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Abstract The first goal of this paper is to show the evolution of Poincaré’s opinion
on the mechanistic reduction of the principles of thermodynamics, placing it in
the context of the science of his time. The second is to present some of his
work in 1890 on the foundations of statistical mechanics. He became interested
first in thermodynamics and its relation with mechanics, drawing on the work
of Helmholtz on monocyclic systems. After a period of skepticism concerning
the kinetic theory, he read some of Maxwell’s memories and contributed to the
foundations of statistical mechanics. I also show that Poincaré’s contributions to
the foundations of statistical mechanics are closely linked to his work in celestial
mechanics and its interest in probability theory and its role in physics.

Introduction

The scientific oeuvre of Poincaré is immense, even if we consider only the fields
of mechanics, astronomy, and mathematical physics. His interest in the theories
of elasticity, waves, electromagnetism, and thermodynamics, as well, is marked
by significant contributions. One of his contemporaries noted that he was more
a conquerer than colonizer: he contributed significantly to many areas without
staying there too long. Many of his memoirs and articles have an unfinished and
open character. These general characteristics apply to his contributions to statistical
mechanics.1

1“A contemporary said of him, he was a conqueror, not a colonialist.” Boyer et Merzbach 1968,
676, §27. 3.
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The primary aim of this paper is to show the evolution of Poincaré’s views on the
mechanistic reduction of the principles of thermodynamics, placing it in the context
of the science of his time. The second is to present some of his work, around 1890,
on the foundations of statistical mechanics. He looked first to thermodynamics and
its relationship with mechanics, inspired by Helmholtz’s on monocyclic systems.
After a period of skepticism about the kinetic theory, he carefully read some of the
memoires of Maxwell and contributed to the foundations of statistical mechanics. I
also show that Poincaré’s contributions to the foundations of statistical mechanics
depend closely on his work in celestial mechanics and his interest in probabilities
and their role in physics.

Classical statistical mechanics treats systems of material bodies subject to the
laws of mechanics and with a huge number of degrees of freedom. It allows to
one infer observable properties of these systems using statistical methods. Its initial
domain was quite limited, to the case of gases. The kinetic theory of gases, for
simplicity, had three formulations: the elementary kinetic theory of Clausius (1857–
58), based on the concept of mean free path; Maxwell’s second theory, which
leads to the Boltzmann equation (1866); and the ensembles approach of Maxwell-
Boltzmann-Gibbs (1879). Maxwell and Boltzmann, from specific models (elastic
spheres, material points interacting through a Newtonian potential), then took the
path of greatest generality to justify the equilibrium distribution, equipartition
and the tendency towards equilibrium. This path is based on the formulation
of Hamilton’s mechanics, and it involves Liouville’s theorem and the ergodic
hypothesis. Josiah Willard Gibbs’ 1902 book, Elementary principles of statistical
mechanics, presented these methods in a systematic and independent way, compared
to the initial context where ideas have emerged – that of the kinetic theory of
gases. Twentieth- century statistical mechanics would be applied to more general
systems, and its development would be closely linked to the history of quantum
theory.

The kinetic theory of gases was struggling to establish itself at least until the
end of the nineteenth century, except in the United Kingdom. The specific heat
anomaly, and the small number of specific predictions, could be invoked against
it. Its main achievement was a theory of transport phenomena, an area where it
provided new relationships with, and access to, molecular parameters. Given the
structuring role generally given to mechanics, the mechanical reduction of thermal
phenomena could not fail to win favor; but further reductions existed which did
not presuppose any specific model for substance and that did not make use of
probabilities. The thermodynamics of the principles, a macroscopic theory, had a
much more extensive domain than the field of kinetic theory. The analytical theory
of heat, concerning heat diffusion, was able to develop without any connection to
the kinetic theory.
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Strictly Mechanistic Reduction of Thermodynamics

Up to 1870, French scientists, despite their interest in the work of Clausius, showed
very little interest in kinetic theory. The reception of the first kinetic theory of gases
became a conceptual framework dominated by the tradition of laplacian molecular
physics, and the optical tradition, originated by Fresnel and Cauchy. These two
traditions share a molecular ontology, where everything is explained by postulating
the existence of atoms or molecules centres of force. Concerning the nature of heat,
vibration theory, proposed by Ampère (1835), allowed for a qualitative unity of
light and heat, in the context of the Laplacian ontology. Ampère wrote: “it is to
molecular vibrations and their propagation in their environment that I attribute all
phenomena of sound; it is to atomic vibrations and their propagation in the ether
that I attribute all those of heat and light.” These traditions bore many fruits in
the fields of elasticity, hydrodynamics, elastic ether theory, etc. They enabled a
unifying vision, ensuring consistency between the various theories, with celestial
mechanics playing the role of an archetype; they benefited from the intellectual
authority of masters such as Newton, Laplace, Fresnel, Ampère, etc.; and they
were institutionally strengthened by the centralized and hierarchical character of
the scientific community. These traditions coexisted with a more recent attitude of
theoretical agnosticism, in experimental and theoretic work of Victor Regnault, who,
however, still did not deny the molecular ontology. The identity of French physics
also depended on a somewhat vague ideal of rigour and clarity in research and in
the presentation of the results. Around 1885, Ampère’s version of the molecular
physics program was still alive. It still promised a unifying vision. (Ampère 1835,
436, 434–435; Príncipe 2008, “Conclusions.”)

After 1850, molecular physics in the style of Laplace or Ampère found itself in
competition with other approaches, especially outside France: (phenomenological)
thermodynamics and kinetic theories. The latter involved only a minority of scien-
tists around the world, because they had very few applications, many anomalies, and
they involved ways new and difficult reasoning, especially in the second theory of
Maxwell. Also, it should be noted that in the second half of the nineteenth century,
there had been several kinetic conceptions of heat, and that someone like Clausius
could accept or at least recognize this pluralism. This situation can be compared to
that of the multiplicity of contemporary mechanical theories of the optical ether. The
French, strong on Regnault’s work on static properties of gases and vapours, were
particularly sensitive to the anomalies of the kinetic theories. They were working
especially in the tradition of Ampère’s vibrational conception of heat. It was only
after 1890 that the French took the kinetic theory as an object of scientific research,
a change due to the intervention of scientists of a younger generation, more open to
foreign physics. Henri Poincaré and Marcel Brillouin, both born in 1854, took an
interest in Maxwell’s second theory and the foundations of statistical mechanics, in
a way shaped by their own research programs.2

2On the survival of several kinetic conceptions of heat, see Príncipe 2008, 8, and Chaps. 4 and 6.
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In 1886 Poincaré obtained the chair of mathematical physics and probability
calculus at the Sorbonne, which favored even more his interests in theoretical
physics. He taught the mathematical theory of light, and in the spring of 1888, he
taught a course on Maxwell’s Treatise on Electricity and Magnetism. In the follow-
ing years, he taught the electrical theories of Helmholtz, Hertz, Larmor and Lorentz.
In 1888–89, he taught thermodynamics. He considered the question of compatibility
between mechanism and thermodynamics, by analyzing the mechanical analogies
proposed by Hermann von Helmholtz between the second principle and monocyclic
systems described in the Hamiltonian formalism.

One should not confuse the mechanical analogies between the second principle
and periodic or monocyclic mechanical systems, developed by Boltzmann, Clausius
and Helmholtz, with concrete models of heat motion, in particular that of the kinetic
theory. These analogies are formal analogies, and do not imply anything about the
precise nature of the movement that is heat. These analogies were already of interest
to the French scientists. Although around 1870, kinetic theory was taught in schools
according to the views of Clausius, from the research point of view the French took a
special interest in the analogy that Clausius proposed between the second principle
and behavior of periodic systems. These analogies are compatible with vibration
theory, the microscopic model for the material is not specified, and probabilistic
considerations played no role.3

General Characteristics of Helmholtz’s Approach

In 1884, in “On the statics of monocyclic systems,” Helmholtz introduced the
notions of polycyclic and monocyclic systems, presenting an analogy to the second
principle for the case of reversible processes. In a memoire of 1886, “On the
principle of least action,” he distinguished between complete and incomplete
systems and considers irreversible processes. In this analogy the system obeys the
conservation of energy, and is described by the Langrangian equations that can be
derived from the principle of least action. The use of this principle allows him to
avoid assuming particular atomic models. This strategy originated in Maxwell’s
use of the Langrangian method in his electromagnetic theory, to obtain the field
equations without a detailed model of the ether; Poincaré considered this strategy to
be Maxwell’s great innovation (Poincaré 1890b, préface; see J. J. Thomson 1888,
4; Klein 1972, §5, 70–71; Bierhalter 1993, 442).

The last chapter of Poincaré’s Thermodynamique is devoted to “The reduction
of the principles of thermodynamics to the general principles of mechanics.” Here

3Boltzmann was the first to develop these ideas; see Boltzmann 1866, Clausius 1871; Boltzmann
1871. A review of these articles may be found in Truesdell 1975, 59–60. On Clausius and the
French, see Príncipe 2008, Chap. 7.
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Poincaré expounds and criticizes the ideas of the German scientist.4 Consider, fol-
lowing Helmholtz and Poincaré, a general mechanical system obeying Lagrange’s
equations (or, equivalently, Hamilton’s equations). The system is described by a set
of n generalized coordinates q; the corresponding velocities are Pq D dq=dt; the state
of the system is described by a single function, its Lagrangian:

L D L .q; Pq/ D T � V;

where T .q; Pq/ is the kinetic energy of the system, V(q) the potential of the internal
forces. Let P be the generalized external force corresponding to the generalized
coordinate of the same index, and p D @L=@ Pq the generalized quantity of motion;
then for each generalized coordinate we write the respective Lagrangian (Poincaré
1892a, §311):

d

dt

@L

@ Pq � @L

@q
D P:

The dynamical evolution is governed by the system of these n equations.
Helmholtz distinguishes two groups of generalized coordinates: those which

vary very slowly, the qa, and those that vary rapidly, the qb. The parameters that
vary slowly are controlled by a macroscopic observer (for example volume, or
the center of gravity of a body). A suggestive terminology was proposed by J. J.
Thomson: he distinguished between macroscopically controllable variables qa and
the non-controllables qb, corresponding to molecular motions, defining the thermal
state of a body. When these rapid periodic motions are described by several non-
controllable generalized coordinates qb, Helmholtz speaks of polycyclic systems.
In a monocyclic system, we admit the existence of certain relations between the
velocities of the different parts of the system in such a way that these periodic
motions are described by a single coordinate; those rapid motions that take place
without altering the configuration of the system are analogous to the rotation of
a flywheel or of a fluid circulating in a vortex (J. J. Thomson 1888, Chap. VI,
“Temperature,” §46; see Poincaré 1892a, §314; Langevin 1913, 706).

The Analogue of the Second Principle for Reversible Processes

Helmholtz mechanically defined a function sharing the same properties as entropy
and the role of the temperature is played by the vis viva of these rapid movements.
For the case of reversible processes that are infinitely slow, Helmholtz formulated

4Darrigol described the method usually employed by Poincaré : “He read scientific texts quickly
as a whole, and reconstructed the reasonings in his own manner. The result was often clearer than
the original, revealed some essential features in full light, but overlooked other important ones”,
Darrigol 2000, 353.
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three “natural” hypotheses. First, the velocities of the non-controllable coordinates
are much greater than those of the controllable coordinates: Pqb >> Pqa � 0 (hypoth-
esis I). The non-controllable coordinates are cyclic (or gyrostatic) – (hypothesis II).
Therefore, they do not figure in the Lagrangian, and the corresponding equations
are5:

Pb D d

dt

�
@L

@ Pqb
�

D dpb

dt
:

If dQ is the energy transmitted during the change of coordinates qb, we have:

dQ D
X

Pbdqb D
X

Pb Pqbdt D
X

Pqb dpb
dt
dt D

X
Pqbdpb:

The kinetic energy is a homogeneous and quadratic function of the generalized
velocities (if the connections don’t depend explicitly on the time). Since the terms
containing the Pqa are infinitely smaller, we have:

d

dt

�
@L

@ Pqa
�

�
X
b

˛ab Rqb:

Admitting that the non-controllable coordinates have very small accelerations
(since we are considering an equilibrium situation, and the constant temperature will
be represented by the kinetic energy corresponding to an observably constant molec-
ular velocity6) –hypothèse III, the anterior derivative is zero and the Lagrangian
becomes:

@L

@qa
D �Pa (Poincaré 1892a, §316).

By the previous considerations and by the theorem of homogeneous functions of
degree n:

2T D
X

Pq @T
@ Pq D

X
Pqp �2Tb D

X
Pqbpb:

For the case of a monocyclic system, containing a single gyrostatic coordinate,
we have (Poincaré 1892a, §317; Helmholtz 1884a, §3: “Monocyklische Systeme”):

dQ D Pqbdpb; 2Tb D Pqbpb:

5The hypothesis that the non-controllable variables do not figure in the potential energy is, from a
modern point of view, reasonable for ideal gases but not for real gases, liquids and solids, where
the interactions between molecules can’t be ignored.
6Bierhalter maintains that Helmholtz was inspired by the first kinetic theories, for which the
velocities of gas molecules were equal and constant. (Bierhalter 1993, 434 and 443.)



Henri Poincaré: The Status of Mechanical Explanations and the Foundations. . . 133

We can thus find an integrating factor of dQ for this case:

dQ

Pqb D dpb and so
dQ

Tb
D 2d .logpb/ :

We thus have an analogue to the second law of thermodynamics (for reversible
processes) if we allow that the temperature corresponds to the kinetic energy. This
is suggested by the kinetic theory of gases, as Helmholtz had remarked in his first
article.7

Poincaré then analyzed the case of thermal equilibrium between two bodies. The
coupling (called “isomore”, after the Greek expression for “same denominator”)
between two monocyclic systems with the same integrating factor (temperature)
corresponds to the condition of thermal equilibrium. Since in a monocyclic system,
it is impossible to operate directly on the gyrostatic coordinates qb by means
of external forces, heat cannot be transmitted across these coordinates except by
its coupling to another monocyclic system, and the coupling has to be isomore.
Poincaré did not see how this theory would explain the fact that two bodies in
contact, with the same temperature would not exchange calorific energy:

It is necessary to explain why, when two bodies with the same temperature are placed in
contact, no heat passes from one to the other. The explanation has been attempted. The two
bodies have been compared to two pullies with equal rotational velocities; when the pullies
are turned, there is no shock and no transmission of living force from one to the other;
when the two bodies are placed in contact, there will be no shocks between the molecules,
the latter having the same velocity since the temperatures of the two bodies are the same.
This explanation is far from satisfying.

By this, perhaps Poincaré means that the explanation is not compatible with the
equipartition of energy: if two gases at the same temperature have molecules with
different masses, their velocities should be different.8

Vibratory Motion and Monocyclic Systems

Poincaré asserts: “Molecular motions appear to be vibratory motions this way and
that around a fixed point.” He does not say that this is restricted to solid bodies. He
is probably referring to the vibratory theory of heat. Poincaré wants to show that
in this case the kinetic energy is still an integral divisor of dQ, which represents

7“Hier tritt die Analogie mit der kinetischen Gastheorie schon sehr deutlich heraus. Die Temperatur
� ist der lebendigen Kraft proportional” (Helmholtz 1884a, fin du §3.) Martin Klein notes that
Helmholtz had recognized that thermal motion is not strictly monocyclic: “I have affirmed from
the beginning that thermal movement is not strictly monocyclic.” translated from Helmholtz 1884a,
757; see Klein 1972, 67.
8Poincaré 1892a, §331. See Bryan 1891, §26 et §27, Helmholtz 1884b, end of §6 “Koppelung
je zweier Systeme”; Bierhalter 1993, 446. The name for the coupling is first explained at the
beginning of §5 of Helmholtz 1884a.
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an original contribution (Poincaré 1892a, §322–326; quote from the beginning of
§322; see also §315).

Allow that there is only one parameter that varies rapidly. It is not cyclic, since
it figures in the potential energy of a vibratory motion. Here hypotheses I and III
remain valid, but not hypothesis II. The potential and kinetic energies are:

V D A .qa/ q
2
b

2
C C .qa/ ; T D B.qa/ Pq2b

2
:

The Lagrangian corresponding to this coordinate qb is:

d .BPqb/
dt

C Aqb D �P:

For a stationary vibratory motion P is zero and A and B are constant; in that case:

A D !2B; qb D h sin .!t C '/ ; Pqb D h! cos .!t C '/:

Given the extreme rapidity of the oscillations, if one considers a sufficiently long
time, it is the mean value of the kinetic energy that intervenes. As cos2x D 1=2, we
have:

T D Bh2!2

4
D Ah2

4
:

We can calculate the work of the force P during “a time ıt, very small in an
absolute sense but nonetheless very large in relation to the period of vibration”:

ıQ D �
Z
Pdqb D

Z
dB

dt
Pqbdqb C

Z
B
d Pqb
dt
dqb C

Z
Aqbdqb:

The first factor in the first integral of the second member may be considered as

constant, the derivative dB/dt being small; the integral of
Z

Pqbdqb taken over a time

ıt is replaced by the product of ıt with the average value h2!2/2 of Pq2b ; thus the first
integral of the second member becomes:

dB

dt
ıt
h2!2

2
D h2!2ıB

To calculate the two other integrals, Poincaré develops A and B by reference
to increasing powers of t. The fact that ıt is small permits one to consider only
the linear part of these linear developments; the first derivatives of A and B are
considered as constants. Moreover, one can choose ıt in such a way that at the
beginning and at the end of this interval q is null. After some clever calculations,
Poincaré arrives at the expression (Poincaré 1892a, §325):

ıQ

T
D 3

ıB

B
C 2

ı
�
!2h2

�
!2h2

� ıA

A
;
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which is an exact differential. Then, Helmholtz’s theory permits the generalization
of useful results for perfect gases to other states (of matter); in conclusion:

Clausius’s theorem [for reversible processes, dQ/T is an exact differential] is, in conse-
quence, well enough proven for the case of a vibratory state of molecules in the case of a
swirling state (Poincaré 1892a, end of §325)

Irreversibility and Mechanism

For a holonomic mechanical system, the kinetic energy is a quadratic function of
the generalized velocities Pq. To make the system return to its initial state by the
same path, we can change the sign of the time parameter (change dt to –dt); then
the Pq become – Pq but the quadratic terms do not change, nor does V D V(q); thus
the Lagrangian function remains the same. The same considerations apply to the
Lagrangian equations d

dt
@L
@ Pq � @L

@q
D P , since dt and Pq simultaneously change

sign while q and P remain indifferent. Therefore, Poincaré writes: “the sytem,
when it reverts to its initial state, passes again exactly through those states that it
had assumed in departing form the initial state; the transformations are therefore
reversible” (Poincaré 1892a, §326).

However, Helmholtz found systems, called incomplete systems, for which the
kinetic energy contains powers of odd exponents. He also showed that all the general
equations that are valid for complete systems retain their form for the case of
incomplete systems. In particular, the kinetic energy is an integral divisor of the
quantity of heat for incomplete monocyclic systems. But if for complete systems,
T D T .qa; Pq/ is a quadratic function of the generalized velocities, in the case of
incomplete systems T0 can have terms of odd degree with respect to the generalized
velocities, because one part of the qa, D qc, depends on the Pqb . The consequence is
that a change of sign of the time implies a change in the Lagrangian – “irreversible
phenomena could thus take pace with incomplete systems; this is what Helmholtz
admits.” The analogy for irreversibility consists in comparing the thermal motion
of molecules with hidden stationary movements. In the case of the spinning top, the
top that spins is distinguished from the dead top by its capacity to resist the action of
external forces that tend to change the direction of the action of rotation. Helmholtz
conceives of this top is enclosed in a shell, thus remaining invisible and inviolable
by humans.9

9Poincaré 1892a, 442. An illustration of a case where the living force ceases to be proportional to
the square of the velocity is that of a wheel turning on an axis equipped with a centrifugal force
regulator; if the angular momentum increases, the bearings of the regulator recede from the axis
while increasing the moment of inertia, so that the kinetic energy is not simply proportional to the
square of the angular velocity. Poincaré 1892a, 431.
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In spite of the interest of Helmholtz’s ideas, Poincaré, by a sufficiently general
argument, shows that they cannot account for irreversible phenomena. In his note,
“On the attempts at a mechanical explanation of the principles of thermodynamics,”
he poses the following question: “Can we, by representing the world as composed
of atoms, explain why heat never passes from a cold body to a hot one?”.10

Suppose a general mechanical system obeying the equations of Hamilton. The
Hamiltonian is:

H .p; q/ D
X

pa Pqa � L;

summing over the variables p and q.
For the case where the system is shielded from all external action, the Hamilto-

nian equations are, Pa D 0:

Pqa D @H

@pa
; Ppa D �@H

@qa
:

If natural processes simultaneously obey the equations of mechanics and
Carnot’s principle, there must exist a function S(q,p), “that is constantly increasing
and that we will call the entropy”. Then we can prove:

dS

dt
D

X �
@S

@q

dq

dt
C @S

@p

dp

dt

�
D

X �
@S

@q

@H

@p
� @S

@p

@H

@q

�
> 0:

Or, again, using the Poisson brackets,

dS

dt
D fS;H g > 0:

Poincaré thought that he could demonstrate the impossibility of such an inequal-
ity while admitting that “the system, while remaining soustrait of all external action,
is subject to such connections that the entropy is susceptible of a maximum”. This
state should correspond to a state of equilibrium. We can develop H and S in
a power series (q˛ � qo

˛), (p˛ � po
˛), where the index o refers to the situation of

equilibrium. The first term of the expansion can be cancelled owing to the fact
that the two functions, H and S, are defined up to a constant. Since we assume
the expansion is done close to the values corresponding to a maximum of entropy,
the first derivatives cancel for qo

˛ , po
˛ . If we consider small variations around the

equilibrium configuration, we can restrict ourselves to the quadratic terms. The
entropy will then be represented by a quadratic form (where the x represent either
the q or the p and the derivatives are calculated from their equilibrium values):

10Poincaré 1889, 550. Helmholtz’s papers are explicitly cited at the beginning of this note. The
proof appears also in Poincaré 1892a, §328 ff.
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S D
X
i;j

@2S

@xi@xj

�
xi � xoi

��
xj � x0j

�
:

Since we admit that S has a maximum for qo
˛ , po

˛ , this form is negative definite.
In order that the Hamiltonian can also be represented by a quadratic form, the

first-order terms of its development should cancel. Poincaré justifies this as follows:
“The derivatives of H cancel each other equally, because this maximum is an
equilibrium position and so Pp˛ and Pq˛ must cancel.” The form H can be definite
or indefinite. Poincaré tells us nothing about the relation between these conditions
and those that can represent thermodynamic equilibrium.

Admitting that S and H are representable by quadratic forms near the maximum
entropy, Poincaré shows that their Poisson bracket is also a quadratic form that
is not positive definite. This result is intuitive, in the sense that the Poisson
bracket transforms the squared terms of the quadratic forms into rectangular forms
(of indefinite sign). Note that if the development of the Hamiltonian in series
carries linear terms, the plausibility increases of the impossibility of the inequality
(S,H)> 0 increases (Poincaré 1892a, §330).

Poincaré ends this note with the following conclusion:

We should conclude that the two principles of the increase of entropy and of least action
(understood in the Hamiltonian sense) are irreconcilable. Thus if Mr. Helmholtz has shown,
with admirable clarity, that the laws of reversible phenomena derive from dynamics, it
seems probable that we will have to look elsewhere for an explanation of irreversible
phenomena, and give up on the familiar hypotheses of rational mechanics from which one
derives the equations of Lagrange and Hamilton. (Poincaré 1889, 553)

In 1891, this note provoked a severe critique from George Bryan, who insisted
that the equilibrium conditions imposed by Poincaré implied that all parts of the
system are at rest. Since the entropy of a monocyclic system is the logarithm
of a moment, if the latter is zero then the entropy will be infinite, contrary
to Poincaré’s supposition. This criticism seems correct. Bryan is doubtless also
correct that the kinetic molecular interpretation of temperature is incompatible with
Poincaré’s equilibrium conditions. Zermelo briefly mentioned Poincaré’s note as
another attempt to show that irreversible processes cannot always be explained by
Helmholtz’s theory. Finally, the note got the attention of Louis de Broglie, for whom
“these attempts at an interpretation of the second law of thermodynamics that is
mechanical, but not statistical, have only led to very fragmentary results taht only
apply to very special models.” (Bryan 1891, 106–107; de Broglie 1948, Chap. V:
119; Zermelo 1896; see Bierhalter 1993, 455 and Brush 1976, §14.7, note 4).

Poincaré and Maxwell’s Kinetic Theory of Gases

Poincaré published two editions of his course on thermodynamics. The second,
in 1908, differed little from the first, except insofar as Poincaré’s opinion on the
kinetic theory was concerned. At the end of the preface to the first edition, Poincaré
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repeated the conclusion of his 1889 note: “I end with the theory of monocyclic
systems. I will only cite my conclusion: Mechanism is incompatible with Clausius’s
theorem.” In an issue of Nature in 1892, there was a debate between Poincaré and
P. G. Tait. Tait accused Poincaré of having forgotten the kinetic theory in his course
of Thermodynamique. Poincaré responded that he “wanted to remain completely
apart from molecular hypotheses,” and that he found the kinetic theory “not very
satisfying”. In the following year Poincaré’s position regarding the kinetic theory
would become rather more favorable.11

Poincaré began to take an interest in the kinetic theory of gases in the course
of his lecture on the papers of Maxwell, which was probably connected with
his interest in ionic theories of electromagnetism (notably that of Lorentz), as
the development of theoretical microphysics favored atomistic theories of heat.
In 1893, Poincaré carefully read Maxwell’s paper of 1866 and raised a correct
objection to Maxwell’s reasoning to justify the law of adiabatic expansion of a gas.
This interesting criticism went straight to the foundations of statistical mechanics.
Poincaré would take an interest above all in the most abstract justifications for
equilibrium distribution, equipartition, and the tendency to equilibrium. That is to
say, he favored the ensemble approach of Hamiltonian mechanics and he quickly
saw the connection with a theorem in the three-body problem.12

The Article “Le mécanisme et l’expérience”

Poincaré spoke for the first time about the importance of his recurrence theorem
for the attempts at a mechanistic reduction of Carnot’s principle in the article
“Le mécanisme et l’expérience” (1893a), published in the inaugural issue of the
Revue de Métaphysique et de Morale. Experience shows that in nature there are “a
crowd of irreversible phenomena,” which appear to be difficult to reconcile with
mechanistic reduction. Poincaré divided mechanists into two groups. One was the
side of Helmholtz, who did not use statistical reasoning, and the other was the
English. Speaking of Maxwell (whom he considered to be English), he wrote:

The apparent irreversibility of natural phenomena has to do with the fact that molecules are
too small and too numerous for the coarseness of our senses : : : . Maxwell introduces the
fiction of a “demon” whose eyes are subtle enough to distinguish molecules, and whose
hands are small enough and quick enough to grasp them. For such a demon : : : there would
be no difficulty in making heat pass from a cold body to a hot one : : : .The kinetic theory
of gases is up to now the most serious attempt to reconcile mechanism with experience.
(Poincaré 1893a, 536)

11Poincaré 1892b, 485. Boltzmann stated, at the end of the preface to the first part of his Leçons
(1896a), that “no one wanted to give much space to my work. It was cited with respect by Kirchoff
and by Poincaré just at the end of his Thermodynamique, but not used when the occasion presented
itself.”
12Poincaré 1893b; see the reference to this criticism in Boltzmann 1896a, note à la formule (187),
see also Príncipe 2008, §10.4.1. On Poincaré’s contributions to electromagnetism and the theory
of electrons, see Darrigol 2000, Chap. 9, especially §9.3.3.
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Poincaré here speaks of the thought experiment now known as “Maxwell’s
demon.” In a letter to P. G. Tait in December 1867, reprised in his Theory of Heat
(1871), Maxwell considers a finite being capable of seeing individual molecules.
Controlling a barrier that separates the two parts of a chamber full of gas, this being
could provoke a flow of heat (without compensation, that is without consuming
work) letting only the fastest-moving molecules pass in one direction and only the
slowest in the other. Maxwell therefore admits that the validity of the second law
is only statistical (Maxwell to Tait, 11 déc. 1867, see also Maxwell to Strutt, 6
December 1870, in Maxwell 1990, vol. 2, 328–334, 582–583). Poincaré adds that
the kinetic theory is not incompatible with his recurrence theorem:

An easily established theorem teaches us that a finite world, subject only to the laws of
mechanics, will always pass again through a state very close to its initial state. On the
contrary, according to accepted experimental laws, (if we grant them an absolute validity,
and if we wish to push their consequences to the fullest), the universe tends to a certain final
state from which it will not be able to depart. In this final state : : : all bodies will be : : : at
the same temperature : : : . Has anyone remarked that the English kinetic theories can escape
from this contradiction? The world, according to them, first tends toward a state where it
would remain for a long time without any apparent change : : : but it would not maintain that
state forever : : : .it would remain there only for an enormously long time, even longer than
the number of molecules is large. This state would therefore not be the definitive death of
the universe, but a kind of sleep, from which it would awaken after millions of millions of
centuries.

This theorem, and the status of mechanism, were discussed by Zermelo and
Boltzmann in 1896. The latter asserted, like Poincaré that the recurrences, for the
usual macroscopic systems, escape our experience (Poincaré 1893a, 536. See Brush
1976, §14.7, 632–640).

The Recurrence Theorem

The recurrence theorem appears in Poincaré’s paper, “Sur le problème des trois
corps et les équations de la dynamique,” which received the Oscar II of Sweden
Prize, January 21, 1899.

The Three-Body Problem

The three-body problem is one of the most celebrated problems of mechanics: given
three material points interacting according to the law of universal gravitation, freely
moveable in space; to find their motions from given initial conditions. From 1750
to the end of the nineteenth century, several hundred articles were published on this
subject. Poincaré’s paper went through two formulations (1889 et 1890), of which
only the second was published. The notion of the stability of a system, initially
defined by the confinement of the variables that define the system, was replaced in
1890 by that of Poisson: the movable point P (describing, for example, a planet),
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should return after a sufficiently long time, if not to its initial position, then to an
arbitrarily nearby point to the initial position (recurrence).13

Some periodic solutions were already known. Poincaré studied the non-periodic
solutions (the asymptotic and the doubly asymptotic solutions) and developed
qualitative methods. These non-periodic solutions are infinitely improbable, but
“taken together with the periodic solutions : : :make up, so to speak, the tangled
fabric formed by the totality of general orbits.”14

The Concept of Integral Invariant

The concept of the integral invariant was created by Poincaré in the framework of his
research on the differential equations of Hamiltonian systems. Recall his definition:

dx1

X1
D dx2

X2
D � � � D dxn

Xn
D dt;

a system of differential equations. Let x0
1, : : : , x0

n be any point in a domain D(0) of
k dimensions. This set of points will occupy, at another instant t, another domain of
k dimensions, D(t). A k-dimensional integral over the domain D(t) is an integral
invariant of order k of the system of equations if the value of this integral is
independent of t. The typical example is the constant volume of a determinate part
of an incompressible fluid. For a Hamiltonian system with n degrees of freedom,
Poincaré shows that:

I1D
Z X

i

dqidpi ; I2D
Z X

i;k

dqidpidqkdpk; ::::::; InD
Z
dq1dp1dq2dp2 : : : dqndpn;

are integral invariants. In particular, the integral In is an integral invariant cor-
responding to the condition of incompressibility of a fluid in the phase space
(Liouville’s theorem).

Poincaré took great advantage of the invariants I1, In in his researches on some
special solutions (periodic solutions of the second type and doubly asymptotic solu-

13On the history of the problem, see Whittaker 1899 and Barrow-Green 1997. The first version, that
of 1889, was printed but not published, because a crucial error was detected in the demonstration
of stability. It was in the second version that the recurrence theorem played a decisive role in the
structure of the paper. See Robadey 2006.
14Von Zeipel 1921, in Œuvres de Poincaré, vol. 11, 308. Here is an example of an asymptotic orbit,
in a system consisting of a Sun, an Earth, and two moons of infinitely small mass: “Suppose an
observer placed on the Earth and slowly turning on himself so as to be in constant view of the Sun.
The Sun will appear to him to be at rest, and the moon L1, with a periodic orbit, will appear to
describe a closed curve C. Moon L2 will then describe for him a sort of spiral of which the arms,
more and more tightly wound, will indefinitely approach the curve C.” Poincaré 1891, Œuvres
vol. 8, 532–533.
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tions) and on the question of the stability of motion. He immediately remarked on
the existence of unstable orbits: “The existence of asymptotic solutions : : : suffices
to show that if the initial position of point P is suitably chosen, the point P will
not re-pass an infinite number of times as nearly as one might like to the initial
position”. Poincaré went on to establish the exceptional character of these unstable
solutions: “There will be an infinity of solutions of the problem that will not have
stability : : : in the sense of Poisson; but there will be an infinity that do have it. I
would add that the first can be regarded as exceptional” (Poincaré 1890a Sect. 8,
“Usage des invariants intégraux”, Œuvres vol. 7, 313–314).

Poincaré began by demonstrating the following theorem. Consider a space of
N dimensions and assume that the hypervolume

R
dx1dx2 : : : dxN is an integral

invariant; if the point P remains at a finite distance and if we consider any region g0

of this space, no matter how small the region s, there will be trajectories that cross
it an infinite number of times. The demonstration shows that the total volume of
the series of regions of space that succeed the region g0 becomes infinite if there is
no recurrence (Poincaré 1890a, Œuvres vol. 7, 316). The calculation of the time of
return is a very delicate problem on which Poincaré, as far as I know, said nothing
in his papers.

The Exceptional Character of Trajectories Without Recurrence

After his study of asymptotic solutions, Poincaré studied possible trajectories
without the property of recurrence. The previous demonstration did not seem to
allow for this type of trajectory, and it seemed necessary to harmonize the two
results. The quasi-periodic character is almost always there in the evolution of a
conservative system; Poincaré expressed it using the concept of probability. This
concept appears explicitly in the enunciation of the corollary of the recurrence
theorem in the final version of the paper (1890a):

Corollary. It follows from the preceding that there exists an infinity of trajectories that cross
the region ı(P0) infinitely many times; : : : but there may exist others that only cross the
region a finite number of times : : : . It will suit our purposes to say that the probability that
the initial position of a mobile point P belongs to a certain region ı(P0) is to the probability
that the initial position belongs to another region ı0(P0) as the volume of ı(P0) is to the
volume of ı0(P0).

The probabilities being thus defined, I propose to establish that the probability that a
trajectory ı(P0) starting from a point does not cross this region more than k time is zero, no
matter how large k is or how small the region ı(P0). That is what I mean when I say that
trajectories that only cross ı(P0) a finite number of times are exceptional. (Poincaré 1890a,
Œuvres VII, p. 316)

The historian Anne Robadey remarks that the recurrence theorem (and its
corollary), of which the proof is non-constructive, represents, in the history of
mathematical theorems, one of the first examples in which a property is shown
to be valid for “almost all” of the objects in a given class. Poincaré directly
connected the concept of probability and the relative measure of a region. Today
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we characterize the exceptional character of trajectories without recurrence by
saying that they constitute a set of measure zero. The measure theory developed by
Borel, Lebesgue, and others came after this paper of Poincaré’s. The development
of ergodic theory is intimately connected to these developments. The influence
of Borel on Lebesgue, and the influence of Poincaré on the latter, has already
been remarked on. George Birkhoff, one of the mathematicians who contributed
the most to the theory of ergodicity, at a conference on “Probability and physical
systems” (1931), considering the problem of exceptional trajectories (and its lack
of physical significance in light of the impossibility of rigorously determining the
initial conditions), eulogized Poincaré as the first to use, in an intuitive manner,
considerations “of probability 1”; that is, the first to consider, in problems of
theoretical mechanics, sets of measure zero (Von Plato 1994, 110; Poincaré 1896).

“On the Kinetic Theory of Gases” (1894)

In 1894, Poincaré wrote an article presenting his lecture on the foundations of
statistical mechanics and analyzed Kelvin’s criticism of the validity of the ergodic
hypothesis (1892). This criticism immediately aroused the interest of several British
scientists (Watson, Burbury, Bryan and Rayleigh) as well as that of Boltzmann.
Poincaré showed that Kelvin’s examples were not genuine counter-examples to
equipartition.15

Poincaré recognized that great efforts had been expended to develop the kinetic
theory, and that the results of those efforts had not been proportional to the effort
expended; he stated:

I doubt that, up to the present time, it can account for all the known facts. But it’s not a
question of knowing whether it is true; that word, where such a theory is concerned, has no
meaning; it is a question of knowing whether its fertility is spent, or whether it can still help
with further discoveries. (Poincaré 1894, 246)

By that, Poincaré wanted to indicate that the kinetic theory has the status of an
analogy, a scientific illustration in the sense of Maxwell (see Príncipe 2010, 2012).

After recalling the basic conception of the kinetic theory, already presented by
the Bernoullis, Poincaré emphasized that “the theory only took on its definitive
form when Clausius proved his virial theorem.” The internal virial allows us to
understand how remote the behavior of real gases can be from that of an ideal
gas. Then he mentions Clausius’s hypothesis of the proportionality of the energies
associated with the components of molecules to the kinetic energy of translation.
This postulate of Clausius is justified by the theorem of equipartition, of which

15See Thomson 1892 and Brush 1976, §10.9, who concludes: “The outcome seemed to be a general
agreement that most of Kelvin’s test-cases did not prove any violation of the equipartition theorem,
but, on the other hand, that one could not be sure that the theorem was always valid in systems of
a finite number of particles”. See also Príncipe 2008, §10.4.2.
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one possible foundation is the ergodic hypothesis. Recall first the genealogy of
that hypothesis, which came to Poincaré from reading Maxwell’s 1879 paper, “On
Boltzmann’s Theorem on the average distribution of energy in a system of material
points,” in which Maxwell took up the global approach introduced by Boltzmann.
In 1868, Ludwig Boltzmann criticized Maxwell’s proof of the stability of the
distribution with respect to binary collisions, and introduced the distribution that
Gibbs would call micro-canonical. In the case of a gas subject to the action of an
external force field, he introduced the global distribution, a function of the positions
and the velocities of the N molecules of a gas:

�
��!r 1;�!r 2; : : :�!r N ;�!V 1;�!V 2; : : :�!V N

�
;

� d� giving the fraction of the time (considering a very long time) that the system
spends in the element d� D d3r1d3r2 : : : d3rNd3V1d3V2 : : : d3VN . He first shows
that if a system is contained at an instant t within a volume element d� of the
phase space, then at a later instant t C ıt it will be contained in a volume element
d� 0 with the same volume (d� D d� 0, Liouville’s theorem). He deduces from this
that the density � is constant along the entire trajectory. Finally, he admits that
the trajectory of the system in this 6N dimensional space fills the energy level
E D cte. It then results that the density � is uniform on this level. Starting from
this distribution, characterizing a large isolated system, Boltzmann arrived at the
characteristic distribution of a small subsystem (one molecule, for example) that is
weakly coupled (thermally coupled) with its complement (the remainder of the large
system, which plays the role of thermostat). If E* is the energy of this subsystem,
then the distribution associated with it is ˛e� 2hE *. The equipartition of the energy
for the quadratic degrees of freedom is a consequence of this distribution. This law,
now known as the Maxwell-Boltzmann distribution or the canonical Gibbs law, still
remains an essential element of statistical mechanics.16

In 1879, Maxwell attributed to Boltzmann “the general solution of the problem
of the equilibrium of kinetic energy among a finite number of material points,” and
noted that “The only assumption which is necessary for the direct proof [of the
equipartition theorem] is that the system, if left to itself in its actual state of motion,
will, sooner or later, pass through every phase which is consistent with the equation
of energy”.17

In 1894, Poincaré noted that the mean value of a dynamical magnitude should, if
it is accessible to observation, be comprised of “the mean taken at once with respect
to time and with respect to the various molecules; it is, so to speak, a mean value
of mean values.” This assertion suggests that for him, the equivalence of the two

16Boltzmann 1868. A partial translation appears in Barberousse 2002, 150–165. See Darrigol and
Renn 2000.
17Maxwell 1879, Scientific Papers, 714. Maxwell recognized that one could imagine systems
where this condition (the ergodic hypothesis) is a false, but he admits that, for a gas enclosed in a
container, the interaction of the molecules with the barrier permits an explanation of its validity.
ibid., 714–715.
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means was not evident (Poincaré 1894, 249). Poincaré gives the following form to
the equipartition theorem:

If there is no other uniform integral than that of the living forces, and if the living force of
the system is decomposable into two independent parts, the mean values of these two parts,
over a very long time, will be among themselves as the number of their degrees of freedom.

Poincaré noted that the existence of other uniform integrals, for the case of
a material system that is free in space (for which there is conservation of linear
momentum and of angular momentum), changes this form (a case considered in the
second part of Maxwell’s 1879 paper). The modified form insists that the energy
must be the only uniform integral (see below; Poincaré 1894, 253).

Poincaré recognized the anomaly of specific heats, but he believed that this
difficulty, though unresolved, would perhaps not be insurmountable (Poincaré 1894,
255). The isotropic distribution of velocities for a gas at equilibrium, without
action by an external force, is another consequence of “Maxwell’s theorem.”
All “the preceeding suffices to show the importance of Maxwell’s theorem [the
equiprobability of domains of equal volume in the available phase space of a
system]; this is the veritable cornerstone of the theory of gases, which would be
lost without it.” Poincaré gave a form of “Maxwell’s postulate,” allowing him to
justify “Maxwell’s theorem,” which corresponds not to the ergodic hypothesis, but
to the quasi-ergodic hypothesis:

Maxwell admits that, whatever the initial situation of the system, it will always pass an
infinite number of times, I don’t say through all the situations compatible with the existence
of integrals, but as close as one would like to any one of these situations.18

This expression was surely inspired by his recurrence theorem, in which return
is not exact.19

A Theorem on Non-uniform Integrals

Liouville’s theorem implies that the motion of a representative point defines a
continuous point transformation that conserves the extension in phase. In the
ensemble approach this implies that the distribution function corresponding to the

18Poincaré 1894, 252, 255–256. Equiprobability is considered in Poincaré 1896, §89 (course on
probability of 1893–94). There he considers a conservative mechanical system obeying Hamilton’s
equations, for which the initial conditions are unknown; he admits that the probability of finding it
within a volume is proportional to the magnitude of the volume, and deduces Liouville’s theorem.
19Brush 1976, 372, believes that Poincaré confused the two hypotheses. It would be more natural
not to assume that Poincaré was unaware of the distinction between the two hypotheses, but that
he found the second one more natural. Maxwell did not distinguish them. Maxwell 1879, Scientific
Papers 2, 720. In rebuttal, von Plato 1994, 102, praises the 1894 article: “[It] contains the essential
concepts that much later became the tools of the trade of ergodic theory: the requirement that the
trajectories be dense, and that this holds, except for a set of initial conditions of probability 0”.
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permanent state should be constant along each trajectory. Therefore the equilibrium
distribution should, in all generality, have the form

�0 .q; p/ D F .E; 2; : : : ;  2n�1/ ;

F being an arbitrary function of the integrals  i (functions of p and of the q that
remain constant along the length of each trajectory) of the system of 2n Hamiltonian
equations for a conservative system. Maxwell, in 1879, believed that it is the
ergodic hypothesis that justifies that the function F depends only on the energy.
Boltzmann reflected a great deal on the justification of the ergodic hypothesis and
therefore on the “effacement” of the 2n�2 first integrals, and it is probable that
these reflections made him doubt the validity of that hypothesis for the general case
of gases composed of polyatomic molecules.20

Toward 1890, Poincaré formulated a theorem asserting the non-uniformity of
the integrals, apart from energy, of the canonical equations of celestial mechanics.
This result concerned perturbative methods of solving Hamilton’s equations. The
theorem illuminated one of the major problems in the foundations of classical
celestial mechanics – the justification of the role of energy in the distribution
function. A difficult and often ignored question arises. Chapter V of the first volume
of the Nouvelles méthodes de la Mécanique céleste (1892c) is dedicated to the non-
existence of uniform integrals of the canonical equations. Consider a conservative
mechanical system, described by 2n parameters: n coordinates q and n conjugate
momenta p. Poincaré admits that the mechanical system is stable in the sense that
no particle leaves a limited region of space. The kinetic energy, the potential energy,
and the total energy are easily defined. The 2n canonical equations admit 2n�1
integrals that are independent of time. These integrals are in general non-uniform
functions:

The canonical equations of celestial mechanics do not admit (excepting those exceptional
cases that are discussed separately) uniform analytic integrals apart from the energy.
(Poincaré 1892c, 8, 253. See also Born 1925, Brillouin 1964, 109)

A uniform integral of Hamilton’s equations is a function of the p and the q that
remains constant in the course of the evolution of the system. According to the
theorem, the energy is the only “well behaved” integral; the others are non-analytic
functions, with discontinuities and “bizarre” behaviors. A non-uniform integral of
the canonical equations can take a value infinitely close to a given value in the
neighborhood of any point of the phase space.

20Boltzmann early on doubted the validity of the ergodic hypothesis, which is why he preferred in
1871 to return to a generalization of Maxwell’s Ansatz. When he adopted ensembles, he preferred
not to justify them by ergodicity, but rather by the empirical fact that the thermodynamic behavior
of a system does not depend on initial conditions for given external thermodynamic conditions; see
Gallavotti 1994, §3, Barberousse 2000, Chap. V, 158.
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This result had already figured in the paper on the three-body problem (1889–90).
There Poincaré considered the attempts to integrate the equations of celestial
mechanics by trigonometric series whose convergence was unproven. He showed
that the series introduced by Hugo Gyldén and by Anders Lindstedt were divergent.
This divergence followed from the above general result: the absence of a uniform
analytic integral apart from the integral of the living forces that will be valid for all
the equations of dynamics (see Robadey (2006, 22, 25–26, 31) and Barrow-Green
(1997 § 5.9)).

Poincaré’s proof supposes the existence of multiperiodic perturbative solutions
by the method of Delauney (variables action-angle). He shows by reductio that if
there exists another uniform integral besides the energy, the nullity of its Poisson
bracket leads to impossible relations for its Fourier coefficients at various orders
of perturbation. Note that the validity of Poincaré’s theorem is doubted by some
modern authors.21

Léon Brillouin notes that non-analyticity (non-uniformity) is closely connected
with non-separability:

This condition [established by Poincaré’s theorem] resulted in discontinuities in the
solutions obtained by the Hamilton-Jacobi method. It may be explained by the following
statement: For a given mechanical problem with energy conservation and no dissipation, one
may find a few variables that can be separated away from the system. When this has been
done, one is left with the hard core of non-separable variables. This is where the Poincaré
theorem applies, and specifies that the total energy is the only expression represented by
a well-behaved mathematical function. Many other quantities may appear as “constants”
of a certain motion, but they cannot be expressed as analytical and uniform integrals. This
means that any kind of modifications in the problem may provoke an abrupt and sudden
change of the “constants”. This discontinuity may be the result of a very small change
in any parameter in the mechanical equations, or, also, in any small change in the initial
conditions. (Brillouin 1964, 128)

For him, “The Poincaré theorem contains the justification of Boltzmann’s
statistical mechanics, which should apply when (and only when) the total energy
remains the only well-behaved first integral”. In effect, it is reasonable to admit
that the forces between molecules and the interactions between partitions are
perturbations removing all degeneracy in an action-angle development.22

Poincaré himself did nothing to make his theorem known to physicists. His
discussion of the role of the principle of conservation of energy, in the preface
to his Thermodynamique (1892a), does not mention this result.He mentions it

21Kolmogorov in 1954 published a theorem contrary to Poincaré’s. Arnold and Moser generalized
Kolmogorov’s result and formulated a theorem known by the acronym KAM. See: Arnold 1978;
Cercignani 1998, 158.
22Brillouin 1964, 125–126. Borel was one of the rare authors who stated this theory in a treatise on
statistical mechanics. Borel 1925, 20.
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only in his 1894 article on the kinetic theory, saying only that energy is the only
uniform integral for the kind of system for which Maxwell’s postulate is reasonable
(Poincaré 1894, 253).

Conclusion

The scientific personality of Poincaré is characterized by the breadth of his
interests, his familiarity with both French research traditions and foreign works,
his predilection for the big questions, his critical spirit, and his subtlety. He took
a profound interest in celestial mechanics, electrodynamics, thermodynamics, the
calculus of probabilities, among many other questions. His creativity allowed him
to build bridges between different domains of his research.

Poincaré was aware of the problem of the mechanistic reduction of Carnot’s
principle. First, he was interested above all in Helmholtz’s work on monocyclic
systems. The issue had already had an echo in France (Alfred Ledieu and Jules
Moutier were interested in a similar analogy proposed by Clausius). Poincaré
admired Helmholtz’s work in other domains, which doubtless encouraged this
more specific interest. Poincaré taught and developed these ideas, shortly after
their publication; he extended Helmholtz’s argument in the case of vibratory
motions that represent heat in Ampère’s conception. And he showed that, in
spite of their interest, these considerations would not allow for an explanation of
irreversibility. At that time, he knew only the outlines of the work of Maxwell
and of Boltzmann on the kinetic theory. Electromagnetism was one of the subjects
of his first courses on mathematical physics (1889/90); Poincaré gave particular
emphasis to the epistemological significance of Maxwell’s Lagrangian formulation
of electromagnetism, which is one of the great examples of a new phase in the
evolution of that physics that Poincaré called “the physics of the principles”. In this
framework, Maxwell formulated the theorem of the existence of an infinite number
of mechanical models compatible with a Lagrangian system, which suggests an
argument for the underdetermination of theories by empirical evidence. In addition,
Maxwell’s reflections anticipated Poincaré’s idea of a plurality of inter-translatable
languages. This was an idea that encouraged Poincaré’s interest in all of Maxwell’s
work.23

Poincaré was able to establish connections between his research in celestial
mechanics and the foundational problems of classical statistical mechanics (the
ergodic hypothesis and irreversibility). In these two domains, he gave a central role
to the concept of probability for continuous variables. He noted that if his recurrence
theorem were incompatible with the absolute validity of the second principle,
it would be compatible with the probabilistic interpretation of entropy. Another
result obtained by Poincaré, the non-uniformity of the first integrals of Hamilton’s

23Príncipe 2012. Helmholtz was then a foreign member of the Académie des Sciences.
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equations, also concerned the foundations of statistical mechanics. The importance
of this result was not emphasized by Poincaré, and it remained in the shadows until
the 1920’s. It stays ignored by most treatments of statistical mechanics. He also
touched on the problem of the limits of prediction in classical mechanics. In his
so-called popular works, Poincaré affirmed his epistemological pluralism, and often
spoke of the kinetic theory and the importance of probabilities.

In 1906, Poincaré would publish a paper on the kinetic theory of gases, in which
he showed a profound understanding of Gibbs’s treatise and gave a very subtle
analysis of irreversibility. He introduced two concepts, coarse-grained entropy and
fine-grained entropy, which represent a “substantialization” of the ideas discussed
in Chap. XII of Gibbs’s treatise: fine entropy always remains constant, while
coarse entropy, that of the physicists, “that which depends on our usual means
of investigation,” is constantly increasing (Poincaré 1906, Œuvres, vol. 10, 591).
The tendency to irreversibility is therefore a consequence of the limitations on
our means of observation. Poincaré would treat two problems that were simpler
than that of gases (the small planets, and a gas in one dimension) to show that
the tendency to equilibrium can be treated analytically. He showed that, for a
system with a finite number of particles, recurrences are inevitable and Carnot’s
principle is not absolutely valid. Poincaré also showed that, in a system that comes
to equilibrium, its apparent disorder may hide a latent order because of previous
state of equilibrium. This last notion is motivated by his reflections on the initial
notions of Boltzmann’s treatise, notions of disposition without molar organization –
molar ungeorgnete – and of disposition without molecular organization – molekular
ungeordnete. The article ends with the difficult problem of rarified gases. Poincaré
suggests that the behavior of gases can be composed as a mixture of the behavior of
a gas in one dimension and the three-dimensional gas of the kinetic theory; for short
times of evolution, the first kind of behavior is fundamental. (See Príncipe 2008,
§10.8).

Poincaré’s epistemological conceptions, his appreciation of the limits of classical
mechanics, and his taste for the theory of probability explain his openness to
probabilistic explanations in physics, an openness that was rather rare at this period
in France. His writings on probability and on the kinetic theory inspired the next
generation of researchers, especially Émile Borel.
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