
Chapter 80
Improving Data Hiding Capacity Based
on Hamming Code

Cheonshik Kim and Ching-Nung Yang

Abstract Matrix encoding proposed by Crandall can be used in steganography
data hiding methods. Hamming codes are kinds of cover codes. ‘‘Hamming ? 1’’
proposed by Zhang et al. is an improved version of Matrix encoding steganog-
raphy. The embedding efficiency of ‘‘Hamming ? 1’’ is equal to (k ? 1)2k+1 -

1/(2k+1 - 1), and embedding rate is (k ? 1)/2k. Our proposed ‘‘Hamming ? 3’’
scheme has a slightly reduced embedding efficiency, but improve highly embed-
ding rate. We therefore propose verifying the embedding rate during the embed-
ding and extracting phase. Experimental results show that the reconstructed secret
messages are the same as the original secret messages, and that the proposed
scheme exhibits a good embedding rate compared to that of previous schemes.
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80.1 Introduction

The purpose of data hiding [1, 2] is to facilitate covert communication in the form
of concealed messages in a cover media to modify the media. In the case of a
single carrier for an application, all secret information such as images, videos, and
MP3 files is stored in the carrier. The goal of data hiding is to ensure that
embedded data remain inviolate and recoverable. There are two issues with data
hiding. One is to provide proof of the copyright, and the other is to provide
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assurance of content integrity. Therefore, the data should stay hidden in a host
signal, even if that signal is subjected to manipulation or degrading such as fil-
tering, re-sampling, cropping, or lossy data compression. However, data hiding
generally shows weakness to such manipulation. There are trade-offs between the
quantity of embedded data and the degree of immunity to host signal modification.
As one increases, the other must decrease. Although this can be shown mathe-
matically for some data-hiding systems such as a spread spectrum, it seems to hold
true for all data-hiding systems. The goal of steganalysis is to detect (and possibly
prevent) such communication. Generally, steganalysis tools can easily detect a
stego image when the error rates are over about 10 % to conceal a message.

Crandall [3] proposed a new data hiding scheme called matrix encoding. The F5
algorithm [4] is based on matrix encoding and implemented by the Westfeld. We
can the definition of the cover coding [5–7] in [4]. Matrix encoding was also used
in large payload applications [8]. BCH codes were applied to achieve a tradeoff
between embedding complexity and efficiency [9]. Westfeld showed matrix
encoding using Hamming codes. The CPT method [10] shows the embedding
efficiency by hiding messages based on the weighted value of a block. Matrix
encoding and CPT can be applicable to LSB steganography. Zhang and Wang [11]
showed the ternary Hamming codes using the concept of efficiency by exploiting
the modification direction (EMD). The performance of ‘‘±steganography’’ was
introduced by the [12]. Mielikainen [13] presented a method based on a pair of two
consecutive secret bits. Chang et al. [14] proposed (7, 4) Hamming code for data
hiding, which improves on the ‘‘Hamming ? 1’’ scheme.

In this paper, we propose novel improving data hiding methods by extending the
Hamming codes. Our proposed method can significantly improve the embedding
rate of ‘‘Hamming ? 1’’ scheme, and perform equally well, or even outperform.

The rest of this paper is organized as follows. In Sect. 80.2, we review current
and related work. In Sect. 80.3, we introduce our proposed ‘‘Hamming ? 3’’ for
grayscale images. In Sect. 80.4, we explain the experimental results. Section 80.5
presents our conclusions.

80.2 Related Works

In Sect. 80.2.1, we will describe the concept of Hamming code and show how to
apply Hamming codes to data hiding. In Sect. 80.2.2, the basic theory and effi-
ciency of ‘‘Hamming ? 1’’ is presented.

80.2.1 Hamming Codes

Linear codes with length n and dimension k will be described as [n, k] codes.
Hamming codes are linear codes and will be described as a [n, k] q-ary Hamming
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code, where q is the size of the base field, Fq. A generator matrix G for an
[n, k] linear code c (over any field Fq) is a k-by-n matrix for which the row space is
the given code. In other words c ¼ fxGjx 2 Fk

qg: Matrix encoding conceals
messages with the parity check matrix of linear codes. If c is an [n, k] linear code,
the dual to it is an [n, n - k] linear code. If H is the checker matrix for c, H is an
(n - k) 9 k matrix the rows of which are orthogonal to c and {x | HxT = 0} = c.

ðm1; . . .;mkÞT ¼ H � LSBðx1Þ; . . .; LSBðxnÞð ÞT ð80:1Þ

The Hamming codes function is to embed k bits ðm1; . . .;mkÞ 2 F2
k in the LSBs

of n pixel gray values ðx1; . . .; xnÞ by at most R changes in the following manner.
Note that the covering radius R is the largest number of possible changes and the
purpose of Hamming codes is to minimize the average number of embedding
changes Ra. In other words, the goal is to maximize the embedding efficiency k/Ra

depending on the embedding rate k/n. We note that to correct one error, the
position of the erroneous bit must be determined. For an n-bit code, log2n bits are
therefore required. Equation (80.2) shows the parity check matrix for a (7, 4)
Hamming code:

H ¼
1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

2
4

3
5 ð80:2Þ

For c to be a codeword, it must be in the null space of this matrix, i.e., Hc = 0.
Let us assume there is a sequence of bits that have an error in the first bit position,
e.g., 1101010b. We calculate the syndrome S with Eq. (80.1). c is a 7-bit binary
number and T denote the transpose of a codeword c, that is, the syndrome is
([001])T. A syndrome value that is not zero denotes the position of the erroneous
bit. If one flips the bit at this position in the codeword, every bit of the codeword
will be correct. Binary Hamming codes are [2r - 1, 2r - 1 - r] linear codes with
a parity check matrix H of dimensions r 9 (2r - 1) and whose columns are binary
expansions of the numbers 1,…, 2r - 1. For example, Eq. (80.3) shows the parity
check matrix H for r = 4. Let us assume that the cover object is an image con-
sisting of P 9 Q pixels.

H ¼

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

2
664

3
775 ð80:3Þ

Example 1 We assume that the codeword c is [1101001]. It is easy to calculate the
syndrome using Eq. (80.1) with the parity check matrix H and the codeword:
S = H 9 (c)T = ([000])T. If the computed syndrome vector S is 0, as in this case,
there is no error in the codeword. Otherwise, there is an error in the bit at position
S in c.
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80.2.2 ‘‘Hamming 1 1’’ Scheme

The parity check matrix of a Hamming code yields a covering function COV
(1, 2k - 1, k), k C 1, i.e., embed k bits ðm1; . . .;mkÞ into the LSBs of 2k - 1 pixel
gray values ðx1; . . .; x2k�1Þ using at most one change. This covering function is

defined by ðm1; . . .;mkÞT ¼ H � ðLSBðx1Þ; . . .; LSBðx2k�1ÞÞT , where H is the parity
check matrix of [2k - 1, 2k - 1 - k] Hamming code. Hamming covering func-
tion combines with one pixel to form ‘‘Hamming ? 1’’ scheme, which embeds
k ? 1 bits into 2k pixels gray values using at most one change:

ðm1; . . .;mkÞT ¼ H � ðLSBðx1Þ; . . .; LSBðx2k�1ÞÞT ð80:4Þ

mkþ1 ¼ x1=2b c þ � � � þ x2k�1=2b c þ x2kð Þmod 2 ð80:5Þ

The first k bits are embedded into LSBs of the first 2k - 1 pixel values using the
COV (1, 2k - 1, k) Hamming covering function, and the (k ? 1)-th bit is a
function of all 2k pixels including the appended one. Note that by adding or
subtracting one to/from a pixel value x, its LSB(x) always becomes the same binary
value LSB(x) � 1, however, x=2b cmod 2; which is the second least significant bit
of x, can either be ‘0’ or ‘1’. Therefore, when Eq. (80.4) does not hold, one pixel
value, say, xi, 1 B i B 2k - 1, has to be changed. By choosing xi ? 1 or xi - 1,
both Eqs. (80.4) and (80.5) can hold simultaneously without changing x2k .

On the other hand, when Eq. (80.4) holds but Eq. (80.5) does not, the first 2k - 1
pixels need not to be changed, and ‘‘Hamming ? 1’’ scheme can modify x2k�1 by
randomly increasing or decreasing one to satisfy Eq. (80.5). This means that
‘‘Hamming ? 1’’ scheme can embed k ? 1 bits of message in 2k pixels with at
most one change. This method shows that the embedding efficiency is equal to
(k ? 1)2k+1/(2k+1 - 1), and the embedding rate is (k ? 1)/2k.

80.3 Proposed Method

This section proposes new data hiding method, which is called ‘‘Hamming ? 3’’.
Our proposed ‘‘Hamming ? 3’’ improves the ‘‘Hamming ? 1’’ scheme, which is a
steganographic data hiding method, i.e., ‘‘Hamming ? 1’’ scheme embeds k ? 1
bits into 2k pixels gray values using at most one change. Our proposed scheme
improves the embedding rate compared to ‘‘Hamming ? 1’’ scheme, i.e.,
‘‘Hamming ? 3’’ embeds k ? 3 bits into 2k - 1 pixels gray values using at most 2
change.
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80.3.1 ‘‘Hamming 1 3’’ Scheme

We propose the following ‘‘Hamming ? 3’’ scheme by appending three pixel after
the block of Hamming covering function. It embeds k ? 3 bits
m1; . . .;mk;mkþ1;mkþ2;mkþ3ð Þ into 2k - 1 pixel gray values ðx1; . . .; x2kÞ using at

most two change:

ðm1; . . .;mkÞT ¼ H � LSBðx1Þ; . . .; LSBðx2kÞð ÞT ð80:6Þ

ðmkþ1; . . .;mkþ3ÞT ¼ H � x1=2b cmod 2; . . .;þ � � � þ x2k=2b cmod 2ð Þ ð80:7Þ

The first k bits are embedded into LSBs of the first 2k - 1 pixel values using the
COV (1, 2k - 1, k) Hamming covering function [see Eq. (80.6)], and k ? 3 bits are
embedded into second least significant bits using the COV (1, 2k - 1, k) Hamming
cover function [see Eq. (80.7)]. Therefore, when Eq. (80.6) does not hold, one pixel
value, say, xi, 1 B i B 2k - 1, has to be changed. By choosing xi ? 1 or xi - 1,
both Eqs. (80.6) and (80.7) can hold simultaneously without changing x2k . On the
other hand, when Eq. (80.6) holds but Eq. (80.6) does not, the first 2k - 1 pixels
need not to be changed, and ‘‘Hamming ? 1’’ scheme can modify x2k by randomly
increasing or decreasing one to satisfy Eq. (80.6). This means that ‘‘Ham-
ming ? 1’’ scheme can embed k ? 1 bits of message in 2k pixels with at most one
change. This method shows that the embedding efficiency is equal to (k ? 1)2k+1/
(2k+1 - 1), and the embedding rate is (k ? 1)/2k. [n, k] Hamming codes are now a
linear space over a field of order q, prime. These q-ary codes are 1-error correcting,
relying on the fact that each codeword is at a distance of at least 3 from any other
codeword, which in turn relies on the construction of the matrix. Specifically, the
fact that no two columns of the check matrix are linearly dependent means that the
minimum distance between any two code-words is at least 3.

Proposition Hamming Codes are 1-error correcting codes.

Proof We need to check that

jCj � 1
i ¼ 0

x
y

� �
ðq� 1Þi ¼ jFqjn:

The right hand side of this is qn, where n = (qr - 1)/(q - 1). The left hand side is

qn�rð1� nðq� 1ÞÞ ¼ qn�r 1þ ðq
r � 1Þ
ðq� 1Þ ðq� 1Þ

� �

¼ qn�rð1þ ðqr � 1ÞÞ
¼ qn�rðqrÞ
¼ qn:
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80.3.2 Embedding Procedure

Our scheme is described below in terms of the embedding procedure for hiding
secret data in a grayscale image. A cover image is divided into non-overlapping
7-pixel blocks. We present the embedding procedure step by step:

Input: Cover image I sized H 9 W, a binary secret message d of maximum length
H 9 W - 1, and the parity check matrix H
Output: A stego image I0 sized H 9 W

Step 1: Divide original images I into 1 9 2k - 1 blocks, letting c ¼
ðbðx1Þ; . . .; bðx2k�1ÞÞ; where b(.) denote LSB of a pixel. Letting
c2 ¼ ð x1=2b cmod 2; . . .; xk

2=2
� �

mod 2Þ. c and c2 denote code-words and a set of
LSB and second LSB respectively.

Step 2: Read all pixels and secret messages into array variable x and d
respectively. CNT ¼ ðH �WÞ=7b c.

Step 3: Calculate the syndrome S by applying Eq. (80.6) to the parity check

matrix H and c, i.e., S ¼ H � ðb xið Þ; . . .; bðx2k�1ÞÞT ; where i = 1… n. Compute
S1 ¼ S� dk

j ;, where � is XOR operation and j ¼ 1. . .n; j ¼ jþ k: As S1 is the
position for 1-error correction, if S1 is 0 then no flipping any pixel, else flipping a
value of bðxiþS1Þ.

Step 4: Calculate the syndrome S2 by applying Eq. (80.7) to the parity check

matrix H and c2, i.e., S2 ¼ Hð x1=2b c mod 2; . . . x2k=2b c mod 2ÞT; where
i = 1… n, i = i ? (2k - 1). Calculate the syndrome value for messages, S3 ¼
S2 � dk

j ; where � is XOR operation and j = 1… n, j = j ? k. If S3 is 0, then no
flipping any pixel, else flipping a value of ð xiþS3=2b cmod 2Þ:

Step 5: Decrease CNT by 2k - 1. If CNT is greater than 0, return to step 3 to
continue the process until there are no more pixels of I.

Example 2 A detailed explanation of the reasons is included in this example. A
linear pixels c = (67 79 83 88 91 93 95) is a 1 9 2k - 1 block, reading from left
to right and from top to bottom. The secret stream pixels are d = (1 1 1 1 1 1),
which is a k ? 3 block. Calculate S = (H � (b(67) b(79) b(83) b(88) b(91) b(93)
b(95))T) mod 2 = (100). S is computation using LSB of a block of pixel.
S2 ¼ S� dk

j ¼ 011ð Þ. Compute cDðS2Þ � 1 ¼ 82, where D(.) is a function of binary-
to-decimal conversion. Next, we show how to conceal secret bits k into second
LSB layers. Calculate S3 ¼ H � ðð 67=2b c 79=2b c 83=2b c 88=2b c 91=2b c 93=2b c
95=2b cÞTmod 2Þ¼ H � 1 1 1 0 1 0 1ð Þ ¼ 0 1 0ð Þ: S4 ¼ S3 � dk

j ¼ 1 0 1ð Þ. Compute
cDðS4Þ � 2 ¼ 89.
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80.3.3 Decoding Procedure

Our scheme is described below in terms of the extracting procedure of secret
message bits from the stego image. A stego image is divided into non-overlapping
7-pixel blocks. We present the extracting procedure step by step:

Input: Stego image I0 sized H 9 W and the parity check matrix H
Output: A secret messages d

Step 1: Divide stego images I0 into 1 9 2k - 1 blocks, letting
c ¼ ðb x1ð Þ; . . .; bðx2k�1ÞÞ, where b(.) denote LSB of a pixel. Letting
c2 ¼ ð x1=2b cmod 2; . . .; x2k=2b c mod 2Þ. c and c2 denote codewords and a set of
LSB and second LSB, respectively.

Step 2: Read all pixels and secret messages into array variable x and d
respectively. CNT ¼ H �Wð Þ=2b c.

Step 3: Calculate the syndrome S by applying Eq. (80.6) to the parity check

matrix H and c, i.e., S ¼ H � ðb xið Þ; . . .; bðx2k�1ÞÞT , where i = 1… n. Concatenate
d and S, i.e., d = d||S. A S denote extracted k bits.

Step 4: Calculate the syndrome S1 by applying Eq. (80.7) to the parity check

matrix H and c2, i.e., S1 ¼ H � ð x1=2b cmod 2; . . .; x2k�1=2b cmod 2ÞT , where
i = 1… n, i = i ? (2k - 1). Concatenate d and S1, i.e., d = d||S1. A S1 denote
extracted k bits. j = 1… n, j = j ? k.

Step 5: Decrease CNT by 2k - 1. If CNT is greater than 0, return to Step 3 to
continue the process until there are no more pixels of I.

80.4 Experimental Results

We proposed a ‘‘Hamming ? 3’’ method for data hiding. To prove our proposed
scheme is correct, we performed an experiment to verify that it ensures the hidden
image can be restored. In addition, the quality of stego image is very important for
resisting detection from attackers. Therefore our method is feasible for making
good quality stego images from the original grayscale image. To carry out our
experiment, 512 9 512 grayscale images were used as cover images. Figure 80.1
is a cover image for experiment to verify our proposed scheme. In our experi-
ments, the qualities of the stego images are measured by the peak-signal-to-noise
ratio (PSNR) [14].

The PSNR is the most popular criterion for measuring distortion between the
original image and shadow images. It is defined as follows:

PSNR ¼ 10� log10ð2552=MSEÞ ð80:8Þ

where MSE is the mean square error between the original grayscale image and the
shadow image:
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MSE ¼ 1
m� n

Xm

i

Xn

j

½Iði; jÞ � I0ði; jÞ�2 ð80:9Þ

The symbols I(i, j) and I0(i, j) represent the pixel values of the original grayscale
image and the stego image at position (i, j), respectively; m and n are the width and
height of the original image, respectively.

p ¼ jdj
m� n

ðbppÞ ð80:10Þ

Fig. 80.1 512 9 512 grayscale cover images for data hiding experiment. a Lena. b Baboon.
c Pepper. d Boat. e Barbara. f Airplane. g Goldhill. h Tiffany. i Zelda
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In Eq. (80.10), p denotes bits-per-pixel (bpp), which is an embedding payload.
Our experiment compares how many secret bits can be carried by a cover pixel. |d|
is the number of bits of a secret message d. There is a tradeoff between a payload
and quality of an image. To increase the embedding rate, it is too obvious to
require a sacrifice of image quality.

However, if it is possible to keep the balance between payload and quality of an
image, we then accomplish our purpose from an aspect of steganography.
Table 80.1 shows the visual quality of the stego images created by the matrix
encoding, ‘‘Hamming ? 1’’, and ‘‘Hamming ? 3’’. Our proposed ‘‘Ham-
ming ? 3’’ method shows 0.86 bpp with a good visual quality (i.e., the PSNR
value is higher than 48 dB). From Table 80.1, for the visual quality factor, the
matrix coding scheme shows a higher visual quality outcome.

For embedding payload comparison, the proposed ‘‘Hamming ? 3’’ show a high
embedding payload outcome. Although the visual quality of stego images generated
by the ‘‘Hamming ? 1’’ scheme is better than the proposed scheme, some images’
quality were slightly lower than those of ‘‘Hamming ? 3’’. In this experiment, we
verified that ‘‘Hamming ? 3’’ is worth the steganography method, because our
scheme shows reasonable embedding rate and quality as a data hiding scheme. As
the PSNR of our scheme is over 48 dB, it is not easily detectable by attackers.
Therefore, our scheme is highly suitable for various fields of steganography.

80.5 Conclusion

In this paper, we proposed a ‘‘Hamming ? 3’’ method that uses both layers, i.e.,
LSB and second LSB, using cover codes [n, k]. ‘‘Hamming ? 1’’ can embed COV
(1, 2k - 1, k) at the cost of 1/2k ? 1 changes. The embedding efficiency is

Table 80.1 The comparison result of the matrix encoding, Hamming ? 1 scheme and proposed
scheme

Images Method

Matrix coding Hamming ? 1 Hamming ? 3

PSNR Payload PSNR Payload PSNR Payload

Baboon 56.44 0.43 53.71 0.499 48.18 0.86
Barbara 54.65 0.43 48.60 0.499 48.22 0.86
Boats 54.75 0.43 49.37 0.499 48.20 0.86
Goldhill 57.02 0.43 53.73 0.499 48.21 0.86
Airplane 55.84 0.43 51.61 0.499 48.20 0.86
Lena 56.05 0.43 52.43 0.499 48.22 0.86
Pepper 54.01 0.43 47.26 0.499 48.22 0.86
Tiffany 53.40 0.43 47.46 0.499 48.20 0.86
Zelda 56.40 0.43 54.04 0.499 48.21 0.86
Average 56.44 0.43 50.91 0.499 48.20 0.86
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(k ? 1)2k+1 - 1/(2k+1 - 1). Our proposed scheme shows 0.86 bpp, so
‘‘Hamming ? 3’’ has better performance than ‘‘Hamming ? 1’’. Moreover, stego
images of ‘‘Hamming ? 3’’ are over 48 dB, and it denotes that our scheme is a
reasonably acceptable steganography method. Thus, we can conclude that the
‘‘Hamming ? 3’’ is suitable for steganographic applications.
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