
Chapter 16
Valuation of Airborne Laser Scanning Based
Forest Information

Annika Kangas, Tron Eid, and Terje Gobakken

Abstract When an inventory is planned for, the decision makers typically strive
for maximizing accuracy of the information with a given budget, or even maximize
accuracy without considering any budget at all. Recent developments in airborne
laser scanning and other remote sensing techniques facilitate the use of data obtained
from such sources as an integrated part of the forest inventory process. However, a
rational decision maker would not pay for information that is more expensive than
the expected improvement in the value of the decisions based on the new informa-
tion. The statistical accuracy that usually is provided in the remote sensing literature
does not dictate the usefulness of the data in decision making. In this chapter
we present methods to assess the value of information and go through the recent
research related to this where we in different ways try to establish the links between
the inventory effort level, decisions to be made and the value of information.

16.1 Introduction

Information has value to the decision maker if there is uncertainty concerning the
correct decision. This value of information (VOI) can ex ante be calculated as the
difference of expected value of a given decision with and without a source of new
information (Lawrence 1999; Birchler and Bütler 2007). Some prior information
is always assumed to be available, for instance in the form of old forest inventory
data updated with growth models. Thus, VOI comes from the ability to make better
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Fig. 16.1 Cost structure when considering the effort level of an inventory

decision with additional information, and a rational decision maker should not pay
for information that is more expensive than the expected improvement in the value
of the decision.

If the new information is without errors, i.e. perfect, then we can talk about the
expected value of perfect information (EVPI). Usually the new information still
contains some errors, however, and this means that we can talk about the expected
value of imperfect information (EVII).

The problem can also be looked at from a different perspective by analyzing the
losses due to sub-optimal decisions. Then, the value of information comes from
the reduced expected losses when we have new information. This approach has
been more commonly used in forestry, where different inventory methods have been
compared using a so-called cost-plus-loss (CPL) analysis. In CPL, the total costs
of an inventory consist of the inventory costs and the losses due to sub-optimal
decisions, and the inventory method having the lowest total costs is defined as best
(Hamilton 1978; Burkhart et al. 1978). Likewise, CPL could be used to define the
optimal inventory intensity using a given method (Borders et al. 2008). The cost
structure of a concept considering the effort level of an inventory is illustrated in
Fig. 16.1. In general, the inventory costs increase and the losses in net present value
(NPV) decrease when the effort level of the inventory increases. The ultimate goal
in data acquisition planning should be to search for an effort level that minimises
total costs.

In CPL, the benchmark is the perfect information, and the losses of a given
inventory method are calculated related to that. In EVPI the benchmark is the given
inventory, and the value of perfect information is calculated related to that. If we
wish to consider the additional value of a new inventory method, it can be calculated
if we know the expected losses (EL) or EVPI with prior information and with the
new information as

EVII D EVPIprior � EVPInew D ELprior � ELnew: (16.1)
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An objective function is used to calculate the VOI, and the VOI is expressed in
the same units as the objective function. Thus, if the objective is to maximize NPV
from the harvests, the VOI is also expressed as monetary units. If the decision maker
was maximizing a multi-criteria utility function, then also the VOI is expressed as
utils (Kim et al. 2003; Kangas et al. 2010a). However, it is possible to calculate
the respective value in monetary terms, if the utility function involves at least one
criterion that can be expressed in monetary terms.

The VOI depends on the application of the information. For example, the use
of forest stand inventory data spans from forest property valuation to management
planning. Since a number of different decisions can be based on the same informa-
tion, the information may have different value depending on type of decision. For
instance, Duvemo et al. (2012) calculated the losses in a hierarchical planning case
including both strategic and tactical level planning. They observed that the losses
were much higher, when traditional inventory data was used in both levels (about
166AC/ha) than in the case where perfect data was utilized in tactical level and the
traditional data in the strategic level (about 15AC/ha).

The VOI depends also on the constraints involved in the problem formulation,
especially if the constraints have no tolerance. For instance, requiring that there is
an exactly even flow of timber from the area requires better information than just
maximizing the NPV. On the other hand, if the constraints have some tolerance for
violations, their effect on VOI is lower.

When a new inventory is planned for, the decision makers typically strive for
maximal accuracy with the given budget. However, the statistical accuracy does
not dictate the usefulness of the data in decision making (Ketzenberg et al. 2007).
For instance, the better the prior information available, the less is the value of
additional information (e.g. Kangas et al. 2010b). Moreover, the more sensitive the
decisions are to the information, the higher the value of information (e.g. Eid 2000;
Holmström et al. 2003; Duvemo et al. 2012). For instance when maximizing NPV
in stands that are well past the final harvest age, additional information may have
little value as the decision is always to harvest immediately. Therefore, modeling
the VOI as a function of forest characteristics may not be straightforward (Islam
et al. 2010). Finally, the VOI is the higher the larger the number of decisions that
are based on the information. In forestry this directly means that data is the more
valuable, the longer it can be used for decision making.

The role of VOI in data acquisition planning is to ensure an optimal level of
efforts. For instance in planning an optimal sample in a given stand to be harvested,
the optimal number of sample plots is achieved when the marginal costs are equal
to marginal benefits (e.g. Birchler and Bütler 2007), i.e. when the cost of the last
sample plot is exactly the same as the additional value of information obtainable
from that additional plot.

Most of the applications in forestry have dealt with defining the expected
losses (or EVPI) from a given data acquisition method, such as sampling based
forest inventory, traditional visual forest inventory, photo interpretation based forest
inventory or airborne laser scanning (ALS) based forest inventory (e.g. Holmström
et al. 2003; Eid et al. 2004; Mäkinen et al. 2010; Borders et al. 2008). It is, however,
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possible to calculate the value for any piece of information. For instance, it is
possible to calculate the value for one or more specific variables (Eid 2000; Kangas
et al. 2010b), which helps in determining to which variables the data acquisition
efforts should be concentrated. It is also possible to evaluate the value of a single
sample tree measurement or single sample plot, for instance in determining whether
it is profitable to measure the past growth from the plots or not (Mäkinen et al. 2012).
A given prediction model or a given predictor in a model can also be evaluated,
which can help in determining what are the most profitable input variables for a
model (Eid 2003). The totality of a data acquisition strategy can be evaluated as
well. For instance in ALS inventory, it would be possible to define the optimal ALS
acquisition settings, optimal number of field plots and measurements, and optimal
calculation system for the results. Finally, it would be possible to evaluate decision
support systems (DSS), e.g. a system of growth and yield models (Rasinmäki
et al. 2013). While it is quite difficult to account for non-sampling errors such as
measurement errors or tally tree prediction errors when defining the accuracy of a
given sampling method, for instance, all these aspects can be easily accounted for
in VOI analysis.

16.2 Methods for Analyzing Value of Information

16.2.1 VOI Estimates Based on Empirical Data or Simulation

The simplest way to calculate the VOI or expected losses is through simulation. If
we assume that the decision maker is maximizing the NPV in his/her forest estate
without constraints, the loss in each stand i can be calculated as the difference
(NPVloss) between the true NPV from the optimal decision (NPVopt) and the true
NPV from the sub-optimal decision (NPVerr)

NPVloss i D NPVopt i � NPVerr i : (16.2)

In order to calculate the true NPV from the sub-optimal decision, the optimal
decision based on the erroneous data is first calculated, and then the NPV is
calculated by applying these decisions on the correct data (Fig. 16.2). The NPV
obtained from the erroneous data cannot be used for calculating the VOI: the
difference between true NPV and the erroneous one reflects erroneous expectations
rather than actual losses. In fact, it may be either lower or higher than the true
optimum.

It is useful to restrict the decisions included into the analysis to the time period
that the collected data will actually be used. For instance, if the data is to be used
for 10 years, then only the losses occurring during that time should be accounted
for. This can be done so that after the period in question, the decisions are assumed
to be correct, given the decisions already made (Holmström et al. 2003). Another
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Fig. 16.2 The principle of cost-plus-loss analysis (see Ståhl 1994; Eid 2000). Time here means
timing of a harvest, and the curves describe NPV obtainable with a given timing. NPV with the
incorrect data is obtained by looking for the true NPV using erroneous timing

approach is to use an estimate of the value of the stand (i.e. net present value of
expected future yields given the decisions so far) at the end of the period considered
(Mäkinen et al. 2010; Pietilä et al. 2010).

In order to calculate the losses, the true and erroneous data both needs to be
available for the areas in question. In some cases the test areas have been measured
with several methods. Then, the most accurate method (typically a field sample) is
considered as reference and ground truth, and the data obtained from e.g. remote
sensing are assumed to be the erroneous data. The benefits of this approach are
that the correlations between the different errors and their distribution, i.e. the error
structure, will automatically be close to correct. The drawback of this approach is
that perfect data for comparison can never be obtained. The field measurements also
contain errors and the observed differences are a combination of errors from both
methods. This means that if one of the methods is assumed to represent the truth,
both sources of error are attributed to the other method. Another problem with this
approach is that it is never possible to examine methods that do not yet exist, or
even different variations of methods that do exist. It is impossible to determine, for
instance, if it was profitable to measure some variables more accurately and some
variables less accurately than with the currently used method.

The first study analyzing the VOI of forest inventory data obtained by means of
ALS through CPL analysis was carried out by Eid et al. (2004). Based on actual data
from practical management planning situations, they compared photo interpretation
and ALS based inventory and used independent and intensive field sample plot
inventories to represent the true values. The results were clear: while the inventory
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Fig. 16.3 The inventory costs and estimated NPV-loss of two inventory methods in two study
areas (Eid et al. 2004)

costs of laser scanning were twice as expensive as that of the photo interpretation,
the total costs were still less than those of photo interpretation (Fig. 16.3).

The above described example comparing photo interpretation and ALS is
insufficient in the sense that it represents only one out many effort levels that could
be applied for the methods. We do not know, for example, whether the effort levels
of the ALS procedures carried for the two sites were near the optimum, or if they
were too high or too low (see also Fig. 16.1). In general, the effort level and the
VOI should be focused in any study related to innovative inventory methods. For
ALS applications, both ALS acquisition settings (e.g. point density, footprint size,
and scan angle) and efforts in field calibration (e.g. size of sample plots, number
of sample plots, precision level required for georeferencing sample plots) could be
considered in this context.

A more recent example of VOI analysis is the ALS study provided by Bergseng
et al. (2013). The field data came from 23 large field plots in south-eastern
Norway with georeferenced single trees collected. A single-tree growth and yield
simulator was used in the analysis and NPV-losses when considering the timing
of the final harvest were quantified. Losses were derived from four alternative
inventory approaches, namely when using (1) mean values obtained by the area-
based approach (ABA-MV), (2) diameter distributions obtained by the area-based
approach (ABA-DD), (3) individual tree crown segmentation (ITC), and (4) an
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Table 16.1 Maximum and
mean loss in NPV (in percent)
from the incorrect harvest
timing decisions based on
erroneous inventory data
calculated by applying field
reference data for the 23 plots

NPV-loss (%)

Inventory approach Max Mean

ABA-MV 23 5.4
ABA-DD 12 1.0
ITC 9 1.3
SITC 16 1.8

approach called semi-ITC, where field reference data within crown segments from
the nearest neighboring segment are imputed. The results showed that using mean
values from ABA (ABA-MV) may yield large NPV-losses (Table 16.1). When also
inventory costs are taken into account, diameter distributions from ABA (ABA-DD)
appear to provide a favorable combination of accuracy and costs.

Another option when applying CPL analysis would be to simulate the errors of
different variables. Then, the field measurement is assumed to represent the true
values, and errors are added to those values to obtain different erroneous datasets.
Simulation allows for generating hundreds or even thousands of realizations or
errors for each stand, and the estimate of stand-level loss is calculated as their
mean. This enables a detailed analysis of the losses and their dependency on forest
characteristics, and an analysis of the relative importance of different variables. It is
thus possible to calculate the VOI for methods not yet available.

The first example on such a simulation approach was by Eid (2000). His results
proved that for scheduling the final harvests for different forest stands, basal area
and dominant height information had little value, while site index and age had much
higher value. The low value of basal area, for instance, was due to the growth model
used: if the growth models used do not utilize a variable as an input variable, then
that variable does not have value. A similar approach was also used to evaluate
and choose between different prediction models with different candidates regarding
independent variables (Eid 2003). In addition to consider the usual fit statistics and
independent data quantifying errors, the models were also evaluated by calculating
NPV-losses due to errors related to field measurements of the candidate variables.

The simulation method has its pitfalls as well. In order to produce reliable results
on the value of information, the structure and distribution of the errors need to
be reliable. Assuming independent errors and normal distributions may produce
misleading results. The shape of the marginal distributions and the dependencies
between different errors can be accounted for using so-called copula approach
(Mäkinen et al. 2010). The copula function directly describes the dependencies
between the variables. In Gaussian copula, for instance, the dependencies are
based on linear correlations as in the normal distribution, although the marginal
distributions of each variable need not to be normal.

Mäkinen et al. (2010) tested the importance of different error structure
approaches in a CPL analysis. They fitted a Gaussian copula with logit-logistic
marginal distributions to observed errors of different forest variables based on
ALS forest inventory, and used the estimated correlations and distributions to
represent the true distributions in the simulation-based CPL analysis. They also
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Table 16.2 The mean
relative loss (%) estimated
with different assumptions of
the error distributions of
ALS-based forest inventory
for different forest operations
in one test area inventory
(Mäkinen et al. 2010)

Assumption of the error structure

Next operation MLLTr UN ULLTr MNTr

No operations 1:5 1:9 1:3 1:5

Thinning 6:4 5:5 6:6 6:7

Final harvest 9:8 5:0 9:7 9:6

Seed tree removal 34:2 26:4 33:2 34:8

All schedules 6:4 4:6 6:2 6:4

For the assumptions of error structure, see definitions in
the text

accounted for the bias in the ALS assessments. The bias was observed to have a
clear trend with large values generally underestimated and small values generally
overestimated. They compared approaches where the errors were assumed to have
a normal distribution, uncorrelated errors and no trend in the bias (UN), to have a
multinormal distribution, correlated errors and trend in the bias (MNTr), to have
logit-logistic distribution, uncorrelated errors and trend in the bias (ULLTr), or to
have logit-logistic distribution, correlated errors and trend in bias (MLLTr).

It was clear that in the ALS data the estimated losses were markedly smaller when
no trend in the bias was assumed (Table 16.2, column UN). The difference between
multinormal or logit-logistic distribution assumptions was very small, indicating
that the assumption of the shape of the distribution is not as important as the
trend. Likewise, the difference between the correlated and uncorrelated logit-logistic
distributions was small, so that the effect of correlations proved also quite small
when compared to the effect of the trend. The effect of trend was so clear that for
the case of final harvest the rank order between ALS and traditional visual forest
inventory (results not shown here) changed when the trend was introduced (Mäkinen
et al. 2010). It means that while with the UN assumption the best method was the
ALS inventory, with the error structures actually estimated from observed errors
(MLLTr), traditional forest inventory proved to be a better method due to the trend.

These results show that correct distributional assumptions are important, as those
separate the different data acquisition methods from each other. If all the errors
are assumed normally distributed, the only thing separating the different inventory
methods would be the bias and standard error. In reality, the error structure of an
ALS-based inventory is, however, clearly different from sample plot based field
inventory, for example.

16.2.2 Bayesian VOI Analysis

In general, the ex-ante VOI can be calculated with (Lawrence 1999, p. 17, see also
Eq. 9 in Kangas 2010)

VOI.S/ D Eymaxa Exjy � .x; a/ � maxa Ex� .x; a/ (16.3)
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where S denotes the information source (e.g. inventory method), x denotes the
possible states of nature concerning the uncertain variable (the prior information), y
denotes the possible messages from an information source (message denoting one
piece of information), maxa Ex�(x,a) the expected payoff of the optimal decision
a without the additional information, and maxa Exjy�(x,a) is the expected payoff
of the optimal decision (e.g. max NPV) with a given message y and state x,
which is further averaged over all possible messages y. This is called preposterior
analysis (Lawrence 1999 p. 65). In fact what is needed in such analysis is the
prior distribution of the posterior mean of the uncertain x (Ades et al. 2004). If the
information source S is perfect (i.e. message precisely describe the state of nature),
the formula can be presented simply as

VOI.S/ D Exmaxa � .x; a/ � maxa Ex� .x; a/: (16.4)

Then, the posterior distribution of x given y is not needed, and Eq. 16.4 provides
the EVPI, the upper bound for the acquisition cost of information y (e.g. Ades
et al. 2004). This formula is closely related to calculating the mean loss from
the simulated stand-level losses, only here the expectation is taken on the optimal
decisions with true values and the decisions with incorrect or prior values rather
than the differences of them, i.e. the losses. It is essentially the same as Eq. 16.1.

The Bayesian analysis method has not been used in forestry for many cases. The
first application of Bayesian analysis in forest inventory was published by Ståhl
et al. (1994). A more recent example is provided by Kangas et al. (2010b) where
the value of wood quality information (information concerning the height of the
living and dead crown) in a bidding situation was analyzed. The value proved to
depend highly on the prior information available: if a model for the crown height
was utilized as prior information, additional field information was only valuable in
the potentially most valuable stands. However, when the prior information was poor,
i.e. only the range of possible variation in wood quality was assumed known, the
quality information obtained from crown height measurements could be valuable.

16.2.3 Value of Information Under Constrained Optimization

In most studies, VOI has been analyzed in a setting where the utility of decision
maker only consists of maximizing NPV without any constraints. In practical
decision-making, constraints are, however, common. Then, if there is uncertainty
about the coefficients of the decision making problem, the feasibility of the optimal
solution in all possible states of nature cannot be guaranteed. This complicates the
VOI analysis: it is not enough to analyze the possible losses in the objective function
value, but the costs of violating the constraints need to be accounted for as well.
The infeasible solutions may well have a higher objective function value (i.e. higher
NPV) than the true optimal decision. If the costs of violating of constraints are not
accounted, VOI may then be negative.
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In forestry decision-making situation with constraints, Islam et al. (2009) studied
the losses, when the decision maker required a given level of growing stock at the
end of the planning period and/or the incomes to be even between the planning
periods. In order to solve the problem due to violated constraints, Islam et al. (2009)
calculated the NPVs under uncertain information by using modified constraints. The
constraints were modified as much as required to find a feasible solution as close as
possible to the original problem setting. Even then, the costs of violating the original
constraints were not included in the analysis.

The costs of violating the constraint depend on the nature of the constraint. The
first aspect of importance is whether the constraint is a real constraint (external
constraint) or part of the decision maker’s utility (internal constraint). For instance,
requiring even flow of incomes may be part of the forest owner’s utility rather than
a real constraint, i.e. the decision maker is giving up some of the objective function
value to get an even flow of incomes. Then, the costs due to violating the constraint
depend on the relative importance of the incomes from different periods. They can
be defined from the shadow prices or the weights of the incomes from different
periods in a utility function. An example of this approach is the study of Gilabert
and McDill (2010). They maximized the NPV of the harvests plus the value of the
forest at the end of the planning period, with the flow constraints for the harvests
and minimum average ending age of the stands, and penalized the violations of
constraints using shadow prices.

If the constraints are real, the costs of violating the constraints should also be real.
For instance, in the case of budget constraint it might be possible to borrow more
money, and thus the cost of violation of the constraint is the interest of that loan
(e.g. Kangas et al. 2012). Then, optimal decision may be to violate the constraints
to some extent and pay the penalty rather than requiring the constraints to be strictly
fulfilled.

Whether the constraints are internal (set by the DM) or external (i.e. real), one
possible avenue to solve these problems and to calculate the VOI is stochastic
programming. In stochastic programming the decision is made to maximize the
expected value of the decision over all possible scenarios of the state of nature, while
requiring that the constraints will be met in every possible scenario. Thus, it means
that if the constraints are strict, decisions are made in order to be prepared for the
worst possible scenario. In such a case information can have very high value. If the
violation of the constraints is possible but penalized, the problem could be solved
by stochastic goal programming (or stochastic programming with simple recourse),
i.e. by not requiring the constraints to be met in every possible state of nature. Then,
very poor but highly improbable scenarios do not dictate the decision.

If the uncertainty can be resolved at some later point of time, the decision-making
problem can be solved using, for instance, two-stage stochastic programming
(e.g. Boychuck and Martell 1996). It means that the first stage decisions are
carried out to maximize the expected value of the decision as above, but when
data becomes available, the second stage decisions can be done to adjust to the
observed scenario (see Eriksson 2006). Another possibility would be to use chance
constrained programming (e.g. Bevers 2007) or robust programming (Palma and
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Nelson 2009). In these approaches, the feasible solution is sought for by requiring
a safety margin in the constraint. It means that the decision maker gives up some of
the objective function value to be sure that the constraints are met under (nearly) all
possible states of nature. In this case, the VOI stems from the possibility of reducing
the safety margin or removing it altogether, which allows the decision maker to
improve the objective function value.

An example of using stochastic programming to calculate the VOI is given in
the following. The problem is to maximize the NPV from the first planning period,
with the requirement that the NPV from the subsequent periods k D 1, : : : ,K is at
least as high as in the first. It is assumed that the constraints are not strict, but
they form part of the decision maker’s utility, and the deviations from the even
flow are penalized using shadow prices of the constraints as penalties. This problem
can be presented as a stochastic goal programming formulation. Assuming there
are I different possible realizations of the uncertain coefficients, the stochastic goal
programming formulation of the above problem is

max z D
nX

j D1

E
�
cj1

�
xj1 � 1

I

IX

iD1

K�1X

kD1

�
pC

k d C
ik C p�

k d �
ik

�

subject to
nX

j D1

cj ikC1xjkC1 �
nX

j D1

cj ikxjk C d C
ik � d �

ik D 0; 8i D 1; : : : ; I; k D 1; : : : ; K�1

d �
ik; d C

ik � 08 i D 1; : : : ; I; k D 1; : : : ; K � 1 (16.5)

where n is the number of stands, E(cj) is the expected net income (AC/ha) from the
stand j during the first planning period, cjik is the net income in stand j realization
i and period k and dC

ik is the negative deviation in realization i and period k and
d�

k is the respective positive deviation. The differences of this formulation and the
ordinary goal programming formulation are that there are even flow constraints
for all the I scenarios, meaning that there are I times as many constraints in the
stochastic problem compared to the ordinary problem. Moreover, the penalties of
not achieving the goals (pk) are averaged over all the scenarios, i.e. the expected
value of the penalties is minimized.

In case the true values of the uncertain coefficients are known, the optimal
solution for the problem for realization i can be calculated as

max z D
nX

j D1

cj i1xj i1 �
K�1X

kD1

�
pC

k d C
ik C p�

k d �
ik

�

subject to
nX

j D1

cj ikC1xj ikC1 �
nX

j D1

cj ikxj ik C d C
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i1 D 0

d �
ik; d C

ik � 08k D 1; : : : ; K � 1

(16.6)
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For each possible realization i (i D 1, : : : ,I), the optimal solution for problem,
zi, is calculated where the optimal values of the decision variables are xji1. This
is the optimal solution with full information. The value of stochastic solution can
be calculated with the same objective function, but using the stochastic solution
denoted with Qxji1, and the respective deviations Qd �

ik and Qd C
ik as

Qzi D
nX

j D1

cij1 Qxij1 �
K�1X

kD1

�
p�

k
Qd �
ik C pC

k
Qd C
ik

�
(16.7)

The loss due to incorrect information in realization i is then lossi D zi � Qzi ,
and the value of perfect information EVPI is the mean loss over all the scenarios.
Thus, essentially the VOI is calculated similarly to as in the unconstrained case,
but in addition to the difference between the net incomes from the solutions with
and without information, also the effect of penalties due to deviations from the
constraints is accounted for. However, in stochastic programming the solution
without information is made for all the scenarios at the same time, to account for
the constraints.

The effect of constraints was calculated for a forest estate of 29 stands and
67.29 ha. It was assumed that stand volume has an uncertain initial value, and the
development of a stand was predicted based on that information with a growth model
for volume. In the case where the error estimate of the initial volume of the stands
was 25 %, the optimal value of the objective function with true values was 80,608AC,
and with the stochastic solution 79,926AC, meaning that the loss was 815AC, i.e.
12AC per hectare. If the solution were calculated using normal goal programming,
the violations of the constraints would be clearly higher as the solution would not
be selected so as to adjust to the different scenarios. In that case, the observed loss
would have been 360AC/ha. In the case that the NPV of the stands was maximized
without constraints, the respective value of information would have been 22AC/ha.
Thus, the potential losses from the penalties may have a substantial effect on the
value of information. In addition, just using stochastic programming might reduce
the losses and thus reduce the value of information. It means that a stochastic
solution may have value as such. In Kangas (2013) this case was extended to a
case where the accuracy of basal area and height measurements were considered.

16.3 How Long Can the Data Be Used?

16.3.1 Direct Effect of Time

In forestry, time has many direct effects on the VOI, as the decisions considered in
a plan typically cover a longer period, for instance 10 years or more. The first direct
effect is that VOI is positively related to the number of decisions that can be made.
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Table 16.3 Sub-optimality losses (AC/ha) from four different inventory methods in two different
test areas and with two different interest rates (2 and 4 %) (Holmström et al. 2003)

Site 1 Site 2

Method 2 % 4 % 2 % 4 %

k nearest neighbor imputation, stand record information 49 48 82 161
k nearest neighbor imputation, aerial photograph interpretation 44 39 63 138
Field inventory, 5 plots per stand 13 18 21 17
Field inventory, 10 plots per stand 8 11 14 9

It means that VOI will be higher if also thinning decisions are considered instead of
just final harvest decisions. It also means that VOI will be higher for an area where
there are many decisions, compared to an area with a lot of young stands where
harvest decisions are not relevant. Finally, it means that the longer the same data
can be used for decision making, the higher the VOI. This needs to be taken into
account when comparing different studies on VOI. It could therefore be useful to
calculate VOI per year in addition to per hectare, to emphasize the effect of time.

Another direct effect of time is the consequence of discounting: the further away
the decisions are, and the higher the interest rate, the less are the costs of making
sub-optimal decisions for the decision maker. However, the higher interest rate
shortens the optimal rotation times, i.e. moves the final harvest decisions to earlier
periods. The observed losses will be influenced by both these factors. Effects of
interest rate were evaluated by Holmström et al. (2003) when they compared the
sub-optimality losses from thinning and final harvest decisions (Table 16.3).

16.3.2 Growth Prediction Errors

Predictions concerning the future development of a stand are made with growth
models. The errors of initial data and growth predictions propagate in time, meaning
that the longer the prediction period, the lower the quality of the data at the end of
the period (Gertner 1987; Mowrer 1991; Kangas 1997). As the errors propagate
through the system, the expected losses will therefore increase and at some time the
expected losses increase to a level where collecting new data is more profitable than
using the old data. This defines the optimal inventory interval, i.e. the life span of the
initial data (Pietilä et al. 2010; Mäkinen et al. 2012). There may also be interactions
between the prediction errors and the initial accuracy, meaning that an initial data
set with given accuracy is more valuable when the growth models are more accurate
(c.f. Ståhl and Holm. 1994).

Pietilä et al. (2010) used a stand-level growth and yield simulator (SIMO) and
error models that were based on observed errors in predictions. The development
predicted with the stand-level models for basal area and dominant height were
assumed true, and errors were simulated around that prediction to analyze the value
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of growth information. The erroneous growth predicted was generated by the error
model as

bI t D It C "t ; (16.8)

where bI t is predicted erroneous growth, It is true growth and "t is the growth
prediction error. The growth prediction error was assumed to consist of stand effect
(inter-stand variation) and period effect (intra-stand, or between growth period
variation). Thus the growth prediction error in each stand was described as

"t D ut C et ; (16.9)

where "t is total growth prediction error, ut is stand effect and et is period
effect within the stand. Intra-stand error, et, was assumed to follow the first-order
autoregressive process (AR(1)). This model was used to predict the variation around
the development of basal area and dominant height in each stand predicted with
SIMO, resulting in a 6.5 % RMSE for basal area and 10 % RMSE for dominant
height after 5 years. With an inventory interval varying from 5 to 60 years, the losses
varied from 230AC/ha/60 year up to 860AC/ha/60 year, i.e. from 3.8 to 14.3AC/ha/year.

16.3.3 Life Span of Forest Information

Mäkinen et al. (2012) used a similar error model as Pietilä et al. (2010) except that
the between-period variation was not assumed autocorrelated, and the autocorre-
lation was solely due to the stand effect (inter-stand variation). They introduced
inventory errors between 0 and 25 % to the dominant height and basal area in
addition to the errors due to growth model. The costs of the inventory were described
with a hypothetical model to show the effect of the inventory cost structure on the
life-span of inventory data with different parameters.

Quite obviously, the losses were smallest with shortest inventory interval (mean-
ing smallest possible growth prediction errors) and perfectly accurate inventory with
relative RMSE 0 % (Fig. 16.4). The difference between the 0 % RMSE and 5 %
RMSE was, however, quite small. It is notable that when the losses with the 5-
year interval increase from 188 to 591AC/ha (3.14-fold) as the inventory accuracy
decreases, they increase only from 420 to 695AC/ha (1.65-fold) when the inventory
interval is 30 years. In other words, with the least accurate inventories the losses
do not much increase as inventory interval increases, but with the most accurate
inventories the trend is very clear.

When the inventory costs were assumed to be 8AC/ha for the least accurate
inventory and perfect inventory was assumed to cost 324AC/ha, the optimal life-
span of the data proved to be 15 years with 10 % RMSE of basic forest information
(Table 16.4). For a less accurate data the optimal life-span shortens, and for more
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Fig. 16.4 The dependency of the losses on the inventory interval and the accuracy of the initial
inventory data (Mäkinen et al. 2012)

Table 16.4 The average
absolute total costs plus
losses, in AC/ha with different
inventory interval (years) and
accuracy levels (�)

Accuracy level Inventory interval (years)

(¢) 5 10 15 20 30

0 1575:7 995.3 825.9 878.0 744.2
5 1017:7 706.3 610.4 685.4 655.1
10 718:6 560.1 516.5 577.2 579.1
15 570:9 534.7 527.3 559.6 599.7
20 567:6 563.0 611.0 615.4 638.9
25 625:5 656.9 666.8 706.7 703.3

The optimal accuracy and inventory period is given in bold
(Mäkinen et al. 2012)

accurate data the life-span lengthens. The approach enables analysing the optimal
life span with a fixed accuracy data or to optimize both the inventory interval and
the data collection accuracy optimally at the same time.

16.4 Conclusions

In this chapter, we have dealt with different aspects regarding valuating forest
information. Most of the theory presented applies to all kinds of data. However,
actual VOI depends heavily on the data source used and the approach used to
calculate the inventory results. ALS data may be offered as area based information
and single tree information, or through diameter distributions as an approach
somewhere in between. These approaches will differ in the error structure and
therefore also in VOI. The differences between the approaches can be quite large,
even if the data collected were the same. For each approach, the specifications used
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for collecting the ALS data, the field data used for interpreting the ALS data and
all the models and methods used in different phases of the calculations have their
effect on VOI. The importance of these specifications on the VOI has not yet been
considered, but in the future the sensitivity of the VOI to them needs to be analyzed
in order to maximize the benefits of the collected information.

The VOI also depends on its application, i.e. types of decisions to be made, and
how long the data are used, i.e. we should search for a solution where the expected
losses have increased to a level where collecting new data is more profitable than
using the old data. Although quantifying VOI is not always is an easy task, the
links between inventory effort level, decisions to be made and the VOI should be
considered in any study related to innovative forest inventory methods including
ALS applications. The accuracy measures usually presented in the remote sensing
literature to describe a method are not providing a complete picture regarding the
usefulness of the data.
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