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  Summary 

   Extremely thermophilic, carbohydrate-utilizing bacteria from the genus  Caldicellu-
losiruptor  should be considered for biohydrogen production to take advantage of their broad 
growth substrate range and high substrate conversion effi ciency. In fact,  Caldicellulosiruptor  
species produce molecular hydrogen at yields approaching the Thauer limit of 4 mol H 2 /mol 
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glucose equivalent.  Caldicellulosiruptor  species can utilize pentoses, hexoses, di/oligosac-
charides, as well as complex polysaccharides, including crystalline cellulose. The broad 
appetite of these organisms relates to the natural environment of  Caldicellulosiruptor , where 
they thrive at high temperatures (65–78 °C), utilizing the variable saccharide composition of 
lignocellulosic biomass as growth substrate. The ability to degrade recalcitrant plant bio-
mass and utilize a wide variety of polysaccharides in their fermentation pathways sets 
 Caldicellulosiruptor  species apart from many other candidate biofuel-producing microor-
ganisms. The conversion of lignocellulose to fuels in  Caldicellulosiruptor  is driven by an 
array of novel multi-domain glycoside hydrolases that work synergistically to degrade plant 
polysaccharides into oligo/monosaccharides that enter the cytoplasm via an array of carbo-
hydrate specifi c ABC sugar transporters. These carbohydrates are then processed through a 
series of catabolic pathways, after which they enter the EMP pathway to produce reducing 
equivalents in the form of NADH and Fdred. The reducing equivalents are ultimately utilized 
by both cytoplasmic and membrane-bound hydrogenases to form molecular hydrogen. 
Recently completed genome sequences for a number of  Caldicellulosiruptor  species have 
revealed important details concerning how plant biomass is deconstructed enzymatically 
and shown signifi cant diversity within the genus with respect to lignocellulose conversion 
strategies.      

 Abbreviations:        ABC   –    ATP binding cassette;       ADH   – 
   Alcohol dehydrogenase;      CAZy   –    Carbohydrate-active 
enzyme;      CBM   –    Carbohydrate binding module;      CCR   
–    Carbon catabolite repression;      CE   –    Carbohydrate 
esterase;      CUT   –    Carbohydrate uptake;      DPP   – 
   Di-peptide;      EMP   –    Embden-Meyerhoff-Parnas;      FD red    
–    Reduced ferredoxin;      GH   –    Glycoside hydrolase;    
  LDH   –    Lactate dehydrogenase;      OPP   –    Oligo-peptide;    
  PL   –    Polysaccharide lyase;      PPP   –    Pentose phosphate 
pathway;      PTS   –    Phosphoenolpyruvate-dependent 
phosphotransferase;      SLH   –    S-layer homology;      TCA   – 
   Tricarboxylic acid    

    I. Introduction 

 The genus  Caldicellulosiruptor  is comprised 
of extremely thermophilic, gram-positive 
bacteria with optimal growth temperatures 
between 65 and 78 °C (Blumer-Schuette 
et al.  2010 ; Hamilton-Brehm et al.  2010 ). 
Members of the genus are associated with 
plant debris in high temperature terrestrial 
hot springs and mud fl ats worldwide 
(Fig.  8.1 ). Currently, eight  Caldicellulo-
siruptor  species have sequenced genomes, 
providing important insights into the meta-
bolic and physiological traits of these 
extreme thermophiles (van de Werken et al. 

 2008 ; Kataeva et al.  2009 ; Elkins et al.  2010 ; 
Blumer-Schuette et al.  2011 ). Common to all 
species is the capability to convert complex 
polysaccharides into simple sugars, which 
are then fermented to molecular hydrogen, 
acetate, lactate and small amounts of alcohol 
(Rainey et al.  1994 ; Ahring  1995 ; Huang 
et al.  1998 ; Bredholt et al.  1999 ; 
Miroshnichenko et al.  2008 ; Hamilton- 
Brehm et al.  2010 ; Yang et al.  2010 ). 
 Caldicellulosiruptor  species have potential 
importance for biofuels production, since 
they produce H 2  near the Thauer limit of 
4 mol H 2  per mol glucose (Ivanova et al. 
 2009 ; de Vrije et al.  2009 ; Zeidan and van 
Niel  2010 ; Willquist and van Niel  2012 ).

   The long list of complex polysaccharides 
serving as growth substrates for members 
of the genus  Caldicellulosiruptor  includes 
α- and β-glucans, mannans, xylans, pectin 
and, for some species, crystalline cellulose 
(Rainey et al.  1994 ; Ahring  1995 ; Huang 
et al.  1998 ; Bredholt et al.  1999 ; Mirosh-
nichenko et al.  2008 ; Hamilton- Brehm et al. 
 2010 ; Yang et al.  2010 ; Blumer- Schuette 
et al.  2012 ). The genus collectively contains 
106 glycoside hydrolases (GH), representing 
43 GH families, and an array of ATP-binding 
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cassette (ABC) transporters belonging to 
the Carbohydrate Uptake 2 (CUT 2), Carbo-
hydrate Uptake 1 (CUT 1), and Di/Oligo-
peptide (Dpp/Opp) families (Vanfossen et al. 
 2009 ). These GHs and transporters are 
deployed to synergistically process complex 
polysaccharides prior to entering into fer-
mentation pathways (Blumer-Schuette et al. 
 2012 ). While many microorganisms prefer-
entially utilize hexose over pentose sugars 
and often exhibit carbon catabolite repres-
sion (CCR) (Gancedo  1998 ; Brückner and 
Titgemeyer  2002 ), this is not the case for 
 Caldicellulosiruptor  species (Vanfossen et al. 
 2009 ). The lack of CCR makes  Caldi cellu-
losiruptor  species especially promising in 
decomposing characteristically heteroge-
neous plant biomass to molecular hydrogen. 

 Although the discovery and initial isola-
tion of  Caldicellulosiruptor  species ( C. sac-
charolyticus  formerly  Caldocellum saccharo- 
lyticum ) occurred more than 20 years ago 
(Donnison et al.  1986 ; Rainey et al.  1994 ), it 
was only within the past 5 years, concomi-
tant with the increased interest in biofuels, 
that these bacteria have received intense 
interest. An overview of current progress in 
studying  Caldicellulosiruptor  is provided 

here, with an eye towards how these bacte-
ria produce molecular hydrogen from com-
plex carbohydrates, especially lignocellulosic 
biomass.  

   II. Extracellular Deconstruction 
of Lignocellulosic Biomass 

 The production of molecular hydrogen from 
plant biomass begins with extraction and 
deconstruction of the carbohydrate content 
of lignocellulose into fermentable sugars 
(Fig.  8.2 ). 

   A. Lignocellulose Composition 
and Recalcitrance 

 Lignocellulose is primarily composed of cel-
lulose, hemicellulose and lignin; the physical 
and chemical properties of these polymers 
varies between plant species, stages of 
growth, and environmental conditions 
(Reddy and Yang  2005 ). Cellulose, the major 
structural component, is a long chain of glu-
cose molecules linked by β–1,4 glycosidic 
bonds (van Wyk  2001 ). Hydrogen bonds 
between the polysaccharide chains form 

  Fig. 8.1.     Geographic distribution of   Caldicellulosiruptor   species and Carbohydrate Active Enzymes  
( a  = Number of ORFs encoding either a CBM, CE, GH or PL;  b  = signal peptide is encoded in the ORF).       
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crystalline cellulose, conferring an increased 
resistance to degradation (Rubin  2008 ). 
Hemicellulose is a heteropolymer, consisting 
of xylose, mannose, galactose, glucose, 
arabinose and glucuronic and galacturonic 
acids. These sugars are linked primarily by 
β-1,4 and β-1,3 glycosidic bonds. Lignin is 
an amorphous, water-insoluble heteropoly-
mer, consisting of phenylpropane units 
joined by different types of linkages. Lignin 
acts as molecular “glue”, conferring struc-
tural support, impermeability and resistance 
to microbial attack (Fig.  8.3 ) (Pérez et al. 
 2002 ; Rubin  2008 ). The antimicrobial char-
acteristics of lignin and crystallinity of 
cellulose are the two major challenges in 
the lignocellulosic deconstruction process. 
Microorganisms that can overcome the 

recalcitrance of cellulose in the context of 
potentially toxic lignin moieties are espe-
cially interesting for biofuels production.

      B. Enzymatic Lignocellulose Deconstruction 

 The deconstruction of lignocellulose by 
 Caldicellulosiruptor  initially involves extra-
cellular enzymatic attack of the plant bio-
mass substrate. Members of the genus utilize 
an array of extracellular glycoside hydro-
lases (GHs), polysaccharide lyases (PLs), 
and carbohydrate esterases (CEs) that break 
the glycosidic linkages of long-chained poly-
saccharides to eventually yield oligosacchar-
rides and simple sugars (Blumer- Schuette 
et al.  2012 ). These are then transported into 
the cell for utilization in metabolic pathways. 

  Fig. 8.2.     Conversion process of plant biomass to fuels . Plant biomass is fi rst mechanically degraded to yield 
long chained polysaccharides, which are then enzymatically deconstructed to shorter chained mono/oligo sac-
charides. Shorter chained saccharides are fermented to produce biofuels.       
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The degradation of crystalline cellulose and 
other recalcitrant plant polysaccharides 
requires the synergistic action of multiple 
catalytic domains, often within the same 
enzyme. The effi cacy of these enzymes can 
be enhanced through the conjugation of the 
catalytic subunit(s) with one or more carbo-
hydrate binding modules (CBM). The CBMs 
act to increase the catalytic effi ciency by 
targeting the catalytic GH unit toward acces-
sible polysaccharide, disrupting the polysac-
charide structure, and maintaining the 
substrate in prolonged intimate contact with 
the catalytic GH (Shoseyov et al.  2006 ). The 
end goal of extracellular polysaccharide deg-
radation is the production of carbohydrates 
in a transportable form, typically with six or 
fewer saccharide units. 

 The strategy used to generate small, trans-
portable saccharides differs across the micro-
bial world. For example, the cellulolytic 
fungus,  Trichoderma reesei , utilizes extra-
cellular enzymes, not associated with the 
cell, that contain a single catalytic domain 
and, in many cases, a single CBM (Martinez 
et al.  2008 ). The cellulosome, initially dis-
covered in  Clostridium thermocellum , is a 
multi-protein complex constructed around 
an enzymatically inactive scaffoldin. It con-
tains cohesin domains for the attachment of 

enzyme subunits and a CBM to mediate 
attachment to the substrate. Enzyme sub-
units, which contain dockerin domains, 
attach to the scaffoldin via cohesin- dockerin 
interactions. Similarly, interactions between 
a dockerin domain on the scaffoldin and a 
cell-associated cohesin domain anchor the 
cellulosome complex to the cell (Bayer et al. 
 1983 ,  1998 ; Fontes and Gilbert  2010 ). 
Members of the genus  Caldicellulosiruptor  
are non- cellulosomal, but do employ several 
multi- domain enzymes that mediate cellular 
attachment to plant biomass through S-layer 
homology (SLH) domains (Ozdemir et al. 
 2012 ). The S-layer containing enzymes in 
 Caldicellulosiruptor  are much smaller than 
the cellulosome, and have one or two cata-
lytic domains coupled with one or more 
CBM (Blumer-Schuette et al.  2010 ; Dam 
et al.  2011 ; VanFossen et al.  2011 ). The 
 Caldicellulosiruptor  SLH-domain contain-
ing proteins with additional GH and/or CBM 
domains, contribute to biomass degradation 
by localizing the substrate and holding 
the cell in close proximity (Fig.  8.3 ). The 
majority of extracellular GHs encoded in 
 Caldicellulosiruptor  genomes lack SLH 
domains, such that they freely diffuse in the 
biomass-containing milieu. The presence of 
multiple catalytic domains within a single 

  Fig. 8.3.     Lignocellulose microfi bril with   Caldicellulosiruptor   core extracellular enzymes . Hemicellulose and 
lignin form a protective sheath around cellulose. Core enzymes have activity against α-linked sugars, xylan and 
amorphous cellulose.       
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extracellular enzyme imparts the capacity to 
degrade complex heterogeneous polysaccha-
rides synergistically. 

 The pan-genome of  Caldicellulosiruptor  
encodes 134 carbohydrate-active enzymes 
(CAZy) (GHs, CEs, PLs and CBMs), of 
which 106 are GHs, representing 43 GH 
families. However, only 26 GHs from 17 
families are included in the core genome 
(Cantarel et al.  2009 ; Blumer-Schuette et al. 
 2012 ). Presumably, the core set of enzymes 
contains the basic catalytic capacity required 
for growth on plant biomass by members of 
the genus. It may be necessary, but not suf-
fi cient, for plant biomass deconstruction, 
since all  Caldicellulosiruptor  species con-
tain additional GHs in the core genome. The 
core set of GHs include four out of the fi ve 
known GH families that hydrolyze the β-1,4 
xyloside linkages characteristic of xylan, 
three out of the four GH families that hydro-
lyze the β-1,4 mannoside linkages of man-
nan, and four out of the fi ve xyloglucanase 
families that hydrolyze β-1,4 glucan linkages 
(Blumer-Schuette et al.  2010 ). 

   1. Core  Caldicellulosiruptor  Hydrolytic 
Enzymes 

 The core carbohydrate active enzyme com-
ponent of the  Caldicellulosiruptor  genome 
includes four extracellular enzymes 
(Figs.  8.3  and  8.4 ), identifi ed by the presence 
of a signal peptide at the N-terminus, directing 
the protein to be secreted into the extracel-
lular environment (Navarre and Schneewind 
 1999 ). The extent to which the core set extra-
cellular enzymes can degrade lignocellulosic 
substrates is based on biochemical character-
istics, homology and phenotypic characteris-
tics of the genus. Csac_0678, a bi-functional 
GH5 conjugated to a CBM28 and S-layer 
homology (SLH) domains (Fig.  8.3 ), has 
orthologs in all  Caldicellulosiruptor  genomes. 
As mentioned above, the S-layer homology 
domains of this enzyme act to anchor the 
enzyme to the cell surface, while the CBM 
facilitates attachment of the multi- domain 
enzyme to the substrate (Sára and Sleytr  2000 ). 
Biochemical characterization of Csac_0678 
showed that the GH5 domain exhibited both 

  Fig. 8.4.     Extracellular glycoside hydrolases of   Caldicellulosiruptor   species . Core GHs are common to all 
species. Common GHs are possessed by one or more species, while unique GHs are only in present in a particular 
species. Abbreviations follow the assigned locus tags and are as follows: Cbes  C. bescii,  Calhy C.  hydrotherma-
lis,  Calkr  C. kristjanssonii,  Calkro  C. kronotskyensis,  Calla  C. lactoaceticus , COB47  C. obsidiansis,  Calow  C. 
owensensis,  Csac  C. saccharolyticus .       
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endoglucanase and xylanase activity, while 
the CBM28 was required for activity and 
binding to crystalline cellulose (Ozdemir 
et al.  2012 ). Two other extracellular core 
GHs are a putative xylanase, containing a 
GH10 domain conjugated to two CBM22 
domains, and a putative amylase with a 
GH13 domain conjugated to a CBM41, a 
CBM48 and a CBM20 (Janecek  1997 ; 
Andrews et al.  2000 ). The remaining extra-
cellular core enzyme is a CE family 4 enzyme 
with putative xylanase activity (Caufrier 
et al.  2003 ; Cantarel et al.  2009 ). This core 
set of extracellular enzymes theoretically 
provides the genus with the ability to hydro-
lyze α- and β-glucan linkages of starch and 
cellulose, respectively, in addition to 
β-xyloside linkages of xylan. It should be 
noted, even though the core extracellular 
enzyme set of  Caldicellulosiruptor  contains 
biocatalysts active against the β-glucan link-
ages of cellulose, this does not necessarily 
mean crystalline cellulose deconstruction is 
possible, as not all species are able to effi -
ciently hydrolyze this substrate.

      2. Cellulolytic  Caldicellulosiruptor  Enzymes 

 Beyond the core genome, the presence and 
absence of specifi c types of extracellular 
GHs in  Caldicellulosiruptor  species corre-
lates to the capacity to utilize crystalline 
cellulose (Blumer-Schuette et al.  2010 ). 

In particular, growth on Avicel and fi lter 
paper differentiates the cellulolytic members 
of the genus. For example, the strongly cel-
lulolytic species:  C. bescii ,  C. kronotskyen-
sis ,  C. saccharolyticus  and  C. obsidiansis  
grow well on Avicel and fi lter paper, while  
C. lactoaceticus  grows to a lesser extent on 
these substrates. The weakly cellulolytic spe-
cies,  C. hydrothermalis ,  C. kristjanssonii  and 
 C. owensensis , grow to a limited extent on 
fi lter paper, with no visible deconstruction of 
the solid substrate. Within the sequenced 
 Caldicellulosiruptor  genomes,  C. kronotsky-
ensis  contains the most carbohydrate-active 
encoded enzymes, indicating the ability to 
degrade a wide range of polysaccharides 
(Figs.  8.4  and  8.5 ) (Blumer-Schuette et al. 
 2012 ). The genomes of the four strongly 
 cellulolytic species contain a shared set of 
seven GHs, three of which are extracellular. 
These extracellular multi-domain enzymes 
each contain different GH domains (GH9 
and GH48, GH74 and GH48, or GH9 and 
GH5) linked by CBM3 modules. The activ-
ity of one or more of these extracellular GHs 
presumably confers the ability to degrade 
crystalline cellulose. In order to determine 
which of these enzymes confers the degrada-
tion of crystalline cellulose, the weakly cel-
lulolytic species were inspected for the 
presence of these four GH families. All 
 Caldicellulosiruptor  genomes sequenced 
to date harbor GH5-containing enzymes. 

  Fig. 8.5.     Number of ORFs containing glycoside hydrolases, carbohydrate binding modules and ABC trans-
porters .  Bubble size  correlates to the number of ABC transporters in each species.       
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However, while the  C. kristjanssonii  genome 
encodes a putative extracellular enzyme con-
taining GH9 and GH74 domains linked to 
CBM3 domains, this bacterium is weakly 
cellulolytic. As such, the presence of GH5, 
GH9 and GH74 enzyme families is not nec-
essarily indicative of crystalline cellulose 
hydrolytic capacity in the genus  Caldicellulo-
siruptor . On the other hand, GH48 family 
enzymes cannot be identifi ed in the genomes 
of any of the weakly cellulolytic species, 
suggesting the presence of a GH48 domain 
is an essential determinant for the ability to 
hydrolyze crystalline cellulose by  Caldicellu-
losiruptor  species (Blumer- Schuette et al. 
 2010 ,  2012 ). Furthermore, the coupling of 
GH48 with CBM3 domains is indicative of 
strong cellulolytic capacity. Along these 
lines, CelA, the GH9-, GH48- and CBM3-
containing enzyme present in the cellulolytic 
species, has been characterized biochemi-
cally. CelA, isolated from  C. bescii  culture 
supernatants, as well as specifi c GH domains 
produced recombinantly in  E. coli,  had activ-
ity against crystalline cellulose and other β- 
linked glucans (Te’o et al.  1995 ; Zverlov 
et al.  1998 ), demonstrating the importance 
of CelA to the cellulolytic phenotype in 
 Caldicellulosiruptor . As genetic tools for 
this genus become available, it will be inter-
esting to see if the insertion of a GH48-
domain containing enzyme can impart a 
strong celluloytic capacity on the weakly cel-
luloytic species in this genus or if the absence 
of CelA results in loss of capacity to degrade 
crystalline cellulose.

        III. Carbohydrate Transport 

 Upon degradation of long-chained polysac-
charides to di/oligosaccharides by extra-
cellular enzymes of  Caldicellulosiruptor  
species, the simpler sugars are transported 
into the cell via transmembrane carbohydrate 
transport systems for use in anabolism or 
catabolism (VanFossen et al.  2011 ). Given 
the wide-ranging inventory of GHs found in 
the various  Caldicellulosiruptor  species, it is 
not surprising that there is also signifi cant 

variability in the number and specifi city 
of substrate transporters across the genus. 
ABC and phosphoenolpyruvate-dependent 
phosphotransferase (PTS) carbohydrate trans-
port systems can be identifi ed in  Caldi-
cellulosiruptor  genomes, although the 
presence of PTS transporters in the genus is 
sparse and variable. ABC carbohydrate 
transporters typically belong to one of two 
groups, the carbohydrate uptake transporter 
(CUT) family and the Di/Oligopeptide trans-
porter family (Dpp/Opp) (Schneider  2001 ). 
The CUT-family transporters are further 
divided into two sub-families, differentiated 
in architecture and substrate specifi city. 
CUT sub-family 1 (CUT1) systems, in 
 Caldicellulosiruptor,  transport both di/oligo-
saccharides and monosaccharides (Vanfossen 
et al.  2009 ). CUT1 transporters consist of an 
extracellular substrate binding protein, two 
membrane proteins forming the transloca-
tion path, and a single ATP binding subunit 
likely in the form of a homodimer. The 
CUT2 sub-family is solely involved in 
monosaccharide transport, containing a 
single membrane protein, presumably a 
homodimer, and two fused ATPase domains. 
The Dpp/Opp transport family has been 
implicated in the transport of di- and oligo-
peptides, nickel, heme, as well as sugars. Its 
architecture is a combination of CUT1 and 
CUT2 sub-family features, with an extracel-
lular binding protein, two membrane 
domains and two ATPase domains that form 
a heterodimer (Koning et al.  2002 ). The 
genus  Caldicellulosiruptor  collectively con-
tains 45 ABC transporters, with the core 
genome consisting solely of 6 CUT1 trans-
porters (Fig.  8.5 ) (Blumer-Schuette et al. 
 2012 ). The weakly cellulolytic  C. hydrother-
malis  contains the greatest number of ABC 
transporters, indicating carbohydrate trans-
porter inventory is not necessarily corre-
lated to a strongly cellulolytic phenotype 
(Fig.  8.5 ). Across the genus, CUT1 trans-
porters appear to be responsible for the 
majority of carbohydrate transport into the 
cell, making up 37 of the 45 identifi able 
transporter systems in  Caldicellulosiruptor  
genomes. Dpp/Opp and CUT 2 systems 
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account for 3 and 5 of the ABC transporters 
present in the genus, respectively. 

 Currently, none of the  Caldicellulosiruptor  
ABC transporters have been biochemically 
characterized. Even with the lack of specifi c 
biochemical knowledge, bioinformatics 
analysis can be used to map transport sub-
strates and transport mechanisms through 
homology with other characterized trans-
porters. VanFossen et al. ( 2009 ) analyzed the 
transcriptomes of  C. saccharolyticus  grown 
on glucose, fructose, mannose, xylose, arab-
inose, galactose and a mixture of all these 
sugars, in addition to xylan, xylose, xyloglu-
can and xylogluco-oligosaccharides. These 
data-sets, using metrics developed with pre-
vious work on  Thermatoga maritima , a het-
erotrophic hyperthermophile (Conners et al. 
 2005 ), could be used to predict carbohydrate 
preference of the majority of transporters in 
 C. saccharolyticus . It was concluded that the 
genome of  C. saccharolyticus  contained 
transporters for all the substrates tested. The 
carbohydrate specifi cities of the ABC trans-
porters had either limited specifi city for only 
one substrate, as is often observed with 
oligosaccharide transporters, or broad speci-
fi city for a variety of substrates, as is often 
the case with monosaccharide transporters. 
Ultimately,  C. saccharolyticus  is able to 
transport and utilize the wide variety of car-
bohydrates, simple or complex, that result 
from lignocellulosic biomass hydrolysis. 

 Phenotypic and genotypic differences can 
provide insight into the role of specifi c ABC 
transporters in carbohydrate transport. For 
example,  C. lactoaceticus  is incapable of 
growth on glucose, even though it hydrolyzes 
cellulose, raising the prospect that glucose 
catabolism could be transport-limited.  C. lac-
toaceticus  also has the fewest number of car-
bohydrate ABC transporters within the genus 
(Fig.  8.5 ) (Blumer-Schuette et al.  2012 ). 
Closely related  C. kristjanssonii  is capable of 
growth on glucose and only contains three 
ABC transporters not present in the  C. lacto-
aceticus  genome ,  suggesting that one of these 
three transporters imparts the capacity for 
glucose transport. Two of these transporters 
are members of the CUT1 and CUT2 trans-

porter families with orthologs in all other 
 Caldicellulosiruptor  species. VanFossen et al. 
( 2009 ) predicted that these two transporters 
are involved in glucose, fructose and xylose 
transport. In fact, these are the only transport-
ers identifi ed to transport glucose into 
 C. saccharolyticus . Taken together, these 
transporters seem to enable growth on glu-
cose by  C. kristjanssonii  and most likely 
other  Caldicellulosiruptor  species. 

 The pan-genome of  Caldicellulosiruptor  
contains one identifi ed PTS (Blumer- 
Schuette et al.  2012 ). In many organisms, the 
PTS is bi-functional, playing roles in carbo-
hydrate transport and as a starting point in 
regulating carbon catabolism (Stulke and 
Hillen  2000 ; Kotrba et al.  2001 ; Brückner 
and Titgemeyer  2002 ). The PTS consists of 
two cytosolic energy coupling proteins 
(Enzyme I and histidine- containing protein 
(HPr)) and carbohydrate specifi c, Enzyme II, 
which catalyzes concomitant carbohydrate 
translocation and phosphorylation at the 
expense of PEP (Kotrba et al.  2001 ). In 
 Caldicellulosiruptor , the PTS is currently 
the only identifi ed mannose transporter and 
has been implicated in fructose transport 
(Vanfossen et al.  2009 ). The possible role of 
the PTS in carbohydrate catabolite regula-
tion in  Caldicellulosiruptor  has not been 
established, although in a mixture of saccha-
rides including galactose, glucose, mannose, 
xylose, arabinose and fructose,  C. saccharo-
lyticus  utilized fructose to the greatest extent, 
followed by arabinose and xylose (Vanfossen 
et al.  2009 ). Whether the fructose specifi c 
PTS plays a role in regulation of substrate 
utilization is not known. In addition, genomes 
of  Caldicellulosiruptor  species encode the 
genes required for the carbon control protein 
A (CcpA)-dependent CCR present in  B. 
 subtilis  and other gram- positive bacteria. 
The components of the CcpA-dependent 
CCR signaling cascade present in 
 Caldicellulosiruptor  include the fructose 
specifi c PTS transporter, HPr(Ser) kinase, 
catabolic repression HPr protein (CrH) and 
the CcpA (Warner et al.  2003 ; van de Werken 
et al.  2008 ). Though  Caldi cellulosiruptor  
does not exhibit traditional CCR, the combi-
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nation of the fructose specifi c PTS, the genes 
encoding CcpA- dependent CCR, and pro-
clivity for fructose utilization implies that 
this system plays a role in the carbohydrate 
preferences of these bacteria.

      IV. Intermediary Metabolism 

 The genus  Caldicellulosiruptor  can utilize 
a range of carbohydrates for growth, 
as such, an array of metabolic pathways 
are implicated in bioenergetics. Genome 
sequence data and  13 C-NMR analysis 
revealed  C. saccharolyticus  contains a com-
plete Embden-Meyerhoff- Parnas (EMP) 
pathway (de Vrije et al.  2007 ; van de Werken 
et al.  2008 ). The EMP pathway, which 
serves as the primary generator of ATP and 
reducing equivalents, is conserved within 
the genome sequenced members of the 
genus. The central role of the EMP pathway 
in  Caldicellulosiruptor  metabolism requires 
all carbohydrate growth substrates be 
directly or indirectly fed into the pathway 
for energy generation. Glucose, liberated 
from cellulose and starch, can be oxidized 
directly by the EMP pathway. The hydroly-
sis products of hemicellulose, such as 
xylose, pectin and galactose, must fi rst be 
processed through alternative pathways. 
The products of these sub-pathways are 
then funneled into the EMP pathway at dif-
ferent levels (Fig.  8.6 ). These sub-pathways 
are often incomplete and have varying lev-
els of conservation across the genus. The 
ability to metabolize xylose is conserved 
within the genus. Xylose, the major con-
stituent of hemicellulose, is readily avail-
able during growth on lignocellulosic 
biomass. Xylose enters the non-oxidative 
branch of the pentose phosphate pathway 
(PPP) via conversion by a xylose isomerase 
and xylulokinase. Arabinose, often associ-
ated with xylan, is also funneled into the 
non-oxidative branch of the pentose phos-
phate pathway. Unlike xylose, it is con-
verted into PPP intermediates by means of a 
bifunctional L-fucose/D-arabinose isomer-
ase and a L-ribulokinase that are not 

conserved in the North American or Icelandic 
 Caldicellulosiruptor  species (Figs.  8.1  and 
 8.6 ) (van de Werken et al.  2008 ). The lack 
of these enzymes in the Icelandic species 
correlates with their inability to grow on 
arabinose (Ahring  1995 ; Bredholt et al. 
 1999 ). In contrast, the North American spe-
cies are capable of growth on arabinose, 
indicating the presence of alternative 
enzymes for arabinose metabolism (Huang 
et al.  1998 ; Hamilton-Brehm et al.  2010 ). 
Metabolism of xylose and arabinose 
through the non- oxidative PPP yields β-D-
fructose-6P or glyceraldehyde-3P, early 
metabolites in glycolysis (Fig.  8.6 ). Though 
members of the genus  Caldicellulosiruptor  
rely on the non- oxidative PPP for the 
metabolism of many carbohydrates, the oxi-
dative branch of the PPP is not present, akin 
to other anaerobic biomass degraders in the 
class Clostridia (Hemme et al.  2011 ). The 
oxidative branch of the PPP pathway in 
many organisms is the sole generator of 
NADPH, the primary source of reducing 
equivalents for cellular biosynthetic path-
ways (Kruger and von Schaewen  2003 ). 
There appear to be other enzymes in 
 Caldicellulosiruptor  with the capability for 
generating NADPH, but the exact physio-
logical roles of these enzymes is unclear 
(van de Werken et al.  2008 ). This raises 
questions as to the mode and extent of 
NADPH generation within the cell. 

 Uronic acids, the building blocks of pec-
tin, are primarily composed of galacturonic 
acid (Ridley and O’Neill  2001 ). All  Caldi-
cellulosiruptor  species have been described 
to support growth on pectin (Rainey et al. 
 1994 ; Ahring  1995 ; Huang et al.  1998 ; 
Bredholt et al.  1999 ; Miroshnichenko et al. 
 2008 ; Hamilton- Brehm et al.  2010 ; Yang 
et al.  2010 ). Galacturonate, the anion of 
galacturonic acid, enters metabolism through 
isomerization to tagaturonate. Upon conver-
sion to tagaturonate, the pertinent metabolic 
pathway becomes unclear, as tagaturonate 
reductase and altronate hydrolase, have not 
been identifi ed in the genus. This implies the 
use of a novel pathway or unidentifi ed 
enzymes for the conversion of galacturonate. 
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Similar to the conversion of xylose and 
arabinose, the metabolism of the deoxysugars, 
such as fucose and rhamnose, is variable 
within the genus. Fucose, is found as a 
subunit of xyloglucans (Hisamatsu et al. 
 1991 ) and rhamnose is a common com-
ponent of pectin (Komalavilas and Mort 
 1989 ; Ridley and O’Neill  2001 ). Icelandic 
 Caldicellulosiruptor  species are incapable of 
growth on rhamnose (Ahring  1995 ; Bredholt 
et al.  1999 ), so it was not surprising to cor-
relate the lack of rhamnose isomerase and 

rhamnulokinase from their genome 
sequences to this physiological trait. Limited 
information is available for growth of 
 Caldicellulosiruptor  species on fucose, 
which presumably requires fucose isomerase 
for this phenotype. North American and 
Icelandic species both lack fucose isomerase 
and consistent with this observation,  C. 
obsidiansis  is unable to utilize fucose as a 
growth substrate (Hamilton-Brehm et al. 
 2010 ). Mannose and galactose are also found 
as constituents of hemicellulose, but in 

  Fig. 8.6.     Metabolic features of   Caldicellulosiruptor   species .  Green arrows  indicate reactions not conserved 
in all species. Abbreviations:  DKI  5-keto-4-deoxyuronate,  DKII  2,5-Diketo-3-deoxy-D-gluconate,  Fd   red   reduced 
ferrodoxin,  KDG  -2-Dehydro-3-deoxy-D-gluconate,  KDGP  KDG phosphate,  NADH  reduced nicotinamide ade-
nine dinucleotide,  P  phosphate.       
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smaller amounts than xyloglucan. Galactose 
is metabolized to glucose-6P through the 
Leloir pathway (Holden et al.  2003 ). The 
Leloir pathway is conserved in all sequenced 
 Caldicellulosiruptor  species. Mannose is 
typically carried across the cell membrane via 
a PTS transporter where it is phosphorylated 
to mannose-6P. Several  Caldicellulosiruptor  
species ( C. kristjanssonii ,  C. lactoaceticus  
and  C. obsidiansis ) lack homologs to a PTS, 
yet have the ability of growth on mannose. 
An alternative system for mannose phos-
phorylation has not yet been reported in the 
genus. Fructose can also be transported via 
the same PTS to yield fructose-1P, which is 
then shuttled directly into the EMP pathway. 

 While the tricarboxylic acid (TCA) cycle 
is not involved directly in substrate utiliza-
tion, it is important because essential precur-
sors to biosynthetic pathways are produced. 
The TCA cycle in  Caldicellulosiruptor  
species is incomplete, however all species 
have an oxidative branch to succinyl-CoA 
and a reductive branch to Fumarate    (Fig.  8.6 ). 
The incomplete TCA cycle present in 
 Caldicellulosiruptor  likely functions to gen-
erate amino acid biosynthesis precursors, 
such as 2-oxoglutarate (alpha-ketoglutaric 
acid) and oxaloacetate, rather than reducing 
equivalents. The production of excess reduc-
ing equivalents in the TCA cycle could over-
whelm the fermentative  Caldicellulosiruptor  
without the presence of an aerobic electron 
transport chain.

      V. Metabolism of Fuel Production 

 The degradation of recalcitrant plant biomass 
and subsequent utilization of polysaccharides 
in  Caldicellulosiruptor  fermentation path-
ways produces several metabolic products 
including ethanol and molecular hydrogen. 

   A. Ethanol 

 The genus  Caldicellulosiruptor  has the abil-
ity to produce small amounts of ethanol, 
indicating pathways to this fermentation 
product exist or ethanol the result of promis-

cuous enzymes. Instead of ethanol produc-
tion, most carbon is directed toward acetate, 
and as a consequence, large quantities of 
molecular hydrogen are produced as a fer-
mentation product (Fig.  8.6 ). The primary 
role of hydrogen and ethanol production in 
anaerobic metabolism is to re-oxidize reduc-
ing equivalents generated during the fermen-
tation of sugars. The production of these 
compounds is dependent on environmental 
conditions and growth state. Ethanol produc-
tion occurs via the reduction of acetyl-CoA 
by alcohol dehydrogenase (ADH). Ethanol 
production serves as an effi cient means to 
recycle reducing equivalents in many other 
organisms, but ethanol has only been 
detected in very low to trace levels in 
 Caldicellulosiruptor  (Rainey et al.  1994 ; 
Ahring  1995 ; Huang et al.  1998 ; Bredholt 
et al.  1999 ; Hamilton-Brehm et al.  2010 ; 
Yang et al.  2010 ) and thus, has not been stud-
ied in detail. 

  Caldicellulosiruptor  species contain several 
putative ADHs, but the specifi c enzyme res-
ponsible for the conversion of acetyl-CoA to 
ethanol is unknown. In  Thermoanaerobacter 
psuedethanolicus  (formerly  Thermoanaer-
obacter ethanolicus  39E) ethanol production 
is NADPH-dependent, through the activity 
of a bi-functional alcohol dehydrogenase/
acetyl-CoA thioesterase (Burdette and 
Zeikus  1994 ). A putative ADH in  C. saccha-
rolyticus  (Csac_0395) contains a NADPH-
binding domain and sequence similarity to 
the bi-functional enzyme from  T. pseudetha-
nolicus  (van de Werken et al.  2008 ). This 
suggests that ethanol production in 
 Caldicellulo siruptor  is NADPH- dependent, 
and targeted to oxidizing NADPH, rather 
than the NADH generated during glycolysis. 
However, due to the lack of an oxidative 
branch of the PPP, the mode of generation 
and levels of NADPH are unknown. It is 
likely that the amount of NADPH pro-
duced is limited, leaving NADPH regenera-
tion to NADP +  to biosynthetic pathways, 
resulting in minimal NADPH levels avail-
able for ethanol production. In another 
example, ADH activity of an ethanol adapted 
mutant strain of  Clostridium thermocellum  
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shifted from NADH to NADPH dependence, 
suggesting similarities for ethanol tolerance 
mechanisms and redox homeostasis (Brown 
et al.  2011 ). The specifi c role of ethanol pro-
duction in  Caldi cellulosiruptor  has not been 
explored; it is not likely a means of control-
ling the cellular redox balance, since homeo-
stasis is maintained through hydrogen and 
lactate production.  

   B. Hydrogen 

  Caldicellulosiruptor  species produce signifi -
cant amounts of molecular hydrogen as a 
fermentation product, such that the maxi-
mum yield of H 2  is among the highest for 
hydrogen-producing microorganisms.  Caldi-
cellulosiruptor  species employ the EMP 
pathway to achieve a maximum theoretical 
yield (Thauer limit) of 4 moles H 2  per mol 
glucose (Thauer et al.  1977 ).  Caldi-
cellulosiruptor  can utilize both the less ener-
getic NADH and preferential reduced 
ferredoxin (Fd red ) for the reduction of pro-
tons to produce molecular hydrogen. Both of 
these reducing equivalents are generated 
during the oxidation of sugars in the EMP 
pathway. Fd red  is generated from the oxida-
tion of pyruvate to acetyl-CoA by pyruvate:
ferredoxin oxidoreductase (PFOR) and the 
oxidation of glyceraldehyde-3P to glycerate-
3P by aldehyde ferredoxin oxidoreductase. 
Alternatively, glyceraldehyde-3P can be oxi-
dized to glycerate-3P via glyceraldehyde 
phosphate dehydrogenase (GAPDH) and 
phosphoglycerate kinase to generate NADH 
and ATP (Fig.  8.6 ). 

   1. Hydrogen Production and Carbohydrate 
Transport 

 Hydrogen production in  Caldicellulosiruptor  
may be linked to the primary use of ABC 
transporters for carbohydrate translocation. 
The translocation of substrate by ABC trans-
porters, and subsequent phosphorylation, 
requires two molecules of ATP. Alternatively, 
import of monosaccharides by PTS requires 
phosphoenolpyruvate as a phosphate donor 
to achieve transport and phosphorylation in 

one step. Currently, as mentioned above, 
there is one orthologous PTS identifi ed in 
some species of the genus.  Caldi-
cellulosiruptor  relies primarily on ABC 
transporters for carbohydrate transport, mak-
ing the generation of a supplementary source 
of ATP molecules for carbohydrate transport 
advantageous to the cell. The oxidation of 
sugars to acetate generates an extra ATP 
(2 moles/mole hexose), offsetting the con-
sumption by ABC transporters, while at the 
same time generating Fd red . The production 
of H 2  is then used to re-oxidize Fd red  gener-
ated as a byproduct of ATP generation for 
carbohydrate transport.  

   2. Hydrogenases in  Caldicellulosiruptor  

 In  Caldicellulosiruptor  species, the reduc-
tion of protons to molecular hydrogen occurs 
via two distinct hydrogenases, a cytoplasmic 
Fe-only hydrogenase (HydA to HydD), and 
a membrane-bound Ni-Fe hydrogenase 
(EchA to EchF). Though neither of these 
hydrogenases have been biochemically char-
acterized, homologs in  Caldanaerobacter 
subterraneus  subsp.  tengcongensis  (formerly 
 Thermoanaerobacter tengcongensis ) were 
found to be NADH- and Fd red - dependent, 
respectively (Fardeau et al.  2004 ; Soboh 
et al.  2004 ). A third, putative hydrogenase 
cluster, containing an NADH-binding pro-
tein, also exists, but the function of this clus-
ter is unknown and is theorized to be 
redundant (van de Werken et al.  2008 ); how-
ever, this remains to be confi rmed experi-
mentally. The production of H 2  from Fd red  is 
energetically favorable; making H 2  produc-
tion by the membrane bound Ni-Fe hydrog-
enase preferable. In contrast, the utilization 
of the NADH-specifi c, Fe-only hydrogenase 
is less favorable; only under a very limited 
set of conditions is the production of 
 hydrogen from NADH thermodynamically 
favorable (Verhaart et al.  2010 ). It is interest-
ing that this Fe-only hydrogenase has approx-
imately 50 % amino acid sequence identity 
to a bifuricating hydrogenase in  T. maritima . 
This bifuricating hydrogenase uses the exer-

8 Carbohydrate Conversion to Hydrogen Gas by Caldicellulosiruptor 



190

gonic oxidation of ferredoxin to drive the 
unfavorable oxidation of NADH to produce 
H 2  (Schut and Adams  2009 ). If the Fe-only 
hydrogenase of  Caldicellulosiruptor  is, 
indeed, bifuricating, NADH would serve as 
an energetically favorable substrate for the 
reduction of protons to H 2 .   

   C. Growth Conditions 
and Hydrogen Production 

 During exponential growth,  Caldicellulo-
siruptor  produces H 2 , CO 2  and acetate, almost 
exclusively as fermentation products (Van 
Niel et al.  2002 ; Zeidan and van Niel  2009 ). 
However, there are additional fermentation 
end products that are produced under specifi c 
physiological conditions. For example, 
increased H 2  concentrations and the transition 
to stationary phase, modulates NAD +  regen-
eration and metabolic fl ux of pyruvate toward 
lactate formation via lactate dehydrogenase 
(LDH) (Willquist and van Niel  2010 ). Lactate 
formation consumes NADH and bypasses the 
production of Fd red  and ATP (Fig.  8.6 ). The 
regulation of fl ux at the pyruvate node is a 
function of LDH and hydrogenase activity. 

   1. Regulation of Lactate Dehydrogenase 

 The activity of LDH plays a key role in cel-
lular ATP levels and redox potential, making 
its regulation important and complex. LDH 
is regulated by metabolic energy carriers: 
inorganic phosphate (PPi), ATP and NAD + . 
The utilization of the energy carrier PPi is an 
alternative strategy used in  Caldicellulo-
siruptor  and other bacteria, to conserve 
energy (Mertens  1991 ; Bielen et al.  2010 ). 
The primary source of PPi is anabolic reac-
tions, such as poly-nucleic acid biosynthesis 
and the activation of fatty acids and amino 
acids for lipid and protein synthesis 
(Heinonen  2001 ). Regulation of LDH occurs 
by both activation and inhibition; competi-
tive inhibition occurs by PPi and NAD +  and 
allosteric activation by fructose 1,6-bisphos-
phate, ATP and ADP (Willquist and van Niel 
 2010 ). The multitude of pathways generating 
and consuming these molecules results in 
variable activity of LDH. LDH activity has 

been shown to follow PPi levels and growth 
phase. For example, during exponential 
growth, high anabolic fl ux leads to increased 
generation of PPi, thereby inactivating LDH, 
and maximizing fl ux to acetate and hydro-
gen. As growth factors trigger stationary 
phase, PPi levels decrease and ATP levels 
increase (Bielen et al.  2010 ), enhancing the 
affi nity of LDH to NADH redirecting carbon 
fl ux to lactate.  

   2. Hydrogen Concentration Affects 
Hydrogen Production 

 If the removal of metabolic H 2  from the 
growth environment is insuffi cient, levels of 
dissolved hydrogen in liquid and partial 
pressure in the gas phase will begin to 
increase. Increasing levels of H 2  severely 
inhibit hydrogen production through product 
inhibition (Ljunggren et al.  2011 ; van Niel 
et al.  2003 ). The decrease in hydrogen pro-
duction results in accumulation of reducing 
equivalents, requiring changes in metabolic 
fl ux to balance the reactive species. The criti-
cal threshold value of hydrogen partial pres-
sure varies with growth phase and study to 
study (Ljunggren et al.  2011 ; Willquist et al. 
 2011 ), but is typically 10–20 kPa, as deter-
mined in batch cultures of  C. saccharolyticus  
(van Niel et al.  2003 ). H 2  inhibition is more 
directly related to dissolved H 2  concentra-
tions. Ljunggren et al. ( 2011 ) found a critical 
dissolved H 2  concentration of 2.2 mmol/L 
results in complete inhibition of hydrogen 
production. Gas sparging can be used to alle-
viate rising H 2  concentrations (Chou et al. 
 2008 ), and specifi cally, N 2  sparging can 
increase hydrogen yields (Zeidan and van 
Niel  2010 ; Ljunggren et al.  2011 ; Willquist 
and van Niel  2012 ). However, at a process 
level, inert gas sparging is expensive and eco-
nomically  unfavorable. Alternatively, CO 2  is 
readily available from many industrial pro-
cesses and can be relatively easily sepa-
rated in downstream processing of the gas 
stream (Hallenbeck and Benemann  2002 ). 
However, sparging with CO 2  negatively 
affects growth and H 2  production in  C. sac-
charolyticus . Dissolved CO 2 , in the form of 
bicarbonate and protons, inhibits growth 

Jeffrey V. Zurawski et al.



191

through a decrease in pH and an increase in 
osmotic pressure, rendering CO 2  sparging 
infeasible (Willquist et al.  2009 ). Ljunggren 
et al. ( 2011 ) found an osmolarity between 
0.27 and 0.29 mol/L to be inhibitory to the 
growth of  C. saccharolyticus . Enginee ring 
 Caldicellulosiruptor  strains to be insensitive 
to increased osmotic pressures and pH 
changes and/or hydrogenases with a greater 
hydrogen tolerance will likely be a require-
ment of a  Caldicellulosiruptor -based H 2  pro-
duction process.  

   3. Hydrogen Yields 

 Experimental studies of hydrogen produc-
tion in  Caldicellulosiruptor  have looked at 
both batch (Ivanova et al.  2009 ; Zeidan and 
van Niel  2009 ,  2010 ; Willquist and van Niel 
 2012 ) and continuous (de Vrije et al.  2007 ; 
Willquist et al.  2009 ; Zeidan et al.  2010 ) 

cultures. Hydrogen yields vary with spe-
cies, substrate and growth conditions. 
Yields obtained in these experiments gener-
ally range from 80 to 95 % of the 4 mol H 2 /
mol C 6  theoretical maximum. Note that a 
batch culture of  C. owensensis  in defi ned 
medium, with glucose as substrate, achieved 
the Thauer limit of 4 mol H 2 /mol C 6  sugar 
using continuous N 2  sparging (Table  8.1 ) 
(Zeidan and van Niel  2010 ). The maximum 
stoichiometric yield of H 2  from glucose is 
12 mol H 2  per mol of glucose (Thauer et al. 
 1977 ), even so yields in vivo have not 
exceeded the Thauer limit. In vitro studies, 
using enzymes of the pentose phosphate 
pathway and a NADP +  dependent hydroge-
nase from  P. furiosus , achieved 11.6 mol H 2  
per mol glucose-6-phosphate demonstrat-
ing the ability to produce near maximum H 2  
yields in biological systems (Woodward 
and Mattingly  1996 ). 

    Table 8.1.    Reported hydrogen yields of  Caldicellulosirupto r species.   

 Culture Type  Species  Substrate 
 Yield a  (mol H 2 /
mol C 6 )  Reference 

 Continuous   saccharolyticus   Glucose  3.8  Willquist et al. ( 2011 ) 
 Continuous   saccharolyticus   Glucose b   3.5  Willquist and van Niel ( 2012 ) 
 Trickle bed reactor   saccharolyticus  

(non-sterile) 
 Sucrose  2.8  van Groenestijn et al. ( 2009 ) 

 Batch   saccharolyticus   Miscanthus 
hydrolysate 

 3.4  de Vrije et al. ( 2009 ) 

 Batch   saccharolyticus   Paper sludge 
hydrolysate 

 2–3.8  Kádár et al. ( 2004 ) 

 Batch   saccharolyticus   Wheat straw  3.8  Ivanova et al. ( 2009 ) 
 Batch   saccharolyticus   Pretreated maize 

leaves 
 3.7  Ivanova et al. ( 2009 ) 

 Continuous   kristjanssonii   Glucose  3.5  Zeidan et al. ( 2010 ) 
 Batch   kristjanssonii   Glucose + Xylose  3.0  Zeidan and van Niel ( 2009 ) 
 Batch   owensensis   Glucose b   4.0  Zeidan and van Niel ( 2009 ) 
 Batch   owensensis   Xylose b   3.5  Zeidan and van Niel ( 2009 ) 
 Batch   owensensis   Glucose + Xylose  2.7  Zeidan and van Niel ( 2009 ) 
 Continuous   saccharolyticus  + 

 kristjanssonii  
 Glucose  3.7  Zeidan et al. ( 2010 ) 

 Continuous   saccharolyticus  + 
 kristjanssonii  

 Glucose + Xylose  3.6  Zeidan et al. ( 2010 ) 

 Batch   saccharolyticus  + 
 kristjanssonii  

 Glucose + Xylose  3.8  Zeidan and van Niel ( 2009 ) 

 Batch   saccharolyticus  + 
 owensensis  

 Glucose + Xylose  3.3  Zeidan and van Niel ( 2009 ) 

   a Maximum hydrogen yield reported at varying culture conditions (dilution rate, gas sparging etc.) 
  b Defi ned growth medium  
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 In continuous culture, H 2  production 
varies with dilution rate (i.e. growth rate), 
such that lower dilution rates result in lower 
growth rates and an increase in H 2  yield, 
albeit with a decrease in productivity. 
The inverse is true at higher dilution rates 
(de Vrije et al.  2007 ). At low growth rates, 
the majority of substrate is directed toward 
cell maintenance, during which many bio-
synthetic pathways remain dormant direct-
ing many of the reducing equivalents 
generated during glycolysis toward H 2  pro-
duction. Thus, maximizing hydrogen pro-
duction is a balance between the high 
productivities of fast growth rates and the 
high yields of slow growth rates. A proposed 
solution to increase both yield and produc-
tivity is to inoculate slow growing cultures at 
high cell densities (Chou et al.  2008 ). 
 Caldicellulo siruptor  species have also been 
found to persist in H 2 -producing co-cultures. 
These co-cultures have shown synergy, such 
that the co-culture had higher hydrogen 
yields than the monoculture (Table  8.1 ) 
(Zeidan and van Niel  2009 ; Zeidan et al. 
 2010 ). For example, continuous co-culture 
of  C. saccharolyticus  and  C. kristjanssonii  
found that both species persisted for 70 days 
with a hydrogen yield 6 % greater than either 
species alone. More importantly, cell-free 
growth supernatants of  C. saccharolyticus  
were found to enhance the growth of 
 C. kristjanssonii  by decreasing its lag phase 
and increasing the maximum cell concentra-
tion by 18 % (Zeidan et al.  2010 ). Hydrogen 
yields from various  Caldicellulosiruptor  
species have reached the Thauer limit 
(Zeidan and van Niel  2010 ). Increasing H 2  
productivity in these bacteria, while main-
taining high yields, will be a signifi cant 
challenge in the development of a  Caldi-
cellulosiruptor  bio-hydrogen production pro-
cess, and may be possible through strategic 
metabolic engineering of these bacteria.
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