
Chapter 11

Prediction of Local Scour Depth Downstream

of Bed Sills Using Soft Computing Models

A. Zahiri, H. Md. Azamathulla, and Kh. Ghorbani

Abstract Bed sill local scour is an important issue in environmental and water

resources engineering in order to prevent degradation of river bed and save the

stability of grade-control structures. This chapter presents genetic algorithms (GA),

gene expression programming, and M5 decision tree model as an alternative

approaches to predict scour depth downstream of bed sills. Published data were

compiled from the literature for the scour depth downstream of sills. The proposed

GA approach gives satisfactory results (R2 ¼ 0.96 and RMSE ¼ 0.442) compared

to existing predictors.

Keywords Grade-control structures • Local scour • Genetic algorithms • M5 tree

decision model • Gene expression programming

11.1 Introduction

Bed sills are a common solution to stabilize degrading bed rivers and channels.

They are aimed at preventing excessive channel-bed degradation in alluvial chan-

nels. Although their presence limits the general erosion process in the upstream, but

the erosive action of the weir overflow and turbulence generated from plunging jet

may cause significant local scour at downstream. By this local scour, the structure

itself (and many times other structures in vicinity of it, like bridge piers or

abutments, or bank revetments) might be undermined (Bormann and Julien 1991;

Gaudio and Marion 2003).
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For practical purposes, designers and civil engineers are often interested in a

short-term local scouring and its extent. For instance, they are often required to

predict the maximum scour depth at bed sills in the proximity of bridges when a

flood occurs. Therefore, most researchers have focused on local scouring at isolated

or series bed sill structures. Summaries of research for the bed sills can be found

in Lenzi et al. (2002). Bormann and Julien (1991) reviewed experimental studies

of scour downstream of hydraulic structures. They also investigated the scour down-

stream of grade-control structures with large-scale experiments. Gaudio et al. (2000)

presented a theoretical framework for calculation of maximum scour depth down-

stream of bed sills through identification of non-dimensional parameters by

Buckingham’s π-theorem. They proposed an empirical equation for the estimation

of maximum scour depth at bed sills taking into account of morphological effects in

low-gradient rivers through clear water laboratory tests. Later, their result was

generalized by Lenzi et al. (2002) to cover steep channels. Under similar slopes and

hydrological settings, an equation developed through laboratory results to predict the

maximum scour holes at grade-control structures in alluvial mountain rivers. Lenzi

and Comiti (2003) analyzed local scouring downstream of 29 drop structures. Lenzi

et al (2003) investigated themain characteristics of local scouring downstream of bed

sills in the form of a staircase-like system in high-gradient streams with nonuniform

alluvium. They found that the jet regime plays an important role both for the depth

and the length of the scour, and consequently affects the scour shape. They proposed

two equations for the estimation of the maximum scour depth and length in low and

high gradient streams.Marion et al. (2004) conducted a series of tests to determine the

effect of bed sill spacing and sediment grading on the potential erosion by jets flowing

over the sills. Tregnaghi (2008) conducted some experimental runs in the case of clear

water and live bed scouring at bed sills placed in steep gravel bed streams. He

concluded that the percentage reduction in maximum scour depth in the case of

sediment feeding comparedwith the clear water tests is considerable. Chinnarasri and

Kositgittiwong (2008) conducted some experimental tests in steep slopes and bed

sills with different sill spacing. They proposed a simple equation based on nonlinear

regression model for relative maximum scour depth at the equilibrium condition.

Although useful in many circumstances, these empirical formulae have one key

shortcoming. Specifically, due to wide ranges of hydraulic and sediment charac-

teristics of flow and also bed slopes in rivers, application of any empirical equation

doesn’t reflect the complex actual conditions of river and structure itself and also

the boundary conditions at the downstream of structures. Owing to rapid increase in

successful applications of neural computing, machine learning and evolutionary

algorithms in many fields of hydraulic engineering, and also owing to high com-

plexity of scouring phenomena at bed sills, there is a need to explore the applica-

bility of these new methods in prediction of maximum scour depth at bed sills. In

this regard, Guven and Gunal (2008) using genetic programming (GP) provides

alternative formulation for prediction of local scour downstream of grade-control

structures. Azamathulla (2012) presents an equation using gene expression pro-

gramming (GEP) for prediction of scour depth downstream of sills. In this study,

using the 226 experimental data set of maximum scour depth at bed sills from

literatures in different canal bed slopes and at clear water scouring, applicability of
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new methods of the GA, GEP, and M5 tree model have been examined in prediction

of relative maximum scour depth at bed sills. The results have been compared with

the empirical equations obtained by previous researchers.

11.2 Material and Methods

11.2.1 Physical Definition of Scouring

According to Gaudio et al. (2000), the main variable of interest, equilibrium

maximum scour depth (ys), in the case of uniform sediment beds is mainly depen-

dent on flow and sediment characteristics as follows:

ys ¼ f g; υ; ρw; ρs; q; qs; h;D; S0; Seq; L
� � ð11:1Þ

where g ¼ acceleration of gravity, υ ¼ kinematic viscosity of water, ρw, and ρs ¼
density of water and sediment, respectively, q and qs ¼ water and sediment

discharge per unit width supplied by upstream, respectively, h ¼ water depth of

uniform flow condition, D ¼ characteristic grain size, S0 and Seq ¼ initial and

equilibrium bed slopes, respectively, and L ¼ horizontal spacing between sills.

This is a general definition of the maximum scour depth for hydraulic, geometric,

and sediment properties (see Fig. 11.1).

The application of Buckingham’s π-theorem leads to identification of the

following dimensionless group (Chinnarasri and Kositgittiwong 2008):

ys
Hs

¼ f 2
a

Hs
;

a

ΔD50

;
L

Hs
;
D50

Hs
; S0

� �
ð11:2Þ

Fig. 11.1 Schematic of scour depth and length downstream of a bed sill (Tregnaghi 2008)

11 Prediction of Local Scour Depth Downstream of Bed Sills Using Soft. . . 199



whereΔ¼ (ρs� ρw)/ρw is the relative submerged density of sediment,Hs¼ 1.5
ffiffiffiffiffiffiffiffiffiffi
q2=g3

p
is critical-specific energy on the sills and a ¼ morphological jump, which was first

introduced by Gaudio et al. (2000). This important factor defines a geometrical

correspondence between the initial and equilibrium bed slopes and the spacing

between sills:

a ¼ S0 � Seq
� �

L ð11:3Þ

11.2.2 Scouring Prediction at Bed Sills

11.2.2.1 Empirical Equations

According to non-dimensional parameters obtained for maximum scour depth at

bed sills, some empirical equations based on regression analysis of experimental

data have been developed. These equations are presented in Table 11.1.

11.2.2.2 Genetic Algorithm

Genetic algorithm (GA) technique is capable of solving complex problems that the

traditional algorithms have been unable to conquer. This algorithm begins by

creating an initial random set of potential solutions for a particular problem.

Then, the fittest “parents” are selected and “children” are generated by means of

sexual reproduction (crossover) or asexual alteration (mutation). In crossover, two

parents swap random pieces of information with each other while in mutation, a

piece of information is replaced by another randomly generated piece. Finally, the

resulting solutions (children) are evaluated for their fitness (effectiveness) and

selected for reproduction. This process is repeated over-successive generations

until a stopping criterion is met (Sharifi 2009).

Once the initial population is generated, each chromosome is evaluated and its

“goodness” (fitness) is measured using some measure of fitness function. Then, based

on the value of this fitness function, a set of chromosomes is selected for breeding.

Table 11.1 Empirical equations for maximum scour depth prediction

Empirical equation Investigator Eq. Number

ys
Hs

¼ 1:45
a

Hs

� �0:86

þ 0:06
a

Δd50

� �1:49

þ 0:44
Lenzi et al. (2004) (11.4)

ys
Hs

¼ 1:6
a

Hs

� �0:61

þ 1:89
a

Δd50

� �0:21

� 2:03
Chinnarasri and

Kositgittiwong (2008)

(11.5)

ys
Hs

¼ 3
a

Hs

� �0:6

SI�0:19 1� e
�0:25

L

Hs

0
B@

1
CA

Tregnaghi (2008) (11.6)
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In order to simulate a new generation, genetic operators such as crossover and

mutation are applied to the selected parents. The offsprings are evaluated and the

members of the next generation population are selected from the set of parents and

offsprings. This cycle continues until the termination criterion is met (Sharifi 2009).

In this study, the absolute percentage error of output parameter prediction was

selected as the performance measure. The selected objective function is as follows:

f ¼ Min
Xi¼N

i¼1

ys
Hs

� �
exp

� ys
Hs

� �
cal

 !2

ð11:7Þ

where N is the number of sample tests and the subscripts exp and cal refer to

experimental value and the predictions obtained using each model selected in this

study, respectively.

11.2.2.3 Gene Expression Programming

GEP, which is an extension of the GP (Koza 1992), is a search technique that

evolves computer programs of different sizes and shapes encoded in linear chro-

mosomes of fixed lengths. The chromosomes are composed of multiple genes, each

gene encoding a smaller subprogram. Furthermore, the structural and functional

organization of the linear chromosomes allows the unconstrained operation of

important genetic operators such as mutation, transposition, and recombination

(Azamathulla 2012).

11.2.2.4 M5 Tree Model

Dividing a complex modeling problem into a number of subproblems and combin-

ing their solutions is the main idea in building model trees (MT). In this idea, the

parameter space is split into areas (subspaces) and a linear regression model is built

in each of them, which is an “expert” for that subspace. The algorithm makes it

possible to split the multidimensional parameter space into subspaces and to

generate the models automatically for each subspace according to an overall quality

criterion. First, the initial tree is built and then the initial tree is pruned (reduced) to

overcome the over-fitting problem (that is a problem when a model is very accurate

on the training data set and fails on the test set). Finally, the smoothing process is

employed to compensate for the sharp discontinuities between adjacent linear

models at the leaves of the pruned tree (this operation is not needed in building

the decision tree). In smoothing, the adjacent linear equations are updated in such a

way that the predicted outputs for the neighboring input vectors corresponding to

the different equations are becoming close in value (Witten and Frank 2005).
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11.2.2.5 Data Set

Two hundred and twenty six experimental data of maximum scour depth at bed sills

in clear water conditions have been collected and used in this chapter. These data

are from Lenzi et al. (2002), Gaudio and Marion (2003), Marion et al (2004),

Tregnaghi (2008), and Chinnarasri and Kositgittiwong (2008). Range of variations,

as well as the mean values of experimental data, is shown in Table 11.2.

11.2.2.6 Selection of Input and Output Parameters

Based on dimensional analysis, the parameters of a/Hs, a/ΔD50, L/Hs, D50/Hs, and

S0 have been selected as input variables and relative maximum scour depth, ys/Hs,

has been selected as output variable. Table 11.3 reports the ranges of input and

output parameters, which are used in this study.

11.2.3 Experimental Setup

In this study, GA_SOLVER tool in Microsoft Excel was adopted for the GA

modeling. For the GP modeling, the Gene_XPro_Tools software was used. Finally,

for the model tree experiment, a model tree was built using the M5 algorithm

implemented in WEKA software (Witten and Frank 2005).

Table 11.2 Range of geometric and hydraulic parameters for scouring at bed sills

Symbol Variable definition Variable range Mean value

L (m) Sills spacing 0.4–2.5 1.07

S0 Initial bed slope 0.0059–0.268 0.1099

Q (L/s) Flow discharge 0.68–30.6 16.5

D50 (mm) Sediment mean diameter 0.6–9.0 6.17

ys (cm) Maximum scour depth 2.4–29.8 14.45

Table 11.3 Range of input and output parameters used in this study

Dimensionless parameter Maximum value Minimum value Mean value

a/Hs 9.703 0.096 2.12

a/ΔD50 164.62 0.494 23.906

L/Hs 55.74 0.1531 17.736

D50/Hs 0.4615 0.0136 0.106

S0 0.268 0.0059 0.1099

ys/Hs 10.617 0.261 2.12

202 A. Zahiri et al.



11.3 Results

11.3.1 GA Model

Applying GA_Solver for developing a new equation, following relationship has

obtained for training data set:

ys
Hs

¼ 0:00076
a

Hs

� �16:999 a

ΔD50

� ��16:464 L

Hs

� ��0:0613 D50

Hs

� ��16:595

S0:08020 ð11:8Þ

Results of using the above equation for training and testing data have been

presented in Fig. 11.2. As can be seen, in all over the data ranges, this equation

shows good agreement between experimental and predicted values of maximum

scour depth at bed sills. Obtained R2 values of 0.96 and 0.94 for training and testing

data, respectively, indicate this agreement.

11.3.2 GEP Model

In this study, according to training data, another equation has been developed using

GeneXProTools program as following:

ys
Hs

¼ ln
a

ΔD50

þ a

Hs
þ 9:8561

D50

Hs

� �
þ D50

Hs

a

ΔD50

� S0
D50=Hs

� �

þ D50=Hs

log a=Hsð Þ � a= ΔD50ð Þð Þ1=3
ð11:9Þ

This equation with R2 ¼ 0.97 has considerable accuracy. By using this equation

for testing data, R2 is obtained as 0.97. These results have been shown in Fig. 11.3.

The detailed information of the GEP model is indicated in Table 11.4.

11.3.3 M5 Tree Equations

For training data, seven linear models have been derived based on mainly variations

of bed slope. This bed slope dividing is very important from hydraulic and mor-

phologic point of view which defines two different conditions for bed sill scouring.

These linear models, as well as the classification criteria, are as follows:
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Fig. 11.2 Proposed GA model for relative maximum scour depth prediction
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Fig. 11.3 GEP model results of relative maximum scour depth for training and testing data in this

study

Table 11.4 Parameters of the

optimized GEP model
Parameter Description of parameter Parameter amount

P1 Chromosomes 30

P2 Genes 3

P3 Mutation rate 0.044

P4 Inversion rate 0.1

P5 Function set �, power

P6 One-point recombination rate 0.3

P7 Two-point recombination rate 0.3

P8 Gene recombination rate 0.1

P9 Gene transposition rate 0.1

P10 Linking function Subtraction
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S0 <¼ 0:162 :�� a=Hs <¼ 0:579 :�� �� a=Hs <¼ 0:385 : LM1 37=14:364%ð Þ�� �� a=Hs > 0:385 : LM2 28=16:214%ð Þ�� a=Hs > 0:579 :�� �� a= Δd50ð Þ <¼ 4:266 : LM3 17=14:957%ð Þ�� �� a= Δd50ð Þ > 4:266 : LM4 28=8:399%ð Þ
S0 > 0:162 :�� a=Hs <¼ 3:744 : LM5 25=35:412%ð Þ�� a=Hs > 3:744 :�� �� a=Hs <¼ 6:218 : LM6 20=53:031%ð Þ�� �� a=Hs > 6:218 : LM7 20=62:068%ð Þ

LM num 1

ys
Hs

¼ 0:812
a

Hs

� �
þ 0:0285

a

Δd50

� �
þ 0:5264S0 þ 0:8136 ð11:10Þ

LM num 2

ys
Hs

¼ 0:9265
a

Hs

� �
þ 0:0285

a

Δd50

� �
þ 0:5264S0 þ 1:0991 ð11:11Þ

LM num 3

ys
Hs

¼ 0:3236
a

Hs

� �
þ 0:1019

a

Δd50

� �
þ 0:5264S0 þ 1:4 ð11:12Þ

LM num 4

ys
Hs

¼ 0:3263
a

Hs

� �
þ 0:0854

a

Δd50

� �
þ 0:5264S0 þ 1:7508 ð11:13Þ

LM num 5

ys
Hs

¼ 0:351
a

Hs

� �
þ 0:0029

a

Δd50

� �
þ 0:8224S0 þ 3:2061 ð11:14Þ

LM num 6

ys
Hs

¼ 0:4555
a

Hs

� �
þ 0:0029

a

Δd50

� �
þ 0:8224S0 þ 3:7096 ð11:15Þ
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LM num 7

ys
Hs

¼ 0:4544
a

Hs

� �
þ 0:0029

a

Δd50

� �
þ 0:8224S0 þ 4:3617 ð11:16Þ

Calculation results for training and testing data have been presented in Fig. 11.4.

According to R2 values, good accuracy has been obtained in comparison to exper-

imental maximum relative depth scours.

In Fig. 11.5, all results including selected models, as well as empirical equations,

are shown for data set of this study. As can be seen, the overall trend of Eq. 11.4

(Lenzi et al. 2004) is overestimation of maximum scour depth with very large errors

especially at high relative scour depths. Also, it is interesting to note that Eq. 11.5

(Chinnarasri and Kositgittiwong 2008) has good agreement with measured data.

Owing to simplicity of this equation and more importantly, its dependency to only

two dimensionless parameters, it can be proposed as an option for engineers to

predict maximum scour depth at bed sills with sufficient accuracy (R2 ¼ 0.91).

Equation 11.6 (Tregnaghi 2008) underestimates the scour depth with high errors,

especially at low relative scour depths. All selected models in this study (GA, GEP,

and M5) have high accuracy through all ranges of experimental data.

11.4 Performance Analysis of Results

To validate the results for the training and testing sets, several common statistical

measures are used, such as R2 (coefficient of determination), RMSE (root mean

square error), and AE (the average error) (Azamathulla 2012).

The results of statistical analysis are presented in Table 11.5. Based on this table,

it is indicated that among different models considered in this study, Eq. 11.4
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Fig. 11.4 Proposed M5 model relative maximum scour depth obtained for training and

testing data
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(Lenzi et al. 2004) has the worst accuracy and therefore, is not recommended for

application. On the other hand, the GA, GEP,M5, and even simple empirical equation

of Chinnarasri andKositgittiwong (11.5) have the best accuracies. By consideration of

all statistical parameters, it seems that the GAmodel can be proposed as an option for

prediction of maximum scour depth at bed sills. In addition, the Chinnarasri and

Kositgittiwong (2008) equation, with requiring for only two input parameters and also

having good accuracy, may be considered as a suitable approach.

11.5 Conclusions

Soft computing tools such as the GA, GEP, and M5 tree approaches were used to

derive new expressions for the prediction of scour downstream of bed sills. The

proposed GA equation is found to be useful to estimate scour depth for mountain
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Fig. 11.5 Comparison of all empirical equations and selected models results for prediction of

relative maximum scour depth

Table 11.5 Evaluation of empirical equations and selected models for scour depth prediction

Method

Training Testing All data

R2 RMSE %AE R2 RMSE %AE R2 RMSE %AE

Empirical Eqs.

Eq. 11.4 – – – – – – 0.61 26.06 �161

Eq. 11.5 – – – – – – 0.91 0.774 5.41

Eq. 11.6 – – – – – – 0.82 1.291 4.7

GA model 0.96 0.442 �0.93 0.94 0.938 �1.24 0.95 0.805 �0.98

GEP model 0.97 0.451 �8.46 0.95 0.555 �11.3 0.96 0.535 �8.94

M5 model 0.97 0.537 �4.84 0.96 0.652 �6.68 0.96 0.561 �5.17
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rivers for various bed slopes. Performance of the GA expression is carried out by

comparing its predictions with the published data (R2 ¼ 0.96 and RMSE ¼ 0.442).

The comparison shows that the new expression has the least RMSE and the highest

coefficient of determination. The expression is found to be particularly suitable for

bed slopes where predictions are very close to the measured scour depth. These

models can be further extended for the estimation of scour geometry based on

additional prototype data of parameters such as type of rock bed classified as per

rock quality designation (RQD) and rock mass rating (RMR).
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