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Abstract We present a directly compositional and type-directed analysis of quanti-
fier ambiguity, scope islands, wide-scope indefinites and inverse linking. It is based
on Danvy and Filinski’s continuation hierarchy, with deterministic semantic compo-
sition rules that are uniquely determined by the formation rules of the overt syntax.
We thus obtain a compositional, uniform and parsimonious treatment of quantifiers
in subject, object, embedded-NP and embedded-clause positions without resorting
to Logical Forms, Cooper storage, type-shifting and other ad hoc mechanisms. To
safely combine the continuation hierarchy with quantification, we give a precise log-
ical meaning to often used informal devices such as picking a variable and binding it
off. Type inference determines variable names, banishing “unbound traces”. Quanti-
fier ambiguity arises in our analysis solely because quantifier words are polysemous,
or come in several strengths. The continuation hierarchy lets us assign strengths to
quantifiers, which determines their scope. Indefinites and universals differ in their
scoping behavior because their lexical entries are assigned different strengths. PPs
and embedded clauses, like the main clause, delimit the scope of embedded quan-
tifiers. Unlike the main clause, their limit extends only up to a certain hierarchy
level, letting higher-level quantifiers escape and take wider scope. This interplay
of strength and islands accounts for the complex quantifier scope phenomena. We
present an economical “direct style”, or continuation hierarchy on-demand, in which
quantifier-free lexical entries and phrases keep their simple, unlifted types.
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1 Introduction

The proper treatment of quantification has become a large research area ever since
Montague called attention to “the puzzling cases of quantification and reference”
back in 1974 (Montague 1974). The impressive breadth of the area is evident from
two recent surveys (Szabolcsi 2000, 2009), which concentrate only on interactions of
quantifier phrases among themselves (leaving out, for example, binding of pronouns
by quantifiers). The two surveys collect a great amount of empirical data—more
and more puzzles. There is also a great number of proposals for a theory to explain
the puzzles. And yet even the basic features of the theory remain undecided. In the
conclusion of her survey (Szabolcsi 2000) poses the following three challenges that
call for significant new research:

1. “develop the tools, logical as well as syntactic, that are necessary to account for
the whole range of existing readings;”

2. “draw the proper empirical distinction between readings that are actually available
and those that are not;”

3. determine “whether ‘spell-out syntax’ is sufficient for the above two purposes”
[in other words, if quantifier scope can be determined without resorting to Logical
Form]

This chapter takes on the challenges and develops a logical tool that is expressive
to capture empirical data—available and unavailable readings—for a range of quan-
tifier phenomena, from quantifier ambiguity to scope islands, wide-scope indefinites
and inverse linking. The “spell-out syntax” proved sufficient: we directly compose
meanings that are model-theoretic, not trees. There is quite more work yet to do.
Future work dealing with numeric and downward-entailing quantifiers, plural indefi-
nites, and quantificational binding will hopefully clarify presently ad hoc parameters
such as the number of hierarchy levels.

1.1 What is Quantifier Scope

“The scope of an operator is the domain within which it has the ability to affect
the interpretation of other expressions” (Szabolcsi 2000, Sect. 1.1). In this chapter,
we concentrate on how a quantifier affects the interpretation of another quantified
phrase. For example,

(1) I showed every boy a planet.

has the reading that I showed each boy a possibly different planet. The quantifier
‘every’ affected the interpretation of ‘a planet’, which refers to a possibly different
planet for a different boy. That reading is called linear scope. The sentence has
another—inverse—reading, whereupon each boy was shown the same planet. The
example thus exhibits quantifier ambiguity. Although the inverse-scope reading of
(1) entails the linear reading (which lead to doubts if inverse readings have to be
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accounted for at all (Reinhart 1979)), this is not always the case. For example, the
linear and inverse readings of

(2) Two of the students attended three of the seminars.

(3) Neither student attended a seminar on rectangular circles.

do not entail each other. Szabolcsi (2000) demonstrates solid inverse-scope readings
on many more examples. A theory of scope must also explain why no quantifier
ambiguity arises in examples like

(4) That every boy left upset a teacher.

(5) Someone reported that John saw everyone.

(6) Some professor admires every student and hates the Dean.

and yet other examples with a quantifier within an embedded clause, such as

(7) Everyone reported that [Max and some lady] disappeared.

are ambiguous. Szabolcsi argues (Szabolcsi 2000, Sect. 3.2) that “different quantifier
types have different scope-taking abilities”. The theory should therefore support lex-
ical entries for quantifiers that take scope differently and compositionally in relation
to each other. The present chapter describes such a theory.

1.2 Why Continuations

Our theory of quantifier scope is based on continuation semantics, which emerged
(Barker 2002; de Groote 2001) as a compelling alternative to traditional approaches to
quantification—Montague’s proper treatment, Quantifier Raising (QR), type-shifting
(surveyed by Barker (2002))—as well as to the Minimalism views (surveyed by
Szabolcsi (2000); she also extensively discusses QR and its empirical inadequacy).
Continuation semantics is compelling because it can interpret quantificational NPs
(QNPs) compositionally in situ, without type-shifting, Cooper storage, or building
any structures like Logical Forms beyond overt syntax. Accordingly, QNPs in sub-
ject and other positions are treated the same, QNPs and NPs are treated the same,
and scope taking is semantic. Central to the approach is the hypothesis that “some
linguistic expressions (in particular, QNPs) have denotations that manipulate their
own continuations” (Barker 2002, Sect. 1). Although continuation semantics is only
a decade old, its origin can be traced to Montague’s proper treatment: “saying that
NPs denote generalized quantifiers amounts to saying that NPs denote functions
on their own continuations” (Barker 2002, Sect. 2.2; see also de Groote (2001)) .
Several continuation approaches have been developed since Barker (2002), using
so-called control operators (de Groote 2001; Shan 2007a; Bekki and Asai 2009) or
Lambek-Grishin calculus (Bernardi and Moortgat 2010).
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1.3 Contributions

Like all continuation approaches, our theory features a compositional, uniform and
in-situ analysis of QNPs in object, subject and other positions. Moreover, we address
the following open issues.

Inverse scope, scope islands and wide-scope indefinites One way to account for
these phenomena is to combine control operators with metalinguistic quotation
(Shan 2007b). More common—see for example Shan (2004)—is using a con-
tinuation hierarchy, such as Danvy and Filinski’s (D&F) hierarchy (Danvy and
Filinski 1990), which has been thoroughly investigated in the Computer Science
theory. The common problem, which has not been addressed in the metalinguis-
tic quotation and the previous D&F hierarchy approaches, is avoiding “unbound
traces”—preventing denotations with unbound variables. Barker and Shan’s essen-
tially ‘variable-free’ semantics (Barker and Shan 2008) side-steps the unbound
traces problem altogether. However it relies on a different and little investigated
hierarchy. The corresponding direct-style (see the next point) is unknown.
Our approach is the first to give a rigorous account of inverse scope, scope islands
and wide-scope indefinites using the D&F hierarchy. We rely on types to prevent
unbound traces. We formalize the pervasive intuition that a QNP is represented by
a trace (QR), pronoun (Montague) or variable (Cooper storage) that gets bound
somehow. We make this intuition precise and give it logical meaning, banishing
unbound traces once and for all.
Direct style In Barker’s continuation approach (Barker 2002), every constituent’s
denotation explicitly receives its continuation, even though few constituents need
to manipulate these continuations. Combining such continuation-passing-style
(CPS) denotations is quite cumbersome, as we see in Sect. 2.2. Thus, we would like
to avoid CPS denotations for quantifier-free constituents, in particular, for lexical
entries other than quantifiers. Direct-style continuation semantics lets us combine
continuation-manipulating denotations directly with ordinary denotations, sim-
plifying analyses and keeping most lexical entries ‘uncomplicated’, which we
illustrate in Sect. 2.3.
We present a version of direct-style for the D&F hierarchy. Unlike other direct-style
approaches (Shan 2007a, b), ours uses the ordinary λ-calculus and denotational
semantics rather than operational semantics and a calculus with control operators.
Our treatment of inverse scope relies on the properties of the D&F hierarchy
extensively, as detailed in Sect. 4.
Source of quantifier ambiguity It is common to explain quantifier ambiguity
by the nondeterminism of semantic composition rules (Barker 2002; de Groote
2001). One syntactic formation operation may correspond to several semantic
composition functions, or the analysis may include operators like ‘lift’ or ‘wrap’
that may be freely applied to any denotation.
In contrast, our semantic composition rules are all deterministic. Although we
extensively rely on schematic rules to ease notation and emphasize commonal-
ity, how these schemas are instantiated is determined unambiguously by types.
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Furthermore, our analysis has no optional or freely applicable rules or seman-
tic combinators. Each syntactic formation operation maps to a unique semantic
composition operation, and vice versa: each operation on denotations has a syn-
tactic counterpart. This one-to-one correspondence between surface syntax and
semantic composition underlies our entire approach—which is thus directly com-
positional. (See Sect. 6 of Barker (2002) for discussion of compositionality and
how nondeterminism in semantic composition rules constitutes a threat.)
The source of quantifier ambiguity in our approach is solely in the lexical entries
for the quantifier words rather than in the rules of syntactic formation or semantic
composition. Different lexical entries for the same quantifier word have denota-
tions corresponding to different levels of the continuation hierarchy, thus having
different strength, or ability to scope over wider contexts.1

One advantage of our approach is better control over overgeneration: when only
lexical entries are ambiguous, it is easier to see all available denotations and hence
assure against overgeneration.

To summarize: our contribution is a directly compositional analysis of quanti-
fier ambiguity, scope islands, inverse linking and wide-scope indefinites in the D&F
continuation hierarchy, in direct style, without risking unbound traces, and using
deterministic semantic composition rules. We analyze QNP in situ and composi-
tionally, relying on no structure beyond the overt syntax. All non-determinism is in
the choice of lexical entries for quantifier words. The presentation uses the familiar
denotational semantics.

1.4 The Structure of the Chapter

The warm-up Sect. 2 gradually introduces continuation semantics on a small frag-
ment and explains our notation and terminology. Section 2.3 presents the direct-style
continuation semantics as an economical CPS-on-demand. We treat bound variables
rigorously in Sect. 3, with type annotations to infer variable names and to prevent
unbound variables in final denotations. Section 4 presents the continuation hierarchy
and uses it to analyze quantifier ambiguity. The corresponding direct-style, or CPS
hierarchy on-demand, is described in Sect. 4.2. Scope islands, wide-scope indefinites
and briefly inverse linking are the subject of Sect. 5.

For illustrations we use a small fragment of English with context-free syntax and
extensional semantics, extending and refining the fragment throughout the chapter.
Figure 1 shows the relationship between the fragments, illustrating parallel develop-
ment in CPS and direct style.

1 The different lexical entries for the same quantifier have a regular structure. In fact, all higher-
strength quantifier entries are mechanically derived from the entry for the lowest-strength quantifier,
as shown in Figs. 12, 13. The number of lexical entries, that is, the assignment of the levels of strength
to a quantifier is determined from empirical data.
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Quantifier-free fragment: Fig. 3, §2.1

Continuation semantics: Fig. 5, §2.2

Annotated types: Fig. 9, §3

CPS2 semantics: Fig. 10, §4

CPS, quantifiers

Direct style: Fig. 6, §2.3

Annotated types: Fig. 9, §3

Multi-level direct-style: Fig. 11, §4.2

Fragment with embedded clauses: Fig. 12, §5.1

Wide-scope indefinites: Fig. 13, §5.2

Inverse linking: Fig. 14, §5.3

Quantifier level annotations Quantifier level annotations

CPS n-times CPS

Lexical entries, embedded clauses

Semantically distinguishing main-clause
from embedded-clause boundary

Prepositional phrases

Fig. 1 Relationship between the fragments used in the chapter

The continuation hierarchy of quantifier scope described in the chapter has been
implemented. The complete Haskell code is available online at http://okmij.org/ftp/
gengo/QuanCPS.hs. The file implements the fragment of the chapter in the spirit of
the Penn Lambda Calculator (Champollion et al. 2007), letting the user write parse
trees and determine their denotations. We have used our semantic calculator for all
the examples in the chapter.

2 Warm-Up: The Proper Continuation Treatment of Quantifiers

In this warm-up section, we recall Barker’s continuation semantics (Barker 2002)
and summarize it in our notation. Alongside, we also introduce Barker and Shan’s
continuation semantics (Barker and Shan 2004; Shan 2007a) in direct style, which
avoids pervasive type lifting of lexical entries. We use the simplicity of the examples
to introduce notation and calculi to be used in further sections.

http://okmij.org/ftp/gengo/QuanCPS.hs
http://okmij.org/ftp/gengo/QuanCPS.hs
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Base types υ ::= e | t

Types σ ::= υ | (σσ)

Constants c ::= ∧ | ∨ | ⇒ | ¬ | john | mary | see | . . .

Expressions d ::= c | d d

Fig. 2 The language D of denotations

Syntax Semantic type Denotation [[·]]
M → S . t (|[[S]]|)
S → NP VP t [[NP]] < [[VP]]
VP → Vt NP et [[Vt]] > [[NP]]
NP → John e john
NP → Mary e mary
VP → left et leave
Vt → saw e(et) see

Fig. 3 Syntax and direct semantics for a small quantifier-free fragment

2.1 Direct Semantics

Like Barker (2002), we start with a simple, quantifier-free fragment, with context-free
syntax and extensional semantics. The language of denotations is a plain higher-order
language, Fig. 2 with the obvious model-theoretical interpretation. The language has
base types e and t and function types, for example (e(et)). We will often omit
outer parentheses. Expressions (denoted by ‘non-terminal’ d) comprise constants
(denoted by c) and applications d1 · d2, which are left associative: d1 · d2 · d3 stands
for (d1 · d2) · d3. Constants are logical constants (negation, etc) and domain con-
stants (such as john). Logical connectives ∧ (conjunction), ∨ (disjunction), =⇒
(implication) are constants of the type t (t t), whose applications are written in infix,
for example, d1 ∧ d2.

The syntax and semantics for our fragment is given in Fig. 3. The syntax formation
operation Merge corresponds to forward application > or backward application < in
semantics (see (8)).2 The notation d1

>d2 says nothing at all whether d1 takes scope
over d2. The category M stands for the complete (matrix) sentence, terminated by
the period. The corresponding semantic operation is

(∣∣·∣∣). For now, these semantic
composition operations are defined as follows:

2 In our simple context-free syntax, the choice of forward or backward application is determined
by the semantic types. If we used combinatorial categorial grammar (CCG), the choice of the
application is evident from the categories of the nodes being combined.
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(8) d1
>d2

def= d1 · d2

d1
<d2

def= d2 · d1(∣∣e
∣∣) def= e

We extend these definitions in Sect. 2.2 when we add quantifiers, and we extend the
definition of

(∣∣·∣∣) a few more times. It will become clear then that the latter semantic
operation is not vacuous at all. Finally, Sect. 5.1 will make it clear that

(∣∣·∣∣) plays the
role of the delimiter of the quantifier scope.

Figure 3 and the similar figures in the following sections demonstrate that each
syntactic formation operation maps to a semantic composition operation and vice
versa: each operation on denotations is reflected in syntax. This one-to-one syntax-
semantic composition correspondence underlies our entire approach. We easily deter-
mine the denotation of a sample sentence

(9) [M [S [NP John] [VP[Vt saw] [NP Mary]]].]
to be see · mary · john.

2.2 CPS Semantics

We now review continuation semantics, which lets us add quantifiers to our fragment.
Barker (2002) has argued that the denotations of quantified phrases need access
to their context. Here is a simple illustration. Suppose we had a magic domain
constant everyone as the denotation of everyone. We could write the meaning of
[M [S John [VP saw [NP everyone]]].] as

(∣∣see · everyone · john
∣∣), whose model-

theoretical interpretation must be the same as that of the logical formula ∀x . see ·
x · john. Removing everyone from

(∣∣see · everyone · john
∣∣) leaves the “term with a

hole”
(∣∣see · [] · john

∣∣)—the context of everyone in the original term. We intuit that
everyone manages to grab its context, up to the enclosing

(∣∣·∣∣), and quantify over it.
To give each term the ability to grab its context, we write the terms in a

continuation-passing style (CPS), whereupon each expression receives as an argu-
ment its context represented as a function, or continuation. Before we can write any
CPS term, we have to resolve a small problem. To represent contexts we have to be
able to build functions—an operation our language of denotations D (Fig. 2) does
not support. Therefore, we “inject” D into the full λ-calculus, with λ-abstractions.
This calculus, or language L, is presented in Fig. 4.

The expressions of the language D (Fig. 2) are all constants of the λ-calculus L;
the types of D are all base types of L. In this sense, D is embedded in L. The language
L has its own function types, written with an arrow →. Distinguishing two kinds of
function types makes the continuation argument stand out in CPS terms as well as
types. We exploit this distinction in Sect. 2.3.

We take → to be right associative and hence we write t → (t → t) as t → t → t .
Besides the constants, L has variables, abstractions and applications. The application
is again left associative, with m1m2m3 standing for (m1m2)m3.
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Types τ ::= σ | τ → τ

Variables x, y, z, v, f, k

Expressions m ::= d | x | λx. m | m m

Reductions m m (λx. m)m m {x m } (β)

Fig. 4 Simply-typed λ-calculus, the language L. (Base types σ and constants d are introduced in
Fig. 2)

Syntax Semantic type Denotation [[·]]
M → S . t (|[[S]]|)
S → NP VP (t → t) → t [[NP]] < [[VP]]
VP → Vt NP ((et) → t) → t [[Vt]] > [[NP]]
NP → John (e → t) → t λk. k john
NP → Mary (e → t) → t λk. k mary
VP → left ((et) → t) → t λk. k leave
Vt → saw ((e(et)) → t) → t λk. k see

NP → everyone (e → t) → t λk. ∀x. k x
NP → someone (e → t) → t λk. ∃x. k x

Fig. 5 Syntax and continuation semantics for the small fragment

L is the full λ-calculus and has reductions, m � m′. An expression is in nor-
mal form if no reduction applies to it or any of its sub-expressions. The notation
m

{
x �→ m′} in the β-reduction rule stands for the capture-avoiding substitution of

m′ for x in m. A unique normal form always exists and can be reached by any
sequence of reductions; in other words, L is strongly normalizing.

We are set to write CPS denotations for our fragment. Constants like john have
little to do but to “plug themselves” into their context: λk. k john.3 Here k represents
the context of john within the whole sentence denotation. The whole denotation must
be of the type t ; hence k has the type e → t and the type of the CPS form of john is
(e → t) → t . With the CPS denotations, our fragment now reads as in Fig. 5. The
semantic composition operators are now defined as follows.

(10)

The CPS form of m1
>m2 is λk. m1(λ f. m2(λx . k ( f · x))): it fills its context k with

f · x , where f is what m1 fills its context with, and x is what m2 fills its context
with.

Using Fig. 5 to compute the denotation of the sample sentence (9) gives us:

3 When a context is represented by a continuation function k, filling the hole in the context with a
term e—or, plugging e into the context—is represented by the application k e.
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[[[M [S [NP John] [VP [Vt saw] [NP Mary]]].]]](11)

= (λk0. (λk. k john)(λx .

(λk1. (λk. k see)(λ f ′. (λk. k mary)(λx ′. k1 ( f ′ · x ′))))
(λ f. k0 ( f · x))))

(λv. v)

� (λk0. (λk. k john)(λx .

(λk1. (λk. k mary)(λx ′. k1 (see · x ′)))
(λ f. k0 ( f · x))))

(λv. v)

� (λk0. (λk. k john)(λx .

(λk1. k1 (see · mary))

(λ f. k0 ( f · x))))

(λv. v)

� (λk0. (λk. k john)(λx . (k0 ((see · mary) · x))))

(λv. v)

� (λk0. (k0 ((see · mary) · john)))

(λv. v)

� ((see · mary) · john)

The β-reductions lead to the same expression ((see · mary) · john) as in Sect. 2.1.
The argument k1 was the continuation of

[[
saw Mary

]]
. The term (λk0. . . .) was the

denotation of the main clause [S John [VP saw Mary]], whose context is empty,
represented by λv. v. (If the clause were an embedded one, its context would not
have been empty. We discuss embedded clauses in Sect. 5.1.)

Figure 5 contains two extra rows, not present in Fig. 3: The CPS semantics lets
us express QNPs. The denotation of everyone, λk. ∀x . k x , is what we have infor-
mally argued at the beginning of Sect. 2.2 the denotation of everyone should be:
the quantifier grabs its continuation k and quantifies over it. The denotation is a bit
sloppy since we have not yet introduced quantifiers in any of our languages, D or L.
Such an informal style, appealing to predicate logic, is very common. For now, we
go along; we come back to this point in Sect. 3, arguing that it pays to be formal. Let
us see how quantification works:

(12)
[[[M [S [NP John] [VP [Vt saw] [NP everyone]]].]]]

= (λk0. (λk. k john)(λx .

(λk1. (λk. k see)(λ f ′. (λk.∀x ′′. k x ′′)(λx ′. k1 ( f ′ · x ′))))
(λ f. k0 ( f · x))))

(λv. v)

� (λk0. (λk1. (λk.∀x ′′. k x ′′)(λx ′. k1 (see · x ′))))
(λ f. k0 ( f · john)))

(λv. v)
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� (λk0. (λk1. ∀x ′′. k1 (see · x ′′))
(λ f. k0 ( f · john)))

(λv. v)

� (λk0.∀x ′′. k0 (see · x ′′) · john)

(λv. v)

� ∀x ′′. (see · x ′′) · john

The sample sentence “John saw everyone” had the quantifier in the object position,
and yet we, unlike Montague, did not have to do anything special to accommodate it.
In fact, comparing (11) against (12) shows that everyone is treated just like Mary.
The β-reductions accumulate the context captured by the quantifier until it eventually
becomes the full sentence context.

A quantifier in the subject position, unlike with QR, is treated just like a quantifier
in the object position:

[[[M [S [NP Someone] [VP [Vt saw] [NP everyone]]].]]](13)

= (λk0. (λk. ∃y. k y)(λx .

(λk1. (λk. k see)(λ f ′. (λk.∀x ′′. k x ′′)(λx ′. k1 ( f ′ · x ′))))
(λ f. k0 ( f · x))))

(λv. v)

� (λk0. (λk. ∃y. k y)(λx .

(λk1. ∀x ′′. k1 (see · x ′′))
(λ f. k0 ( f · x))))

(λv. v)

� (λk0. ∃y. (λk1. ∀x ′′. k1 (see · x ′′))(λ f. k0 ( f · y)))

(λv. v)

� (λk0. ∃y.∀x ′′. k0((see · x ′′) · y))

(λv. v)

� ∃y.∀x ′′. (see · x ′′) · y

Thus, continuation semantics can treat QNPs in any syntactic position with no type-
shifting and no surgery on the syntactic derivation. The resulting denotation for
“Someone saw everyone” is the linear-scope reading. Deriving the inverse-scope
reading is the subject of Sect. 4.

2.3 Direct-Style Continuation Semantics

This section describes a “direct style” advocated by Barker and Shan (2004) and Shan
(2004, 2007a). Its great appeal is in simple, non-CPS denotations for quantifier-free
phrases. In particular, lexical entries other than quantifiers keep their straightforward
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Syntax Semantic type Denotation [[·]]
M → S . t (|[[S]]|)
S → NP VP t or (t → t) → t [[NP]] < [[VP]]
VP → Vt NP et or ((et) → t) → t [[Vt]] > [[NP]]
NP → John e john
NP → Mary e mary
VP → left et leave
Vt → saw e(et) see

NP → everyone (e → t) → t λk. ∀x.k x
NP → someone (e → t) → t λk. ∃x.k x

Fig. 6 Syntax and direct-style continuation semantics for the small fragment: the merger of
Figs. 3 and 5. Lexical entries other than the quantifiers keep the simple denotations from Fig. 3

mapping to domain constants, like the mapping in Fig. 3. Our presentation of direct
style is different from that of Shan (2007a): we use the ordinary λ-calculus and
the denotational semantics, without introducing operational semantics and so-called
control operators (although the informed reader will readily recognize these operators
in our presentation). We introduce direct style as ‘CPS on-demand’.

We start with an observation about CPS denotations:

[[
John

]] = λk. k john
[[

saw Mary
]] = λk. k (see · mary)

In general, the CPS denotation of a quantifier-free term can be built by first deter-
mining the denotation according to the non-CPS rules (8), then wrapping λk. k (·)
around the result.

This observation gives us the idea to merge quantifier-free and CPS semantics; see
Fig. 6. If denotations are quantifier-free—that is, if their types have no arrows—we
use the non-CPS composition rules (8), which constitute the first case in (14) and
(15) below. For CPS denotations, we use the CPS composition rules (10), written
as the last case in (14) and (15). When composing CPS and non-CPS denotations,
we implicitly promote the latter into CPS by wrapping them in λk. k (·). The two
middle cases of (14) and (15) show the result of that promotion after simplification
(β-reductions). Thus the composition rules > and < become schematic with four
cases. Likewise,

(∣∣·∣∣) becomes schematic with two cases, shown in (16). We stress
the absence of any nondeterminism: which of the four composition rules to apply is
uniquely determined by the types of the denotations being combined.
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m1
>m2

def=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m1 · m2 if m1 : (σσ′), m2 :σ
λk. m2(λx . k(m1 · x)) if m1 : (σσ′), m2 : (σ → t)→ t

λk. m1(λ f. k( f · m2)) if m1 : ((σσ′)→ t)→ t, m2 :σ
λk. m1(λ f. m2(λx . k( f · x))) if m1 : ((σσ′)→ t)→ t,

m2 : (σ → t)→ t

(1)

m1
<m2

def=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m2 · m1 if m1 :σ, m2 : (σσ′)
λk. m2(λ f. k( f · m1)) if m1 :σ, m2 : ((σσ′)→ t)→ t

λk. m1(λx . k(m2 · x)) if m1 : (σ → t)→ t, m2 : (σσ′)
λk. m1(λx . m2(λ f. k( f · x))) if m1 : (σ → t)→ t,

m2 : ((σσ′)→ t)→ t

(2)

(∣∣m
∣∣) def=

{
m if m : t

m(λv. v) if m : (t → t) → t
(3)

Since the sentence [M John [VP saw Mary].] is quantifier-free, its denotation is
trivially determined as in Sect. 2.1, with no β-reductions—in marked contrast with
Sect. 2.2. For [M Someone [VP saw Mary].], we compute

[[
[VP saw Mary]

]]
as

see · mary of the type (et) by the simple rules of (8). The denotation of someone
has the type (e → t) → t , which is a CPS type: it has arrows. The types tell us to use
the third case of (15) to combine [[someone]] with

[[
[VP saw Mary]

]]
. We obtain

the final result ∃y. see · mary · y after applying the second case of (16).
Direct style thus keeps quantifier-free lexical entries ‘unlifted’ and removes the

tedium of the CPS semantics. Such CPS-on-demand, or selective CPS, has been used
to implement delimited control in Scala (Rompf et al. 2009).

3 The Nature of Quantification

Before we advance to the main topic, scope and ambiguity, we take a hard look at
logical quantification. So far, we have used quantified logical formulas like ∀x . see ·
x ·john without formally introducing quantifiers. The informality, however attractive,
makes it hard to specify how to correctly use a logical quantifier to obtain a well-
formed closed formula. For example, QR approaches may produce a denotation with
an unbound trace, which must then be somehow fixed or avoided. A proper theory
should not let sentence denotations with unbound variables arise in the first place.

We go back to the language D, Fig. 2, and extend it with standard first-order
quantifiers. The result is the language DQ in Fig. 7.

We added variables, which are natural numbers, and two expression forms ∀nd and
∃nd to quantify over the variable n. Their model-theoretical semantics is standard,
relying on the variable assignment φ, which maps variables to entities. Then ∀nd is
true for the assignment φ iff d is true for every assignment that differs from φ only
in the mapping of the variable n.
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Levels n, l ∈ N

Base types υ ::= e | t

Types σ ::= υ | (σσ)

Annotated types ρ ::= σn

Constants c ::= ∧ | ∨ | ⇒ | ¬ | john | mary | see | . . .

Variables n, l

Expressions d ::= c | d d | n | ∀nd | ∃nd

Type system for judgments d : ρ

n : en+1

d1 : (σ2σ1)n1 d2 : σn2
2

d1 d2 : σ
max(n1,n2)
1

d : tn+1

∀nd : tn

d : tn+1

∃nd : tn

Fig. 7 The language DQ of denotations

Figure 7 also extends the type system, with annotated types ρ and judgments d : ρ
of d having the annotated type ρ. Expression types σ are annotated with the upper
bound on the variable names that may occur in the expression. For example, d : σ1

means that d may have (several) occurrences of the variable 0; d : σ2 means d may
contain the variables 0 and 1. Our variables are de Bruijn levels. An expression d of
the type σ0 is a closed expression. We will often omit the type annotation (superscript)
0—hence D can be regarded as the variable-free fragment of DQ.

The language L will now use the expressions of DQ as constants, and annotated
types ρ as base types. Although the semantic composition functions in (14), (15)
and (16) remain the same, their typing becomes more precise, as shown in Fig. 8.
(Recall

(∣∣·∣∣) is the semantic composition function that corresponds to the clause
boundary, which we will discuss in detail in Sect. 5.1.) As usual, the typing rules
are schematic: m1 and m2 stand for arbitrary expressions of L, σ1 and σ2 stand for
arbitrary DQ types, and n1, n2, l1, l2, etc. are arbitrary levels. The choice n or l for
the name of level metavariables has no significance beyond notational convenience.
The English fragments in Figs. 5, 6 remain practically the same; the quantifier words
now receive precisely defined rather than informal denotations, and precise semantic
types; see Fig. 9.

Figure 9 assigns denotations and types to everyone and someone that are
schematic in n. That is, there is an instance of the denotation for each natural num-
ber n. One may worry about choosing the right n and possible ambiguities. The
worries are unfounded. As we demonstrate below, the requirement that the whole
sentence denotation be closed (that is, have the type t0) uniquely determines the
choice of n in the denotation schemas for the quantifier words. The choice of vari-
able names n is hence type-directed and deterministic. As an example, we show the
typing derivation for “Someone saw everyone”, which we explain below.
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m1 : (σ2σ1)n1 m2 : σn2
2

m1
>m2 : σ

max(n1,n2)
1

m1 : (σ2σ1)n1 m2 : (σn2
2 → tl1) → tl2

m1
>m2 : (σmax(n1,n2)

1 → tl1) → tl2

m1 : ((σ2σ1)n1 → tl1) → tl2 m2 : σn2
2

m1
>m2 : (σmax(n1,n2)

1 → tl1) → tl2

m1 : ((σ2σ1)n1 → tl1) → tl2 m2 : (σn2
2 → tl3) → tl1

m1
>m2 : (σmax(n1,n2)

1 → tl3) → tl2

m : t0

(|m|) : t0
m : (tn → tn) → t0

(|m|) : t0

Fig. 8 Typing rules for > in (14) (< is analogous) and for
(∣∣·∣∣) in (16)

Syntax Semantic type Denotation [[·]]
. . .

NP → everyone (en+1 → tn+1) → tn λk. ∀n(k n)
NP → someone (en+1 → tn+1) → tn λk. ∃n(k n)

Fig. 9 Precise denotations of quantifiers and their annotated types. The rest of the fragment remains
the same; see Figs. 5 or 6

[[someone]] : (e1 → t1) → t0 [[see]] : e(et)0 [[everyone]] : (e2→t2)→t1

see>(λk.∀1(k1)) : ((et)2→t2)→t1

(λk. ∃0(k0))<(see>λk.∀1(k1)) : (t2→t2)→t0

(|(λk. ∃0(k0))<(see>λk.∀1(k1))|) : t0

The resulting denotation β-reduces to ∃0∀1see · 1 · 0, as in Sect. 2.2. The other
derivations in Sects. 2.2 and 2.3 are made rigorous similarly.

In the derivation above, the schematic denotation [[someone]] was instantiated
with n = 0, and the schema

[[
everyone

]]
was instantiated with n = 1. It may be

unclear how we have made this choice. It is a simple exercise to see that no other
choice fits. Relying on the simplicity of the example, we now demonstrate the general
method of choosing the variable names n appearing in schematic denotations. We
repeat the derivation, this time assuming that [[someone]] is instantiated with some
variable name n and

[[
everyone

]]
is instantiated with some name l. These so-called

schematic or logical meta-variables n and l stand for some natural numbers that we
do not know yet. As we build the derivation and fit the denotations, we discover
constraints on n and l, which in the end let us determine these numbers.

[[someone]] : (en+1 → tn+1) → tn [[see]]:e(et)0 [[everyone]]:(el+1→tl+1)→tl

see>(λk.∀l (k l)):((et)l+1→tl+1)→tl

(λk. ∃n(k n))<(see>λk. ∀l (k l)):(tmax (n+1,l+1)→tl+1)→tn where n+1=l(∣∣(λk. ∃n(k n))<(see>λk.∀l (k l))
∣∣):t0 where n=0, max (n+1,l+1)=l+1

In the last-but-one step of the derivation, we attempt to type (λk. ∃n(k n))<

(see>λk.∀l(k l)) using the rule
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m1 : (σn1
2 → t l1) → t l2 m2 : ((σ2σ1)

n2 → t l3) → t l1

m1
<m2 : (σ

max(n1,n2)
1 → t l3) → t l2

.

This attempt only works if n + 1 = l, because according to the rule, the types
of m1 and m2 must share the same name l1. In the last step of the derivation,
applying the typing rule for

(∣∣·∣∣) from Fig. 8 gives two other constraints: n = 0
and max (n + 1, l + 1) = l +1. The three constraints have a unique solution: n = 0,
l = 1.

More complex sentences with more quantifiers require us to deal with more vari-
able names n1, n2, n3, etc., and more constraints on them. The overall principle
remains straightforward: since typing is syntax-directed there is never a puzzle as
to which typing rule to use at any stage of the derivation. At most one typing rule
applies. An application of a typing rule generally imposes constraints on the levels.
We collect all constraints and solve them at the end (some constraints can be solved
as we go).

Accumulating and solving such constraints is a logic programming problem.
Luckily, in modern functional and logic programming languages like Haskell, Twelf
or Agda, type checking propagates and solves constraints in a very similar way. If we
write our denotations in, say, Haskell, the Haskell type checker automatically deter-
mines the names of schematic meta-variables and resolves schematic denotations
and rules. We have indeed used the Haskell interpreter GHCi as such a ‘semantic
calculator’, which infers types, builds derivations and instantiates schemas. Like
the Penn Lambda Calculator (Champollion et al. 2007), the Haskell interpreter also
reduces terms. We can enter any syntactic derivation at the interpreter prompt and
see its inferred type and its normal-form denotation.

The choice of variable names, dictated by the requirement that sentence denota-
tions be closed, in turn describes quantifier scopes, as we shall see next.

4 The Inverse-Scope Problem

If we compute the denotation of [M Someone VP.] by the rules of Sect. 2.2, we
obtain

[[
Someone VP.

]] = (λk0. (λk. ∃y.ky)(λx .
[[

VP
]]

(λ f. k0( f · x))))

(λv. v)

(17)

� ∃y.
[[

VP
]]

(λ f. ( f · y))

No matter what VP is, the existential always scopes over it. Thus, we invariably
get the linear-scope reading for the sentence. Obtaining the inverse-scope reading is
the problem. One suggested solution (Barker 2002; de Groote 2001) is to introduce
nondeterminism into semantic composition rules. We do not find that approach attrac-
tive because of over-generation: we may end up with a great number of denotations,
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not all of which correspond to available readings. Explaining different scope-taking
abilities of existentials and universals (see Sect. 5) also becomes very difficult.

Our solution to inverse scope is the continuation hierarchy (Danvy and Filinski
1990). Like Russian dolls, contexts nest. Plugging a term into a context gives a bigger
term, which can be plugged into another, wider context, and so on. This hierarchy of
contexts is reflected in the continuation hierarchy. Quantifiers gain access not only
to their immediate context but also to a higher-up context, and may hence quantify
over outer contexts. We build the hierarchy from the CPS denotations of Sect. 2.2, to
be called CPS1 denotations (with the annotated types of Sect. 3). We introduce the
corresponding direct style of the hierarchy in Sect. 4.2.

Before we begin, let us quickly skip ahead and peek at the final result, to see the
difference that the continuation hierarchy makes. Equation (17) will look somewhat
like

[[
Someone VP.

]] = (λk0. (λk1. λk2. k1 y (λv. k2(∃y.v)))(17a)

(λx .
[[

VP
]]

(λ f. k0 ( f · x))))

(λv. λk2. k2 v)(λv. v)

�
[[

VP
]]

(λ f. λk2. k2( f · y))(λv. (∃y.v))

(see Eq. (25) for the complete example). VP will now have a chance to introduce
a quantifier to scope over ∃y.·.

We build the hierarchy by iterating the CPS transformation. An expression may
be re-written in CPS multiple times. Each re-writing adds another continuation rep-
resenting a higher (outer) context (Danvy and Filinski 1990). Let us take an exam-
ple. A term john written in CPS takes the continuation argument representing the
term’s context, and plugs itself into that context: λk. k john. Mechanically apply-
ing to it the rules of transforming terms into CPS (Danvy and Filinski 1990) gives
λk1. λk2. (k1 john) k2. This CPS2 term receives two continuations and plugs john
into the inner one, obtaining the CPS1 term k1 john that computes the result to be
plugged into the outer context k2. We may diagram the CPS1 term λk1. k1 john as
[k1 . . . [john] . . .], that is, john filling in the hole in a context represented by k1. Like-
wise we diagram the CPS2 term λk1. λk2. (k1 john) k2 as [k2 . . . [k1 . . . [john] . . .] . . .].
In the CPS2 case, if k2 represents the outer context, the application k2 e represents
plugging e into that context. If k1 is an inner context, k1 e k2 corresponds to plugging
e into it and the result into an outer context k2. We shall see soon that types make it
clear which context, outer or inner, a continuation represents and what needs to be
plugged into what.

The CPS2 term λk1. λk2. k1 john k2 is however extensionally equivalent to the
CPS1 term λk. k john we started with. In general, if a term uses its continuation
‘trivially’,4 further CPS transformations leave the term intact. Thus, after quantifier-
free lexical entries are converted once into CPS, they can be used as they are at any
level of the CPS hierarchy.

4 We say that a term uses its continuation argument k trivially if k is used exactly once in the term,
and each application in the term is the entire body of a λ-abstraction.
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Although the CPS2 term of john is same as the CPS1 term, the types differ. The
CPS1 type is (e → tn) → tn , telling us that john receives a context to be plugged
with a term of the type e giving a term of the type tn . The CPS2-term receives
another continuation k2, representing the outer context tn → t l1 . Thus the type of
λk1. λk2. k1 john k2 is (e → ((tn → t l1) → t l2)) → ((tn → t l1) → t l2). This type
is schematic, written with schematic meta-variables n, l1 and l2 standing for some
variable names to be determined when building a derivation, as described in Sect. 3.

In general, types in the CPS hierarchy have a regular structure and can be described
uniformly. The key observation is recurrence of the pattern (tn → t l1) → t l2 that
can be represented by its sequence of annotations n, l1, l2. Therefore, we introduce
the notation

(18) {n} = tn

{nl1l2} = (tn → {l1}) → {l2}
{nl1l2l3l4l5l6} = (tn → {l1l2l3}) → {l4l5l6}

...

where all ns and ls are schematic meta-variables. Since these sequences can
become very long, we use Greek letters α,β, γ to each stand for a schematic sequence
of variable names. All occurrences of the same Greek letter bearing the same super-
scripts and subscripts refer to the same sequence. We will state the length of the
sequence separately or leave it implicit in the CPS level under discussion. Thus the
type of λk. k john for any CPS level has the form (e → {α}) → {α}. Juxtaposed
Greek letters and schematic variables signify concatenated sequences. For example,
(18) is compactly written as follows.

(19) {n} = tn

{nαβ} = (tn → {α}) → {β}

4.1 CPS-Hierarchy Semantics

The CPS2 semantics for our language fragment is shown in Fig. 10. Except for
the quantifiers, the figure looks like the ordinary CPS semantics, Fig. 5, with the
wholesale replacement of the type t by {α}. The interesting part is quantifier words.
There are now two sets of them, indexed with 1 and 2: the quantifier words become
polysemous, with two possible denotations. Postulating the polysemy of quantifiers is
similar to generalizing the conjunction schema (Partee and Rooth 1983), or assuming
the free indexing in LF.

The quantifiers everyone1 and someone1 are the quantifiers from Sect. 2.2,
whose denotations are re-written in CPS. For example, the denotation of everyone
from Fig. 9 (which is the precise version of that from Fig. 5) is λk.∀n(k n); re-writing
it in CPS gives λk1. λk2. k1 n (λv. k2(∀nv)). It plugs the variable n into the (inner)
context k1, then plugs the result into ∀n[] and finally into the outer context k2. Thus,
everyone1 quantifies over the immediate, inner context k1, as in Sect. 2.2 above.
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Syntax Semantic type Denotation [[·]]
M → S . t0 (|[[S]]|)
S → NP VP (tn → {α}) → {β} [[NP]] < [[VP]]
VP → Vt NP ((et)n → {α}) → {β} [[Vt]] > [[NP]]
NP → John (e → {α}) → {α} λk. k john
NP → Mary (e → {α}) → {α} λk. k mary
VP → left ((et) → {α}) → {α} λk. k leave
Vt → saw ((e(et)) → {α}) → {α} λk. k see

NP → everyone1 (en+1 → {(n + 1)γ}) → {nγ} λk1. λk2. k1 n (λv. k2(∀nv))
NP → someone1 (en+1 → {(n + 1)γ}) → {nγ} λk1. λk2. k1 n (λv. k2(∃nv))
NP → everyone2 (en+1 → {γ(n + 1)}) → {γn} λk1. λk2. ∀n(k1 n k2)
NP → someone2 (en+1 → {γ(n + 1)}) → {γn} λk1. λk2. ∃n(k1 n k2)

Fig. 10 Syntax and the CPS2 semantics for the small fragment. α and β are sequences of schematic
meta-variables of length 3, and γ is a sequence of length 2. See the text for expressions and types
of the semantic composition operators >, < and

(∣∣·∣∣)

The continuation arguments to everyone1 are used trivially, so the denotation can
be used as it is not only for CPS2 but also for CPS3 and at higher levels.

The second set of quantifiers quantify over the outer context, as their denotation
says. For example, λk1. λk2. ∀n(k1 n k2) plugs the variable n into the inner context
k1, plugs the result into k2 and quantifies over the final result. The inner and the outer
contexts are uniquely determined, as shall see shortly.

The semantic combinators > and < in (10) use their continuation argument triv-
ially; therefore, they also work for CPS2 and for all other levels of the hierarchy. We
need to give them more general schematic types, extending Fig. 8 so it works at any
level of the hierarchy:

(20)
m1:(σn1

2 →{α})→{β} m2:((σ2σ1)
n2 →{γ})→{α}

m1
<m2:(σmax(n1,n2)

1 →{γ})→{β}

(21)
m1:((σ2σ1)

n1→{α})→{β} m2:(σn2
2 →{γ})→{α}

m1
>m2:(σmax(n1,n2)

1 →{γ})→{β}

We only need to change
(∣∣·∣∣) to account for the two continuation arguments, and

hence, two initial continuations:

(22)
(∣∣m

∣∣) def= m(λv. λk2. k2 v)(λv. v)

The initial CPS1 continuation (λv. λk2. k2 v) plugs its argument into the outer con-
text; the initial outer context is the empty context. Schematically,

(∣∣m
∣∣) may be dia-

grammed as [k2 [k1 m]].
The two sets of quantifiers, level-1 and level-2, treat the inner and outer contexts

differently. The remainder of this subsection presents several examples of computing
denotations of sample sentences by using the lexical entries and the composition
rules of Fig. 10 and performing simplifications by β-reductions. As we shall see, the
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sequence of reductions for, say, Someone1 VPcan be diagrammed at a high level
as follows:

(23)
[[

Someone1 VP.
]]

= (∣∣[[Someone1 VP
]]∣∣)

= [k2 [k1

[[
Someone1 VP

]]]]
� [k2∃n[k1 n<

[[
VP

]]]]
We hence see that it is the level-1 quantifiers that wedge themselves between the
inner context k1 and the outer context k2. We also see that, if the VP contains only
level-1 QNPs, they would quantify over [k1 n< . . .] giving the linear-scope reading.
On the other hand, if the VP has a level-2 QNP, it will quantify over the outer context
[k2∃n[k1 n< . . .]] yielding the inverse-scope reading. After this preview, we describe
the computation of denotations in detail.

It is a simple exercise to show that [M Someone1 [VP saw everyone1 ].] has
the same linear-scope reading ∃0∀1see · 1 · 0 as computed with the ordinary CPS,
Sect. 2.2—with essentially the same β-reductions shown in that section. It is also
easy to see that [M Someone2 [VP saw everyone2 ].] also has exactly the same
denotation. The interesting cases are the sentences with different levels of quantifiers.
For example,

[[
[M [S [NP Someone2] [VP [Vt saw] [NP everyone1]]].]

]](4)

= (λk0. (λk1. λk2. ∃0(k1 0 k2))(λx .

(λk3. (λk. k see)(λ f ′. (λk1. λk2. k1 1 (λv. k2(∀1v)))(λx ′. k3 ( f ′ · x ′))))
(λ f. k0 ( f · x))))

(λv. λk2. k2 v)(λv. v)

� (λk1. λk2. ∃0(k1 0 k2))(λx .

(λk2. (λv. k2(∀1v))(see · 1 · x)))

(λv. v)

� (λk1. λk2. ∃0(k1 0 k2))(λx .

(λk2. k2(∀1(see · 1 · x))))

(λv. v)

� (λk2. ∃0(∀1(see · 1 · 0)))(λv. v)

� ∃0(∀1(see · 1 · 0))

The result still shows the linear-scope reading, because someone2 quantifies over
the wide context and so wins over the narrow-context quantifier everyone1. One
may wonder how we chose the names of the quantified variables: 0 for someone2
and 1 for everyone1. The choice is clear from the final denotation: since it should
have the type t0 (that is, be closed), the schema for the corresponding someone2
must have been instantiated with n = 0. Therefore, ∀1(see · 1 · 0) must have the
type t1, which determines the schema instantiation for everyone1. One may say that
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‘names follow scope’. The variable names can also be chosen before β-reducing,
while building the typing derivation, as demonstrated in Sect. 3.

We now make a different choice of lexical entries for the same quantifier words
in the running example:

[[
[M [S [NP Someone1] [VP [Vt saw] [NP everyone2]]].]

]]
(5)

= (λk0. (λk1. λk2. k1 1 (λv. k2(∃1v)))(λx .

(λk3. (λk. k see)(λ f ′. (λk1. λk2. ∀0(k1 0 k2))(λx ′. k3 ( f ′ · x ′))))
(λ f. k0 ( f · x))))

(λv. λk2. k2 v)(λv. v)

� (λk1.λk2. k1 1 (λv. k2(∃1v)))(λx .

(λk2.∀0(k2 (see · 0 · x))))

(λv. v)

� (λk2. (λk2. ∀0(k2 (see · 0 · 1)))(λv. k2(∃1v)))

(λv. v)

� (λk2. ∀0((λv. k2(∃1v))(see · 0 · 1)))

(λv. v)

� ∀0(∃1(see · 0 · 1))

We obtain the inverse-scope reading: everyone2 quantified over the higher, or wider,
context and hence outscoped someone1. This outscoping is noticeable already in the
result of the first set of β-reductions, which may be diagrammed as ∀0[k2∃1[k1 see ·0 ·
[1]]]. Since the universal quantifier eventually got the widest scope, the schema for
everyone2 must have been instantiated with n = 0. Again, the choice of quantifier
variable names is determined by quantifiers’ scope.

Thus the continuation hierarchy lets us derive both linear- and inverse-scope
readings of ambiguous sentences. The source of the quantifier ambiguity is squarely
in the lexical entries for the quantifier words rather than in the rules of syntactic
formation or semantic composition.

4.2 Continuation Hierarchy in Direct Style

Like the ordinary CPS, the CPS hierarchy can also be built on demand. Therefore,
we do not have to decide in advance the highest CPS level for our denotations,
and be forced to rebuild our fragment’s denotations should a new example call for
yet a higher level. Rather, we build sentence denotations by combining parts with
different CPS levels, or even not in CPS. The primitive parts, lexical entry denotations,
may remain not in CPS (which is the case for all quantifier-free entries) or at the
minimum needed CPS level, regardless of the level of other entries. The incremental
construction of hierarchical CPS denotations—building up levels only as required—
makes our fragment modular and easy to extend. It also relieves us from the tedium
of dealing with unnecessarily high-level CPS terms.
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Syntax Semantic type Denotation [[·]]
M → S . t0 (|[[S]]|)
S → NP VP tn or (tn → {α}) → {β} [[NP]] < [[VP]]
VP → Vt NP etn or ((et)n → {α}) → {β} [[Vt]] > [[NP]]
NP → John e john
NP → Mary e mary
VP → left et leave
Vt → saw e(et) see

NP → everyone1 (en+1 → {(n + 1)α}) → {nα} λk1. λk2. k1 n (λv. k2(∀nv))
NP → someone1 (en+1 → {(n + 1)α}) → {nα} λk1. λk2. k1 n (λv. k2(∃nv))
NP → everyone2 (en+1 → {β(n + 1)γ}) → {βnγ} ↑ [[everyone1]]
NP → someone2 (en+1 → {β(n + 1)γ}) → {βnγ} ↑ [[someone1]]

Fig. 11 Syntax and the multi-level direct-style continuation semantics for the small fragment: the
merger of Figs. 3, 10. Lexical entries other than the quantifiers keep the simple denotations from
Fig. 3. Here α, β and γ are sequences of schematic meta-variables whose length is determined by
the CPS level; β is two longer than γ

Luckily, the semantic combinators < and > capable of combining the denotations
of different CPS levels have already been defined. They are (14) and (15) in Sect. 2.3.
The luck comes from the fact that the composition of CPS1 denotations uses its con-
tinuation argument trivially, and therefore, works at any level of the CPS hierarchy.
We only need to extend the schema for

(∣∣·∣∣), in a regular way:

(6)
(∣∣m

∣
∣) def=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m if m : {0}
m(λv. v) if m : {nn0}
m(λv. λk. kv)(λv. v) if m : {nnl1l1l2l20}
. . .

Applying the schematic definition (26) requires a bit of explanation. If the term m
has the type with no arrows, we should compute

(∣∣m
∣∣) according to the first case,

which requires m be of the type t0. If m has the type that matches {nn0}, that is,
(tn → tn) → t0 for some n, we should use the second case, and so on. A term
like λk. k (leave · john) of the schematic type {0αα} may seem confusing: its type
matches {nn0} (with α instantiated to {0} and n to 0) as well as the type {nnl1l1l2l20}
(with α = {000} and n = l1 = l2 = 0) and all further CPS types. We can compute(∣∣λk. k (leave · john)

∣∣) according to the second or any following case. The ambiguity
is spurious however: whichever of the applicable equations we use, the result is the
same—which follows from the fact that a CPSi term which uses its continuation
argument trivially is a CPSi ′ term for all i ′ ≥ i Danvy and Filinski (1990). As a
practical matter, choosing the lowest-level instance of the schema (26) produces the
cleanest derivation.

Figure 11 shows our new fragment.
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The quantifier-free lexical entries have the simplest denotations and can be com-
bined with CPSn terms, n ≥ 0. The quantifiers everyone1 and someone1 have the
schematic denotations that can be used at the CPSn level n ≥ 1. The higher-level
quantifiers are systematically produced by applying the ↑ combinator of the type
((en+1 → {α}) → {β}) → ((en+1 → {γα}) → {γβ}) (where α and β have the
same length and γ is one longer).

(27) ↑ m
def= λk.λk′. m(λv. k v k′)

With the entries in Fig. (11), all sample derivations from Sect. 4 can be repeated in
direct style with hardly any changes.

Our direct-style multi-level continuation semantics is essentially the same as that
presented in Shan (2004). We do not account for directionality in semantic types
(since we use CFG or potentially CCG, rather than type-logical grammars) but we
do account for the levels of quantified variables in types (whereas in Shan (2004),
quantification was handled informally).

We have thus shown that the CPS hierarchy just as the ordinary CPS can be built on
demand, without committing ourselves to any particular hierarchy level but raising
the level if needed as a denotation is being composed. The result is the modular
semantics, and much simpler and more lucid semantic derivations. From now on, we
will use this multi-level direct style.

5 Scope Islands and Quantifier Strength

We have used the continuation hierarchy to explain quantifier ambiguity between
linear- and inverse-scope readings. We contend that the ambiguity arises because
quantifier words are polysemous: they have multiple denotations corresponding to
different levels of the CPS hierarchy. The higher the CPS level, the wider the quantifier
scope.

We turn to two further problems. First, just quantifiers’ competing with each other
on their strength (CPS level) does not explain all empirical data. Some syntactic
constructions such as embedded clauses come into play and restrict the scope of
embedded quantifiers. That restriction however does not seem to spread to indefinites:
“the varying scope of indefinites is neither an illusion nor a semantic epiphenomenon:
it needs to be ‘assigned’ in some way” (Szabolcsi 2000). We shall use the CPS
hierarchy to account for scope islands and to assign the varying scope to indefinites.

5.1 Scope Islands

Like our running example “Someone saw everyone”, two characteristic examples
(4) and (5), repeated below, also have two quantifier words.
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Syntax Semantic type Denotation [[·]]
VP → Vs that S etn or ((et)n → {α}) → {β} [[Vs]] >(|[[S]]|)
NP → that S e That (|[[S]]|)
NP → Det N en or (en → {α}) → {β} [[Det]] [[N]]

N → teacher et teacher
N → boy et boy
VP → disappeared et disappear
Vt → upset e(et) upset
Vs → report t(et) report

Det → every1 (et)→ (en+1 →{(n+1)α})→{nα} λz. λk1. λk2. k1 n (λv.
k2 (∀n(z n ⇒ v)))

Det → some1, a1 (et)→ (en+1 →{(n+1)α})→{nα} λz. λk1. λk2. k1 n (λv.
k2 (∃n(z n ∧ v)))

Det → every2 (et)→ (en+1 →{β(n+1)γ})→{βnγ} λz. ↑ ([[every1]] z)
Det → some2, a2 (et)→ (en+1 →{β(n+1)γ})→{βnγ} λz. ↑ ([[some1]] z)

Fig. 12 Syntax and the multi-level direct-style continuation semantics for the additional fragment

(28) That every boy left upset a teacher.

(29) Someone reported that John saw everyone.

These examples are not ambiguous however: (28) (the same as (4)) has only the
inverse-scope reading, whereas (29) (the same as (5)) has only the linear-scope
reading. The common explanation (see survey Szabolcsi (2000)) is that embedded
tensed clauses are scope islands, preventing embedded quantifiers from taking scope
wider than the island.

To analyze these examples, we at least have to extend our fragment with more lexi-
cal entries and with syntactic forms for clausal NPs, with the corresponding semantic
combinators.5 Figure 12 shows the additions. Most of them are straightforward. In
particular, we generalize quantifying NPs like everyone to quantifying determiners
like every. The determiner receives an extra (et) argument for its restrictor property,
of the type of the denotation of a common noun.6 Unlike Barker (2002), we do not
use choice functions in the denotations for the quantifier determiners. Instead, the
denotation of the NP is obtained from the denotations of the Det and N by ordinary
function application.

Just as quantifying NPs are polysemous, so are quantifying Dets on our analy-
sis: there are weak (or level-1) forms every1 and a1 and strong (or level-2)
forms every2 and a2. Stronger quantifiers outscope weaker ones. For example,

5 If the domain of the semantic type t only contains the two truth values, we clearly cannot give
an adequate denotation to embedded clauses: the domain is too small. Therefore, we now take the
domain of t to be a suitable complete Boolean algebra.
6 This is a simplification: generally speaking, the argument of a Det is not a bare common noun
but a noun modified by PP and other adjuncts. Until we add PP to our fragment in Sect. 5.3, the
simplification is adequate.
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[M [S [a1 boy] [upset [every2 teacher]]].] determines the inverse-scope reading
∀0(teacher · 0 =⇒ ∃1(boy · 1 ∧ upset · 0 · 1)).

Recall from Fig. 11 how the matrix denotation M → S. is obtained from the
denotation of the main clause:

[[
M

]] = (∣∣[[S
]]∣∣). We see exactly the same pattern for

the clausal NPs in the semantic operations corresponding to Vs that S and that S: in
all the cases, the denotation of a clause is enclosed within

(∣∣·∣∣), which is the semantic
counterpart of the syntactic clause boundary. The typing rules for

(∣∣·∣∣) in Fig. 8 specify
its result have the type t0, as befits the denotation of a clause. The type t0 is not a CPS
type and hence

(∣∣[[S
]]∣∣) cannot get hold of its context to quantify over. Therefore,

if S had any embedded quantifiers, they can quantify only as far as the clause. The
operation

(∣∣·∣∣) thus acts as the scope delimiter, delimiting the context over which
quantification is possible. (Incidentally, the same typing rules of

(∣∣·∣∣) severely restrict
how this scope-delimiting operation may be used within lexical entries. For example,(∣∣[[VP

]]∣∣) is ill-typed since VP does not have the type tn or (tn → {α}) → {β}.)
In case of (28), we obtain the same denotation (30) no matter which lexical entry

we choose for the embedded determiner, every1 (31) or every2 (32). The quantifier
remains trapped in the clause and the sentence is not ambiguous. Incidentally, since
all quantifier variables used within a clause will be quantified within the clause, their
names can be chosen regardless of the names of other variables within the sentence.
That’s why the name 0 is reused in (30). Again, names follow scope. A similar
analysis applies to (29).

(30) ∃0(teacher · 0 ∧ upset · 0 · (That · ∀0(boy · 0 =⇒ leave · 0)))

(31)
[[

[M [NP That [S every1 boy left]] [VP upset [NP a1 teacher]].]
]]

(32)
[[

[M [NP That [S every2 boy left]] [VP upset [NP a1 teacher]].]
]]

We have demonstrated that a scope island is an effect of the operation
(∣∣·∣∣), which

is the semantic counterpart of the syntactic clause boundary. In our analysis, each
surface syntactic constituent still corresponds to a well-formed denotation, and each
surface syntactic formation rule still corresponds to a semantic combinator. Our
approach hence is directly compositional.

5.2 Wide-Scope Indefinites

Given that enclosing all clause denotations in
(∣∣·∣∣) traps all quantifiers inside, how

do indefinites manage to get out? And they do get out: “Indefinites acquire their
existential scope in a manner that does not involve movement and is essentially
syntactically unconstrained” (Szabolcsi 2000, Sect. 3.2.1). For example:

(33) Everyone reported that [Max and some lady] disappeared.
(34) Most guests will be offended [if we don’t invite some philosopher].
(35) All students believe anything [that many teachers say].
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Szabolcsi argued (Szabolcsi 2000) that all these examples are ambiguous. In partic-
ular, in (33) (the same as (7)), either different people meant a different lady disap-
pearing along with Max, or there is one lady that everyone reported as disappearing
along with Max. Interestingly, the example

(36) Someone reported that [Max and every lady] disappeared.

is not ambiguous: there is a single reporter of the disappearance for Max and all ladies.
The unambiguity of (36) is explained by the embedded clause’s being a scope island,
which prevents the universal from taking wide scope. The ambiguity of (33) leads
us to conclude that indefinites, in contrast to universals, can scope out of clauses,
complements and coordination structures. Szabolcsi (2000) gives a large amount of
evidence for this conclusion. Accordingly, our theory must first explain how anything
can get out of a scope island, then postulate that only indefinites have this escaping
ability.

The operation
(∣∣·∣∣) that effects the scope island has the schematic type that can be

informally depicted as CPSi [t] → CPS0[t] where

CPSi [t] = {α} where the length of α is 2i+1 − 1

Since the result of
(∣∣m

∣
∣) has a CPS0 type, that is t , the result cannot get hold of any

context. Hence we need a less absolutist version of
(∣∣·∣∣) which merely lowers rather

than collapses the hierarchy. We call that operation
(∣∣·∣∣)2, of the informal schematic

type CPS≤2[t] → CPS0[t] and CPSi+2[t] → CPSi [t] where i ≥ 1. Whereas(∣∣m
∣
∣) delimits all the contexts of m,

(∣∣m
∣
∣)

2 delimits only the first two contexts of the
hierarchy. Quantifiers within m of level 3 and higher will be able to get hold of the
context of

(∣∣m
∣∣)

2. One may think of
(∣∣·∣∣)2 as the inverse of ↑↑. The following example

illustrates the lowering:

(37a)
[[

someone1 left
]] = λk1. λk2. k1 (leave · n) (λv. k2∃nv)

(37b)
(∣∣[[someone1 left

]]∣∣)
2 = ∃0(leave · 0)

(37c)
(∣∣↑ [[

someone1 left
]]∣∣)

2 = ∃0(leave · 0)

(37d)
(∣∣↑↑ [[

someone1 left
]]∣∣)

2 = λk1. λk2. k1 (leave · n) (λv. k2∃nv)

In (37a) and the identical (37d), the existential quantifies over the potentially wide
context k1. In (37b) and (37c), whose denotations are again identical, ∃0 scopes just
over leave · 0 and extends no further.

Why did we choose 2 as the number of contexts to delimit at the embedded clause
boundary? Any number i ≥ 2 will work, to explain the quantifier ambiguity within
the embedded clause and wide-scope indefinites. We chose i = 2 for now pending
analysis of more empirical data.

If (37a)–(37d) is the specification for
(∣∣·∣∣)2, then (38) below is the implementation.

It is derived from the schema (26) by cutting it off after the third line and inserting
the generic lowering-by-two operation as the final default case.
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Syntax Semantic type Denotation [[·]]
VP → Vs that S etn or ((et)n → {α}) → {β} [[Vs]] >(|[[S]]|)2
NP → that S en or (en → {α}) → {β} That (|[[S]]|)2
NP → NP1 and NP2 en or (en → {α}) → {β} alongWith [[NP1]] [[NP2]]
N → max e max
N → lady et lady

Det → some3, a3 (et)→ (en+1 →{β3(n+1)γ}) λz. ↑ [[some2]] z
→ {β3nγ}

Det → some4, a4 (et)→ (en+1 →{β4(n+1)γ}) λz. ↑ [[some3]] z
→ {β4nγ}

Fig. 13 Adjustments to the syntax and the multi-level direct-style continuation semantics for the
additional fragment, to account for wide-scope indefinites. If the size of the sequence γ is j , the
size of β3 is 3( j + 2) and of β4 is 7( j + 2)

(38)
(∣∣m

∣∣)
2

def=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m if m : {0}
m(λv. v) if m : {nn0}
m(λv. λk. kv)(λv. v) if m : {nnl1l1l2l20}
m(λv. λk. kv)(λv. λk. kv) otherwise

It is easy to show that the definition (38) indeed satisfies (37a)–(37d). A useful lemma
is the identity (↑ m)(λv.λk. kv) = m, easily verified from the definition (27) of ↑.

To make use of this lowering operation
(∣∣·∣∣)2, we adjust the lexical entries in

Fig. 12 as shown in Fig. 13. The main change is replacing
(∣∣·∣∣) in the semantic com-

position rules for embedded clauses with
(∣∣·∣∣)2. In other words, we now distinguish

the main clause boundary from embedded clause boundaries. Figure 13 also reflects
our postulate: only indefinites may be at the CPS level 3 and higher—not universals.

The typical example (33) can now be analyzed as follows (see Fig. 12 for the
denotations of disappeared and report):

(39) [M Everyone1reported that [S Max and somei lady disappeared].]
When the level i of somei is 1 or 2, the indefinite is trapped in the scope island.

(40a) ∀0report · (∃0(lady · 0 ∧ disappear · (alongWith · max · 0))) · 0

At the level i = 3, the indefinite scopes out of the clause but is defeated by the
universal in the subject position, giving us another linear-scope reading, along the
lines expounded in Sect. 2.2.

(40b) ∀0∃1lady · 1 ∧ report · (disappear · (alongWith · max · 1)) · 0

Finally, some4, lowered from level 4 to level 2 as it crosses the embedded clause
boundary, has sufficient strength left to scope over the entire sentence.

(40c) ∃0lady · 0 ∧ ∀1report · (disappear · (alongWith · max · 0)) · 1
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Syntax Semantic type Denotation [[·]]
N → N en → nα λx. λk. k ([[N]] x)
N → N PP en → nα λx. (∧)>([[N ]] x)>([[PP]] x)
PP → from NP en → nα λx. (|from> [[NP]] >x|)2
NP → Det N (en → {α}) → β [[Det]] [[N ]]

Det → every1 (en+1 → {(n + 1)nαβγ})
→ (en+1 → {(n + 1)αβ}) → {γ}

λz. λk1. z n (λx. λk2.
k1 n (λv. k2 (∀n(x ⇒ v))))

Det → some1, a1 (en+1 → {(n + 1)nαβγ})
→ (en+1 → {(n + 1)αβ}) → {γ}

λz. λk1. z n (λx. λk2.
k1 n (λv. k2 (∃n(x ∧ v))))

Det → no1 (en+1 → {(n + 1)nαβγ})
→ (en+1 → {(n + 1)αβ}) → {γ}

λz. λk1. z n (λx. λk2.
k1 n (λv. k2 (¬ ∃n(x ∧ v))))

Fig. 14 Adjustments to the syntax and the multi-level direct-style continuation semantics for the
additional fragment, to account for prepositional phrases. The higher-level quantificational deter-
miners are produced with the ↑ operations; see Fig. 13 for illustration. If the size of the sequence α
is j , the size of β is also j and the size of γ is 2 j + 1

5.3 Inverse Linking

Our analysis of inverse linking turns out quite similar to the analysis of wide-scope
indefinites. We take the argument NP of a PP to be a scope island, albeit it is
evidently a weaker island than an embedded tensed clause. We realize the island
by an operation similar to

(∣∣·∣∣)2. Therefore, a strong enough quantifier embedded in
NP can escape and take a wide scope. That escaping from the island corresponds to
inverse linking.

To demonstrate our analysis, we extend our fragment with prepositional phrases;
see Fig. 14. We add a category of N’ of nouns adjoined with PP. We generalize
Det to take as its argument N’ rather than bare common nouns. For simplicity, we
use the same

(∣∣·∣∣)2 operation for the PP island as we used for the embedded-clause
island. Recall that (∧) is a constant of the type t (t t) and we write the DQ expression
(∧) · d1 · d2 as d1 ∧ d2.

The type of the quantificational determiners shows that a determiner takes a restric-
tor and a continuation, which may contain n other free variables. The determiner adds
a new one, which it then binds. Although the denotations of determiners in Fig. 14
bind the variables they themselves introduced, that property is not assured by the
type system. For example, nothing prevents us from writing ‘bad’ lexical entries
like λz.∀nz or 1. Although the type system will ensure that the overall denotation
is closed, what a binder ends up binding will be hard to predict. It is an interesting
problem to define ‘good’ lexical entries (with respect to scope) and codify the notion
in the type system. This is the subject of ongoing work Kameyama et al. (2011).

We analyze inverse linking thusly.

(41a) [NP No[N’ [N’ man][PP from a foreign country]]]was admitted.

(41b) neg · ∃0man · 0 ∧ (∃1country · 1 ∧ from · 1 · 0) ∧ admitted · 0
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(41c) exists0country · 0 ∧ ¬ · ∃1man · 1 ∧ from · 0 · 1 ∧ admitted · 1

The PP in (41a) contains an ambiguous quantifier. If the quantifier is weak, it is
trapped in the PP island and gives the salient reading (41b). If the quantifier is strong
enough to escape, the inverse-linking reading (41c) emerges. We thus reproduce
quantifier ambiguity for QNP within NP and explain inverse linking.

6 Conclusions

We have given the first rigorous account of linear- and inverse-scope readings, scope
islands, wide-scope indefinites and inverse linking based on the D&F continuation
hierarchy. Quantifier ambiguity arises because quantifier words are polysemous, with
multiple denotations corresponding to different levels of the hierarchy. The higher
the level, the wider the scope. Embedded clauses and PPs create scope islands by
lowering the hierarchy and trapping low-level quantifiers. Higher-level quantifiers
(which we postulate only indefinites possess) can escape the island and take wider
scope. The continuation hierarchy lets us assign scope to indefinites and universals
and explain their differing scope-taking abilities.

Our analysis is directly compositional: each surface syntactic constituent cor-
responds to a well-formed denotation, and each surface syntactic formation rule
corresponds to a unique semantic combinator.

We have shown how to build the continuation hierarchy modularly and on-
demand, without committing ourselves to any particular hierarchy level but raising
the level if needed as a denotation is being composed. In particular, quantifier-free
lexical entries have unlifted types and simple denotations.

We look forward to extending our analysis to other aspects of scope—how quan-
tifiers interact with coordination (as in (1.1)), pronouns and polarity items—and to
distributivity in universal quantification. We would also like to investigate if hierar-
chy levels can be correlated with Minimalism features or feature domains. Finally,
we plan to extend our analyses of single sentences to discourse.
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