
Chapter 1

Computational Intelligence Techniques

and Applications

Xuan Zhu

Abstract Computational intelligence is a group of computational models and tools

that encompass elements of learning, adaptation, and/or heuristic optimization. It is

used to help study problems that are difficult to solve using conventional compu-

tational algorithms. Neural networks, evolutionary computation, and fuzzy systems

are the three main pillars of computational intelligence. More recently, emerging

areas such as swarm intelligence, artificial immune systems (AIS), support vector

machines, rough sets, chaotic systems, and others have been added to the range of

computational intelligence techniques. This chapter aims to present an overview of

computational intelligence techniques and their applications, focusing on five

representative techniques, including neural networks, evolutionary computation,

fuzzy systems, swarm intelligence, and AIS.
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1.1 Introduction

The earth and environmental systems are dynamic. They are shaped and changed

continuously by complex and interrelated physical, biological, and chemical

processes. For example, the physical process of weathering breaks down the

rocks and soils into their constituent substances. When it rains, the water droplets

absorb and dissolve carbon dioxide from the air, which causes the rainwater to be

slightly acidic. The released sediment and chemicals then take part in chemical
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reactions that erode the earth’s surface. The sediment may be transformed by

geological forces into other rocks and soils. Living organisms also play a dynamic

role through respiration, excretion, death, and decay. They recycle their constituent

elements through the environment. Therefore, earth and environmental systems

encompass numerous biological, physical, and chemical processes, which interact

with each other and which are difficult to model and analyze. In addition, many earth

and environmental systems present complex spatial and temporal patterns and

behaviors. The interactions between these systems are often ill-defined and their

relationships are generally nonlinear. Many earth and environmental problems have

no strong theoretical understanding and, therefore, there are no full numerical

models. The complexity of the earth and environmental systems has led to the

need for effective and efficient computational tools to analyze and model highly

nonlinear functions and can be trained to accurately generalize when presented with

new, unseen data. The emerging computational intelligence techniques have some

or all of these features. They provide an attractive alternative to developing numer-

ical models to conventional statistical approaches, from which the new insights and

underlying principles of earth and environmental sciences can be derived.

Computational intelligence is a group of computational models and tools devoted

to solution of problems for which there are no effective computational algorithms

(Konar 2005; Madani 2011). It is an offshoot of artificial intelligence, which focuses

on heuristic algorithms such as neural networks, evolutionary computation, and

fuzzy systems. Computational intelligence also involves adaptive mechanisms and

learning ability that facilitate intelligent behavior in complex and changing

environment. In addition to the three main pillars (neural networks, evolutionary

computation, and fuzzy systems), computational intelligence includes swam intel-

ligence, artificial immune systems (AIS), support vector machines, rough sets,

chaotic systems, probabilistic methods, and other techniques or a combination of

these techniques (Engelbrecht 2007). They have been successfully applied in a wide

range of applications in the earth and environmental sciences, for example, species

distribution modeling (Watts et al. 2011), site quality assessment of forests (Aertsen

et al. 2010), prediction of water quality (Areerachakul et al. 2013), and forecasting of

air pollution (Antanasijevia et al. 2013). This chapter aims to present an overview of

computational intelligence techniques and their applications, focusing on the fol-

lowing five representative techniques, including neural networks, evolutionary

computation, swam intelligence, AIS, and fuzzy systems.

1.2 Neural Networks

1.2.1 Basic Principles

Neural networks here refer to artificial neural networks (ANNs). They are developed

to emulate biological neural systems. The basic building blocks of biological neural

systems are neurons. A neuron consists of a cell body, an axon, and dendrites.
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A neuron is connected through its axon with a dendrite of another neuron.

The connection point between neurons is called a synapse. Basically, a neuron

receives signals from the environment. When the signals are transmitted to the

axon of the neuron, i.e., the neuron is fired, the cell sums up all the inputs, which

may vary by the strength of the connection or the frequency of the input signals,

processes the input sum, and then produces an output signal, which is propagated to

all connected neurons. An artificial neuron is a simplified computational model of a

biological neuron, performing the above basic functions.

In an artificial neuron, the cell body is modeled by an activation or transfer

function. The artificial neuron receives one or more inputs (representing signals

received through dendrites that are excited or inhibited by positive or negative

numerical weights associated with each dendrite), calculates the weighted sum of

the inputs, and passes the sum to the activation function. The activation function is a

nonlinear function, and its output represents an axon, which propagates as an input

to another neuron through a synapse. An activation function can be sigmoid,

hyperbolic tangent, or linear (Konar 2005).

An ANN is a layered network of artificial neurons. It typically consists of an

input layer, one or more hidden layers, and an output layer (Fig. 1.1). Each layer is

composed of a number of artificial neurons, also called nodes. The artificial neurons

Input layer Hidden layer Output layer

i1

i2

i3

o1

o2

I = [i1, i2, i3] = input vector

O = [o1, o2] = output vector 

Fig. 1.1 An artificial neural

network (ANN) with one

hidden layer

1 Computational Intelligence Techniques and Applications 5



in one layer are connected by weights to the artificial neurons in the next layer. It is

essentially a model representing a nonlinear mapping between an input vector and

output vector. As the output from an artificial neuron or node is a function of the

sum of the inputs to the node modified by a nonlinear activation function (e.g., a

logistic function), an ANN superposes many simple nonlinear activation functions

used by the nodes constituting the network, which enables it to approximate highly

nonlinear functions, thus introducing complex nonlinear behavior to the network

(Principe et al. 2000). These functions can be trained to accurately generalize with

new data. The adaptive property is embedded within the network by adjusting the

weights that interconnect the nodes during the training phase. After the training

phase the ANN parameters are fixed and the system is deployed to solve the

problem at hand. Therefore, an ANN is an adaptive, nonlinear system that learns

to perform a function from data.

There are several types of ANN, including multilayer feed-forward, recurrent,

temporal, probabilistic, fuzzy, and radial basis function ANNs (Haykin 1999).

The most popular one is the multilayer feed-forward neural network as shown in

Fig. 1.1. It is also referred to as the multilayer perceptron network. In this type of

ANN, the output of a node is scaled by the connection weights and fed forward as an

input to the nodes in the next layer. That is, information flow starts from the nodes

in the input layer, and then moves along weighted links to the nodes in the hidden

layers for processing. The input layer plays no computational role, but provides the

inputs to the network. The connection weights are normally determined through

training. Each node contains an activation function that combines information from

all the nodes in the preceding layer. The output layer is a complex function of the

outcomes resulted from internal network transformations.

Multilayer perceptron networks are able to learn through training. Training

involves the use of a set of training data with a systematic step-by-step procedure

to optimize a performance criterion or to follow some implicit internal constraint,

which is commonly referred to as the learning rule. Training data must be repre-

sentative of the entire data set. A neural network starts with a set of initial

connection weights. During training the network is repeatedly fed with the training

data (a set of input–output pattern pairs obtained through sampling) and the

connection weights in the network are modified until the learning rule is satisfied.

One performance criterion could be a threshold value of an error signal, which is

defined as the difference between the desired and actual output for a given

input vector. Training uses the magnitude of the error signal to determine how

much the connection weights need to be adjusted so that the overall error is reduced.

The training process is driven by a learning algorithm, such as back-propagation

(Rumelhart et al. 1986) and scaled conjugate gradient algorithms (Hagan

et al. 1996). Once trained with representative training data, the multilayer

perceptron network gains sufficient generalization ability and can be applied to

new data.

6 X. Zhu



1.2.2 Applications

ANNs are applicable when a relationship between the independent variables (out-

puts) and dependent variables (inputs) exists. They are able to learn the relationship

from a given data set without any assumptions about the statistical distribution of the

data. In addition, ANNs perform a nonlinear transformation of input data to approx-

imate output data, learning from training data and exhibiting the ability for gener-

alization beyond training data. This makes them more practical and accurate in

modeling complex data patterns than many traditional methods that are linear. They

are also able to deal with outlying, missing, and noisy data due to their ability to

generalize well on unseen data. The capability of learning from data, modeling

nonlinear relationships, and handling noises in data makes ANN particularly suitable

for pattern classification, function approximation, and prediction in most earth and

environmental applications. Pattern classification is to classify data into the

predetermined discrete classes. Functional approximation is to formulate a function

from a given set of training data to model the relationship between variables.

Prediction involves the estimation of output from previous samples or forecasting

of future trends in a time series of data given previous and current conditions.

ANNs have been employed to predict and assess air quality and forecast severe

weather. For example, Gardner and Dorling (1999) applied multilayer perceptron

networks to predict hourly NOx and NO2 concentrations in urban air in London. The

neural networks used in this study have two hidden layers, each containing

20 nodes. They used five variables (low cloud amount, visibility, dry bulb temper-

ature, vapor pressure, and wind speed) to predict the pollutant concentration. The

activation function used in the models was the hyperbolic tangent function

(Engelbrecht 2007). The networks were trained using the scaled conjugate gradient

algorithm based on hourly meteorological data on the five variables. Their results

suggest that ANNs outperform regression models, and can be used to resolve

complex patterns of source emissions without any explicit external guidance.

Sousa et al. (2007) used feed-forward ANNs to predict hourly ozone concentrations

with principal components as inputs, which effectively combined principal com-

ponent analysis and ANN techniques. This combination reduces the collinearity of

the data sets, determines the relevant independent variables for the prediction of

ozone concentrations, and thus leads to a less complex architecture of the ANN due

to the decrease of input variables. It also eliminates the overfitting problem, so that

mean square errors of both validation and training continuously decline. Data on

precursor concentrations and meteorological variables on ozone formation were

used. The principal component-based ANN was compared with multiple linear

regression, principal component regression, and feed-forward ANNs based on the

original data. The results suggested that the use of principal components as inputs

improved the ANN prediction. Krasnopolsky (2013) provided a representative set

of ANN applications in meteorology, oceanography, numerical weather prediction,

and climate studies.
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In geology ANNs have been used for sediment prediction, permeability predic-

tion, simulation of chemical concentrations in minerals, and geological hazard

assessment. For example, Yang and Rosenbaum (2003) built amultilayer perceptron

network, integrated with a GIS, to predict distributions of sediments (sand, silt, and

clay) in Gothenburg harbor, Sweden. The developed network has four input nodes

(water depth, distance from the river mouth, bank, and shipping lanes) and three

output nodes (one for each sediment grade) as well as two hidden layers. The

network was trained using the data from 139 sample stations. Fegh et al. (2013)

applied ANN to determine rock permeability of a gas reservoir fromwell logs at well

locations, and used the results from the ANN modeling as an input to several

geostatistical models through the structural model to construct 3D geological reser-

voir permeability models. Permeability prediction using ANN used the data sets

derived from four wells of the studied gas field. Two of the wells have core

permeability data, one used for constructing the ANN model and the other for

evaluating the reliability of the ANN model. The model was then applied to predict

permeability at the other un-cored wells. Torkar et al. (2010) used ANN to model

nonlinear dependency of radon concentrations in soil gas on five environmental

variables (air and soil temperature, barometric pressure of air and soil, and rainfall).

A four-layer perceptron network was developed in this study with five input nodes

(the environmental variables) and one output node (radon concentration) and it was

trained using the back-propagation algorithm. The ANN model correctly predicted

10 seismic events out of 13 within the 2-year period. Bui et al. (2012) investigated

the potentials of ANN in landslide susceptibility mapping at the Hoa Binh province

of Vietnam. They built two multilayer feed-forward ANNs with back-propagation

training algorithms, Levenberg–Marquardt and Bayesian regularization. Ten land-

slide conditioning factors were used as input nodes: slope, aspect, relief amplitude,

lithology, land use, soil type, rainfall, and distance to roads, rivers, and faults.

A landslide inventory over 10 years derived from satellite images, field surveys,

and existing literature was utilized as training data. The connection weights obtained

in the training phase were applied to the entire study area to produce landslide

susceptibility indexes. The prediction accuracy of landslide susceptibility mapping

by the Bayesian regularization neural network and the Levenberg–Marquardt neural

network was 90.3 % and 86.1 %, respectively. The study suggested that the ANNs

have good predictive capability, but the Bayesian regularization network model

appears more robust and efficient.

ANNs have also found to outperform traditional or classic modeling methods

in ecological modeling (Lek and Guegan 1999). There have been numerous

applications in ecological modeling in various fields of ecology since the early

1990s. For example, Ranković et al. (2010) built a feed-forward ANN model to

predict the dissolved oxygen in the Gruža Reservoir, Serbia. The input variables

of the neural network include water pH, water temperature, chloride, total phos-

phate, nitrites, nitrates, ammonia, iron, manganese, and electrical conductivity.

The Levenberg–Marquardt algorithm was used to train the network. The results

were compared with the measured data on the basis of correlation coefficient,

mean absolute error, and mean square error, which indicated that the neural
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network model provided accurate results. Other examples include using ANN to

relate flow conditions to fish community diversity (Chang et al. 2013), determine

factors that influence the dispersal of invasive species (Pontin et al. 2011), predict

water quality indicators (Kuo et al. 2007; Huo et al. 2013), predict biodiversity

(Yoo et al. 2012), estimate tree height (Özçelik et al. 2013), and simulate denitri-

fication rates in wetlands (Song et al. 2013). Zhang (2010) offered an overall and

in-depth knowledge on algorithms, programs, and case studies of ANNs in

ecology.

Examples of ANN applications in hydrology include hydrological time series

modeling (Lohani et al. 2012), groundwater salinity forecasting (Banerjee

et al. 2011), rainfall–runoff modeling (Wu and Chau 2011), reservoir inflow predic-

tion (Okkan 2012), and suspended sediment load prediction (Kakaei et al. 2013).

Pattern recognition and image classification are among the most common appli-

cations of ANN in remote sensing. The major advantage of ANN to image classi-

fication over conventional statistical approaches, such as maximum likelihood and

Mahalanobis distance classifiers, is that ANN is essentially nonparametric and

nonlinear, and has no assumptions regarding the underlying distribution of values

of the explanatory variables and the training data. ANNs are found to be accurate in

the classification of remotely sensed data (Mas 2004; Bao and Ren 2011; Dobreva

and Klein 2011; Cruz-Ramı́rez et al. 2012).

1.3 Evolutionary Computation

1.3.1 Basic Principles

Evolutionary computation simulates natural evolution. It was born out of the idea of

evolutionary programming introduced in the 1960s (Eiben and Smith 2003). Evo-

lutionary computation includes evolutionary algorithms for solving search and

optimization problems. It was thought of as a model for machine learning in

which a population of randomly created individuals goes through a process of

evolution mimicking the process of natural selection and natural genetics (Yu and

Gen 2010). In every generation, a new set of artificial creatures is created using bits

and pieces of the fittest of the old. An artificial creature is an individual representing

a point in the problem’s solution search space.

Evolutionary algorithms use random choice as a tool to guide a highly exploit-

ive search toward regions of the search space with likely improvement. A single

point in the solution search space is an individual, represented by a chromosome,

which consists of genes. For example, a land use pattern is a single point in the

search space of a land use optimization problem. A land use pattern can be seen as

a chromosome. Genes are essentially the parameters of the problem to be solved.

A gene can take many forms depending on the problem definition. For the land use

allocation problem, a gene can be a land parcel with a given land use and land
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attributes. The fitness (survival strength) of a chromosome is measured by a fitness

or an objective function. A fitness function is some measure of profit, utility, or

goodness to be maximized. A population is a collection of all the chromosomes

being evolved. As new chromosomes are created and reinserted into the popula-

tion, less fit chromosomes are replaced and only the fittest survive into the next

generation. It is here that the process of evolution occurs, as the fitness of the

competing chromosomes is compared in order to select parent chromosomes to

reproduce.

Evolutionary algorithms generally follow the basic procedure as depicted in

Fig. 1.2. The first step is to define the problem, which includes defining genes to

encode the information needed for problem solving, specifying chromosomes to

represent single solutions, and defining a fitness function. After the problem is

defined, an initial population is randomly created as the first generation. All the

chromosomes in the generation are then evaluated using the fitness function. After

that, chromosomes are selected from the population according to their fitness

function values to ensure that only the fittest chromosomes can survive into the

next generation. The selected chromosomes are then combined in a process called

crossover to create a set of children. The children are randomly mutated to create a

new set of chromosomes to be reinserted into the population. Once enough children

chromosomes have been created to replace a population, a generation is said to have

passed. For the new generation, the evaluation, selection, crossover, mutation, and

insertion process starts again. After a number of generations have elapsed, an

optimal solution is converged and the process stops. The best chromosome is

selected from the final population and represents the optimal solution to the

problem being solved. Essentially what’s happening is that a random set of solu-

tions to a problem within a given search space is created and evolves over an

amount of time to find an optimal solution.

Stop

Insert offspring into the population
No

Yes

Define
problem

Convergence
?

Evaluate
fitness of

individuals

Mate
individuals
to produce

offspring via
crossover

Mutate
individuals
to produce
offspring

Create a
random

population

Select
individuals
for mating

Fig. 1.2 General procedure of an evolutionary algorithm
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There are different categories of evolutionary algorithms, including genetic

algorithms, genetic programming, evolutionary programming, and evolution strate-

gies. Genetic algorithmsmodel genetic evolution (Goldberg 1989); genetic program-

ming optimizes a population of computer programs based on genetic algorithms,

where each individual is a computer program (Langdon and Poli 2002); evolutionary

programming is similar to a genetic algorithm, but simulates only adaptive behavior

in evolution (Yao et al. 1999); and evolution strategies are used tominimize functions

of real variables, which are individuals, each having a “strategy variable” that

determines the degree of mutation to be applied to the corresponding variable

(Auger andHansen 2011). They all share a basic principle of simulating the evolution

of individuals through the process of evaluation, selection, crossover, mutation, and

reproduction.

1.3.2 Applications

Evolutionary computation has been used successfully for optimization, scheduling,

and time series approximation in earth and environmental applications.

Downing (1998) illustrated three applications of evolutionary computation in

environmental modeling: optimal foraging strategies, temporal ideal-free distribu-

tions of larval emergence dates, and evolution of microscopic aquatic ecosystems.

In nature, foraging animals often face difficult decisions on where to search for food.

They need to make tradeoffs based on their knowledge of the relative abundance of

food resources and predatory dangers as well as their current energetic condition

(e.g., starvation, strong, weak). A foraging strategy consists of a list of the best

foraging areas for each of the discrete energetic conditions. In optimization of

animal foraging strategies, a genetic algorithm was used. It starts with an initial

population of foragers that have randomly generated foraging strategies. Each

forager with the initial middle energy level implements its strategy over a season.

Every day over the season, the forager selects the area determined by its energy level

and strategy, and it is then charged the daily metabolic cost and possibly fed and/or

killed in accordance with the death and feeding-success probabilities associated with

that area. The fitness of the forager and its associated strategy is measured as the

average number of days it survives over the season. After all foragers and their

associated strategies in a generation have obtained a fitness value, the fittest foragers

are selected to produce the new generation of foragers by crossing over and mutating

the strategy chromosomes of the parents. The new generation of strategies is then

evaluated and the generational cycle continues until the convergence criterion is met

and near-optimal strategies are found. Other examples of optimization with evolu-

tionary computation include eco-design (Lim et al. 2013), mine planning (Riff

et al. 2008), optimization of power factor and power output of wind turbines (Kusiak

and Zheng 2010), and determination of the optimum pumping rates of coastal

aquifers (Mantoglou et al. 2004).
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The case of temporal ideal-free distributions of larval emergence dates

described in Downing (1998) is an example of time series approximation. An

ideal-free distribution refers to the situation where organisms diversify over space

and/or time so that each gets about the same amount of resources. For species for

which males often mate with several females, when male and female insects

emerge from dormant stages before mating, male emergence distributions often

match those of the females due to the competition for females (i.e., resources).

This phenomenon is known as protandry. In the representation of a genetic

algorithm, each individual is a chromosome encoding emergence times and sex.

Males mate several times over several days and have either fixed active periods or

age-independent mortality. Females mate only once on the emergence day. The

life cycle of an insect commences with a dormant phase, which lasts until its

emergence date. The insect becomes active for a fixed number of time steps,

during which it shares the available food resources with other active insects.

An insect’s fitness is directly proportional to the amount of resources it acquires

during the active period. The genetic algorithm was run on ten different cases.

Each case has a different initial distribution of emergence times (the number of

insects emerging on each day of the season), different frequency of the resource

curve, and different postemergence life-span of the simulated insects. In all cases,

the emergence distributions evolved to closely match the computed ideal-free

distributions for the situation. The protandry simulations support one of the tacit

assumptions of research on ideal-free distributions; that is, emergence times

are genetically controlled. Other examples of time series approximation using

genetic algorithms include the simulation of copepod population dynamics

(Record et al. 2010) and modeling of long-term hydrological time series

(Wang et al. 2009).

Timber harvest scheduling is a typical scheduling problem that can be solved

using evolutionary computation. For instance, Ducheyne et al. (2004) applied

genetic algorithms to develop forest harvesting plans. In the genetic algorithms,

each chromosome represents a harvesting plan, encoding the felling period of

each stand (gene). The fitness function maximizes the present value and mini-

mizes deviations between successive cutting periods. It suggested that using

multiple objective genetic algorithms to solve the harvest scheduling problem

speeds up the optimization process and distributes the solutions evenly along the

Pareto front.

1.4 Swarm Intelligence

1.4.1 Basic Principles

Swarm intelligence models the social behavior of organisms living in swarms

or colonies. It is a form of agent-based modeling aiming at collective behavior of

intelligent agents in decentralized, self-organized systems. Basic principles of
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swarm intelligence are derived from real swarms in nature, including ant colonies,

bees, bird flocking, animal herding, fish schooling, and bacterial growth. A swarm

intelligence system typically consists of a population of simple agents (individuals)

interacting locally with one another and with their environment. These agents

follow simple rules without centralized control dictating how individuals should

behave. Local interactions of agent-to-agent or agent-to-environment lead to the

emergence of intelligent global behavior or pattern which is unknown to the

individual agents. In addition, the behavior of agents may change when the local

environment is modified, which is referred to as stigmergy (i.e., the trace left in the

environment by an action incites the performance of a next action by the same or

different agents).

Swarm theory has led to the development of a number of algorithms for routing

and optimization (Blum and Merkle 2008). Ant colony optimization (ACO) and

particle swarm optimization (PSO) are two popular swarm intelligence techniques.

ACO is a probabilistic technique for solving computational problems which

involve finding optimum paths through graphs. It is inspired by the behavior of

ants in finding paths toward food sources or their colonies. In the real world, ants

initially roam randomly. Once they find foods, they return to their colony while

leaving pheromone trails. When other ants find such a trail, they are likely to

follow it and reinforce it with their own pheromone if they find foods. However,

the pheromone along the trail evaporates over time, reducing its attractive

strength. The longer it takes for an ant to travel along the trail, the weaker and

less attractive the pheromone it laid down becomes. Over a short path, the strength

of the pheromone remains high as it is reinforced as fast as or quicker than it can

evaporate or decay. Ants tend to choose their trails with stronger pheromone

concentrations. Therefore, when one ant finds a shorter path, other ants are more

likely to follow that trail, and positive feedback eventually leads all the ants

choose the shortest trail.

ACO mimics the behavior of ants with artificial ants walking along a graph

representing the problem to solve. The graph consists of edges linking nodes.

Each edge is a path from one node to another, representing a potential solution.

Each edge is also assigned a pheromone value. Figure 1.3 shows a general

procedure of ACO. First, the graph is initialized by assigning the same initial

pheromone value to each edge and randomly selecting a node to place an artificial

ant. Then the ant selects an edge to move at the current node with a probabilistic

transition rule. This rule is commonly expressed as the probability (Dorigo

et al. 1996)

p ei, j
� � ¼

τi, j
� �α

f i, j

h iβ

X
k2θi τi,k½ �α f i,k

� �β ð1:1Þ

where p(ei, j) is the probability of ei, j (the edge from node i to node j) being selected
at node i, τi, j is the pheromone value associated with ei, j, fi, j is a value of a weighting
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function (called a heuristic information) of ei, j measuring the desirability of the

edge, θi is the set of edges available at node i, and α and β are parameters defining

the relative importance of the pheromone strength and desirability. After a solution

is obtained by the ant, its goodness is evaluated using an objective function. The

pheromone value of each edge is then updated by uniformly decreasing all the

pheromone values (pheromone evaporation) and increasing the pheromone values

of one or more better solutions. The above process is repeated by applying a number

of ants per iteration until a given convergence criterion (e.g., a time limit) is

satisfied or all artificial ants follow the same path.

PSO simulates the social behavior of bird flocking and fish schooling. It is a

search and optimization technique, similar to evolutionary computation techniques.

It is initialized with a population of random solutions and searches for the optimal

solutions through updating generations. However, unlike evolutionary computation

techniques, it does not use evolution operators such as crossover and mutation.

In PSO, individuals, referred to as particles, are grouped into a swarm. Each particle

in the swarm represents a potential solution to the optimization problem. The

particles are “flown” through the multidimensional search space by following the

current “best” particle called guide. In each iteration, each particle is evaluated

using the fitness function, and its velocity and position in the search space are

updated using the following two equations (Kennedy and Eberhart 1995):

v tþ 1ð Þ ¼ v tð Þ þ c1 � R1 � pbest� p tð Þ½ � þ c2 � R2 � gbest � p tð Þ½ � ð1:2Þ

p tþ 1ð Þ ¼ p tð Þ þ v tþ 1ð Þ ð1:3Þ

where v(t) is the current velocity of the particle, p(t) is its current position, pbest and
gbest are the best solutions achieved so far by the particle and population, respec-

tively, R1 and R2 are the random numbers in the range [0, 1], and c1 and c2 are

acceleration coefficients. pbest is also called the personal best, and gbest the global

Pheromone
Initialization

Path
selection

Goodness
evolution

Pheromone
updating

Convergence
?

Stop

No

Yes

Fig. 1.3 A general procedure of ant colony optimization (ACO)
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best. The process terminates when a time limit is reached or gbest cannot be

improved further. While ACO is mainly used for combinatorial optimization,

PSO is primarily employed for continuous optimization.

1.4.2 Applications

The study of swarm intelligence is providing insights that can help humans manage

complex systems, from truck routing to military robots. ACO has many successful

applications in discrete optimization problems such as travelling salesman problem.

For example, Afshar (2010) used ACO for optimal design of sewer networks. In this

study, the nodal elevations of the network were used as the decision variables of the

optimization problem. The pheromone concentration over the allowable range of

each decision variable was modeled with a Gaussian probability density function.

It tried two alternative approaches to the implementation of ACO: constrained and

unconstrained. The unconstrained approach did not take into account the minimum

slope and other constraints. In the constrained approach, the elevation at down-

stream node of a pipe is used to define new bounds on the elevation of the upstream

node, which represents the constraints on the pipe slopes. Other constraints include

hydraulic radius, pipe diameter, average excavation depth, velocity, and flow depth

of each link. The results from the constrained approach were compared with those

of the unconstrained one. The constrained ACO was shown to be very effective in

locating the optimal solution and efficient in terms of the convergence. It was also

found to be relatively insensitive to the initial colony and its size when compared to

the unconstrained algorithm.

PSO has few or no assumptions about the problem being optimized. It can search

large solution spaces. Ma et al. (2011) applied PSO for land use optimization. In their

study, each land parcel is abstracted to a particle by its centroid. Particles constantly

fly to adjust their positions and velocities according to their personal best and the

global best assessed in terms of the cost of land use transformation, biophysical

suitability, and compactness of landscape. Chou (2012) used PSO in modeling

rainfall–runoff relationships. The study compared PSO and a simple linear model

in simultaneous identification of system structure and parameters of the rainfall–

runoff relationship. The simple linear model combines classic models typically used

in hydrology to simulate the subsystems, and transforms the system structure

identification problem into a combinational optimization problem. The PSO was

employed to select the optimized subsystemmodel with the best data fit. It found that

the PSO simulates the time of peak arrival more accurately compared to the simple

linear model, and it also accurately identifies the system structure and parameters of

the rainfall–runoff relationship. PSO has also been applied for forecasting river stage

(Chau 2007), modeling turbidity intrusion processes in flooding season (Wang

et al. 2012), simulating soil moisture (Alizadeh and Mousavi 2013), optimizing

greenhouse climate model parameters (Hasni et al. 2011), scheduling electric

power production at a wind farm, predicting penetration rate of hard rock tunnel

boring machines (Yagiz and Karahan 2011), etc.
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1.5 Artificial Immune Systems

1.5.1 Basic Principles

AIS model the human immune system. The human immune system is a robust,

decentralized, error-tolerant, and adaptive system. It is composed of a great variety

of molecules, cells, and organs spreading all over the body. The main function of

the human immune system is to search for malfunctioning cells from its own body

(such as cancer cells) and foreign disease causing elements (such as bacteria and

viruses). The elements that can be recognized by the immune system are referred to

as antigens. The cells belonging to the body are called self or self-antigens, while

the foreign cells entering the body are termed nonself or nonself-antigens. The

immune system can distinguish between self and nonself. The field of AIS encom-

passes a spectrum of algorithms. Different algorithms mimic the behavior and

properties of different immunological cells (specifically B-cells, T-cells, and den-

dritic cells). There are three main categories of AIS algorithms derived from the

simplified immune systems: negative selection, clonal selection, and immune

networks.

Negative selection algorithms simulate the negative selection process that occurs

during the maturation of T-cells in the thymus. T-cells originate in the bone marrow,

but pass on to the thymus to mature before they circulate the body in the blood and

lymphatic vessels. Negative selection refers to the identification and elimination of

those T-cells that may recognize and attack the self-antigens presented in the

thymus. All T-cells that leave the thymus to circulate throughout the body are said

to be tolerant to self. A typical negative selection algorithm involves a self-set

S which defines the self-elements in a problem space (i.e., representative samples

of self-antigen), and a detector set F which contains all elements that have been

identified as nonself-antigens and do not belong to S (Dasgupta and Forrest 1999;

de Castro and Timmis 2002). Basically, the algorithm first generates a random set of

candidate elements C, and then compares the elements in C with the elements in S.
If an element in Cmatches an element in S, it will be discarded; otherwise, it will be
added to F. D’haeseleer et al. (1996) proposed a more efficient approach that tries

to minimize the number of generated detector elements while maximizing

the coverage of the nonself-space. After F is generated, it is used to detect

nonself-elements in a data set (feature set) S*, which may be composed of the set

S plus other new features or a completely new set. The elements in S* are checked
against those in F. A match indicates a nonself-element is identified and an action

will be followed. The follow-up action of detecting nonself varies according to the

problem under investigation. The efficiency and complexity of a negative selection

algorithm depend on the type of problem space (continuous, discrete, mixed, etc.),

the problem representation scheme, and the matching rules. Most of the research

works on the negative selection algorithm have used the binary matching rules like

r-contiguous (Forrest et al. 1994). Negative selection algorithms have been applied

to pattern recognition and classification.
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Clonal selection algorithms are inspired by the clonal selection theory that

explains how the immune system reacts when a nonself-antigen is detected by a

B-cell. B-cells produce antibodies. When an antibody strongly matches an antigen,

the corresponding B-cell is stimulated to generate clones of itself, which then

produce more antibodies. The binding of an antibody to a nonself-antigen is a

signal to destroy the invading organism on which the antigen is found. This process

is called clonal selection. Clonal selection algorithms are most commonly applied

to optimization and pattern recognition. They generally evolve candidate solutions

by means of selection, cloning, and mutation. de Castro and von Zuben (2002)

proposed a clonal selection algorithm for pattern recognition, which includes the

following steps:

1. Create a random population of individuals (B-cells or antibodies).

2. Given a set of patterns (antigens) to be recognized, for each pattern, determine

its affinity with each element of the population.

3. Select a number of the highest affinity individuals from the population and clone

these individuals to a certain number of copies proportional to their affinity with

the antigen. The greater the affinity, the larger the number of copies, and vice

versa.

4. Mutate all the clones with a rate inversely proportional to their affinity with the

input pattern. The higher the affinity, the smaller the mutation rate, and vice

versa.

5. Add the mutated individuals to the population, and reselect the maturated

(optimized) individuals to be kept as memories of the system. Delete other

superfluous clones and replace them with new randomly generated individuals.

6. Repeat steps 2–5 until a stop condition is met, e.g., a minimum pattern recog-

nition or classification error.

There are several variants of the clonal selection algorithm and clonal selection-

based hybrid algorithms, which are reviewed in Berna and Sadan (2011).

Immune network algorithms assume that B-cells form a network. When a B-cell

is activated as a response to an antigen, it stimulates all other B-cells to which it

connects in the network. These algorithms are similar to clonal selection algorithms

in that they both measure the goodness of B-cells by affinities and both involve a

process of selection, cloning, and mutation. The main difference is that the immune

network algorithms consider that B-cells are not isolated, but communicate with

each other via collective dynamic network interactions, while clonal selection

algorithms only care about the interactions between B-cells and antigens. An

immune network algorithm develops a population of individuals (B-cells) that

interact with data (antigens) and with each other. The interactions with antigens

and between B-cells fire up the B-cells. Highly stimulated B-cells undertake

cloning and mutation as they do in a clonal selection algorithm. The number of

clones and mutation rate also depend on the affinity of the cell with the current

stimulating antigen. This process is regulated by the interaction between B-cells,

which can stimulate them in order to create a memory of observed antigens, or

suppress them, in order to control the immune response. It also includes natural

1 Computational Intelligence Techniques and Applications 17



death of unstimulated B-cells and addition of new random B-cells to the population.

A working procedure of an artificial immune network can be found in de Castro and

von Zuben (2001). Immune network algorithms perform unsupervised learning.

They have been typically used for clustering, but have also been adapted to

optimization and classification.

1.5.2 Applications

AIS have been successfully used for optimization, classification/clustering, and

pattern recognition. For example, Liu et al. (2012) applied AIS for optimizing

multi-objective allocation of water resources in river basins. They integrated the

macroevolution algorithm (Marin and Sole 1999), clonal selection, and an entropy-

based density assessment scheme (EDAS) to perform a global optimal search. The

clonal selection was based on the diversity in the evolving population and applied for

solution exploitation. EDAS was used to distribute non-dominated individuals uni-

formly along the discovered Pareto-frontier, and the macroevolution algorithm is

employed to preserve the diversity of individuals and form part of the pool solution.

AIS have been widely used for remote sensing image classification and pattern

recognition (Xu and Wu 2008; Zhang et al. 2004; Zheng and Li 2007; Zhong

et al. 2007). Gong et al. (2011) developed an improved artificial immune network

algorithm for land cover classification from remote sensing images. It involves

creation of land cover class representatives as antibodies or B-cells. Basically, an

initial population of antibodies is randomly generated so that the possibility of

successful recognition of a land cover class is maximized without prior knowledge

of antigens. The initialized population of antibodies is then optimized by cloning

and mutating the antibodies that can best recognize the antigens. The system then

evolves antibodies over a number of generations until stopping criteria are met.

In this study, the best antibodies for each land cover class were preserved in each

generation. An adaptive mutation rate was used to adjust the learning speed in

response to the difference between the classification accuracies of the current and

previous generation. In addition, the Euclidean distance and spectral angle mapping

distance are used as affinity measures. A genetic algorithm was also used to identify

optimal weights representing contributions from different affinity measures. The

artificial immune network algorithm was applied to classify land covers in a

residential area in Denver, CO, with high-spatial resolution QuickBird image and

LiDAR data and in a suburban area in Monticello, UT, with HyMap hyperspectral

imagery. The method was compared with a decision tree, a multilayer feed-forward

back-propagation neural network, and another artificial immune networks algo-

rithm from de Castro and von Zuben (2001). The results showed that it

outperformed the other methods with higher accuracy and more spatially cohesive

land cover classes with limited salt-and-pepper effect.
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1.6 Fuzzy Systems

1.6.1 Basic Principles

Fuzzy systems make use of fuzzy sets or fuzzy logic. Traditional set theory requires

objects to be either part of a set or not. For example, the set of rice paddy fields is

distinct from the set of forest stands. If a piece of land belongs to one of the two sets,

it cannot belong to the other. Such sets are called crisp. Crisp sets have well-defined

boundaries with no ambiguity about an object’s membership. However, in earth and

environmental studies, our observations and reasoning are often not this exact and

usually include a measure of membership. For instance, many data collected in the

field survey are often described in ambiguous words: soils can be recorded as being

poorly drained, slightly susceptible to soil erosion, and marginally suitable for

maize. Such sets are fuzzy. With fuzzy sets, an object belongs to a set to a certain

degree of membership. Mathematically, a crisp set is described by a characteristic

function whose value is always either 1 for elements of the set or 0 for those outside

the set (Fig. 1.4a). A fuzzy set is defined by a membership function that takes values

in the range of 0 and 1 (Fig. 1.4b). An element belongs to a fuzzy set if the value of

the set’s membership function at that element is nonzero. A nonzero value of the

membership function indicates the degree to which an element belongs to the set.

Fuzzy logic allows approximate reasoning based on fuzzy sets. It usually uses

IF-THEN rules. The following is an example of a fuzzy rule:

IF the soil depth is shallow and accumulated temperature is moderate

THEN the suitability for maize is marginal

The AND, OR, and NOT logic operators of traditional Boolean logic are also used

in fuzzy logic. The AND operation is the intersection of fuzzy sets, given by the

minimum of the membership functions. OR is the union of fuzzy sets, defined as the
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Fig. 1.4 Crisp set vs. fuzzy set defining plain. (a) Characteristic function, (b) fuzzy membership

function
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maximum of the membership functions. NOT gives the complement of a fuzzy set.

Other operators exist in fuzzy logic (Zimmermann 2001).

A fuzzy system can be defined as a collection of IF-THEN rules with fuzzy

predicates, or an algebraic or differential equation in which parameters are

fuzzy numbers expressing the vagueness in the parameter values, or a system with

fuzzy inputs (such as readings from unreliable sensors or quantities relating to human

perception) and fuzzy outputs. In the earth and environmental systems, the majority of

the phenomena are understood only partially and therefore cannot be modeled using

mathematical models. A significant portion of knowledge about the earth and environ-

mental systems is available as the heuristic knowledge or rule of thumb from experts or

practitioners. Fuzzy rule-based systems can be used to represent such knowledge and

make approximate reasoning using the heuristic knowledge. From this point of view,

fuzzy systems can be considered as a type of expert systems or knowledge-based

systems (Patterson 1990). In addition, fuzzy systems provide an alternative approach to

dealing with uncertainty as not all types of uncertainty can be handled by traditional

stochastic modeling framework. The uncertainty in fuzzy systems is non-statistical,

based on vagueness, imprecision, and/or ambiguity. Non-statistical uncertainty is an

inherent property of a system and cannot be changed or resolved by observations.

Stochastic methods deal with statistical uncertainty, which is based on the laws of

probability and can be resolved through observations. Moreover, like other computa-

tional intelligence techniques such as ANN, fuzzy systems can be used to model

nonlinear systems and approximate other functions or measurement data with a desired

accuracy. They provide a more transparent representation of the system under inves-

tigation, mainly due to the linguistic model interpretation in the way close to the one

humans use for reasoning about the real world.

1.6.2 Applications

Fuzzy systems are often a choice when dealing with non-statistic uncertainties in

applications including classification/clustering, function approximation, and pre-

diction. Rezaei et al. (2013) provides an example of classification using fuzzy

logic in evaluation of groundwater pollution. In this study, groundwater vulner-

ability was assessed by using linguistic variables to describe hydrogeological

characteristics and linguistic terms to define vulnerability ratings. The Boolean

logic cannot reflect the actual differences between the points in a hydrogeological

setting; thus, regions that should have different vulnerability indices may be

characterized by the same index. In contrast, a fuzzy system is able to adjust

itself with the range of variation of input indices. The study demonstrated that

fuzzy logic allows better and more logical ratings to be obtained for the values

located near the classification boundaries. Other examples include using fuzzy

clustering methods to characterize the physicochemical properties of groundwater

and assess the impact of anthropogenic activities on the groundwater hydrology
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and chemistry (Güler et al. 2012), and to cluster forests according to their forest fire

risk (Iliadis et al. 2010).

An example of function approximation is the use of fuzzy systems to downscale

the regional wind climate to local wind conditions, considering the surrounding

topography, in order to assess the wind potential available in an area for wind

farms (de la Rosa et al. 2011). Wind exhibits high local-scale variability caused by

the local topography, roughness, obstacles, etc. Although the regional wind cli-

mate can be extrapolated from the wind measurements at the meteorological

stations, it does not reflect the local variability. The real wind is the result of

local conditions. Due to the vagueness in the terrain description (e.g., down slope,

up slope, and plain) in the local scale, the low quality of meteorological data

(without measuring local topographic effects) recorded at the stations, and the

chaotic dynamics inherent to atmospheric events, de la Rosa et al. (2011) proposed

to use a fuzzy system to transform the regional wind distribution into the real one,

which takes into account topographic parameters. The fuzzy system was designed

to establish a link between the local wind conditions and the terrain features.

It calculates the probability of possible changes in the wind direction based on

the analysis of the terrain in those directions. The membership distributions of the

fuzzy system were also optimized using a genetic algorithm. The fuzzy system

effectively approximated the local wind conditions by transforming a regional

wind climate model.

In the study by Kayastha (2012), a fuzzy system approach was used to predict

landslide susceptibility. Eight causative factors were used in the predictive

modeling, including slope, aspect, slope shape, relative relief, distance from

drainage, land use, geology, and distance from active faults. Likelihood ratios

were calculated for each class of the causative factors by comparing with past

landslide occurrences. The likelihood ratios were then normalized to fuzzy

membership values between 0 and 1. The study compared several different

fuzzy operators and found that the fuzzy gamma (λ) operator with a λ-value of

0.70 produced the best prediction accuracy. Other instances of prediction with

fuzzy systems include prediction of air quality (Fisher 2003; Carbajal-

Hernández et al. 2012), ocean wave energy (Özger 2011), and habitat quality

(Mocq et al. 2013).

1.7 Conclusions

The complexity and nonlinearity of most earth and environmental problems have

led to the increased use of computational intelligence techniques. This chapter

reviewed five representative methods of computational intelligence and their appli-

cations. The characteristics of these techniques reveal that each technique has its

own merits and limitations. Fuzzy systems, for instance, are good at approximate

reasoning, but do not have learning and optimization ability, while ANN is capable

of adaptive learning and evolutionary computation is efficient in intelligent search
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and optimization. Fusion of different computational intelligence techniques thus

may provide better computational models. For example, coupling ANN and fuzzy

systems provides capabilities of learning from approximate data or knowledge and

approximate reasoning using the knowledge derived through adaptive learning

(Azar 2010). Attempts to combine evolutionary computation and ANN have a

long history. For example, evolutionary computation techniques can be used to

determine the weights of an ANN with the mean square error sum of the neurons at

the output layer as the fitness function (Piotrowski and Napiorkowski 2011).

Evolutionary computation can also be used to optimize parameters of a fuzzy

system and adapt the membership distribution to optimize the performance of a

fuzzy system (Sanchez et al. 1997; de la Rosa et al. 2011). An ANN can be trained

with fuzzy membership distributions that have been optimized by an evolutionary

computation technique. Moreover, evolutionary computation may be used to deter-

mine the best set of training data in an ANN-fuzzy system (Azar 2010). Chapter 2 of

this book provides a more extensive overview of computational intelligence appli-

cations in earth and environmental sciences. Other chapters in this book offer more

technical discussions on some computational intelligence techniques including

those that were not reviewed in this chapter.

Computational intelligence is a collection of computational models and tools,

whose classification, clusterization, optimization, prediction, reasoning, and

approximation capabilities have been improved incrementally and continuously.

There are already many computational intelligence techniques or combinations of

the techniques. It is always possible to find alternative techniques to address a

specific earth and environmental problem. However, domain-specific knowledge

underlying the physical, chemical, or biological processes in an earth or environ-

mental system under investigation should be incorporated into the problem for-

mulation, selection of appropriate computational intelligence techniques, and

evaluation of modeling results. There is also a need to incorporate computational

intelligence techniques into existing modeling framework so that they can be

widely accepted in the communities who are traditionally accustomed to process

models. Computational intelligence provides practical tools for earth and environ-

mental scientists to handle heterogeneous, incomplete, and noise data and to build

models of uncertainty trained on the historical, current, and predicted data. We will

see more advances in computational intelligence techniques and more innovative

use of these techniques in earth and environmental applications in the future.
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Özger M (2011) Prediction of ocean wave energy from meteorological variables by fuzzy logic

modeling. Expert Syst Appl 38(5):6269–6274

Patterson DW (1990) Introduction to artificial intelligence and expert systems. Prentice-Hall,

Englewood Cliffs, NJ

Piotrowski AP, Napiorkowski JJ (2011) Optimizing neural networks for river flow forecasting—

evolutionary computation methods versus the Levenberg–Marquardt approach. J Hydrol

407:12–27

Pontin DR, Schliebs S, Worner SP, Watts MJ (2011) Determining factors that influence the

dispersal of a pelagic species: a comparison between artificial neural networks and evolution-

ary algorithms. Ecol Model 222(10):1657–1665

Principe JC, Euliano NR, Lefebvre WC (2000) Neural and adaptive systems: fundamentals

through simulations. Wiley, New York
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Torkar D, Zmazek B, Vaupotič J, Kobal I (2010) Application of artificial neural networks in

simulating radon levels in soil gas. Chem Geol 270:1–8

Wang W, Xu D, Qiu L, Ma J (2009) Genetic programming for modelling long-term hydrological

time series. In: Proceedings of the fifth international conference on natural computation, Aug

2009, vol 4, pp 265–269

Wang S, Qian X, Wang QH, Xiong W (2012) Modeling turbidity intrusion processes in flooding

season of a canyon-shaped reservoir, South China. Procedia Environ Sci 13:1327–1337

Watts MJ, Li Y, Russell BD, Mellin C, Connell SD, Fordham DA (2011) A novel method

for mapping reefs and subtidal rocky habitats using artificial neural networks. Ecol Model

222(15):2606–2614

Wu CL, Chau KW (2011) Rainfall–runoff modeling using artificial neural network coupled with

singular spectrum analysis. J Hydrol 399(3–4):394–409

Xu S, Wu Y (2008) An algorithm for remote sensing image classification based on artificial

immune B-cell network. In: The international archives of the photogrammetry, remote sensing

and spatial information sciences, vol XXXVII, part B6b, pp 107�112

Yagiz S, Karahan H (2011) Prediction of hard rock TBM penetration rate using particle swarm

optimization. Int J Rock Mech Mining Sci 48(3):427–433

Yang Y, Rosenbaum MS (2003) Artificial neural networks linked to GIS. In: Nikravesh M,

Aminzadeh F, Zadeh LA (eds) Developments in petroleum science, vol 51, Soft computing

and intelligent data analysis in oil exploration. Elsevier, The Netherlands, pp 633–650

Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput

3(2):82–102

Yoo J, Lee Y, Lee C, Kim C (2012) Effective prediction of biodiversity in tidal flat habitats using

an artificial neural network. Mar Environ Res 83:1–9. doi:10.1016/j. marenvres.2012.10.001

Yu X, Gen M (2010) Introduction to evolutionary algorithms. Springer, New York

Zhang W (2010) Computational ecology: artificial neural networks and their applications. World

Scientific, Singapore

Zhang X, Shan T, Jiao L (2004) SAR image classification based on immune clonal feature

selection. In: Mohamed SK, Aurélio CC (eds) Proceedings of image analysis and recognition,

vol 3212, Lecture notes in computer science. Springer, Berlin, pp 504–511

Zheng H, Li L (2007) An artificial immune approach for vehicle detection from high resolution

space imagery. Int J Comput Sci Network Security 7:67–72

Zhong Y, Zhang L, Huang B, Li P (2007) A resource limited artificial immune system algorithm

for supervised classification of multi/hyper-spectral remote sensing imagery. Int J Remote Sens

28:1665–1686

Zimmermann H (2001) Fuzzy set theory and its applications. Kluwer Academic, Boston

26 X. Zhu

http://dx.doi.org/10.1016/j.%20marenvres.2012.10.001

	Chapter 1: Computational Intelligence Techniques and Applications
	1.1 Introduction
	1.2 Neural Networks
	1.2.1 Basic Principles
	1.2.2 Applications

	1.3 Evolutionary Computation
	1.3.1 Basic Principles
	1.3.2 Applications

	1.4 Swarm Intelligence
	1.4.1 Basic Principles
	1.4.2 Applications

	1.5 Artificial Immune Systems
	1.5.1 Basic Principles
	1.5.2 Applications

	1.6 Fuzzy Systems
	1.6.1 Basic Principles
	1.6.2 Applications

	1.7 Conclusions
	References


