
Coordinating and Subordinating Binding
Dependencies

Alastair Butler

Abstract This chapter focuses on similarities between coordinating and (distant)
subordinating binding dependencies. We start from natural language data suggest-
ing such dependencies are established by the same underlying mechanism, e.g., “A
collector didn’t buy because she was influenced.” is structurally ambiguous with-
out consequences for the pronominal binding. We compare and contrast four related
systems that capture coordinating and subordinating binding dependencies, the first
with distinct mechanisms, the others with single mechanisms.

Keywords Coordination · Subordination · Anaphoric binding · Covaluation ·
Clause internal relations · Pronouns
1 Introduction

This chapter focuses on the differences and similarities between the dependency
types pictured in (1), where Op is some form of binding operator and x is a bindee
dependent on Op. In (1a) x is outside and positioned to the right of the syntactic
scope of Op. Let us call this a binding dependency of coordination. In (1b) x is within
the syntactic scope of Op. Let us call this a binding dependency of subordination.

(1)

Op

x

Op

x

(a) (b)

A. Butler (B)

PRESTO, Japan Science and Technology Agency, Center for the Advancement of Higher
Education, Tohoku University, Miyagi, Japan
e-mail: ajb129@hotmail.com

E. McCready et al. (eds.), Formal Approaches to Semantics and Pragmatics, 65
Studies in Linguistics and Philosophy, DOI: 10.1007/978-94-017-8813-7_4,
© Springer Science+Business Media Dordrecht 2014

66 A. Butler

While (1) suggests no reason to expect the two dependency types to be of the
same kind, English appears to employ the same pronominal mechanism to establish
both dependency types. For example, consider (2) which allows the distinct readings
of (3). The ambiguity hinges on the scope placement of negation with respect to
because, with she anaphorically dependent on a collector for both readings.

(2) A collector didn’t buy because she was influenced.

(3) a. For the reason stated, a collector didn’t make the purchase.
(because > neg)

b. A collector made the purchase, for a reason not yet stated.
(neg > because)

Reading (3a) is captured with the bracketing of (4a) that conforms to the picture
of (1a). In contrast reading (3b) is only possible with the bracketing of (4b) that has
the attached adjunct clause falling under the scope of negation and so under the scope
of the main clause subject a collector to conform to the picture of (1b).

(4) a. [A collector didn’t buy] because [she was influenced].
b. A collector didn’t [buy because [she was influenced]].

Other examples to stress the similarity of coordinating and subordinating bind-
ing dependencies come from observing covaluation effects. Effects of covaluation
readily arise across sentences in discourse and so as coordinating binding depen-
dencies. Consider (5), a binding dependency established with a mandatory reflexive.
(Accounting for reflexive binding is addressed in Sects. 4 and 5.) Typically, him
should not be able to occur in the same environment as himself and take the same
referent; yet it does in (6). This is possible because the antecedent of him is not
the subject John himself , but rather the previous John in A’s question. This gives
an instance of covaluation: that him is coreferential with the subject is not the con-
sequence of a binding localised to the current clause, and so does not violate the
restriction that bars a pronoun occurring where a reflexive is able to occur.

(5) John voted for himself .

(6) A: Who voted for John?
B: Well, John himself voted for him, but I doubt others did.

What is interesting for our current concern is the observation made in Heim
(1993) (see also Reinhart 2000; Büring 2005) that covaluation effects can arise under
the scope of a quantifier and so with a subordinating binding dependency. What is
required for the covaluation effect is for the dependency to be sufficiently deeply
embedded for the bindee to take the from of a non-reflexive pronoun. For example,
(7) allows for a covaluation reading where every candidate is surprised to find ‘No
one else voted for me!’.

Coordinating and Subordinating Binding Dependencies 67

(7) Every candidate is surprised because only he voted for him.

That the phenomena of covaluation is observable with both subordinating and
coordinating binding dependencies, and furthermore arises with the employment of
the same lexical items in English, is very suggestive that a single unified mechanism
of pronominal binding is responsible for both dependency types, in English at least.
Whatever explains the coordinating binding dependencies in (4a) and (6) should bear
on what explains the subordinating binding dependencies in (4b) and (7), and vice
versa.

The remainder of this chapter is organised as follows. Section 2 gives our starting
point in formulating an account by presenting Predicate Logic with Anaphora (PLA)
fromDekker (2002). This implements the two dependency typeswith distinct binding
mechanisms. Section 3 looks at a system built from the parts of PLA that are not
predicate logic, offering a way to derive subordinating and coordinating binding
dependencies with a single mechanism. Section 4 looks at Dynamic Predicate Logic
with Exit operators (DPLE) fromVermeulen (1993). This offers an alternative unified
way to capture the two dependency types, with primitive coordinating relations and
derived subordinating effects. Section 5 offers yet another system, a minimal version
of the Scope Control Theory of Butler (2010), which brings together insights gained
from the other systems.

Throughout this chapter we make use of the following notation for sequences:

• [x0, . . . ,xn−1] a sequence with n elements, x0 being frontmost
• x̂ abbreviation for a sequence
• x̂i returns the i-th element of a sequence: [x0, . . . ,xn−1]i = xi , where 0 ≤ i < n.
• |x̂ | returns the length of a sequence: |[x0, . . . ,xn−1]| = n.
• x̂ @ ŷ returns the concatenation of sequences x̂ and ŷ.

2 Distinct Coordinating and Subordinating Mechanisms

Suppose we wish to encode the discourse of (8) with predicate logic.

(8) Someone1 enters. He1 smiles. Someone2 laughs. She2 likes him1.

One possibility is given by (9).

(9) ∃x(enters(x) ∧ smiles(x) ∧ ∃y(laughs(y) ∧ likes(y, x)))

While (9) captures the truth-conditional semantics of (8), it does so with existen-
tial quantifiers corresponding to someone taking syntactic scope over the remaining
discourse. This has the shortcoming of leaving no separable encoding for the sen-
tences of (8), a situation that appears forced because predicate logic supports only
subordinating binding dependencies.

68 A. Butler

This section considersPredicate Logic with Anaphora (PLA) fromDekker (2002).
A central design goal of PLA is to allow a direct coding of coordinating binding
dependencies with minimal deviation from a predicate logic core (that captures sub-
ordinating binding dependencies). The language of PLA is that of predicate logic
with atomic formulas taking, in addition to variables, “pronouns” {p0, p1, p2, . . .}
as terms.

Definition 1 (PLA satisfaction and truth).

Suppose afirst-ordermodel M with domain of individuals D. Suppose σ̂ is a sequence
of individuals from D. Suppose g is an assignment from variables to individuals of D.
g[x/d] is an assignment that is like g in all respects, except (possibly) differing with
d assigned to x . drop(σ̂,n) returns what is left after dropping the first n elements
of σ̂ for 0 ≤ n < |σ̂|. The PLA semantics can be given as follows:

• M, σ̂, g |= ∃xφ iff M,drop(σ̂,1), g[x/σ̂0] |= φ
• M, σ̂, g |= φ ∧ ψ iff M,drop(σ̂,n(ψ)), g |= φ and M, σ̂, g |= ψ
• M, σ̂, g |= ¬φ iff there is no σ̂′ ∈ Dn(φ) such that M, σ̂′σ̂, g |= φ
• M, σ̂, g |= P(t1, . . .,tn) iff ([t1]σ̂,g, . . . , [tn]σ̂,g) ∈ M(P)

and

• [x]σ̂,g = g(x)
• [pi]σ̂,g = σ̂i

where n(φ) is a count of existentials in φ that are outside the scope of negation:
n(∃xφ) = n(φ) + 1, n(φ ∧ ψ) = n(φ) + n(ψ), n(¬φ) = 0, n(P(t1, . . . , tn)) = 0.

A formula φ is true with respect to σ̂ and g in M iff there is a σ̂′ ∈ Dn(φ) such that
M, σ̂′σ̂, g |= φ.

As with the classical interpretation of predicate logic the clause for existential quan-
tification brings about the creation of a new x binding by resetting the value assigned
to x . However the reset value is not entirely new but is rather the dropped frontmost
sequence value of σ̂.

The clause for conjunction brings about a division between ‘fresh’ and ‘old’
sequence positions. Fresh positions are at the front of σ̂ and occur so as to be dropped
by an existential. Old positions occur towards the rear of σ̂ and were dropped by exis-
tentials of prior conjuncts. This division falls out from φ∧ψ since for the evaluation
of φ the fresh positions for ψ are dropped on the basis of an n(ψ) count to reveal the
fresh positions for φ, as well as the old positions. For the evaluation of ψ there are no
drops with the consequence that the fresh and old positions for φ are old positions
for ψ.

The negation of a formulaφ acts as a ‘test’: it tells us that values for the existentials
in φ cannot be found, or rather that there is no way to feed the existentials of φ values
for their bindings from a sequence σ̂′ with length n(φ). Consequently for a negated
formula evaluated with respect to σ̂, all positions of σ̂ are old. Similarly for atomic

Coordinating and Subordinating Binding Dependencies 69

formula evaluation all fresh positions will have dropped and so only old positions
are left as potential values for pronouns as terms within the atomic formula.

As an example of PLA in action, (8), can be rendered as (10).

(10) ∃xenters(x) ∧ smiles(p0) ∧ ∃x laughs(x) ∧ likes(p0, p1)

An evaluation of (10) is illustrated in (11), happening against the sequence of individ-
uals [m, j] and an assignment of a to variable x . Conjunction in PLA is associative,
so (φ∧ψ)∧χ ≡ φ∧ (ψ ∧χ), and to reflect this the illustration is left underspecified
as to the order in which the instances of ∧ apply.

(11)
[m, j], x −→ a

∧

[j], x −→ a
∃x

[], x −→ j
enters(x)

j ∈ M(enters)

[j], x −→ a
smiles(p0)

j ∈ M(smiles)

[m, j], x −→ a
∃x

[j], x −→ m
laughs(x)

m ∈ M(laughs)

[m, j], x −→ a
likes(p0,p1)

(m, j) ∈ M(likes)

We can see that during the course of evaluation occurrences of ∧ manage when
frontmost positions of the sequence are kept in reserve for subsequent discourse. If
positions are not reserved, they are either: (i) destined to be dropped to have their
values entered into the assignment as existential binding values before a ‘test’ is
encountered (either a predicate or negated formula), as demonstrated by the instances
of ∃x ; or (ii) serve as accessible old positions for pronouns, as demonstrated by the
first p0 instance and p1 taking as antecedent the sequence value that serves as the
binding value adopted by the first instance of ∃x , and the second instance of p0
taking as antecedent the sequence value that serves as the binding value adopted by
the second ∃x .

The binding value for an existential quantification comes from the sequence σ̂.
Pronouns likewise take their antecedent from σ̂. Since σ̂ is an open environment
parameter of evaluation, this gives (10) the same interpretation as the predicate logic
formula (12).

(12) enters(x1) ∧ smiles(x1) ∧ laughs(x2) ∧ likes(x2, x1)

This accords with the use of predicate logic in Cresswell (2002) to encode discourse
while maintaining separable encodings for constituent sentences, e.g., (8) can be
captured along the lines of (13).

(13) ∃x(x = x1 ∧ enters(x)) ∧ smiles(x1) ∧ ∃x(x = x2 ∧ laughs(x)) ∧
likes(x2, x1)

70 A. Butler

Furthermore, Cresswell suggests that what we are seeing as an essentially variable
use of indefinites is reflected in English by the word “namely”, e.g., it is possible to
say (14).
(14) Someone, namely John, enters. He smiles. Someone, namely Mary, laughs.

She likes him.
With the illustration of (11) we also see that what is the antecedent of a pronoun

in PLA is not necessarily determined by the same index. Rather the antecedent of
a pronoun must be calculated by taking into account the number of occurrences
of existentials in intervening conjuncts. This seems appropriate for characterising
pronouns. Pronouns do not have grammatically fixed antecedents and must instead
have their antecedent resolved, that is, chosen frompotentially a number of accessible
antecedents. The index provides notation to indicate a specific choice of antecedent.
Moreover, under the assumption that a lower integer is in some sense easier to allocate
than a higher integer, pronouns are seen to favour closer (more salient) antecedents.

We are now in a position to consider PLA renderings of the examples in Sect. 1.
Reading (3a) of (2) can be captured with the PLA formula (15a) that has bracketing
conforming to (4a), while reading (3b) is captured by (15b) with bracketing that
conforms to (4b).

(15) a. ∃x(collector(x) ∧ ¬buy(x)) ∧ influenced(p0)
b. ∃x(collector(x) ∧ ¬(buy(x) ∧ influenced(x)))

Due to the bracketing that makes the dependency with the pronoun a coordinating
binding dependency in (15a) and a subordinating binding dependency in (15b) the
encoding of the pronoun cannot be captured in a consistent manner: a dependency
with the configuration of (1a) requires a PLA pronoun, while configuration (1b)
necessitates a PLA variable.

Considering (5), the binding of the reflexive pronoun is captured with a PLA vari-
able as in (16), while the covaluation data (6) necessitates a PLA pronoun as in (17).

(16) ∃x(John(x) ∧ voted_for(x, x))

(17) ∃x(John(x) ∧ voted_for(x, p1))

Encodings (16) and (17) are appropriate for distinguishing covaluation from binding.
PLA pronoun binding is essentially an ad-hoc dependency, with the actual depen-
dency that obtains fixed with the allocation of an index for the pronoun—a change
of index would allow a different antecedent. In contrast, the binding of a variable is
determined solely by the scope under which the variable falls. This is appropriate
for capturing dependencies that could not be otherwise, which holds for reflexive
binding, but also for other clause internal dependencies, e.g., connecting subject and
object arguments to the verb.

However the distinction between binding and covaluation achieved with (16) and
(17) breaks down when we consider providing a PLA encoding for the covaluation
reading of (7). Arising as the consequence of a subordinating configuration, the
covaluation reading of (7) requires the pronoun to be coded with a PLA variable, as
in (18).

(18) ¬∃x(candidate(x) ∧ ¬(surprised(x) ∧ ¬∃y(voted_for(y, x) ∧ ¬y = x)))

Coordinating and Subordinating Binding Dependencies 71

3 Only a Pronoun Mechanism

Context is structured with PLA as a sequence that is not changed but which can be
extended with insertions from instances of negation that are subsequently lost on
exit from the scope of the negation, resulting in DRT-like accessibility effects (see
e.g., Kamp and Reyle 1993). Dynamism emerges from an advancing through the
given context as managed by instances of ∧, or to put this another way, the unveiling
of previously inaccessible portions of context. The current position reached comes
from a division between sequence values in active use and sequence values not in
active use. Values in active use are either values that will be used as the values for
quantifications in the current conjunct, in which case they are dropped from the
sequence machinery and imported into the variable binding machinery, or else are
values accessible to pronouns, in which case they will have been used as the values
for quantifications in prior conjuncts. Values not in active use are held back to serve
as values for the quantifications of subsequent conjuncts.

We might imagine other ways of keeping track on where we are in a structured
context. In this section we consider a system with a “pointer” to mark the location
reached in a linearly structured context which we can take to be an infinite sequence.
Having infinite sequences removes the possibility of undefinedness, but the system
would operate the same over finite sequences with sufficient sequence values.

Definition 2 (Pointer Semantics satisfaction and truth).

Suppose a first-order model M with domain of individuals D. We will use σ̂[k..m]
for finite sequence (σ̂k, . . . , σ̂m), σ̂[k..ω] for the infinite sequence (σ̂k, . . .), and
σ̂[−ω..k] for the infinite sequence (. . . , σ̂k). We will write σ̂ for σ̂[−ω..ω] and
suppose individuals from D are assigned to the positions of σ̂. Satisfaction is given
as follows:

• M, σ̂ |=k ∃φ iff M, σ̂ |=k+1 φ
• M, σ̂ |=k φ ∧ ψ iff M, σ̂ |=k φ and M, σ̂ |=k+n(φ) ψ
• M, σ̂ |=k ¬φ iff M, σ̂[−ω..k]σ̂′[1..n(φ)]σ̂[k + 1..ω] �|=k φ for all σ̂′[1..n(φ)]
• M, σ̂ |=k P(t1, . . . , tn) iff ([[t1]]σ̂,k, . . . , [[tn]]σ̂,k) ∈ M(P)

• [[pi]]σ̂,k = σ̂k−i

where n(φ) is a count of the binding operators∃ inφ that are outside the scope of nega-
tion: n(∃φ) = n(φ)+1, n(φ∧ψ) = n(φ)+n(ψ), n(¬φ) = 0, n(P(t1, . . . , tn)) = 0.

A formula φ is true with respect k and σ̂ in M iff there is a σ̂′[1..n(φ)] such that
M, σ̂[−ω..k]σ̂′[1..n(φ)]σ̂[k + 1..ω] |=k φ.

Binding operator ∃φ opens a fresh binding by advancing the pointer by one
sequence value, which is thereafter accessible for pronouns inside φ. With a conjunct
φ ∧ ψ, crossing to ψ from φ advances the pointer by n(φ) sequence values, that is,
by the number of instances of ∃ visible in φ. This is demonstrated with a rendering
of (8) as (19).

(19) ∃enters(p0) ∧ smiles(p0) ∧ ∃laughs(p0) ∧ likes(p0, p1)

72 A. Butler

Evaluation of (19) is illustrated in (20), with the order in which the three instances
of ∧ apply left underspecified, since conjunction is associative, as was the case with
PLA. Also note how the evaluation of terminals ends exactly as with (11).

(20) j m

∧

j m

∃

j m

enters(p0)

j ∈ M(enters)

j m

smiles(p0)

j ∈ M(smiles)

j m

∃

j m

laughs(p0)

m ∈ M(laughs)

j m

likes(p0,p1)

(m, j) ∈ M(likes)

Negation works as illustrated in (21) by inserting into the main sequence a sequence
of values that serve as the positions to which the pointer is moved by existentials
while inside the scope of negation, returning back to the main sequence outside the
scope of negation.

(21) A

B

C

D

E

F

G

H

P

Q

R

S

T

negation

We are now in a position to apply the system of Pointer Semantics to the examples
of Sect. 1. Reading (3a) of (2) follows from (22a) with bracketing conforming to (4a),
while reading (3b) is captured by (22b) with bracketing that conforms to (4b).

Coordinating and Subordinating Binding Dependencies 73

(22) a. ∃(collector(p0) ∧ ¬buy(p0)) ∧ influenced(p0)
b. ∃(collector(p0) ∧ ¬(buy(p0) ∧ influenced(p0)))

Reflexive binding in (5) is captured with (23), while covaluation readings for (6) and
(7) are obtained with (24) and (25), respectively.

(23) ∃(John(p0) ∧ voted_for(p0, p0))

(24) ∃(John(p0) ∧ voted_for(p0, p1))

(25) ¬∃(candidate(p0)∧¬(surprised(p0)∧¬∃(voted_for(p0, p1)∧¬p0 = p1)))

The encodings of (22)–(25) successfully capture the uniform role of linking played
by pronouns in both subordinating and coordinating configurations. However this
uniformity is achieved at the expense of turning all operator-variable dependen-
cies into PLA-like pronominal bindings, including internal clause relations, such as
subject arguments binding verbal predicates. As was noted when looking at PLA,
PLA pronouns capture the ad-hoc nature of pronominal linking, with the actual
dependency that holds relying on a choice of index with respect to the presence
of intervening (formula) material. This is inappropriate for capturing core clause
internal links, which need to be grammatically enforced and essentially unalterable
dependencies, but see van Eijck (2001) where a constrained system of pronoun man-
agement is developed in a dynamic setting. What we appear to need is a system that
has both the option of pronominal linking and variable name linking with subordi-
nating configurations.

4 Only Coordinating Binding Dependencies

In this section we look at Dynamic Predicate Logic with Exit operators (DPLE)
as introduced by Vermeulen (1993, 2000), Hollenberg and Vermeulen (1996), with
the exception that we adopt predicate logic notation for the purpose of comparison.
The system itself extends the system of Dynamic Predicate Logic from Groenendijk
and Stokhof (1991) with the distinctive feature of treating the scoping of variables
by means of sequences. Each variable is assigned its own sequence by a sequence
assignment. This allows the introduction of an Exit operator for terminating other-
wise persistent dynamic scopes.

Wewill illustrate sequence assignments at work. The sequence value of an assign-
ment to a variable is depicted directly above the variable as boxes on top of each
other forming a stack. The uppermost box is the frontmost element of the sequence.
Only sequences for variable of interest are represented. For example, (26) illustrates
an assignment g with g(x) = [c, a] and g(y) = [b].

74 A. Butler

(26)

x y
a
c

b

The DPLE system builds on a primitive relation pop on sequence assignments:

• (g, h) ∈ popx iff h is just like g, except that g(x) = [(g(x))0] @ h(x).

There are actually two ways to interpret (g, h) ∈ popx . Read from g to h the relation
describes the popping of the frontmost sequence element that is assigned to x by g.
Read from h to g the relation describes the pushing of a new sequence value onto the
front of the sequence that is assigned to x by h. An example is illustrated in (27).

(27)

(x
a
c

, x
a

) ∈ popx

Formulas are interpreted as relations on sequence assignments that change the before-
state of a sequence assignment to an after-state in accordance with definition 3.

Definition 3 (DPLE satisfaction and truth).

Suppose a first-order model M with domain of individuals D. Suppose S A is the set
of assignments from variables to sequences of individuals from D. Each formula φ
is assigned to a relation [[φ]]M ⊆ S A × S A as follows:

• (g, h) ∈ [[φ ∧ ψ]]M iff ∃ j : (g, j) ∈ [[φ]]M and (j, h) ∈ [[ψ]]M

• (g, h) ∈ [[∃x]]M iff (h, g) ∈ popx
• (g, h) ∈ [[Exitx]]M iff (g, h) ∈ popx
• (g, h) ∈ [[x = y]]M iff g = h and (g(x))0 = (g(y))0
• (g, h) ∈ [[P(x1, . . . , xn)]]M iff g = h and ((g(x1))0, . . . , (g(xn))0) ∈ M(P)
• (g, h) ∈ [[¬φ]]M iff g = h and ¬∃ j : (g, j) ∈ [[φ]]M

A formula φ is true with respect to g in M iff there is a h such that (g, h) ∈ [[φ]]M .

From definition 3, we see how the after-state of a formula is the before-state of
the next conjoined formula. Existential quantification is captured as the pushing of a
random value onto the front of the x-sequence of the input assignment, while the Exit
operator is realised as the popping of the frontmost value of the x-sequence. Predicate
formulas correspond to tests on the frontmost values of variable sequences. The
implementation of negation follows Dynamic Predicate Logic in possibly changing
the assignment only internally to the scope of negation to act overall as a static test.

The DPLE system can be employed to provide a rendering of (8) as in (28).

(28) ∃x ∧ enters(x) ∧ smiles(x) ∧ ∃y ∧ laughs(y) ∧ likes(x, y)

Reading (3a) of (2) obtains with the formula (29a) with bracketing that conforms to
(4a), while reading (3b) is captured by (29b) with bracketing that conforms to (4b).

(29) a. ∃x ∧ collector(x) ∧ ¬buy(x) ∧ influenced(x)
b. ∃x ∧ collector(x) ∧ ¬(buy(x) ∧ influenced(x))

Coordinating and Subordinating Binding Dependencies 75

Reflexive binding in (5) is captured with (30), while covaluation readings for (6) and
(7) are obtained with (31) and (32), respectively.

(30) ∃x ∧ John(x) ∧ voted_for(x, x)

(31) ∃x ∧ John(x) ∧ voted_for(x, y)

(32) ¬(∃x∧candidate(x)∧¬(surprised(x)∧¬(∃y∧voted_for(y, x)∧¬y = x)))

However the encodings of (28)–(32) are essentially what we might have expected to
give had we been employing the system of Dynamic Predicate Logic, because there
is no use made of the one feature that is unique to DPLE, namely the Exit operator.

As a more interesting application of DPLE consider (33). This acts to move the
frontmost element of the x-sequence to the front of the y-sequence, where x �= y.

(33) movex,y ≡ ∃y ∧ x = y ∧ Exitx

We can give (34) as an illustration of how (33) works.

(34)

x y
a b

∃y Exitx

∃y
x y
a b

a
x = y

x y
b
a

x y
a b

b
x = y FAILS

From (34) we see how ∃y changes an input assignment to a new assignment where
what was the original content of the y-sequence is stored ‘under’ a new front-
most element. For the next instruction to succeed the new frontmost element of the
y-sequence must be a, else x = y fails. Consequently, ∃y ∧ x = y has a unique
output. Then Exitx applies to remove the frontmost element of the x-sequence to
give the final output.

To illustrate an application for move of (33) let us define operations • and�, where
utilisation of the specific variables sbj , obj and p is rigidly fixed by the definitions.

(35) • ≡ movesbj,p

� ≡ moveobj,p ∧ •
Let us also employ the convention in (36) to bring about formula iteration.

(36) R0 ≡

Rn ≡ Rn−1 ∧ R

We will now aim to mimic the contribution of some English words and phrases
with DPLE expressions. In (37) we define the contribution of several subject noun
phrases that create sbj bindings, noting that sbj variable names are rigidly specified
as parts of the encodings.

(37) Someone ≡ ∃sbj
A_collector ≡ ∃sbj ∧ collector(sbj)
John ≡ ∃sbj ∧ John(sbj)
every_candidate φ ≡ ¬(∃sbj ∧ candidate(sbj) ∧ ¬φ)

76 A. Butler

In (38) we aim to capture the contribution of both subject and object pronouns that
have an open i parameter to take an index value, as well as a subject pronoun that
is accompanied by only and also a reflexive pronoun. The reflexive pronoun has no
index but is rather rigidly fixed to create an obj binding that is linked to the open
sbj binding.

(38) shei ,hei ≡ ∃sbj ∧ (movep,r)
i ∧ sbj = p ∧ (mover,p)

i

heri ,himi ≡ ∃obj ∧ obj = p ∧ (movep,r)
i ∧ (mover,p)

i

only_hei φ ≡ ¬(∃sbj ∧ φ ∧ ¬((movep,r)
i ∧ sbj = p))

herself,himself ≡ ∃obj ∧ obj = sbj

Finally we provide DPLE encodings for verbs in (39), again noting that the variable
instances are rigidly specified.

(39) enters ≡ enters(sbj),smiles ≡ smiles(sbj),laughs ≡ laughs(sbj),
likes ≡ likes(sbj, obj),buy ≡ buy(sbj),was_influenced ≡ influenced(sbj),
voted_for ≡ buy(sbj),is_surprised ≡ surprised(sbj)

We are now in a position to consider (40) as a rendering of (8).

(40) Someone∧enters∧•∧he0 ∧smiles∧•∧Someone∧laughs∧•∧
she0 ∧ him1 ∧ likes ∧ �

In (41) an illustration is given of the changes that arise to a sequence assignment
when (40) is evaluated, resulting in terminals that end exactly as with (11) and (20).

(41)

s
Someone

s
j

enters(sbj)

j ∈ M(enters)

•

s
j he0

s
j j

smiles(sbj)

j ∈ M(smiles)

•

s
j
j

Someone
s
m j

j laughs(sbj)

m ∈ M(laughs)

•

s

bj obj p

bj obj p

bj obj p

bj obj p
j
j
m

she0
s
m j

j
m

him1

sbj obj p
m j j

j
m

likes(sbj,obj)

(m, j) ∈ M(likes)

s

bj obj p

bj obj p

bj obj p

bj obj p

bj obj p
j
j
m
j
m

We can also capture reading (3a) of (2) with (42a), while reading (3b) follows from
(42b).

Coordinating and Subordinating Binding Dependencies 77

(42) (a.) A_collector ∧ ¬buy ∧ • ∧ she0 ∧ was_influenced ∧ •

(b.) A_collector ∧ ¬(buy ∧ • ∧ she0 ∧ was_influenced) ∧ •
Reflexive binding in (5) is captured with (43), while covaluation readings for (6) and
(7) are obtained with (44) and (45), respectively.

(43) John ∧ himself ∧ voted_for ∧ �

(44) John ∧ him0 ∧ voted_for ∧ �

(45) every_candidate (is_surprised∧ • ∧ only_he0 (him0 ∧ voted_
for))

Examples (40) and (42)–(45) illustrate how it is possible tomake bindingswithDPLE
uniform and principled with the dependency management that the Exit operator
makes possible. However this comes at the cost of having to stipulate management
instructions. Worse still, relevant management instructions are dependent on what
has gone on before, with there being different ways to terminate a sentence, notably,
�, • or no operation, depending on whether the sentence contains an object, only a
subject, or falls under the scope of negation. To sum up, DPLE facilitates achieving
uniform bindings. What we now require is a way to automate the management of
open dependencies. This we aim to achieve with the system of the next section.

5 Pronominal and Variable Binding Again

In this section we illustrate a system with options for pronominal and variable name
binding in subordinating contexts, and the option of pronominal binding for coordi-
nating contexts.

One way to achieve such a system would be to place the machinery of predicate
logic alongside Pointer Semantics of Sect. 3. While feasible, the resulting system
would have two binding options—pronominal and variable binding—simultaneously
available for subordinating dependencies. In a natural language like English the dis-
tinct binding options of reflexive binding and pronominal binding have a comple-
mentary distribution.

Whatwe aim for instead in this section is to present a system that has quantification
to open a variable binding that will serve as the mechanism for establishing gram-
matically determined dependencies such as linking subject and object arguments
to the main predicate as well as reflexive binding, and for this to be subsequently
handed over to a binding that is available to the pronominal machinery, either as part
of a coordinating dependency or as part of a sufficiently embedded subordinating
dependency. This will be accomplished with some of the dynamic control DPLE
allowed over sequence assignments.

First we introduce the operations of cons and snoc:

78 A. Butler

• cons adds an element to the front of a sequence: cons y x̂ = [y] @ x̂ .
• snoc adds an element to the end of a sequence: snoc y x̂ = x̂ @ [y].
We now define shift(op) on pairs of assignments (g, h) to move from g to h or
vice versa. For shift(op) the operation op needs to be specified, with suitable
candidates being cons and snoc to give shift(cons) and shift(snoc).

• (g, h) ∈ shift(op)x,y iff ∃k : (h, k) ∈ popy and k is just like g, except that
g(x) = op((h(y))0,k(x)).

We will also use an iteration convention for relations on sequence assignments, e.g.,
implemented as in (36).

Reading from g to h, (g, h) ∈ shift(cons)x,y moves the frontmost scope of the
x sequence to the front of the y sequence. Examples are given in (46): (46a) illustrates
a single action of shift(cons); (46b) illustrates how iterated shift(cons) can
move a sequence of scopes to the front of another sequence with the original ordering
of scopes reversed.

(46)

(
a
c

b
,

a b
c

) ∈ shift(cons)x,y

(
a
c

,

x y x y

x y x y
c
a

) ∈ shift(cons)2x,y

(a)

(b)

Reading from g to h, (g, h) ∈ shift(snoc)x,y moves the endmost scope of the x
sequence to the front of the y sequence. Examples are given in (47): (47a) illustrates a
single action of shift(snoc); (47b) illustrates how iterated shift(snoc) canmove
a sequence of scopes to the front of another sequence with the original ordering of
scopes intact.

(47)

(
a
c

b
,

c b
a

) ∈ shift(snoc)x,y

(
a
c

,

x y x y

x y x y
a
c

) ∈ shift(snoc)2x,y

(a)

(b)

Having iterable relations shift(cons) and shift(snoc) in addition to pop from
Sect. 4, we introduce a minimal version of Scope Control Theory (SCT) from Butler
(2010).

Definition 4 (Minimal Scope Control Theory satisfaction and truth).

Formulas are evaluated with respect to a first-order model M = (D, I) and sequence
assignment g ∈ S A, where S A is the set of assignments from variables to sequences
of individuals from D. First, we define term evaluation:

Coordinating and Subordinating Binding Dependencies 79

• g(vn) = d if ∃h : (h, g) ∈ popi
v and d =↑(h(v)), else undefined.

Next, we define formula evaluation:

• M, g |= ∃xφ iff ∃h : (g, h) ∈ shift(cons)e,x and M, h |= φ
• M, g |=�xφ iff ∃h : (g, h) ∈ shift(cons)x,p and M, h |= φ

• M, g |= φ ∧ ψ iff ∃h : ((g, h) ∈ popn(ψ)
e and M, h |= φ) and

∃h((g, h) ∈ shift(snoc)n(φ)
e,p and M, h |= ψ)

• M, g |= ¬φ iff ¬∃h : (h, g) ∈ popn(φ)
e and M, h |= φ

• M, g |= P(t1, . . . , tn) iff (g(t1), . . . , g(tn)) ∈ I (P)

where n(φ) is a count of existentials in φ that are outside the scope of negation:
n(∃xφ) = n(φ) + 1, n(�xφ) = n(φ), n(φ ∧ ψ) = n(φ) + n(ψ), n(¬φ) = 0,
n(P(t1, . . . , tn)) = 0.
A formula φ is true with respect to g in M iff there is a h ∈ S A such that (h, g) ∈
popn(ψ)

e and M, h |= φ.
A term has form vn in a predicate formula P(. . . vn . . .), and denotes the n + 1
element of the v-sequence. In practice, indices different from 0 appear rarely. Nev-
ertheless, they can appear. We will assume the convention that the index 0 can be
omitted to keep the language to a conservative extension of traditional predicate logic
notation.

The existential quantifier is defined to trigger an instance of shift(cons) that
relocates the frontmost sequence element of the e-sequence to the x-sequence, where
e is a privileged name and x is determined by the quantification instance. Similarly
�x serves to relocate with shift(cons) an assigned sequence value, only relocating
the frontmost value of the x-sequence, where x is determined by the given instance
of �x , to become the frontmost sequence value that is assigned to the privileged p
variable.

Conjunction also acts to modify the content of what is assigned to the privi-
leged variables of e and p. Before evaluation of the first conjunct can proceed, the
e-sequence has n(ψ) values popped. Before evaluation of the second conjunct can
proceed, there is the relocation with shift(snoc) of n(φ) values from the end of
the sequence assigned to e to the front of the sequence that is assigned to p. Evalua-
tion of ¬φ involves showing there is no way to extend the sequence assigned to the
privileged e variable by n(φ) sequence values and have φ hold true.

Having now introduced Minimal SCT we can demonstrate the system with a
rendering of (8) as in (48), which is syntactically identical to the PLA rendering
of (10).

(48) ∃xenters(x) ∧ smiles(p0) ∧ ∃x laughs(x) ∧ likes(p0, p1)

Anevaluation of (48) is illustrated in (49),with the ordering of the three instances of∧
left underspecified since conjunction is once again associative, and happening against
a sequence assignment with an initial state in which e is assigned the sequence [m, j]
while other variables are assigned the empty sequence. As the evaluation proceeds
this assignment is modified, so that the terminals end exactly as with (11), (20)
and (41).

80 A. Butler

(49) j
m

∧

j

∃x

j

enters(x)

j ∈ M(enters)

j

smiles(p0)

j ∈ M(smiles)

m j

∃x

m j

laughs(x)

m ∈ M(laughs)

e x y p

e x y p

e x y p

e x y p e x y p

e x y p

e x y p
j
m

likes(p0,p1)

(m, j) ∈ M(likes)

Reading (3a) of (2) is captured with the formula (50a) with bracketing that conforms
to (4a), while reading (3b) is captured by (50b) with bracketing that conforms to (4b).
It is with the rendering of (50b) that we see the first deviation fromwhat was possible
with PLA. Notably (50b) employs �x with the consequence that the pronoun can be
rendered as p0 and so uniformity is achieved with the treatment of the pronoun in
(50a).

(50) a. ∃x(collector(x) ∧ ¬buy(x)) ∧ influenced(p0)
b. ∃x(collector(x) ∧ ¬(buy(x)∧�x influenced(p0)))

Reflexive binding in (5) is captured with (51), while covaluation readings for
(6) and (7) are obtained with (52) and (53), respectively. Again this illustrates the
consistent use of variables named p (akin to PLA-like pronouns) to capture English
pronouns, while other variables capture clause internal linking and reflexive binding.

(51) ∃x(John(x) ∧ voted_for(x,x))

(52) ∃x(John(x) ∧ voted_for(x,p0))

(53) ¬∃x(candidate(x)∧¬(surprised(x)∧�x¬∃y(voted_for(y,p0)∧¬y = p0)))

With the management of dependencies that occurs with conjunction and the
�-operator it is possible to establish a more direct correspondence with a natural lan-
guage like English. For example, followingwhat was possible in (37) with DPLE, we
define the contribution of several subject noun phrases in (54) with rigidly prescribed
bindings.

Coordinating and Subordinating Binding Dependencies 81

(54) Someone φ ≡ ∃sbjφ
A_collector φ ≡ ∃sbj (collector(sbj) ∧ φ)
John φ ≡ ∃sbj (John(sbj) ∧ φ)
every_candidate φ ≡ ¬∃sbj (candidate(sbj) ∧ ¬φ)

In (55) we capture subject and object pronouns, as well as a subject pronoun accom-
panied by only and also a reflexive pronoun.

(55) shei ,hei φ ≡ ∃sbj (sbj = pi ∧ φ)
herensuremathi ,himi φ ≡ ∃obj (obj = pi ∧ φ)
only_hei φ ≡ ¬∃sbj (φ ∧ ¬sbj = pi)

herself,himself φ ≡ ∃obj (obj = sbj ∧ φ)

Having (54)–(55), and adopting the codings of verbs in (39) without change, we are
in a position to render (8) as (56), The notable advantage over the DPLE version of
(40) is that there is no longer a need for the explicit management instructions of •
and �.

(56) Someone enters ∧ he0 smiles ∧ Someone laughs ∧ she0 (him1
likes)

Reading (3a) of (2) is captured with (57a), while reading (3b) follows from (57b).

(57) a. A_collector ¬buy ∧ she0 was_influenced
b. A_collector ¬(buy∧�sbj (she0 was_influenced))

Reflexive binding in (5) is captured with (58), while covaluation readings for (6) and
(7) are obtained with (59) and (60), respectively.

(58) John (himself voted_for)

(59) John (him0 voted_for)

(60) every_candidate (is_surprised∧�sbj (only_he0 (him0 voted_
for)))

An apparent weakness that remains with the encodings of (57b) and (60) is that
the management of �sbj must be stipulated. What we require is a trigger to motivate
the hand-over from a non-p(ronominal) binding to a p binding. We might suppose
such hand overs come about whenever the non-p binding is set to be reused. So in the
examples of (57b) and (60) the fact that a new clause is entered which itself contains
a subject argument opening a sbj binding is reason enough for the occurrence of
�sbj .

Extending this rational we should expect that when there is no subject in an
embedded clause there will be no corresponding �sbj , e.g., with the consequence
that a sbj dependency can be maintained across a clause boundary, as holds for the
control dependency in (61).

(61) John needed to go.

82 A. Butler

Interestingly a control predicate may take as complement an embedded clause that
contains a main predicate that is unable to receive a subject binding, but only pro-
vided there is the presence of expletive it, as the contrast between (62a) and (62b)
demonstrates.

(62) a. John needed it to rain.
b. *John needed to rain.

Supposing expletive it to contribute �sbj removes the subject binding inherited from
the control verb before rain is encountered.

Finally we should note that for the current approach to scale, e.g., to handle
passivisation, a more sophisticated interaction with syntax is required to implement
how binding names are obtained, which is left for future work.

6 Summary

This chapter began with the observation that in English properties for coordinating
dependencies also held for sufficiently deeply embedded subordinating dependen-
cies. This was taken to suggest that the two dependency types arise with the same
mechanism, and the purpose of this chapter has been to explore formal ways to
implement such a mechanism. This chapter has ended with a system that preserves
classical variable name binding, which captures well the more restricted role of
clause internal argument linking and reflexive binding in natural language, and have
a subsequent hand-over to a pronominal machinery in subordinating contexts with
sufficient embedding, which captures well the ad-hoc nature of pronominal bind-
ing. The set up of the system was such that the same pronominal machinery carried
over as the means to establish dependencies across coordinating contexts. With its
management of dependencies the system was demonstrated to reduce the distance
between natural language form and its realisation as a formula for interpretation.

Acknowledgments This research has been supported by the JapanScience andTechnologyAgency
PRESTOprogram (Synthesis ofKnowledge for InformationOriented Society). I would like to thank
the three anonymous reviewers for their extremely helpful comments that prompted considerable
improvements to the chapter.

References

Büring, D. (2005). Bound to bind. Linguistic Inquiry, 36(2), 259–274.
Butler, A. (2010). The semantics of grammatical dependencies, vol. 23 of current research in the

semantics/pragmatics interface. Bingley: Emerald.
Cresswell, M. J. (2002). Static semantics for dynamic discourse. Linguistics and Philosophy, 25,
545–571.

Dekker, Paul. (2002). Meaning and use of indefinite expressions. Journal of Logic, Language and
Information, 11, 141–194.

Coordinating and Subordinating Binding Dependencies 83

Groenendijk, Jeroen, & Stokhof, Martin. (1991). Dynamic predicate logic. Linguistics and Philos-
ophy, 14(1), 39–100.

Heim, I. (1993). Anaphora and semantic interpretation: A reinterpretation of Reinhart’s approach.
Technical report SfS-Report-07-93, University of Tübingen.

Hollenberg, M., & Vermeulen, C. F. M. (1996). Counting variables in a dynamic setting. Journal
of Logic and Computation, 6, 725–744.

Kamp, H., & Reyle, U. (1993). From discourse to logic: Introduction to model-theoretic semantics
of natural language, formal logic and discourse representation theory. Dordrecht: Kluwer.

Reinhart, T. (2000). Strategies of anaphora resolution. In H. Bennis, M. Everaert, & E. Reuland
(Eds.), Interface strategies (pp. 295–325). Amsterdam: Royal Academy of Arts and Sciences.

van Eijck, J. (2001). Incremental dynamics. Journal of Logic, Language and Information, 10,
319–351.

Vermeulen, C. F. M. (1993). Sequence semantics for dynamic predicate logic. Journal of Logic,
Language and Information, 2, 217–254.

Vermeulen, C. F. M. (2000). Variables as stacks: A case study in dynamic model theory. Journal of
Logic, Language and Information, 9, 143–167.

	4 Coordinating and Subordinating Binding Dependencies
	1 Introduction
	2 Distinct Coordinating and Subordinating Mechanisms
	3 Only a Pronoun Mechanism
	4 Only Coordinating Binding Dependencies
	5 Pronominal and Variable Binding Again
	6 Summary
	References

