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Abstract In this article, we describe the development of a two-point block
method for solving functional differential equations. The block method, imple-
mented in variable stepsize technique produces two approximations simulta-
neously using the same back values. The grid-point formulae for the variable steps
are derived, calculated and stored at the start of the program for greater efficiency.
The delay solutions for the unknown function and its derivative at earlier times are
interpolated using the previous computed values. Stability regions for the block
method are illustrated. Numerical results are given to demonstrate the accuracy
and efficiency of the block method.
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1 Introduction

Differential equation of the form

y0ðxÞ ¼ f ðx; yðxÞ; yðaðxÞÞ; y0ðaðxÞÞÞ ð1Þ

appears in many real life applications and has been investigated by many authors
in recent years. The classical case is when a(x) = x - s, s a constant. When the
right hand side of (1) does not depend on the derivative of the unknown function y,
the equation is known as delay differential equation. Otherwise, it is known as
neutral delay differential equation. In this article, we consider numerical solution
for functional differential equation of the form:

y0ðxÞ ¼ f ðx; yðxÞ; yðqxÞ; y0ðqxÞÞ; 0\x� T;
yð0Þ ¼ y0;

�
ð2Þ

where 0 \ q \ 1, and

y0ðxÞ ¼ f ðx; yðxÞ; yðx� sÞ; y0ðx� sÞÞ; 0\x� T;
yðxÞ ¼ /ðxÞ; x� 0:

�
ð3Þ

Equation (2), known as the pantograph equation arises in many physical
applications such as number theory, electrodynamics, astrophysics, etc. Detailed
explanations can be found in [1–3]. Numerical solutions for (2) and (3) have been
studied extensively, see for example [4–11] and the references cited therein. These
methods produce one approximation in a single integration step. Block methods,
however produce more than one approximation in a step. Block methods have
been used to solve wide range of ordinary differential equations as well as delay
differential equations (see [12–16] and the references cited therein).

The functional differential equations are solved using a two-point block method
in variable step. In a single integration step, two new approximates for the
unknown function are obtained using the same stepsize. New approximates for the
next block are obtained by keeping the stepsize constant, doubled or halved
depending upon the local approximation error. In any variable stepsize method, the
coefficients of the method need to be recalculated whenever the stepsize changes.
In order to avoid the tedious calculation, the coefficients based on the stepsize ratio
are calculated beforehand and stored at the start of the program.

The organization of this article is as follows. In Sect. 2, we briefly describe the
development of the variable step block method. Stability region for the block
method is discussed in Sect. 3. Numerical results for some functional differential
equations are presented in Sect. 4 and finally Sect. 5 is the conclusion.
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2 Method Development

Referring to (1), we seek a set of discrete solutions for the unknown function y in
the interval [0, T]. The interval is divided into a sequence of mesh points xif gt

i¼0 of
different lengths, such that 0 = x0 \ x1 \ ���\ xt = T. Let the approximated
solution for y(xn) be denoted as yn. Suppose that the solutions have been obtained
up to xn. At the current step, two new solutions yn+1 and yn+2 at xn+1 and xn+2

respectively are simultaneously approximated using the same back values by
taking the same stepsize. The points xn+1 and xn+2 are contained in the current
block. The length of the current block is 2h. We refer to this particular block
method as two-point one-block method. The block method is shown in Fig. 1.

In Fig. 1, the stepsize of the previous step is viewed in the multiple of the
current stepsize. Thus, xn+1 - xn = h, xn+2 - xn+1 = h and xn-1 - xn-2 = xn -

xn-1 = rh. The value of r is either 1, 2, or 1
2, depending upon the decision to

change the stepsize. In this algorithm, we employ the strategy of having the
stepsize to be constant, halved or doubled.

The formulae for the block method can be written as the pair,

ynþ1 ¼ yn þ h
X4

i¼0

biðrÞf xn�2þi; yn�2þi;�yn�2þi; ŷn�2þið Þ;

ynþ2 ¼ yn þ h
X4

i¼0

b�i ðrÞf xn�2þi; yn�2þi;�yn�2þi; ŷn�2þið Þ;
ð4Þ

where �yn and ŷn are the approximations to y(a(xn)) and y0ðaðxnÞÞ respectively. For
simplicity, from now on we refer to f ðxn; yn;�yn; ŷnÞ as fn. The coefficient functions
bi(r) and bi

*(r) will give the coefficients of the method when r is either 1, 2, or 1
2 :

The first formula in (4) is obtained by integrating (1) from xn to xn+1 while
replacing the function f with the polynomial P where P(x) is given by

PðxÞ ¼
X4

j¼0

L4; jðxÞfnþ2�j;

and

L4;jðxÞ ¼
Y4

i¼0
i 6¼j

ðx� xnþ2�iÞ
ðxnþ2�j � xnþ2�iÞ

; for j ¼ 0; 1; . . .; 4:

Similarly, the second formula in (4) is obtained by integrating (1) from xn to
xn+2 while replacing the function f with the polynomial P. The value of �yn is
obtained by the interpolation function such as,
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�yn ¼ y½xj� þ ðaðxnÞ � xjÞy½xj; xj�1� þ � � �
þ ðaðxnÞ � xjÞ � � � ðaðxnÞ � xj�3Þy ½xj; . . .; xj�4�;

where

y½xj; xj�1; . . .; xj�4� ¼
y½xj; . . .; xj�3� � y½xj�1; . . .; xj�4�

xj � xj�4
;

provided that xj-1 B a(xn) B xj, n C j, j C 1. We approximate the value of ŷn by
interpolating the values of f, that is,

ŷn ¼ f ½xj� þ ðaðxnÞ � xjÞf ½xj; xj�1� þ � � �
þ ðaðxnÞ � xjÞ � � � ðaðxnÞ � xj�3Þf ½xj; . . .; xj�4�;

where

f ½xj; xj�1; . . .; xj�4� ¼
f ½xj; . . .; xj�3� � f ½xj�1; . . .; xj�4�

xj � xj�4
:

The formulae in (4) are implicit, thus a set of predictors are derived similarly
using the same number of back values. The corrector formulae in (4) are iterated
until convergence.

For greater efficiency while achieving the required accuracy, the algorithm is
implemented in variable stepsize scheme. The stepsize is changed based on the
local error that is controlled at the second point. A step is considered successful if
the local error is less than a specified tolerance. If the current step is successful, we
consider either doubling or keeping the same stepsize. If the same stepsize had
been used for at least two blocks, we double the next stepsize. Otherwise, the next
stepsize is kept the same. If the current step fails, the next stepsize is reduced by
half. For repeated failures, a restart with the most optimal stepsize with one back
value is required. For variable step algorithms, the coefficients of the methods need
to be recalculated whenever a stepsize changes. The recalculation cost of these
coefficients is avoided by calculating the coefficients beforehand and storing them

Fig. 1 Two-point one-block
method
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at the start of the program. With our stepsize changing strategy, we store the
coefficients bi(r) and b�i ðrÞ for r is 1, 2 and 1

2 :

3 Region of Absolute Stability

In the development of a numerical method, it is of practical importance to study
the behavior of the global error. The numerical solution yn is expected to behave as
the exact solution y(xn) does as xn approaches infinity. In this section, we present
the result of stability analysis of the two-point one-block method when they are
applied to the delay and neutral delay differential equations with real coefficients.

For the sake of simplicity and without the lost of generality, we consider the
equation

y0ðxÞ ¼ ayðxÞ þ byðx� sÞ þ cy0ðx� sÞ; x� 0;
yðxÞ ¼ /ðxÞ; �s� x\0;

ð5Þ

where a, b, c 2 R, s is the delay term such as s = mh, h is a constant stepsize such

that xn = x0 ? nh and m 2 Z+. If i 2 Z+, we define vectors YNþi ¼
yn�3þ2i

yn�2þ2i

� �
and

FNþi ¼
fn�3þ2i

fn�2þ2i

� �
:Then, the block method (4) can be written in matrix form such as,

A1YNþ1 þ A2YNþ2 ¼ h
X2

i¼0

BiðrÞFNþi; ð6Þ

where A1 ¼
0 �1
0 �1

� �
; A2 ¼

1 0
0 1

� �
; and Bi(r) is a matrix that contains the

coefficients bi(r) and b�i ðrÞ: Applying method (6) to (5), we get

A1YNþ1 þ A2YNþ2 ¼H1

X2

i¼0

BiðrÞYNþi þ H2

X2

i¼0

BiðrÞYNþi�m

þcA2YNþ2�m þ cA1YNþ1�m;

where H1 = ha and H2 = hb. Rearranging, we have

X2

i¼0

ðAi � H1BiðrÞÞYNþi ¼
X2

i¼0

ðH2BiðrÞ þ cAiÞYNþi�m; ð7Þ

where A0 is the null matrix. Characteristic polynomial for (7) is given by
Cm(H1, H2, c; f) where Cm is the determinant of
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X2

i¼0

ðAi � H1BiðrÞÞfmþi �
X2

i¼0

ðH2BiðrÞ þ cAiÞfi ¼ 0: ð8Þ

The numerical solution (7) is asymptotically stable if and only if for all m, all
zeros of the characteristic polynomial (8) lie within the open unit disk in the plane.
The stability region is defined as follows:

Definition 1 For a fixed stepsize h, a, b 2 R, and for any, but fixed c, the region
S in the H1 � H2 plane is called the stability region of the method if for any
(H1, H2) 2 S, the numerical solution of (5) vanishes as xn approaches infinity.

In Figs. 2, 3, 4 the stability regions for c = 0 are depicted with
r = 1, r = 2, and r ¼ 1

2 ; respectively, see also [15]. In Fig. 5, the stability regions
for m = 1 and c = 0.5 are illustrated. We use the boundary locus technique as
described in [17, 18]. The regions are sketched for r = 1, r = 2, and r ¼ 1

2 :

Fig. 2 Stability regions for
the block method with c = 0,
r = 1

Fig. 3 Stability regions for
the block method with c = 0,
r = 2
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The coefficient matrices are given as follows:
For r = 1:

B0 ¼
0 11

720

0 �1
90

� �
; B1 ¼

�74
720

456
720

4
90

24
90

� �
; and B2 ¼

346
720

�10
720

124
90

29
90

� �
:

For r = 2:

B0 ¼
0 137

14400

0 �1
900

� �
; B1 ¼

�335
14400

7455
14400

5
900

285
900

� �
; and B2 ¼

7808
14400

�565
14400

1216
900

295
900

� �
:

Fig. 4 Stability regions for
the block method with c = 0,
r = 0.5

Fig. 5 Stability regions for
the block method with
c = 0.5
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For r ¼ 1
2 :

B0 ¼
0 145

1800

0 �20
225

� �
; B1 ¼

�704
1800

1635
1800

64
225

15
225

� �
; and B2 ¼

755
1800

�31
1800

320
225

71
225

� �
:

Referring to Figs. 2, 3, 4, 5, the stability regions are closed region bounded by
the corresponding boundary curves. It is observed that the stability region shrinks
as the stepsize increases.

4 Numerical Results

In this section, we present some numerical examples in order to illustrate the
accuracy and efficiency of the block method. The examples taken and cited from
[8, 19] are as follows:

Example 1

y0ðxÞ ¼ 1
2

yðxÞ þ 1
2

ex=2y
x

2

� �
; 0� x� 1;

yð0Þ ¼ 1:

The exact solution is y(x) = ex.

Example 2

y0ðxÞ ¼ � 5
4

e�x=4y
4
5

x

� �
; 0� x� 1;

yð0Þ ¼ 1:

The exact solution is y(x) = e-1.25x.

Example 3

y0ðxÞ ¼ � yðxÞ þ q

2
yðqxÞ � q

2
e�qx; 0� x� 1;

yð0Þ ¼ 1:

The exact solution is y(x) = e-x.

Example 4

y0ðxÞ ¼ ayðxÞ þ byðqxÞ þ cos x� a sin x� b sinðqxÞ; 0� x� 1;

yð0Þ ¼ 0:

The exact solution is y(x) = sinx.
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Example 5

y0ðxÞ ¼ � yðxÞ þ 1
2

y
x

2

� �
þ 1

2
y0

x

2

� �
; 0� x� 1;

yð0Þ ¼1:

The exact solution is y(x) = e-x.

Example 6

y0ðxÞ ¼ � yðxÞ þ 0:1yð0:8xÞ þ 0:5y0ð0:8xÞ
þ ð0:32x� 0:5Þe�0:8x þ e�x; 0� x� 10;

yð0Þ ¼0:

The exact solution is y(x) = xe-x.

Example 7

y0ðxÞ ¼ yðxÞ þ yðx� 1Þ � 1
4 y0ðx� 1Þ; 0� x� 1;

yðxÞ ¼ �x; x� 0:

The exact solution is yðxÞ ¼ � 1
4þ xþ 1

4 ex:

Example 8

y0ðxÞ ¼ yðxÞ þ yðx� 1Þ � 2y0ðx� 1Þ; 0� x� 1;
yðxÞ ¼ �x; x� 0:

The exact solution is y(x) = -2 ? x ? 2ex.

Numerical results for Example 1–8 are given in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
The following abbreviations are used in the tables, TOL—the chosen tolerance,

Table 1 Numerical results
for Example 1

TOL STEP FS AVERR MAXE

10-2 20 0 7.02683E-01 9.68012E-05
10-4 27 0 4.15905E-07 9.05425E-07
10-6 35 0 3.09498E-07 4.21310E-07
10-8 48 0 9.55941E-09 1.28084E-08
10-10 75 0 7.68855E-11 9.88663E-11

Table 2 Numerical results
for Example 2

TOL STEP FS AVERR MAXE

10-2 21 0 9.76063E-08 1.17093E-07
10-4 27 0 4.95202E-09 1.27731E-07
10-6 35 0 1.06955E-09 1.21167E-08
10-8 50 0 3.12606E-11 1.43148E-10
10-10 79 0 5.60297E-13 1.51457E-12
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Table 3 Numerical results
for Example 3, q = 0.2

TOL STEP FS AVERR MAXE

10-2 20 0 1.54360E-05 1.91824E-05
10-4 27 0 1.15315E-07 5.14934E-07
10-6 35 0 6.83967E-08 8.52745E-08
10-8 47 0 2.03160E-09 2.57931E-09
10-10 74 0 1.50180E-11 2.00260E-11

Table 4 Numerical results
for Example 3, q = 0.8

TOL STEP FS AVERR MAXE

10-2 20 0 1.57507E-07 2.30455E-06
10-4 27 0 2.90818E-08 4.90683E-07
10-6 35 0 4.03006E-10 3.90288E-09
10-8 48 0 2.46267E-11 1.51318E-10
10-10 74 0 3.09422E-13 1.74260E-12

Table 5 Numerical results
for Example 4, a = -

1, b = 0.5, q = 0.1

TOL STEP FS AVERR MAXE

10-2 20 0 1.61996E-06 1.15114E-05
10-4 27 0 1.08039E-07 1.15418E-06
10-6 35 0 8.23406E-09 1.15448E-07
10-8 48 0 5.74175E-10 1.15451E-08
10-10 79 0 4.12730E-11 1.15451E-09

Table 6 Numerical results
for Example 4, a = -

1, b = 0.5, q = 0.5

TOL STEP FS AVERR MAXE

10-2 20 0 6.25587E-06 4.77895E-05
10-4 27 0 4.53165E-07 4.78257E-06
10-6 35 0 3.48942E-08 4.78294E-07
10-8 50 0 2.91205E-09 4.78298E-08
10-10 79 0 1.83823E-10 4.78299E-09

Table 7 Numerical results
for Example 5

TOL STEP FS AVERR MAXE

10-2 20 0 7.31358E-04 1.83509E-03
10-4 27 0 1.88577E-05 2.92294E-05
10-6 71 0 9.02824E-06 2.12659E-05
10-8 166 2 1.14939E-06 2.13569E-06
10-10 236 4 4.56047E-08 5.25142E-08
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STEP—the total number of steps taken, FS—the number of failed steps, AVERR—
the average error, and MAXE—the maximum error. The notation 7.02683E-01
means 7.02683 9 10-1.

From Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, it is observed that for the given
tolerances, the two-point block method achieves the desired accuracy. When the
tolerance becomes smaller, the total number of steps increases. In order to achieve
the desired accuracy, smaller stepsizes are taken, thus resulting in the increase
number of total steps taken.

5 Conclusion and Future Work

In this paper, we have discussed the development of a two-point block method for
solving functional differential equations of delay and neutral delay-types. The
block method produces two approximate solutions in a single integration step by
using the same back values. The algorithm is implemented in variable stepsize
technique where the coefficients for the various stepsizes are stored at the

Table 8 Numerical results
for Example 6

TOL STEP FS AVERR MAXE

10-2 70 0 1.22749E-02 4.54860E-02
10-4 97 0 3.92866E-04 1.14032E-03
10-6 118 0 1.61615E-06 4.86641E-06
10-8 173 0 2.72657E-07 4.87304E-07
10-10 300 3 1.72160E-08 3.97650E-08

Table 9 Numerical results
for Example 7

TOL STEP FS AVERR MAXE

10-2 21 0 9.06905E-08 8.55589E-07
10-4 27 0 1.68103E-08 3.01837E-07
10-6 34 0 7.73475E-10 1.19985E-08
10-8 43 0 4.71906E-11 5.91029E-10
10-10 60 0 1.41839E-12 9.05609E-12

Table 10 Numerical results
for Example 8

TOL STEP FS AVERR MAXE

10-2 22 0 3.41065E-07 3.95940E-06
10-4 29 0 1.77364E-08 1.88569E-07
10-6 36 0 9.95212E-10 1.52315E-08
10-8 48 0 4.20781E-11 3.12677E-10
10-10 72 0 9.49656E-13 3.90998E-12

Numerical Solution and Stability of Block Method 607



beginning of the program for greater efficiency. Stability regions for a general
linear test equation are obtained for a fixed, but variable stepsizes. The numerical
results indicate that the two-point block method achieves the desired accuracy as
efficiently as possible.

In the future, the focus for the research should include the implementation of
the block method on parallel machines. The efficiency of the block method can be
fully utilized if the computation for each point can be divided among parallel
tasks.
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