
Chapter 8

Performance of Wavelet Transform

on Models in Forecasting Climatic Variables

Md. Jahanur Rahman and Md. Al Mehedi Hasan

Abstract An attempt has been made to show whether the recently developed

wavelet transformation in forecasting the climatic time series in Bangladesh

improves the performance of existing forecasting models, such as ARIMA. These

models are applied to forecast the humidity of Rajshahi, Bangladesh. Then the

wavelet transformation has been used to decompose the humidity series into a set of

better-behaved constitutive series. These decomposed series and inverse wavelet

transformation are used as a pre-processing procedure of forecasting humidity

series using the same models in two approaches. Finally, the forecasting ability of

these two models with and without wavelet transformation is compared using the

statistical forecasting accuracy criteria. The results show that the use of wavelet

transformation as a pre-processing procedure of forecasting climatic time series

improves the performance of forecasting models. The reason is the better behavior

of the constitutive series for the filtering effect of the wavelet transform.

Keywords Wavelet transformation • ARIMA models • Forecasting

8.1 Introduction

Time series forecasting is very popular and plays an important role in various fields

such as economics, engineering, environment, and bioinformatics. The basic idea

behind time series forecasting involves the development of models that estimate the

future values of a series based on its past values. There are many forecasting models
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that have been used in the forecasting literature. The models mainly follow two

approaches: nonlinear and linear models. Nonlinear models like artificial

intelligence (AI)-based methods employing neural networks (NNs) have been

proposed by different researchers. Second type of models are linear models like

univariate autoregressive (AR), autoregressive moving average (ARMA),

autoregressive integrated moving average (ARIMA), multivariate time series

models like transfer function and dynamic regression, and generalized

autoregressive conditional heteroskedastic (GARCH) model. In order to provide

estimates for the future, these models analyze the historical data. Usually time

series are not deterministic series. In fact, in many cases the researchers considered

the series to be stationary time series. One way to model any time series is to

consider it as a deterministic function plus white noise. The white noise in any time

series process can be minimized by some procedures which are called the

de-noising. Then a better model can be obtained. Consequently, to obtain a good

de-noising, there are some mathematical models that can be applied such as Fourier

transformation (FT) and wavelet transformation (WT) (Yao et al. 2000; Strang

1993). WT seems to be ideal for time series forecasting since time information is

preserved in the transformed variables. Moreover, WT is a very effective technique

for local representation of the time series in both time and frequency domains

(Yevgeniy et al. 2005). WT is used to split up the time series into one

low-frequency subseries (approximation part) and some high-frequency subseries

(detailed part) in the wavelet domain. In models mentioned above, after appropriate

decomposition, the prediction was made in wavelet domain and then inverse WT

was applied to obtain the actual value of the predicted variable.

Wavelet transform has been used in many fields in forecasting models. Among

them Wadi et al. (2011) and Arino and Vidakovic (1995) perform wavelet trans-

form in forecasting financial time series based on ARIMA model and neural

network-based model, respectively. Rocha et al. (2010) and Henriques and Rocha

(2009) have used wavelet transform in NN model to predict acute hypotensive

episodes. Gang et al. (2008), Aggarwal et al. (2008), and Antonio et al. (2005) have

decomposed electricity price series using wavelet transformation for more efficient

forecasting based on ARIMA, artificial neural network, and regression-based tech-

niques. In most cases they decomposed the historical time series data into wavelet

domain constitutive subseries using wavelet transform, and then combined with the

other time domain variables to perform the set of input variables for the proposed

forecasting model (Conejo et al. 2005). Based on statistical analysis the behavior of

the wavelet domain constitutive series has been studied. It has been observed that

forecasting accuracy can be improved by the use of wavelet transforms in forecast-

ing models. Alrumaih and Al-Fawzan (2002) used Saudi stock index to illustrate

that wavelet transformation is better than the other forecasting technique in

predicting the de-noising of the financial time series.

Thus, the recently developed wavelet theory has proven to be a useful tool in the

time series forecasting methods in different fields. However, the potential of this

theory for analyzing and forecasting climatic time series has not been fully

exploited yet. The accurate forecasting of climatic variables in Bangladesh is an
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important issue in disaster management policy-making due to the effects of recently

happened climate change. Our objective in this chapter is to check whether the use

of the wavelet transformation as a preprocessor in forecasting climatic data

improves the predicting behavior of any forecasting model. As forecasting models,

we have used the widely used and more popular ARIMA models. Humidity of

Rajshahi, Bangladesh, is used as a climatic time series in this chapter. This is the

way the comparison is performed with and without the wavelet transform, not

across techniques. The fundamental and novel contribution of this chapter is to

use the wavelet transformation to decompose the humidity series into a set of

better-behaved constitutive series. These decomposed series and inverse wavelet

transformation are used as a pre-processing procedure of forecasting humidity

series using the same models in two approaches. Finally, the forecasting results

based on wavelet transform and ARIMA model (hereafter called Wavelet-ARIMA

model) will be compared with the forecasting values based on ARIMAmodel using

some statistical criteria.

This chapter is organized as follows. Section 8.2 gives the brief description of

the wavelet transformation. Section 8.3 provides the details of data processing and

forecasting framework using wavelet transformation. Forecasting accuracy criteria,

which are used to compare the performances of forecasting ability of the models,

are defined in Sect. 8.4. Empirical results of a case study based on performance of

wavelet transformation in forecasting humidity of Rajshahi are shown in Sect. 8.5.

Finally, Sect. 8.6 provides some relevant conclusions.

8.2 Wavelet Transformation

In this section we briefly review the discrete wavelet transform (DWT), which is the

wavelet counterpart to the discrete Fourier transform. Then we show the splitting of

a time series into cyclical components by using wavelet analysis. As in Fourier

analysis, there are continuous and discrete versions of wavelet analysis (Nason and

Silverman 1994). Since we will be dealing with discrete data sets, our focus will be

on the DWT. Good references on wavelet transformation are in Mallat (1989) and

Percival and Walden (2000).

The time series under study is independently decomposed by DWT, which is

defined as

Ψ j,k ¼ 1ffiffiffiffi
s j0

q ψ
t� kτ0s

j
0

s j0

 !
ð8:1Þ

where the parameters j and k are integers that control, respectively, the wavelet

dilatation (scale) and translation (time). The value s0 > 1 is a fixed dilation step and

the translation factor τ0 depends on the dilation step. The most common and

simplest choice for the parameters s0 and τ0 is 2 and 1 (time steps), respectively,

8 Performance of Wavelet Transform on Models in Forecasting Climatic Variables 143



known as dyadic grid arrangement. In this case, the coefficients of DWT

decomposition are given by

Wj,k ¼ 1

2j=2

XN�1

t¼0

ytψ
t� k

2j

� �
ð8:2Þ

where theWj,k are the wavelet coefficients corresponding to the scale S ¼ 2j and the

location τ ¼ 2jk. This dyadic arrangement can be implemented by using a filter

bank scheme developed by Mallat (1989), as depicted in Fig. 8.1.

In Fig. 8.1, H[�], L[�] and H0 [�], L0 [�] are the high-pass and low-pass filters for

wavelet decomposition and reconstruction, respectively. In the decomposition

phase, the low-pass filter removes the higher frequency components of the series

and high-pass filter picks up the remaining parts. Then, the filtered series are down-

sampled by two and the results are called approximation and detail coefficients.

The major advantage of decimation is that just enough information is kept to allow

exact reconstruction of the input data. The reconstruction is just the inverse process

of the decomposition and, for perfect reconstruction by filter bank, we should have

yt ¼ y0t. Using this approach, signal can be decomposed by cascade algorithm as

shown in the following:

yt ¼ a1t þ d1t
¼ a2t þ d2t þ d1t
¼ a3t þ d3t þ d2t þ d1t

⋮
¼ ant þ dnt þ d n� 1ð Þt þ � � � þ d1t

ð8:3Þ

where dnt and ant are the detail and approximation coefficients at level n, respec-
tively. These coefficients allow for the identification of changes in the trends at

different scales.

A wavelet function of type Daubechies of order 5 and decomposition level 3 is

used in this case study (Daubechies 1992). This wavelet offers an appropriate

tradeoff between wavelength and smoothness. This results in an appropriate behav-

ior for climate series prediction. In the next section we show how to use the

decomposed series in forecasting model.

2 2

2 2

Fig. 8.1 Filter bank for discrete wavelet transformation
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8.3 Data Processing and Forecasting Framework

In order to illustrate the effectiveness of wavelet transform in forecasting models,

the climatic data on humidity of Rajshahi, Bangladesh, is selected. The data is

collected from the website of Bangladesh Agricultural Research Council (BARC),

Ministry of Agriculture. We consider the monthly humidity series for the time

period from January 1964 to December 2008 (1964:1 to 2008:12). The data set is

divided into two sub-data sets: (1) a training set to estimate the model parameters

and (2) a test set to evaluate these models by calculating error functions. There are

540 observations in the humidity series. The first 528 observations from 1964:1 to

2007:12 are used to build the model, and the last 12 observations from 2008:1 to

2008:12 to check the forecast ability of the models.

We first need to decompose the series under study using wavelet transformation.

For this purpose, we have applied the DWT to the humidity series. Many wavelet

families exist, where Daubechies family of wavelets, which are compactly

supported orthonormal wavelets, is the most popular one and has been used in

this work. Thus, a wavelet function of type Daubechies of order 5 and decompo-

sition level 3 is used in this case study. The wavelet transform applied to climatic

series yt, t ¼ 1, 2, . . ., T results in four series denoted by d1t, d2t, d3t, and a3t and
can be defined by

yt ¼ a3t þ d3t þ d2t þ d1t ð8:4Þ

Series d1t, d2t, and d3t are denominated detail series, while a3t is denominated

approximation series. This approximation series constitutes the main component

of the transformation, while the three detail series provide “small” adjustments. A

graph of the original series and its decomposed series is shown in Fig. 8.2a, b. These

series present a better behavior (more stable variance and no outliers) than

the original humidity series and, therefore, they can be predicted more accurately.

The reason for the better behavior of the constitutive series is the filtering effect of

the wavelet transform.

We have used this decomposed series in the forecasting models in two

approaches; (1) first approach includes d2t, d3t, and a3t series in the analysis,

whereas, (2) in the second approach, all decomposed series are used in forecasting

models. Two approaches are outlined as follows.

8.3.1 Approach-1

The steps of modeling the decomposed series by Wavelet-ARIMA and Wavelet-

NN techniques are given below.

Step-11: The wavelet transformation of type Daubechies-5 and decomposition level

3 is applied to the humidity series Yt (t ¼ 1, 2, . . ., T ) for the training period 1964:1
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to 2007:12 which results in four series denoted by a3t, d3t, d2t, and d1t; t ¼ 1, 2,

. . ., T. That is,

WT yt; t ¼ 1, 2, . . . ,Tð Þ ¼ a3t, d3t, d2t, d1t; t ¼ 1, 2, . . . ,Tf g ð8:5Þ

Step-12: The decomposed series d1t contains the highest frequency components

among the others and hence is outlier prone. Therefore, series corresponding to d1t
has been discarded and only series a3t, d3t, and d2t have been used to reconstruct

the original series using inverse wavelet transformation as follows:

WT�1 a3t, d3t, d2t; t ¼ 1, 2, . . . ,Tf g ¼ y�t ; t ¼ 1, 2, . . . ,T ð8:6Þ
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Fig. 8.2 (a) Original series and approximation series over 1964:1 to 2008:12. (b) Detail series

over 1964:1 to 2008:12
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Step-13: Use the appropriate ARIMA and NN model to the reconstructed series to

forecast the future values in the test period 2008:1 to 2008:12;

y�t ; t ¼ 1, 2, . . . ,T
� ��!

ARIMA=NN
forecast

y ft ; t ¼ T þ 1, . . . ,T þ n
n o

ð8:7Þ

We call these forecasting values obtained from Wavelet-ARIMA/Wavelet-NN

model using approach-1.

8.3.2 Approach-2

The steps of modeling the decomposed series by Wavelet-ARIMA and Wavelet-

NN techniques are given below:

Step-21: The wavelet transformation of type Daubechies-5 and decomposition

level 3 is applied to the humidity series Yt (t ¼ 1, 2, . . ., T) for the full period

1964:1 to 2008:12 which results in four series denoted by a3t, d3t, d2t, and

d1t; t ¼ 1, 2, . . ., T.

WT yt; t ¼ 1, 2, . . . ,Tð Þ ¼ a3t, d3t, d2t, d1t; t ¼ 1, 2, . . . ,Tf g ð8:8Þ

Step-22: Then, specific ARIMA and NN methods are used to each one of the

constitutive series for the training period 1964:1 to 2007:12. The best fitted

model is then used to forecast its n future values in the test period which are

denoted bycd1t,cd2t,cd3t, andca3t; t ¼ T + 1, T + 2, . . ., T + n, respectively. That is,

a3t, d3t, d2t, d1t; t ¼ 1, 2, . . . ,Tf g�!
ARIMA=NN

forecast

a3 f
t , d3

f
t , d2

f
t , d1

f
t ; t ¼ T þ 1, . . . , T þ n

n o ð8:9Þ

Step-23: Finally, we use the inverse wavelet transform to estimate the forecasting

values of the original series using the forecasting values of the constitutive series.

The inverse wavelet transform is used in turn to reconstruct the forecasting series

for original series, i.e.,

cd1t,cd2t,cd3t and ca3tn oTþn

t¼Tþ1
�!
Inverse Wavelet

Transformation

ŷ tf gTþn
t¼Tþ1 ð8:10Þ

We call these forecasting values obtained from Wavelet-ARIMA/Wavelet-NN

model using approach-2. The forecasting performance of Wavelet-ARIMA model

is compared with the ARIMA model to forecast the original climatic series using

the forecasting accuracy criteria discussed in the next section.
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8.4 Comparison of Forecasting Performance

To assess and compare the forecasting performance of the models, three types of

forecasting accuracy criteria of the test sets data have been adopted. They are the

mean absolute error (MAE), root mean square error (RMSE), and mean absolute

percentage error (MAPE), which are defined by

MAE ¼ 1

n

XTþn

t¼Tþ1

yreal, t � yforecast, t
�� �� ð8:11Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXTþn

t¼Tþ1
yreal, t � yforecast, t
� 	2

XTþn

t¼Tþ1
yreal, t � y
� 	2

vuuut ð8:12Þ

MAPE ¼ 1

n

XTþn

t¼Tþ1

yreal, t � yforecast, t
yreal, t

����
����� 100 ð8:13Þ

where yreal,t and yforecast,t are the real and forecast data point at time t, respectively,
y is the mean of yreal,t, T is the number of observation in the trail series, and n is the
number of data points forecasted in the test series. Lower values of the criteria

imply the better forecast of the model.

8.5 Empirical Results

The main objective of this chapter is to show the forecasting performance of the time

series models using the original data and the decomposed data. The original series is

decomposed using wavelet transformation. Time series ARIMA models are used as

forecasting models. First, we use these models to the original series over the training

period to select an appropriate model. Then the selectedmodels is used to forecast the

data points of the test period. Secondly, we use thesemodels to the decomposed series

by wavelet transformation and forecast the test data as mentioned in the previous two

approaches. Finally, we compare the performance of these forecasting series using the

forecasting accuracy criteria discussed in Sect. 8.4.

8.5.1 Forecasting Based on Original Series

Here the original series over the training period is used to select the appropriate

ARIMA model. Then, the model is used to forecast the series over the test period.

Good references on ARIMA models and standard forecasting techniques are in Box

and Jenkins (1976), Pankratz (1991), and Granger and Newbold (1986).
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We have used the famous Box and Jenkins (1976) modeling philosophy for

choosing an appropriate ARIMA model for the monthly humidity series over the

period 1964:1 to 2007:12. The ARIMA(0,1,1)(0,1,1) model shows the more robust

coefficients, white-noise error, and the smallest forecasting errors among the

competitive models. The out of sample forecasting errors are calculated using the

series over the period 2008:1 to 2008:12. The model is

∇12∇1yt ¼ 1� 0:283Lð Þ
�6:73ð Þ

1� 0:953L12
� 	

εt
�80:35ð Þ

ð8:14Þ

where the operators Lk and ∇k are defined by Lkyt ¼ yt � k and ∇k ¼ 1 � Lk. The
parentheses under the model contain the value of t-statistic of each coefficient.

Monthly forecasts according to model (8.14) together with their actual values are

presented in Table 8.1. The values of out of the sample or test period forecasting

accuracy criteria MAE, RMSE, and MAPE are 0.1633, 0.2187, and 18.566, respec-

tively. Figure 8.3 shows a graph of the humidity for the period 2006:1 to 2008:12

and the forecast values of ARIMA model from 2008:1 to 2008:12 along with the

forecasting values using wavelet transformation.

We compare these forecasts with the forecasts made after decomposing the data

set with the wavelet methodology.

8.5.2 Forecasting Based on Decomposed Series Using
Wavelet Transformation

For using the Wavelet-ARIMA model to forecast, we first need to decompose the

series under study using wavelet transformation. For that purpose, we have applied

the DWT to the humidity series. A wavelet function of type Daubechies of order

Table 8.1 Original and forecasting values for the test period 2008:1 to 2008:12

Original series ARIMA

W-ARIMA

(approach-1)

W-ARIMA

(approach-2)

Jan-08 0.6 0.5362 0.5679 0.5341

Feb-08 0.6 0.5817 0.6165 0.7561

Mar-08 0.9 0.8037 0.7620 0.8652

Apr-08 0.9 1.3359 1.0557 1.0272

May-08 1.0 1.4512 1.2395 1.1695

Jun-08 1.2 1.4006 1.1891 1.1528

Jul-08 1.0 1.2856 1.1158 1.0662

Aug-08 1.0 1.0912 1.0668 0.8480

Sep-08 0.8 0.9218 0.9019 0.5884

Oct-08 0.6 0.4575 0.6098 0.4135

Nov-08 0.4 0.4183 0.4373 0.2792

Dec-08 0.5 0.5346 0.5341 0.2336
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5 and decomposition level 3 is used in this case study. The wavelet transform

applied to climatic series yt, t ¼ 1, 2, . . ., T results in four series denoted by d1t,
d2t, d3t, and a3t. Series d1t, d2t, and d3t are denominated detail series, while a3t is
denominated approximation series.

8.5.2.1 Approach-1

In approach-1, as described in Sect. 8.3.1, we have used DWT to decompose the

original series into four constitutive series as mentioned above. The decomposed

detail series d1t contains the highest frequency components among the others and

hence is outlier prone. Therefore, series corresponding to d1t has been discarded

and only series a3t, d3t, and d2t have been used to reconstruct the original series

using inverse wavelet transformation as follows:

y�t ¼ WT�1 a3t, d3t, d2t; t ¼ 1, 2, . . . ,Tf g; t ¼ 1, 2, . . . ,T

Then, we have chosen an appropriate ARIMA model for the series y�t following
the Box–Jenkins modeling philosophy which has the lowest forecasting error

according to the three forecasting accuracy criteria mentioned in Sect. 8.4. The

selected model is ARIMA(2,1,1)(0,1,1) which is defined as

1� 0:4256Lþ 0:5520L2
� 	

11:27ð Þ �14:64ð Þ
∇12∇1y

�
t ¼ 1þ 0:9457Lð Þ

50:85ð Þ
1� 0:6929L12
� 	

�19:18ð Þ
εt ð8:15Þ

The parentheses under the model contain the value of t-statistic of each

coefficient, which shows the estimates of the parameters are highly significant.

The forecasting values over the test period 2008:1 to 2008:12 are shown in

Table 8.1. The values of test period forecasting accuracy criteria for model (8.15)

MAE, RMSE, and MAPE are 0.0655, 0.0799, and 9.1473, respectively.

8.5.2.2 Approach-2

Here the DWT is performed to the original series over the full period 1964:1 to

2008:12. Then, a specific ARIMA model is fitted for each constitutive series over

the training period 1964:1 to 2007:12. The ARIMA model for each series is chosen

based on the smallest forecasting error over the test period 2008:1 to 2008:12 with

significant coefficients and white-noise error as outlined in Box–Jenkins method. In

fact, the best ARIMA models for the series d1t, d2t, d3t, and a3t are ARIMA(2,0,2)

(0,0,0), ARIMA(0,0,4)(0,1,0), ARIMA(0,1,2)(0,1,1), and ARIMA(8,2,8)(0,0,1),

respectively. The estimates of the ARIMA model for d1t are
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1þ 0:866Lþ 0:566L2
� 	

�12:29ð Þ �14:08ð Þ
d1t ¼ 1� 0:671L� 0:326L2

� 	
�8:56ð Þ �4:12ð Þ

εt ð8:16Þ

The estimates of the ARIMA model for d2t are

∇12d2t ¼ 1þ 1:701L
80:19ð Þ

� 0:130L2
�6:34ð Þ

� 1:736L3
�82:87ð Þ

� 0:885L4
�41:34ð Þ

� �
εt ð8:17Þ

The estimates of the ARIMA model for d3t are

∇12∇1d3t ¼ � 0:004
�1:82ð Þ

þ 1þ 1:918L
134:20ð Þ

þ 0:937L2
66:25ð Þ

� �
1� 0:753L12

�26:89ð Þ

� �
εt ð8:18Þ

The estimates of the ARIMA model for a3t are

1þ 0:634L
23:79ð Þ

� 0:357L8
�13:82ð Þ

� �
∇2

1a3t ¼ 1þ 0:095L
5:98ð Þ

� 0:930L8
�56:48ð Þ

� �
1� 0:566L2

�14:48

� �
εt

ð8:19Þ

Using the above best models, the forecasting values over the test period 2008:01

to 2008:12 for each transformed series are evaluated. The forecasting series are

denoted by cd1t,cd2t,cd3t, and ca3t which are shown in Table 8.2 along with their

respective forecasting errors.

Finally, the inverse DWT is applied to the seriescd1t,cd2t,cd3t, andca3t to get the

forecasting values of the humidity series over the test period. The forecasting values

are denoted by ŷt, t ¼ 2008 : 1, 2008 : 2, . . ., 2008 : 12. The forecasting series ŷt
using Wavelet-ARIMA model is shown in Table 8.1. The values of test period

forecasting accuracy criteria for this Wavelet-ARIMA model MAE, RMSE, and

MAPE are 0.1336, 0.1591, and 15.356, respectively.

8.5.3 Comparison

Now we have got the results to compare the performances of the forecasting models

with and without wavelet transformation. The forecasting values for the test period

of the models with the original series are shown in Table 8.1. For convenience,

these forecasting values are depicted in Fig. 8.3 with the original humidity series.

The forecasting ability of these models is compared by using three forecasting

accuracy criteria—MAE, RMSE, and MAPE. Table 8.3 contains the values of these

criteria for the models.

Table 8.3 shows that all three measurements of forecasting accuracy criteria

are sufficiently smaller when wavelet transformation is used in the models than

that of without wavelet transformation. However, the Wavelet-ARIMA model with
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Table 8.2 Forecasting values

for the test period (2008:1 to

2008:12) of detail and

approximation series

Time d1 d2 d3 a3

Jan-08 �0.0429 �0.0441 �0.2515 0.8726

Feb-08 0.0469 0.0393 �0.2188 0.8886

Mar-08 �0.0163 0.0940 �0.1117 0.8993

Apr-08 �0.0123 0.0279 0.1077 0.9038

May-08 0.0199 �0.0318 0.2825 0.8989

Jun-08 �0.0103 �0.0435 0.3244 0.8822

Jul-08 �0.0023 �0.0390 0.2530 0.8546

Aug-08 0.0078 0.0196 0.0060 0.8144

Sep-08 �0.0054 0.0585 �0.2423 0.7777

Oct-08 0.0002 0.0171 �0.3586 0.7548

Nov-08 0.0028 �0.0222 �0.4438 0.7424

Dec-08 �0.0026 �0.0449 �0.4646 0.7459

MAE 0.0584 0.0319 0.1737 0.1018

RMSE 0.0698 0.0377 0.2505 0.1337

MAPE 116.803 227.753 567.449 17.261
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0.4
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1
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ARIMA
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Fig. 8.3 Original series along with the forecasting series of ARIMA and Wavelet-ARIMA

(approach-1 and approach-2) models (for visual convenience the figure shows data from 2006:1)

Table 8.3 Forecasting

accuracy criteria for the

model without and with

wavelet transformation

Model MAE RMSE MAPE

ARIMA 0.1633 0.2187 18.566

Wavelet-ARIMA (approach-1) 0.0654 0.0799 9.1472

Wavelet-ARIMA (approach-2) 0.1336 0.1591 15.356

152 M.J. Rahman and M.A.M. Hasan



approach-1 shows the smallest forecasting errors than approach-2. From Fig. 8.3, it

obviously reveals that the forecasting values from Wavelet-ARIMA (approach-1)

are very close to the original series followed by the Wavelet-ARIMA (approach-1)

and ARIMAmodel, respectively. Thus, Wavelet-ARIMAmodel forecasts humidity

series of Rajshahi more accurately than the direct ARIMA model.

8.6 Conclusions

The study has been conducted to show whether the recently developed wavelet

transformation in forecasting the climatic time series in Bangladesh improves the

performance of existing forecasting models, such as ARIMA. These models are

applied to forecast the humidity of Rajshahi, Bangladesh. Then the wavelet trans-

formation has been used to decompose the humidity series into a set of better-

behaved constitutive series. These decomposed series and inverse wavelet trans-

formation are used as a pre-processing procedure of forecasting humidity series

using the same models in two approaches. Finally, the forecasting ability of these

two models with and without wavelet transformation is compared using the statis-

tical forecasting accuracy criteria.

The results show that the use of wavelet transformation as a pre-processing

procedure of forecasting climatic time series improves the performance of fore-

casting models. The reason for the better behavior of the constitutive series is the

filtering effect of the wavelet transform. Therefore, the forecasting using the

existing models under wavelet transformed series is better than forecasting directly,

and also it gives more accurate results.

Thus, the hybrid Wavelet-ARIMA model proposed in this chapter is both novel

and effective in forecasting climatic time series, specially using approach-1.
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