1
1 (R−1

1 (w)) (since
X1 is closed and f1 is a d-morphism). It remains to note that R−1

1 (w) = R−1(w) ∃
W1 −W2, and thus f−1

1 (R−1
1 (w)) = f−1(R−1(w)).

(2) w ∧ W2 −W1. Similar to case (1).
(3) w ∧ (W1 ↓W2)− C in case (a) or w ∧ W1 ↓W2 in case (b). Then f−1(w) =

f−1
1 (w) ↑ f−1

2 (w), so as in (1),

df−1(w) = d1f−1
1 (w) ↑ d2f−1

2 (w) = f−1
1 (R−1

1 (w)) ↑ f−1
2 (R−1

2 (w)) = f−1(R−1(w)).

(4) w ∧ C in case (a). First note that dg−1(w) = Y . Indeed, g is a d-morphism onto
the cluster C, so dIY g−1(w) = g−1(C) = IY . Hence IY ∃ dg−1(w) ∃ dIY = Y ,
and thus

Y = dIY ∃ ddg−1(w) ∃ dg−1(w)

9 f1 ↑ f2 is the map f such that f |Xi = fi; similarly for f1 ↑ f2 ↑ g (Fig. 11.2).
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by Lemma 8(2). Next, since X1, X2 are closed and f1, f2 are d-morphisms we have

df−1(w) = df−1
1 (w) ↑ df−1

2 (w) ↑ dg−1(w) = d1f−1
1 (w) ↑ d2f−1

2 (w) ↑ Y

= f−1
1 (R−1

1 (w)) ↑ f−1
2 (R−1

2 (w)) ↑ Y = f−1(R−1(w)).

�

Case (b) of the previous lemma can be generalized as follows.

Lemma 17 Suppose a topological space X is the disjoint union of open subspaces:
X = ⊔

i∧I
Xi. Suppose a Kripke K4-frame F is the union of its generated subframes:

F = ⋃

i∧I
Fi and suppose fi : Xi �d Fi. Then

⋃

i∧I
fi : X �d F.

Definition 18 Let X be a topological space, F = (W , R, RD) be a frame. Then a
surjective map f : X −⊆ W is called a dd-morphism (in symbols, f : X �dd F) if

(1) f : X �d (W , R) is a d-morphism;
(2) f : (X, �=X) � (W , RD) is a p-morphism of Kripke frames.

Lemma 18 If f : X �dd F, then Ld�=(X) ∃ L(F) and for any closed 2-modal A

X ♦ A ◦ F ♦ A.

Proof Similar to Proposition 10 and Lemma 3. �
Definition 19 A set-theoretic map f : X −⊆ Y is called n-fold at y ∧ Y if |f−1(y)| =
n10; f is called manifold at y if it is n-fold for some n > 1.

Proposition 12 (1) Let G = (X, �=X), F = (W , S) be Kripke frames such that
S = W2, and let f : X −⊆ W be a surjective function. Then

f : G � F iff f is manifold exactly at S-reflexive points of F.

(2) Let X be a T1-space, F = (W , R, RD) a rooted KT1-frame, f : X �d (W , R).
Then f : X �dd F iff for any strictly R-minimal v

vRDv ◦ f is manifold at v.

(3) If X is a T1-space, f : X �d F = (W , R) and R−1(w) �= ∅ for any w ∧ W, then
f : X �dd F≥, where F≥ := (W , R, W2).

Proof (1) Note that f is a p-morphism iff for any x ∧ X

f (X − {x}) = S(f (x)) =
{

W if f (x)Sf (x),

W − {f (x)} otherwise.

10 | . . . | denotes the cardinality.
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(2) By (1), f : X �dd F iff

≥v ∧ W(vRDv ◦
∣
∣
∣f−1(v)

∣
∣
∣ > 1).

The latter equivalence holds whenever R−1(v) �= ∅. Indeed, by Corollary 3,
df−1(v) = f−1(R−1(v)) �= ∅, and thus f−1(v) is not a singleton (since X is a
T1-space). R−1(v) �= ∅ also implies vRDv by Proposition 8.

(3) follows from (2). �
After we have proved the main technical results, in the next sections we will study

dd-logics of specific spaces.

11.7 D4 and DT1 as Logics of Zero-Dimensional
Dense-in-Themselves Spaces

In this section we will prove d-completeness of D4 and dd-completeness of DT1 w.r.t.
zero-dimensional spaces. The proof follows rather easily from the previous section
and an additional technical fact (Proposition 13) similar to the McKinsey–Tarski
lemma.

Recall that a (nonempty) topological space X is zero-dimensional if clopen sets
constitute its open base [4]. Zero-dimensional T1-spaces with a countable base are
subspaces of the Cantor discontinuum or of the set of irrationals [28].

Lemma 19 Let X be a zero-dimensional dense-in-itself Hausdorff space. Then for
any n there exists a nontrivial open partition X = X1 % . . . % Xn, in which every Xi

is also a zero-dimensional dense-in-itself Hausdorff space.

Proof It is sufficient to prove the claim for n = 2 and then apply induction. A dense-
in-itself space cannot be a singleton, so there are two different points x, y ∧ X. Since
X is T1 and zero-dimensional, there exists a clopen set U such that x ∧ U, y �∧ U.
So X = U ↑ (X−U) is a nontrivial open partition. The Hausdorff property, density-
in-itself, zero-dimensionality are inherited for open subspaces. �
Proposition 13 Let X be a zero-dimensional dense-in-itself metric space, y ∧ X.
Let ιl be the frame consisting of an irreflexive root b and its reflexive successors
a0, . . . , al−1 (Fig. 11.3). Then there exists f : X �d ιl such that f (y) = b and for
every i there is an open partition of f−1(ai) which is dense at y.

Proof Let O(a, r) := {x ∧ X | χ(a, x) < r }, where χ is the distance in X. There
exist clopen sets Y0, Y1, . . . such that

{y} ⊂ . . . ⊂ Yn+1 ⊂ Yn ⊂ . . . Y1 ⊂ Y0 = X

and Yn ∃ O(y, 1/n) for n > 0. These Yn can be easily constructed by induction.
Then
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Fig. 11.3 Frame ιl

⋂

n

Yn = {y} and X − {y} =
⊔

n

Xn,

where Xn = Yn − Yn+1. Note that the Xn are nonempty and open, Xn ∃ O(y, 1/n)

for n > 0.
Now define a map f : X −⊆ ιl as follows:

f (x) =
{

ar(n) if x ∧ Xn;
b if x = y,

where r(n) is the remainder of dividing n by l; it is clear that f is surjective.
Let us show that for any x,

x ∧ df−1(u) iff f (x)Ru. (∗)

(i) Assume that u = aj. Then f−1(u) = ⋃

n
Xnl+j, and

f (x)Ru iff (f (x) = b or f (x) = u).

To prove ‘if’ in (*), consider two cases.
1. Suppose f (x) = u, x ∧ Xnl+j. Since Xnl+j is nonempty and open, it is dense-

in-itself, and thus x ∧ dXnl+j ∃ df−1(u).
2. Suppose f (x) = b, i.e. x = y. Then x ∧ df−1(u) since Xnl+j ∃ O(y, 1/n).
The previous argument also shows that {Xnl+j | n → 0} is an open partition of

f−1(aj) which is dense at y.
To prove ‘only if ’, suppose f (x)Ru is not true. Then f (x) = ak for some k �= j,

and so for some n, x ∧ Xn, Xn ↓ f−1(u) = ∅. Since Xn is open, x �∧ df−1(u).
(ii) Assume that u = b. Then f−1(u) = {y}, and so df−1(u) = ∅ = f−1

(R−1(u)). �

Proposition 14 Let X be a zero-dimensional dense-in-itself separable metric space,
F a finite rooted D4-frame. Then there exists a d-morphism X �d F which is 1-fold
at the root of F if this root is irreflexive.

Proof By induction on the size of F.
(i) If F is a finite cluster, the claim follows from Proposition 11.
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(ii) If F = C ↑ F1 ↑ · · · ↑ Fl, where C = {b1, . . . , bm} is a non-degenerate root
cluster, F1, . . . , Fl are the subframes generated by the successors of C, we can apply
Lemma 15. In fact, every open ball U in X is zero-dimensional and dense-in-itself.

(iii) Suppose F = ≈b ↑ F0 ↑ · · · ↑ Fl−1, where b is an irreflexive root of F, Fi

are the subframes generated by the successors of b. There exists g : X �d ιl by
Proposition 13, with an arbitrary y ∧ X. Then g−1(ai) is a union of a set πi of disjoint
open sets, and πi is dense at y. If U ∧ πi, then by IH, there exists f U

i : U �d Fi. Put

f (x) =
{

b if x = y;
f U
i (x) if x ∧ U, U ∧ πi.

Then as in Lemma 15 it follows that f : X �d F.
Finally note that if the root of F is irreflexive, the first step of the construction is

case (iii), so the preimage of the root is a singleton. �

Theorem 1 If X is a zero-dimensional dense-in-itself separable metric space, then
Ld(X) = D4.

Proof By Propositions 14 and 10, Ld(X) ∃ L(F) for any finite rooted D4-frame
F, thus Ld(X) ∃ D4 since D4 has the fmp. By Lemma 8, D4 ∃ Ld(X). �

Lemma 20 Let X be a zero-dimensional dense-in-itself separable metric space, F
a finite D4-frame. Then there exists a d-morphism X �d F which is 1-fold at all
strictly minimal points.

Proof F = F1 ↑ . . . ↑ Fn for different finite rooted D4-frames Fi. By Lemma 19,
X = X1 % . . . % Xn for zero-dimensional dense-in-themselves subspaces Xi, which
are also metric and separable. By Proposition 14, we construct fi : Xi �d Fi. Then

by Lemma 17,
n⋃

i=1
fi : X �d F. Every strictly minimal point of F is an irreflexive

root of a unique Fi, so its preimage is a singleton. �

Proposition 15 Let X be a zero-dimensional dense-in-itself separable metric space,
F ∧ F0 a finite DT1-frame. Then there exists a dd-morphism X �dd F.

Proof We slightly modify the proof of the previous lemma. Let F = (W , R, RD),
G = (W , R). Then G = G1↑ . . .↑Gn for different cones Gi. We call Gi special if its
root is strictly R-minimal and RD-reflexive. We may assume that exactly G1, . . . , Gm

are special. Then we count them twice and present G as G1 ↑G⇐1 ↑ . . .↑Gm ↑G⇐m ↑
Gm+1↑ . . .↑Gn, where G⇐i = Gi for i ˆ m (or as G1↑G⇐1↑ . . .↑Gm↑G⇐m if m = n).

Now we can argue as in the proof of Lemma 20. By Lemma 19, X = X1 % X⇐1 %
. . .%Xm%X⇐m%Xm+1%. . .%Xn for zero-dimensional dense-in-itself separable metric
Xi,X

⇐
i. By Proposition 14, we construct the maps fi : Xi �d Gi, f ⇐i : X⇐i �d G⇐i, which

are 1-fold at irreflexive roots; hence by Lemma 17, f : X �d G for f :=
n⋃

i=1
fi↑

m⋃

i=1
f ⇐i .

Every strictly minimal point a ∧ G is an irreflexive root of a unique Gi. If a
is RD-irreflexive, then Gi is not special, so f−1(a) = f−1

i (a) is a singleton. If a is
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RD-reflexive, then Gi is special, so f−1(a) = f−1
i (a)↑ (f ⇐i )−1(a), and thus f is 2-fold

at a. Therefore, f : X �dd F by Proposition 12. �

Lemma 21 Let M = (W , R, RD,ϕ) be a rooted Kripke model over a basic frame11

validating AT1, ι a set of 2-modal formulas closed under subformulas. Let M ⇐ =
(W ⇐, R⇐, R⇐D, η ⇐) be a filtration of M through ι described in Lemma 4.12 Then the
frame (W ⇐, R⇐, R⇐D) is also basic and validates AT1.

Proof Clearly R⇐ is transitive by definition. For any two different a, b ∧ W ⇐ we have
aR⇐Db since xRDy for any x ∧ a, y ∧ b (as F ∧ F0).

Next, note that if a is R⇐D-irreflexive, then a = {x} for some RD-irreflexive x. In
this case, since (W , R, RD) ♦ AT1, there is no y such that yRx (Proposition 8), hence
(R⇐)−1(a) = ∅, and thus (W ⇐, R⇐, R⇐D) ♦ AT1.

Finally, R⇐ ∃ R⇐D. Indeed, all different points in F ⇐ are R⇐D-related, so it remains to
show that every R⇐D-irreflexive point is R⇐-irreflexive. As noted above, such a point
is a singleton class x∨ = {x}, where x is RD-irreflexive. Then x is R-minimal, so in
W ⇐ there is no loop of the form x∨Rx1R . . . Rx∨, and thus x∨ is R⇐-irreflexive. �

By a standard argument, Lemma 21 implies

Theorem 2 Every logic of the form KT1+A, where A is a closed 2-modal formula,
has the finite model property.

Theorem 3 Let X be a zero-dimensional dense-in-itself separable metric space.
Then Ld�=(X) = DT1.

Proof For any finite DT1-frame F we have Ld�=(X) ∃ L(F) by Proposition 15 and
Lemma 18. By the previous theorem, DT1 has the fmp, so Ld�=(X) ∃ DT1. Since
X ♦d DT1 (Proposition 7), it follows that Ld�=(X) = DT1. �

Proposition 16 [9, Lemma 3.1] Every countable13 rooted K4-frame is a d-morphic
image of a subspace of Q.

To apply this proposition to the language with the difference modality, we need to
examine the preimage of the root for the constructed morphism. Fortunately, in the
proof of Lemma 3.1 in [9] the preimage of a root r is a singleton iff r is irreflexive.

Lemma 22 Let F be a countable K4-frame. Then there exists a d-morphism from a
subspace of Q onto F which is 1-fold at all strictly minimal points.

Proof Similar to Lemma 20. We can present F as a countable union of different
cones

⋃

i∧I
Fi and Q as a disjoint union

⊔

i∧I
Xi of spaces homeomorphic to Q. By

Proposition 16 (and the discussion after it), for each i there exists fi : Yi �d Fi for

11 Basic frames were defined in Sect. 11.4.
12 Recall that R⇐ is the transitive closure of R, R⇐D = RD.
13 In this chapter, as well as in [9], ‘countable’ means ‘of cardinality at most ℵ0’.



314 A. Kudinov and V. Shehtman

some subspaceYi ∃ Xi such that fi is 1-fold at the root ri of Fi if ri is irreflexive. Now
by Lemma 17 f := ⋃

i∧I
fi : ⊔

i∧I
Yi �d F, and f is 1-fold at all strictly minimal points

of F (i.e., the irreflexive ri)—since every ri belongs only to Fi, so f−1(ri) = f−1
i (ri).

�

Proposition 17 Let F be a countable KT1-frame. Then there exists a dd-morphism
from a subspace of Q onto F.

Proof Similar to Proposition 15. If F = (W , R, RD), the frame G = (W , R) is
a countable union of different cones. There are two types of cones: non-special
Gi (i ∧ I) and special (with strictly R-minimal and RD-reflexive roots) Hj (j ∧ J):

G =
⋃

i∧I

Gi ↑
⋃

j∧J

Hj.

Then we duplicate all special cones

G =
⋃

i∧I

Gi ↑
⋃

j∧J

Hj ↑
⋃

j∧J

H ⇐
j

and as in the proof of 16, construct f : ⊔

i∧I
Yi % ⊔

j∧J
Zj % ⊔

j∧J
Z ⇐

j �d F. This map is

1-fold exactly at all RD-irreflexive points, so it is a dd-morphism onto F. �

Corollary 4 Ld �=(all T1-spaces) = KT1.

Proof Note that KT1 is complete w.r.t. countable frames and every subspace of
Q is T1. �

Proposition 18 Let ℘ = KT1 + δ be a consistent logic, where δ is a set of closed
formulas. Then ℘ is dd-complete w.r.t. subspaces of Q.

Proof Since every closed formula is canonical, ℘ is Kripke complete. So for every
formula A /∧ ℘ there is a frame FA such that FA |= ℘ and FA ∅ A. By Proposition 17,
there is a subspace XA ∃ Q and fA : XA �dd FA. Then XA �♦ A, XA ♦ ℘ by Lemma
18. Therefore, Ld�=(K ) = ℘ for K := {XA |A /∧ ℘ }. �

Remark 6 A logic of the form described in Proposition 18 is dd-complete w.r.t. a set
of subspaces of Q. This set may be non-equivalent to a single subspace. For example,
there is no subspace X ∃ Q such that KT1 = Ld�=(X). Indeed, consider

A := [�=]�⊥∈�⊥.

Then A is satisfiable in X iff X ♦d A iff X is discrete. So A is consistent in KT1. Now
if KT1 = Ld�=(X), then A must be satisfiable in X, hence X ♦d A; but KT1 �∗ A,
and so we have a contradiction.
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11.8 Connectedness

Connectedness was the first example of a property expressible in cu-logic, but not
in c-logic. The corresponding connectedness axiom from [37] will be essential for
our further studies. In this section we show that it is weakly canonical, i.e., valid in
weak canonical frames—a fact not mentioned in [37].

Lemma 23 [37] A topological space X is connected iff X ♦c AC, where

AC := [≥](�p ∩�¬p) ⊆ [≥]p ∩ [≥]¬p.

For the case of Alexandrov topology there is an equivalent definition of connect-
edness in relational terms.

Definition 20 For a transitive Kripke frame F = (W , R) we define the comparability
relation R± := R↑R−1 ↑ IW . F is called connected if the transitive closure of R± is
universal. A subset V ∃ W is called connected in F if the frame F|V is connected.

A 2-modal frame (W , R, S) is called (R)-connected if (W , R) is connected.

Thus F is connected iff every two points x, y can be connected by a non-
oriented path (which we call just a path), a sequence of points x0x1 . . . xn such that
x = x0R±x1 . . . R±xn = y.

From [37] and Proposition 6 we obtain

Lemma 24 (1) For an S4-frame F, the associated space N(F) is connected iff F is
connected.

(2) For a K4-frame F, F≥ |= ACσu iff F is connected.

Lemma 25 Let M = (W , R, RD, η) be a rooted generated submodel of the m-weak
canonical model for a modal logic ℘ ⊇ K4D+. Then

(1) Every R-cluster in M is finite of cardinality at most 2m.
(2) (W , R) has finitely many R-maximal clusters.
(3) For each R-maximal cluster C in M there exists an m-formula κ(C) such that:

≥x ∧ M (M, x ♦ κ(C) ◦ x ∧ R
−1

(C)).

The proof is similar to [12, Sect. 8.6].

Lemma 26 Every rooted generated subframe of a weak canonical frame for a logic
℘ ⊇ K4D+ + ACσu is connected.

Proof Let M be a weak canonical model for ℘, M0 its rooted generated submodel
with the frame F = (W , R, RD), and suppose F is disconnected. Then there exists
a nonempty proper clopen subset V in the space N(W , R). Let φ be the set of all
R-maximal clusters in V and put
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B :=
∨

C∧φ

κ(C).

Then B defines V in M0, i.e., V = R
−1

(
⋃

φ). Indeed,
⋃

φ ∃ V implies

R
−1

(
⋃

φ) ∃ V since V is closed. The other way round, V ∃ R
−1

(
⋃

φ) since
for any v ∧ V , R(v) contains an R-maximal cluster C ∧ φ, and R(v) ∃ V as V is
open.

So w |= B for any w ∧ V , and since V is open, w |= �B. By the same reason,
w |= �¬B for any w �∧ V . Hence

M0 |= [≥] (�B ∩�¬B).

By Proposition 1, all substitution instances of AC are true in M0. So we have

M0 |= [≥] (�B ∩�¬B) ⊆ [≥] B ∩ [≥]¬B,

and thus
M0 |= [≥] B ∩ [≥]¬B.

This contradicts the fact that V is a nonempty proper subset of W . �

In d-logic instead of connectedness we can express some its local versions; they
will be considered in the next section.

11.9 Kuratowski Formula and Local 1-Componency

In this section we briefly study the Kuratowski formula distinguishing R from R2 in
d-logic. Here the main proofs are similar to the previous section, so most of the
details are left to the reader.

Definition 21 We define the Kuratowski formula as

Ku := �(�p ∩�¬p) ⊆ �p ∩�¬p.

The spaces validating Ku are characterized as follows [31].

Lemma 27 For a topological space X, X ♦d Ku iff
for any x ∧ X and any open neighbourhood U of x, if U − {x} is a disjoint union

V1 ↑ V2 of sets open in the subspace U − {x}, then there exists a neighbourhood14

V ∃ U of x such that V − {x} ∃ V1 or V − {x} ∃ V2.

14 In [31] neighbourhoods are assumed to be open, but this does not matter here since every
neighbourhood contains an open neighbourhood.
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Definition 22 A topological space X is called locally connected if every neighbour-
hood of any point x contains a connected neighbourhood of x. Similarly, X is called
locally 1-component if every punctured neighbourhood of any point x contains a
connected punctured neighbourhood of x.

It is well known [4] that in a locally connected space every neighbourhood U
of any point x contains a connected open neighbourhood of x (e.g. the connected
component of x in IU).

Lemma 28 If X is locally 1-component, then X ♦d Ku.

The proof is straightforward, and we leave it to the reader.

Lemma 29 (1) Every space d-validating Ku has the following non-splitting prop-
erty:

(NSP) If an open set U is connected, x ∧ U and U − {x} is open, then U − {x} is
connected.
(2) Suppose X is locally connected and local T1. Then (NSP) holds in X iff X is
locally 1-component iff X ♦d Ku.

Proof (1) We assume X ♦d Ku and check (NSP). Suppose U is open and connected,
U≤ := U − {x} is open, and consider a partition U≤ = U1 ↑ U2 for open U1, U2.
By Lemma 27 there exists an open V ∃ U containing x such that V ∃ {x} ↑ U1 or
V ∃ {x}↑U2. Consider the first case (the second one is similar). We have a partition

U = ({x} ↑ U1) ↑ U2,

and {x}↑U1 = V ↑U1, so {x}↑U1 is open. Hence by connectedness, U = {x}↑U1,
i.e., U≤ = U1. Therefore, U≤ is connected.

(2) It suffices to show that (NSP) implies the local 1-componency. Consider x ∧ X
and its neighbourhood U1. SinceX is local T1, U1 contains an open neighborhood U2
in which x is closed, i.e., C{x} ↓U2 = {x}. By the local connectedness, U2 contains
a connected open neighbourhood U3, and again C{x} ↓ U3 = {x}; thus U3 − {x} is
open. By (NSP), U3 − {x} is connected. �

Remark 7 The (n-th) generalized Kuratowski formula is the following formula in
variables p0, . . . , pn

Kun := �
n∨

k=0

�Qk ⊆
n∨

k=0

�¬Qk,

where Qk := pk ∈ ∧

j �=k
¬pj.

The formula Ku1 is related to the equality found by Kuratowski [27]:

(∗) d((x ↓ d(−x)) ↑ (−x ↓ dx)) = dx ↓ d(−x),
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which holds in every algebra DA(Rn) for n > 1, but not in DA(R). This equality
corresponds to the modal formula

Ku⇐ := ♦((p ∈ ♦¬p) ∩ (¬p ∈ ♦p)) ∅ ♦p ∈ ♦¬p,

and one can show that D4+ Ku⇐ = D4+ Ku1 = D4+ Ku.

Remark 8 The class of spaces validating Kun is described in [31]. In particular, it is
valid in all locally n-component spaces defined as follows.

A neighbourhood U of a point x in a topological space is called n-component at
x if the punctured neighbourhood U − {x} has at most n connected components. A
topological space is called locally n-component if the n-component neighbourhoods
at each of its points constitute a local base (i.e., every neighbourhood contains an
n-component neighbourhood).

Lemma 30 [31] For a transitive Kripke frame (W , R)

(W , R) ♦ Ku iff for any R-irreflexive x, the subset R(x) is connected (in the sense
of Definition 20).

Theorem 4 The logics K4 + Ku, D4 + Ku are weakly canonical, and thus Kripke
complete.

A proof of Theorem 4 based on Lemma 30 and a 1-modal version of Lemma 30
is straightforward, cf. [36] or [31] (the latter paper proves the same for Kun).

Hence we obtain

Theorem 5 The logic DT1K := DT1 + Ku is weakly canonical, and thus Kripke
complete.

Proof (Sketch.) For the axiom Ku the argument from the proof of Theorem 4 is still
valid due to the definability of all maximal clusters (Lemma 25). The remaining
axioms are Sahlqvist formulas. �

Theorem 6 The logic DT1CK := DT1K + ACσu is weakly canonical, and thus
Kripke complete.

Proof We can apply the previous theorem and Lemma 26. �

Completeness theorems from this section can be refined: in the next section we
will prove the fmp for the logics considered above.

11.10 The Finite Model Property of D4K, DT1K, and DT1CK

For the logic D4 + Ku the first proof of the fmp was given in [36]. Another proof
(also for D4+Kun) was proposed by M. Zakharyaschev [40]; it is based on a general
and powerful method.
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In this section we give a simplified version of the proof from [36]. It is based on a
standard filtration method, and the same method is also applicable to 2-modal logics
DT1K, DT1CK.

Theorem 7 The logics DT1K and DT1CK have the finite model property.

Proof Let ℘ be one of these logics. Consider an m-formula A �∧ ℘. Take a generated
submodel M = (W , R, RD,ϕ) of the m-restricted canonical model of ℘ such that
M, u �♦ A for some u. As we know, its frame is basic and its R-maximal clusters are
definable (Lemma 25).

Put

ι0 := {κ(C) |C is an R-maximal cluster in M } ,
ι1 := {A} ↑

{
� γ | γ is a Boolean combination of formulas from ι0

}
,

ι := the closure of ι1under subformulas.

The set ι is obviously finite up to equivalence in ℘.
Take the filtration M ⇐ = (W ⇐, R⇐, R⇐D,ϕ⇐) of M through ι as in Lemma 21. By

that lemma, F ⇐ := (W ⇐, R⇐, R⇐D) ♦ KT1. The seriality of R⇐ easily follows from the
seriality of R.

Next, if ℘ = DT1CK, the frame (W , R, RD) is connected by Lemma 26. So for
any x, y ∧ W there is an R-path from x to y. aRb implies a∨R⇐b∨, so there is an
R⇐-path from x∨ to y∨ in F ⇐. Therefore, F ⇐ ♦ ACσu. It remains to show that F ⇐ ♦ Ku.
Consider an R⇐-irreflexive point x∨ ∧ W ⇐ and assume that R⇐(x∨) is disconnected.
Let V be a nonempty proper connected component of R⇐(x∨). Consider

φ := {
C

∣
∣ ∀y(y∨ ∧ V & C ∃ R(y) & C is an R-maximal cluster in M)

} ;
B :=

∨

C∧φ

κ(C),

where κ(C) is from Lemma 25. Note that

(1) z ∧ C & C ∧ φ ⇒ z∨ ∧ V .

Indeed, if C ∧ φ, then for some y∨ ∧ V we have yRz; hence y∨R⇐z∨, so z∨ ∧ V by
connectedness of V . Let us show that for any y∨ ∧ R⇐(x∨)

(2) M ⇐, y∨ |= B iff M, y |= B iff y∨ ∧ V ,

i.e., B defines V in R⇐(x∨).
The first equivalence holds by the Filtration Lemma since B ∧ ι1. Let us prove

the second equivalence. To show ‘if’, suppose y∨ ∧ V . By Lemma 5, in the restricted
canonical model there is a maximal cluster C R-accessible from y; then M, y |= κ(C).
We have C ∧ φ, and thus M, y |= B.
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To show ‘only if’, suppose y∨ �∧ V , but M, y |= B. Then M, y |= κ(C) for some
C ∧ φ, hence C ∃ R(y), i.e., yRz for some (and for all) z ∧ C; so it follows that
y∨R⇐z∨. Thus y∨ and z∨ are in the same connected component of R⇐(x∨), which
implies z∨ �∧ V . However, z∨ ∧ V by (1), leading to a contradiction.

By Proposition 1, all substitution instances of Ku are true in M. So

M ♦ Ku(B) := �(�B ∩�¬B) ⊆ �B ∩�¬B.

Consider an arbitrary y ∧ R(x). Then for any z ∧ R(y), y∨ and z∨ are in the same
connected component of R⇐(x∨). Thus y∨ and z∨ are both either in V or not in V , and
so by (2), both of them satisfy either B or¬B. Hence M, y |= �B∩�¬B. Therefore, x
satisfies the premise of Ku(B). Consequently, x must satisfy the conclusion of Ku(B).
Thus M, x |= �B or M, x |= �¬B. Since �B,�¬B ∧ ι1, the Filtration Lemma
implies M ⇐, x∨ ♦ �B or M ⇐, x∨ ♦ �¬B. By (2), V = R⇐(x∨) or V = ∅, which
contradicts the assumption about V .

To conclude the proof, note that A ∧ ι, so by the Filtration Lemma M ⇐, u∨ ∅ A.
As we have proved, F ⇐ |= ℘. Therefore, ℘ has the fmp. �

Theorem 8 The logic D4K has the finite model property.

Proof Use the argument from the proof of Theorem 7 without the second
relation. �

Thanks to the fmp, we have a convenient class of Kripke frames for the logic
DT1CK. This will allow us to prove the topological completeness result in the next
section.

11.11 The dd-Logic of Rn, n ≥ 2

This section contains the main result of the chapter. The proof is based on the fmp
theorem from the previous section and a technical construction of a dd-morphism
presented in the Appendix.

In this section ‖·‖ denotes the standard norm in Rn, i.e. for x ∧ Rn

‖x‖ =
⎛

x2
1 + . . .+ x2

n .

We begin with some simple observations on connectedness. For a path π =
w0w1 . . . wn in a K4-frame (W , R) we use the notation R(π) :=

n⋃

i=0
R(wi). A path π

is called global (in F) if R(π) = W .

Lemma 31 Let F = (W , R) be a finite connected K4-frame, w, v ∧ W. Then there
exists a global path from w to v.
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Fig. 11.4 Path π

Proof In the finite connected graph (W , R±) the vertices w, v can be connected by a
path visiting all the vertices (possibly several times). �

Lemma 32 Let F = (W , R, RD) be a finite rooted DT1CK-frame. Then the set of
all RD-reflexive points in F is connected.

Proof Let x, y be two RD-reflexive points. Since (W , R) is connected, there exists
a path connecting x and y. Consider such a path π with the minimal number n of
RD-irreflexive points, and let us show that n = 0.

Suppose not. Take an RD-irreflexive point z in π; then π = x . . . uzv . . . y for some
u, v, and it is clear that zRu, zRv since z is strictly R-minimal. By Lemma 30, R(z) is
connected, so u, v can be connected by a path κ in R(z). Thus in π we can replace the
part uzv with κ, and the combined path x . . . κ . . . y contains (n − 1) RD-irreflexive
points, which contradicts the minimality of n. �

Lemma 33 Let F = (W , R, RD) be a finite rooted DT1CK-frame and let w⇐, w⇐⇐ ∧
W be RD-reflexive. Then there is a global path π = w0 . . . wn in (W , R) such that
w⇐ = w0, wn = w⇐⇐ and all RD-irreflexive points occur only once in π.

Proof Let {u1, . . . , uk} be the RD-irreflexive points. By connectedness, there exist
paths π0, …, πk from w⇐ to u1, from u1 to u2, …, and from uk to w⇐⇐, respectively.

By Lemma 32, the set W ⇐ := W − {u1, . . . , uk} is connected. Hence we may
assume that each πi does not contain RD-irreflexive points except its ends. Also there

exists a loop κ in F ⇐ := F|W ⇐ from w⇐⇐ to w⇐⇐ such that W −
k−1⋃

i=1
R(πi) ∃ R(κ).

Then we can define π as the joined path π0 . . . πkκ (Fig. 11.4). �

Proposition 19 For a finite rooted DT1CK-frame F = (W , R, RD) and R-reflexive
points w⇐, w⇐⇐ ∧ W, the following holds.

(a) If X = {x ∧ Rn | ||x|| ˆ r}, n → 2, then there exists f : X �dd F such that
f (ψX) = {

w⇐
}
;

(b) If 0 ˆ r1 < r2 and

X = {
x ∧ Rn | r1 ˆ ||x|| ˆ r2

}
,

Y ⇐ = {
x ∧ Rn | ||x|| = r1

}
, Y ⇐⇐ = {

x ∧ Rn | ||x|| = r2
}
,

then there exists f : X �dd F such that f (Y ⇐) = {
w⇐

}
, f (Y ⇐⇐) = {

w⇐⇐
}
.
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For the proof see Appendix.

Theorem 9 For n → 2, the dd-logic of Rn is DT1CK.

Proof Since Rn is a locally 1-component connected dense-in-itself metric space,
Rn |=d DT1CK.

Now consider a formula A /∧ DT1CK. Due to the fmp (Theorem 7) there exists
a finite rooted Kripke frame F = (W , R, RD) ♦ DT1CK such that F ∅ A. By
Proposition 19 there exists f : Rn �dd F. Hence Rn ∅d A by Lemma 18.

�

11.12 Concluding Remarks

Hybrid logics. Logics with the difference modality are closely related to hybrid
logics. The paper [29] describes a validity-preserving translation from the language
with the topological and difference modalities into the hybrid language with the
topological modality, nominals and the universal modality.

Apparently a similar translation exists for dd-logics considered in our chapter.
There may be an additional option—to use ‘local nominals’, propositional constants
that may be true not in a single point, but in a discrete set. Perhaps one can also con-
sider ‘one-dimensional nominals’ naming ‘lines’ or ‘curves’ in the main topological
space; there may be many other similar options.

Definability. Among several types of topological modal logics considered in this
chapter dd-logics are the most expressive. The correlation between all the types are
shown in Fig. 11.5. A language L1 is reducible to L2 (L1 ˆ L2) if every L1-
definable class of spaces is L2-definable; L1 < L2 if L1 ˆ L2 and L2 � L1. The
non-strict reductions 1–7 in Fig. 11.5 are rather obvious. Let us explain why 1–6 are
strict.

The relations 1 and 2 are strict since the c-logics of R and Q coincide [32], while
the cu- and d-logics are different [15, 37].

The relation 3 is strict since in d-logic without the universal modality we cannot
express connectedness (this follows from [15]). The relations 4 and 6 are strict, since
the cu-logics of R and R2 are the same [37], while the cd- and du-logics are different
[17, 31].

In cd- and dd-logics we can express global 1-componency: the formula

[�=](�p ∩�¬p) ⊆ [�=]p ∩ [�=]¬p

is c-valid in a space X iff the complement of any point in X is connected. So we
can distinguish the line R and the circle S1. In du- (and cu-) logic this is impossible,
since there is a local homemorphism f (t) = eit from R onto S1. It follows that the
relation 5 is strict. Our conjecture is that the relation 7 is strict as well.

Axiomatization. There are several open questions about axiomatization and com-
pleteness of certain dd-logics.



11 Derivational Modal Logics with the Difference Modality 323

Fig. 11.5 Correlation between topomodal languages

1. The first group of questions is about the logic of R. On the one hand, in [25]
it was proved that Lc �=(R) is not finitely axiomatizable. Probably the same method
can be applied to Ld �=(R). On the other hand, Lc �=(R) has the fmp [24], and we
hope that the same holds for the dd-logic. The decidability of Ld �=(R) follows from
[11], since this logic is a fragment of the universal monadic theory of R; and by a
result from [34] it is PSPACE-complete. However, constructing an explicit infinite
axiomatization of Lc �=(R) or Ld �=(R) might be a serious technical problem.

2. A ‘natural’ semantical characterization of the logic DT1C + Ku2 (which is a
proper sublogic of Ld �=(R)) is not quite clear. Our conjecture is that it is complete
w.r.t. 2-dimensional cell complexes, or more exactly, adjunction spaces obtained
from finite sets of 2-dimensional discs and 1-dimensional segments.

3. We do not know any syntactic description of dd-logics of 1-dimensional cell
complexes (i.e., unions of finitely many segments in R3 that may have only endpoints
as common). Their properties are probably similar to those of Ld �=(R).

4. It may be interesting to study topological modal logics with the graded modal-
ities [�=]nA with the following semantics: x |= [�=]nA iff there are at least n points
y �= x such that y |= A.

5. The papers [32] and [21] prove completeness and strong completeness of S4
w.r.t. any dense-in-itself metric space. The corresponding result for d-logics is com-
pleteness of D4 w.r.t. an arbitrary dense-in-itself separable metric space. Is separabilty
essential here? Does strong completeness hold in this case? Similar questions make
sense for dd-logics.

6. Gabelaia [17] presents a 2-modal formula cd-valid exactly in T0-spaces. How-
ever, the cd-logic (and the dd-logic) of the class of T0-spaces is still unknown. Note
that the d-logic of this class has been axiomatized in [8]; probably the same technique
is applicable to cd- and dd-logics.

7. In footnote 7 we have mentioned that there is a gap in the paper [37]. Still we
can prove that for any connected, locally connected metric space X such that the
boundary of any ball is nowhere dense, Lc≥(X) = S4U + AC. But for an arbitrary
connected metric space X we do not even know if Lc≥(X) is finitely axiomatizable.

8. Is it possible to characterize finitely axiomatizable dd-logics that are complete
w.r.t. Hausdorff spaces? metric spaces? Does there exist a dd-logic complete w.r.t.
Hausdorff spaces, but incomplete w.r.t. metric spaces?

9. Suppose we have a c-complete modal logic L, and let K be the class of all
topological spaces where L is valid. Is it always true that Lc≥(K ) = LU? and
Lc �=(K ) = LD? Similar questions can be formulated for d-complete modal logics
and their du- and dd-extensions.
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10. An interesting topic not addressed in this chapter is the complexity of topo-
modal logics. In particular, the complexity is unknown for the d-logic (and the dd-
logic) of Rn (n > 1).
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Appendix

Finally let us give technical details of the proofs of Propositions 11, 19.

Proposition 11 Let X be a dense-in-itself separable metric space, B ⊂ X a closed
nowhere dense set. Then there exists a d-morphism g : X �d αml with the following
properties:

(1) B ∃ g−1(b1);
(2) every g−1(ai) (fori ˆ l) is a union of a set πi of disjoint open balls, which is

dense at any point of g−1({b1, . . . , bm}).
The frame αml is shown in Fig. 11.1.

Proof Let X1, . . . , Xn, . . . be a countable base of X consisting of open balls. We
construct sets Aik, Bjk for 1 ˆ i ˆ l, 1 ˆ j ˆ m, k ∧ ∂, with the following
properties:

(1) Aik is the union of a finite set πik of nonempty open balls whose closures are
disjoint;

(2) CAik ↓ CAi⇐k = ∅ for i �= i⇐;
(3) πik ∃ πi,k+1; Aik ∃ Ai,k+1;
(4) Bjk is finite;
(5) Bjk ∃ Bj,k+1;
(6) Aik ↓ Bjk = ∅;
(7) Xk+1 ∃

l⋃

i=1
Aik ⇒ πi,k+1 = πik, Bj,k+1 = Bjk;

(8) if Xk+1 �∃
l⋃

i=1
Aik , there are closed nontrivial balls P1, . . . , Pl such that for any

i, j

Pi ∃ Xk+1 − Aik, πi,k+1 = πik ↑ {IPi}, (Bj,k+1 − Bjk) ↓ Xk+1 �= ∅;

(9) Aik ∃ X − B;
(10) Bjk ∃ X − B;
(11) j �= j⇐ ⇒ Bj⇐k ↓ Bjk = ∅ .
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Fig. 11.6 Case k = 0

We carry out both the construction and the proof by induction on k.
Let k = 0; (X − B) is infinite since it is nonempty and open in a dense-in-

itself X. Take distinct points v1, . . . , vl �∧ B and disjoint closed nontrivial balls
Z1, . . . , Zl ⊂ X − B with centers at v1, . . . , vl, respectively (see Fig.11.6).

Put
πi0 := {IZi}; Ai0 := IZi;

then Zi = CAi0. As above, since (X−B)−
l⋃

i=1
Zi is nonempty and open, it is infinite.

Pick distinct w1, . . . , wm ∧ X − B and put Bj0 := {wj}. Then the required properties
hold for k = 0.

At the induction step we construct Ai,k+1, Bj,k+1. Put Yk :=
l⋃

i=1
Aik and consider

two cases.
(a) Xk+1 ∃ Yk . Then put:

πi,k+1 := πik; Ai,k+1 := Aik; Bj,k+1 := Bjk .

(b) Xk+1 �∃ Yk . Then Xk+1 �∃ CYk . Indeed, Xk+1 ∃ CYk implies Xk+1 ∃ ICYk = Yk
since Xk+1 is open and by (1) and (2). So we put

W0 := Xk+1 − CYk −
m⋃

j=1

Bjk, W := W0 − B.

Since (Xk+1 − CYk) is nonempty and open and every Bjk is finite by (4), W0 is also
open and nonempty (by the density of X). By the assumption of Proposition 11, B is
closed, and thus W is open.

W is also nonempty. Otherwise W0 ∃ B, and then W0 ∃ IB = ∅ (since B is
nowhere dense by the assumption of Proposition 11).

Now we argue similarly to the case k = 0. Take disjoint closed nontrivial balls

P1, . . . , Pl ⊂ W . Then W −
l⋃

i=1
Pi is infinite, so we pick distinct b1,k+1, . . . , bm,k+1

in this set and put

Bj,k+1 := Bjk ↑ {bj,k+1}, πi,k+1 := πik ↑ {IPi}, Ai,k+1 := Aik ↑ IPi.
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In case (a) all the required properties hold for (k + 1) by the construction.
In case (b) we have to check only (1), (2), (6), (8)–(11).
(8) holds since by construction we have

Pi ⊂ W ⊂Xk+1 − CYk ⊂ Xk+1 − Aik;
bj,k+1 ∧ W ∃Xk+1, bj,k+1 ∧ (Bj,k+1 − Bjk).

(1): From IH it is clear that πi,k+1 is a finite set of open balls and their closures
are disjoint; note that Pi ↓ CAik = ∅ since Pi ∃ W ∃ −CAik .

(2): We have

CAi,k+1 ↓ CAi⇐,k+1 = (CAik ↑ Pi) ↓ (CAi⇐k ↑ Pi⇐)

= (CAik ↓ CAi⇐k) ↑ (CAik ↓ Pi⇐) ↑ (CAi⇐k ↓ Pi) ↑ (Pi ↓ Pi⇐)

= CAik ↓ CAi⇐k = ∅

by IH and by the construction; note that Pi, P⇐i ∃ W ∃ −CYk .
(6): We have

Ai,k+1↓Bj,k+1 = (Aik ↓Bjk)↑ (IPi ↓
{
bj,k+1

}
)↑ (Aik ↓

{
bj,k+1

}
)↑ (IPi ↓Bjk) = ∅

by IH and since bj,k+1 �∧ Pi, bj,k+1 ∧ W ∃ X − Yk , Pi ⊂ W ∃ X − Bjk .

(9): We have Ai,k+1 = Aik ↑ IPi ∃ −B since Aik ∃ −B by IH, and Pi ⊂ W ∃ −B
by the construction.

Likewise, (10) follows from Bjk ∃ −B and bj,k+1 ∧ W ∃ −B.
To check (11), assume j �= j⇐. We have Bj⇐,k+1 ↓ Bj,k+1 = Bj⇐k ↓ Bjk since

bj⇐,k+1 �= bj,k+1, bj,k+1 ∧ W ∃ −Bj⇐k and bj⇐,k+1 ∧ W ∃ −Bjk . Then apply IH.
Therefore, the required sets Aik, Bjk are constructed. Now put

πi :=
⋃

k

πik, Ai :=
⋃

πi =
⋃

k

Aik, Bj :=
⋃

k

Bjk,

B⇐1 := X − (
⋃

i

Ai ↑
⋃

j

Bj),

and define a map g : X −⊆ αml as follows:

g(x) :=
⎝
⎞

⎠

ai if x ∧ Ai,

bj if x ∧ Bj, j �= 1,

b1 otherwise (i.e., for x ∧ B⇐1).

By (2), (3), (5), (6), (11), g is well defined; by (9), (10), B ∃ g−1(b1).
To prove that g is a d-morphism, we check some other properties.
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(12) X −
l⋃

i=1
Ai ∃ dBj.

Indeed, take an arbitrary x �∧
l⋃

i=1
Ai and show that x ∧ dBj, i.e.,

(13) (U − {x}) ↓ Bj �= ∅

for any neighbourhood U of x. First assume that x �∧ Bj. Take a basic open Xk+1 such

that x ∧ Xk+1 ∃ U. Then Xk+1 �∃
l⋃

i=1
Ai, and (8) implies Bj,k+1 ↓ Xk+1 �= ∅. Thus

Bj ↓ U �= ∅. So we obtain (13).
Suppose x ∧ Bj; then x ∧ Bjk for some k. Since X is dense-in-itself and

{X1, X2, . . . } is its open base, {Xs+1 | s → k } is also an open base (note that every ball

in X contains a smaller ball). So x ∧ Xs+1 ∃ U for some s → k. Since x �∧
l⋃

i=1
Ai, we

have Xs+1 �∃
l⋃

i=1
Ai, and so (Bj,s+1−Bjs)↓Xs+1 �= ∅ by (8); thus (Bj−Bjs)↓U �= ∅.

Now x ∧ Bjk ∃ Bjs implies (13).

(14) dBj ∃ X −
l⋃

i=1
Ai.

Indeed, Bj ∃ −Ai by (3), (5), (6). So dBj ∃ d(−Ai) ∃ −Ai since Ai is open.
Similarly we obtain

(15) dB⇐1 ∃ X −
l⋃

i=1
Ai, dAi ∃ X − ⋃

r �=i
Ar .

Also note that

(16) Ai ∃ dAi

since Ai is open, X is dense-in-itself. As in (12) we have

(17) πi is dense at every point of Bj, B⇐1 (and thus Bj, B⇐1 ∃ dAi).

To conclude that g is a d-morphism, note that

g−1(ai) = Ai, g−1(bj) = Bj (for j �= 1), g−1(b1) = B⇐1,

and so by (15), (16), (17)
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dg−1(ai) = dAi = X −
⋃

r �=i

Ar = g−1(R−1(ai)),

and by (12), (14), (15)

dg−1(bj) = dBj = X −
l⋃

i=1

Ai = g−1(R−1(bj)) (for j �= 1),

dg−1(b1) = dB⇐1 = X −
l⋃

i=1

Ai = g−1(R−1(b1)). �

Proposition 19 For a finite rooted DT1CK-frame F = (W , R, RD) and R-reflexive
points w⇐, w⇐⇐ ∧ W , the following holds.

(a) If X = {x ∧ Rn | ||x|| ˆ r}, n → 2, then there exists f : X �dd F such that
f (ψX) = {

w⇐
} ;

(b) If 0 ˆ r1 < r2 and

X = {
x ∧ Rn | r1 ˆ ||x|| ˆ r2

}
,

Y ⇐ = {
x ∧ Rn | ||x|| = r1

}
, Y ⇐⇐ = {

x ∧ Rn | ||x|| = r2
}
,

then there exists f : X �dd F such that f (Y ⇐) = {
w⇐

}
, f (Y ⇐⇐) = {

w⇐⇐
}
.

Proof By induction on |W |. Let us prove (a) first. There are five cases:
(a1) W = R(b) (and hence bRb) and b = w⇐. Then there exists f : X �d (W , R).

Indeed, let C be the cluster of b (as a subframe of (W , R)). Then (W , R) = C or
(W , R) = C ↑ F1 ↑ . . . ↑ Fl, where the Fi are generated by the successors of C. If
(W , R) = C, we apply Proposition 11; otherwise we apply Lemma 15 and IH.

By Proposition 8 it follows that RD is universal. And so by Proposition 12(3) f is
a dd-morphism.

(a2) W = R(b) and not w⇐Rb. We may assume that r = 3. Put

X1 := {x | ||x|| ˆ 1} , Y := {x | 1 ˆ ||x|| ˆ 2} , X2 := {x | 2 ˆ ||x|| ˆ 3} .

By the case (a1), there is f1 : X1 �dd F with f1(ψX1) = {b}. Let C be a maximal
cluster in R(w⇐). By Proposition 11 there is g : IY �d C. Since R(w⇐) �= W , we can
apply IH to the frame F ⇐ := Fw⇐

≥ and construct a dd-morphism f2 : X2 �dd F ⇐ with
f2(ψX2) =

{
w⇐

}
. Now since fi(ψXi) ∃ R−1(C), the Glueing lemma 16 is applicable.

Thus f : X �d F for f := f1↑ f2↑g [See Fig. 11.7, Case (a2)]. Note that ψX ⊂ ψX2,
so f (ψX) = f2(ψX) = {w⇐}.

As in case (a1), f is a dd-morphism by Proposition 12.
(a3) (W , R) is not rooted. By Lemma 33 there is a global path π in F with

a single occurrence of every RD-irreflexive point. We may assume that π =
b0c0b1c1 . . . cm−1bm, bm = w⇐ and for any i < m, ci ∧ Ci ∃ R(bi) ↓ R(bi+1),
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Fig. 11.7 dd-morphism f

where Ci is an R-maximal cluster. Such a path is called reduced. For 0 ˆ j ˆ m we
put Fj := F|R(bj).

Since (W , R) is not rooted, each Fj is of smaller size than F, so we can apply the
induction hypothesis to Fj. We may assume that

X = {x | ||x|| ˆ 2m+ 1} , Y = {x | ||x|| = 2m + 1} .

Then put
Xi := {x | ||x|| ˆ i + 1} for 0 ˆ i ˆ 2m,

Yi := ψXi, φi := C(Xi − Xi−1) for 0 ˆ i ˆ 2m.

By IH and Proposition 11 there exist

f0 :X0 �dd F0 such that f0(Y0) = {c0},
f2j :φ2j �dd Fj such that f2j(Y2j) = {cj}, f2j(Y2j−1) = {cj−1} for 1 ˆ j ˆ m,

f2j−1 :Iφ2j+1 �d Cj for 0 ˆ j ˆ m − 1.

One can check that f : X �dd F for f :=
2m⋃

j=0
fj (Fig. 11.7).

(a4) W = R(b), ¬bRDb (and so ¬bRb). We may assume that

X = {x | ||x|| ˆ 2} , Y = {x | ||x|| = 2} .

Then similar to case (a3) put
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Case (a5)Case (a4)

Fig. 11.8 dd-morphism f

X0 := X, Y0 := Y , Xi :=
{

x | ||x|| ˆ 1

i

}

, Yi := ψXi, φi := C(Xi − Xi+1), (i > 0).

Consider the frame F ⇐: = F|W ⇐, where W ⇐ = W − {b}. Note that w⇐ ∧ W ⇐ since
w⇐Rw⇐ by the assumption of Proposition 19. By Lemma 30 F ⇐ is connected, and thus
F ⇐ ♦ DT1CK. By Lemma 33 there is a reduced global path π = a1 . . . am in F ⇐ such
that a1 = w⇐. Let

γ = a1a2 . . . am−1amam−1 . . . a2a1a2 . . .

be an infinite path shuttling back and forth through π. Rename the points in γ:

γ = b0c0b1c1. . .bmcmbm+1 . . . (11.6)

Again as in case (a3) we put Fj: = F|R(bj), and assume that cj ∧ Cj and Cj is an
R-maximal cluster. By IH there exist

f0 :φ0 �dd F0 such that f0(Y0) = {b0} = {w⇐}, f1(Y1) = {c0},
f2j :φ2j �dd Fj such that f2j(Y2j) = {cj−1}, f2j(Y2j+1) = {cj} for j > 0,

and by Proposition 11 there exist f2j+1 : Iφ2j+1 �d Cj. Put

f (x) :=
⎝
⎞

⎠

b if x = 0,

f2j(x) if x ∧ φ2j,

f2j+1(x) if x ∧ Iφ2j+1,

One can check that f is a d-morphism (Fig. 11.8).
(a5) W = R(b), ¬bRb and bRDb. Then RD is universal, w⇐ �= b. Put

X ⇐ := {x | ||x|| < 1} , X4 := {x | 1 ˆ ||x|| ˆ 2} ,

and let X1, X2 be two disjoint closed balls in X ⇐, X3 := X ⇐ − X1 − X2.
Let C be a maximal cluster in R(w⇐), F ⇐ := F|R(w⇐). Then there exist:
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fi :Xi �d (W , R) for i = 1, 2 such that fi(ψXi) =
{
w⇐

}
, by case (a4),

f3 :X3 �d C, by Proposition 11,

f4 :X4 �dd F ⇐ such that f4(ψX4) =
{
w⇐

}
, by the induction hypothesis.

Put f := f1 ↑ f2 ↑ f3 ↑ f4 (Fig. 11.8). Then f (ψX) = {
w⇐

}
.

By Lemma 16 (b), f1 ↑ f2 : X1 ↑ X2 �d F, and hence f : X �d F by Lemma
16 (a). f is manifold at b, thus it is a dd-morphism by Lemma 18.

Now we prove (b). There are three cases.
(b1) w⇐ = w⇐⇐ = b and W = R(b). The argument is the same as in case (a1), using

Proposition 11, Lemma 15, the induction hypothesis, and Proposition 12.
(b2) w⇐ = w⇐⇐ = b, but W �= R(b). Consider a maximal cluster C ∃ R(b). Since

all spherical shells for different r1 and r2 are homeomorphic, we assume that r1 = 1,
r2 = 4. Consider the sets

X1 := {x | 1 ˆ ||x|| ˆ 2} , X ⇐ := {x | 2 < ||x|| < 3} , X3 := {x | 3 ˆ ||x|| ˆ 4} ,

and let X0 ⊂ X ⇐ be a closed ball, X2 := X ⇐ − X0. Let F ⇐ := F|R(b). There exist

f1 :X1 �dd F ⇐ such that f1(ψX1) = {b}, by case (b1),

f2 :X2 �d C, by Proposition 11,

f3 :X3 �dd F ⇐ such that f3(ψX3) = {b}, by case (b1),

f0 :X0 �dd F such that f4(ψX0) = {b}, by statement (a) for F.

One can check that f : X �dd F for f := f0 ↑ f1 ↑ f2 ↑ f3.
(b3) w⇐ �= w⇐⇐ and for some b ∧ W , W = R(b), so F has an R-reflexive root. Let

F1 := F|R(w⇐), F2 := F|R(w⇐⇐),

and let Ci be an R-maximal cluster in Fi for i ∧ {1, 2} .
We assume that r1 = 1, r2 = 6 and consider the sets

Xi := {x | i ˆ ||x|| ˆ i + 1} , i ∧ {1, . . . , 5.}

By case (b1) and Proposition 11 we have

f1 : X1 �dd F1 such that f1(ψX1) =
{
w⇐

}
, f2 : IX2 �d C1,

f3 : X3 �dd F such that f3(ψX3) = {b}, f4 : IX4 �d C2,

f5 : X5 �dd F2 such that f1(ψX5) =
{
w⇐⇐

}
.

One can check that f : X �dd F for f :=
5⋃

i=1
fi [Fig. 11.9, Case (b3)].
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Case (b2) Case (b3)

Fig. 11.9 dd-morphism f

(b4) w⇐ �= w⇐⇐ and W �= R(b) for any b ∧ W . By Lemma 32 there is a reduced
path π = b0c0b1 . . . cm−1bm from b0 = w⇐ to bm = w⇐⇐ that does not contain RD-
irreflexive points, ci ∧ Ci, where Ci is an R-maximal cluster. We may also assume
that

R(bi) �= W for any i ∧ {1, . . . , m − 1} . (11.7)

Indeed, if the frame (W , R) is not rooted, then (11.7) obviously holds. If (W , R)

is rooted, then its root r is irreflexive and by Lemma 30, R(r) is connected, so there
exists a path π in R(r) satisfying (11.7). Put

F0 := F, Fj := F|R(bj), 1 ˆ j ˆ m.

Assuming that r1 = 1, r2 = 2m + 1 we define

Xi := {x | ||x|| ˆ i + 1 } , Yi := ψXi (for 0 ˆ i ˆ 2m+ 1),

φi := C(Xi+1 − Xi) (for 0 ˆ i ˆ 2m).

By cases (b2), (b1), Proposition 11, and the induction hypothesis there exist

f0 : φ0 �dd F = F0 such that f0(Y0) = f0(Y1) =
{
w⇐

};
f2j : φ2j �dd Fj such that f2j(Y2j+1) =

{
cj

}
, f2j(Y2j) = {cj−1} (1 ˆ j ˆ m);

f2j−1 : Iφ2j−1 �d Cj−1 (1 ˆ j ˆ m),

f2m : φ2m �dd Fm such that f2m(Y2m) = {cm} , f2m(Y2m+1) =
{
w⇐⇐

}
.
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Fig. 11.10 dd-morphism f, case (b4)

We claim that f : X �dd F for f :=
2m⋃

i=0
fi (Fig. 11.10). First, we prove by

induction using Lemma 16 (see the previous cases) that f is a d-morphism. Note that
f (Y ⇐) = f (Y0) =

{
w⇐

}
and f (Y ⇐⇐) = f (Y2m+1) =

{
w⇐⇐

}
.

Second, there are no RD-irreflexive points in π, so all preimages of RD-irreflexive
points are in φ0; since f0 is a dd-morphism, f is 1-fold at any RD-irreflexive point
and manifold at all the others. Thus f is a dd-morphism by Proposition 12. �
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