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    Abstract     Systemic infl ammation associated with diverse clinical conditions is a vital 
problem in critical care medicine with signifi cant morbidity and mortality. In this 
chapter, we describe exclusively on systemic infl ammation caused by sepsis, isch-
emia and reperfusion injury, and trauma hemorrhagic shock. Despite all efforts in the 
clinical arena treatment for these indications remain limited. The only FDA approved 
drug as a treatment for sepsis, Xigris (drotrecogin alfa [activated]) has recently been 
voluntarily withdrawn by Eli Lily. There is an unmet and urgent clinical need exists 
for novel therapies for these conditions. There are pathological similarities as well as 
differences exist among these conditions. Even though all three pathologies are initi-
ated by different means, all leads to exaggerated infl ammatory response and multi-
organ failure. Therefore, therapies developed to dampen the exaggerated systemic 
infl ammation could be benefi cial for all three pathologies. Milk fat globule-epidermal 
growth factor-factor 8 (MFG-E8) is fi rst identifi ed as a bridging molecule that accel-
erated the interaction between apoptotic cells and phagocytes and facilitates the 
engulfment of apoptotic cells. We then, demonstrated that MFG-E8 plays a signifi -
cant role in sepsis, ischemia and reperfusion injury, and trauma hemorrhagic shock. 
In this chapter, we will briefl y review the different systemic infl ammatory conditions 
and describe the key evidence for the role of MFG- E8 and highlight the notion that 
MFG-E8 could be developed as a potential therapeutic for these indications.  
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1         Introduction 

 Systemic    infl ammation caused by sepsis, ischemia/reperfusion injury and trauma/
hemorrhage is a critical problem causing signifi cant morbidity and mortality [ 1 ]. 
Sepsis and septic shock is the second leading cause of death in the non-coronary 
intensive care units and is in the top 10 leading causes of deaths overall in the 
United States [ 2 ]. The mortality rate for severe sepsis and septic shock is about 
30 % annually, with over 200,000 deaths per year [ 3 ] which is similar to the number 
of people dying with acute myocardial infarction. Similar to sepsis, ischemia and 
reperfusion (I/R) injury also results in high morbidity and mortality. Gut or mesen-
teric ischemia remains a critical clinical condition, resulting in mortality as high as 
60 % [ 4 ]. Hepatic ischemia-reperfusion (I/R) damage occurs in diverse clinical set-
tings including liver transplantation and liver resection [ 5 ,  6 ]. Acute renal failure 
(ARF) caused by renal I/R injury is quite common in hospitalized patients, affecting 
3–7 % of general admissions, and as much as 25–30 % of patients in intensive care 
units [ 7 ,  8 ]. Trauma is the fi fth leading cause of death overall and the number one 
cause of death for patients between the ages of 1 and 40 [ 9 ,  10 ]. As such, develop-
ment of therapies for such systemic infl ammatory conditions is an unmet need exists 
for effi cient patient care. 

 There are pathological similarities as well as differences exist among these con-
ditions. Sepsis is defi ned as a systemic host response to an infectious origin which 
eventually leads to systemic infl ammatory response and multi-organ failure (MOF) 
[ 11 ,  12 ]. Ischemia and reperfusion (I/R) injury is a pathological condition character-
ized by an initial restriction of blood supply to a specifi c organ followed by subse-
quent restoration of perfusion and reoxygenation. I/R injury is manifested as an 
initial tissue hypoxia due to occlusion of the arterial blood supply and a subsequent 
tissue injury and exacerbation of infl ammatory response as a consequence of the 
reperfusion. The major organs that are affected by I/R injuries due to varied clinical 
conditions are the gut, the liver and the kidneys. I/R injury typically occurs in a 
sterile environment and eventually leads to exaggerated infl ammation and MOF 
[ 13 ]. While exsanguinations and head injury continue to account for a large number 
of early trauma deaths, the majority of late trauma deaths occur as a result of infec-
tion and/or MOF [ 9 ,  10 ]. Even though all three pathologies are initiated by different 
means, all leads to exaggerated infl ammatory response and MOF. Therefore, thera-
pies developed to dampen the exaggerated systemic infl ammation could be benefi -
cial for all three pathologies. 

 Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) was fi rst identifi ed 
by Hanayama et al. [ 14 ] as a bridging molecule that accelerated the interaction 
between apoptotic cells and phagocytes and facilitates the engulfment of apoptotic 
cells. We then, demonstrated that MFG-E8 is decreased in sepsis and the reduction 
in its expression leads to impairment of apoptotic cell clearance resulting in increased 
mortality. Administration of exogenous MFG-E8 in septic animals increased apop-
totic cell clearance, reduction in infl ammatory response, and improved survival 
[ 15 – 17 ]. We also showed benefi cial effect of MFG-E8 in a number of other organ 
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injury conditions [ 18 – 21 ]. In this chapter, we will briefl y review the different sys-
temic infl ammatory conditions and describe the key evidence for the role of MFG-
E8 in these indications. With the available data, we highlight the notion that MFG-E8 
could be developed as a potential therapeutic agent for sepsis, ischemia and reperfu-
sion injury, and trauma hemorrhagic shock.  

2     MFG-E8 and Sepsis 

 Sepsis is a critical problem causing signifi cant morbidity and mortality [ 1 ]. It con-
tinues to be the second leading cause of death in non-coronary intensive care units, 
and is in the top 10 leading causes of deaths overall in the United States [ 2 ]. It is 
estimated that there are more than 1,000,000 cases of sepsis among hospitalized 
patients each year in the US. The incidence of sepsis among hospitalized patients is 
increasing by 8.7 % per year. Numerous reports have shown that the incidence of 
sepsis and severe sepsis is increasing in excess of the growth of the population [ 12 ]. 
The mortality rate for severe sepsis and septic shock is about 30 % annually, with 
over 200,000 deaths per year [ 3 ] which is similar to the number of people dying 
with acute myocardial infarction. Sepsis is defi ned as a systemic host response to an 
infection caused by bacteria, virus or fungi [ 11 ]. Sepsis tends to occur from specifi c 
and consistent sources such as respiratory infections, genitourinary and abdominal 
sources of infection with primary bacteremia, and other unknown sources. The 
occurrence of severe sepsis is related to the source of infection, as in the cases of 
patients with respiratory infection who are at high risk for developing respiratory 
related organ dysfunction. Regardless of the time and the organisms, the treatment 
of infection is the primary antisepsis therapy. From a clinical perspective, antimi-
crobial therapy is the chosen method of treatment. However, the choice of antibiot-
ics, and the timing of their administration are extremely critical for successful 
outcome. Thus, there has been a substantial amount of work ranging from analyzing 
triage decisions made for intensive care unit admissions [ 22 ] to evaluating cortisol 
as a potential treatment against sepsis [ 23 ]. Despite these efforts, the treatment of 
sepsis however, has remained elusive. The only FDA approved drug as a treatment 
for sepsis, Xigris (drotrecogin alfa [activated]) [ 24 ,  25 ] has recently been volun-
tarily withdrawn by Eli Lily. There is an unmet and urgent clinical need exists for a 
sepsis therapy. 

 During infl ammation and sepsis, systemic increases in pro-infl ammatory cyto-
kines have been shown to increase mortality [ 26 ]. During sepsis and other states 
with systemic infl ammatory response, several cell types (e.g., B cells, CD4 T cells, 
dendritic cells (DCs), vascular endothelial cells and enteric epithelial cells) undergo 
apoptosis [ 27 – 31 ]. Apoptotic cells that are not cleared are likely to undergo second-
ary necrosis [ 32 ], thereby continuing to release harmful and toxic mediators and 
worsening sepsis. Studies have shown that phagocytic function of macrophages is 
impaired in late sepsis [ 33 ,  34 ]. Hanayama et al. [ 35 ] have discovered that lack of 
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clearance of apoptotic B cells in the spleen potentially leads to autoimmune dis-
eases which underscores the importance of clearing apoptotic cells from organism 
[ 36 ]. MFG-E8, a 64-kDa secretory protein that is mainly produced by the spleen, 
was responsible for removal of apoptotic cells. Without MFG-E8, engulfment and 
removal of apoptotic cells were impaired which led to the release of autoantibodies 
[ 35 ]. MFG-E8 was originally identifi ed as a component of milk-fat globules [ 37 ] 
but secreted by activated macrophages and immature dendritic cells [ 38 ]. The most 
remarkable function of MFG-E8 is its ability to promote the clearance of apoptotic 
cells by forming a tether between phagocytes and apoptotic cells [ 14 ,  39 ]. One 
unique characteristic of apoptotic cells is to expose their phosphatidylserine (PS) 
from its inner leafl et membrane to the outer surface. This is termed “eat me” signal 
which can allure distinct opsonins (i.e., MFG-E8), to recognize and bring apoptotic 
cells to the close vicinity of phagocytes [ 40 ]. MFG-E8 has a strong binding affi nity 
to the exposed PS of apoptotic cells and facilitates phagocytic engulfment via α V β 3  
or α V β 5  integrins. This triggers a conformational change in the integrin receptor that 
signals the recruitment of various signaling cascade proteins and transforms the 
macrophage into a phagocyte capable of engulfment [ 41 ,  42 ]. Thus, MFG-E8 pro-
motes the engulfment of apoptotic cells by working as a bridging molecule between 
those cells and phagocytes [ 14 ]. 

 In an animal model of cecal ligation and puncture (CLP)-induced sepsis, we 
showed that MFG-E8 levels were decreased by 45 % in the blood during late sepsis 
(i.e., 20 h after CLP) indicating the systemic scale of its depletion under septic con-
ditions [ 16 ]. A 48–70 % reduction was observed in the spleen and liver tissues [ 15 ]. 
This decrease in the MFG-E8 expression in late sepsis was associated with impaired 
phagocytosis of apoptotic cells or apoptotic cell clearance [ 15 ]. Splenic macro-
phages from MFG-E8 defi cient ( Mfge 8 -/- ) mice showed a dramatically decreased 
ability to phagocytose apoptotic cells under normal conditions as compared to wild 
type mice, suggesting a critical role for MFG-E8 in this process. Interestingly, 
 Mfge 8 -/-  mice accumulated higher amounts of apoptotic cells as compared to the 
WT mice during late sepsis. These data clearly demonstrated that the clearance of 
apoptotic cells is directly regulated by MFG-E8 [ 16 ]. Endotoxemia also reduced 
splenic MFG-E8 expression in a dose dependent manner and the downregulation of 
MFG-E8 expression in CLP-induced sepsis was attenuated by the LPS inhibitor, 
polymyxin B. The CLP-induced suppression was not observed in either CD14 −/−  or 
TLR4-mutated mice. These studies indicated that MFG-E8 production is down- 
regulated in sepsis by LPS-CD14 dependent fashion, leading to a reduction of 
phagocytosis of apoptotic cells [ 43 ]. 

 MFG-E8 is secreted from DCs in exosomes that resemble milk fat globules in 
size and membrane lipid composition [ 38 ,  44 ]. These tiny vesicles (50–100 nm in 
diameter) are derived from multivesicular bodies, intermediates in the endosome 
maturation between endosome and endolysosome [ 44 ,  45 ]. Fusion of these multive-
sicular bodies with the plasma membrane leads to the release of MFG-E8 contain-
ing exosomes. In this regard, we isolated MFG-E8 containing exosomes from rat 
bone marrow immature DCs. Treatment of rats with MFG-E8 containing exosomes 
at the time of CLP, reduced the presence of apoptotic cells by 33 %. Peritoneal 
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macrophages from exosome-treated rats displayed a 2.8-fold increased ability to 
phagocytose apoptotic thymocytes [ 16 ]. Thus, the reduced presence of apoptotic 
cells in exosome-treated septic rats could have been due to the increase in apoptotic 
clearance. Treatment also reduced plasma tumor necrosis factor-α (TNF-α) and 
interleukin-6 (IL-6) levels and improved survival from 44 % in the saline treated 
animals to 81 % in the treatment ones [ 15 ]. Similarly, treatment of septic rats with 
recombinant murine MFG-E8 (rmMFG-E8) attenuated the infl ammatory response 
during sepsis, increased apoptotic cell clearance, and improved survival [ 16 ]. To 
develop MFG-E8 as a therapeutic agent against sepsis, recombinant human MFG- 
E8 (rhMFG-E8) was expressed in bacterial system, purifi ed and confi rmed of hav-
ing biological activity similar to the mouse counterpart in abilities of mediating the 
phagocytosis of apoptotic cells by macrophages [ 46 ]. Treatment with the purifi ed 
rhMFG-E8 in septic rats signifi cantly reduced, organ injury indicators (AST, ALT, 
creatinine, lactate), serum IL-6 and TNF-α, and plasma HMGB-1 levels [ 17 ]. In a 
10-day survival study in septic rats, vehicle-treated rats produced 36 % survival 
rate, while rhMFG-E8 treatment signifi cantly improved survival rate to 68–72 %. 
Treatment with rhMFG-E8 signifi cantly reduced the number of apoptotic cells 
detected suggesting increased apoptotic cell clearance. In addition to its role in 
apoptotic cell clearance, a recent study showed that MFG-E8-mediated potential 
therapeutic benefi ts in sepsis and intestinal injury were not solely dependent on the 
enhanced clearance of apoptotic cells, but also due to diverse cellular events to 
maintain epithelial integrity and healing of the injured mucosa [ 47 ]. In this regard, 
we have shown that the pre-treatment with rmMFG-E8 followed by endotoxemia 
showed signifi cant attenuation of TNF-α levels in circulation and in splenic tissues 
suggesting an anti-infl ammatory role of MFG-E8. In contrast, endotoxemia in the 
 Mfge 8 -/-  mice caused greater increase in TNF-α than those in WT mice [ 48 ]. Aziz 
et al. [ 48 ] further demonstrated that MFG-E8-mediated decrease in TNF-α is regu-
lated by pSTAT3/SOCS3 leading to downregulation of NF-kB and subsequent 
decrease in TNF-α. Nevertheless, these fi ndings taken together clearly provided 
evidence to develop rhMFG-E8 as a therapy for patients suffering from sepsis    
(Fig.  7.1 ).

3        MFG-E8 and Ischemia/Reperfusion Injury 

3.1     MFG-E8 and Gut I/R 

 Gut or mesenteric ischemia remains a critical clinical condition, resulting in mortal-
ity as high as 60 % [ 4 ]. Intestinal ischemia and subsequent reperfusion are encoun-
tered in a variety of clinical conditions, including acute mesenteric ischemia, 
intestinal obstruction, incarcerated hernia, small intestine volvulus and necrotizing 
colitis. The consequences of mestenteric ischemia are devastating to the patient and 
usually results in severe diarrhea, malabsorption, short bowel syndrome, and death. 
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The pathophysiology of gut ischemia/reperfusion (I/R) involves tissue ischemia fol-
lowed by cellular damage due to resumption of blood (reperfusion). Tissue ischemia 
initiates a series of events that can ultimately lead to cellular dysfunction and necro-
sis, and subsequent reperfusion causes more tissue damage including remote organ 
injury and subsequent death [ 13 ,  49 – 58 ]. A common complication of gut I/R is 
acute lung injury (ALI) and it contributes to the high mortality rate observed in gut 
I/R injuries. ALI is caused by a systemic infl ammatory response due to the release 
of proinfl ammatory cytokines and bacteria-derived endotoxins from reperfused 
ischemic tissue [ 59 ,  60 ]. The mechanism of ALI involves a complex cross- talk 
among various cellular components of the alveolar microenvironment, their 
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  Fig. 7.1    Potential mechanism of MFG-E8 in sepsis and I/R injury. Sepsis and I/R injury is caused 
by a number of factors including neutrophil infi ltration, complement activation, ROS, mitochon-
drial dysfunction and apoptosis leading to increase in proinfl ammatory mediators and organ injury. 
During sepsis, downregulation of the endogenous MFG-E8 in the tissues, i.e., spleen, liver and 
kidneys, attenuates apoptotic cell clearance (phagocytosis) and exacerbates organ injury. 
Administration of recombinant MFG-E8 (rMFG-E8) enhances the phagocytic activity and attenu-
ates infl ammation and decreases organ injury. In macrophages, rMFG-E8 upregulates pSTAT3/
SOC3 signaling pathway and attenuates proinfl ammatory cytokines and decrease organ injury 
(Schematic illustration of data compiled from references [ 15 ,  16 ,  18 – 20 ,  48 ])       
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secretory products, and leukocyte recruitment from the vascular bed in regions of 
infl ammation. Activated neutrophils release proteolytic enzymes, such as elastase 
and myeloperoxidase (MPO) and reactive oxygen species, including hydrogen per-
oxide and superoxide. Excessive production of these factors not only destroys 
invaded pathogens, but also engages in the disruption of the endothelial barrier and 
promotes tissue damage. These events lead to ALI that is clinically manifested as 
acute respiratory distress syndrome followed by multiple organ dysfunction syn-
drome [ 61 – 64 ]. Even though numerous treatment modalities have been implicated 
in reducing ALI-induced mortality, none have been successful [ 65 ]. Thus, the devel-
opment of novel and effective therapies for ALI is crucial for the improvement of 
patient outcome. 

 The gut is one of the most sensitive organs to I/R injury [ 55 ,  66 ]. Ischemia initi-
ates a series of events that can ultimately lead to cell dysfunction and necrosis, and 
resumption of blood (reperfusion) causes more tissue damage [ 49 – 58 ]. The lungs 
are among the organs that are most severely affected by gut I/R-induced injury [ 67 ]. 
Ischemia or I/R induces apoptosis in various organs [ 68 – 70 ]. Apoptosis has been 
considered as the principal mode of cell death during I/R [ 66 ,  71 – 73 ]. Apoptotic 
cells stimulate infl ammatory responses if they are not removed by phagocytes [ 74 ]. 
Defi cient clearance of apoptotic cells leads to infl ammation and tissue injury [ 39 , 
 75 ]. MFG-E8 plays a crucial role for the engulfment of apoptotic cells by phago-
cytes [ 14 ,  35 ]. In this regard, we have shown that in a mouse model of gut I/R 
induced by superior mesenteric artery occlusion followed by reperfusion, as com-
pared to the WT mice,  Mfge 8 -/-  mice produced much severe ALI after gut I/R [ 18 ]. 
MFG-E8 levels were markedly reduced in the spleen, gut and lungs by 50–70 %, 
suggesting impaired apoptotic cell clearance [ 76 ]. Treatment with rmMFG-E8 in 
gut I/R-induced WT mice signifi cantly decreased lung apoptosis, improved lung 
morphology, and reduced neutrophil infi ltration into the lungs. Treatment also sup-
pressed tissue injury and infl ammation as evidenced by reduction in liver enzymes 
(AST, ALT), lactate and creatinine, decreased proinfl ammatory cytokines (TNF-α, 
IL-6, IL-1β), and improved survival. Thus, MFG-E8 may serve as a novel treatment 
option for gut I/R-induced ALI.  

3.2     MFG-E8 and Hepatic I/R 

 Hepatic ischemia-reperfusion (I/R) damage, which occurs in diverse clinical set-
tings including liver transplantation, trauma, hemorrhagic shock, or liver surgery, is 
a serious clinical complication that may compromise liver function because of 
extensive hepatocellular loss. I/R injury represents a complex series of events that 
result in cellular and tissue damage. It involves the transient deprivation of blood 
fl ow and oxygen, and the return of blood fl ow during reperfusion with concomitant 
release of reactive oxygen species (ROS), infl ammatory mediators, adhesion mole-
cules, adenosine triphosphate (ATP) depletion, and derangements in calcium 
homeostasis. Finally, these functional changes induce cell death due to apoptosis as 

7 Novel Therapeutic for Systemic Infl ammation: Role of MFG-E8



126

well as necrosis [ 5 ,  6 ]. Despite the fact that hepatic injury is a major clinical prob-
lem, no reliable therapies have been established. The development of a therapy for 
hepatic I/R would indeed benefi t patients undergoing liver surgery and liver 
transplantation. 

 It has been shown that programmed cell death or apoptosis of liver sinusoidal 
cells and hepatocytes is a prominent feature of liver I/R injury, in both experimental 
models and clinical transplantation [ 5 ,  77 ,  78 ]. Historically, apoptosis has been seen 
as an ordinary process of cell suicide that, unlike necrosis, does not elicit infl amma-
tion [ 32 ]. Studies have shown that if the removal process of apoptotic cells fails, 
apoptotic cells undergo secondary necrosis, which enables to release potentially 
cytotoxic intracellular contents, followed by infl ammation and impaired tissue 
repair [ 79 ,  80 ]. In a rat model of hepatic I/R, liver and plasma levels of MFG-E8 
were signifi cantly decreased. Administration of rhMFG-E8 signifi cantly improved 
liver injury, suppressed apoptosis, attenuated infl ammation and oxidative stress, and 
downregulated the NF-κB signaling pathway. In a survival study conducted using 
 Mfge 8 -/-  mice and WT mice, the survival rate of the  Mfge 8 -/-  mice was markedly 
reduced as compared to that of the WT mice indicating that the  Mfge 8 -/-  mice were 
more susceptible to hepatic I/R-mediated mortality than the WT mice. In contrast, 
exogenous administration of rhMFG-E8 in WT mice improved the survival rate 
after hepatic I/R from 31 % in the saline treated animals to 70 % in the treatment 
ones [ 19 ]. Furthermore, it has been demonstrated that MFG-E8-mediated therapeu-
tic potential is not only dependent on enhancement of phagocytosis, but also on 
multiple cellular events associated with tissue remodeling [ 47 ,  81 ,  82 ]. MFG-E8-
mediated multiple physiological events may represent an effective therapeutic 
option in tissue injury following an episode of hepatic I/R.  

3.3     MFG-E8 and Renal I/R 

 Acute renal failure (ARF) is a critical clinical problem posing signifi cant economic 
and fi nancial burden on the society. ARF is quite common in hospitalized patients, 
affecting 3–7 % of general admissions, and as much as 25–30 % of patients in inten-
sive care units. Renal ischemia-reperfusion (I/R) injury causes ARF in various clini-
cal settings, including kidney transplantation and cardiopulmonary and aortic bypass 
surgery. Renal I/R injury is associated with high mortality and morbidity [ 7 ,  8 ]. 
Current strategies used to prevent ARF consist mainly of fl uid resuscitation and 
diuretics, and/or prevention of the insinuating factor. Despite these efforts, the mortal-
ity remains unacceptably high and has not improved in several decades. There is an 
urgent need to develop therapeutics to fi ght this pathological condition. 

 During renal I/R injury, renal damage begins immediately from the onset of 
ischemia. Upon restoration of perfusion, however, the tissues undergo further 
injury. Reperfusion injury involves the accumulation of neutrophils, generation of 
free oxygen radicals, and cytokine activation. These changes may also be seen 
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histopathologically, as demonstrated by the loss of the brush border, tubular disrup-
tion, and cast formation [ 83 ]. Renal damage due to I/R injury occurs as early as 5 h 
following injury as evidenced by a rising serum lactate, TNF-α, IL-6 and TGF-β 
levels, as well as decreasing systemic venous oxygen levels [ 84 ]. In the clinical set-
ting, serum markers such as blood urea nitrogen and creatinine, are regarded as 
gold standards for renal compromise, but these markers may not become elevated 
until 24 h after the initial injury. Studies looking at early biomarkers, such as kera-
tinocyte-derived chemokine (KC) and neutrophil gelatinase-associated lipocalin 
(NGAL), demonstrate that increases in these markers are associated with the devel-
opment of ARF [ 85 ,  86 ]. With a better understanding of the pathophysiology of 
ARF as well as the identifi cation of new biomarkers, one is able to determine the 
actual time point in the evolution of renal compromise pharmacological or hor-
monal therapy would be benefi cial. 

 Ischemia typically damages renal tubular epithelial cells and also glomerular 
cells and is characterized by several hallmark features at the cellular level: Profound 
intracellular ATP depletion and a fall in tissue oxygen and glucose content with a 
concomitant rise in intracellular calcium [ 87 ,  88 ]. Although ischemic events alone 
may lead to necrosis and apoptosis in the kidneys, reperfusion occurs upon restora-
tion of blood fl ow and is associated with increased apoptosis and necrosis in addi-
tion to the production of reactive oxygen species (ROS) and infl ammatory mediators 
[ 89 ,  90 ]. Renal I/R injury can be ameliorated by inhibiting molecules involved in 
apoptosis, necrosis, or infl ammation, suggesting that multiple injury and death 
mechanism may be involved in renal I/R injury [ 91 ]. Among these, the coexistence 
of apoptosis and necrosis in renal tissues is a characteristic feature of renal I/R 
injury. Both types of cell death have been implicated signifi cantly in the pathogen-
esis of ARF, which is marked by a loss of tubular epithelial cells and subsequent 
renal dysfunction [ 92 ,  93 ]. Moreover, additional mechanisms which contribute to 
the ongoing pathogenesis of I/R injury-induced ARF has been reported. For 
instance, renal vascular endothelial injury and dysfunction, due to increases in renal 
vascular resistance and persistent reductions in renal blood fl ow, exacerbates 
hypoxia and play an important part in extending renal tubular epithelial injury and 
subsequent cell death [ 94 ]. In a rat model of bilateral renal ischemia followed by 
reperfusion (renal I/R) [ 20 ], MFG-E8 mRNA and protein expressions were signifi -
cantly decreased in the kidneys and spleen. Treatment with rmMFG-E8 recovered 
renal dysfunction, signifi cantly suppressed infl ammatory responses, reduced apop-
tosis and necrosis, and improved capillary functions in the kidneys. In a 60 h sur-
vival study, survival rate after renal I/R injury decreased signifi cantly from 44 % in 
the WT mice to 11 % in the  Mfge 8 -/-  mice. Interestingly, the exogenous treatment 
with rmMFG-E8 in the WT mice showed signifi cant improvement in survival rate 
to 73 %. These data collectively demonstrated that the protective effect of MFG-E8 
is mediated through the enhancement of apoptotic cell clearance and improvement 
of capillary functions in the kidneys. Thus, MFG-E8 could be developed as a novel 
treatment for renal I/R injury.  
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3.4     MFG-E8 and Hemorrhagic Shock 

 Trauma is the fi fth leading cause of death overall and the number one cause of death 
for patients between the ages of 1 and 40 [ 9 ,  10 ]. In the US, about 90,000 people die 
annually due to traumatic injuries and complications. It is estimated that 10–20 % 
of the deaths are potentially preventable and nearly 80 % of these occur due to hem-
orrhage and it occurs within the fi rst 24 h after injury [ 9 ,  95 – 97 ]. Immediate hemor-
rhage control and adequate fl uid resuscitation are the key components of early 
trauma care. While fl uid resuscitation decreases the risk of death in severe hemor-
rhage, it increases the risk of death in less severe hemorrhage. Despite the fact that 
fl uid infusion at a pre-determined rate has shown to reduce organ injury and reduce 
mortality, the best approach recommended is to avoid unnecessary fi eld interven-
tions and focus on fast and effi cient transport of the patient to hospital [ 98 ]. Advances 
in trauma care systems and emergency medical services have resulted in a signifi -
cantly large percentage of patients who survive to hospital admission [ 96 ]. Another 
strategy implemented is the hypotensive resuscitation that showed some reduction 
in the risk of death. Hypotensive resuscitation at a fi xed rate of 60–80 cc/kg/h gener-
ally maintains the systolic blood pressure of 80–90 mmHg and mean arterial pres-
sure of 40–60 mmHg. Although the data suggest this strategy of infusion rates is 
benefi cial in hemorrhagic shock, it requires monitoring of hemodynamic changes 
which would be diffi cult to accomplish in the fi eld. Another strategy for resuscita-
tion is the use of hypertonic saline. An number of pre-clinical studies have demon-
strated that hypertonic saline modulate the immune response and leads to attenuation 
of immune mediated cellular injury [ 99 – 108 ]. However, in two recent multicenter 
clinical trials, hypertonic saline treated patients experienced early high mortality in 
comparison to normal saline treatment and thus, hypertonic saline is not recom-
mended for resuscitation in trauma patients [ 109 ]. 

 Observational data from trauma centers and the battlefi eld suggest that early 
administration of component therapy containing fresh frozen plasma and platelets 
may be benefi cial [ 110 ,  111 ]. Based on battlefi eld experience, US Army instituted a 
policy of using a 1:1:1 ratio of packed red blood cells:fresh frozen plasma:platelets 
in the battlefi eld for those who meet the criteria for massive resuscitation. However, 
no study has identifi ed the optimal ratios of blood components to be used for resus-
citation [ 109 ]. In addition, although advance in viral screening have markedly 
decreased the risk of infectious transmissions, blood transfusion remains to be asso-
ciated with numerous side effects. Blood transfusion has shown to cause early 
immune activation resulting in systemic infl ammatory response syndrome and 
immune suppression which predisposes the patients to infection [ 112 – 116 ]. In addi-
tion to fl uid resuscitation, a wide range of pharmacological agents including neuro-
endocrine agents, calcium channel blockers, prostaglandins, sex steroids, immune 
modulators, and histone deacetylase inhibitors have been tested in pre-clinical tri-
als. Although majority of these agents show benefi cial effects in animal models, 
none have been in clinical use as resuscitative agents. Thus, there is an urgent unmet 
need in the development of novel therapies for hemorrhagic shock. 
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 Exsanguination and head injury continue to account for a large number of early 
trauma deaths, the majority of late trauma deaths occur as a result of infection and/
or multi-organ failure. The clinical association of late trauma deaths and the devel-
opment of multi-organ failure have been established as early as in the 1970s. 
However, only within the past few decades that the focus has been directed towards 
infl ammatory response and how it may predisposes the body to infection and multi- 
organ failure. Hemorrhagic shock induces a surge of infl ammatory cytokines includ-
ing IL-6 and TNF-α which is associated with increased mortality [ 26 ,  117 ]. 
Prolonged and severe hemorrhagic state leads to tissue hypoxia and the presence of 
apoptotic cells [ 32 ]. If these apoptotic cells are not cleared, they will likely undergo 
secondary necrosis and release harmful agents and worsens hemorrhagic shock. 

 Apoptotic cell death is prevalent in gastrointestinal associated intestinal epithe-
lial cells [ 118 – 120 ]. These cells are already prone to apoptosis after noxious stimuli 
exposure because these cell types normally undergo a rapid physiological turnover 
that is believed to be a result of apoptosis. Since bowel is the primary organ respon-
sible for infl ammatory response in trauma and shock, if accelerated cell death occurs 
in the intestine of patients with trauma and shock, important pathologic conse-
quences could result. During trauma and shock, the intestinal wall loses its barrier 
function which results in the leakage of endotoxin and bacteria into the circulation 
causing a systemic infl ammatory response. Apoptosis of intestinal epithelial tissues 
occur as rapidly as 2–3 h after initial injury and it compromises bowel wall integrity 
and becomes the primary mode for bacterial or endotoxin translocation into the 
systemic circulation [ 121 ]. In contrast, increased apoptosis of peripheral blood neu-
trophils is associated with reduced incidence of infection in trauma patients with 
hemorrhagic shock [ 122 ]. Clearance of apoptotic peripheral blood neutrophils by 
the liver and spleen inhibit infl ammatory response thereby sparing the other organs 
such as the lung, which is among the most common sites of infection following seri-
ous trauma that leads to multi-organ failure and death. 

 Ingestion of apoptotic cells by macrophages results in the release of anti- 
infl ammatory mediators, including TGF-β1 and PGE 2  and suppresses the produc-
tion of pro-infl ammatory cytokines such as IL-8, TNF-α and thrombaxane A 2  [ 123 , 
 124 ]. In this regard, MFG-E8 has been identifi ed as a bridging molecule between 
professional phagocytes via the α V β 3  or α V β 5  integrins and apoptotic cells via PS, 
which accelerates the engulfment of apoptotic cells [ 41 ,  42 ]. In a mice model of 
pressure-controlled (25 ± 5 mmHg) hemorrhagic shock [ 21 ], MFG-E8 levels in the 
plasma, lungs and spleen were signifi cantly decreased at 4 h after hemorrhage. 
Resuscitation with rhMFG-E8 signifi cantly improved apoptosis at 4 h as evidenced 
by a reduction in TUNEL positive cells and cleaved caspase-3 expression. Neutrophil 
infi ltration into the lungs and spleen were also blunted. Pro-infl ammatory cytokines 
(IL-1β, IL-6 and TNF-α) were reduced signifi cantly in plasma (64–73 %), lungs 
(24–58 %) and spleen (49–76 %). In a 7 day survival study, a signifi cant improve-
ment (83 % vs. 43 %) with one-time dose of rhMFG-E8 as compared to normal 
saline treated mice after hemorrhage was observed. These data taken together sug-
gest that rhMFG-E8 could be developed as a treatment for hemorrhagic shock.   
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4     Future Perspectives 

 In this chapter, we clearly demonstrated that MFG-E8 could be developed as a novel 
therapy for sepsis, ischemia and reperfusion injury, and trauma hemorrhagic shock. 
The data described further indicates that MFG-E8 could be functioning as a tether 
between apoptotic cells and phagocytes for effi cient engulfment of apoptotic cells 
and thereby reduce infl ammation and improve survival. It is also implicated that 
MFG-E8 could function directly by binding to α V β 3  or α V β 5  integrins and upregulate 
or downregulate signaling components causing the reduction in infl ammation. 
Regardless of its mechanism of action, it is clear that administration of MFG-E8 is 
benefi cial in attenuating the exaggerated infl ammatory response associated with 
systemic infl ammation caused by sepsis, ischemia and reperfusion injury, and 
trauma hemorrhagic shock. Thus, MFG-E8 treatment could be a potential therapy 
for patients suffering from complications associated with such conditions.     
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