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Abstract Conventional error-based statistical parameters like the Nash–Sutcliffe

efficiency index are popular among hydrologists to check the accuracy of hydro-

logical models and to compare the relative performance of alternative models in

a particular modelling scenario. A major drawback of those traditional indices is

that they are based on only one modelling attribute, i.e. the modelling error.

This study has identified an overall model utility index as an effective error-

sensitivity-uncertainty procedure which could serve as a useful quality indicator

of data-based modelling. This study has also made an attempt to answer the

question—should the increasing complexity of the existing model add any benefit

to the model users? The study evaluates the utility of some popular and widely

used data-based models in hydrological modelling such as local linear regression,

artificial neural networks (ANNs), Adaptive neuro fuzzy inference system (ANFIS)

and support vector machines (SVMs) along with relatively complex wavelet hybrid

forms of ANN, ANFIS and SVM in the context of daily rainfall–runoff modelling.

The study has used traditional error-based statistical indices to confirm capabilities

of model utility index values in identifying better model for rainfall–runoff model-

ling. The implication of this study is that a modeller may use utility values to select

the best model instead of using both calibration and validation processes in the case

of data scarcity. The study comprehensively analysed the modelling capabilities of

SVM and its waveform in the context of rainfall–runoff modelling.
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13.1 Introduction

Data-based modelling techniques have been popular in the field of hydrology

for several decades. Even in the acclaimed success of different data models in

hydrology, there are still many questions that need to be answered. The relevant

questions in data-based modelling in hydrology are how useful is a model for

predicting a particular component within the hydrological cycle? and does a

complex model work better than simple ones? Visual judgment and statistical

measures are two common approaches employed to establish the integrity of any

data-based mathematical models. The usefulness of any model depends ultimately

on its contribution to the success of decision making, not on its ability to generate

unassailably correct numerical values (Pepelnjak 2009). It is often difficult in

hydrology to decide which model should be used for a particular purpose, and the

decision is often made on the basis of familiarity rather than the appropriateness

and effectiveness of the model. Legates and McCabe (1999) have reviewed many

major statistical measures that are used by the hydrologists to validate models,

which includes the Nash–Sutcliffe (NS) efficiency index, the root mean square

error (RMSE), the coefficient of correlation, the coefficient of determination, the

mean absolute error and many more, out of which the NS-efficiency index is one

of the most commonly used indicators for model comparison and performance

evaluation in hydrology. A study by Jain and Sudheer (2008) has demonstrated

the weakness of the NS-efficiency index in model comparison. Comparing different

models just in terms of their better accuracy in simulating the numerical values is

often misleading as there are many other aspects that need to be accounted for

before declaring that one model with entirely different mathematical concepts

is better than the other. It is a known fact that the best model is not necessarily

the most complex, or the one which overtly reflects the most sophisticated under-

standing of the system (Barnes 1995). There is a hypothesis that more complex

models simulate the processes in a better way but with high variability in sensitivity

and relatively less bias (Snowling and Kramer 2001). On the other hand, a study

by Oreskes et al. (1994) argues that there is no strong evidence that simple models

are more likely to produce more accurate results than complex models. Snowling

and Kramer (2001) have connected the usefulness of the model to model’s uncer-

tainty which was assessed through different modelling attributes like model error,

model sensitivity and model complexity.

In hydrology and water resources research, there are two major bases of uncer-

tainty attitudes; one is based on stochasticity as a necessary factor and the other is

based on deterministic nature of the system. The definition of uncertainty is much

more uncertain about the modelled numerical values; it relates to much deeper

processes and pertains to the governing mechanisms of the model. Distinguishable

uncertainties in hydrology are data uncertainties (mainly associated with measurements),

sample uncertainties (e.g. number of data for calibration) and model uncertainty

(Plate and Duckstein 1987). Klir (1989) made an attempt to consider uncertainty in

terms of the complexity of the model. He found both categories have a conflictive

nature, i.e. if complexity decreases, the uncertainty grows. In the last 20 years,
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the study of complexity in modelling systems has emerged as a recognised field

in statistics. Though, the initial attempts to formalise the concept of complexity go

back even further to Shannon’s inception of information theory (Shannon 1948).

The complexity of a model is closely related with the uncertainty of the system

which can be defined in terms of model properties like model sensitivity and

modelling error. The general hypothesis of model complexity and its influence

during training and testing phases is shown in Fig. 13.1. The general hypothesis

states that more complex models can simulate reality better than simpler models

(i.e. less prediction error), and with a greater variance and low bias during training

phase. Less complex models provide a relatively approximate simulation (i.e. more

prediction error), but with less variance and high bias. But the case is a bit different

in testing phase; highly complex models won’t give best test results as the graph is

parabolic with a minimum somewhere in the middle.

Figure 13.2 displays the hypothesis which shows the variation of different

model parameters particularly with bias–variance interaction during the test phase.

Models of different complexity may show different modelling properties like

sensitivity, flexibility, error and data requirements based upon their structure.

Figure 13.3 illustrates the hypothetical relationship between model sensitivity,

modelling error, model flexibility, training data requirement and model complexity.

The aim of this chapter is to highlight the need to have a statistical comparative

index in data-based modelling which considers modelling attributes like model

error, model complexity and model sensitivity. The study has made use of modified

form of the overall model utility index proposed by Snowling and Kramer (2001)

to identify “the best and right” model in data-based hydrological modelling,

which was accomplished through a major case study, using the daily information

of rainfall and runoff data from the Brue catchment in the United Kingdom. The

utility-based results are compared with that of the traditional statistical indices.

Another objective of this study is to ascertain if the usefulness of a model changes if

one performs the wavelet-based input data splitting.
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13.2 Study Area and Data Used

This study has used daily rainfall and runoff data from the Brue catchment of the

United Kingdom. The River Brue catchment is located in Somerset, South West of

England. It is considered as one of the best representative catchments to express

hydrological responses in England, due to its data quality for a reasonably long

time. This catchment has been extensively used in many good quality studies on

weather radar, quantitative precipitation and flood forecasting and rainfall–runoff

modelling. The location is famous among researchers because of its well-facilitated

dense rain gauge network as well as the coverage by three weather radars. The

River Brue catchment was the site of the Natural Environment Research Council
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(NERC)-funded HYREX project (Hydrological Radar Experiment) from 1993 to

2000. The catchment was chosen for the HYREX project, as its size and relief were

seen as representative of many catchments in the United Kingdom to demonstrate

the hydrological dynamics and flood forecasting procedures. The catchment has a

drainage area of 135 km2 and an elevation range between 35 and 190 m above sea

level. The catchment is located at 51.075�N and 2.58�W (Fig. 13.4). The river

gauging point at the catchment is located at Lovington. An automatic weather

station (AWS) and an automatic soil water station (ASWS) are located in the

catchment which recorded the global solar radiation, net radiation and other

weather parameters such as wind speed, wet and dry bulb temperatures and

atmospheric pressure in hourly interval. Six years of daily rainfall–runoff data

from the Brue catchment, spanning from 1993 to 2000, was used in this study.

For the rainfall–runoff modelling, the study has used effective inputs like three-step

antecedent runoff values (Q(t � 1), Q(t � 2), Q(t � 3)), one-step antecedent rain-

fall (P(t � 1)) and current rainfall information (P(t)) for hybrid modelling as

observed in the previous studies (Remesan et al. 2009). The optimum training

data length for this daily rainfall–runoff data set was identified as 1,056 data points

(Remesan et al. 2009) which was used as training data set throughout the study and

the rest is used for validation.

13.3 Models

The study has used several data-based models such as local linear regression

(LLR) model, artificial neural networks (ANNs), Adaptive neuro fuzzy inference

system (ANFIS), support vector machines (SVMs) and hybrid wavelet forms

of ANN, ANFIS and SVMs in order to cover a wide range of models

used in hydrology.

Fig. 13.4 The location map of the study area, the Brue River catchment

13 Evaluation of Mathematical Models with Utility Index: A Case Study. . . 247



13.3.1 LLR Model

The LLR model is a widely accepted nonparametric regression method due to

its better prediction capabilities in low dimensional forecasting and modelling

problems. The attraction of LLR technique is its consistent performance even

with a small amount of sample data. In the mean time, LLR can produce very

accurate predictions in regions of high data density in the input space. The LLR

procedure requires only three data points to obtain an initial prediction and then

uses all newly updated data as they become available to make further predictions.

The only problem with LLR is to decide the size of pmax, the number of near

neighbours to be included for the local linear modelling.

Given a neighbourhood of pmax points, we must solve a linear matrix equation

Xm ¼ y ð13:1Þ

whereX is a pmax � dmatrix of the pmax input points in d-dimensions, xi(1 � i � pmax)
are the nearest neighbour points, y is a column vector of length pmax of the

corresponding outputs and m is a column vector of parameters that must be

determined to provide the optimal mapping from X to y, such that

x11 x12 x13 . . . x1d
x21 x22 x23 . . . x2d
⋮ ⋮ ⋮ ⋱ ⋮

xxpmax 1
xxpmax 2

xxpmax 3
� � � xxpmaxd

0
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1
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m1

m2

m3

⋮
md

0
BBBB@

1
CCCCA ¼

y1
y1
⋮
ypmax

0
BB@

1
CCA ð13:2Þ

The rank r of the matrix x is the number of linearly independent rows, which

will affect the existence or uniqueness of the solution for m.
If the matrix X is square and non-singular then the unique solution to Eq. 13.1

is m ¼ X� 1y. If X is not square or singular, we modify Eq. 13.1 and attempt to

find a vector m which minimises ��Xm� y
��2 ð13:3Þ

13.3.2 ANN and ANFIS Models

The theory of ANNs started in the early 1940s whenMcCulloch and Pitts developed

the first computational representation of a neuron (McCulloch and Pitts 1943).

The ANNs are nonlinear formations which work based on the function of human

neural system. ANNs have become focus of much attention in last few decades in

hydrology due to their immense capabilities in the implementation of nonlinear

static and dynamic systems. The most commonly used learning algorithm in
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ANNs is the back-propagation algorithm. Algorithms like conjugate gradient,

quasi-Newton and Levenberg–Marquardt (LM) are considered as some of the faster

algorithms, all of which make use of standard numerical optimisation techniques.

The Levenberg–Marquardt (LM) learning algorithm was used in this study. There

are several types of ANNs like multilayer perceptron, radial basis functions

and Kohonen networks. ANN structure defines its structure including number of

hidden layers, number of hidden nodes, number of input and output nodes and

activation function. For hidden layer the sigmoid activation function and for

output layer linear activation function were used in this study. Three-layer feed-

forward neural network (one input layer, one hidden layer and one output layer)

is the most commonly used topology in hydrology. This topology has proved

its ability in modelling many real-world functional problems. The selection of

hidden neurons is the tricky part in ANN modelling as it relates to the complexity

of the system being modelled and there are several ways of doing it, such as

the geometric average between input and output vector dimensions (Maren et al.

1990), the same as the number of inputs used for the modelling (Mechaqrane and

Zouak 2004), twice the input layer dimension plus one (Hecht-Nielsen 1990), etc.

In this study, the Hecht-Nielsen (1990) approach has been adopted according to

our past experimental experience with it.

Adaptive neuro-fuzzy inference system (ANFIS) model is a well-known artifi-

cial intelligence technique that has been used in modelling hydrological processes.

The ability of neural network to learn fuzzy structure from the input–output data

sets in an interactive manner has encouraged many researchers to combine the ANN

and the fuzzy logic effectively to organise network structure itself and to adapt

parameters of a fuzzy system. The ANFIS model used in this study is based on the

Sugeno fuzzy model, which is based on a systematic approach to generate fuzzy

rules and membership function parameters for fuzzy sets from a given hydrological

time series data set (Sugeno and Kang 1988; Jang 1993). The learning algorithm for

ANFIS is a hybrid algorithm, which is a combination between the gradient descent

method and the least squares method for identifying nonlinear input parameters and

the linear output parameters, respectively. The ANFIS modelling was performed

using the “subtractive fuzzy clustering” function due to its good performance with a

small number of rules.

For a first-order Sugeno fuzzy model, a typical rule set with two fuzzy

If/Then rules can be expressed as

Rule 1 : If x is A1 and y is B1 Then f 1 ¼ p1xþ q1yþ r1 ð13:4Þ

Rule 2 : If x is A2 and y is B2 Then f 2 ¼ p2xþ q2yþ r2 ð13:5Þ

where x and y are the crisp inputs to the node i, Ai and Bi are the linguistic labels

(low, medium, high, etc.) characterised by convenient membership functions and

pi, qi and ri are the consequence parameters (i ¼ 1 or 2). In the ANFIS, nodes in

the same layer have similar functions as described below.
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(a) Layer 1 (input nodes): Nodes of this layer generate membership grades

of the crisp inputs which belong to each of the convenient fuzzy sets using

the membership functions. The generated bell-shaped membership function

given below was used:

μAi
xð Þ ¼ 1

1þ x� cið Þ=aið Þ2bi i ð13:6Þ

where μAi
is the appropriate membership function for Ai fuzzy set, and {ai, bi,

ci} is the membership function’s parameter set (premise parameters) that

changes the shape of membership function from 1 to 0.

(b) Layer 2 (rule nodes): In this layer, the rule operator (AND/OR) is applied to get
one output that represents the results of the antecedent for a fuzzy rule.

The outputs of the second layer, called as firing strengths O2
i , are the products

of the incoming signals obtained from the layer 1, named as w below:

(c) Layer 3 (average nodes): In this layer, the nodes calculate the ratio of the ith
rule’s firing strength to the sum of all rules’ firing strengths

O3
i ¼ wi ¼ wiX

i
wi

, i ¼ 1, 2 ð13:8Þ

O2
i ¼ wi ¼ μAi

xð ÞμBi
yð Þ, i ¼ 1, 2 ð13:7Þ

(d) Layer 4 (consequent nodes): In this layer, the contribution of ith rule towards

the total output or the model output and/or the function is calculated as follows:

O4
i ¼ wi f i ¼ wi pixþ qiyþ rið Þ, i ¼ 1, 2 ð13:9Þ

where wi is the output of Layer 3 and {pi, qi, ri} are the coefficients of a linear
combination in Sugeno inference system. These parameters of this layer are

referred to as consequent parameters.

(e) Layer 5 (output nodes): This layer is called the output nodes. This layer’s single
fixed node computes the final output as the summation of all incoming signals.

O5
i ¼ f x; yð Þ ¼

X
i
wi f iX
i
wi

ð13:10Þ

13.3.3 Support Vector Machines

Just like ANNs, SVMs can be represented as two-layer networks (where the

weights are nonlinear in the first layer and linear in the second layer).
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Mathematically, a basic function for the statistical learning process is:

y ¼ f xð Þ ¼
XM
i¼1

αiφi xð Þ ¼ wφ xð Þ ð13:11Þ

where the output is a linearly weighted sum of M. The nonlinear transformation

is carried out by φ(x).
The decision function of SVM is represented as:

y ¼ f xð Þ ¼
XN
i¼1

αiK xi; xð Þ
( )

� b ð13:12Þ

where K is the kernel function, αi and b are parameters, N is the number of training

data, xi are the vectors used in training process and x is the independent vector. The
parameters αi and b are derived by maximising their objective function.

The role of the kernel function simplifies the learning process by changing

the representation of the data in the input space to a linear representation in a

higher dimensional space called a feature space. A suitable choice of kernels allows

the data to become separable in the feature space despite being non-separable in the

original input space. Four standard kernels are usually used in classification prob-

lems and also used in regression cases: linear, polynomial, radial basis and sigmoid:

Linear: u0 � v
Polynomial: (γ � u0v + coef)degree

Radial basis: e�γ
��u�v

��2
Sigmoid: tanh(γ � u0v + coef)

The SVM software used in this study was LIBSVM developed by Chih-Chung

Chang and Chih-Jen, and supported by the National Science Council of Taiwan. The

basic algorithm is a simplification of both SMO by Platt and SVMLight by Joachims.

The source code is written in C++. The choice of this software was made on its ease

of use and dependability. It has been tried and tested in several research institutions

worldwide including the Computer and Information Sciences Department, University

of Florida, USA, and the Institute for Computer Science, University of Freiburg,

Germany. The LIBSVM is capable of C-SVM classification, one-class classification,

ν-SV classification, ν-SV regression and ε-SV regression. The model first trains the

SVM with a list of input vectors describing the training data. It outputs a model file,

which contains a list of support vectors and hence the description of the hypothesis

for the particular regression problem (Bray and Han 2004).

13.3.4 Wavelet Hybrid Models

This study has used three different types of wavelet hybrid models namely neuro-

wavelet (NW) models, wavelet-adaptive-network-based fuzzy inference system

13 Evaluation of Mathematical Models with Utility Index: A Case Study. . . 251



(W-ANFIS) model and wavelet-support vector machine (W-SVM) model in

conjunction with ANNs, ANFIS and SVMs, respectively. A multilayer feed-

forward network type of ANN and discrete wavelet transfer (DWT) model were

combined together to obtain a neuro-wavelet (NW) model. The DWT model

is functioned through two set of filters, viz. high-pass and low-pass filters,

which decompose the signal into two set of series namely detailed coefficients

(D) and approximation (A) sub-time series, respectively. Please refer to Remesan

et al. (2009) for further details of wavelet model construction. In the proposed NW

model, these decomposed sub-series obtained from DWT on the original data

directly are used as inputs to the ANN model. This study has used another

conjunction model: wavelet-neuro-fuzzy is applied in subsequent sections for

daily rainfall–runoff modelling. The W-ANFIS model utilises the time–frequency

representation ability of DWT to display the data in the time domain in conjunction

with a conventional ANFIS model. The input antecedent information data consid-

ered are decomposed into wavelet sub-series by discrete wavelet transform and

then the neuro-fuzzy model is constructed with appropriate wavelet sub-series as

input, and desired time step of the target time series as output. In the case

of W-SVM, the DWT model is combined with the SVM model with the best kernel

function and best regressor and several trial and error evaluations. The detailed

model structure and proposed specifications are given in Figs. 13.5, 13.6 and 13.7

which correspond to NW, W-ANFIS and W-SVM models.
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13.3.5 Index of Model Utility (U)

This study has adopted an index of model utility to make a decision about which is

the “best and right” model for a hydrological modelling exercise. The adopted

approach is a modified version of Snowling and Kramer (2001) for the suitability in

data-based modelling. Statistically the proposed “index of model utility” of a model

can be defined as scaled distance from origin on a graph of sensitivity vs. modelling

error of different models to the point corresponding to that model in the graph.

Mathematically it can be written as

Ui ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KsS

2
i þ KeE

2
i

Ks þ Keð Þ

s
ð13:13Þ

where

Ui is the utility index for model i
Si, sensitivity value for model i (relative to the maximum sensitivity). In this study

the value is obtained from the mean value of slope of all sensitivity curves

obtained from all inputs

Ei, error value for model i (relative to the maximum error; this study has adopted

RMSE as the indicator of model error)

Ks and Ke are weighting constants for sensitivity and error, respectively

U value varies between 0 and 1 and if the value of U is larger the model has

higher utility. The values of S and E for each model should be normalised to

satisfy the equation; that’s the reason for dividing all values by the maximum

sensitivity and error value. The values of Ks and Ke depend on how the model

values error and sensitivity. If error and sensitivity are valued equally, then Ks and

Ke should both be set to 1. In this study both values were set to 1, and the model

utility indexes (U ) were calculated for this case study using different models

detailed above.
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13.4 Results and Discussions

In this section different popular data-based models in hydrology were established

and compared for the case study: daily rainfall–runoff modelling. The first subsec-

tion evaluates the utility of these models in different case studies, in terms of model

attributes like model error, model sensitivity and model complexity. In the second

subsection the models were compared and contrasted with finding of the overall

model utility index, in terms of traditional statistical parameters like RMSE, Nash–

Sutcliffe efficiency (E), mean bias error (MBE), slope and correlation coefficient

(CORR).

In this case study, several models were constructed and tested for predicting

daily runoff values (using models ranging from relatively simple LLR model to

relatively complex W-SVM). The nonparametric procedure based on LLR models

does not require training in the same way as that of neural network models. The

optimal number of nearest neighbours for LLR (principally dependent on the noise

level) was determined by trial and error method and 16 nearest neighbours were

implemented.

The adaptive Adaptive neuro fuzzy inference system (ANFIS) model was used

for daily rainfall–runoff modelling, in which a set of parameters in ANFIS were

identified through a hybrid learning rule combining the back-propagation gradient

descent and a least squares method. The ANFIS model in this modelling used a set

of fuzzy IF–THEN rules with appropriate membership functions. The subtractive

fuzzy clustering was used to establish the rule-based relationship between input

data series and output data variable. The subtractive clustering was used to auto-

matically identify the natural clusters in the input–output data pool. In this ANFIS

model, there were 32 parameters to determine in the layer 2 because of five input

variables. The three rules generated 36 nodes in the subsequent layer. The study set

the number of membership functions for each input of ANFIS as three with

Gaussian (or bell-shaped) and linear membership functions at the inputs and out-

puts, respectively.

For SVM modelling, C++-based LIBSVM with ν-SV and ε-SV regressions was

used as explained in methodology section. Normalisation of input vectors and

proper identification of different parameters are very important in SVM modelling.

Initial analysis results in rainfall–runoff modelling at the Brue catchment on both

ν-SVM and ε-SVM using different kernel functions are shown in Fig. 13.8. The

SVM analysis on the Brue catchment daily data has used different kernel functions

like linear, polynomial, radial and sigmoid and compared in terms of mean-squared

errors. Out of these eight analysis results, the results from two SVM stood out quite

considerably from the remaining six. These were ε-SVM and ν-SVM with linear

kernel function (Fig. 13.8). The performance of E-SVM with linear kernel was

better than that of ν-SVM with linear kernel. However, it was unclear whether this

performance was due to the regression algorithm implemented or whether

optimising the parameters within each algorithm would enhance the performance

of one SVM over the other.
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This analysis on daily data from the Brue catchment was performed after fixing

the parameters to the default values (degree in kernel function is set as 3, coef0 in

kernel function is set as zero, cache memory size is set as 40 Mb, tolerance of

termination criterion is set as a default value of 0.001). The SVM hypothesis

suggested that the performance of SVM depended on the slack parameter (ε) and
the cost factor (C). The study has performed the modelling analysis varying the

E values between ε ¼ 1 to ε ¼ 0.00001 and the cost parameters C ¼ 0.1–1,000.

The analysis results have shown that the least error increases rapidly for E greater

than 0.1. So the study set the value of E to 0.1 for reliable results and less

computation time.

The cost factor of error (C) assigns a penalty for the number of vectors falling

between the two hyperplanes in the hypothesis. It suggests if the data is of good

quality the distance between the two hyperplanes is narrowed down. If the data is

noisy it is preferable to have a smaller value of Cwhich will not penalise the vectors

(Bray and Han 2004). So it was important to find the optimum cost value for SVM

modelling. The cost value was chosen to be 2 because it produced the least error at

that value, with the minimum running time, which was identified after several trial

and error analyses.

The study has used a neuro-wavelet (NW) model for modelling; for this purpose,

a multilayer feed-forward network type of ANN and DWT model were combined

together to obtain an NW model. The DWT model is functioned through two set of

filters, viz. high-pass and low-pass filters, which decompose the signal into two set

of series namely detailed coefficients (D) and approximation (A) sub-time series,

respectively. The present value of runoff has been estimated using the three

Fig. 13.8 Variation of performance in daily rainfall–runoff modelling at the Brue catchment

when applying different support vector machines on different kernel functions
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resolution levels of antecedent runoff and rainfall information (2-day mode (Dj
q1,

Di
p1), 4-day mode (Dj

q2, D
i
p2), 8-day mode (Dj

q3, D
i
p3) and approximate mode Aj

q3,

Ai
p3 where q denotes runoff, p denotes rainfall and i and j denote number of

antecedent data sets of rainfall and runoff, respectively). The above-mentioned

decomposed sub-series were used as inputs in the case of wavelet hybrid forms of

ANFIS and SVM (viz. W-ANFIS and W-SVM).

13.4.1 Comparison of Data Models Using Utility Index

The study has used the overall model utility index to evaluate and compare different

data-based models from relatively simple LLR model to the hybrid W-SVMmodel.

This index gives a measure of the “utility” of the model in a particular modelling

scenario, with respect to modelling uncertainty (assuming that model uncertainty

connects to its sensitivity, error and complexity). Thus we have assessed model

attributes like model complexity (the study has used the training time as the

indicator of complexity), model sensitivity (output response to changes in training

input) and model error (closeness of simulation to measurement) of all seven data-

based models used for daily rainfall–runoff modelling.

Figure 13.9 shows the variation of error (RMSE) with the model complexity for

this case study i.e. daily rainfall–runoff modelling. The RMSE decreases with

increasing complexity as this study has hypothesised. However, relatively complex

ANN and ANFIS models have shown more erroneous prediction than the relatively

simpler LLR model. The better prediction in terms of error was exhibited by the

NW model, followed by W-SVM, W-ANFIS and SVM models. Even though, the

hypothetical relation is a straight line, we observed a decreasing linear relation with

R2 value of 0.138.

0.6
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Fig. 13.9 Complexity vs. training error—case study: rainfall–runoff modelling
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The sensitivity of the model with change in inputs used for training was assessed

varying the inputs in the range of certain percentages. To find the training sensi-

tivity of the model to the inputs, the study has changed all the inputs in the range of

�30 to +30 % and checked the change in outputs produced in each scenario. These

values were averaged to plot sensitivity diagram of each model as shown in

Fig. 13.10. The slopes of these sensitivity diagrams were estimated and these

slope values were considered as the measure of sensitivity.

Figure 13.11 shows the results of the variation of the sensitivity of different

models with the corresponding complexity values. The sensitivity showed an

increasing linear trend with increasing complexity with an R2 value of 0.58. Even

though the SVM model was a bit complex in structure the sensitivity value was

observed close to that of LLR model. The highest value of sensitivity was observed

with NWmodel, followed byW-ANFIS and ANFIS. The complexW-SVM showed

relatively low sensitivity compared to other hybrid wavelet models like NW and

W-ANFIS.

Now a modeller can make a decision in terms of uncertainty (expressed in terms

of error and sensitivity) and complexity (expressed in terms of modelling time). The

overall model utility statistic requires the error and the sensitivity to express in

relative ratio to the maximum value. Table 13.1 shows different data models and the

corresponding overall utility indices.

The value of the overall model utility index (U ) varies between 0 and 1, where

the larger the value of U, the greater the model utility considering aspects like

uncertainty and complexity. The resultant figure shows the utility values

corresponding to different models for the case study: rainfall–runoff modelling is

shown in Fig. 13.12. Due to the relatively high sensitivity of NW/W-ANFIS models

and relatively high error of ANN models, these three models stand out as the three

lowest utility models in the rainfall–runoff modelling study. It means that even
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Fig. 13.10 Sensitivity curves for different data-based models
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though the models are better at predicting numerical values, when considering other

attributes, which decide consistency in modelling, complex models may stand out

of “better and useful” model groups. Among all seven models, the W-SVM model

has the best model utility followed by the models like SVM and LLR. It was

interesting to note that the complex model SVM and relatively simple model

LLR have very close utility values.

13.4.2 Comparison of Data Models Using Statistical Indices

Though the study has presented the utility evaluation as an alternative method for

model comparison, it is essential to have a look into how the traditional statistical
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Fig. 13.11 Sensitivity vs. complexity—case study: rainfall–runoff modelling

Table 13.1 Different models and their attributes which decide overall model utility in rainfall–

runoff modelling

Model

Complexity

(function of

modelling

time)

Sensitivity

(function

of slope of

sensitivity

curves) RMSE (m3/s) RMSE (%) Sensitivity (%) Utility (U )

ANN 43 1.04 0.558 1 0.458 0.222

NW 90 2.27 0.274 0.491 1 0.212

ANFIS 96 1.15 0.47 0.842 0.506 0.304

W-ANFIS 101 2.06 0.39 0.698 0.907 0.190

SVM 40 0.88 0.415 0.743 0.387 0.406

W-SVM 60 0.95 0.37 0.663 0.418 0.445

LLR 35 0.9 0.414 0.741 0.396 0.405
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indices behave in this modelling case study. The performance of the developed

LLR technique was compared with other models using major global statistics as

shown in Table 13.2. The estimated daily runoff values using the LLR model for

1,056 data points resulted in the overall RMSE value of 0.414 m3/s which is 20.7 %;

compared to observed daily runoff values and the MBE observed as �0.028 m3/s.

The Levenberg–Marquardt algorithm-based ANN underperformed to that of LLR

in both the training and validation phases (RMSE value of 0.558 m3/s (27.9 % of

mean observed) and MBE value of �0.085 m3/s during validation phase). It was

seen that the LLR model’s performance had a superior efficiency and performance

compared with Levenberg–Marquardt ANN model with lower RMSE and higher

CORR, for the training period and validation periods.

Table 13.2 implies that the performance of ANFIS model is remarkably better

than that of LM-based ANN model in both validation and training data. The ANFIS

model showed an efficiency of 88.9 % (increase of 5.45 % from ANN model) for

the training data, and a validation efficiency of 77.3 % (an increase of 7.81 %

compared to ANN). The correlation coefficients between the computed and

observed are found to be 0.88 during training and 0.75 during validation. In order

to assess the robustness of the models developed, evaluation criterion like MBE was

used. From the MBE value one can deduce that both ANN and ANFIS showed

underestimation for the training data and validation data. The underestimation is

less for ANFIS during validation phase compared with ANN as a low value of MBE

was observed. However, the performance of LLR was observed better than that of

ANFIS model during training phase while ANFIS model outperformed LLR in the

validation phase.

The analysis results in Table 13.2 have shown that the NW model is superior in

predicting runoff values in comparison to all other models. The performance

efficiency of the NW model is 4.13 % higher than that of the ANFIS model for

validation and the corresponding value for the training data is 8.21 % higher.

Fig. 13.12 Overall model utility—case study: rainfall–runoff modelling
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Compared with the ANN model, the efficiency values of the NW model are 14.1 %

and 12.27 % higher for the training and validation data, respectively. In terms of

MBE, the performance of the NW model outperformed all other tested models in

both the training and validation phases.

As shown in the above section, the study chose the ε-SVM with linear kernel for

modelling applying the value of ε to 0.1 and values of C to 2; the modelling results

are shown in Table 13.2. The SVM model made a better modelling with RMSE

value of 0.415 m3/s (20.75 %) and CORR of 0.89 during the training phase. The

corresponding values during the validation phase were 0.692 m3/s (28.3 %) and

0.79, respectively. The SVM model has shown better statistical performance

compared to ANN, and ANFIS with an efficiency of 0.91 during training. The

ε-SVM is applied with DWT to form aW-SVMmodel. Likewise, the ANFIS model

was combined with DWT to form a hybrid W-ANFIS model. In the case of

W-ANFIS, the DWT decomposed the input data sets into three wavelet decompo-

sition levels (2–4–8) as mentioned in the previous sections and are used for rainfall–

runoff modelling. The performance analysis of wavelet-based ε-SVM (W-SVM) is

shown in Table 13.2 along with its comparison with the W-ANFIS model. The table

implies that the performance analysis of both the W-ANFIS model and the W-SVM

models was remarkably well in both validation and training data. The W-SVM

model showed an efficiency of 90.0 % (increase of 6.76 % from ANN model) for

the training data, and a validation efficiency of 77.0 % (an increase of 7.39 %

compared to ANN). The correlation coefficient between the computed and observed

are found to be 0.90 during training and 0.75 during validation. The RMSE for the

LM-based ANN model is lower (0.558 m3/s (27.9 %)) compared with the W-SVM

model (0.37 m3/s (18.8 %)) during training. From MBE value one can see the

significant improvements while using hybrid wavelet forms of SVM models. The

performance of W-ANFIS model in predicting runoff values is observed superior to

the conventional LM-based ANN model and inferior to hybrid wavelet-based SVM

model. The runoff prediction was underestimated by all models including

W-ANFIS model for both the training and validation phases as indicated by the

MBE values in Table 13.2. The RMSE value in the validation phase obtained by

W-ANFIS model was 0.702 m3/s (28.6 %), which was higher than that of the NW

model and W-SVM model. The performance efficiency of W-ANFIS model in the

rainfall–runoff modelling was 3.75 % lower than that of W-SVM model for

validation and corresponding value for training data was 1.12 % lower. Compared

with the ANN model, the efficiency values of the W-ANFIS model are 5.57 % and

11.85 % higher for training and validation data, respectively. However, in terms of

MBE values, the performance of NW model outperformed all other tested models

including W-ANFIS and W-SVM in both training and validation phases. Though

many statistical parameters are used for evaluation of robustness of the model, the

major index used for comparison of model performance is the Nash–Sutcliffe

efficiency. Figure 13.13 shows comparison of overall model utility index and

the Nash–Sutcliffe efficiency (average of training and validation) so in general

the comparison using general error-based statistical indices and the N-S efficiency

has shown that the rainfall–runoff modelling capabilities of data-based models
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are in the form of NW > SVM > W-ANFIS > W-SVM > ANFIS > LLR >
ANN. However, the results are different when we consider other modelling attri-

butes like model sensitivity and model complexity along with modelling errors. The

utility index identified that the usefulness of models in this case study are in

the form of W-SVM > SVM > LLR > ANFIS > ANN > NW > W-ANFIS.

Both the approaches have acknowledged the better performance of SVM, giving

second position in terms of efficiency and utility values. The N-S approach gave

high ranking for both W-ANFIS and NW model as the approach couldn’t account

for the influence of higher sensitivity. The higher utility value of the wavelet-based

SVM has shown the capabilities of SVM framework to handle large input space

without any difficulty of sensitivity.

13.5 Conclusions

The study adopted a utility index to critically evaluate the acceptance of a model

in terms of different modelling properties and contrasted the results with that

of traditional statistical indices (particularly the N-S efficiency). This study has

demonstrated that such an error-sensitivity-uncertainty procedure could help

modellers make effective comparison of different data-based models and it can

give an answer on how much the model benefits by increased complexity on

Fig. 13.13 Comparison of S–E efficiency and overall model utility index
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data-based models. The study extensively analysed the capabilities of SVM in the

context of rainfall–runoff modelling and demonstrated its ability to perform better

even in larger wavelet-decomposed input space. The study has demonstrated the

weakness of NW and W-ANFIS models. Even though these models had better

numerical prediction results, the utility evaluation has shown their limitation in

making a useful model for rainfall–runoff modelling due to their inclination

towards sensitivity. The overall utility analysis based on the utility index has

identified W-SVM as the best model, followed by SVM and LLR models.

The approach would be very useful in the data scarce situation where there is

insufficient data for validation. The modeller could use this method for selection of

the best possible model for the available data without diverting valuable data away

from calibration of model. Though the study presented with useful information,

there is room for improvement regarding the sensitivity assessment. The study has

assessed local sensitivity of the model with respect to the variation of inputs. The

term sensitivity is rather complicated; the local sensitivity slopes of these nonlinear

models vary depending on the range of inputs. However the choice of the sensitivity

and complexity values of these nonlinear models requires further research to

develop the presented utility assessment to a robust method in data-based model

comparisons.
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